13 research outputs found

    Morphological and volumetrical feature-based designer's intents

    Get PDF
    Features are claimed to be the carriers of Designer's Intents (DI's) which are seldom defined, identified and represented in Design-by-Features (DbF) systems. This paper presents an interpretation of Designer's Intents for the Feature-based Modelling (FBM) context and emphasis will be given to the Morphological Functional and Volumetrical Geometrical DI’s which express the basic behaviour of a DbF system. DI's are also an important part of a validation system capable of reasoning about the semantics of using features in a particular design. If features' characterisations via DI's are well established and measurable the representation could be assessed as to its conformity with feature's meaning and their semantics could be validated. It is considered that the better Designer's Intents are understood and specified, the more useful Feature-based Modelling will become

    Identifying and quantifying inefficiencies within industrial parametric CAD models

    Get PDF
    Parametric CAD software is the primary development tool for the design engineer during the product development process. However, industrial parametric CAD models are often constructed in a manner that leads to inefficiencies during subsequent product development activities. Despite the availability of Model Quality Tools (MQTs) these ‘poor’ quality models can currently only be accurately identified using time-consuming and subjective auditing from experienced users. The project aims to develop a more robust solution, using measurable part characteristics, to predict the efficiency level of these CAD files

    An intent-driven paradigm for feature-based design

    Get PDF
    A very important advantage of a feature-based modelling (FBM) system is claimed to be its ability to capture and carry designer’s intents (DI’s), although this last term is rarely clearly defined. Feature’s extra nongeometrical semantics, that are closely related to such designer’s intents, are used by many applications but never related back to designer’s intents. Therefore, adopting the approach of defining of designer’s intents helps define the role of features in the geometric design and, indeed, allows future feature-based modelling systems to better represent, store and reuse such information. Moreover, it allows a more formal approach for manipulating, verifying and maintaining DI’s throughout the design process, which is an invaluable support for really intelligent CAD systems. This paper presents Designer’s Intents in the feature-based modelling context and exposes a methodology used to effectivelly capture and manage and verify this extra information

    Explicit Communication of Geometric Design Intent in CAD: Evaluating Annotated Models in the Context of Reusability

    Get PDF
    CAD model reusability is largely determined by a proper communication of design intent, which is usually expressed implicitly within the model. Recent studies have suggested the use of 3D annotations as a method to embed design information in the model’s geometry and make part of the design knowledge explicitly available. In this paper, we evaluate the effectiveness of this method and analyze its impact in model alteration tasks. Our goal is to determine whether annotated models provide significant benefits when performing activities that require a direct manipulation of the geometry. We present the results of a study that measured user performance in two scenarios. First, we tested whether annotations are helpful when inadequate modeling assumptions can be made by designers. Second, we evaluated annotations as tools to communicate design decisions to select the most appropriate solution to a challenge when multiple options are available. In both cases, results show statistically significant benefits of annotated models, suggesting the use of this technique as a valuable approach to improve design intent communication

    Product range models supporting design knowledge reuse

    Get PDF
    Redesign, where previous information is recovered in order to be adapted to a new situation, is an area of design where information technology can potentially provide substantial benefits. Information support to product design and manufacturing has been pursued through the use of product and manufacturing models. This paper introduces a new concept of a complementary information model, called a product range model, that aims to support variant and adaptive design activities. The general concept and structure of such an information model is defined in terms of product functions and their respective design solutions. The interactions taking place between particular design solution options are discussed, and methods are proposed for their evaluation against product specifications and design constraints. The concept of knowledge links is introduced to maintain the relationships between solutions within the product range model and the particular model of the product being developed. The work has been explored using injection mould tooling as an appropriate product range and evaluated through the design and implementation of a design support system utilizing an object-oriented database

    Revisiting the design intent concept in the context of mechanical CAD education

    Get PDF
    [EN] Design intent is generally understood simply as a CAD model¿s anticipated behavior when altered. However, this representation provides a simplified view of the model¿s construction and purpose, which may hinder its general understanding and future reusability. Our vision is that design intent communication may be improved by recognizing the multifaceted nature of design intent, and by instructing users to convey each facet of design intent through the better-fitted CAD resource. This paper reviews the current understanding of design intent and its relationship to design rationale and builds on the idea that communication of design intent conveyed via CAD models can be satisfied at three levels provided that specialized instruction is used to instruct users in selection of the most suitable level for each intent.Otey, J.; Company, P.; Contero, M.; Camba, J. (2018). Revisiting the design intent concept in the context of mechanical CAD education. Computer-Aided Design and Applications. 15(1):47-60. https://doi.org/10.1080/16864360.2017.1353733S476015

    Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability

    Get PDF
    A successful implementation of the Model-Based Enterprise concept (MBE) requires maximizing the potential benefits of annotated 3D models. The foundations of the MBE model are established by digital product definition data practices, which are currently regulated by standards such as ASME Y14.41-2003 and ISO 16792:2006. At the center of the MBE concept is the notion of CAD model reusability, which relies on the idea that 3D CAD models can be reused both throughout the entire product lifecycle and as a starting point for future development of new products. In this context, a critical aspect of CAD model reuse is the proper identification and understanding of the geometric design intent that is usually expressed implicitly within the CAD model. In this work, we present a method to communicate geometric design intent explicitly by overloading and extending the scope of the current annotation instruments available in the MBE approach.We propose a new broader type of model annotation that we call extended annotation , where design information is represented both internally within the 3D model and externally, on a separate repository. This structure naturally demands additional mechanisms to support the interaction of users with the information. In order to manage the information stored in these extended annotations effectively, we implemented an annotation manager that automatically synchronizes the dual representation of the annotations. To reduce the visual clutter in the 3D model, the software provides powerful filtering, editing, and visualization capabilities, giving users complete control of the information stored in the model. Finally, a study was conducted with 60 participants to evaluate the performance of the proposed model and the usability of the annotation manager. Results show a statistically significant benefit of using the extended annotation system, suggesting the use of this model as a valuable approach to improve design intent communication.Camba, J.; Contero González, MR.; Johnson, M.; Company, P. (2014). Extended 3D annotations as a new mechanism to explicitly communicate geometric design intent and increase CAD model reusability. Computer-Aided Design. 57:61-72. doi:10.1016/j.cad.2014.07.001S61725

    Automated Manufacturability Analysis: A Survey

    Get PDF
    In the marketplace of the 21st century, there is no place for traditional ``over-the-wall'' communications between design and manufacturing. In order to ``design it right the very first time,'' designers must ensure that their products are both functional and easy to manufacture. Software tools have had some successes in reducing the barriers between design and manufacturing. Manufacturability analysis systems are emerging as one such tool---enabling identification of potential manufacturing problems during the design phase and providing suggestions to designers on how to eliminate them.In this paper, we provide a survey of current state of the art in automated manufacturability analysis. We present the historical context in which this area has emerged and outline characteristics to compare and classify various systems. We describe the two dominant approaches to automated manufacturability analysis and overview representative systems based on their application domain. We describe support tools that enhance the effectiveness of manufacturability analysis systems. Finally, we attempt to expose some of the existing research challenges and future directions.<P

    ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY

    Full text link
    El proyecto de investigación propuesto se enmarca dentro del área de diseño de producto con aplicaciones de modelado sólido CAD/CAM (Computer Aided Design/Computer Aided Manufacturing). Concretamente, se pretende hacer un estudio de las herramientas de anotación asociativas disponibles en las aplicaciones comerciales de modelado CAD con el fin de analizar su uso, viabilidad, eficiencia y efectos en la modificación y reutilización de modelos digitales 3D, así como en la gestión y comunicación del conocimiento técnico vinculado al diseño. La idea principal de esta investigación doctoral es establecer un método para representar y evaluar el conocimiento implícito de los ingenieros de diseño acerca de un modelo digital, así como la integración dinámica de dicho conocimiento en el propio modelo CAD, a través de anotaciones, con el objetivo de poder almacenar y comunicar eficientemente la mayor cantidad de información útil acerca del modelo, y reducir el tiempo y esfuerzo requeridos para su alteración y/o reutilización.Dorribo Camba, J. (2014). ANNOTATION MECHANISMS TO MANAGE DESIGN KNOWLEDGE IN COMPLEX PARAMETRIC MODELS AND THEIR EFFECTS ON ALTERATION AND REUSABILITY [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/45997TESI

    Feature-based validation reasoning for intent-driven engineering design

    Get PDF
    Feature based modelling represents the future of CAD systems. However, operations such as modelling and editing can corrupt the validity of a feature-based model representation. Feature interactions are a consequence of feature operations and the existence of a number of features in the same model. Feature interaction affects not only the solid representation of the part, but also the functional intentions embedded within features. A technique is thus required to assess the integrity of a feature-based model from various perspectives, including the functional intentional one, and this technique must take into account the problems brought about by feature interactions and operations. The understanding, reasoning and resolution of invalid feature-based models requires an understanding of the feature interaction phenomena, as well as the characterisation of these functional intentions. A system capable of such assessment is called a feature-based representation validation system. This research studies feature interaction phenomena and feature-based designer's intents as a medium to achieve a feature-based representation validation system. [Continues.
    corecore