44,187 research outputs found

    Foggy clouds and cloudy fogs: a real need for coordinated management of fog-to-cloud computing systems

    Get PDF
    The recent advances in cloud services technology are fueling a plethora of information technology innovation, including networking, storage, and computing. Today, various flavors have evolved of IoT, cloud computing, and so-called fog computing, a concept referring to capabilities of edge devices and users' clients to compute, store, and exchange data among each other and with the cloud. Although the rapid pace of this evolution was not easily foreseeable, today each piece of it facilitates and enables the deployment of what we commonly refer to as a smart scenario, including smart cities, smart transportation, and smart homes. As most current cloud, fog, and network services run simultaneously in each scenario, we observe that we are at the dawn of what may be the next big step in the cloud computing and networking evolution, whereby services might be executed at the network edge, both in parallel and in a coordinated fashion, as well as supported by the unstoppable technology evolution. As edge devices become richer in functionality and smarter, embedding capacities such as storage or processing, as well as new functionalities, such as decision making, data collection, forwarding, and sharing, a real need is emerging for coordinated management of fog-to-cloud (F2C) computing systems. This article introduces a layered F2C architecture, its benefits and strengths, as well as the arising open and research challenges, making the case for the real need for their coordinated management. Our architecture, the illustrative use case presented, and a comparative performance analysis, albeit conceptual, all clearly show the way forward toward a new IoT scenario with a set of existing and unforeseen services provided on highly distributed and dynamic compute, storage, and networking resources, bringing together heterogeneous and commodity edge devices, emerging fogs, as well as conventional clouds.Peer ReviewedPostprint (author's final draft

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Cross-disciplinary lessons for the future internet

    Get PDF
    There are many societal concerns that emerge as a consequence of Future Internet (FI) research and development. A survey identified six key social and economic issues deemed most relevant to European FI projects. During a SESERV-organized workshop, experts in Future Internet technology engaged with social scientists (including economists), policy experts and other stakeholders in analyzing the socio-economic barriers and challenges that affect the Future Internet, and conversely, how the Future Internet will affect society, government, and business. The workshop aimed to bridge the gap between those who study and those who build the Internet. This chapter describes the socio-economic barriers seen by the community itself related to the Future Internet and suggests their resolution, as well as investigating how relevant the EU Digital Agenda is to Future Internet technologists

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio
    • 

    corecore