
Advancing Protocol Diversity
in Network Security Monitoring
A Refined Software Architecture and Implementation

for Efficient Modular Packet-Level Analysis

Jan Grashöfer1, Peter Oettig2, Robin Sommer3, Tim Wojtulewicz3, and Hannes Hartenstein1

1Karlsruhe Institute of Technology, KASTEL – Institute of Information Security and Dependability
{jan.grashoefer,hannes.hartenstein}@kit.edu

2Karlsruhe Institute of Technology, Steinbuch Centre for Computing (SCC)
peter.oettig@kit.edu

3Corelight, Inc.
{robin,tim}@corelight.com

Abstract

With information technology entering new fields and
levels of deployment, e.g., in areas of energy, mobil-
ity, and production, network security monitoring needs
to be able to cope with those environments and their
evolution. However, state-of-the-art Network Security
Monitors (NSMs) typically lack the necessary flexibility
to handle the diversity of the packet-oriented layers
below the abstraction of TCP/IP connections. In this
work, we advance the software architecture of a network
security monitor to facilitate the flexible integration
of lower-layer protocol dissectors while maintaining re-
quired performance levels. We proceed in three steps:
First, we identify the challenges for modular packet-
level analysis, present a refined NSM architecture to
address them and specify requirements for its implemen-
tation. Second, we evaluate the performance of data
structures to be used for protocol dispatching, imple-
ment the proposed design into the popular open-source
NSM Zeek and assess its impact on the monitor per-
formance. Our experiments show that hash-based data
structures for dispatching introduce a significant over-
head while array-based approaches qualify for practical
application. Finally, we demonstrate the benefits of the
proposed architecture and implementation by migrating
Zeek’s previously hard-coded stack of link and inter-
net layer protocols to the new interface. Furthermore,
we implement dissectors for non-IP based industrial
communication protocols and leverage them to realize
attack detection strategies from recent applied research.
We integrate the proposed architecture into the Zeek
open-source project and publish the implementation to
support the scientific community as well as practitioners,
promoting the transfer of research into practice.

1 Introduction
In network security monitoring, stateful deep packet
inspection is used to passively obtain detailed infor-
mation about the communication in a network. This
information allows operators to unveil direct and indi-
rect security threats, such as intrusion attempts and
misconfigurations. Network Security Monitors (NSMs)
log summaries of their observations for forensic purposes,
generate alerts or trigger instant countermeasures upon
detecting malicious behavior [24].

As information technology spreads into ever new do-
mains, trends like the Industrial Internet of Things
(IIoT) lead to a diversification of the traditional
TCP/IP-based protocol stack [7, 46]. For example,
numerous works that address security in production
[10, 47, 45, 32] or energy systems [25, 4] show the large
demand for deep packet inspection (DPI) of non-IP
protocol stacks. This need is also unabated with regard
to the proliferation of machine learning, as it has been
shown that the knowledge of protocol semantics has a
higher influence on the quality of trained models than
the applied algorithm [3]. However, existing research
work that extends established open source monitoring
software like Snort, Suricata or Zeek/Bro to support
new low-level protocols, is hardly ever transferred into
practice1. The integration of new dissection capabilities
is severely hindered by the far-reaching changes these
extensions require to the monitoring tools, because the
low-layer processing, which operates at the granularity
of packets, is typically hard-coded, due to performance
concerns. Consequently, established monitoring solu-
tions are limited to a narrow, TCP/IP-based protocol
stack.

1For example, the work of Kabir-Querrec [25]: https://github.
com/zeek/zeek/pull/76

1

ar
X

iv
:2

10
6.

12
45

4v
1

 [
cs

.N
I]

 2
3

Ju
n

20
21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/477847816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://github.com/zeek/zeek/pull/76
https://github.com/zeek/zeek/pull/76

To advance protocol diversity in network security
monitoring, we develop a refined NSM architecture for
efficient modular packet-level analysis. Modular proto-
col dissectors have three main advantages: 1) Separating
the core monitor functionality, i.e. the orchestration of
the analysis, from the protocol dissection significantly
simplifies the maintenance of the monitor core as well as
the implementation of new dissectors for external devel-
opers. 2) Providing dissectors as independent modules
using well-defined interfaces facilitates their reuse in new
contexts. 3) Modularity allows NSM operators to tai-
lor the monitoring system to their deployment-specific
needs. As a monitor is confronted with arbitrary input
that might even be crafted to attack the NSM itself [35,
31, 37], the increased flexibility aids in minimizing the
potential attack surface of the monitor.
Given the inherent complexity of dissector develop-

ment and the ever growing number of protocols, es-
tablished tools already introduced plugin interfaces to
decouple the domain-specific development of dissectors
for application-layer protocols. Protocol dissectors for
protocols that build upon TCP/IP are able to exploit
the existing interfaces. Examples like DNP3 [28] or
Modbus dissectors are widely adopted, reused, and are
even being continuously developed [22, 9, 42]. However,
the existing plugin interfaces cannot be easily extended
to support packet-level dissectors, as these interfaces
focus on a different level of abstraction. In this work, we
introduce a refined software architecture for NSMs that
addresses the unique challenges of packet-level analysis.
Among these, performance represents the key challenge
for a dynamic plugin scheme compared to the previ-
ous, hard-coded processing at packet-level. Continuous
monitoring for applications like intrusion detection re-
quires online-processing to guarantee timely reactions,
in spite of high traffic volumes or resource-constrained
monitoring devices. For modular packet-level analy-
sis, dispatching performance becomes crucial, because
dispatching of packet-level dissectors is done for every
layer of every packet.
So far, the lack of protocol support beyond the tra-

ditional Ethernet-based TCP/IP stack prevents the
application of established network security monitoring
technologies to protect sensitive resources like critical in-
frastructures. By developing a refined network security
monitor architecture for efficient modular packet-level
analysis, we seek to close this gap. Our contributions
can be summarized as follows:

• We identify the challenges for modular packet-level
analysis in DPI, present an extended NSM archi-
tecture to address them, and derive requirements
for its implementation.

• We evaluate the performance of data structures for
dissector dispatching and show that array-based
approaches outperform hash-based data structures
in this case, while arrays can keep up with hard-
coded packet-level processing.

• We implement the proposed architecture into the
established Zeek network monitor, modularize its
previously hard-coded packet-layer stack, and mea-
sure a negligible performance impact on the overall
monitor performance. Furthermore, we simplify
dissector development by supporting the use of a
tightly integrated parser generator, which allows
for adding new dissectors without writing any C++
code.

• We demonstrate the utility of the extended ar-
chitecture on the example of dissectors for indus-
trial communication protocols, namely GOOSE
and ProfinetIO, by leveraging them to realize ba-
sic, domain-specific attack detection strategies as
proposed in recent research.

The overall goal of this work is to allow for the ap-
plication of established network security monitoring
technologies in new domains and, in particular, to sup-
port the transfer of current research into practice. In
addition to providing the discussed examples as open
source, our implementation of the extended NSM archi-
tecture has been released as part of Zeek 4.0.
The rest of the paper is structured as follows: First,

we discuss related work in Section 2. Then, we pro-
vide background on NSM architecture in Section 3. In
Section 4, we propose an extended NSM architecture
for modular packet-level analysis, specify requirements
for its implementation, and present our implementation
in the open-source NSM Zeek. In Section 5, we eval-
uate the performance of data structures for dissector
dispatching and assess the performance impact of the ex-
tended architecture on the overall monitor performance.
Finally, we showcase a set of practical applications to
demonstrate the utility of a refined architecture for
modular packet-level analysis in Section 6. This covers
the migration of Zeek’s packet-level protocol stack, the
integration with the Spicy parser generator toolchain
[41], the implementation and exemplary application of
dissectors for ICS protocols, as well as an additional
feature to keep track of unknown protocols. Section 7
concludes the paper.

2 Related Work
The established open source security monitoring tools,
Snort, Suricata, and Zeek/Bro, support a modular in-
terface for dissectors based on TCP or UDP. However,
only Snort offers interfaces to customize processing of
lower layers. Snort 2 supports so-called preprocessors
for the reassembly of streams and additional detection
capabilities [26]. While this allows to process other
protocols, the integration with other components like
the rule engine is very limited. Preprocessors also ig-
nore layering so that every packet is processed by every
preprocessor. Snort 3 refines preprocessing and intro-
duces a maximum of 256 modular codecs that integrate

2

into the processing pipeline focusing decapsulation and
allow "basic per-frame validation" [34]. Internally, Snort
3 maintains its own mapping of identifiers to codecs
that is partially hard-coded. This approach requires
the codecs to maintain an additional mapping between
the protocol-specific identifiers and the ones used by
Snort. Furthermore, the selection of Snort-specific iden-
tifiers needs coordination between extension developers
to prevent the duplicate use of an identifier.

The need for modularization of network monitoring
was also recognized by Casola et al. [7]. They extend
a commercial monitoring software to support modular
protocol dissectors focusing on IoT and wireless sen-
sor networks. They implement the monitoring of the
IPv6 over Low power Wireless Personal Area network
(6LoWPAN) protocol. While Casola et al. implement
a modular system, they neither provide details about
their interface design, nor evaluate the performance
impact introduced by modularization. In fact, the pre-
sented architecture uses distributed probes that capture
the traffic, encapsulate each packet, and forward the
traffic to the actual monitor. This suggests that the
dissectors for network layer protocols are implemented
on top of the existing IP analysis stack. The approach
to encapsulate low-layer protocols in IP-based protocols
to work around the limitations of the existing plugin
mechanisms is also found in other work. For exam-
ple, the Idaho National Laboratory (INL) released a
protocol dissector that requires a converter to support
an industrial automation protocol, which is primarily
specified for serial communication [11].

The analysis of protocol headers is also a performance
critical aspect for networking hardware, because the
headers encode information that network components
like switches, routers, and firewalls rely on to make their
forwarding decisions. In their work “Design principles
for packet parsers”, Gibb et al. review the process of
dissecting multilayered packets in hardware to obtain
relevant data like addresses [19]. The authors discuss
general challenges of packet parsing, describe the notion
of parse graphs as state machines, and define an abstract
model of packet parsers. Furthermore, Gibb et al. con-
sider reconfigurability. However, their work addresses
a different domain by focusing on high-speed packet
processing in hardware using ASICs. With the advent
of software defined networking, flexibility in terms of
parsing low-level protocols has become a major concern.
Bosshart et al. introduced a domain-specific language
for Programming Protocol-independent Packet Proces-
sors (P4) [5] that gained significant momentum. P4
fosters hardware independent reconfiguration of net-
work devices in the field to support new header formats.
While these works underline the need to support pro-
tocol diversity, they do not extend to network security
monitoring, which focuses on the comprehensive re-
construction of the observed communication up to the
application layer.

3 Background on Network Security
Monitor Architecture

A network security monitor faces two fundamental chal-
lenges to provide visibility into network communication:
First, descriptive information must be extracted from
the network traffic using deep packet inspection. Second,
the extracted information must be processed with re-
spect to operator-defined network policies (e.g., to raise
alarms) or persisted for retrospective analysis (e.g., in
the form of logs). In this work, we focus on the first as-
pect of extracting information from the observed traffic.
In general, the processing of traffic in a network security
monitor can be divided into three levels of abstraction
(c.f. [27]): Packet-level, session-level, and artifact-level.
At the packet-level, the monitor extracts information
that is defined at the scope of a single packet such as
Ethernet addresses. Packets group information that is
sent from A to B and meta data that is required to do
so. In this work, we focus on the packet-level of DPI. At
the session-level, extracted information is combined to
identify sessions (e.g., 5-tuple for a TCP/IP connection)
that maintain a state. Sessions can be nested; for exam-
ple, multiple HTTP sessions might reuse a persistent
TCP/IP connection. At the artifact-level, artifacts
like files are reconstructed from potentially multiple
sessions. These levels of abstraction are reflected in the
software architecture of a network security monitor.
For our work, we define a network security moni-

tor reference architecture as shown in Figure 1. We
model our reference architecture based on Zeek/Bro
[31], as it proves to be sufficiently general to represent
a variety of systems [1, 12, 27]. The key idea is to
separate the DPI mechanism from the specification of
policies by transforming the ingested network traffic
into a stream of high-level events that describe the ob-
served communication. The monitor core is responsible
for performing deep packet inspection to generate the
event stream. Users interact with the monitor core by
specifying policies, providing configuration, and deploy-
ing plugins. The user-defined policies act on the stream
of high-level events. Examples of events may be the
establishment of a TCP connection or the observation
of an HTTP header. Depending on the capabilities of
the employed policy language, policies may be used for
basic inspection and filtering (e.g., to control logging)
up to the realization of attack detection logic by cor-
relating multiple events. The configuration as well as
plugins can be used to customize the DPI process itself.
Using well-defined interfaces (represented as notches
in Figure 1), plugins allow for the implementation of
additional functionality separately from the monitor
core, which simplifies both, the development process
of plugins and the maintenance of the monitor core.
As plugins can be developed, compiled, and deployed
without interfering with the NSM’s code base, NSM
developer, plugin developer, and NSM user become in-

3

Figure 1: Network Monitor Reference Architecture2– The
monitor core transforms network traffic into a stream of
high-level events that are processed based on user-defined
policies, e.g., to control logging. The analysis performed by
the monitor core can be customized and enriched by config-
uration and independently deployable plugins, respectively.

dependent roles. We refer to the users of an NSM as
operators.
In the reference architecture, the core’s main loop

is the central coordinator of the control flow in the
monitor and steers the processing of packets and events.
Assume the monitor receives a packet that is part of an
HTTP connection over TCP/IP. The main loop reads
the packet from a packet source. Packet sources abstract
different forms of packet ingestion, such as reading from
network interfaces or trace files, and are implemented as
plugins. A packet source is solely responsible for feeding
the raw traffic into the NSM and does not involve pars-
ing of the packet contents. Once our example packet is
read from the packet source, the lower layers are pro-
cessed to assemble the 5-tuple (source address and port,
destination address and port, transport protocol) that
is used to look up the corresponding TCP connection in
the session table. The session table maintains the state
of active connections. When the packet is assigned to a
connection, the analysis continues on the application-
protocol-level, HTTP in our example. If the protocol
carries files, further file analysis may be conducted, such
as calculating file hashes. Both protocol analysis and
file analysis can emit events that are scheduled in the
event queue. Finally, the scheduled events are processed
with respect to the user-defined policies. Policies may
control the handling of in- and output such as blocklists
and logs as well as implement correlation and detection
logic.

While the current architecture allows for easy exten-
sion of the monitor core by additional application-level
protocol dissectors and file analyzers using the avail-

2based on “Following the Packets: A Walk Through Bro’s Pro-
cessing Pipeline” [40]

Figure 2: Proposed extended Network Security Monitor
Architecture – Packet-level analysis becomes a separate step
and provides an interface for plugins. The configuration
allows for orchestration of the plugins.

able plugin interfaces, the processing of packet-level
protocols is typically hard-coded. In the following, we
analyze the process of packet-level analysis and pro-
pose an extended architecture for modular packet-level
analysis.

4 Design and Implementation of
Modular Packet-Level Analysis

In this section, we propose an extended NSM archi-
tecture for packet-level analysis, describe the unique
challenges at the packet-level, and derive the corre-
sponding requirements for implementation. Finally, we
present our implementation of a framework for modular
packet-level analysis in Zeek. In section 5, we evaluate
the related performance aspects.

4.1 Proposed Extended Architecture and
Problem Analysis

With respect to the reference NSM architecture as
described in Section 3, modular packet-level analysis
means to split the packet analysis code by protocol,
decouple protocol-specific dissectors from the monitor
core by employing the plugin mechanism that facilitates
extensibility, and enable operators to orchestrate the
interaction between the dissectors. Figure 2 shows our
proposal for an extended network monitor architecture.
We introduce packet analysis as a separate processing
step (PA-Core) in the monitor core. The core part of
our framework serves as the entry point for packet-level
analysis and defines the interface (PA-Interface) that
is implemented by packet analysis plugins (PA-Plugin).
The PA-Interface defines how the PA-Core interacts
with PA-Plugins to perform packet processing, while

4

(a) Example Packet Structures
(b) Protocol Transition
Graph

Figure 3: Illustrative example of nested packet structures
and a corresponding protocol transition graph inspired by
[19].

the PA-Plugins realize the protocol dissection. To allow
for orchestration of the analysis process by operators, we
introduce the packet analysis configuration (PA-Config).
The actual challenge for the implementation of the

extended architecture lies in the diversity and the nested
structure of protocols in today’s and future’s networks
on the one hand and on the required performance of
packet-level analysis on the other hand. Let us recall
that packet-level protocols are combined by encapsulat-
ing their Protocol Data Units (PDUs) into each other.
A PDU consists of its payload, i.e., data to be trans-
ferred, and a header that contains meta data required
to do so. Encapsulating protocol Y into X means that
Y’s PDU becomes the payload of X’s PDU, so that the
resulting packets consist of several layers represented by
their protocol headers. Figure 3a shows two exemplary
packet structures that carry IP over Ethernet with one
of the packets using an 802.1Q VLAN tag. In real-world
environments, packets may consist of eight layers and
more [19].
On the packet-level, protocol headers typically con-

tain a numerical value that identifies the encapsulated
protocol. The process of determining the encapsulated
protocol and passing on the payload (i.e., the encapsu-
lated PDU) for appropriate analysis, we call packet-
level dispatching. The mapping of protocol identifier
to encapsulated protocol is part of a protocol’s specifi-
cation and, thus, might vary between protocols, which
makes dispatching context dependent. Note that pro-
tocol identification on session-level is more complex
[14, 20]. However, protocol identification on session-
level is usually done once per session, whereas packet-
level dispatching is required for every layer of every
packet. Thus, providing fast and context-aware dis-
patching represents the core challenge for implementing
modular packet-level analysis. In our extended architec-
ture, the PA-Interface codifies how dispatching among
PA-Plugins is realized.
In addition to the protocol formats, their interrela-

tions need to be considered for dispatching, i.e. which
protocols can be encapsulated in a PDU. Adapted from
parse graphs defined by Gibb et al. [19], we define Pro-
tocol Transition Graphs (PTGs) as digraphs for which
nodes represent protocols and edges depict the possible

encapsulation relationships. Figure 3b shows the PTG
for the packets shown in 3a. The graph contains a loop
for the VLAN protocol to take into account stacked
VLAN tags (QinQ, IEEE 802.1ad). Parsing a packet
layer by layer can be understood as executing the state
machine that is described by the PTG. The current state
corresponds to the protocol of the currently analyzed
layer. State transitions are executed based on the identi-
fier for the encapsulated protocol that is extracted from
the current header. Given the vast amount of protocols
and the lack of a comprehensive registry3 it is neither
feasible nor desirable to support monitoring all of them.
For example, any dissector that is not required in a
particular deployment context unnecessarily increases
the attack surface of the monitor. Thus, operators also
need the flexibility to adapt the packet-level analysis to
their environment. Customizing the analysis means to
define the PTG state machine by selecting the relevant
protocols and specifying the corresponding transitions.
We ensure this flexibility by splitting the analysis task
into protocol-specific PA-Plugins and moving the speci-
fication of the transitions into a separated PA-Config
that can be adapted by the operator.
To summarize the problem addressed in this paper,

given the extended network monitor architecture of
Figure 2 and the interrelations of the protocols to be
analyzed on packet-level as sketched in 3b, one has
to define the architectural elements, particularly the
PA-Interface, such that the performance penalty of the
introduced additional functionality is minimal. This
problem, together with more detailed requirements, is
addressed in the following.

4.2 Requirements and Implementation
Following a structured approach, we decompose the
problem of realizing modular packet-level analysis by de-
ducing detailed requirements. Subsequently, we present
our implementation of the previously proposed extended
architecture in Zeek, and show that our implementation
fulfills the defined functional requirements.

Requirements. We define the following fundamental
requirements for implementing flexible packet-level anal-
ysis:
R1 – Extensibility of the NSM represents the key

requirement and is enabled by modularity. While modu-
larity realizes decoupling of functionalities, extensibility
allows to exploit the modularity at deployment time:
The addition of new protocol dissectors to an NSM
deployment should be possible without modification of
the monitor core. Once dissectors can be developed and
compiled independently from the NSM core, the process
of implementing new dissectors is vastly simplified while

3For example, the IANA lists more than 200 assignments for
EtherTypes [16]. The list is not comprehensive because even
a number of widely deployed protocols such as ProfinetIO,
EtherCAT ore GOOSE are not officially registered.

5

at the same time, the maintainability of the monitor
core is improved.
R2 – Universality requires that the PA-Interface

accounts for variability with respect to the location of
protocol identifiers in the protocol header. For example,
assuming to find a protocol identifier at a fixed offset
is not viable, because the header structure might even
vary within a protocol. One prominent example is
IPv6, which uses the last of possibly multiple extension
headers to identify the encapsulated protocol [13].
R3 – Independency requires PA-Plugins to be able

to schedule events in the event queue, so that policies
can be specified referring to packet-level information.
This is particularly important for protocols that do not
establish sessions but carry relevant information like the
Address Resolution Protocol (ARP) [33] or protocols
for industrial control systems.
R4 – Configurability allows the operator of the

NSM to select the set of analyzers and configure proto-
col identifier mappings without touching code. On the
one hand, this allows the operator to tailor the monitor
to its environment and thus reduce the attack surface
that the monitor itself offers. On the other hand, con-
figurability accounts for incomplete information. For
example, MPLS may not explicitly specify which pro-
tocol follows after a label [36] so that the encapsulated
protocol has to be inferred based on the deployment
context. With respect to the design of the PA-Config,
there are two further requirements to consider:
R4.1 – Unambiguousness refers to the fact that

each protocol is free to define its own mapping between
identifiers and encapsulated protocols. Thus, the same
identifier might refer to different encapsulated protocols
depending on the context. Conversely, there might be
different identifiers for a single protocol. For example,
the Ethertype mapping used in the IEEE 802 standard
family [15] and the Point-to-Point (PPP) protocol field
mapping [39] exhibit both, overlapping and multiple
identifiers for the same protocol.
R4.2 – Integrability ensures that the PA-Config

allows for chaining dissectors arbitrarily to handle en-
capsulation. In terms of a PTG this means that it is
possible to establish arbitrary loops4. For example, data
link layer PDUs might be encountered as payloads on
higher layers with respect to tunneling protocols. Fur-
thermore, integrability ensures that existing dissectors
or chains of dissectors can be reused.
R5 – In addition to the previously described func-

tional requirements, Performance is paramount. In
case of network security monitoring, losing packets
means to irretrievably lose potentially critical obser-
vations. Thus performance is ultimately correlated to
the visibility a monitor aims to provide. Because nested
layers trigger multiple packet-level dissectors for every
packet that is seen on the wire, the performance of the

4Note that we assume each analysis step to consume a packet
layer. Thus, loops in the PTG cannot be exploited to block
the progress of the analysis.

Figure 4: Implementation of the extended NSM architecture
for modular packet-level analysis in Zeek.

packet-level dispatching mechanism becomes a relevant
factor. We evaluate the dispatching performance in
section 5. Note that apart from monitoring high vol-
ume traffic, performance is also crucial with respect
to the use of resource-constrained monitoring devices.
In the following, we present our implementation of the
extended NSM architecture in Zeek and show that it
satisfies the functional requirements.

Implementation. The key idea for the implementa-
tion of the extended NSM architecture is to emulate the
state machine that is described by a Protocol Transition
Graph, where parsing a packet layer by layer can be
understood as executing the PTG state machine as de-
scribed in Section 3. Figure 4 shows an overview of our
implementation in Zeek. The monitor core is realized
by Zeek’s so-called event engine, which is responsible for
generating the high-level event stream. Building upon
the event engine, Zeek comes with a turing-complete,
domain-specific scripting language that acts as the pri-
mary user interface for NSM operators. Scripts are used
to express monitoring policies as well as to provide con-
figuration for the event engine. To allow for extension
of the event engine, Zeek offers a plugin mechanism
based on shared libraries.
We define the PA-Interface in form of an abstract

dissector super class, called analyzer. Derived packet
analyzer implementations for a given protocol are pro-
vided by PA-Plugins. Each analyzer implementation
corresponds to a state of the PTG state machine. The
state machine’s transition function is split across the dif-
ferent analyzers and represented in form of a transition
table per analyzer. Together with an analyzer imple-
mentation, each PA-Plugin contains a corresponding
PA-Config that specifies the transition tables using a
policy script (see 6.1 for an example). The analyzer im-
plementation specifies the actual dissection logic. Typi-
cal steps include the verification of the PDU header and

6

Data Structure Description Implementation

Array Static Array indexed by the protocol identifier C++ built-in
Dynamic Array of IDs trimmed at front and end std::vector

Tree Tree Map Red/black tree std::map
Array Tree Tree grouping adjacent identifiers in arrays custom

Hash
Map

Separate Chaining Handle collisions using a list of items per index std::unordered_map
Cuckoo Hashing Calculate multiple candidate indices for an

element using independent hash functions
open source [6]

Universal Hashing Find a collision free hash function for a given
input set from a family of hash functions

based on [44]

Perfect Hashing Construct a collision free hash function based on [18, 21]

Table 1: Data structures evaluated for packet dispatching.

the extraction of the identifier that determines the en-
capsulated protocol. Further processing might include
scheduling events. Finally, the current PDU’s payload
is forwarded based on the extracted protocol identifier
using the transition table. If no suitable analyzer is
found, the failed dispatching is logged. Otherwise, the
analysis continues with the next analyzer. Both eval-
uating the PA-Config and the dispatching mechanism
are implemented as part of the analyzer super class,
i.e. the PA-Interface, as this functionality is shared
between all analyzers. The PA-Core is represented by
the analyzer manager, which maintains a registry of all
available packet-level analyzers as well as a dedicated
root analyzer. In contrast to application-level analyzers
that are spawned per connection, each packet-level ana-
lyzer implementation is only instantiated once by the
manager, since on-demand creation would severely de-
grade performance. The dedicated root analyzer serves
as the entry point for the packet-level analysis in the
event engine.
The described implementation achieves extensibility

(R1) by splitting the analysis task per protocol and
moving it into separately deployable PA-Plugins. By
placing the responsibility for identifier extraction on the
analyzer, the implementation also meets the universal-
ity (R2) requirement, as we do not introduce restrict-
ing assumptions on the identifier placement. Due to
the modular design of the employed script interpreter,
PA-Plugins are able to define and emit custom events
without the need to modify the NSM core. Hence, the
design satisfies the independency (R3) requirement as
well. Configurability (R4) is realized by placing the
transition table definition into Zeek scripts that can be
adapted by NSM operators to customize the packet-level
analysis process. The unambiguousness (R4.1) and inte-
grability (R4.2) requirements for the configuration are
both addressed by the state-machine-driven approach
for dispatching. As each packet analyzer (i.e., state)
maintains its own transition table, identifier conflicts
between different protocols are prevented. However,
this comes at the cost of storing multiple, potentially
large transition tables. The integrability requirement
(R4.2) is satisfied, since there are no restrictions on

possible transitions. For example, a new IP-carrying
stack of data link protocols can be added, without the
need to reimplement any IP-related functionality. Due
to the paramount importance of performance (R5), we
examine this aspect separately in Section 5, including
an evaluation of the design’s memory overhead. All in
all, the presented implementation establishes a clear
separation between the roles of NSM operators, NSM
core developers, and the developers of packet-level ana-
lyzers. The implementation is publicly available being
merged into the BSD-licensed open source Zeek project5

and is part of its 4.0 release.

5 Performance Evaluation
This section is dedicated to the performance of the mod-
ular packet-level analysis approach as presented in the
previous section. During packet processing, dispatching
requires to look up the analyzer for a given identifier and
to forward payloads accordingly. One of the main con-
cerns is whether it is feasible to replace the hard-coded
dispatching with a dynamic plugin scheme on such a
critical data path. Note that, for example, just a single
download at the speed of 10 MB/s, with each packet con-
sisting of 5 packet-level layers on average, yields more
than ten thousand lookups per second. Thus, the dis-
patching data structure becomes mission-critical. Our
goal is to assess and minimize the potentially introduced
overhead. In this section, we first evaluate different data
structures in the context of the dispatching use case. In
a second step, we investigate the impact of the proposed
architecture on the overall performance of the monitor,
employing the best-performing data structure for our
implementation in Zeek. For reproducibility, we release
our experiments and code as open-source6.

5.1 Dispatching Data Structures
For dispatching, we require a simple data structure that
maps protocol identifiers to packet analyzer instances.

5https://github.com/zeek/zeek
6https://github.com/kit-dsn/packet-analyzer-benchmarks

7

https://github.com/zeek/zeek
https://github.com/kit-dsn/packet-analyzer-benchmarks

Table 1 provides an overview on the evaluated data
structures. In addition, we generate code that uses if
or switch statements for comparison with hard-coded
approaches. To benchmark the possible data structures,
we use a dedicated benchmark application written in
C++ that simulates the dispatching process using a
single instance per data structure. For our measure-
ments we employ the Google Benchmark library7. We
measure dispatching time, startup time, and consider
memory usage as well as caching behavior for each data
structure. The startup time is the time required to
build a data structure. The dispatching time is the
overall time spent for identifier lookups. Startup time
and memory usage solely depend on the configured iden-
tifier mappings. The dispatching time is also influenced
by the monitored network traffic, as its structure deter-
mines the sequence of dispatching steps. We describe
the traffic structure using a simplified, CSV-based trace
format: Each line corresponds to a packet and each field
to a layer, with the values representing protocol iden-
tifiers. All measurements are performed on a system
equipped with a 2.6GHz Intel® Core® i7-6600U proces-
sor (2 cores, 64 KiB L1d cache, 512 KiB L2 cache) and
20 GB DDR4 memory. The benchmark application was
compiled using clang version 10.0.1.

In our benchmarks we consider both, the traffic com-
position and the identifier mapping. For each of these
dimensions we simulate two scenarios, one that aims to
capture the characteristics of a real-world deployment
and one that simulates a deliberately adverse situation.
Aiming to capture the properties of real-world traffic,
we obtain a trace from the Monday PCAP of the CIC-
IDS17 data set [38]. Following the CIC-IDS17 traffic,
the adverse trace consists of packets that contain three
packet-level PDUs each, but whose identifiers are ran-
domly drawn from a uniform distribution in the range of
1 to 10.000. In practice, a similar situation could occur
due to incorrect parsing or being triggered intentionally
by an attacker. For comparability both traces comprise
a total number of 10 million PDUs to dispatch. The
real-world-oriented identifier mapping covers the proto-
cols that would be supported in a default configuration
of Zeek. To account for a challenging case, we use a
deliberately fragmented mapping that covers hundred
identifiers found in the randomized trace as well as the
identifiers of the Zeek mapping.

It is not surprising that the data structures based on
more advanced hash functions come with a significant
performance cost, as can be seen in Figure 5a. Given
the small set of involved identifiers, the tree-based data
structures perform better. The best performance is
achieved by the array approaches, which may even out-
perform the hard-coded variants depending on their
realization by the compiler. Although it is a common
approach to translate larger control-flow structures into
jump tables that resemble arrays, compilers may chose

7https://github.com/google/benchmark

(a) Concise identifier mapping based on Zeek defaults under CIC-
IDS17 and randomized traffic composition.

(b) Fragmented identifier mapping (Zeek IDs plus 100 IDs from
random trace) under CIC-IDS17 and randomized traffic composi-
tion.

Figure 5: Dispatching times for selected data structures.
Each bar corresponds to the average of 10 runs. Error bars
depict the 95% confidence intervals.

Figure 6: L1 and L2 cache misses using the trace based
on the CIC-IDS17 dataset with an identifier mapping that
corresponds to Zeek’s default protocol support. Each bar
corresponds to the average of 10 runs. Note that the differ-
ences in absolute values are small.

to realize different techniques like a binary search, with
respect to the memory trade-off for sparse jump tables8.
This explains the relatively poor performance of the
hard-coded variants for the randomized trace using the
fragmented mapping as depicted in Figure 5b. Like-
wise, the performance of the tree-based data structures
foreseeably degrades for the fragmented mapping. The
universal hashing approach is able to keep up with the
array approaches due to the simplicity of the employed
hash function.

8While we observed significant differences between clang and
GCC, both compilers allow for modification of their standard
behavior.

8

https://github.com/google/benchmark

In terms of memory consumption, as expected, the
tree-based and hash-based approaches scale well for in-
creasing numbers of identifiers. In contrast, the static
array consumes a fixed amount of memory that remains
largely unused. For compact mappings, the memory
consumption can be improved by using a dynamic array
trimmed at front and end. Yet, the memory utilization
remains poor for widely scattered mappings. However,
assuming two byte identifiers and a 64 bit platform,
the maximal size of an array would be 512 KiB, which
is still negligible for common deployments. With re-
spect to the partially significant memory consumption,
we also consider the caching behavior. In general, the
handling of identifier mappings can be assumed to be
cache-friendly due to their static nature. Figure 6 shows
the number of cache misses for the evaluated data struc-
tures9. Although the sparse arrays cause relatively high
numbers of L1 data cache misses compared to other
data structures, the comparatively good performance
for L2 cache misses suggest that their simple structure
is ultimately beneficial for caching. Even under the
deteriorated conditions, the caching behavior does not
compromise lookup performance of arrays.

Finally, startup time becomes relevant for the univer-
sal hashing approach. While the other data structures
can be built in just a few milliseconds, finding a col-
lision free hash function becomes disproportionately
time consuming with the size of the identifier mappings
increasing. All in all, the advantages of arrays outweigh
their fairly high memory consumption, especially with
regard to the predictability of the achieved performance.

5.2 Monitor Performance

Based on the previous results, we select the dynamic
array for our implementation of the extended NSM ar-
chitecture in Zeek. The dispatching performance for
the dynamic array is comparable to the hard-coded ap-
proaches. Furthermore, the implementation is straight-
forward, which supports maintainability.
To measure the impact on the monitor’s overall per-

formance, we broke down the previously hard-coded
analysis of packet-level protocols in Zeek into packet an-
alyzers. The migration to packet analyzers is discussed
in more detail in Section 6.1. For both versions, the
original hard-coded one and the modularized version,
we compared execution times and maximum memory
usage for processing the CIC-IDS17 Monday PCAP,
using Zeek’s default configuration. The results as de-
picted in Table 2 show that the impact of the extended
architecture is negligible with only minimal increases
in processing time and memory usage.

9Given the peculiarities of the CPU architecture in terms of
the relation between the hardware performance counters for
different cache levels, we focus on the comparison of the data
structures per cache level.

Runtime [s] Memory [MB]
Original Zeek 8.31 108.46
Extended Zeek 8.39 110.99
Difference [%] 0.8 2.3

Table 2: Comparison between original Zeek using hard-coded
packet-level analysis and Zeek implementing the extended
architecture, when processing the CIC-IDS17 Monday trace
(1M packets). The numbers are the average of 10 runs.

6 Practical Applications
In this section we showcase the new possibilities offered
by the modularization of packet-level analysis. With
respect to the requirements as defined in Section 4.2,
we demonstrate the benefits of configurability (R4) and
illustrate the universality (R2) of the extended NSM
architecture on the example of Zeek’s previously hard-
coded analysis of packet-level protocols. Furthermore,
we extend the Spicy parser generator toolchain to facil-
itate the development of packet-level dissectors. Then,
we discuss two practical applications for monitoring
industrial control systems, presenting packet analyzers
for GOOSE and ProfinetIO that exploit the extensi-
bility (R1) of the proposed architecture focusing on
independency of PA-Plugins (R3). Finally, we introduce
the logging of unknown protocols to increase visibil-
ity and prevent unnoticed monitor evasions in light of
configurability (R4).

6.1 Traditional Protocol Stack Migration
and Spicy Parser Generator

As part of the implementation of the extended NSM
architecture in Zeek, we migrated Zeek’s previously
hard-coded processing of packet-level protocols. In Sec-
tion 5.2, we showed that modularization introduces only
a negligible performance overhead compared to the hard-
coded version (R5). In the following, we provide details
on the realization of configurability (R4) and demon-
strate the universality (R2) of the proposed architecture
based on the migrated protocol stack. Additionally, we
discuss the extension of the Spicy parser generator to
aid the development of new packet-level dissectors.

Traditional Protocol Stack Migration Zeek’s original
implementation covers eleven packet-level network pro-
tocols: Ethernet, FDDI, IEEE 802.11, PPP, PPPoE,
VLAN, MPLS, ARP, IPv4, and IPv6 as well as GRE.
In addition, Zeek also supports a set of capture-related
headers: LinuxSLL, NFLOG, BSD loopback encapsula-
tion (NULL), and IEEE 802.11 RadioTap. Furthermore,
we add a special analyzer that allows for skipping a con-
figured amount of bytes. The skip analyzer enables
NSM operators to quickly adapt to complex setups that
exhibit fixed but unknown headers often introduced
by proprietary protocols. Figure 7 shows the protocol

9

Figure 7: Protocol transitions of Zeek’s traditional packet-
level stack. The capture-related protocols are omitted for
readability and handling of tunnels is simplified.

transitions of the traditional packet-level protocol stack.
Employing the new framework for modular packet anal-
ysis, the depicted transitions are entirely configurable
by the NSM operator using policy scripts, which act
as Zeek’s primary user interface. Listing 1 provides
an excerpt from the PA-Config script for the Ethernet
packet analyzer. The script defines the transition table
that maps protocol identifiers, in this case EtherTypes,
to the corresponding packet analyzers to be registered
during initialization of Zeek. Registration is done us-
ing the register_packet_analyzer function that receives
the parent analyzer (ANALYZER_ETHERNET) to register a
mapping for and an identifier together with the corre-
sponding child analyzer10. To customize the analysis
process, operators only need to adapt the given transi-
tion tables. Overall, the configurability (R4) achieved
by migrating Zeek’s traditional protocol stack to the
extended NSM architecture enables the adaption of the
previously hard-coded analysis process as well as the
reuse of the existing protocol analyzers in new contexts.
While we transfer the traditional stack without im-

plementing additional parsing functionality, the univer-
sality (R2) of the proposed architecture allows us to
account for previously unaddressed special cases. For
example, Zeek’s original Ethernet implementation fo-
cused on Ethernet II frames only. However, depending
on the range the EtherType value falls into and the
first two bytes of the payload, Ethernet frames can be
differentiated into Novell raw IEEE 802.3, IEEE 802.2
LLC, IEEE 802.2 SNAP, and Ethernet II frames. By
allowing the Ethernet analyzer to call configurable sub
analyzers, we employ the proposed architecture to offer
possibilities for future extension.
In addition to the modularization of data-link and

internet layer protocol dissectors, the extended archi-
tecture also lays the foundation for the flexibilization
of transport layer protocol dissectors that perform the
transition from packet- to session-level. With respect
to the reference architecture, there are two options to

10Note that Zeek 4.0 uses multiple calls to the registration func-
tion, omitting tables.

Listing 1: PA-Config excerpt that shows the implementation
of the transition table for the Ethernet packet analyzer.
The transition table maps EtherTypes to packet analyzers.
During initialization, the defined mappings are registered.

global ether_types: table[count]
of PacketAnalyzer::Tag = {

[0x8847] = PacketAnalyzer::ANALYZER_MPLS,
[0x0800] = PacketAnalyzer::ANALYZER_IP,
[0x86DD] = PacketAnalyzer::ANALYZER_IP,
[0x0806] = PacketAnalyzer::ANALYZER_ARP,
[0x8035] = PacketAnalyzer::ANALYZER_ARP,
[0x8100] = PacketAnalyzer::ANALYZER_VLAN,
[0x88A8] = PacketAnalyzer::ANALYZER_VLAN,
[0x9100] = PacketAnalyzer::ANALYZER_VLAN,
[0x8864] = PacketAnalyzer::ANALYZER_PPPOE

} &redef;

event zeek_init() &priority=20
{
for (id, child_analyzer in ether_types)

PacketAnalyzer::register_packet_analyzer(
PacketAnalyzer::ANALYZER_ETHERNET,
id, child_analyzer);

}

realize this transition: On the one hand, packet analyz-
ers may implement protocol-specific session tracking by
moving the session table logic into the packet analyzer
itself. On the other hand, since session tracking is a
common task, the monitor core may provide a generic
session table component to be shared by multiple an-
alyzers. While out of scope for this work, the Zeek
project has already begun work on the latter approach.

Spicy Parser Generator Though the refined NSM ar-
chitecture allows for easy addition of new dissectors,
implementing the parsing logic still remains a cum-
bersome and error-prone process [37]. As a network
security monitor needs to deal with arbitrary network
traffic from potentially malicious sources, the robust-
ness of packet analyzers is a major concern. To further
aid the development of packet-level dissectors, we have
added support for packet analyzers to the Spicy parser
generator [41]. Spicy defines a language to integrate the
specification of syntax and semantics for data formats
ranging from network protocols to file formats and of-
fers tooling to generate dissectors based on the format
specifications. Furthermore, the Spicy toolchain already
integrates with Zeek. Listing 2 shows the specification
for a packet-level analyzer that parses IEEE 802.11Q
VLAN tags. The first 16 bits comprise the Tag Control
Information (TCI), which is divided into the VLAN
Identifier (VID), the Drop Eligible Indicator (DEI), and
a Priority Code Point (PCP). Then the actual Ether-
Type is parsed and used to forward the remaining data
to the next analyzer, once parsing the tag is done. Spicy
being able to translate high-level specifications into a

10

Listing 2: Functional Spicy example that specifies a Zeek
packet analyzer for 802.1Q VLAN tags.

module VLAN;
import zeek;
public type Packet = unit {

tci: bitfield(16) {
vid: 0..11;
dei: 12;
pcp: 13..15;

};
ether_type: uint16;

on %done {
zeek::forward_packet(self.ether_type);

}
};

pluggable dissector completely eliminates the need to
write C++ code and thus vastly simplifies the develop-
ment of packet analyzers. Especially with respect to the
binary nature of packet-level protocols, this approach
also promises to yield more robust protocol parsers,
which is crucial for the overall security of the monitor.

6.2 Monitoring in Industrial Control
Systems

In the context of Industrial Control Systems (ICS), the
integration of so-called Operational Technology (OT)
and traditional Information Technology (IT) increases.
Connecting ICS to larger networks or even the internet
introduces new attack vectors that represent substantial
threats, e.g., when exposing critical infrastructures [30,
17]. State-of-the-art NSMs typically lack the ability to
provide visibility into domain-specific ICS protocols. In
the following, we show how the proposed modular NSM
architecture can be used to extend a network security
monitor to make information extracted from ICS com-
munication available for security operations by exploit-
ing the independency (R3) of PA-Plugins. To this end,
we extend Zeek with packet-level analyzers for GOOSE,
used in the energy sector, and ProfinetIO, employed in
production. We briefly introduce each protocol, present
attacks discussed in recent research, and demonstrate
the value of integrating modular packet-level dissectors
by leveraging them to implement corresponding attack
detection logic in Zeek’s domain-specific scripting lan-
guage.

GOOSE Protocol The Generic Object-Oriented Sub-
station Events protocol (GOOSE) is used for the commu-
nication between Intelligent Electronic Devices (IEDs)
of electrical substations. The protocol is standardized
as part of IEC 61850. To meet real-time requirements,
GOOSE builds directly on top of Ethernet and applies
a multicast communication scheme. Because GOOSE

Listing 3: Configuration for the integration of GOOSE.
redef PacketAnalyzer::ETHERNET::ether_types +=
{

[0x88b8] = PacketAnalyzer::ANALYZER_GOOSE,
[0x88b9] = PacketAnalyzer::ANALYZER_GOOSE

};
redef PacketAnalyzer::VLAN::protocols +=
{

[0x88b8] = PacketAnalyzer::ANALYZER_GOOSE,
[0x88b9] = PacketAnalyzer::ANALYZER_GOOSE

};

lacks authentication mechanisms, the protocol is sus-
ceptible to machine-in-the-middle attacks. Attackers
with access to the substation network may inject false
data to interfere with the operation of the power grid.
The need for visibility into GOOSE communication

is well recognized. Kabir-Querrec already extended
Zeek to parse GOOSE messages [25]. Recently, another
patch has been released by the ResiGate project of the
Advanced Digital Sciences Center (ADSC) [8]. How-
ever, due to the far-reaching changes these extensions
require to the monitor core, the code was not officially
integrated into Zeek. The proposed extended archi-
tecture for modular packet-level analysis allows us to
decouple the dissection of the GOOSE protocol and
the monitor core, by moving the existing code into a
PA-Plugin11. Considering that GOOSE packets are
identified by two EtherTypes (0x88b8 and 0x88b9) and
can be found either directly in Ethernet frames or using
VLANs, again, the configurability (R4) of the proposed
architecture proves to be advantageous. Listing 3 shows
the corresponding configuration for GOOSE. Note that
the existing transition tables are extended using a Zeek
language construct (redef) that allows for the addition
of new entries to existing tables.

Due to the limited practical feasibility of mechanisms
to secure GOOSE communication, a lot of recent re-
search particularly addresses attack detection [23, 25, 4].
For example, Bohara et al. discuss a so-called poisoning
attack [4]: During normal operation, GOOSE endpoints
regularly send messages announcing their current state.
Each message also contains two counters, state number
(st) and sequence number (sq). For each repeated mes-
sage sq is increased. In case of an event that changes
the encoded state, st is increased to signal the state
change. After a state change, messages are sent in a
higher frequency before exponentially slowing down to
the original sending interval. Based on the counter
values, endpoints discard already processed messages
to reduce load. In a simple attack, valid messages can
be "overwritten" by an attacker sending out messages
with high counter values. Monitoring the progression
of the counter values, this type of attack can be easily
detected.
11https://github.com/kit-dsn/zeek-goose-analyzer

11

https://github.com/kit-dsn/zeek-goose-analyzer

Listing 4: Exemplary Zeek script to detect st′ > st + 1
global stNums: table[string] of count;

event goose_message(info: GOOSE::PacketInfo,
pdu: GOOSE::PDU) {

local ds: string = pdu$datSet;
Initialization
if (ds !in stNums) {

stNums[ds] = pdu$stNum;
return;
}

Check for increments > 1
if (pdu$stNum > stNums[ds] + 1)

print fmt("State number jump to %d",
pdu$stNum);

Update counter
stNums[ds] = pdu$stNum;
}

Given the independency (R3) of PA-plugins, the mod-
ular GOOSE dissector is able to generate an event for
each GOOSE message. The event receives the message
content including the counter values as an argument
so that policies can be defined with respect to these
values. Listing 4 shows a simplified example of an event
handler that detects jumps of the state number (st)
larger than one. We track the counters per GOOSE
data set in the stNums table. In case the data set has
not been seen before, the counter values are initialized.
Otherwise, we check for increments larger one and print
a message if we detect a jump. Finally, the tracked
counters are updated. For brevity, we omit the han-
dling of counter rollovers. Furthermore, attackers may
adapt to the currently valid counter numbers. Bohara
et al. present an advanced detection logic that detects
inadequately overlapping resends, which indicate the
insertion of messages using valid counters by a third
party [4]. In this regard, the extended architecture for
packet-level analysis promotes the transfer of current
research into practice by establishing a clear separation
of concerns. On the one hand, dissecting the GOOSE
protocol is decoupled from the monitor core and moved
into an easy to deploy PA-Plugin to be maintained
separately. On the other hand, the demand-driven inte-
gration of the dissector in the overall monitoring system
allows security experts to exploit the synergies of a
unified interface, as provided by the domain-specific
Zeek scripting language, to implement and share new
detection approaches.

ProfinetIO Protocol In a typical production scenario
a process is implemented using field devices such as sen-
sors and actuators that are controlled by Programmable
Logic Controllers (PLCs). ProfinetIO handles the com-
munication between PLCs and field devices as well
as other components such as programming stations or
human-machine interfaces. With more than 32 million
deployed nodes [43], ProfinetIO is one of the most widely

Figure 8: Profinet protocol suite (c.f. [29]). IP-based proto-
cols are supported while the Ethernet-based stack is unsup-
ported by traditional NSMs.

used Ethernet-based fieldbus protocols and was stan-
dardized as part of IEC 61158. The Profinet protocol
suite (c.f. Figure 8) can be divided into several protocols
and sub-protocols. In particular, the following three
protocols need to be considered: The Discovery and
Configuration Protocol (DCP), the Context Manage-
ment protocol (CM), and the Real Time Cyclic protocol
(RTC). During the start up phase of a Profinet system,
PLCs use the Ethernet-based DCP to discover field de-
vices by name and provide an IP configuration for these
devices. Subsequently, the UDP-based CM protocol can
be used to configure process-related communication re-
lations between devices and controllers. Once the setup
is completed, the actual process control communica-
tion is handled by the RTC protocol using one of three
priority classes according to the previously configured
relations. While existing NSMs can be readily extended
to monitor the UDP-based CM communication12, there
is no visibility into the larger part of the stack that is
Ethernet-based.
Pfrang and Meier investigate replay-attacks against

the Ethernet-based ProfinetIO [32]. To successfully re-
play traffic, they disrupt the existing communication
relationship between a field device and its controlling
PLC by conducting a reconfiguration attack. In a re-
configuration attack DCP is used to rename a victim
device, which terminates existing connections. After-
wards, the attacker can establish new communication
relations to execute a subsequent replay attack. By
monitoring the Ethernet-based DCP, these attacks can
be easily detected as well.
Leveraging the extended NSM architecture for mod-

ular packet-level analysis, we implement an analyzer
for ProfinetIO focusing on DCP. DCP uses the com-
mon PN-RT header that is transferred over Ethernet
and identified by EtherType 0x8892. Again, we ex-
ploit the independency (R3) of PA-plugins to enable
the definition of DCP-specific policies by generating
events that reflect the request-response-oriented com-
12For example, Amazon’s Zeek Plugin PROFINET [2]

12

munication flow. For our implementation we employ
the previously introduced Spicy parser generator, which
allows for the specification of Zeek events to be triggered
based on the progress of parsing. To detect successful
renaming attacks, we track the configured values of the
observed devices to distinguish between benign rewrites
and malicious changes of device names. This is done by
correlating renaming requests, responses that confirm
renaming, and subsequent searches for the old names.
We provide both, the ProfinetIO packet analyzer and
the detection script, in a separate Zeek plugin13.
With respect to the complexity of the Profinet pro-

tocol stack that is characterized by the interactions
and dependencies of the different protocols, being able
to gather and correlate information from the various
subsystems offers new possibilities for comprehensive,
system-scope analyses. Yet simple, the example attack
detectors for GOOSE and ProfinetIO clearly demon-
strate the value of modular packet analyzers. The sep-
aration of policy and mechanism (c.f. [31]) using a
domain-specific language for monitoring facilitates the
access of security experts to new application areas and
promotes the exchange and transfer of existing knowl-
edge. In addition to detecting known attack patterns,
NSM operators might choose to apply environment-
specific policies that flag deviations from expected be-
havior. Furthermore, machine learning approaches
could be applied to implement anomaly detection. In
this context, we would like to emphasize again that we
see our work as complementary to the use of machine
learning methods, since the quality of these methods
significantly depends on the selection and preprocessing
of input data [3].

6.3 Unknown Protocols
Visibility is paramount in network security monitoring,
but, as explained in Section 3, it is neither feasible
nor desirable to support monitoring of all protocols.
Because protocol parsing itself is complex, unneces-
sary dissectors increase the monitor’s attack surface in
terms of implementation errors. Furthermore, attackers
might be able to degrade the monitor’s performance
by confronting an NSM with network traffic that is
specially crafted to trigger expensive processing using
otherwise irrelevant protocols. Once protocol identifi-
cation becomes ambiguous, the simultaneous operation
of multiple protocol dissectors might even be exploited
to evade the monitor [20]. However, making use of
configurability (R4) by just excluding protocols would
immediately introduce a new attack vector, if attacks
using these protocols go completely unnoticed.
To prevent excluded protocols from being exploited

to bypass the monitor, we log the use of unknown pro-
tocols. In the unknown_protocols.log, the time, the
analyzer that encountered an unknown protocol, the
13https://github.com/kit-dsn/zeek-profinet-analyzer

corresponding protocol identifier, and a configurable
amount of bytes from the unknown PDU are logged. If
a protocol unknown to the NSM is regularly used in
the monitored network, logging each unknown packet
would quickly overwhelm the monitor. Thus, we also
introduced a throttling mechanism. For each protocol
analyzer, the packets per unknown protocol identifier
are counted. Once the threshold is reached, the report-
ing of packets using this unknown protocol identifier is
rate-limited to a given sampling rate. The rate-limiting
expires after a specified duration. Threshold, sampling
rate, and rate-limiting duration are configurable as well.
We expect the logging of unknown protocols to sig-

nificantly improve the deployment of an NSM in new
environments. By evaluating the unknown protocols
log, NSM operators can quickly determine if additional
protocols need to be supported or spot misconfigura-
tions. In a parallel effort during our work, ESnet14

already proved the value of unknown protocol detection
in practical operations.

7 Conclusion
With the increasing proliferation of information tech-
nology in new areas such as energy, mobility, and pro-
duction, NSMs need to cope with the corresponding
diversification of the TCP/IP-oriented protocol stack.
While existing approaches for modularization of proto-
col dissection at application layer provide a high degree
of flexibility, they do not extend to packet-level analy-
sis, leaving established NSMs incapable of dynamically
integrating non-IP protocol dissectors. Given that pro-
cessing at these low levels is highly performance critical,
the question arises whether it is practically feasible to
replace the hard-coded path with a dynamic plugin
scheme.
In this paper, we present a refined software archi-

tecture for NSMs that enables the flexible integration
of lower-layer protocol dissectors. We investigate the
challenges in the context of packet-level dispatching
and derive detailed requirements for the implementa-
tion of the proposed, extended architecture. Instead of
the prevalent notion of well-ordered protocol stacks, in
practice the interrelations between protocols form more
complex protocol transition graphs. With dispatching
performance being of utmost importance, we find that
hash-based data structures introduce a significant over-
head, whereas array-based approaches can keep up with
the hard-coded processing at packet-level. Based on this
result, we implement the extended NSM architecture in
the open-source NSM Zeek, migrate Zeek’s previously
hard-coded stack of packet-level protocols to the new in-
terface, and verify that the performance impact is indeed
negligible. We demonstrate the benefits of the proposed
architecture by implementing basic attack detection

14https://www.es.net/

13

https://github.com/kit-dsn/zeek-profinet-analyzer
https://www.es.net/

techniques as proposed in recent research on the secu-
rity of industrial control systems in the fields of energy
and production, employing the new interface to realize
modular dissectors for GOOSE and ProfinetIO, two
popular industrial communication protocols. To further
assist the practical application of modular packet-level
protocol dissectors, we integrate with the Spicy parser
generator, which allows for creating new dissectors in
a declarative fashion, and present a feature to increase
visibility when a monitor is confronted with unknown
protocols.
With our work, we hope to support the scientific

community as well as practitioners. In light of the rapid
evolution and increasing adoption of information tech-
nology into ever new environments, we seek to extend
visibility for security operations, facilitate the adop-
tion of existing technologies and, in particular, promote
the transfer of application-domain-driven research into
practice. Thus, all artifacts are made publicly available
including the implementation of the extended NSM ar-
chitecture for modular packet-level analysis being part
of Zeek’s 4.0 release.

Acknowledgments
Hannes Hartenstein and Jan Grashöfer acknowledge the
funding of the Helmholtz Association (HGF) through
the Competence Center for Applied Security Technology
(KASTEL).

References
[1] Johanna Amann, Seth Hall, and Robin Sommer.

2014. Count me in: viable distributed summary
statistics for securing high-speed networks. In Re-
search in Attacks, Intrusions and Defenses. Vol-
ume 8688. Springer International Publishing. doi:
10.1007/978-3-319-11379-1_16.

[2] Amazon.com, Inc. 2021. Zeek plugin PROFINET.
Retrieved 03/31/2021 from https : / / github .
com/amzn/zeek-plugin-profinet.

[3] Blake Anderson and David McGrew. 2017. Ma-
chine learning for encrypted malware traffic clas-
sification: accounting for noisy labels and non-
stationarity. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, (August 13,
2017). doi: 10.1145/3097983.3098163.

[4] Atul Bohara, Jordi Ros-Giralt, Ghada Elbez, Al-
fonso Valdes, Klara Nahrstedt, and William H.
Sanders. 2020. ED4gap: efficient detection for
GOOSE-based poisoning attacks on IEC 61850
substations. In 2020 IEEE International Confer-
ence on Communications, Control, and Comput-
ing Technologies for Smart Grids (SmartGrid-

Comm). IEEE, (November 11, 2020). doi: 10 .
1109/SmartGridComm47815.2020.9303015.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin
Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: pro-
gramming protocol-independent packet processors.
ACM SIGCOMM Computer Communication Re-
view, (July 28, 2014). doi: 10.1145/2656877.
2656890.

[6] Tomash Brechko. 2013. Cuckoo hash. Retrieved
03/22/2021 from https://github.com/kroki/
Cuckoo-hash.

[7] Valentina Casola, Alessandra De Benedictis, An-
tonio Riccio, Diego Rivera, Wissam Mallouli, and
Edgardo Montes de Oca. 2019. A security moni-
toring system for internet of things. Internet of
Things. doi: https://doi.org/10.1016/j.iot.
2019.100080.

[8] Binbin Chen, Heng Chuan Tan, and Vyshnavi
M. 2020. Goose protocol parser for zeek IDS.
Advanced Digital Sciences Center (ADSC). Re-
trieved 03/31/2021 from https://github.com/
smartgridadsc/Goose-protocol-parser-for-
Zeek-IDS.

[9] Justyna Chromik, Anne Remke, Boudewijn R.
Haverkort, and Gerard Geist. 2019. A parser for
deep packet inspection of IEC-104: a practical so-
lution for industrial applications. In 2019 49th An-
nual IEEE/IFIP International Conference on De-
pendable Systems and Networks – Industry Track.
(June 2019). doi: 10.1109/DSN-Industry.2019.
00008.

[10] Rafał Cupek, Markus Bregulla, and Łukasz
Huczała. 2009. PROFINET i/o network analyzer.
In Computer Networks. Series Title: Communi-
cations in Computer and Information Science.
Springer Berlin Heidelberg. doi: 10.1007/978-
3-642-02671-3_29.

[11] Cybersecurity and Infrastructure Security
Agency (CISA) and Idaho National Laboratory
(INL). 2021. ICSNPP-BSAP-serial. Retrieved
03/31/2021 from https : / / github . com /
cisagov/icsnpp-bsap-serial.

[12] Lorenzo De Carli, Robin Sommer, and Somesh
Jha. 2014. Beyond pattern matching: a concur-
rency model for stateful deep packet inspection.
In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security
- CCS ’14. doi: 10.1145/2660267.2660361.

[13] S. Deering and R. Hinden. 2017. Internet Protocol,
Version 6 (IPv6) Specification. RFC8200. RFC
Editor, (July 2017). doi: 10.17487/RFC8200.

14

https://doi.org/10.1007/978-3-319-11379-1_16
https://github.com/amzn/zeek-plugin-profinet
https://github.com/amzn/zeek-plugin-profinet
https://doi.org/10.1145/3097983.3098163
https://doi.org/10.1109/SmartGridComm47815.2020.9303015
https://doi.org/10.1109/SmartGridComm47815.2020.9303015
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://github.com/kroki/Cuckoo-hash
https://github.com/kroki/Cuckoo-hash
https://doi.org/https://doi.org/10.1016/j.iot.2019.100080
https://doi.org/https://doi.org/10.1016/j.iot.2019.100080
https://github.com/smartgridadsc/Goose-protocol-parser-for-Zeek-IDS
https://github.com/smartgridadsc/Goose-protocol-parser-for-Zeek-IDS
https://github.com/smartgridadsc/Goose-protocol-parser-for-Zeek-IDS
https://doi.org/10.1109/DSN-Industry.2019.00008
https://doi.org/10.1109/DSN-Industry.2019.00008
https://doi.org/10.1007/978-3-642-02671-3_29
https://doi.org/10.1007/978-3-642-02671-3_29
https://github.com/cisagov/icsnpp-bsap-serial
https://github.com/cisagov/icsnpp-bsap-serial
https://doi.org/10.1145/2660267.2660361
https://doi.org/10.17487/RFC8200

[14] Holger Dreger, Anja Feldmann, Michael Mai,
Vern Paxson, and Robin Sommer. 2006. Dynamic
application-layer protocol analysis for network in-
trusion detection. In 15th USENIX security sym-
posium. USENIX Association, 257–272.

[15] D. Eastlake and J. Abley. 2013. IANA Consid-
erations and IETF Protocol and Documentation
Usage for IEEE 802 Parameters. RFC7042. RFC
Editor, (October 2013). doi: 10.17487/rfc7042.

[16] Donald Eastlake and Juan Carlos Zuniga. 2021.
IEEE 802 numbers. (March 1, 2021). Retrieved
03/31/2021 from https : / / www . iana . org /
assignments/ieee- 802- numbers/ieee- 802-
numbers.xhtml.

[17] Ghada Elbez, Hubert B. Keller, and Veit Ha-
genmeyer. 2018. A new classification of attacks
against the cyber-physical security of smart grids.
In Proceedings of the 13th International Confer-
ence on Availability, Reliability and Security. (Au-
gust 27, 2018). doi: 10.1145/3230833.3234689.

[18] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen,
and Amjad M. Daoud. 1992. Practical minimal
perfect hash functions for large databases. Com-
munications of the ACM, (January 2, 1992). doi:
10.1145/129617.129623.

[19] Glen Gibb, George Varghese, Mark Horowitz, and
Nick McKeown. 2013. Design principles for packet
parsers. In 2013 ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications
Systems (ANCS). (October 2013). doi: 10.1109/
ANCS.2013.6665172.

[20] Jan Grashofer, Christian Titze, and Hannes
Hartenstein. 2020. Attacks on dynamic protocol
detection of open source network security moni-
toring tools. In 2020 IEEE Conference on Com-
munications and Network Security (CNS). (June
2020). doi: 10.1109/CNS48642.2020.9162332.

[21] Steve Hanov. 2011. Throw away the keys: easy,
minimal perfect hashing. Retrieved 03/22/2021
from http://stevehanov.ca/blog/?id=119.

[22] Zachary Hill, John Hale, Mauricio Papa, and Pe-
ter Hawrylak. 2019. Using bro with a simulation
model to detect cyber-physical attacks in a nuclear
reactor. In 2019 2nd International Conference on
Data Intelligence and Security (ICDIS). (June
2019). doi: 10.1109/ICDIS.2019.00011.

[23] Juan Hoyos, Mark Dehus, and Timthy X Brown.
2012. Exploiting the GOOSE protocol: a practi-
cal attack on cyber-infrastructure. In 2012 IEEE
Globecom Workshops. (December 2012). doi: 10.
1109/GLOCOMW.2012.6477809.

[24] Ray Hunt and Sherali Zeadally. 2012. Network
forensics: an analysis of techniques, tools, and
trends. Computer, (December 2012). doi: 10 .
1109/MC.2012.252. Retrieved 12/07/2020 from.

[25] Maëlle Kabir-Querrec. 2017. Cyber security of
smart-grid control systems: intrusion detection in
IEC 61850 communication networks. PhD thesis.

[26] Jack Koziol. 2003. Intrusion detection with Snort.
Sams Publishing. isbn: 978-1-57870-281-7.

[27] Hongda Li, Hongxin Hu, Guofei Gu, Gail-Joon
Ahn, and Fuqiang Zhang. 2018. vNIDS: towards
elastic security with safe and efficient virtualiza-
tion of network intrusion detection systems. In
Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Secu-
rity (CCS). (January 15, 2018). doi: 10.1145/
3243734.3243862.

[28] Hui Lin, Adam Slagell, Catello Di Martino,
Zbigniew Kalbarczyk, and Ravishankar Iyer.
2013. Adapting bro into SCADA: building a
specification-based intrusion detection system for
the DNP3 protocol. In Proceedings of the Eighth
Annual Cyber Security and Information Intelli-
gence Research Workshop on - CSIIRW ’13. ACM
Press. doi: 10.1145/2459976.2459982.

[29] Alexandr Osadcii. 2017. Design and implementa-
tion of automatic tests for siemens PROFINET
IO development kit.

[30] Andreas Paul, Franka Schuster, and Hartmut
König. 2013. Towards the protection of industrial
control systems – conclusions of a vulnerability
analysis of profinet IO. In Detection of Intrusions
and Malware, and Vulnerability Assessment. doi:
10.1007/978-3-642-39235-1_10.

[31] Vern Paxson. 1999. Bro: a system for detecting
network intruders in real-time. Computer Net-
works, 31. http://www.icir.org/vern/papers/
bro-CN99.pdf.

[32] Steffen Pfrang and David Meier. 2018. Detect-
ing and preventing replay attacks in industrial
automation networks operated with profinet IO.
Journal of Computer Virology and Hacking Tech-
niques, (November 2018). doi: 10.1007/s11416-
018-0315-0.

[33] D. Plummer. 1982. Ethernet Address Resolution
Protocol: Or Converting Network Protocol Ad-
dresses to 48.bit Ethernet Address for Transmis-
sion on Ethernet Hardware. RFC0826. RFC Edi-
tor, (November 1982). doi: 10.17487/rfc0826.

[34] Snort Project. 2021. Snort3 devnotes. Retrieved
03/31/2021 from https://github.com/snort3/
snort3/blob/master/src/codecs/dev_notes.
txt.

[35] Thomas H Ptacek and Timothy N Newsham. 1998.
Insertion, evasion, and denial of service: Eluding
network intrusion detection. Secure Networks Inc.

15

https://doi.org/10.17487/rfc7042
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml
https://doi.org/10.1145/3230833.3234689
https://doi.org/10.1145/129617.129623
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1109/ANCS.2013.6665172
https://doi.org/10.1109/CNS48642.2020.9162332
http://stevehanov.ca/blog/?id=119
https://doi.org/10.1109/ICDIS.2019.00011
https://doi.org/10.1109/GLOCOMW.2012.6477809
https://doi.org/10.1109/GLOCOMW.2012.6477809
https://doi.org/10.1109/MC.2012.252
https://doi.org/10.1109/MC.2012.252
https://doi.org/10.1145/3243734.3243862
https://doi.org/10.1145/3243734.3243862
https://doi.org/10.1145/2459976.2459982
https://doi.org/10.1007/978-3-642-39235-1_10
http://www.icir.org/vern/papers/bro-CN99.pdf
http://www.icir.org/vern/papers/bro-CN99.pdf
https://doi.org/10.1007/s11416-018-0315-0
https://doi.org/10.1007/s11416-018-0315-0
https://doi.org/10.17487/rfc0826
https://github.com/snort3/snort3/blob/master/src/codecs/dev_notes.txt
https://github.com/snort3/snort3/blob/master/src/codecs/dev_notes.txt
https://github.com/snort3/snort3/blob/master/src/codecs/dev_notes.txt

[36] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter,
D. Farinacci, T. Li, and A. Conta. 2001. MPLS
Label Stack Encoding. RFC3032. RFC Editor,
(January 2001). doi: 10.17487/rfc3032.

[37] Len Sassaman, Meredith L. Patterson, Sergey Bra-
tus, and Anna Shubina. 2011. The halting prob-
lems of network stack insecurity. ;login: 36.

[38] Iman Sharafaldin, Arash Habibi Lashkari, and Ali
A. Ghorbani. 2018. Toward generating a new intru-
sion detection dataset and intrusion traffic charac-
terization. In Proceedings of the 4th International
Conference on Information Systems Security and
Privacy. doi: 10.5220/0006639801080116.

[39] W. Simpson. 1994. The Point-to-Point Protocol.
RFC1661. RFC Editor, (July 1994). doi: 10 .
17487/rfc1661.

[40] Robin Sommer. Following the packets: a walk
through bro’s processing pipeline. (2017). Re-
trieved 03/31/2021 from https : / / old . zeek .
org/brocon2017/slides/bro_internals.pdf.

[41] Robin Sommer, Johanna Amann, and Seth Hall.
2016. Spicy: a unified deep packet inspection
framework for safely dissecting all your data. In
Proceedings of the 32nd Annual Conference on
Computer Security Applications - ACSAC ’16.
ACM Press. doi: 10.1145/2991079.2991100.

[42] Robert Udd, Mikael Asplund, Simin Nadjm-
Tehrani, Mehrdad Kazemtabrizi, and Mathias
Ekstedt. 2016. Exploiting bro for intrusion de-
tection in a SCADA system. In Proceedings of
the 2nd ACM International Workshop on Cyber-
Physical System Security - CPSS ’16. doi: 10.
1145/2899015.2899028.

[43] Barbara Weber. 2020. PROFINET and IO-link
on the rise. PROFIBUS and PROFINET Interna-
tional (PI). (May 6, 2020). Retrieved 03/31/2021
from https://www.profibus.com/newsroom/
press-news/profinet-and-io-link-on-the-
rise.

[44] Philipp Woelfel. 1999. Efficient strongly universal
and optimally universal hashing. In Mathematical
Foundations of Computer Science 1999. doi: 10.
1007/3-540-48340-3_24.

[45] Kevin Wong, Craig Dillabaugh, Nabil Seddigh,
and Biswajit Nandy. 2017. Enhancing suricata
intrusion detection system for cyber security in
SCADA networks. In 2017 IEEE 30th Canadian
Conference on Electrical and Computer Engineer-
ing (CCECE). (April 2017). doi: 10.1109/CCECE.
2017.7946818.

[46] Shitong Zhu, Shasha Li, Zhongjie Wang, Xun
Chen, Zhiyun Qian, Srikanth V. Krishnamurthy,
Kevin S. Chan, and Ananthram Swami. 2020.
You do (not) belong here: detecting DPI evasion
attacks with context learning. In Proceedings of
the 16th International Conference on emerging
Networking EXperiments and Technologies. ACM,
(November 23, 2020). doi: 10.1145/3386367.
3431311.

[47] Zihao Feng, Sujuan Qin, Xuesong Huo, Pei Pei,
Ye Liang, and Liming Wang. 2016. Snort improve-
ment on profinet RT for industrial control system
intrusion detection. In 2016 2nd IEEE Interna-
tional Conference on Computer and Communi-
cations (ICCC). (October 2016). doi: 10.1109/
CompComm.2016.7924843.

16

https://doi.org/10.17487/rfc3032
https://doi.org/10.5220/0006639801080116
https://doi.org/10.17487/rfc1661
https://doi.org/10.17487/rfc1661
https://old.zeek.org/brocon2017/slides/bro_internals.pdf
https://old.zeek.org/brocon2017/slides/bro_internals.pdf
https://doi.org/10.1145/2991079.2991100
https://doi.org/10.1145/2899015.2899028
https://doi.org/10.1145/2899015.2899028
https://www.profibus.com/newsroom/press-news/profinet-and-io-link-on-the-rise
https://www.profibus.com/newsroom/press-news/profinet-and-io-link-on-the-rise
https://www.profibus.com/newsroom/press-news/profinet-and-io-link-on-the-rise
https://doi.org/10.1007/3-540-48340-3_24
https://doi.org/10.1007/3-540-48340-3_24
https://doi.org/10.1109/CCECE.2017.7946818
https://doi.org/10.1109/CCECE.2017.7946818
https://doi.org/10.1145/3386367.3431311
https://doi.org/10.1145/3386367.3431311
https://doi.org/10.1109/CompComm.2016.7924843
https://doi.org/10.1109/CompComm.2016.7924843

	1 Introduction
	2 Related Work
	3 Background on Network Security Monitor Architecture
	4 Design and Implementation of Modular Packet-Level Analysis
	4.1 Proposed Extended Architecture and Problem Analysis
	4.2 Requirements and Implementation

	5 Performance Evaluation
	5.1 Dispatching Data Structures
	5.2 Monitor Performance

	6 Practical Applications
	6.1 Traditional Protocol Stack Migration and Spicy Parser Generator
	6.2 Monitoring in Industrial Control Systems
	6.3 Unknown Protocols

	7 Conclusion

