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ABSTRACT

Feature based modelling represents the future of CAD systems. However,
operations such as modelling and editing can corrupt the validity of a feature-
based model representation. Feature interactions are a consequence of feature
operations and the existence of a number of features in the same model. Feature
interaction affects not only the solid representation of the part, but also the
functional intentions embedded within features. A technique is thus required to
assess the integrity of a feature-based model from various perspectives,
including the functional intentional one, and this technique must take into
account the problems brought about by feature interactions and operations. The
understanding, reasoning and resolution of invalid feature-based models
requires an understanding of the feature interaction phenomena, as well as the
characterisation of these functional intentions. A system capable of such

assessment is called a feature-based representation validation system.

This research studies feature interaction phenomena and feature-based
designer's intents as a medwum to achieve a feature-based representation

validation system.

It was found that feature interaction classifications available in the literature are
strongly oriented towards the feature recognition approach and are mainly
inappropriate to design-by-features systems. A feature interaction classification
and identification mechanism is thus proposed. In addition, a taxonomy of
designer’s intents is proposed that makes explicit many of the expected
behaviours behind the use of features in a representation for specific
applications. The binding process that relates feature interactions to designer’s
intents allows the validity assessment of the representation and also the
identification of operations that contribute to the revalidation of the
representation. This bounding process leads to a reasoning mechanism that
performs feature validation and is driven by designer’s intents, and, therefore,
was baptised FRIEND (Feature-based validation Reasoning for Intent-driven
ENgmeenng Design).
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1. INTRODUCTION

1.1 CAD SYSTEMS

Computer Aided Design (CAD) systems are considered an essential tool for
detailed geometric design allowing a high level of flexibility, efficiency and
quality. Traditional CAD systems use low level entities such as vertices,
edges, and faces (see Figure 1-1), as well as low-level operators such as move
a vertex, create an arc, delete an edge and insert a face for detailing a

geometric design,

Face

=
- . NED
kVertex k Edge

Figure 1-1: Some Entities of Traditional CAD Systems.

3 x

More recent CAD systems based on Geometric Solid Modelling (GSM) use
solid primitives of various shapes such as spheres, cones and cylinders (Figure
1-2) that can be combined using Boolean operators such as union, intersection

and difference.

Although GSM represents an important, and nowadays widespread,
improvement over 2D and 2.5 D computer-aided drafting systems they have
some unattractive factors when being considered as the medium for integration

of CAD systems with other computer-aided engineering-related activities
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(such as process planning - Mantyla89 - and tolerancing analysis - Duan89).

Such limitations include:

Figure 1-2: Entities of GSM-based CAD Systems.

e difficulty in interpreting geometric information from the point of view of

manufacturing;

o difficulty in providing associated (non-geometrical) information needed for

process planning;

e being large and complex data structures themselves, GSM representations
are not attractive for handling extra attribute information which can be

complex and voluminous;

e because GSM represents one level of information (geometry) it has been
considered to be single-level. Thus, it is difficult to distinguish between
essential functional aspects of the shape to be used by the application and

other non-essential aspects;

e traditional primitives in GSM modellers are not convenient for defining

geometric tolerancing and manufacturing specifications.

Furthermore, the integration or even interfacing of current CAD systems with
other activities such as engineering (CAE), process planning (CAPP),
manufacturing (CAM) and production control (CAPC) has been shown to be a
difficult task because current CAD systems are incapable of capturing non-
geometric aspects of the designer’s intent such as tolerances, part relationships
or surface fimsh. (Nnaj193, Stroud93, Marefat93b). In addition, more abstract

design activities such as conceptual design, generation of design alternatives,

PAGE 2
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reuse and reasoning on design procedures and capturing the functionality of a

product are just impossible (Henderson93, Taylor96).

These limitations have generated a research area, which takes their resolution

as its main objectives and is known as Feature-based Modelling.

1.2 FEATURE-BASED CAD SYSTEMS

Feature-based Modelling (FBM) systems enhance existing CAD environments
through the use of more meaningful entities, ease of use and facilitate
integration with other computer-aided systems within the manufactuning

context because they subsume extra non-geometric semantics.

FBM systems use entities, called features, that are closer to the designer’s own
vocabulary such as holes, slots and steps (Figure 1-3) and are considered the
means of incorporating knowledge of the form, behaviour, function and related

manufacturing processes into a single representation (EIMaraghy93a).

Figure 1-3: Entities of Feature-based Modelling Systems.

Feature-based Modelling has already become an enabling product modelling
technique for a better integration of CAD systems and other engineering-
related analyses. Its close infegration with specific disciplines such as
manufacturing and assembly has helped develop approaches such as Design-
for-Manufacturing (DFM) and Design-for-Assembly (DFA). It has even been
asserted that “one of the most popular approaches for manufacturing involves
features, or recurring shapes with some fixed engineering significance”

(Mantyla6).

The possibility of capturing designer’s intent (see discussion on this 1n section

3.5), as well as geometric and topological information, also helps mediate
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multi-disciplinary product development towards a Concurrent Engineering

(CE) approach (Lim95).

Furthermore, FBM plays an important role in helping the development of
Intelligent CAD (ICAD) systems where, with the help of Artificial Intelligence
(AI) techniques, not only the object, but also the Design Process, can be
modelled and manipulated (Chsuda89, Dixon90, Nielsen91).

Design-by-Features (DbF) is one approach for implementing Feature-based
CAD systems and offers the designer a library of features to be used to
represent the desired component. DbF systems are distinct from the Feature
Recognition (FeR) approach where features are ‘discovered’ after a session
using traditional or GSM-based CAD systems. Current thinking is that
elements of each approach (traditional CAD, GSM CAD, DbF and, FeR) can
be usefully combined into a DbF-like system producing a much more useful

and flexible system (see section 2.6.3).

The power of feature models in manufacturing applications is based on
associating feature types with manufacturing process models (Mdntyla96).
This assertion emphasises a need for FBM systems to produce correct model
representations. Correct representations can be used immediately by
downstream applications without the need for further filtering of errors or
misrepresentations introduced by the use of the feature-based modelling

technique.
The main advantages of using features include (Ovtcharova92):

¢ a feature vocabulary is more natural for expressing the product when

compared with a purely geometric one;

e there is a possibility of using features as a basis for modelling product
information in different phases such as design, analysis, process planning

and manufacturing;

e the use of features can lead to an increase in designer’s productivity and

cost effectiveness.
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CHAPTER 1. INTRODUCTION

1.3 COMMERCIAL FEATURE-BASED CAD SYSTEMS

Feature-based modelling has been reported to have been incorporated in
(parametric) commercial CAD systems (Shah91, Rosen93). These commercial
systems include Microstation 95, Pro/ENGINEER, UNIGRAPHICS (Shah91,
Mitchell96), BRAVO, CADDS 5 and I-DEAS (Lim95).

However, these implementations have suffered severe criticism:

e “These CAD systems are often misleadingly construed as true feature-
based modelling systems” (L.1m95).

e “In reality, features in these systems are merely viewed as macros that
facilitate the creation, parameterisation and placement of specific geometry

forms within a solid modeller” (Perng97b).

However crude the implementations are, many of them have made serious
commitment to extend or implement feature-based modelling in the future.
Commercial CAD systems, highly influenced by parametric or variational
constraint-based technology (see section 4.4.2), have created some confusion
concerning feature technology. In addition, some strange behaviours have been

reported when editing feature-based models using some of these systems
(Chen95).

Therefore, commercial feature-based CAD systems are considered not yet
mature enough to be widely used as a basic resource for research on feature-

related modelling problems.

1.4 THE VALIDATION PROBLEM

When a new methodology, technique or theory is developed to model the
behaviour of a phenomenon it is necessary to validate the model. Validation is
the process of checking that a representation satisfies the criteria established

by the domain characterisation in target - the model. Conformance to the
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CHAPTER 1* INTRODUCTION

criteria confirms the validity of the model representation (Rossignac90,
Jablokow94).

Many authors have pointed out the existence of problems when using feature-
based systems and the importance of the validation task (Faux86, Dixon87,
Emmenk89, Shah90, Rossignac90, Shah91, Sreevalsan92, Requicha%2,
Pratt93, Duan93, Martino94a, Su94, Kim96, Kraker97) but few state what a
valid representation is in terms of the feature technology. Therefore, even the

origins of the validity problem are not completely clear.

Some of these problems related to representation validation have been referred
to in the literature using the following keywords: manipulations, editability,
operating, consistency verification, construction and changing feature-based

models.

One question to be answered is which restrictions and/or verifications should
be applied to a feature representation (preferably at the feature representation
level) in order to guarantee that the model is within its domain and is really
representing the artefact’s geometric semantics. Defining a set of
representation validity conditions establishes the criteria that must be applied
to classify it as being in the domain of the model and thus a valid

representation.

Although still lacking a proper clarification, architectures for the future
feature-based design system have been proposed (Allada95, Kim96) where
“feature validation” and “designer’s intent” have been considered as necessary
elements of such architectures. As a result, it can be seen that “feature
validation” is an important and active research topic and thus needs to be

further studied, which is one of the aims of this research.

1.5 DISTINCT VALIDATION ASPECTS

On analysing the validation problem, at least three aspects can be
distinguished (Figure 1-4): Model Validation, Entity Validation and Model

Representation Validation.

PAGE6
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Yalidation Aspects

] Model

1__FEntities

1 Representation

Figure 1-4: The Validation Aspects.

1.5.1 MODEL VALIDATION

Model validation seeks to prove that the model “does its job” in a variety of
circumstances and that the model agrees with the “real thing”, at least to some
extent. Most often, there are built-in restraints that apply to the model to
guarantee the extent of the modelling and that models are within its

representation domain. This is called model representation validation.

Feature-based modelling has already been accepted as a valid (and indeed,
necessary) modelling framework (Dixon90, Denzel93) that will promote
Concurrent Engineering (CE) (Lim95) and a better integration of CAD
systems with other computer-aided engineering activities such as CAPP, CAM
and CAE. This acceptance can also be inferred from the variety of feature
applications that thrives in the lterature (some of which are presented in

section 2.3).

From the modelling perspective, feature-based models have the same
modelling domain capability and limitations as the underlying geometric

modeller. Therefore, a CSG-based system would not be validated as a good

modelling framework for sculptured parts such as golf clubs or shoe lasts.
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Rather, a feature modeller with an underlying “surface modeller” would be

more appropriate for this domain (Mitchell96).

1.5.2 ENTITY ELICITATION

Once feature-based modelling is accepted as a valid alternative for a product
domain, it is necessary to identify and validate features for that product
domain. This gives rise to two activities: enfity elicitation and eniity

validation. These two together are called the elicitation process.

The entity elicitation process is an identification methodology. Using
manufacturing features as an example, this process, also called featurization
and summarised 1n Shah and Mantyld (1995) and Mantyla et al. (1996), 1s

reproduced below:
e determine the scope of the product and processes to be covered;
¢ identify the individual process steps within the chosen scope;

+ formalise the process steps as recurring process elements and identify

process parameters and relationships between processes;

e identify recurring process sequences related to a certain type of geometry,
and formalise the relation between the geometry and the process

parameters of the steps of the sequence;

e call the resulting shapes “manufacturing features” and name each feature

parameter.

It can be inferred that there are embedded elicitation criteria such as features
being required to be associated with a (manufacturing) process step and that

there are recurring entities.

Classification schemes have been proposed to ease the task of featurization
and to facilitate the understanding of a feature domamn and its functionality.

This has been achieved by categorising features using shared behaviours and
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characteristics. Various classifications have been proposed but it has been
stated that “their differences emphasise the difference in feature views between
researchers even when they share a similar interest in the same application

(Mitchell96).

Figure 1-5 presents an example of a form feature classification scheme
(Pratt85):

Explici/Evaluated
Fom Feafures

I
| l I l

Through Hole Depression Protrusion Area
{Passage)

s R e B s B s

Rotational | | Prismatic 1 |Rotational | | Prismatic | |Rotationaf| [Prismatic | | Without 1| With

Attributes | |Attrbules

Gomplete| | Partial | |Complgte| { Partial | |Complele} | Paril

Figure 1-5: Pratt’s Feature Classification.

The current thesis takes up an adaptation/simplification of Gindy’s
classification that is based on feature “external access directions” (EAD’s,
Gindy89). This adaptation is presented in Figure 1-6. Some of the features
originated from this classification, accompanied by other details, are presented

in Figure 8-19.

The subsequent step in the elicitation process is to better identify and
enumerate individual entities (features) for use in the particular application

context. This gives rise to taxonomies of entities (features).
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Form-Features
Classifcation
I
[ I
Protrusions Deprassions
I
[ I I I I I
{ EAD' OEADS T EAD'S 2 EAD'S JEAD'S 4 EADS SEAD'S
Closed Closed Closed Closed Open Cloged Open Open Closed Closed
Satelite Boss Hollow Pocke! Halg Sl Slot Through Notch Slep Gap Slab
‘:Quadrangular {Quadrangulm LOuadrangular Fuadmngulaf Puadmnguler Puadrangular kﬂuaﬂrangular Puadrangular {Quadrangular \-Quadrangular LI,Iuadrangular
Cyinddeal ~ “-Cyndrcal ~ “Cyindrcal ~ “Cyindical ~ “-Cyindrical ~ “Cyfndical  “Cylndrical ~ “~Cyindrcal " Cylndrica

Figure 1-6: Adaptation of Gindy’s Feature Classification.
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Both Pratt’s and Gindy’s classifications produce features taxonomies from
different views. As an example, Pratt’s (Pratt85) feature taxonomy originated

from his classification (Figure 1-5) and is reproduced in Figure 1-7.

Taxonomy “is the classification and naming of things ... in groups within a
larger system, according to their similarties and differences” (Collins87).
Therefore, it is considered that a taxonomy is the identification, naming and
placement of entities in a (possibly already existing) classification that inserts

specific elements into the classification.

Taxonomies have been categorised according to the pair of process-product
type and/or their cross-section shapes (Pratt85): Rotational Features; Prismatic

Features; Thin-Walled Features and others.

Examples of taxonomies can be found in Libardi86, Dixon87, Shah88c,
Mantyld89, Chovan91, Ovtcharova92, Kang93 and Rembold93.

However, there has not been wide agreement on the results of this entity
elicitation process. One of the reasons relates to a current deficiency in feature
taxonomues in that blending is absent from much of the research as it is seen as

a “non-feature-related activity” (Allada93).

Blends are one of a few “sculptured features” common to predominantly
prismatic parts, and yet are somehow considered separate and so not included
as features (Denzel93, Mitchell96). Some exceptions to this include Laakko
and Mintyld’s transition features (Laakko93), Chen’s modifying features
(Chen95) and Perng, Chen & Li’s fillet and arc features (Perng90).

Another reason why the featurization result is not widely accepted might come
from the fact that it has been considered that “any feature hibrary (taxonomy)

in any system can never be complete” (ElIMaraghy93a).
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Explet/Evaluzted
Fom Features
[
| ] | I |
Through Hole Depression Prolrusion Area Other
(Passage)
I [ [ [
[ [ | [ [ I [ [ I
Rotational Prismatic | | Other Rofational Prismatic Other Rotafional Prismatic | | Other | | Without | [ With
Aftributes | [ Attributes
Complets | | Partial [HeleE-ﬂ Complte| | Pl | [KeWaYT =Rt oonoie| | parta LPadI l:BeadIB ~Bevel 13 1-Knurl 1.2
Pocket1,2 rGroove 3 Pad2  [-Chamfer -SPLN1.2
Slet23  J-Keyway2 L |_ —Fillet Thread 1-3
Boss 1

Hole 1-4

|:Bore 1-3 !-Grouveﬁ

—(Hole

(Bore
[GSink
—Groove 1,2.4,78

—Pocket 3

—Bored 5 \:GrmveS
Slot 5

I—Notch 12

Figure 1-7;: Pratt’s Feature Taxonomy.

—Radius 1-3
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1.5.2.1 FEATURIZATION VALIDATION

After entity elicitation (featurization) a set of entity candidates (features) is

produced and should be validated against the chosen product’s domain.

Featurization validation represents the process of selecting a reasonably small
(or miimumy) subset of all feature candidates raised from the elicitation phase,
in a specific domain, that demonstrates the best properties (including
expressiveness and flexibility) to suit an application. Featurization validation
thus requires a set of validation criteria. Examples of featurization validating
criteria include (Méntyld96, Shah95):

o completeness: is the identified set capable of creating all parts of the

chosen domain?

o unambiguity: do the proposed parameters unambiguously identify a feature

type?

e simplicity: are properties (and parameters) only included if they are of use

in some application?

® uniqueness or duplication: can nearly identical features be united and the

part still be uniquely modelled using the new feature?

It should be noted that the final set could be a sub-set of the elicited set
depending on the application.

However, in the context of features the final validation process has been

relegated to being considered of minor importance because:

e there is a close relationship between a feature’s domain and its application,
and therefore 1t is not easy to dissociate features from their application

semantics;

o the feature classification process has been carred out in a way that

emphasises the application needs (see dotted arrow in Figure 1-8 showing
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the influence of an application over the definition of the classification, and

therefore, over the elicitation process)

1.5.2.2 THE COMPLETE ELICITATION PROCESS

A formalisation of the featurization and featurization validation processes
gives rise to a general elicitation process. The feature classification and
taxonomy are important resulting products of this process, in addition to the

final feature set.

The complete elicitation process is depicted 1in Figure 1-8. The following are
the elements of this process that need to be specified in order to obtain the
resulting set of entities (e.g. features, intents): domain, elicitation criteria,

classification, taxonomy, validation criteria and application(s).

Domain

Classiflcation

Elicitation
Criteria

T 4 1

4 U

Taxonomy

Validation
Critena

C Entitles )

Figure 1-8: The Complete Elicitation Process.
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1.5.3 REPRESENTATION VALIDATION

Having a library of features elicited and validated for the target domain, the
designer can use them to model a part. The result is a model representation of

the part in terms of the available features.

Operating feature-based model representations can easily produce invalid
representations. An invalid feature-based model representation occurs when
any of the behaviours, intentions or conditions pre-defined for any specific

type of feature is violated.

An example of an invalid feature-based model representation is given in
Figure 1-9. The component in the figure has been mistakenly modelled using a
through hole, a notch, a through slot just beside the notch and a small blind

slot feature.

Figure 1-9: An Example of an Invalid Feature-based Model.

Various sources of invalidity can be attributed to Figure 1-9:

a “dangling face” appears between the notch and the through slot features

which causes the geometrical representation to be considered as invalid;

a feature has been defined with the functionality of a blind slot while, in

fact, it has the functionality of a through slot.
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o the through hole has been defined with a possibly wrong parameter
(height), and 1t is in fact a blind hole (in this text called pocket, see Figure
1-6 and Figure 8-19);

In addition, the fact that the notch and the through slot features were not

defined as one “bigger” notch can be considered to be confusing

Even the most basic operation of adding a new feature to the part model can
produce 1nvalid situations (consider the model in Figure 1-9 before and after
the addition of the through slot as the last operation). This happens because
features, when placed in the representation of the part, can have their

semantics changed. Some of the semantic changes that can happen include:
* extension by composing complex features from simple ones;
» modification when some properties are affected (e.g. length, width);

o destruction when a feature suffers the destructive influence of other

feature(s).

To keep track of these semantic changes, to avoid or wamn their occurrence and
to try to correct them it is necessary to constantly verify the representation.
This checking mechanism has to, at least, guarantee the correct use and
meaning of the individual atomic features. However, as features are not
1solated when applied in a design, their interactions also give rise to a set of

design intentions that must be considered.

This verification process is called model representation validation. Thus,
model representation validation is the process responsible for verifying the
feature-based representation of a part to guarantee that atomic features are
being used according to their assigned meanings and expected behaviours, and
that the configuration of all those individual features within a single model is

also meaningful to the extent of some criteria.

Feature-based modelling (FBM), and indeed Design-by-Features (DbF),
systems are usually based on Geometric Solid Modelling (GSM) techniques.
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However, one basic element that makes GSM so well established, important,
popular and powerful, namely Geometric Validation, lacks a sibling in the
FBM world. This is so because features add a layer of complex semantics to
CAD systems which make it difficult to establish measuring means and are
subjective to implement. The sibling of geometric validation in the FBM

context is the feature-based model representation validation.

Feature-based representation validation is very important because it is the
process responsible for guaranteeing the delivery of a valid representation (and
therefore verified, useful and misrepresentation free} to downstream

applications.

The model thus needs to be verified constantly. Situations need to be identified
and dealt with, possibly by an automatic operation. However, features have no
mathematical properties and their definitions are not widely accepted.
Therefore, the behaviour of features and their role needs to be defined in order
to obtain a validation system capable of analysing a feature-based

representation.

Validating a feature-based representation is a very subjective and difficult
problem to handle in the most general sense (Ohsuda89, Salomons93) and in
fact depends heavily on the role the feature plays with respect to a particular
application. It is a ‘very difficult and obscure task because features themselves
are not well understood with their extra meaning, purpose and objectives in

addition to the embedded geometric data representation’ (Rossignac90).

A new philosophy for defimng features is required to help devise such a
validation capability. This philosophy would define features by their functional
intents at an objective, measurable and pragmatic level. This type of validation
should not be confused with geometric or topological validations that are
based on mathematical laws (Shah95). This distinction emphasises that 1t is
possible to produce a valid solid model for it but it can still be invalid from the

feature-based design perspective.
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For instance, even if the dangling face had not been generated the in Figure 1-

9, the remaining feature-based model would still be considered invalid.

1.5.4 EXAMPLES OF THE VALIDATION ASPECTS

Figure 1-10 presents the validation aspects applied to the GSM domain and the
Boundary Representation (B-rep) method.

B-rep has been validated for modelling two-manifold polyhedral solids.
Among other conditions for the solid, open shells, disconnected objects,
dangling edges/faces, non-orientable faces, self-intersecting faces, infinite and
nonsense objects are all disallowed. Needless to say, atomic geometric entities
such as points, straight edges and planar faces in 3D Euclidean space are
validated for this domain. Therefore, model and geometric entities are
validated for the polyhedral solids domain.

(Two-Manifold Polyhedral Soliuds)

A Entities

{Geometric Efements Pownt, Line, Arc)

[ﬂ - ;

» Orgamsational
(Topologreal, High-Level)

« Structural
(Geomesrical, Low-Level)

Figure 1-10: The Validation Aspects for B-rep.

B-rep representation validation conditions are divided into topological and
geometrical sets that perform analysis at two different levels: the high
organisational and combinatorial level and the low structural and metric level,

respectively (Requicha80).

Examples of Topological Validity Conditions include: non-null pointers in the

data structure, number of faces greater than or equal to 4, number of edges
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greater than or equal to 6, number of vertices greater than or equal to 4, the
relationship between the number of faces, vertices and edges conforming to
the Euler-Poincaré formulae and each edge in a face belonging to exactly 2

faces of the model.

Examples of Geometric Validity Conditions include: each vertex must be a
distinct point, distance between vertices must be greater than zero and all

vertices in a planar face must satisfy the plane equation.

The elements shown in this example were reproduced from Jablokow94.
Further details on B-rep representation validation can be found in Requicha80,
Eastman84, Rossignac91, and Zeid91.

Feature-based modelling (the modelling technique) and features (the entities)
are considered to have been validated. However, feature-based representation
validation has no proper defimtion whatsoever and remedying this is a major

objective of this research.

1.6 OBJECTIVES

1.6.1 MOTIVATION

This work has been motivated by a search for a more supporting feature-based
CAD system. These systems 1n general allow the design of mechanical parts
using an intermediate level vocabulary. They do not normally use high-level
functional entities such as “conversion of rotational to translational motion” or
“cooling holes”. Neither does the user need to worry about low-level
representation aspects such as the placement of edges or points. In addition, '
although considered of higher level than current CAD vocabularies, feature-
based modelling environments have not been widely used in conceptual

design.

It 1s felt that feature-based CAD systems have sometimes used a vocabulary

that addresses conceptual design and sometimes detailed geometric design
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because of the lack of a complete vocabulary at the intermediate level of

features.

This work seeks to establish through, a complete intermediate level
vocabulary, a feature-based modelling system capable of performing validation
of the representation as one of its supporting roles. Also, the methodology

used 1n the search and in the validation process are of concern.

The careful selection of words throughout the text to describe some of the
concepts defined in this research should be noted. For instance, the term
designer’s intent is sometimes used instead of the term design intent to
emphasise the fact that design intent reflects the intention of the project or
product while designer’s intent reflects some of the ways that the designer

uses to achieve the former.

1.6.2 OBJECTIVES STATEMENT

The objective of this research is to establish methods for assessing the
correctness and integrity of feature-based model representations. It seeks to
identify major elements that influence the validity of feature-based
representations. These elements would enable the identification of an
architecture for a feature-based validation system that would analyse, reason

with and correct feature-based representations.

This approach would be able to better support the design task, raising
awareness of many important aspects of feature-based design and guaranteeing
the usefulness of the model for downstream applications, according to certain

criteria.
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1.6.3 SPECIFIC OBJECTIVES

Understand and specify the validation problem and its various aspects in

the context of Design-by-Features (DbF) systems.

e Identify major elements required to compose a framework for the

validation analysis centred on the feature’s concept.

o Specify and establish means to identify (and possibly correct if necessary)

valid and invalid feature-based model representations.

1]

¢ Define the roles that the “designer’s intent”, “feature interaction” and
“feature operations” entities/phenomena have in the context of validation
analysis and devise a methodology to refine them for this task in a way
that: (a) produces a complete vocabulary to aid assessment of the model’s
correctness/validity; (b) keeps them in an intermediate-level, the feature
level; (c) maintains a DbF approach perspective of the validation analysis,
and; (d) keeps their concepts and use separate from each other as far as

possible.

o Investigate how much of this analysis can be performed at the feature class
level as opposed to the feature type level, 1.e. in an object-oriented
implementation, how much of the analysis can be attributed to the feature

class and therefore be inheritable by all feature types (objects).

¢ Determine means to integrate and organise the resulting vocabulary of
entities in order to produce an architecture for a meaningful validation

assessment.

o Test the feasibility of implementing such a validation framework in the

form of a prototype system that illustrates some of the validation issues.
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1.6.4 GENERIC SCOPE

This research concerns the use of a design-by-features approach (see section
2.6) to model individual mechanical parts. Orthogonal prismatic (laid parallel
or perpendicular to the main axes) form features are of major concern,
favouring analysis usually undertaken for manufacturing and process planning
using milling and drilling processes. However, many of the ideas have

considerable application potential in other areas (e.g. assembly).

This research has concentrated on three of the perceived outstanding research
issues of Feature-based Modelling each of which has been recognised for some

time but received inadequate attention:
e Feature Validation, as perceived by Salomons93;
o Feature Interaction, as perceived by Dixon90 and Allada%5, and,

e Capturing Designer’s Intents, perceived by Dixon%0 and Salomons93.

1.7 RESULTING PUBLICATIONS

The following publications resulted from previous versions of the ideas
generated throughout this period of research. They are listed chronologically

and will not be referred to in the rest of this text.

1. Hounsell, M. 8. and Case, K. "Representation Validation in Feature-Based
Modelling: A Framework for Design Cormrectness Analysis and
Assurance". Proceedings of the 12th National Conference on
Manufacturing Research (NCMR'96) (ISBN: 1 85790 031 6), Bath, UK,
Vol. 1, pp. 256-260. September, 1996.

2. Hounsell, M. S. and Case, K. "Structured Multi-level Feature Interaction
Identification". Proceedings of the 32nd MATADOR Conference (ISBN 0
333 71655 8), A. A. Kochhar (ed.), UMIST and Macmullan Press Ltd,
Manchester, England, Vol. 1, pp. 495-500. July, 1997.
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3. Hounsell, M. S. and Case, K. "Intent-Driven Reasoning Prionties in a
Feature-Based Validation System". ‘Sustainable Technologies in
Manufacturing Industries’, Proceedings of the (IMC’97) 14th Conference
of the Irish Manufacturing Committee, (ISBN: 1 897606 16 8), J.
Monaghan and C. G. Lyons (eds.), Dublin, Ireland, Trinity College Dublin,
Vol. 1, pp. 115-124. September, 1997.

4, Hounsell, M. S. and Case, K. "Morphological and Volumetrical Feature-
based Designer's Intents". (NCMR’97) I3th National Conference on
Manufacturing Research. Advances in Manufacturing Technology XI
(ISBN: 1 9012 4811 9), D. K. Harrison (ed.), Glasgow, Scotland, Vol. 1,
pp. 64-68. September, 1997.

5. Hounsell, M. S. and Case, K. “Operating Invalid Feature-based Models™.
(IDPT’98) Third World Conference on Integrated Design and Production
Technology (ISSN 1090-9389), Editors: A. Ertas, D. Gibson, F. Belli, F.
Veniali, R. Noorani and P. Chedmall. Berlin, Germany, Vol. 3, pp 151-
158. July, 1998.

6. Hounsell, M. S. and Case, K. “A Taxonomy of Feature-based Designer’s
Intents”. (IMC’98) 15" Conference of the Irish Manufacturing Committee,
Belfast, Ireland, September, 1998.

The first publication outlined the general principles of the feature-based

representation validation that is discussed in chapter 3.

The second publication presented detailed analysis on one component required

for the validation process that is discussed in chapter 5.

The third publication presented part of the priority organisation of the

reasoning in the validation analysis (that is discussed 1n section 7.3).

The fourth publication presented some of the aspecté being validated (that are

discussed in section 3.5.2).
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The fifth publication presented the types of remedy operations that help
guarantee the validity of the model (that 1s discussed in section 6.3.3)

The sixth publication presented the whole taxonomy of feature-based
designer’s intent that has been obtained with this research (that is discussed in

chapter 4).

1.8 STRUCTURE OF THE THESIS

This chapter presented the area of feature-based modelling and the problem of

representation validation.

Chapter 2 presents a general literature review of important issues and
particularly related work that utilises some sort of validation. However, some
subsequent chapters also present reviews of work related to the concepts of

their specific topic.

Chapter 3 presents a solution for the validation problem, the validation
framework and 1ts elements/entities, that will be discussed in detail in the three

subsequent chapters.

Chapter 4 concentrates on the concept of Feature-based Designer’s Intents,
chapter 5 concentrates on classifying and identifying Feature-based Interaction

cases while chapter 6 classifies Feature-based Operations.

Chapter 7 introduces the reasoning and organisation of the elements into a

reasoning system. *

Chapter 8 presents the implementation and exemplifies some of the

reasonings.

Chapter 9 shows test parts that have been modelled elsewhere and how the

prototype implementation deals with them.

Chapter 10 presents some findings and critically discusses the work.
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Chapter 11 summarises the work, enumerates contnibutions and suggests

future work.

1.9 SUMMARY

The various aspects involved in the validation of a modelling technique have
been presented. It has been shown that in the case of feature-based modelling
there seems to be no doubt that the modelling technique and its entities are
valid components to express mechanical parts. However, little has been

asserted concerning the validation of the model representation and its analysis.

| 1t has also been shown that representation validation is an important and
intrinsic aspect of feature-based modelling and that there is a lack of definition
in the hiterature despite other types of validations being considered required,
implied and applied. In addition, the role of geometnic representation

validation in a feature-based system has been established.

The objectives and the scope of this thesis have been laid down as well as the

structure of the text.

The importance of the topic seems to comes from the fact that validation 1s
part of the “feature concept” (and therefore could be an inheritable property in
an object-oriented approach) rather than part of the definition of each
individual feature. Therefore, studying the validation problem could result in a

clearer understanding of features themselves.
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Feature-based technology is now a mature field (Case93a) and
indeed, has already been incorporated into some commercial
CAD systems. However, basic issues such as the properties and
definitions of features still have an open interpretation despite
the fact that much work has already been published on feature-
based modelling. This chapter reviews some of these issues that
are important in comprehending the context of feature-based

validation and the following chapters.

2.1 FEATURE DEFINITIONS

Early detailed reports on various aspects of feature-based modelling technology

implementation include Pratt85, Faux86 and Shah88c.

Good review papers on Feature-based Modelling include Shah9l,
Bronsvoort93, Case93a, Salomons93 and Allada95,

Some analysis of open issues and suggested future research developments can

be found in Shah90, Dixon90, Rosen93 and Mantyla96.

Feature defimitions presented exhaustively and in chronological order can be
found in Shah88c and a definition classification in Bronsvoort93. No single

definition will be adopted. Instead, 1t 1s hoped that the feeling of what features

are can be gathered from the following discussion and definitions.
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Many authors have commented upon the variety of existing definitions and
interpretations (Shah88c, Chung90a, Case93a, Lenau93, Pratt93) regarding the
powerful and promising technology known as Feature-Based Modelling

(FBM).

According to Sreevalsan and Shah (Sreevalsan92) the concept of features first
appeared in manufacturing engineering 1 the mid 1970’s when A. R. Grayer
(1976, referred to in Shah91) was looking to automate NC part programming

when it was felt that:

‘Features represent shapes and technological attributes associated

with manufacturing operations and tools’.

The need to automate the recognition of these features from a CAD geometric
database gave rise to techniques that are now known as Feature Recognition
(FeR).

Features were regarded as being exclusively geometry-driven and this has

influenced many succeeding defimtions:
‘A feature is a region of interest on the surface of a part’ (Pratt85).

‘Features are defined as geometric and topological patterns of interest
in a part model and which represent high level entities useful in part

analysis’ (Henderson90).

Some implementations establish direct relationships between features and
manufacturing tasks (Grayer76, Cho184, Herbert90) whereas others are more

flexible (see section 2.3).

Again, according to Sreevalsan and Shah (Sreevalsan92), the Design-by-
Features (DbF) approach was first proposed and concepts to support form
features with a solid modeller were first established by Pratt and Wilson
(Pratt85) followed by Faux (Faux86). Thereafter, analyses of manufacturing

heuristics were conducted to produce Feature Taxonomies (see section 1.5.2).
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Features were then used to specify a part but were still limited to
geometric/shape implications. Nevertheless, as CAD/CAM is not solely
concerned with machining, but also encompasses other engineering activities
such as conceptual design, features began to assume a wider meaning than

simply geometric (see section 2.2) and the definitions started to change:

‘A feature is a solid which can be manipulated (by Boolean operators
like union, intersection and difference) over another one with defined

validations’ (Requicha92).

‘Features are information sets that refer to aspects of form or other

attributes of a part’ (Lenau93).

Some definitions consider features that are related to various downstream
applications such as mesh generation, finite-element analysis, turning,
machining, assembly, etc. Hence, definitions began to incorporate such
behaviours in a global sense in much the same way as the dictionary definition

of features:

‘A feature of something is a particular part of it (e.g. a component) or
characteristic that it has, which you notice because it seems important

or interesting’ (Collins87).

Shah (1990) summarised the requirements for something to be a feature and is
considered one of the fullest and most exact definitions (according to

Ovtcharova94):

‘A feature is a physical constituent of a part, is mappable to a generic

shape, has engineering signtficance and has predictable properties’.

The search for a generalised definition has to a large extent failed because
many authors came to realise that features are process-application dependent
(Butterfield85, Cunningham88, Shah88b, Shah91, Pratt93) and this seems to be
the only consensus regarding feature defimitions. As summarised by Pratt
(1993), ‘features are expected to be used in diverse ways by organisations

having widely differing product ranges, design methods, manufacturing
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methods and facilities and general organisation philosophies’. Consequently, a

single definition does not suffice.

It has been noticed though, that features could be implemented without any
geometric representation (Dixon87, Shah88c) but they have, at least, geometric

or shape semantics (Emmerik89, Ovtcharova92).

To summarise, ‘The essence of the feature concept is that a product
description not only says what the product is, but also contains implicut
and explicit information on how it may be transformed to or from some

other state’ (Case92a).

2.2 TYPES OF FEATURES

As can be seen from the variety of feature definitions presented in the previous
section one can devise a type of feature and its taxonomy depending on what
one sees as important or interesting for one’s application. Different sets of
features have to be defined in order to cater for different application areas or
process-application pairs (e.g. “sand casting’ - ‘cost analysis”, Denzel93).
Therefore, a plethora of feature types can be found 1n the literature and include

the following:

a) Functional features only expresses the function and not the shape (Pratt85,
Lenau93, ElMaraghy93b). They have also been called Abstract (Shah90)
and Design features {Mill93). They are entities that cannot be physically
realisable until all variables have been specified or derived from the model

feature).

Functional features describe the part at an abstract level where there are
several different possible geometries that could provide a specific solution
(e.g. bearing, sealing, ventilation openings, lubrication grooves, cooling
slots, fixing holes, keyseats). Despite the fact that abstract features could be
incomplete at any given time, this does not prevent automatic reasonings
being envisaged. Nevertheless, they must be a physical constituent of a part

wherever information about them is complete (Shah%Q).
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b)

d)

All sorts of features (especially form features, see item d below) have been
called functional features (Zhang93, Martino94a) because other features are

considered to have ntrinsic functional meaning beyond simple geometry.

The following difference between functional features and form features
(given by ElMaraghy93b i the context of CAPP systems) is accepted in
this work: form features refer to recognisable shapes that can not be further
decomposed, as otherwise they will reduce to meaningless geometric
entities such as lines, points and surfaces. Form features may or may not
have by themselves a functional purpose. Functional features are more
natural for use by designers in comparison with geometric abstractions or

form features.

Structural features are non-geometric features that specify the
relationships among form features. They have also been called ‘embedded’
features (Rimscha90) because they have no existence of their own without
reference to their environment., Assembly features (see item j below) are
examples of ‘embedded’ features. Although these embedded relationships
are well understood and important, many authors have only considered
parent-child hierarchies (see connectivity in Gindy93). Structural features

can be said to have a simular meaning as the skeletons in Lenau93.

Physical features (Kiniyama91) provide the designer with knowledge about
physical phenomena and mechanical elements at conceptual design stages.
They consist of mechanical elements and “causal-related” physical
phenomena that occur within the elements. For instance, a wedge has two
intersecting faces and causes forces applied to a third face to act through the
former two. Other examples of physical features include a pair of gears, a

spring and a pulley.

Form or Geometric (form) features are the most widespread kind of
features used (and sometimes confused as being the only available features)

i modern experimental and commercial CAD/CAM systems.
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Form features have been considered the least application dependent type of
feature because “they do not carry any specific non-geometric semantics”
(Krause93). However, each form feature could have a set of possible
manufacturing processes for obtaining the desired shape (a hole could be
drilled, bored or punched). If such a strong geometrical and technological
interrelation drives the vocabulary used to deal with form features, then

they are called Manufacturing features.

‘Manufacturing features and processes mutually depend on, refer to and
precondition each other’ (Vancza93) and basically consider material

removal processes (Hummel89).

In addition, if form features are meant to represent shapes obtained by
swept volumes of tool cutting paths they are sometimes called Machining
features (Young93). Therefore they have been said to correspond to regions

that can be cut by a machine tool (Requicha89b).

Alternatively, if the designer’s vocabulary or mechamcal functions drive
the terminology of form features, they can also be called Design features
(Requicha89b, Rosen93).

Because it has been asserted that the shape of a part, and thus its form
features, are results of the physical nature of the manufacturing process,
form features have been subdivided according to process capability and a

comprehensive sub-classification has been suggested (Butterfield85):

¢ Prismatic form features have been the subject of considerable effort
in defining general taxonomies (Gindy89, Shah91, Ovtcharova92}
and implementations (Anderson90, Duan93, Gao93) for shapes

produced by extrusion, milling, drilling and similar processes;

¢ Rotational form features (Nielsen91, ElMaraghy91, Duan93) also

called Turning form features are related to products with axial

symmetry;
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e Sheet-Metal form features (Cunningham88, Chung90a,
Crawford93) refer to bending, forming and punching processes

where the change in thickness is only incidental (Rembold93);

e Casting or Moulding form features (Luby86, Cunningham§8,
Lee94) model investment casting, forging, injection moulding and

similar processes.

¢ Sculptured form features (Jones93, Mitchell36} mode! complex

curved surfaces such as those found in golf clubs and shoe lasts.

e) Precision features (Shah88a, Lenau93, Salomons93) contain explicit
dimensions, dimensional constraints, surface finishes, and tolerances such

as size, height, diameters, roundness, straightness, flatness and diameters.

f) Material features (Shah88a) specify treatments to materials and surfaces,
the material of the stock component to be used and its ability to produce
specified physical characteristics such as rigidity, elasticity, durability and

resistance.

g) Datum features provide regions of the component from which the positions
of the component on the machine table can be defined. They can be

(Young93) holes, corners and boxes, or (Chen95) points, axes and planes.

h) Fixture features (Young93, Pratt93) provide regions of a workpiece that
can be used for fixturing. Fixture features include clamps, primary locations

and secondary locations.

i) Technological features (Shah88a) contain information about part
performance and technological restrictions such as tool availability,
machine operating variables (cutter velocity, feed velocity), directions of
access, number of simultaneous operations and precision achieved by each

machine;

j) Assembly features are geometric relationships between (parts of)
topological entities or features belonging to different sub parts of the whole
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component (compounding what is called a ‘handle lattice’, Rimscha90).
The main concems are matching faces, accessibility and feasibility
(Sod91, Molloy93, Harun96). A semantic sub-classification of assembly

features can be found elsewhere (Ovtcharova92).

k) Manufacturability features are process-capability dependent and are
concerned with Mouldability (Lee94), Turnability, Machinability, etc.

1) Modifying features (Chen95) or blend features (Laakko93, Denzel93) are
localised geometric operations that alter the boundary configurations of
parts. They represent sculptured features common in the predominantly

prismatic domain and include chamfers and fillets.

The list of feature types seems almost endless and one can also find analysis,
tolerance and inspection features (Sodhi91, Marefat93a, Pratt93a) as well as

production engineering features (Vancza93, Mill93.

2.3 FEATURE-BASED APPLICATIONS

The variety of feature types reflects the wide variety of applications that use
feature-based modelling. Some of the feature-based applications found in the
literature include: Design for Manufacture and/or Assembly (DFMA -
Shah88c, Jakiela89, Rimscha90, Ovtcharova92, Denzel93, Duan93, Harun96),
Design-for-Mouldability (DFMould - Chung9a, Lee94), Computer Aided
Process Planning (CAPP - Anderson90, Gupta92, Mill93, Young93,
Vancza93, ElMaraghy93b), Automatic Inspection with Coordinate Measuring
Machines (CMM - Requicha89a, Marefat93a, Medland93), Design-for-
Fixtuning (DFFix - Hayes89, Murray93), Setup Planning (Gindy93, Zhang94),
Intelligent CAD systems (ICAD - Shah88a, Cunningham88, Ohsuda89,
Nielsen91, Marghitu93), Automatic Group Technology code generation (GT -

Srikantappa94) and Concurrent Engineering systems (CE - Fu94, Martino%4a,
Chen94 , Lim95, Mintyla96).
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This variety of application also suggests that feature-based modelling is a very

powerful technique that can be applied to a wide variety of engineermg-related

activities and this emphasises its importance.

2.4 FEATURE REPRESENTATIONS

2.4.1 B-Rep, CSG, HYBRID SCHEMES AND ENHANCED REPRESENTATIONS

Features have been represented in four primary ways:

by using one of the two major solid model representation schemes, i.e.
Boundary representation (B-rep, e.g. those that produce an evaluated
geometric representation) or Constructive Solid Geometry (CSG, e.g. those
that produce a tree of unevaluated primutive volumes related via Boolean

operators) schemes (Zeid91);

by using a simplification of the B-rep or CSG. For instance, destructive
solid geometry (DSG) has been used (Anderson90, Li90, PerngS0,
Wac094). This is a reduced version of CSG containing only the difference

Boolean operator.

by developing a hybrid of B-rep and CSG (it is understood that in such a
hybnid scheme, primitives are represented as closed evaluated B-rep solids,
these B-rep primitives are operated in a Boolean fashion and stored in a tree
structure, ElMaraghy93b, Martino94a, Perng97b);

by devising an enhancement to one of the previous approaches to
accommodate feature-based information (Rossignac90, Stroud93, Su%4,
Mayer94).

Only a few attempts to model prismatic or rotational features were found not to

be somehow related to the two major solid representation schemes (B-rep and

CSG). For instance, “octree representation” has been mentioned (Tseng%4,
Allada95).
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Hybrid B-rep/CSG implementation schemes seem to offer the best option for
most requirements, with the minor disadvantage of redundancy and have been
favoured by most research groups working with design-by-features systems
(Pratt88, Shah90, Gomes91, Salomons93, Mill93, Denzel93, Suh9%5a,
Allada95, Perng97a).

The advantages of such schema representation 1s related to the advantages of
both B-rep and CSG representation schemes while alse incorporating a
beneficial bi-level parallel representation that is said to not only capture the
history of the design (via a tree of simple set of operations) but also to offer

detailed geometry if and when required.

It has already been predicted that a hybrid B-rep/CSG/Surface modelling
approach will be used as the most generally applicable system of the future
(Mitchell96).

2.4.2 VOLUME AND SURFACE FEATURES

Pratt classified feature implementations into Volume and Surface form
features (Pratt88). Surface features are collections of faces of a part model that
do not form a closed volume and are also a subset of the boundary of a
volumetric feature - the solid (Requicha89b). Volume features are full-
dimensional pointsets of the part or its complement that do identify a closed

volume.

In a B-rep context, the essential difference between surface and volume feature
representations is the existence in the latter case of closure faces which, when
associated with the remaining feature faces (also called support face - Sud4 - or
real faces that actually lie on the part surface), define a closed and self-
contained volume. To emphasise this difference in this context, an interesting,
although dimensionally incorrect, equation has been suggested (Pratt88,

Gomes91, Bronsvoort93):

“volume features = surface features + closure faces”
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Closure faces have become a persistent and beneficial aspect of most
implementations. They help identify which faces of the generic feature
template will have an impression on the part and which ones must not. Those
faces that are absent in the explicit evaluated representation have also been
called imagmary faces (Gindy89), virtual faces (Faux86, Silva90), entrance
faces (Pratt88, Mayer94) or even durmmy faces (Martino94b).

Although no particular disadvantage of using surface features can be
emphasised, volumetric features have some noticeable advantages, especially
in the context of design-by-features systems (Pratt88, Gomes9l,
Bronsvoort93):

e interaction between features can be easier to deal with;

o feature operations are simpler to implement. For instance, it has been
asserted that volumetric features make delete operations easier and have

other advantages over surface features (Pratt88);
e it is easy to extend feature concepts to general machining volumes;

e it is easier to manipulate and check the result of an automatic

decomposition mnto delta volumes;
¢ the problem of individual faces belonging to different features is overcome;
¢ representation of more complex features composed of a number of simple
features is simpler (Bronsvoort93).
2.5 FEATURE IMPLEMENTATION APPROACHES

On implementing feature-based modellers, Pratt classified the ways of defining
features according to the status of the information as being implicit and
explicit (Pratt85).

An mmplicit feature definition is an unevaluated one supplying the minimal

amount of information to allow unambiguous evaluation when circumstances

PAGE 36




CHAPTER 2: LITERATURE REVIEW

require it. Implicit models produce very concise representations that resemble
CSG models and similarly imply a procedural evaluation of the representation
to obtain the exact and extensive information. Besides being compact, implicit
feature 1mplementations also use a parameterised representation of the feature

volume at a very abstract level.

Implicit feature representation can be saved as a binary CSG tree where each
node is a feature and where intersection Boolean operations are excluded. This
binary tree can be effictently traversed and manipulated (Su94, Mayer94, and
Martino94a) in a sequential manner. Therefore, implicit features are also
referred to as procedural or unevaluated features. Procedural models give rise
to interesting problems that emphasise the non-commutative aspect of Boolean

operations (Denzel93) but they are nevertheless easy to implement.

In contrast, explicit, evaluated or enumerated definitions refer to features that
are sets of boundaries that together explicitly describe the actual status of the
component boundary. Therefore, such representations are closer to a B-rep
GSM core representation, which is extensive and complicated to manipulate

from the feature’s point-of-view.

Another interesting classification defined intentional or geometric features
(Rossignac90, Tomiyama90) as an abstraction for accessing groups of
geometric elements and for associating type and certain properties defined for
all the features of a particular type. Intentional features are treated as hints and
related to geometric elements through collections of unevaluated references.
Some or all of these references are permitted to not correspond to any
geometric element. On the other hand Geometric features are considered to be
a collection of geometric elements that actually form a subset of the part’s

mterior, boundary and/or complement.

2.6 SYSTEM APPROACHES

Feature-based systems can be divided into three main approaches from the

interfacing point-of-view: Design-by Features (DbF); Feature Recognition
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(FeR) and; Hybrid Design-by and Recognise Feature (HDR) approaches. Note
the subtle difference in the arrows’ directions in the respective figures (Figure

2-1, Figure 2-2 and Figure 2-3).

2.6.1 DESIGN-BY-FEATURES (DBF) APPROACH

The DbF approach (Figure 2-1) provides the user with a set of features intended
to represent the designer’s needs and a vocabulary for the type of component
being modelled. Designers iteractively select features, instanciate parameters

and perform placements and positionings.

Feature
Modeller

Data

Geometric
Modeller

Figure 2-1: A Design-by-Features (DbF) System Approach.

A sigmificant DbF advantage is that a great variety of non-geometric
information can be stored and manipulated in addition to the geometry itself
(Laakko93, Stroud93). A more natural design language, closer to the designer
expertise, is used improving design’s effectiveness and the set of features

available helps towards standardisation.

DbF systems can ease the integration with design-related tools and downstream
applications. It is considered that designer’s intents, can be captured,
manipulated and monitored. A more abstract, effective, conversational and
iterative user interface can be built and integration with parametric, variational

and constraint-based systems can be achieved.
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A DbF approach disadvantage is that the designer is restrained to only a
handful of already programmed features. Nevertheless, similar criticisms did
not impede early CSG systems in becoming a major GSM representation

technique.

It will be seen that direct manipulations of low-level geometric or topological
entities has a drastic effect on feature models and is a complicated matter to
cope with. Although feature-based systems imply an apparently simpler set of
operations (such as add and delete) from which other operations can be built,
features themselves have an intrinsic union or difference (but not intersection)
Boolean behaviour, and therefore feature intersections produce another
dramatic impact on feature semantics. Furthermore, (Boolean) operations are
one of the centrepieces in the CSG representation scheme but there is no
similar set of well-defined building operations in FBM. Therefore it can be
concluded that the degree of flexibility and freedom found in conventional

CAD systems is lost in DbF systems (Case93a).

DbF systems have been criticised in that if only features that correspond
directly to manufacturing operations are made available by DbF systems
designers would have to think in manufacturing terms even though they may
find it unnatural to do so (Mantyla96). In addition, a DbF system requires the
user to become familiar with a new interface paradigm although this interface

has been considered to be easter and more efficient.

2.6.2 FEATURE RECOGNITION (FER) APPROACH

In a FeR approach designers interact through a conventional or GSM CAD
system. After producing a complete description of the model, post-processing

of the geometric data is performed to “discover” the intended features.

Advantages of the FeR approach include: a recogmtion process could be
strongly optimised to a specific application (Laakko93); conventional CAD
systems (and their well-known flexible, powerful and low-level manipulations)

can be interfaced to other feature-based applications through FeR; there is
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manipulation freedom and no need to invest in training on new interface
paradigms; investment savings can also be expected if the FeR approach 1s
used because existing conventional CAD systems will still be used and legacy
files 1n traditional CAD formats can be saved and used as input to FeR and can

also act as a converter to DbF systems.

Feature
Modeller

Geometric
Modeller

Figure 2-2: A Feature Recognition (FeR) System Approach.

However, FeR approaches have some remarkable drawbacks. They are usually
hard-coded, very complex, time-consuming, difficult to achieve, lack generality
(Mintyld96) and sometimes are incomplete for the diversity of possible
interactions among features (Gadh95a). Feature interactions make the
recognition processes difficult and existing approaches only deal with
interactions to a limited extent (Rosen93). FeR systems are also limited to the
features that the procedures were prepared to recognise and if the number of
recognisable features grows, the processing time grows combinatorialy or
exponentially (Gadh95a).

Despite much effort and significant improvements in FeR systems, various
specialised features that capture special manufacturing processes cannot be
“recognised” (Mantyld96) and FeR procedures are not unique or standardised
1.e. the same geometry may output different results for distinct implementations
(Case93a); non-geometric information (such as tolerancing) can not be
recognised and in some cases even some geometrical information can not be

retrieved (Lenau93). Furthermore, FeR is a redundant process or, at least,

PAGE 40




CHAPTER 2: LITERATURE REVIEW

implies double translations (designer’s intent to geometry then to CAD/CAM

database) which makes it more prone to the introduction of errors.

The recognition is performed after the complete model 1s created, making it
difficult to support concurrent designs or any other supporting analysis during
ongoing designs and minor variations in the feature geometry/topology (such as
straight-slot and rounded-siot) require a different pattern for searching and
matching. Sometimes additional inferences are required to solve ambiguities
(such as for distinguishing between a boss and a slot that have the same
topology) which tends to make the procedures highly dependent on the
underlying GSM representation scheme (for efficiency reasons) as well as
application-dependent (Gomes91, Bronsvoort93, Gadh95a). Attempts at
context-free feature recognition approaches have been recognised as suffering

from both severe capability limits and performance problems (Mayer94).

2.6.3 HYBRID DESIGN-BY AND RECOGNISE FEATURES APPROACH (HDR)

In DbF, designers are limited to a number of already implemented features.
This limitation is unlikely to be overcome because, although features are
application specific and their interpretations are application dependent, the set
of features used 1n design is large and sometimes even considered to be “not
finite” (Shah91). Some attempts have tried to overcome this loss of flexibility
(Requicha89b, Li90, Laakko93, Martino94a, Kim96) by providing ways of

defining new features.

Nevertheless, a wide range of applications can cope with a limited number of
features as they have been copmg with other geometric limitations (e.g. in a
Constructive Solid Geometry Modelling environment the designer is limited to
a few pre-defined primitives). On the other hand such limitations could reflect
standardisation and company practice that is sometimes very useful and

required.

It seems hard to believe that FeR could “discover” high level features like

structural and functional ones by any geometric reasoning.
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Geometric
Modeller

Figure 2-3: A Hybrid DbF/FeR (HDR) System Approach,

FeR is suitable for migrating to FBM for companies that only perform analysis
and manufacturing of third party products and where data exchange is via some
file standard. DbF systems are suitable for companies involved in all stages of
the product life cycle and which are introducing new paradigms such as
concurrent engineering. FeR allows the interfacing of CAD to CAPP, CAM
and other activities while DbF allows their integration promoting DFM and
DFA methodologies (Rosen93, Lenau93).

It can be said that features in DbF systems are more design-ortented while
those from FeR are more application-oriented i.e. they are for different
purposes, and having one set does not imply a lack of need for the other

(Rosen93).

As both approaches have strengths and weakness some authors (Dixon90) have
no doubt that the final solution to obtain an ideal feature based system is the
integration of the DbF and the FeR approaches. Therefore, more recent
thinking (Sreevalsan92, Zhang93, Laakko93, Martino94a, Lim95, Han97) has
favoured a hybrid DbF/FeR (HDR) implementation as it has been recognised
that DbF systems need some procedures usually available anyway in FeR

approaches.

According to Martino94a, Sreevalsan’s Master’'s Thesis pioneered the

development of an Integrated DbF/FeR system followed by more complete

PAGE 42




CHAPTER 2° LITERATURE REVIEW

proposals from Laakko93, and Martino’s group itself (Martino%4a,
Martino94b).

At least four ways have been identified to integrate FeR in a DbF-like system
(Pratt93, Martino94a).

as a FeR system itself, to convert legacy data from conventional and GSM

CAD systems;

to perform validation of operations;

to solve some feature-interaction problems (Mill93, Suh95a);

to convert features to application-specific feature-spaces (Bronsvoort93).

2.7 RELATED WORK ON REPRESENTATION VALIDATION

Although many systems have claimed to implement some sort of monitoring or
validation system (see section 3.1), few have tackled the feature-based model
representation validation problem specifically. Nevertheless, some points have
been raised that are of importance to this work and are presented in the

following discussion:

a) Denzel93 pointed out how frequent and drastic is the difference between
the feature before and after being incorporated in the model” (and even
suggested keeping them as two separate classes). It was suggested that these
situations should be avoided through *“warnings” rather than trymg to cater

for them.

b) Dixon and Cunningham (Dixon87) presented a Dcsign-with-Featurf:s
system where designer’s intents are captured as constraints and argued the
need for the system to have a monitor that ensures that the operations
requested and performed by the designer are allowable and understandable
by the system. It was also argued that this could represent a limitation or

advantage depending on the completeness and sophistication of the
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c)

d)

implementation and therefore, the value of the design-with-feature

approach is very dependent on the momnitoring and reasoning it can provide.

Requicha and Vanderbrande (1989b) presented a set of four types of
validation rules that surface features must satisfy. Requicha’s rules include
representation tests (presence and non-intrusion rules) as well as
application-dependent ones (accessibility and dimensional rules) from a
manufacturing viewpoint. They are performed at distinct levels: volumetric
(non-intrusion and accessibility rules), surface (presence rules) and

parametric level (dimensional rules).

It was argued that a good sophisticated architecture for a design-by-features
system based on functional (design) features and CSG would imply a
feature “constructor”. A feature constructor would ensure that features are
always valid. It would expand the feature operations into CSG, check the
validation rules and automatically correct any violations. However, it was

said that methods to implement such a system were not known.

It was exemplified that some validations have a local and global aspect.
Local aspects can be tested throughout the ongoing design whilst global
aspects can only be performed at, and therefore should be deferred to, a later

stage (see local and global accessibility in Requicha89b).

Work conducted by da Silva and colleagues presented an intermediate
representation (lower than the feature level but higher than the solid
representation level, Silva9(, Srikantappa94) that 1s a language capable of
expressing feature geometrical spatial relationships. These can be
interacting (basically adjacent or touching cases) and interfeature
relationships (when features do not physically interact but a spatial
relationship exists). The language uses feature axes or faces as a reference
to establish the interfeature relationship between each other and these can

be planar, coplanar, offset, parallel, orthogonal, co-linear or angular.

Validation 1s achieved through rules that use these relationships to identify

and operate changes in the model. The relationships are considered an
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e)

immportant and useful by-product of the feature extraction process

(Srikantappa94) and are expressed in a semantic network (a graph).

It is believed that a representation of spatial relationships, such as the one
proposed, allows the representation of manipulations and reasoning with
the knowledge contained in mechanical parts and would allow this
knowledge to be measured against ambiguity and completeness of form.
Srikantappa and Crawford (1994) extended this approach to additive
features and axi-symmetric features with the intention of automating Group

Technology (GT) coding of feature-based parts.

Sheu and Tin (1993) argued that capturing the designer’s intent, parts
functionality and geometry through a feature-based dimension-driven

system would facilitate modifications of the model.

A feature representation scheme was presented where sizes and location
dimensions are explicitly defined and ‘constraints are defined to restrict the
special behaviour of form features’. These constraints help prevent the
violation of the validity of the part. A Feature-Dependency Graph (FDG) is
part of the scheme and establishes the hierarchy of features and their
dimensions. It was argued that (a) feature validation is context sensitive, (b)
that complicated decisions can be made by the applications with the
information supported by the FDG and (c) that constraining rules must be
abundant to model the behaviour of form features and the requirements of

applications.

Case and colleagues (Gindy89, Case92b, Case93c, Gao93, Case94) have
developed a DbF system called LUT-FBDS, Loughborough University of
Technology Feature-based Design System. This system was fully integrated
to a conventional B-rep solid modeller, Pafec Imagmer®, and aimed to
define a feature representation scheme that has a widespread usage in

CAD/CAM activities.

The B-rep representation influenced the feature taxonomy developed in the

group (Gindy89), which emphasises “External Access Directions”
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(EAD’s). Relationships between features such as folerances, dimensions,
parent-child and compound features, are considered the most important and
difficult task in the development of a DbF system. A hierarchical
representation of the model is used and stresses the benefit and use of the
parent-child relationship. This relationship is defined through sub-features
(such as faces, edges and vertices) and geometric conditions (such as

coincidence and containment of faces of different features).

The importance of the correctness of the representation for process and
production planning, in particular after modelling operations was
recognised. Of principal concern for a validation analysis was said to be
geometric  feature attnibutes that define position, orientation,
dimensionality, class and feature relationships (such as parent-child,
Case94). The proposed validation analysis aimed to detect and display all
the possible changes in the attributes mentioned above when a feature is

created or deleted (Case93c). The verifications performed are;

o Is a feature positioned or dragged beyond the boundary of the stock-

material ?
e s a feature intersecting another when 1t is positioned or dragged ?

The designer then has to decide whether or not accept any changes and to
update the database. This analysis is performed via a set of rules for each
feature primitive (Case93c) and for every manipulation case (such as
“move in the +x direction” or “move in the -z direction™). Also, a
mechanism that used the details of the B-rep feature description (such as
the feature’s EAD’s and face properties) has been suggested to recogﬁise
class changes of a feature (Gindy89). These are ingenious, although
lengthy, ways to analyse the model using the implicit data information, not

always requiring access to the explicit (B-rep) data

g) Stroud (1993) discussed various general classes of non-geometric

information that can be associated with Boundary representation and the

risks of this association becoming corrupted due to modelling
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h)

manipulations. Categories of usable information for describing a shape were

enumerated:

e basic shape (edges, faces, etc.);

shape modifiers (blends, screws threads, etc.);

features (holes, slots, etc.);

attributes (colour, price, origin, etc.);
* constraints on the shape (surface finish, tolerancing, etc.);

s geometric frameworks (centre lines, movement guides, etc.);

linkages (static and movable assemblies).

Strategies were presented on how to keep correct associations between
categories. The basic shape information (B-rep GSM model) was
considered to be the primary and quantifiable model with which the extra
information has to be associated. For features, a handling strategy suggested
to maintain consistency 1s to have a set of modelling operations for each

feature type.

These operations would then take care of preserving the integrity of the
feature data structure and any associated information. However, it was
concluded that further investigation was required to consider features as
high-level information sets rather than collections of low-level elements,
and to consider how they are allowed to interact. This analysis was left out
of the discussion and low-level techniques were described instead.
Localised feature recognition and extraction were suggested to handle
information modification of modelling operations at edges, vertices and

point levels.

Shah and colleagues (Shah88c Shah88d, Shah88e, Shah90, Shah9l,
Shah95) proposed a system where the user has the freedom to define new

generic features during a “setup phase”. During this phase an interpretative

PAGE 47




CHAPTER 2- LITERATURE REVIEW

language helps define rules for solid representation, user-defined
parameters, parameter inheritance between hierarchically defined features,
interpreting/mapping features for applications and also uses rules for

performing validity checks on features.

Validity checking rules are called “cognition rules”. They represent
dimensional constraints on how features can be used via size and placement
restrictions. These rules must be defined for every single feature because it
was considered that ‘there exists no universally applicable methods for
checking the validity of features’ (Shah91). Therefore, a large number of

rules have to be implemented to cover a wide range of features.
Four types of validation checks were identified (Shah95):

o Attachment validation involves the determination of the
: compatibility of adjacent features, compatibility of neighbours and

compatibility of geometric entity type on which a feature is defined;

» Dimension limits are restrictions on size parameters of a feature

specified in order to maintain certain engineering meaning;

e Location linuts are restrictions on the position and orientation

parameters of features;

o Feature interactions (see chapter 5) are intersections of feature
boundaries with those of other features such that either the shape or
the semantics of a feature are altered from the standard or generic

definition.

i) Work conducted by Pratt and colleagues (Pratt85, Pratt88, Pratt93),
recommended that the geometric validity of the feature-based model should
be made dependent upon the transformations applied to the features in the
model. Valid and invalid transformations are defined according to the
compatibility between the transformation and the way features are

embedded in the part.
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D

It was considered that only valid transformations should be available to the
designer, but every feature has different valid transformations according to
its placement. A feature is only considered to be validly positioned with
respect to a part body if certain rules are met. It was said that GSM
validations are not enough to represent realistic engineering objects and

therefore “another layer of validation becomes necessary”.

It was also considered that validation and revalidation processes are closely
related to feature recognition and that there is a need for a standard method
of describing features in terms of rules to which they conform (Pratt93).
Boolean operations were used to check (validate) an unwanted topological

change after model mampulation (Pratt88).

Pratt88 suggested that a reasonable first step towards a fully automated
validation may be based on feature class rules. These rules include

constraints on position, orientation, sizes and connectivity of feature faces.

Zhang and colleagues (Zhang93, ElMaraghy93b) claimed to have

considerably expanded Pratt’s basic idea to cover general cases.

It was pondered that the addition of a feature might invalidate the model if
an interference occurred. Interference cases examined are “cover” and
“collision”. Volumes and faces are used to check interferences (Zhang93,
see section 5.3.2). Deletion was considered to cause a wound on the
boundary model that was healed using a localised re-evaluation of the solid

model.

Parent-child relationships were used with built in restraints (such as
checking the compatibility between features) which served three purposes:
(a) building a linkage between features; (b} inheriting the parent attributes,
and (c) locating the child feature relative to its parent. Also, the
hierarchical dependency between features and the use of an attribute-based
language helped establish a parametric constraint-based environment. The
system is claimed to be able to capture any production and manufacturing
related functional data (ElMaraghy93b).
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k)

The feature-based modeller uses a hybrid CSG/B-rep data structure and
was said to be capable of validating any construction of features by
applying a few general rules by combining the advantages of solid
modelling and feature modelling (EIMaraghy93b). Invalid models can be
avoided by imposing manipulation constraints. However, a chain reaction
problem originated by parametric relationships among different feature

parameters was reported.

Because the same interference can be considered valid (intended) or
invalid (inadvertent) according to the application, it was stated that it is
necessary to consider the designer’s intent in the validation method.
Designer’s intent is captured by simply attaching a special attribute to flag
an intended interference or by making the system infer this réspect.lvc
connectivity between features and providing the user with a YES/NO

option to validate the case.

The validation is performed whenever the product model is modified and
invalid situations are left to the user to be corrected (Zhang93).
Manipulations include the addition and deletion of features which are also
used to implement manipulations others such as edi (divided in two steps:
delete the old feature, and add the newly edited feature to the model) and
paste (copy the feature parameters and add the new feature with different
positioning parameters). Add and delete operations have separate analysis
procedures within the validation method, and were applied to a hierarchical
representation of the product. Their system deals with depression and
protrusion features and both volumetric and surface features are evaluated
in the validity check.

Dohmen and colleagues (Dohmen94, Dohmen96, Kraker97) considered the
problem of maintaining the validity (consistency) of a constraint-based
feature-based modelling system that allows multiple views of the model.
Constraints are used to specify feature validation rules and relations
between feature instances. Each feature is considered to have a well-

defined meaning expressed by constraints describing feature validity

PAGE 50




CHAPTER 2. LITERATURE REVIEW

)

conditions (Kraker97). Maintaining a feature’s meaning, i.e. constraints, is

called feature validation.

For a single view, validation constraints are divided into:

shape constraints, which correspond to the type of feature shape, e.g.

a block for a slor;

attach constraints, which specify how a feature element (e.g. a face)
contacts and aligns with an existing feature in the model.

Attachments are used instead of parent-child relationships;

semantic constraints, which specify topological properties of feature
elements such as which element must or must not lie on the product

boundary;

geometric constraints, which specify geometric relations such as

parallelism and distance between feature elements;

dimension constraints, which specify intervals for the value of

feature parameters,

algebraic constraints, which specify equations constraining feature

parameters.

A Constraint Manager applies several dedicated constraint solvers and
deals with all types of constraints adopting the following solving sequence:
attach, shape, fix (automatic constraint that specifies that the value of its
variable may not be changed by the Constraint Manager), geometric,

dimension, algebraic and finally semantic constraints are solved.

In Rossignac90, validity checks were said to assess the compliance of the
feature-based models with the designer’s intent. It was shown how a rich
geometric representation scheme can be used to simplify the expression and
evaluation of validity rules. It was suggested that, because features can be

invalidated by subsequent creation of other features, in order to assess the
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validity of the design the intentions of creating features must be preserved
and methods for accessing the corresponding geometric elements and
testing the compliance of these elements with feature validity rules should
be available.

An extended mixed-dimensional boundary representation scheme was
proposed to represent a solid part and its additive and subtractive volume
features. Intentional features and geometric features were presented.
Geometric features are the evaluated geometric embodiment of the feature
while the intentional features are unevalvated abstractions for accessing
groups of geometric elements and for associating with them a type and
consequently certain properties. This association indicates a designer’s
intention to have that specific feature type in the model. However,
intentional features are not implicit features (see section 2.5) because they
are considered only as hints and could have references that do not
correspond to any geometric element of the model’s boundary at some

particular stage of the design process.

It was assumed that no automated solution exists to correct the side effects
of editing operations and that human intervention is necessary. To help the
designer validate the model facilities for interrogating important properties

are suggested. These properties are called validity.

The scheme improved the performance of updating the B-rep of a part
model when a volume feature 1s modified. It was asserted that the validity
criteria are domain dependent and two validation levels were considered

irmportant.

o The first, individual level, represents the verification that an
intentional feature has associated to it a geometry that satisfies

explicitly the requirements for that particular type.

¢ The second, is the relational level, where the relation between

several features is needed to assess the validity of complex parts.
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m) Su and colleagues (Su94, Mayer94) presented the Extended CSG Tree of

representation (self-contained or basic volume) as polyhedral winged-edge
B-rep data structures and the implicit representation (parameters and other

data to model the shape).

Features (ECTOF). Features are tree nodes that comprise the explicit

|

|

‘ Representation validation was performed to maintain the last user’s intent
(Su94), regardless of possible intersection with other features and
regardless of the feature’s respective position (level) in the tree. To achieve
this algorithms to rearrange the features in the tree were presented. Only
simple orthogonal interference cases that generate basic volumes or empty

sefs were examined.

Rigid transformations (such as translation and rotation) and parameter
editing are allowed as well as manipulations of feature size and shape as
long as it remains a basic volume, which is a simple, closed set in a 3D

Euclidean space bounded by a finite number of hyperplanes (Mayer94).

Besides rearranging the tree, reasonings were presented to decompose
intersecting features and for removing redundant features. A three-phase

sequential analysis and resolution of the interaction problem was presented.

e the first phase identifies “simple interference” cases that can be
reasoned with. The interference may require the ECTOF to be
rearranged in order to be consistent with the user’s intention. Next,
interacting features are split to identify effective volumes (and

therefore, effective features) and to remove obsolete parts.

e the second phase reclassifies the remaining features to their correct

types. This phase was designed to be activated by the user.

¢ the third phase groups and flags unresolved intersecting features as
complex (and thereafter considered “resolved complex feature sets”,
Su%4).
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Validation is, though, a method to solve the feature interaction problem in

the proposed representation scheme.

User’s intent was considered to be the last operation (insertion or
manipulation) although no option seems to be given to the user regarding
splitting and removing interacting features and reclassification must be
requested explicitly. Also, the design history (usually saved as the hierarchy
of nodes in the CSG-tree itself) is lost.

n) Martino, Ovtcharova and associates (Martino94a Martino94b,

Ovtcharova94) studied the integration of a DbF and a FeR system. It was
argued that a DbF-like modelling environment with a FeR-like mechanism
seems to be the solution to an efficient feature-based modelling system in a
concurrent engineering scenario. The FeR mechanism can be used in three

different ways:
¢ as a standard recognition approach from geometric models;

e as a mapping mechanism to taxonomies of application-specific

features;

¢ the recognition process can be also responsible for maintaining the
feature-based model consistency when degenerations or interactions

with another feature makes the feature lose its characteristics.

The last item was called feature validation and was done by a localised
feature recognition process (Martino94a). It was suggested that some
interaction cases are better left unresolved depending on the application

context,

The mechanisms used to update the explicit evaluated feature-based
representation are simplification (merge features, reducing the complexity
of the representation, Martino94b) and subdivision (splitting features, dual
operation of simplification). These operations are responsible for producing

alternative representations in different application contexts.

PAGE 54




CHAPTER 2: LITERATURE REVIEW

Combinations of predefined features can be defined by the user as new
features. However, new features defined by means of the solid modeller
can only be completely defined via programming due to the complexity of
the new shape, manipulation tools, internal representation and recognition
procedures. An intermediate representation was suggested to bridge
geometric and feature-based models. The geometric model is regarded as
the link between all feature-based models and the collection of alt feature-

based models creates the product model.

The user can interact via a feature modeller or the solid modeller.
However, to reduce violations and degeneration when manipulating the
boundary elements of the design, feature parameter constraints are used to
restrict manipulations (Ovtharova%94a) and no complex manipulations are
allowed at this level (boundary elements can not be added explicitly or
have their attributes changed - such as changing a straight edge into an

arc).

Kim and O’Grady (Kim96) proposed a validation formalism for the design
process based on features. Four model validation levels exist and are used

to characterise feature operators:

e Syntax level. Verifies that the model P 1s described only with the
vocabularies of the feature algebra (which is part of the formalism

and accounts for a feature taxonomy and two feature operators).

e Domain level. Verifies that the model P is valid at the syntax level
and that P satisfies a set of [geometric] domain integrity rules, e.g.

the solid model for a mechanical part should be two manifold.

o Feature level. Verifies that the model P is valid at the syntax level
and all features assigned to the model maintain their semantic
meanmg despite feature interactions. This was said to be dependent

on the feature definition and on how the design was performed.
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p)

¢ Product level. Verifies that the model P 1s valid at both the domain
level and the feature level and the model P can be mapped into a
realisable set of attribute values (defined via *concurrent

engineering” constraints).

The formalism included a sequential loop-based algorithm responsible for
maintaining the model’s validity. However, the model validation scheme
performed by feature operators only covered a portion of the validity of the
model and functional validity checking was also necessary (through the
verification of function-to-form transformations which are the mappings of

functional requirements onto features).

Bidarra and associates (Bidarra93, Bidarra94, Bidarra96) presented an
approach to validating a feature-based model that is “an intent to
encapsulate interaction detection and reaction methods in each feature class
definition, thus providing an automated mechanism for feature validity

maintenance throughout the interaction phenomena” (Bidarra93).

Features are expected to exhibit a specified behaviour for a respective
feature class. These are predictable properties, associated with some
definite engineering semantics, expressed in terms of the feature associated
volume (FAY), local morphology (the additive or subtractive nature of a
feature’s volume), the characteristics of the feature associated boundary
(FAB, subsets of the feature’s boundary that do or do not actually belong to
the model’s boundary) and *a high-level graph representation of
interactions, called FIG. FAB is divided in semantic entity (SE) sets that
specify and individualise the behaviour for a respective feature class (these
are either positive SE’s - boundaries that are present in the final model - or,
negative SE’s - feature boundaries that are absent in the final model). The
essential subset of the FAB for a given feature class is called a definitional
entity set of that feature e.g. a slot feature should always have the

defimtional entities roof and floor.

Interaction cases identified are (see section 5.3.2 for details):
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e topological interaction, an overlappmng interaction that maintains
| both feature parameters and a semantically complete definitional
|

enftity set;

e transmutational interaction, that causes a given feature to exhibit a

definitional entity set of another feature class;

e geometric interaction, that causes some dimension parameters to

lose their correspondence to the actual feature geometry;

o closure or absorption interactions, closed feature boundaries that

become open and vice-versa.

In Bidarra96 the following interactions were added: splitting,
disconnection, clearance and general. These and the previous ones
represent a classification of the interaction phenomena by their functional
(geometrical or topological) or technological meaning. Semantic constraints
were said to be the key to specifying validity conditions. Semantic
constraints are predicate expressions that establish the feature’s canonical
status which 1s the definition of the semantics (positive or negative) of
every boundary in the FAB. By these means, Bidarra’s scheme is able to
monitor every operation such as insertion, removal and modification within
the DbF system and recognise the feature’s class producing the feature’s

valid (complete) or invalid (intentional) status.

Constraint-based validation, where operations that invalidate the model are
rejected or forbidden, were considered too ngid. Instead, ideally, the system
was said to automatically adapt the model to get a valid one, although the
user should be consulted (Bidarra96). Also, it was stated that most validity
violations are caused by feature interactions which arise from modelling

operations.

q) Perng and Chang (Perng90, Perng97a, Perng97b) discussed the dynamic
editing problem of a Design-by-Features system. In editing a feature-based

part two problems for the part description were encountered: (a) changes 1n
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the boundary and (b) changes in the destructive solid geometry (DSG)
representation. Seven orthogonally prismatic (parallel or perpendicular to
the coordinate axes) volumetric machining features were represented as
DSG-nodes {a volume and a difference Boolean operator) and the equivalent
B-rep evaluation. Volumetric feature interaction properties (cases) were

detailed and used to derive localised modification functions.

The dynamic editing manipulations are adding, editing, modifying,
stretching and shrinking a feature. The validity of the model was guaranteed

via restrictions on the mampulations such as:
» not allowing a change 1n the feature’s type;

e constraining the positioning reference of the feature to lie on the

surface of the existing model;

e preventing the volume of the feature from exceeding the volume of

the existing model;

* not allowing a modified feature to be enclosed within any existing

feature.

If a valid manipulation is used, a valid representation (CSG tree and B-rep
evaluation) can be computed efficiently according to the interaction
properties (cases). It was found that the cases of enclosure and intersection
dictated the way the representation is updated. According to this, as a first
stage, cases can be 1dentified where an efficient local update can be applied
to the B-Rep (stage 1) without the need to completely re-evaluate it from
the DSG tree. A second stage applies similar reasoning to update the DSG-
tree. Without complex effort in defining an augmented/modified solid
representation scheme, the feature redundancy of a part description is

examined by spatial enclosure checking.

PAGE 58




CHAPTER 2 LITERATURE REVIEW

2.8 SUMMARY

The variety of definitions, types, taxonomies and applications of features
emphasise two important aspects: features are well accepted as an important
development medium for CAD systems, but little agreement exists on their
formal characteristics (implementation, role as a 3D modelling environment,
etc.). Possibly this is because of the very fact that they have been applied to

such a plethora of applications.

In whatever context features are considered, they are the carriers of information
beyond simply geometry and topology, but nevertheless the information carried

is closely related to geometry and topology.

It has been shown what features are, methods of implementing features using
various solid modelling techniques and how to approach this implementation.
These techniques give rise to various issues in validating feature-based model
representations. However most of the validation approaches are related to how

features have been implemented rather than validating the concept of features.

The next chapter discusses the various validation approaches in the literature
and introduces a validation methodology centred on the feature’s expected

behaviour which is closely related to the concept regarded as features.
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Feature-based modelling allows extra meaning to be added to
geometry, but lacks the equivalent representation verification
formalism that exists in conventional and Geometric Solid
Modelling (GSM) computer aided design (CAD) systems. A
framework for a Design-by-Features (DbF) system with
representation validation is presented that supports intent-
driven modelling, encompasses existing low-level geometric
verifications and incorporates operations to assure its

correcitness.

3.1 FACETS OF VALIDATION

Different feature-based modelling implementations have interpreted feature-
based representation validation differently and were found to perform one or

more of the validations described in the following sections.

3.1.1 GSM VALIDATION

Systems that use well-known solid representation techniques (such as CSG, B-
rep or Hybrids) have implemented feature-based representation validation as
GSM validation (Dixon87, Requicha8%b Kang93, Duan93, Bidarra94,
Perng97a, Perng97b). Possibly this is so because, although feature data
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the same sort of information (Stroud93).

For these systems, feature-based validation has been considered to be the
vernification of the existence of a “proper” valid evaluated GSM counterpart of

the implicit unevaluated form of the feature representation.

3.1.2 GSM-LIKE VALIDATION.

Feature based modellers supported by an augmented or modified geometric
solid representation scheme usually consider feature based validation as a
GSM-like validation (Rossignac90, Gomes91) in the sense that their data
structure integrity analyses are similar to those found in GSM representation
schemes, but using 2 modified representation scheme arrangement. This is
related to the effects of the feature manipulations on the representation scheme

and the ability of the scheme to represent features.

3.1.3 CONSTRAINT VALIDATION

Systems that implement features on top of geometric constraint-based systemns
consider that feature-based validation has to be done by resolving conflicting
parameter relationships that, for these systems, are associated with or are part
of the feature (Nielsen91, Emmerik91, Sheu93, Bronsvoort93, Ovtcharova94,
Shah94b, Dohmen96, Kraker97).

3.1.4 MANIPULATION RESTRICTIONS

Some systems restrict the availability of manipulations that are more likely to
produce complex, faulty or unknown situations from the system’s
implementation point of view (Pratt85, Dixon87, Stroud93, Denzel93,
Shah94b, Mantyla94, Martino94b, Su94, Mayer94, Zhang93, Perng97a).

For instance, “cognition rules” have been defined (Shah88e) as size and

placement constraints that are evaluated to ensure the valid use of features.

structures are separate from the basic shape of the part, they contain basically
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However, different features in different situations can have different sets of
allowed or disallowed manipulations and thus identifying those allowed
manipulations could become a complex task in itself. A more linear and
simplified alternative is to limit the manipulations to a small number that can

easily be handled.

3.1.5 ASSOCIATIVE VALIDATION

Some systems that claim to integrate DbF and FeR, and where low-level
topological elements can be manipulated, implement validation by verifying
that all low level geometric entities are associated with some feature

(Sreevalsan92, Laakko93, Martino94a).

3.1.6 INTERSECTION VALIDATION

Others systems interpret the validation problem as the solution of problems
originating from (geometrically) overlapping intersecting features only

{Case93c, Salomons93, Su94, Mayer94, Suh95b, Perng97b).

3.1.7 RULE-BASED VALIDATION

Some systems present the validation problem in a broad sense, including
considerations and rules that express how features should behave. These rules
state behaviours such as the compatibility of a feature’s neighbourhood, size
and positioning (Shah95), aspects of manufacturability (Si1lva90, Gadh95b) or
accessibility (Requicha89b, Rossignac90).

3.1.8 CONSISTENCY AMONG REPRESENTATIONS

Some systems that allow multiple representations of the object in different
feature representation spaces (to represent 1t more appropriately for different
audiences and to minimise the “ribs versus slor” or “designer versus engineer’s
view” problems) and that allow mampulations on the models in any of these

views (promoting concurrent engineering) consider validation as the

PAGE 62




( CHAPTER 3. FEATURE-BASED VALIDATION

maintenance of consistency among these representations (Shah90,
Bronsvoort93, Dohmen96, Kraker97).

3.1.9 FEATURE’S TOPOLOGICAL VALIDATION

Some systems perform validation of a feature model through inferring
geometric properties such as concavity/convexity edges/loops and venfying the
consistency of the representation with topological rules established for a

specific feature-type (Rossignac90, Stroud93, Zhang93, Duan93, Bidarra94).

3.1.10 VALIDATION VIA RECOGNITION

Some systems perform global or local feature recognition, especially when an
intersection is detected, on the GSM evaluated data to compare or update a

(parallel) feature-based implicit model (Stroud93, Pratt93, Martino%94a).
3.2 REPRESENTATION VALIDATION

3.2.1 Two LEVEL VALIDATION

B-rep GSM representation systems were shown (see section 1.2.2.4) to have
two levels of validity conditions: organisational (topological) and structural
{geometrical). Similarly, Krause93 has categonised some of the fundamental
challenges in product modelling in terms of syntactical and semantical

consistency.

Existing feature-based validation systems are basically geometry-driven.
However, it has already been suggested that ‘another layer of validation
becomes necessary’ beyond the geometric one (Pratt93). Low-level information
modelling and integrity handling has been considered transparent and therefore
poses no great challenge for the product modeller, at least those based on B-rep
(Stroud93).
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1t has been affirmed that modelling systems that fail to notify (or acknowledge)
a change m a feature’s functional meaning are in essence only geometric
modelling systems, and not real feature modelling systems, because they do not

maintain the meaning of features (Bidarra96).

Low-level integrity handling (for all GSM techniques that have been applied to
feature-based modelling) poses no problem because of the extensive research
already devoted to this topic. Therefore, a validation approach centred on the
feature’s concept and implied designer’s intents is needed (Sheu93,
Dohmen94).

It is also considered here that feature-based representation validation is divided

into two levels (see Figure 3-1):

¢ Considering that the majority of feature modellers are integrated in some
way to an underlying GSM system, it can be said that both sets of GSM
validity tests - geometrical and topological - represent the structural or

syntactic validity conditions for feature-based representation validation.

Representation Validation

~Ff~Model
E Featurization

1. Representaton

* Organisational
’(Tapawglcal. High Level}
¥ * Structural
TGeometncal, Low Levelf

i
Figure 3-1: Organisational and Structural Validation Levels.

e The other organisational or semantical validity conditions are termed

hereafter Conceptual Validity Conditions because they are concerned with
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the feature’s concept (their role and semantics as a 3D modelling technique,

their expected behaviour and their high-level organisational meanings).

3.2.2 CONCEPTUAL FEATURE VALIDATION

Features play an important role in captunng the designer’s intent in computer-
aided design (CAD), raising the abstraction level of geometric design and
facilitating integration with applications such as computer-aided manufacturing
(CAM) and computer-aided process planning (CAPP). However, such
integration will only be profitable if the feature model is valid in terms of the
feature’s concept or functional meaning. For instance, if a pocket (or a blind
hole) in the model is allowed to pass through the part, this misrepresentation
could cause machine damage, mistakes or, at least, non-optimised decisions by
a CAPP system.

Feature-based validation allows CAD systems (usually more preoccupied with
representing and producing feature-lke shapes within a geometrically
constrained environment) to interface more easily for example with CAPP
systems (usually more preoccupied with planning problems than with the

correctness of the representation).

As DbF systems usually subsume an implementation on top of a GSM scheme
(such as CSG, B-rep or hybrid), then they also subsume the availability of low
level modelling operators (such as Euler or Boolean Operators) as well as GSM
validations (such as Euler-Poincaré formulae verification or Boolean
regularisation, Zeid91). These low-level operators are not included in this

study. Other approaches (Stroud93, Subrahmanyam935) go into this level.

Conceptual feature-based model representation validation thus implies that the
verification of the intended functionality of a given feature must conform with

the geometric semantic meaning assigned to that specific feature type.

Conceptual Feature Validity Conditions may be translated as reasonings and
‘enquiries to the underlying GSM as well as to information stored into the

Feature Modeller, alone or altogether’ (Rossignac90).
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Like structural validity conditions, Conceptual Feature Validity Conditions
may have to be evaluated frequently because many common manipulations can
lead to a valid solid representation but not to a valid feature-based
representation. A DbF system that allows the use of high level entities such as
features to represent abstract concepts of designer’s intents should guarantee
that this representation is valid and should reason using a vocabulary of the
same high and abstract level, the conceptual or semantical level. The feature-
based reasoning should use mainly feature types, descriptions and parameters
(rather than their geometrical B-rep or CSG evaluations) as a ‘vocabulary’ for

validation analysis and manipulation operations.

Structural, low-level and syntactical representation validation has received
considerable attention in the literature (see validation facet types from sections
3.1.1,3.1.2,3.1.4, 3.1.5 and 3.1.6).

Work conducted by Pratt, Duan, Bidarra, Martino, Su, Shah and Zhang and
respective colleagues is considered to have recognised feature-based

conceptual representation validation to some extent.

3.2.3 VALIDATION AT FEATURE CLASS LEVEL

Denzel93 argued that there is still scope for reducing programming effort in
defining new features. An approach that deals with feature validation regardless
of the feature type would help ease that effort. The term conceptual feature-
based validation suggests an approach in this direction: the validation of the

feature’s concept as a whole and not of its particulars.

Therefore, generic validation reasonings that can be applied to all feature types
are of major concern 1n this research. In approaching the problem in this way,
the task of defining totally new features (which greatly enhances the system
flexibility) is facilitated because few extra behaviour and validation activities

need to be defined and programmed.

In an object-oriented approach 1t could be called a feature-class reasoning

because it is defined for the feature class and all the objects (feature types)
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derived from it (such as a slof and a hole) would inherit the behaviour and

validation reasonings of the class.

3.3 FEATURE VALIDATION SYSTEM

Although there are no universally applicable methods for checking the validity
of features, three elements were identified as necessary to compose a

conceptual feature-based representation validation system (see Figure 3-2).
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Figure 3-2: Conceptual Feature-based Validation Framework.

3.3.1 DoMAIN CHARACTERISATION

To perform conceptual feature-based representation validation it is necessary to
establish properties with which a representation must comply. This is done by a
proper domain characterisation that reflects and makes explicit some common-
sense feature behaviours as a 3D modelling technique. The domain
characterisation should produce a set of properties that are intrinsic to feature
technology and to the idea of using features as a modelling resource. In
addition, these properties should be made measurable otherwise they would not |

contribute to the automatic validity analysis of the feature-based model.
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3.3.2 VAUDITY CONDITIONS

Another element of the validation framework is the set of conditions that are
produced to assess the conformity of the representation with the properties that
characterise the domain. These are called validity conditions. Validity
conditions are important because the richness of the model assessment dictates
the success of the representation validation. For instance, it has been said that
the capability of checking various types of technical validity criteria is critical
for using features in manufacturing planning (Shah95). Therefore, the
conditions should consider a great variety of situations for each property being

analysed.

3.3.3 OPERATIONS CHARACTERISATION

Considering the domain characterisation and verifying the model with validity
conditions allowing the identification of mnvalid and valid representations is an
advantageous aspect of a feature-based system. However, it is possible that a
better understanding of the invalidity phenomena could come from a better
understanding of their origins: operations and the consequent feature
interaction phenomena. Therefore, a characterisation of the operations
available in the system is the third element of a feature validation system

framework.

In particular, for pragmatic reasons, an enormous advantage could be achieved

if operations capable of correcting invalid representations can be identified.

For the example shown in section 1.5.4 these operations for invalid B-rep solid

representations (revalidation operations) include:
¢ eclimination of dangling faces and edges;
s performing “regularisation”;

¢ unification of vertices referencing the same point and then trying to validate

the result;
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e re-orienting a face’s edge loop;
|

| ¢ eliminating NULL pointers from the data structure.

There are no similar well-defined revalidation operations in the feature-based
context, and therefore further research on this topic is required. These
revalidation operations could be automatically invoked or offered to the

designer by the system according to the invalidity case.

| 3.3.4 THE FRAMEWORK

To support conceptual feature-based representation validation a system must be
built upon a thorough definition of the constituent elements (Figure 3-2). The
very definition of features and their characterisation should be made in such a
way as to be suitable for venfication and to be in accordance with expected
common sense behaviour of features. A volumetric analysis of features seems

to be an adequate (feasible) candidate for this purpose.

Further, if the characterisation formalism is made clear, verifiable and
representative enough the system could perform automatically the identification
of complex relationships between features. This automatic recognition will
promote the designer’s freedom from this tedious task and the enrichment of
the representation. However, the human understanding of the model and her/his
intervention will be necessary to accept or reject a recognised relationship as an
important and deswred one. Moreover, once these relationships are as
meaningful as features are, this process could possibly drive a more efficient

modelling environment.

3.4 DETAILED RESEARCH SCOPE

In this research volumetric features have been implemented in a Hybrid
CSG/B-rep solid representation scheme where features are closed sets of

boundaries and Boolean operations are available. The aim is to perform
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feature-based model representation validation, and model and entity

(featurization) validation are outside the scope of the work.

This interest in the conceptual representation demands that a Design-by-
Features approach is adopted where features are instantiated from a library
rather than recognised from a geometric model. The validation analysis
discussed here considers that all features are in the same (form) feature
representation space and therefore no conversion or mapping procedure is

performed or considered.

Procedural modelling is used in the sense that the CSG-tree is traversed and re-
evaluated when required, thus removing the need for facilities for localised
updating of the GSM data. Nerther parametric nor geometric constraint-driven

environments were used.

Orthogonal positioning is used, i e. features are placed parallel or perpendicular
to one of the Euchidean axes. Prismatic features related to milling and drilling
are the main concern. Tolerance conditions have not been considered. Stock

material 1s limited to a rectangular block.

Model building is achieved with add and delete operations and no access to
low level geometric or topological entities 1s required for editing operations.
Hierarchical representation/modelling is not required and parent-child

relationships are not forced.

3.5 WHAT TO VALIDATE ? FEATURE-BASED DESIGNER’S INTENTS

It has been alleged that designer’s intention is not always described explicitly in
the result of a geometric design using current (conventional and GSM) CAD
systems (Yoshikawa87) and that “features are expected to reflect the designer’s
thoughts” (Lenau93). FBM represents a step forward to overcome this
limitation. However, capturing design intent is difficult as it can be extremely
variable and unstandardised. Also, very few feature types and implementations
are available at the high abstraction levels (closer to the conceptual design

stages).
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considered essential in decision-making where different kinds of interference
happens among features (Zhang93). This is so because interference can be valid
in one application but invalid in others. In addition, capturing and storing
designer’s intents in the part model make tasks such as feature modification

much easier (Sheu93).

Features themselves have been claimed to be a convenient vocabulary for
formulating validity checks that assess the compliance of the model with the
designer’s intent (Rossignac90) because features widely capture designer’s
intent provided that their semantics are oriented to the application (Gomes91).
On the other hand, there is some confusion between a feature’s own
functionality and the functionality of various features acting together: Rimscha
(Rimscha90), has classified features into two categones: free features which
are geometric form features that compose the part and embedded features
which have no existence on their own but which establish all sorts of
relationships between free features or assembled parts and embedded features
were said to occur at various levels of the part representation (Nnajio3,

Rosen93).

Features are intimately related to designer’s intent. However, although it has
been claimed that FBM systems capture and represent designer’s intents to
some extent (Dixon87, Rossignac90, Silva%), Rimscha90, Nielsen91,
Rossignac91, Zhang93, ElMaraghy93a ElMaraghy93b, Su94, Shah94b,
Chen95, Taylor96), few attempts (Dixon90, Henderson93, Nnaji93) were
found to define, clarify and identify designer’s intents within the feature-based

modelling context.

Therefore, a domain characterisation that leans towards conceptual feature-
based representation validation should be achieved by defining Feature-based

Designer’s Intents (FhDI’s) that express feature behaviour.

It seems difficult to conceive at first that another vague and abstract term,

Designer’s intent has been considered part of a validation method and even
namely Designer’s Intents, could be the measurable means to perform |
\
|
\
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conceptual feature validation. Nevertheless, the absence of a formal
mathematical definition for features and a consensus that they are the carriers

of designer’s intents make this option look more inviting.

3.5.1 DEFINITION

Designer’s intent’s are of “high importance to be preserved but their
understanding has a complicated nature” (Yoshikawa87). Some of the
clarifications for designer's intent in the context of feature-based modelling

include:

¢ ‘Design intents state the purpose of an aspect or underlying rationale behind
an object’ (Henderson93) that help justify a design decision. For instance, a
hole could act as an oil outlet or a fixing point, which later will help decide

on machining tolerances.

o ‘Designer’s intents are the feature’s reason for bemng in the design and
hence, the reasons certain dimensions and spatial relationships are what

they are’ (Dixon90).

e ‘Designer’s intents are a set of functions which the product will provide or

require’ (Nnaji93).

1t has been acknowledged that “the information that constitutes intent, and how
to capture and use intent are all research issues to be explored” (Dixon90).

Thus, it is herein defined that

Feature-based Designer's Intents (FbDI’s) represent a variety of
concerns that help decide on a specific feature attribute or
configuration. They are factual peculiarities of the geometric design
that are ntrinsic to features themselves or to the use of features in the
design and have engineering-related purposes. FbDI's are properties
that are expected to arise in the model because of the use of a feature in
a specific location or because of the interactions that a feature

provokes with the existing surrounding features in the model.
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FbDI's represent information that should be verified and maintained
throughout the detailed design process and could be used as restraints to drive
the decision-making process of a downstream application. Because they are
considered intrinsic to features, they are sometimes left out of the formal and

explicit description of a design.

Their presence could be easily overlooked but their absence is immediately
recognised by the designer. For instance, a series of hole features on a part in
an intentional pattern suitable for a optimisation could be overlooked but if
they are not in such a pattern, no optimisation of that kind would ever be tried.
Either presence or absence affects engineering-based reasonings and computer-
aided systems such as CAPP, CAM and CAE.

3.5.2 WHICH FB8DI’s ? VoLUMETRIC FBDI'S

Despite any implementation issues, it is common sense that form features have
a strong volumetric meaning (Pratt85, Pratt88, Shah88e, Dixon90, Li%0,
Rossignac90, Perng90, Rosen93, Tseng94) and usually their expected
behaviour as shape builders is guided by their volumes. Therefore, Volumetric
Feature-based Designer’s Intents (VDI’s) are concerned with the feature’s
expected volumetric behaviour, or volumetric intention, which is comprised of

a feature’s nature and a feature’s volume:

o A feature’s volume (FV) specifies that there is an intention to imprint a
specific volume or shape onto a part. It has also been called a Feature
Producing Volume (FPV, Pratt85), Volumetric Cell (Gomes91), Self-
Contained Volume (Gindy89, Su94), Basic Volume (Mayer94) and Feature
Associated Volume (FAV, Bidarra94).

o A feature’s nature (FN, Lenau93, Kraker97) specifies that there is an
intention of adding material (when 1t is said to have a positive volume) or
removing material (when it 1s said to have a negative volume) from the

comporent.

PAGE 73




} CHAPTER 3* FEATURE-BASED VALIDATION

FV and FN (see Figure 3-3) together define how to imprint a specific shape
onto the component. FV’s do not need to have all the explicit evaluated
surfaces that represent the FV in the evaluated feature model - the component

(as suggested by Rossignac90 for Intentional Features, see section 2.7).

<2
2
N

Feature | Slot-Through Hole Boss
Feature
Volume
| Feature Negative Negative Positive
} Nature (-) (-) (+)

Figure 3-3: Examples of a Feature’s Nature and Volume.

Figure 3-3 presents examples of features and their respective volumetric
intention, FV’s and FN’s. It should be noticed that, apart from the orientations,
the FV’s are very similar and only when positioned and with FN’s established
18 a specific feature type achieved on the component’s surface. This shows the

importance of volumetric intentions to FBM.

The volumes associated with a feature are so important that not only the actual
feature volume has been used but the whole removing and clearance volume
swept by a tool during the process of manufacturing a feature has been
considered and this has been called ‘manufacturing motion feature’ (MMF,
Medland93). Also, feature volumetric intentions have proved to be very

important resource for planning and machining optimisations (Li90, Tseng94)
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Thus, the Conceptual Feature Validation concerned here is biased by a
volumetric interpretation of features although it is applicable to surface feature

implementations and in fact, also includes some boundary reasoning.

Volumetric FbDI’s are considered particularly important when an interaction
occurs between feature volumes. To deal with VDI’s, the semantics of non- ‘
' conflicting and conflicting volumetric interaction between features have to be

defined. This analysis led to the identification of four VDI's (see Figure 3-4):

Changeability, Fittability, Redundancy and Labelling.

Volumetrical
Designer's Intents

Fittability Changeability | | Redundancy Labelling

Figure 3-4: Volumetric Feature-based Designer’s Intents.

3.5.2.1 CHANGEABILITY VDI

A Feature’s nature implies that a change 1n the feature-based representation
must result 1n a change in the volume and surface of the component being
modelled. This feature requirement and ability to change the existing model is
called the changeability VDI However, it does not require that all the
boundaries of the FV should be shaped into the part. The changeability
requirement mvalidates obsolete feature.§ (Shah90) that occur when a feature is

completely inserted into another and has the same nature.

Obsolete features have no functional significance to the model and this should
be acknowledged by downstream applications or they should be eliminated in
the first place.
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Figure 3-5: Invalid Representation Containing Two Obsolete Features.

Figure 3-5 shows a feature-based representation with two counter-bored hole
features, one placed disconnected to the stock material and the other placed
| inside the removing volume of a through slot. Both holes are considered

obsolete because their volumetric intentions do not affect (change) the actual

representation of the part. Therefore this is an invalid representation.

3.5.2.2 FirrasiLity VDI

A feature must have adequate parameters to properly express the extent of its
underlying intentions and functionality. Thus the feature must fit within the
limits where it is intended to be placed (in the same way as an edge is limited
by its two exact ends, called vertices, in B-rep). This aspect is called the
fittability VDI

The fittability requirement invalidates the problems of feature’s parameter
made obsolete (partially considered by Shah90) where a feature’s parameters
do not describe exactly the extent of what it imprints on the part and two cases

can be identified (see Figure 3-6):
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Invalid Representation Validated Representation

Parameter

1s too Large

Parameter
18 too Small

Figure 3-6: Examples of the Fittability VDI Problem,

o Parameter is too large such as when a feature exceeds the limits of the

stock material.

o Parameter is too small such as when two features touch each other with a
perfect face match such that they can be united or replaced by another

feature that encompasses both behaviours.

However, adequate parameters could also mean that part of the feature does not
affect the component and hence, the hole n Figure 3-7.(a) is a wvalid

representation as a single through-hole.

SRR

(2) ®
Figure 3-7: Volumetric FbDI’s Analysis and Adequate Parameter.

2
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3.5.2.3 REDUNDANCY VDI

Interesting and difficult situations arise when redundant volumetric intentions
are found. Consider a part (Figure 3-7(a)) compnised of a slot and a hole
(modelled as a single long cylinder). There is a redundancy of VDI's where the
hole crosses the slot. This is a feature interaction problem that has been
receiving much attention in the literature as being of special difficulty to handle
(see chapter 5). Nevertheless, concerns are drawn here regarding the
redundancy VDI management and not the feature recognition, extraction or

even internal representational problem.

Thus, whether to accept the feature redundant removal intent in the
representation or to split the long hole into two short hole features has

consequent implications:

o If the redundant portion is allowed, care should be taken during further

analysis to avoid redundant manufacturing operations (for example).

e On the other hand, if two separate short hole features are created, the
redundant geometric part must be deleted from the model and other types of
intents (such as the equal radius and concentricity intents between the two

short holes) must be added to the representation.

However, eliminating the redundant part also eliminates the removal intent at
that location. For instance, consider now adding a boss into the slot (Figure 3-
7(b)). Should this boss have the former hole intent as well? Or, consider
removing the slot if the second approach is taken: what happens to the formerly

deleted and redundant part of the hole feature?

Capturing and maintaining VDI's is a subjective problem. For instance, simple
operations such as adding a boss inside a slot (Figure 3-7(b)), could be
interpreted as an acceptable situation (when it leads to the formation of a
protrusion for example) or could be interpreted as a VDI conflict since it is
precluded by a material removal intent. Inverse operations (superimpose a

matenal removal over an additional intent) can cause hollows/cavities (usually
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undesirable) or the loss of (part of) the initial addition intent (deleting the

previous feature at that same location).

Similar FbDI management problems appear when simple delete operations are
required. Imagine the volumes used to produce a component formed by a step,
a slot and a hole feature (Figure 3-8(a)). Now imagine re-adding the volume
that produced the slot as a way to delete the slot. Not only is the slot deleted but
also the step is turned into two notches and the shape of the hole is affected. A
clearly unwanted VDI scenario has emerged instead of the simple deletion of
the slot. This is a matter of managing the redundancy VDL If the system was
able to identify the portions of the feature that represented a redundant material
removal procedure then it would have known that the deletion of that part
should not be made by just re-adding material, although for cases of non-

redundant intents re-adding the 1nitial volume suffices.

e fas =

ﬂaﬂ —

a) b) c)
Figure 3-8: Deleting Volumetric FbDI’s,

A proper delete operation could be achieved if the history of the design was
stored allowing the later reconstruction of the model. However, high computing
time will be required to reconstruct the model after every manipulation, and
thus there are some approaches that perform “local updates” on the model to

save computing time (Rossignac90, Gomes91, Sheu93, Vandenbrande93).

3.5.2.4 LABELLING VDI

The labelling VDI identifies the relationships between all feature faces and
their attributes. Every feature has a set of relationships that is kept as the
feature’s label and identifies features as being of a specific shape and having a

unique behaviour. Labelling 1s basically defined by a template of virtual and
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real faces that wrap the feature volume of a feature type (see Figure 3-9).
Virtual faces basically identify tooling external access directions and real faces

identify surfaces to be imprinted on the part.

Feature Feature Real Virtual
Label Shape Faces Faces
Through ‘ \‘
Slot ‘

Figure 3-9: Feature’s Template of Virtual and Real Faces.

It should be noted in Figure 3-9 that the step and through slot features have a
very similar volume (FV) and the same negative nature (FN) and therefore a
very similar volumetric intention. However, the set of real and virtual faces
helps identify the proper label for cach case, which leads to very functionally
different features.

A feature’s nature and volume are closely and complementarily related to the
feature’s label (its positioning and template of real and virtual faces). A label
is considered to be the link between the geometric modelling realisation of the
feature-based model and other non-geometrical information associated with a

specific feature type.

For instance, the same nature and same location but slightly different template
description would result in a different feature label (such as for through slot
and step features, see Figure 3-9). On the other hand, a feature’s label is
dependent on the feature’s positioning and thus changing a feature’s position

could possibly change the feature label.

If a face of a given feature abuts and 1s completely inserted into another
feature’s real face, the former must be a virfual face (Silva90). Using

reasonings such as this the labelling aspect can be maintained (refer to section
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8.9.3). If the template and the realisation do not match, the feature label is
mvalid and a “revalidation” operation of searching for the appropriate label
should be invoked.

3.5.3 WHAT ARE FBDI’S ? THE ESSENCE

To continue arguing that FbDI's can be explicitly captured and manipulated, a
| sensible internal representation needs to be found. This raises the question of

what are FbDI’s in practical terms?

FbDI's have been considered to be constraints by many authors (Dixon87,
Nielsen91, Dohmen96) because the resulting geometric relationships are set by
the designer in a conscious manner to express some of the design objectives.
Howeyver, the way a network/graph of constraints 1s set up is particular to a
specific design or application, and therefore 1t will be impossible for the
designer to generalise the constraints to cover all possible situations of similar
designs (Zhang93).

Furthermore, it has been alleged that a constraint-based system is neither
sufficient nor easy to work with (Rossignac90) for a design application. In
addition, constraints were regarded as unable to accommodate all sorts of
associations (Hailong95) or relations (Henderson93) in a design. Therefore, it
is difficult to accept that a very specific set of relationships can be regarded as
all possible FbDI's that exist in a design. Besides, these constraints have been

established using geometry information rather that feature-based information.

Because of these considerations, it is believed that constraints are part of the
FbDI concept and thus the FbDI concept must accommodate constraints in
some way. Furthermore, considering that FbDI's have also been regarded as
connectivities between features and as flags for intended interference
(Zhang93), FbDI's are defined as general relationships between features
(preferably) and/or feature elements (thus, accommodating geometric

constraints),
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3.5.4 THE ACTUALVDI’s

The following are the FbDI relationships originated from the volumetric FoDI's

reasoning:

¢ A feature identified as merged_from another two features ornginates

from a fittability VDI analysis.

o A feature identified as split_into two or three other features also

originates from a fittability VDI analysis.

e A feature identified as obsoleted_by another feature oniginates from

a changeability VDI analysis.

o A feature identified as deleted_by another feature onginates from a

redundancy VDI analysis.

e The label of a particular feature (one of its properties) originates

from a labelling VDI analysis.
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3.6 ExAMPLE oF CONCEPTUAL MFI REASONING

Blind- Ioi % . ®_’Bjnd-8bt

Figure 3-10: Example of Conceptual MFI Validation.

Figure 3-10 presents an example of conceptual representation validation
reasoning and some of the operations involved in this process. The right-hand
side of the figure shows how the model would appear if no validation reasoning
is applied, while the left-hand side shows, operation by operation (see chapter
6), how a conceptual representation validation reasoning can be applied 1n

order to obtain a valid model at the end of the process.

PAGE 83




CHAPTER 3° FEATURE-BASED VALIDATION

3.7 COMPOSING A FEATURE VALIDATION SYSTEM

Validity conditions should be devised to verify the semantics of the domain
characterisation (Volumetric FbDI’s). This can be achieved through a suitable
vocabulary to express the conditions regardless of whether they are to be
implemented in a Knowledge-based System (KBS) or in a C-like language. It
can be inferred that three elements influence the way VDI's have been
presented and explained, and therefore should be used to compose such a

vocabulary. These vocabulary elements are:
e The way that features interact (e g. inserted face and cross feature).
e Feature attributes (e.g. feature’s nature, face’s virtual or real attribute).

o The way that features are operated on (e.g. delete and add a feature, split

feature and search for new label).

Furthermore, some ways in which VDI reasonings relate to other types of
intents (e.g. co-radius and concentricity) have already been mentioned (section

3.5.2.3) and can be created as a consequence of a VDI reasoning.

This makes it clear that there are non-VDI intents, that these other types of
intents also need to be properly defined and specified and that VDI reasoning is
not an isolated reasoning. This suggests that conceptual feature validation can
be extended to a much broader spectrum of designer’s intents becoming an

intent-driven approach for reasoning about feature-based models.

PAGE 84




CHAPTER 3- FEATURE-BASED VALIDATION

3.8 SUMMARY

Modelling and editing feature-based models produces models that potentially
violate the feature’s expected behaviours. A step of verification and validation
is therefore essential, although what to validate is still open for interpretation.
This validation process is difficult because the extra information, or designer’s

intents, that features carry is not easy to formalise and quantify.

Conceptual feature-based representation validation requires the definition of
feature volumetric intentions. These terms, intents and volumetric intentions,
have been identified and specified. These reasonings arise from the elements of
a vocabulary. This vocabulary includes feature interaction, intents interaction,
feature attributes and operations, The elements that comprise a system capable
of analysing a representation against such volumetric FbDI's have been

identified.

When features are manipulated or introduced into a part’s representation they
become part of a complex arrangement of entities, which are initially 1solated,
but which subsequently interact with each other. Therefore, two intrinsic
dimensions of information identify a feature before and after being
incorporated into the model: intents and interaction. Feature interaction seems
to be useful in testing, validating and correcting feature-based models from the

designer’s intents perspective,

In the following chapters these vocabulary elements (feature-based designer’s
intents, feature interactions and feature operations) are presented and properly
classified, typified and specified to comprise not just a validation system but

also an intent-driven reasoning approach.
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Features have extra non-geometrical semantics and have been
considered to carry designer’s intents which are used by many
applications but never related back to these designer’s intents.
This chapter presents a classification of designer’s intents and,
as they are considered to be properties that are intrinsic to
feature-based modelling, they will be used as the means by
which validation conditions are set. Therefore, adopting the
approach of defining a taxonomy of designer’s intents helps
define the role of features i geometric design and, indeed,
allows future feature-based modelling systems to better
represent, store and reuse such information. Moreover, it allows
a more formal approach to manipulating, verifying and
maintaining designer’s intents throughout the design process,
which is invaluable support for genuinely intelligent CAD

systems.

4.1 CONCEPTUAL VALIDATION AND BEYOND

Although features are a proclaimed and accepted means of capturing and
representing feature-based designer’s intents (FbDI’s), existing systems do not

deal with FbDI's as their major concern. The main reasons for this are

threefold:

4. AN INTENT-DRIVEN APPROACH
\
|
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o first, there still is a lack of a formal well-accepted definition for features

and their role as a geometric modelling technique.

e second, there is the same lack of understanding of what FbDI's are,

especially in the context of FBM.

o third, identified intents are usually blended, immersed or diluted within the

application under consideration.

Capturing FbDI's at early stages of the design in a more user-friendly interface
that includes a vocabulary meaningful to the designer is a property of a design-
by-features (DbF) system that allows more intelligent decisions and reasonings
to be made and has been considered as a necessity for Intelligent CAD
(Cunningham88, Dixon90).

A validation system need not be used solely for conceptual validation and the
associated volumetric intention reasoning. It could also be extended to validate
vanious other types of intents and therefore become an intent-driven reasoning
system. To identify and understand these other types of FbDI's an entities
elicitation process (explamed for feature elicitation in section 1.5.2 and

summarised in Figure 1-8) is suggested.

Depicting all sets of FbDI's present in the designer’s mind is beyond the scope
of this research and is a very cuambersome approach even in a limited domain.
The objectives of this chapter are to (a) explicitly categorise FbDI's in such a
way that this extra information could be effectively and consciously
instantiated into a model, and (b) provide a set of characteristics that a DbF
system could be based upon. In this way, the capturing, verifying and
maintaining of FbDI's could be performed by, and even automatically

discovered by, a DbF system.

Moreover, this approach provides another dimension to be considered when
designing and implementing FBM systems as these would be constructed upon
the concept of intents to be achieved and validated, and not just the set of

features to be manipulated.
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4.1.1 FEATURE-BASED DESIGNER'S INTENTS ELICITATION

As discussed earlier (section 1.5.2), the elicitation process requires the
characterisation of a domain. A process of identification based on elicitation
criteria follows and this can be helped by an appropriate classification. A
taxonomy is then produced considering an application and another set of
criteria validates a (possibly smaller) set of clements for a chosen application

domain.

The domain adopted for this research is the integration of feature-based CAD
and CAPP and information related to it has been mainly gathered from related
publications, and therefore FoDI's presented are the ones perceived from these

systems.

4.2 DESIGNER’S INTENTS ELICITATION CRITERIA

A reasonable set of “manageable” FbDI's should be clearly identified and
classified to match feature semantics and this 1s achieved via a suitable set of

elicitation criteria.

Keeping a pragmatic awareness of the implications for DbF implementations,
the following set of elicitation criteria were established to select objective,

concrete and verifiable FbDI’s:

o they must have importance to the decision-making process of detailing a
geometric design and hence, are not for documentation or illustrative
purposes solely. “Designer’s intents” that do not usually constitute a
representation of the design knowledge to be used for subsequent

verifications or to trigger reasonings should be avoided.

e they must have geometric semantics expressed in a way that is suitable for

association with features and for building a reasoning process.

e they can be of hierarchical nature, where high-level more abstract FbDI's

can be defined, but there are basic atomic FbDI’s which are preferable.
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e major attention should be paid to FoDI’s that are computable and inferred
during the design process rather than to those that can only be explicitly
stated by the designer (Silva90, Dixon90, Suzuki90, Zhang93, Vancza93,
Salomons93, Mill93). This does not mean that this process is easy or

already available but does mean that it is conceivable.

o FbDI's that build a hierarchy with tight dependency should be avoided or
kept as a distinct class to maintain simplicity of the reasoning (see

Parametric FbDI’s, section 4.4.2).

4.3 DESIGNER’S INTENTS CLASSIFICATION

A feature model 1s considered invalid if it does not fulfil its functions
(Martino94a). Three types of FbDI's have been identified (see Figure 4-1):
morphological functional, theoretical functional and relational functional.

Feature-based
Designer's Intents

Morphological Theoretical Relational
Functional Functional Functional

Figure 4-1: A Classification of Feature-based Designer’s Intents (FbDI’s).

4.3.1 MoRPHOLOGICAL FUNCTIONAL FBDI (MFI)

Features represent a good means to embed functional significance into the
geometric detailed design phase and this fact can be inferred by some

definitions applied to features. Features have been defined as:

o the addition of functionality to geometric forms (Dixon90, Sodhi9l,
Nnaj93);

¢ high-level morphological information with well-defined functional meaning
(Gomes91);
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¢ high-level functionally significant entities (Laakko93, Bronsvoort93).

In addition to topological and geometrical analysis that is usually applied to
identify features (as in Feature Recognition approaches), extra functional

factors have been added to better specify the elements of a feature famuly.

For instance, a cylindrical boss family of features could be specialised into a
disk if limited to a certain height-to-diameter ratio range; otherwise, it becomes
a rod (Nielsen91). In addition, a hole feature can be assigned as a
morphological functional FbDI but it will only be categorised as drilled hole,
bored hole or punched hole when the application domain is considered (in this

case, manufacturing capabilities).

This functional specialisation generates a drastically different manufacturing
approach. In the case of the example above, it could be machining the disk or

welding the rod.

It has even been considered that, 1f an application considers only functional
morphological information (shape) then the term “form feature” can be used
(Dohmen94). These considerations clearly expose features as having
morphological functional FbDI's (MFT’s).

4.3.2 THEORETICAL FUNCTIONAL FBDI (TDI)

Features are also linked to the function concept itself which has been defined as
“the behaviour of an object, an operation of energy, material, information or
signal that tells what the design does” (Tomiyama93) and “include not only in-

use purpose, but also manufacturing and life-cycle considerations’ (Dixon90).

Although some researchers have addressed the relationship between form and
Junction, it is not formally understood yet because of many difficulties
(Shah90, Salomons93).

» firstly, the abstract nature and understanding of the function concept.
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o secondly, functionality can be a composite result of many interacting sub-

functions.

o thirdly, a given function could be performed by several forms and one form

could be used to perform different functions.

Functions make specific shape aspects appear on the part’s surface, control the
part’s overall outlook and are driven by a close relationship between a feature’s
theoretical functional behaviour and its form. This is possible by manipulating
and controlling the hierarchy or dependency of parameters that establish
dimensions, profiles (e.g. quadric, circular, spherical), parameterised local

operations (blending, chamfering, trimming) and so on.

This function concept has been implemented as physics-based or engineering-
based laws, rules or formulae depending on the underlying theory, such as heat
propagation, torque or force transference or stress analysis (Taylor96). Thus,
they are called theoretical functional FbDI’s (TDI’s).

4.3.3 RELATIONAL FuncTIONAL FBDI (RDI)

While TDI's are usually expressed by formulae, engineering constraints are
expressed in the form of relationships between entities. Thus, they are called
relational functional FbDI's (RDI’s).

RDI’s comprise different disciplines and are dependent on the application of
the feature-based model. RDI's are mostly geometrical facts that have a

functional significance for an application.

For instance, a “nested at the bottom” relational FbDI (see section 4.4.3.1) is a
geometry-based and provable fact that could be used by a CAPP system to

establish machining precedence among features.
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4.4 DESIGNER’S INTENTS TAXONOMY

Each FbDI type has a set of objective and tangible properties at a “pragmatic”
level, which helps to implement FbDI's within the geometric realm. FbDI types
specify general engineering concepts or behaviours while the actual FbDI’s are
computable relationships between features themselves or elements of the
feature-based model such as feature faces (and their attributes) and feature

parameters, and are to be implemented in a system.

The FbDI's presented below comply with the elicitation criteria presented
before and thus, are verifiable, measurable and manageable. This enumeration

of FbDI’s can be said to build up a taxonomy of FbDI’s.

4.4.1 MoRpPHOLOGICAL FBDI

Morphological functional FbDI's (MFI’s) can be achieved through Volumetric
FbDI's (VDI’s) introduced and detailed in section 3.5.2.

Volumetric
Designer's Intents

I
| | ! ]

Fittability Changeability Redundancy Labelling

\:m erged_from |—obsoleted_by |—deleted_by
split_into

Figure 4-2: Taxonomy of Volumetric FbDI’s

4.4.2 PARAMETRIC FBDI

Theoretical Functional FbDI's (TDI’s) can be incorporated into feature-based
modelling via parametric or variational constraint-based systems respectively
generating the so-called procedural and declarative approaches (Shah94a,

Shah94b). The main distinction between (constraint-based implementations of)

feature-based modelling and parametric/variational modelling has been said to
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be in the level of detail/abstraction (Shah94b). Feature models are structures in

which constraints can be applied both at microscopic and macroscopic levels.

Validation systems based on the geometric constraining approach do not allow
manipulations to be interpreted as a change of the designer’s intent, rather they
prevent such situations from occurring (Ovcharova94, Shah94b) because the
designer’s intents are explicitly gathered beforehand via the establishment of 2
hierarchy/dependency of parameters and constramnts, The designer needs a
complete understanding of the functionality of the part being designed and all
the mmportant dimensional relationships involved. Experimentation is done
afterwards when all the relationships are set. Different varations of the part can
be obtained easily. However, for loosely specified parts this formal approach is

not appropriate.

A considerable amount of research has been done on representing and solving
geometric  constraints (Serrano88, Suzuki®0, Chung90c, Nielsen91,
Bronsvoort93). Because many theoretical functional FbDI's can be captured
and represented via a geometric constraining approach, they can also be called
Parametric FbDI's (PDI’s)

Constraining is usually a parameter-driven (e.g. dimensions, distances) relation
between (parts of) features (Dohmen94). “Parameters may be dimensions, but
they may also be values without geometric meaning that are used to compute
dimensions” (Dohmen94). Geometric constraining is one of the most important
and practised way of capturing (parametric) FbDI's because “much of the
design process is driven by functional constraints that turn into geometrical
ones as the design proceeds” (Suzuki%0). These constraints are important for
representing designer’s intent as product models because they represent high-

level design relationships that must be satisfied and maintained (Emmenk91).

Geometric constraining systems can be roughly divided mto two categories:

parametric or variational design (Chung90c).

In a parametric constraining design the designer uses basic geometric elements

(e.g. lines, arcs, vertices) and applies a set of geometric constraints (e.g.
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parallelism, distance, length, perpendicularism) between the geometric
elements. Dependent and independent parameters are assigned and related
using engineering equations. A way to relate geometry to function parameters
is provided and an equation solver is often available. After completion of the
design changes to the dimensions or an equation parameter can be made and all
the constraints can still be solved to determine the values of all dimensions of
the model. Geometric relationships can only be solved sequentially and
equations that depend on the geometric constraints for their solution must be
avoided. What the parametric approach can not do is solve the engineering

equations and consider the geometric constraints at the same time.

The variational approach allows the engineer to experiment with a design that
1s under-dimensioned or not fully constrained or specified in any order. In
addition, the engineer can specify engineering equations that need to be solved

simultaneously with the geometric constraints.

PDI's represent explicitly defined intents that establish tight dependencies
between features and feature parameters and thus they are kept distinct from

other FbDI’s (see criteria in section 4.2).

This work does not contemplate the use of a geometric constraint-based CAD
system of any sort (parametric of variational) and therefore these types of
FbDI's are not further developed.

4.4.3 GEOMETRIC FBD!’'S AND APPLICATION-ORIENTED INTENTS

Although recognised as crucial (Salomons93, Gindy93, Snkantappa94),
relational FbDI’s have been limited to the separate considerations of parent-
child, patterns, compound (Faux86, Emmenk89, Gindy93) and assembly
relationships (Rimscha90, Nnaji93). Perhaps this is because designers normally
do not explicitly state constraints lhke perpendicularity, parallelism, etc.

(Suzuki90, Silva90), except when using geometric constraint-driven systems.
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A taxonomy of relational FbDI’s has been established by analysing the plethora
of designer’s intents found in the literature concerned with the feature-based

manufacturing and process planning of prismatic parts.

Relational FbDI's describe physical and/or spatial relationships between

features and are divided into two categories:

s application-dependent but mostly geometry-dependent, called Geometric
FbDI's (GDI’s).

e geometry-dependent but mostly application-oriented, called Application-
Oriented Intents (AOI’s).

4.4.3.1 GEOMETRIC FBDI's

Despite the fact that “it is almost impossible to pre-define all (geometric)
feature relationships” (Gindy93), the importance of GDI's has been recognised
by systems that incorporate this spatial information in various ways (Dixon87,
Suzuki90, Silva90, Nielsen91, Vancza93, Lenau93, Shah94b).

Figure 4-3 presents a taxonomy of GDI's. It is not intended to be complete but
highlights important categories and relationships that are found in previously

mentioned feature-based systems.

Geometric RDI's

(GDI's)
I
| I | ]
Positional Orientational Hierarchical Structural
— concentric — parallel \: nested@hot — paltern
— opposite — perpendicular nested @ side {L,C,P,8)
— planar — angulanty — symmetry
— co-planar — against {axial, radial, mitror)
— offset — co-linganty — co-radius
— coEAD

Figure 4-3: A Taxonomy of Geometric RDI’s.
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4 4.3.1.1 Positional GDI

Positional GDI’s are attributes that identify the relative positioning of features
that mainly affect feature machining precedence (Mill93, Shah95), process/tool
selection and assembly (if assigned between parts, Harun96). They include
(Silva90, Chovan91, Vancza93, Srikantappa94):

s opposite, if the feature’s axes are opposite and co-linear.
s concentricity (or co-axiality), if the feature’s axes are the same.

o planarity, if two features have any pair of virtual faces that are located

mside the borders of one planar face.

e co-planarity, if features have virtual faces located in the same plane (not

necessarily within the borders of the same face).

o gffset, if both virtual faces are located in paralle! planes and their normals

point in the same direction.

pocketl

e pocketl is co-planar to pocket2 .

o pocketl is planar to holel and hole2,
o holel and hole2 are offset to hole3 and hole4.
Figure 4-4: Examples of Positional GDI'’s.

Figure 4-4 shows a test part where features manifest various positional GDI's.

It should be noted that the pocket features share the same plane and thus are co-
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planar; pocketl, holel and hole2 share the same plane and the same face, and
are thus planar and; holel and hole2 share the same normal direction but are in

different planes as hole3 and hole4, and are thus gffset.

4.4.3.1.2 Orientational GDI

Orientational GDI's establish how feature axes or other geometric entities are
oriented with respect to each other (Silva90, Rossignac90, Sodhi91, Vancza93,
Shah94b, Srikantappa94). Any deviation from these orientational intents during
machining operations must conform to a two-bounded quantitative allowance

(Parametric FbDI) specified as a folerance (Suzuki90). They include:
» parallelism, when the feature axes are parallel.

e perpendicularism or orthogonality, when the axes are mutually inclined at

90-degrees.

o against (or aligned), if the features’ External Access Direction point in

opposite (or same) direction.

o co-linearity, if the feature axes are aligned (not necessarily at the same

position or in the same direction).

e angularity, when an important angle can be identified between the feature

axcs.

e coEAD, when features share the same tool “external access direction™

(EAD) usually verified via the orientation of virfual faces.

4.4.3.1.3 Hierarchical GDI

Hierarchical GDI’s have importance to systems implementation, graphical
editing, tooling and process planning. In addition, assembly feature
relationships are considered to be a structural hierarchy among different parts
of a product (Rimscha90, Ovtcharova92). Some hierarchical GDI's can be
defined by a nesting relationship (SilvaS0, Anderson90, Dohmen94):
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e Nested at the bottom (nested@bot) of a feature, when a virtfual face of a
feature is contained within a bottom face of another feature (see feature

face properties in section 8.4.2).

e Nested at the side (nested@side) of a feature, when a virtual face of a

feature is contained within a side face of another feature.

Figure 4-5: Example of Nested at the Bottom Hierarchical GDI.

Figure 4-5 presents two blind hole features nested at the bottom face of another
blind hole feature as an example of a nesting hierarchical GDI.

4.4.3.1.4 Structural GDI

Structural GDI’s recognise combinations of other GDI's such as a linear pattern
of features with axial parallelism between each other, and co-axiality of
surfaces that have axes perpendicular to a reference. Structural GDI's describe
general organisation, placement and orientation of the whole model or of some

group of features on the model (similar to skeletons, Lenau93).

The pattern structural GDI 1s one of the most popular FbDI’s (see Figure 4-6
for an example). Although it has been said that “if not specified in advance it
will be impossible to identify pattern features” (Pratt88) it is believed that with
the help of the user and guided reasoning some patfern structural GDI’s can be

recognised.

Structural GDI’s represent displacement patterns of features (Faux86,
Emmerik89, Ovtcharova92) that, for example, affect process planning

(Rossignac90, Vancza93) and include:
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e linear (L), when elements are regularly spaced along a line.

o circular (C), when elements are regularly spaced on a pitch circle diameter

(PCD).

e planar (P), when elements are displaced 1n a plane forming figures such as

| squares and triangles (Vancza93).

o spatial (S), when a three-dimensional figure, such as a cube, can be

identified as having features at its vertices.

Counter-Bore Hole

Pattern of Holes

Figure 4-6: Example of a Planar Pattern Structural GDI.

The symmetry structural GDI happens when the distance between a feature and
a reference is equal to the distance between another feature and the same
reference. Symmetry could be assigned to a group of features or to the whole
mode! and can influence the cost of assembly and machine setups (Jakiela89).

Types of symmetry include:

e Axial symmetry, when the reference is one of the Euclidean axes, X, Y or
Z.

® Radial symmetry, when the reference is, for example, the axis of another

feature (say a hole feature) (Vancza93).

¢ Mirror symmetry, when the reference is a plane (mirror).
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4.4.3.2 APPLICATION-ORIENTED FBDI's (AOI's)

GDI’s are geometrical facts and intentional relationships between entities in a
feature-based modelling system but they alone do not suffice for an application.
For instance, a hierarchical GDI is needed in order to define machining
precedence but other geometrical reasonings such as “supporting walls” and

“tool accessibility” must be considered as well.

GDI’s are defined 1n the detail geometric designer’s domain but there are also
“process planning engineer’s intents” (Vancza93) as well as “manufacturing
engineer’s intents”, and so on. The intents from all these other application
domains are called Application-Oriented RDI’'s (AOI’s). Many of these intents
are concerns to be fulfilled that guarantee the physical realisation of the design
constrained by pragmatic and technological requirements such as cost, quality,

, time, accessibility and feasibility.

AOQT’s exist to establish a more definite interpretation from the application’s
pomt-of-view. In contrast to GDI’s, these intents consider information beyond
geometrical relational facts. This extra information includes tool availablity,
process optimisation and precedence constraints. Thus different applications

could interpret the same factual GDI's differently.

4.4.3.2.1 Temporal ACI

Examples of AOI’s include temporal manufacturing relationships. Temporal
relationships for machining purposes are embedded in FBM (even if not based
on underlying CSG procedural models) due to accessibility of the feature’s
faces (Hummel89, Gupta93) and are categorised as coEAD orientational GDI’s.
When analysed aga@nst other requirements, such as tolerances and time
optimisations, temporal AOI can help constrain setup planning (Vancza93,

Mill93) suggesting operations to be performed at (see Figure 4-7):
o same setup, when features have the same EAD and same feature type;

e different setup, when the EAD’s do not match.
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oSlotl same_setup slot2.

oHolel different_setup hole2.

Figure 4-7: Example of Temporal AOI’s.

4.4.3.2.2 Precedence AOI
A parent-child AOI happens when a nested at the bottom hierarchical GDI 1s
interpreted as a precedence intent for process planning purposes after an

analysis that eliminates other precedence alternatives.

However, other uses of the parent-child intent can be found in the literature

such as when they are used to model how features are positioned with respect
to each other (Laakko93).

Another example of the parent-child AOI interpretation occurs when
manipulation constraint reasonings are propagated from a parent feature
towards child features (Faux86, Shah90, Gindy93, Sheu93). In this context they
can be seen as a simplified form of nesting, explicitly included by the designer

for vartous reasons.

A final and definite AOI would establish which feature should precede the

machining of another feature.
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4.4.3.2.3 Compound ACI
Another example of an AOI happens when complexly shaped features (and
tools) subsume the behaviour of two or more intents and this has been called a

compound feature (Pratt88, Gao93, Case93c). For example:

o A counter-bore or counter-sink hole feature, when two nested at the bottom

hierarchical GDI and concentric positional GDI hole features exist;

o Unresolved Cross-features (X-feat) such as stepped-hole of slotted-pocket
(Bidarra93, Shah95);

o Cut-out arrangement (Mill93), also called keyway (Pratt85) or keyseat
(ElMaraghy93b) which is a “small” recess (another feature) in the periphery
of a “larger” feature (Figure 4-8).

Figure 4-8: A Cut-Out Interaction Case.

Similarly, T-slots and Entered-features (E-feat} can be defined.
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4.4.3.2.4 Proximity AOI
A proximity AOI is usually an intent to be avoided or kept inactive. It is
represented by a thin-wall (TW) relationship and depends on the material,

features and processes involved.

A wall is the unmachined material left between two features. A thin-wall can
produce a deformation on the component during the machining procedure and
therefore should be avoided. Figure 4-9 shows a part containing a thin-wall

between a filleted step and a slot-through feature,

Figure 4-9: A Part Containing a Thin-Wall.

4.5 A FBDI TAXONOMY

Figure 4-10 presents the complete taxonomy of feature-based designer’s
intents, The leaves of the classification tree are the identified FbDI
relationships. It should be noted that because no geometric constraint-driven
system has been used, the PDI node has not been further specified (refer to
Dohmen96 for a classification of PDI’s).
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Feature-based Designer's Intents

(FbOI's)
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(MFI's) (TDI's} (RDI's)
[ I ]
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Figure 4-10: A Feature-based Designer’s Intent Taxonomy.
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4.6 “INTENTURIZATION” VALIDATION

To comply with the elicitation process the following are some designer’s
intents validation criteria. They help to identify a minimum set of FbDI's most
suitable for an application. Because this has been called featurization

validation for features, it will be called intenturization validation for FbDI’s:

. Selectable FbDI's can be conflicting, and hence care should be taken to
select only non-conflicting FoDI's for a specific design application. In
this way, reasonings will not interfere destructively with each other and

loops will be avoided.

For instance, parallel and perpendicular GDY’s can both be used in the
same design or application but they are conflicting 1f used to relate the
same pair of features. Although obvious to humans, the computer
model could result in a Ioop if both intents are assigned to the same

pair.

. Because there are partially redundant intents, such as those used to
define abstract hierarchical FbDI's, atomic intents that have non-
overlapping concepts/definition should be preferred. Thereafter, tricky

situations with redundant FoDI’s can also be avoided.

For instance, a parent-child AOI could be defined using a nested@bot
GDI which makes it partially redundant in some implementations.
However, these FbDI's could also have completely dissociated

definitions. These definitions need to be clear to the user.

As the intents were mainly gathered from CAD/CAM and CAPP FBM
systems, they are consequently all valid candidates for these applications. The
intent validation process is relegated to minor 1mportance because no other
domain was considered and because no specific application was considered.

Therefore, this step of the elicitation process was not fully applied.
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4.7 SUMMARY

A better understanding and categorisation of Feature-based Designer’s Intent
(FbDT’s) meaning within a feature-based CAD system is a necessary step to
foresee how feature reasoning could be embedded into future Intelligent CAD
systems. Nonetheless, the feature reasoning process at this level is a complex

and difficult matter.

The main objective of this chapter was to distinguish and separate the _
geometrical, factual and intentional feature-based data from its use and
interpretation by an application. In doing so, the complex intent-driven
engineering reasoning is reduced to a more atomic level. In addition, because
FbDI’s are then considered as separate entities, it is easier for an application to
store, manipulate and reuse this information. It can also be explicitly and
consciously assigned to the design (through a direct instantiation or confirmed

automatic recognition).

The taxonomy helps developers to devise feature-based modelling systems that
are aware of how FbDI's are captured and represented through the feature
concept. It is sufficiently extensive to offer an insight to help obtain a minimal
set of designer’s intents for a specific implementation via a proper

“intenturization” validation.

As features are high-level abstract geometrical entities, they imply multi-level
representation and reasoning that should be emphasised for efficiency and
expressiveness (Marefat93b). FbDI's presented here help to maintain an
abstract and intermediate-level (not as high as the functional conceptual design
level and not as low as the geometric detailing design level) vocabulary that
feature-based modelling requires and concur to achieve one of the objectives

of this research.
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1 5. FEATURE-BASED INTERACTION

Feature interactions are innate to feature-based modelling and
pose a difficulty in representation and manipulation for
geometric design. This chapter presents a formal and
structured geometric spatial feature interaction identification
method alongside a broad multi-level classification. Initially,
various feature interaction definitions and classifications are
surveyed. It was observed that various partial proposals for a
P feature interaction classification have been made, especially by
research involved with the feature recognition approach, but
without a general framework. The classification herein
encompasses existing feature interaction cases found in the
literature and defines a singular framework that leads to a

general classification structure.

5.1 THE NEED FOR A BROAD COVERAGE

The use of meaningful entities at an intermediate-level of description such as
features and Feature-based Designer’s Intents (FbDI’s) suggests the need for
intermediate-level ways to establish the interactions within the Feature-based
Modelling (FBM) context (not as low as geometrical interactions, such as
intersection between a plane face and another, and not as high as abstract
interactions such as a keywaj; preventing a cylmdrical inlet from rotating).

Feature interactions occur when features cannot be considered in isolation
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within the model because some meaningful and significant influence 1s exerted

among them (e.g. for manufacturing engineering purposes).

A lack of attention to formalising the concept and classification of feature
interaction can be seen in currently available design-by-features (DbF) systems
even though this 1s a well-known, important and active issue of research.
Interactions between features are at the heart of any FBM environment because
“they are directly and inevitably produced while manipulating the model”
(Bidarra93). Besides, intended interferences are common practice in
engineering and can be found for example in tolerances, assembly

relationships or when assigning distribution patterns of features (Zhang93).

Feature interactions have been studied (Vancza93) with particular interest in
their effects on the planning capabilities of a CAPP FBM system. A test part
containing various identified feature interaction cases has even been suggested
as a resource to analyse how a CAPP FBM system would cope with them
because, “feature interactions are the cause of some of the most serious
problems in the development of generative computer-aided process planning

systems” (Mill93, see also section 9.11).

Feature interaction is a major obstacle for DbF systems and some systems
simply disallow any combination that potentially creates a physically
unrealisable feature. If combinations are allowed then appropriate feature-

recognition (FeR) functions are required (Lim95).

Feature interactions are important for determining process sequences and
sometimes the processes themselves (Anderson90, Vancza93, Tseng94,
Regli96) and it has been claimed that the study of feature interactions is

especially useful for feature validation (Allada95).

Therefore, feature interaction urgently needs to be further investigated,
precisely defined and established with a comprehensive coverage. This chapter
presents a formal and comprehensive feature interaction identification and
classification methodology. It aims to apply an entity elicitation process and

thus obtain a classification and taxonomy of feature interactions.
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A common-sense feature interaction definition is established and a
differentiation between this term and related ones found in the literature within
the prismatic DbF systems context 1s presented. Also, the classification and
taxonomy presented here will help differentiate feature interaction cases from
their corresponding interpretation and use by an application, which has created
some confusion with the FbDI concept. Feature interaction classifications are
surveyed and placed into a simple and unified framework that is independent
and unbiased in its interpretation and application. The classification
framework is also an identification methodology based on Boolean operators.
It is then shown that this framework can be consistently applied at various
levels of the feature-based representation to produce a hierarchical

classification for all feature interaction cases.

5.2 TERMINOLOGY

Allada and Amand (1995) distinguished between feature (spatial) relations
and interactions. The former were argued to be non-overlapping situations
while the later alter the feature’s internal (volumetric and surface) geometric
representation. However, more often both relation and interaction
classifications present touching and/or adjacency and are based on geometric
reasoning. This indicates that these two classifications could be based on the

same reasoning and within a unified framework.

For the purpose of this research, feature interaction is defined as a mutual
action or influence that exists between features (Collins87). This definition
stresses that an interaction occurs when features cannot be considered isolated
within the model and thus, could occur between volumetric overlapping
features as well as between non-overlapping and even non-contacting features.
Both interaction cases have importance for engineering the component. For
instance, features that are volumetrically separate may influence each other
due to a proximity AOL On the other hand, if two feature volumes intersect

their morphological functional FoDI’s could have been compromised.
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Nevertheless, some confusion exists because the term interference is also used
in the literature to mean interaction, although 1t is frequently associated merely
with the volumetric overlapping cases of feature interaction. Inferference has
sometimes been used to refer to interactions as a whole because it represents
one example of a very important feature interaction case with direct impact on
manufacturing decisions. Some authors, for example, would claim that
interaction implies intersection between the entities of a feature (Shah90,
S1lva90, Bidarra93, Tseng94, Martino94a, Gadh95b, Suh95b).

It is understood here that, in fact, interferences are special cases of feature
interactions where destructive influences occur and possibly lead to a
redundancy or loss of the initial properties of a feature or its associated

volumetric intentions.

The terms interrelation and relationship have also been used in the literature
to actually mean what is here considered to be special cases of feature
interaction. Therefore, some confusion can arise between FbDI relationships

and feature interaction relationships which the following sections help clarify.

The common-sense definition of the feature interaction term adopted in this
research, and defined above, encompasses all special cases above and this
definition should be regarded as such hereafter. Geometric spatial feature
interaction is based on geometric reasoning for determination and uses

volumes, surfaces, dimensions and parameters.

5.3 RELATED WORK ON FEATURE INTERACTION

Feature interaction is an active and important issue but has principally been
explored by researchers who are involved with FeR systems. It is considered as
a challenge as 1t has been claimed that the number of features may be finite but
features resulting from thewr interactions are infinite (Kumara94, Tseng94,
Allada95, Gadh95b). A consequence is that no general approach to recognise
all interactions is yet known (Tseng94, Allada95).
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It could be useful to both DbF and FeR systems to 1dentify interaction cases
before executing them to produce a set of new features. In this way, extra
information is captured that might be significant for subsequent operations and

reasoning.

5.3.1 TYPES OF FEATURE INTERACTIONS

Feature interactions in the literature contemplate many different aspects such

as;

Feature-to-stock interactions, which happen when the effects of adding a

feature onto an existing part’s body are analysed (Zhang93, Perng97b).

e Feature-to-manufacturing constraint interactions, which happen when
features are analysed against their manufacturing constraints such as those
interactions between form features and fixtures, datums, (one or multiple)

setups or tolerances (Hayes89, Young93).

o Feature-to-feature interactions among features from different
representation spaces, which happen when the interaction is analysed
depending on the meaning and effects of a feature perceived from different
modelling viewpoints. For instance, interaction analysis between form
features and machining features, or functional features and mouldability
features (Lee94). These interactions support the analysis and trade-off
negotiation process between different feature-based perspectives of the

model,

e Life-cycle interactions, which happen 1n a multi-purpose FBM system
between features in different application areas of the product’s life-cycle
(Regli96). This includes relationships between features at the plan-level
(mostly within individual components) such as precedence, accessibility
and tolerance constraints; at the production-level (on multiple-components
or across multiple manufacturing processes) such as scheduling

constraints; and throughout the product’s life-cycle such as when
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manufacturing constraints influence features that impact the part’s

maintainability and disposal.

Explicit or implicit feature-to-feature interactions within the same
representation space. Explicit interactions are established categorically by
the designer (e.g. geometric tolerances) while implicit interactions are
calculated by the system (e.g. “obstruction” and “proximity”, Mill93).
Implicit interactions are conmsidered difficult as they lack a universal

definition.

Spatial feature-to-feature interactions on one component within the same
representation space. These identify how features are spatially related to
other surrounding features in the same part (partially considered by
Regli96). Many other authors have proposed sub-sets of feature interaction
for this domain, but with emphasis on the impact on manufacturing

applications (Pratt88, Gomes91, Su%4).

Spatial feature-to-feature interactions of features among various
components, which specify mating conditions for assembly purposes (also

called assembly features).

5.3.2 SOME FEATURE INTERACTION CLASSIFICATIONS

Some feature interaction classification proposals are briefly presented followed

by a discussion of their drawbacks. It should be noted that the use of different

terms for feature interaction are shown underlined

As features have a volumetric intention (see section 3.5.2), feature volumes

(FV’s) have been used as the means by which feature interactions are

determined. For nstance, Su and colleagues (Su94) have attempted to solve

feature interaction problems which were classified into two types of

volumetric interference:

overlap which happens when there 1s a non-null volume intersection;
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e combination (also called compound features by Pratt88), which happens

when features can be decomposed into a collection of simple features.

Alternatively, a feature interaction classification based exclusively on a
feature’s nature (1ts additive or subtractive character) has been proposed and
used as an important element of a solid modelling scheme for representing
features (Gomes91, Kraker95) and was considered the most promising,
powerful and yet simple basis for a sound definition of feature interactions
(Bidarra96).

Regli and Pratt (1996) divided spatial feature interactions into interference,
adjacency and remote interactions. However, no formal identification
procedure was given, a mixture of geometrical elements was found and the
examples did not help understanding: interference interactions were defined as
having “some volume shared by the two features”, but “gripping features”

sharing “some common area” were given as an example.

Pure boundary implementations of features have also been used as the
foundation for feature interaction classifications. For instance, a fast
interaction identification and classification method based on polyhedral
features was devised by Talwar and Manoochehri (1994), but was dependent
on the internal B-rep scheme and had separate approaches for concave and

convex features.

Some interaction classifications exclusively use feature faces (also called “sub-
features” or “primutive features”, Anderson90) as an internal representation
technique (Silva90, Srikantappa94) as well as an aid for feature recognition
(Tseng94, Kumara94, Shah94b) and editing (Kim93, Suh95b). Some
interactions are between faces of different features and others between faces

within the same feature.

Anderson and Chang (1990) considered that there are two critical feature
(spatial) relationship types for CAPP applications:
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e Nesting, classified as at the bottom and at the side (Figure 5-1), which happens
when a contact-type relationship between two features exists and one feature
opens nto another. Nesting is a special case of a touching spatial feature
interaction relationship when one feature’s face is real and the other feature’s

‘ face is virtual so that the former is contained within the latter.

o Intersection, which was classified as between features of “the same type” and

of “different types” because of manufacturing importance (Figure 5-3).

Nesting is concerned with situations of the touching of features’ faces while
intersection 1s concerned with the type of the features involved (and implicitly
with their volumetric intentions). This mixture of geometric elements of
different types and dimensionality (features and faces) within the same
classification framework emphasises that many applications require the
classification to contemplate different levels of interactions. Only binary
geometric relationships were considered and non-contacting interactions were

ignored.

//I — |

Figure 5-1: Anderson’s nesting at the bottom Interaction Case.

It can be inferred that nesting interactions are, in fact, a process planning
interpretation of a more geometrically-driven relationship (touching) helped by
extra information (face property) and reasoning. Thus, there is an associated

confusion between the interaction case and its use.

Figure 5-1 shows a feature-based part where a hole feature is nested at the

bottom of a slot feature which is also nested at the bottom of a step feature.

Zhang and ElMaraghy (1993) classified interferences into two categories:
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o (Collision, when a machining feature volume intersects the part generating

non-functional features, unwanted geometry or non-standard topology
(Figure 5-3).

e (Cover, where even though there is no common volume between the part
and the feature, an interference may occur (such as when a protrusion
covers a depression feature partly or completely) thus generating

inaccessible covered features (Figure 5-5).

Zhang also used a complementary sct of criteria at the face level for checking
the validity of an operation and also claimed that an interference could be valid

in one application but invalid in others.

Similarly, Shah’s (1990) classification is based on the effects that the feature

interaction phenomena could have on the model:

+ afeature could be made non-functional.

o feature (standard generic shapes) could generate non-generic shapes.
e 3 feature could have its parameters rendered obsolete (see Figure 5-8).
* non-standard topologies could arise (see Figure 5-3).

¢ afeature could be deleted by another (Figure 5-6).

Bidarra and colleagues (Bidarra93, Bidarra94, Bidarra96) have presented a
taxonomy for the feature interaction phenomenon, The classification is based
on the functional (topological and geometrical) and technological meaning of

the interaction:

e Topological. The designer’s intent is preserved and an individual feature’s
parameters maintained, despite the feature volumes overlapping. Later
work subdivided this into splitting (Figure 5-3) and disconnection
interactions (Figure 5-2).

PAGE 115



| CHAPTER 5- FEATURE-BASED INTERACTIONS

& 7

Figure 5-2: Bidarra’s Disconnection Interaction.

/vy
vy
}4_] m_SIot_z

Through_Slot_1 —

Figure 5-3: Crossing VI Case (Zhang’s Collision, Bidarra’s Splitting

Interaction, Anderson’s “same type’’ Intersection).

e (Clearance. When a total or partial obstruction of a feature of negative

nature occurs (Figure 5-4).

Figure 5-4: Bidarra’s Volumetrical Clearance Interaction.

e Closure. This occurs when access to a feature is closed (Figure 5-5), and
can be considered to be an extreme case of the clearance interaction in that

1t causes total inaccessibility of a feature with negative nature.
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iy =,

Figure 5-5: Adjoint VI and Inside FI Cases (Zhang’s Cover, Bidarra’s

Closure, Anderson’s “at the bottom” Nesting Interaction).

» Absorption. The feature’s behaviour is absorbed by another feature (see

Figure 5-6).

74

Figure 5-6: Bidarra’s Absorption Interaction.

e Transmutation. The intended semantic behaviour of a feature is destroyed
by feature manipulation. For example the insertion of a slot may cause
encroachment on an adjacent slot and give it the behaviour of a through

slot (Figure 5-7).

| — [

Figure 5-7: Bidarra’s Transmutation Interaction Case,
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! o Geometric. The feature’s geometry is affected without affecting its
semantic behaviour (basically parameter-driven manipulations, Figure 5-
8). Manipulating one feature’s parameters could change another feature’s

parameters but not its functionality.

Through-Slot Through-Slot

Through-Slot
/— Through-Slot

i [

7

Figure 5-8: Bidarra’s Geometric Interaction Case.

e General. These are interaction cases that do not fit any of the previous

cases.

Feature interaction cases and moreover, their associated pfoperties have been
used to determine how features can be effectively updated (Perng97b) in a
DSG implementation (with its respective B-rep evaluation). Feature
interaction cases such as enclosure or intersection (that happen when part or
all of a feature volume is removed from the component) were identified.
Interaction properties were defined by considering possible interaction
scenarios with a third existing feature on the model. Therefore, the editing of a
feature would require a possible updating procedure ranging from straight-
forward addition or deletion of the feature from the representation tree up to a
complete recalculation or re-revaluation of both the B-rep and the DSG
depending on these properties.
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5.3.3 A DiSCUSSION ON EXISTING CLASSIFICATIONS

The existing feature interaction classifications, although possibly very efficient
in some cases, do not comply with any comprehensive classification scheme,
are oriented towards specific applications and are thus, biased and constramned
by their domain. Furthermore, “neighbouring” or “adjacency” of features has
been considered (Pratt88, Shah90, Lee94) to be of crucial importance for
applications (such as computing tool approach directions) but neglected in
most classifications because they are not considered to be interferences
(Allada95).

Many classifications mix different types of geometrical data during analysis
(Anderson90, Zhang93, Talwar94) producing a resulting confusion. For
instance, Talwar and Manoocheehn’s classification considered that a feature
contained by another is in a different class from intersecting features, but this
contradicts the common-sense understanding of the volumetric intersection
operation. This mixture problem suggests the need for a classification
framework that could be applied to various levels of geometric information,

but in a structured and consistent manner.

Functional technological classifications are prone to have new meanings and
types of feature interactions being added (as happened for Bidarra94 and
Bidarra%6) because this type of classification is dependent on the application’s
“understanding” and coverage of the interaction case. Therefore, separating the
means of defining the case from i1ts meaning and use would be more

appropriate and therefore more application-independent.

It can be inferred that spatial feature interactions seem to drive other types of
interactions presented in section 5.3.1, and thus should be as accurate,
extensive and detailed as possible in order to be used by a great variety of
applications. This detailed interaction classification should include various

levels such as the volumetric and boundary ones.
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The aspects presented above suggest that there is a need to keep interaction
identification (calculation and classification) and its semantics (use, reaction or

reasoning) as separate processes because of:

s the distinction between spatial feature interactions and other types of

interactions or relations (Allada95, Regli96);

e the ever growing or functional/technological interpretation (Shah90,

Bidarra94, Bidarra96) of the interaction phenomena;

o the widespread use of feature interaction cases to identify application-

dependent uses and (Anderson90);

e the fact that different applications could have different interpretations,

valid or invalid, for the same feature interaction (Shah90, Zhang93).

The binding of the interaction case to a specific semantic should be a
subsequent reasoning dependent on the application so that information
concerning the designer, the product, standards with which to comply,

manufacturing processes, etc. can be then considered.

From the discussion above, it can be seen that feature interaction classification
should:

o consider a broad spectrum, including adjacency and remote cases.
e avoid the mixing of geometric entities but consider all different levels.
¢ have a unified framework able to be applied to all levels and,

e be independent of the GSM and indifferent to concave and convex

features.

This chapter presents a classification framework to identify spatial feature
interactions in one component within the same feature representation space

and aims to fulfil the above criteria.
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The variety of classifications and interpretations presented above not only
shows how non-standardised this topic is, but also shows how important and
how widespread the application of feature interaction identification and

classification is.

5.4 THE CLASSIFICATION FRAMEWORK

The idea is to have a basic classification framework between any two entities
(Figure 5-9) and reproduce it at different levels using the same principle and
identification procedures. Simple Boolean expressions are used to identify

each category.

The entities used in the framework are presented first, details on how the
identification procedure works, and the semantics, categories and levels follow
and the overall classification structure is presented at the end of the chapter
(Figure 5-13).

(A, B)
Entities

Disconnected Connected

f__l_—ll_l—_l

Adjoint Disjoint Conjoint Subjont

Figure 5-9: The Basic Interaction Classification Framework.

5.4.1 ENTITIES AND LEVELS

The analysis considers a pair of elements at a time, called the joint A and B,
from a specific entity set (Z) with a relative level (I). This is denoted by (A, B)
ex!
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The classification is made according to the results of operations on the joint.
Table 1 exemplifies entity sets at various levels with their relative level. It also

exemplifies possible sources of respective entities.

The classification scheme is applied to three levels of interaction: volumetric
(VI), boundary (BI) and facial (FI). Similarly to FAV, mentioned earlier, FAB
is defined as the Feature’s Associated Boundary (closed set of boundaries) and
FAS as the Feature’s Associated Surfaces (individual faces of the FAB). It has
already been shown that many applications need to be able to identify the
interaction between features and their components at all of these levels. The

framework, however, is consistent and comprehensive for all levels.

Relative level (1) is a term used here only to clarify and to distingnish between
entities with respect to their relative complexity and comparative dimensional

representation but no mathematical meaning or relationship is used or implied.

: Elitity Set:d Entlty Type L Relatlve Leveld  Possible Source
y ;E 2. i FAV . [ . 1=5__ 1 CSG representation
Cae b R | Boundary
i““ <& ’if"“ P 4 ﬁ% evaluation of CSG
o Ty ‘*”’Ej FAS © & ff*“z I'=3s5 2 ° Surfaces of
Ll s e T T a B-rep.
é g Edges S g Degenerate
b CHE R £ g -y Result
Y e y% - Vertices g e 1= IW 44 . Degenerate
g i f? . Result
530 e NULL | T=07 4 Absence of Result

Table 1: Entity Sets and Examples of Members.

5.4.2 QUERIES TO THE UNDERLYING GSM

Two Boolean operators are used to make enquiries to the geometric solid
modeller (GSM): Non-regularised Boolean intersection (represented as M) and
regularised Boolean intersection (represented as M*). Boolean intersection
operations are commonly available in GSM CAD systems and can be applied
to volumes, closed boundaries or even faces. These operators are used to

obtain C and D which are the respective results of the intersection operations
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on A and B for a particular I'. Thus, the operations performed by the GSM

and the results used to classify and sub-classify interactions are:
e C=An*B,(A,B)eX
» D=ANB,(A,B)c X
Other queries are the sef membership tests such as:
e “which feature does the face F belong to?”,
e “is the entity X of the same type as entity Y 77,
e “what is the entity W? (a volume, face, edge or, a vertex)”.

This information can be obtained directly from the FBM database because it is
usually kept as reverse reference pointers from the FBM to entities in the GSM

data-structure.
5.4.3 THE IDENTIFICATION PROCESS

5.4.3.1 CONNECTED OR DISCONNECTED ?

According to the result C, interacting entities can be classified into two types:

connected and disconnected.

Connected interacting cases occur when C is not NULL. The word
“connected” is chosen to emphasise that the connection between entities will
only occur if an entity of the same relative level as the inputs is used to
establish the connection (and the same can be said of the regularised Boolean

intersection).

Disconnected entities occur when C is NULL, which means that there is no

relationship entity of the same relative level as a connection between A and B.
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Connected and disconnected are sub-classified by analysing the geometric

result D, as described in the following sections.

5.4.3.2 SuB-CLASSIFICATION OF CONNECTED ENTITIES

Connected entities are sub-classified into conjoint (coincident) and subjoint

(overlapping) interactions.

Conjoint connected cases are those where one entity is completely
superimposed or inserted mto another because the output of the Boolean
operation is one of the original entities (C = A or C = B), Conjoint interaction
occurs because the output coincides with one or both inputs. Conjoint cases
can be further divided into:

s Cases where the inputs A and B exactly match each other (C=A and C =

B, which means that A and B are the same).

e Where one entity is completely inside the other (C=A or C =B but, A #

B or simply, if they are conjoint connected but do not match).

Subjoint connected cases (the prefix “sub” when added to nouns refers to an
entity, C, that is part of a larger one, A or B, and, in this case, of the same
relative level), also called overlapping, occur when complex non-standard
topologies arise. Such interaction could not affect the entity meaning itself but

could have a severe impact on downstream applications.

For instance, if subjoint connected features (Figure 5-3) are not identified and
represented properly they will result in redundant machining operations if they

have the same nature. Subjoint connected cases can be sub-classified into:

o Enter, when one entity’s end is completely inserted into another entity and
a projection of that feature face is inserted on the face it is being projected
onto (see Figure 5-10). An entity’s end is of lower relative level than the
e{ltity itself. For instance, a feature’s end (1=5) is a face (1=3), in a similar

way that an edge’s end (1=2) is a vertex (I=1).
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e Cross, when neither end of an entity 1s inside the other (at the same
relative level) and the ends have projections on different sides of the other

feature and is inserted on the face 1t is being projected onto.

oy

P

Figure 5-10: Feature’s End Face and its Projection.

Figure 5-10 shows two features, a step and a through slot, combined together
in a way to result in the step crossing the through slot, regardless of which
feature is added first. The shaded faces are the projection of the end faces of

the step onto faces of the through siot.

e Arange of other cases that can be identified for pragmatic purposes but are

left here as a general sub-class for simplicity.

5.4.3.3 SuUB-CLASSIFICATION OF DISCONNECTED ENTITIES

Disconnected interacting cases (partially considered by Shah90) occur when
C, the regularised Boolean intersection result, is NULL. Additionally, D
happens to be an entity of an inferior relative level. Two situations can occur:

adjoint (adjacent) and disjoint (separate) disconnected interaction.

Disjoint disconnected interaction (the prefix *“dis” usuvally describes the
opposite state of something, in this case, the joinf) occurs when there is no
intersection whatsoever, C and D are NULL, and features are considered

separate. Disjoint cases are be sub-classified as:

¢ Far when the entities are “really” distant from each other (the distance

between them is greater than a specified value).
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e Near when the entities, although not touching, are close to each other and

have no other entity in-between.

Conversely, adjoint (this word means next to each other, adjacent, touching)
disconnected cases happen when D is not NULL and the input entities “share
a topological entity” (Shah90, Pratt88) of lower relative level, the result D (see
Figure 5-11).

D>

(a) (b)

Figure 5-11: Adjoint FI Causing Features to Share a Face or an Edge.

5.4.4 THE BAsIC FRAMEWORK

The framework that uses the entities and procedures presented above 1s shown
1n detail in Figure 5-12 and needs to be applied to the three different levels of

interest to obtain the complete classification (see section 5.1).

The Boolean operations and set membership tests mentioned in section 5.4.2
are reproduced in Figure 5-12 for clarity purposes. Each arc represents a test
and each box represents either an operation or a status of the interaction. A and
B are the joint entities, C and D the results of the operations, m is the relative
level of D and n is the relative level of the inputs. The bottom part of Figure 5-
12 indicates how this classification framework is related to the levels of

interest and presents the few exceptions or special meanings (in brackets).
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(A,B)e X"
C=Ar*B
D=AnNB
C=NULL Cex®
DeX™ m<n
Entities Entities

_ C=AorB C=PartofAorB
0<m</\m_0 /\ut,notAnorB

Fdjoint (adjacent)] Disjoint [Conjoint (coincnde)] Subjoint

If VI see FI (separate) If VI see BI {overlap)
3 iys. Adjoint Disjoint Conjoint Subjoint
Interaction | (Adjacent) | (Separate) | (Coincide) | (Overlap)
cases Result Result Result Result
Volumetric = - Near = - Enter
Interaction FI - Far BI - Cross
(VL1=5) cases cases - General
Boundary = - Near
Interaction FI -Far - Match N/A.
(BLL1=4) cases (Contain)
Facial - Match - Enter
Interaction (Limt) - Far - Inside - Cross
(FLL1=3) - General

Figure 5-12: The Basic Framework for Classifying Feature Interactions.

The sub-cases that occur at each leaf of the classification tree are also shown
in the table at the bottom of Figure 5-12. Some of these are links or pointers to
a lower level of the interaction classification. These are identified in the table
by the symbol “=* pointing to the lower interaction level. The arrows/links
indicate that the classification can go deeper (if required) in order to

Disconnected Connected i
|

distinguish between cases that otherwise would be treated equally. !
I

I

|
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5.4.5 THE COMPLETE CLASSIFICATION TREE

To apply the framework to the classification of volumetric interactions (VI),
the inputs are FV’s and the output for a connected VI feature interaction

should be a valid GSM volume (solid).

Another way of presenting Figure 5-12 is shown in Figure 5-13 where the

following situations should be noted:

e if conjoint connected cases occur at the VI level then the same structure
can be applied to obtain further details but at the boundary level (BI)
which, in its turn, will lead to a FI analysis if an adjoint BI interaction case

OCCUIS.

o if adjoint disconnected VI features occur then various interaction cases
could be identified with the same organisational structure as the VI cases,
but at the face level (FI) and these are further detailed in Figure 5-13.
Therefore, adjoint VI or BI cases are linked to many FI interaction

relationships as required for each face of the feature’s realisation.

o the framework in Figure 5-12 is repeated four tumes at three different
levels throughout the taxonomy of interaction cases presented in Figure 5-
13.

5.4.6 SPECIAL MEANINGS AND A FEW EXCEPTIONS

A few special meanings and exceptions have been found when applying the

framework to the three levels (these are shown in Figure 5-12 as bracketed

words and as boxes of discontinuous lines in Figure 5-13):

An adjoint FI case is called a limit because it means that one feature is actually

being limited by another.

Disjoint BI cases are called contained because they identify that one FV 1s

totally inserted into another’s FV and they do not touch from the inside.
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(A, B) E FAV
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Figure 5-13: A Taxonomy of Feature Interaction Cases.
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The interactions presented are not always commutative and thus the interaction
relationships have an active or passive response according to which input entity
(A or B) is the reference. Hence, active or passive interactions include crossing
or crossed, inside or outside and limiting or limited. The exceptions to the

active and passive response are the commutative interactions: match, near and

far.

BI cases are considered only for conjoint VI cases and this fact affects the

meaning of BI sub-cases:

¢ Disjoint BI cases mean that a feature that is inserted into another’s FV does
not have external access through the former. It must have an interaction
with another feature in order to guarantee that it has “accessibility” to be

machined (for example).

s FAB’s are considered to be closed set of faces, so no two conjoint VI
features would have a subjoint BI case (the intersection operation would
return an open boundary) thus, it is marked in the table of Figure 5-12 as
Non-Applicable (N/A).

Disjoint FI cases in fact do not happen at all (if derived from BI cases) or as far
as this research is concerned do not have useful meaning (if derived from an

adjoint VI case).
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5.5 SUMMARY

A new feature interaction classification framework has been presented that
allows a comprehensive and unified feature interaction taxonomy structure to

be conceived.

The classification framework has many advantages such as accuracy (even
using Bounding Box data), power (identifies complex cases), elegance (easy to
understand), consistency (has a formally defined structure that repeats itself),
multi-level (works at volumetric, boundary and face levels) and simplicity
(uses simple GSM-based operators and tésts). It requires almost no knowledge
of the intricacies of GSM representation schemes, although some efficiency is

lost because of this.

The classification and identification methodology presented here led to a
taxonomy of Feature Interaction cases. It should be stressed that feature
interactions have an interpretation in terms of FbDI's that are therefore
application-specific but they were presented here separately. Thus, the
validation reasoning mechanism will also be responsible for promoting the

binding of these two elements.
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Freedom of manipulation is an intrinsic advantage of using a
conventional CAD system and it is taken for granted. For
Feature-based CAD systems however, even the most basic
manipulation, such as “adding” a feature to a model, is
capable of disrupting the validity of a representation. Invalid
representations could compromise the usefulness of any
analysis subsequently carried out on the model. Thus
identifying means to operate feature-based models and the
effects that operations have on the validity of the model is a

necessity for Feature-based CAD systems.

6.1 OPERATIONS AND VALIDATION

The importance of feature operations as a research issue is that it is closely
related to feature validation. In applying feature operators the most challenging
task is to handle the interactions between features (Kim96) a£1d the consequent
validity of the model.

The importance of feature operations to feature model validation have been
stressed by the suggestion of using only “appropriate” valid operations which
are responsible for guaranteeing valid output models (Pratt85, Case93c,

Zhang93, Kim96). In addition, to creation and deletion, other operations such

as interrogation have also been identified as important (Pratt88).
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a) The semantics of editing a procedural constraint-driven feature-based
model have been studied (Chen95) and editing operations have been

classified as:
s inserting or deleting an entire feature;
e changing feature attributes, e.g. from a blind hole to a through hole;
¢ modifying dimension values and/or placements;
e changing the dimensioning schema;

o changing the feature shape defimtion, e.g. changing the cross-

section

The first four editing operations were analysed by extracting common
procedural steps from which these operations can be composed. This
analysis has shown that editing operations of type (1) are different from
editing operations of types (2), (3) and (4) (Chen95).

A distinction was made between generated, modifying and datum features,
Generated features include extruded or revolved (form) features.
Modifying features add chamfers and rounds to edges, or draft angles to a

set of faces. Datum features include datum points, axes and planes.

The reported editing problems occur because the procedural evaluation of
the model could have, at some stage, a missing reference for its evaluation
(a modifying feature can lose the reference to an edge, depending on
editing operations on the model). Therefore, an appropriate way of
“naming” references was proposed to solve the problem and produce a
more predictable behaviour for an edited model. These editing problems
seem to originate from the apparent mixture of entities from different
levels, i.e. modifying features are, in fact, localised operations on low-level

entities such as edges, not on high-level entities such as features.
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b)

)

Su and associates (Su94, Mayer94) presented a procedure to deal with
(validate) feature interaction problems. Operations contemplated by the
interaction resolution method include: undo, decompose, reclassify,
parameter medification operation, resolution (remove redundant features)

and modelling operations (union and difference).

ECTOF (Extended CSG Tree of Features, see section 2.7) is the result of
the proposed feature recognition process (FeR) where the designer uses
union and difference Boolean operations to insert features or modify the
parameters of existing features on the part which is subsequently

“featurised”.

Some phases of this resolution method were executed as background tasks
(phases 1 and 3) and others were to be called by the user (phase 2). The
operations used on the interaction resolution seem to be unavailable as
normal modelling operations and this suggests a distinction between

modelling (foreground) and revalidation (background) operations.

Rossignac (1990) studied editing operations of feature-based solid models
in terms of the efficiency and representational aspects. The effects of low-
level manipulations (such as face extrusion) on the syntactic validation of
the model were analysed. It was shown that no automated solution exists
and that human intervention 1s necessary to correct the side effects of these

editing operations.

To assist the analysis, a rich mixed dimensional vocabulary was defined. It
was considered a requirement that “this vocabulary must be ‘convenient’
so that validity rules can correspond to high-level operations and so that
validity rules are simple to formulate and powerful enough to trap common

design errors”.

It was also claimed that the validity of individual features may not be
sufficient to assess the validity of a complex part, and sometimes a relation

between several features is also important”.
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d)

An interesting separation of internal and external operations was made:
operations such as editing and even Boolean operations were decomposed
into combinations of three fundamental steps (or operations): subdivision
(which splits the intersection of two objects), selection (which associates
geometry to features) and simplification (which performs deletion or

merging without changing the pointsets).

Anderson and Chang (1990) studied geometric reasoning for process
planning (such as approach and feed directions, process selection, tool
selection and operations sequencing). Features were considered
abstractions of manufacturing processes. The operations of merging and
splitting were presented as manufacturing optimisations (e.g. for setup

planning).

Splitting was suggested to decompose an unmachinable feature into
subfeatures which can be machined separately. Merging was said to group
features machinable in one fixturing setting. However, a major difficulty in
merging was reported in that if features of different types were allowed to
merge, the merged feature could be extremely complex and the benefits of

merging lost.

It is considered in this research that these two operations are not only
closely related to manufacturing analysis but to the concept of features
themselves and therefore, both are included for conceptual feature-based

representation validation and not for manufacturing analysis.

The two most common operations (add and delete) were detailed by Zhang
and colleagues (Zhang93, ElMaraghy93b) as an attempt to carry out the

validation analysis in their system.
An addition operation triggers the following analysis:

¢ identify if an unwanted interaction has occurred (this includes only

collisions);
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e check if the connectivity constraints of the target feature allow it to

be related to its parent feature;

s test that the feature is not deleting (covering) another feature,

making it obsolete.
A deletion operation triggers the following analysis:
o identify if features become independent of any parent;
e check if obsolete or non-functional features are produced;

s test if the feature’s compatibility with the geometric model was

affected;

¢ 1nvestigate if any other inadvertent modification has occurred.

In existing FBM CAD systems the range and number of operators varies
greatly depending on the flexibility the system wishes to offer to the designer.
These operations have been dictated mainly by the ability to implement a
specific operation rather than on an analysis of what operators belong to the
designer’s vocabulary and therefore should be available in the systems.

Furthermore, influences from GSM operations have been observed.

The remaining sections of this chapter describe the application of the
elicitation process to obtain a classification and taxonomy of operations and a
reasonably small set of operations for a DbF conceptual intent-driven
validation system. However, elicitation criteria are driven only by the
proposed classification, validation criteria are ignored and the domain is

limited to CAD/CAM and CAPP FBM systems.
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6.2 OPERATIONS CLASSIFICATION

Three types of operations can be identified: analysis, manipulation and setup.

6.2.1 ANALYSIS OPERATIONS

Analysis operations query about the elements of the model for specific

relationships (among features, FbDI's or GSM elements):

Queries to the FbDI's include enquiries on their existence and status

(active, inactive or dormant).

The identification of feature nteraction scenarios (that is all the
interactions at a given moment) can be translated into lower-level atomic

(Boolean) GSM analysis operations and set membership queries.

Another analysis operation with some interest in the literature (see section
3.1.5 and section 3.1.9) is a fest label which analyses if a given feature can
be verified for all properties associated with a feature of that particular type
(i.e. label).

6.2.2 MANIPULATION OPERATIONS

Manipulation operations change the representation (implicit and explicit data)
in some way. The most frequent manipulation operations are add and delete
but many others can be identified. However, a distinction can be made

between modelling, editing and revalidation operations:

Modelling operations are principally responsible for creating the model.

Editing operations are responsible for manipulating and altering the
characteristics of an existing feature-based model. They have also been
associated with redesigning a part and it has been considered that

modelling feature-based models is a complicated matter from the
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validation point-of-view and editing the model complicates it further

(Chen95).

e Revalidation operations are responsible for manipulating invalid feature-
based models (with the objective of converting them to valid models)
while the former two operations manipulate already valid representations

but potentially leave the model in an invalid state.

6.2.3 SETUP OPERATIONS

The operation of defining a (new) feature is neither a query and nor is it a
manipulation operation. It is considered to be a setup operation (similar to
defining the metric system; the dimensional limits of the drawing and the
palette of operations to be used in a CAD session). It requires great effort in
understanding the chosen system and in programming the new feature (using
either a low-level language like “C” or any other high-level language provided
by the system).

Similarly, grouping features to compose a “macro” feature or for any other
purpose is also considered to be a sefup operation. It should be noted that
compound features are different from macro features. The former is associated
with an application meaning (such as when a 7-slot is defined due to the
availability of a specific tool). The later is an arrangement of, otherwise

unrelated, features for manipulation or other purposes.

If a “macro” feature becomes closely associated with an application it should
be promoted to a compound feature and other characteristics established and
programmed (possibly including its automatic recognition by the system) via a

define feature operation.
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6.2.4 THE OPERATIONS CLASSIFICATION

Feature-based operations can be classified into manipulation, analysis and

setup operations (see Figure 6-1). As can be seen from the figure, Analysis and

Marupulation operations can be further classified according to the mformation

type involved in the operation This can be FbDI, GSM or FBM entities.

Feafure-ased
Operations Characlerisation

-

Analysi Wanipulaion] | Selup
[ | I I
FBDI GsH FBM Edi Hodeling Revaldation
[ | | I
FODI{ (GSM | |FBM { (FbDI| |GSH | [FBM | [FbOI| |GSM | |FBM

Figure 6-1: The Classification of Feature-based Operations.

6.3 MANIPULATION OPERATIONS

6.3.1 MODELLING OPERATIONS

The following are modelling operations that can be used in a conceptual

intent-driven validation DbEF system:

o Add feature, adds a new feature from a library to the implicit

representation database with user-defined parameters and produces a

predefined shape on the stock-material. The feature label and parameters

such as sizes, location and orientation have to be specified.
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e If a parent-child AOI is part of the hierarchical feature-based
representation, a select parent feature operation is associated with the add

feature operation and 1s performed alongside the add feature operation.

e As an alternative to defining feature parameters, a derive parameter
operation can be carried out, once a parent feature is selected. Similarly, an
operation for the attachment of properties or aftribute values can be
performed (Pratt88).

o Delete feature, removes a feature from the feature-based implicit
representation database as well as removing its influence on the stock’s

volume and surface.

o Add and delete intent modelling operations create or remove an intent
relationship between features, similar to add and delete feature. Features as
well as FbDI's are maintained in the model as lists of active, inactive and
intentional entities (see section 7.5) that help reasoning after later

manipulations of the model.

Auxihary modelling operations that reflect the trial-and-error design approach
can also be identified:

e The Unde operation, returns the model to the status and configuration

before the last (addition or deletion) operation.

¢ The Redo operation, recovers the status of the model after the last (add or

delete) operation.

In addition, combinations of the previous operations are recognised as
important. Special attention should be paid to them because, for example, the
addition of multiple instances of a feature (e.g. add array of features
operation) in a specified pattern has an associated structural GDI that should
also be included (add intent).
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6.3.2 EDITING OPERATIONS

6.3.2.1 (HiGH-LEVEL) FBDI/FBM EDITING OPERATIONS

High-level editing operations ease the task of manipulating an existing FBM.

They include operations such as:

e Copy and paste feature operations that have been implemented as a

different way of adding a feature (Zhang93).

¢ The change feature operation manipulates feature parameters and has also
been called modify feature, shrink (stretch) feature’s width (length)
(Perng97a, Martino94a). It could be achieved via deletion and re-

evaluation of the feature with modified parameters (Pratt88).

®» Move feature, which 1s achieved via a translational and/or rotational
transformation, is also considered a complex topic, particularly from the

validation point-of-view (Pratt88).

6.3.2.2 (Low-LEVEL) GSM EDITING OPERATIONS

GSM (low-level) editing operations allow the designer to edit a FBM
representation at the GSM level and therefore allows the editing of its

constituents such as points, arcs and edges.

Martino and colleagues’ work (Martino94a, Martino94b) is an example of the
use of both feature-based modelling and geometric solid modelling operations
but it was emphasised that the use of the latter can give rise to “degenerated”
situations in which the existing features no longer have meaning or some of
their characteristics are changed. It was claimed that this could only be
corrected through a feature recognition process which not only recognises the
(solid) modelling operation in terms of features but also updates the feature

model according to the effects of the last (geometric) operation.

Besides the use of GSM Boolean operations, other low-level editing

operations 1nclude:
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e Change cross-section or (sweeping) profile (Chen95);

o Change constituent, such as move vertex, change a straightedge into an arc

or enlarge a face;
e Apply chamfer, in the form of add a modifying feature (Chen95);

o Apply fillet, in the form of make fillet feature (Permg97b).

6.3.3 REVALIDATION OPERATIONS

In earlier chapters it was made clear that verification in not only an important
task, but that it is of equal importance and usefulness to be able to operate the
model when an invalid situation is found. This gives rise to revalidation

manipulation operations.

Revalidation operations can be applied automatically, but are usually applied
1n an assisted manner. Editing operations can produce substantial topological
changes that require user intervention (Chen95). Revalidation operations have
even been proposed (Stroud93) as a supposedly general strategy for handling
all types of information in a product model (including B-rep and feature
models) to maintain the integrity of the data structure. However, 1t was still
found necessary to “request a user to verify if the information is still correct”

after an operation.

Although delete operations can cause a wound in the model and therefore a
wound healing strategy should be devised to maintain the validity of the model
{Zhang93), it is believed that all manipulation operations, and not only delete

operations, require subsequent revalidation operations.

If modelling and editing manipulation operations are defined without the
assurance of a valid result then revalidation operations need to be identified as
a separate set of operations that can be used on request but would preferably be

applied automatically.
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If, on the other hand, one implements validation via a set of “valid” editing

and modelling operations that by themselves guarantee a valid result, then

revalidation operations can be associated with, and indeed embedded within,

these operations. Nevertheless, even for this last case it is possible and

beneficial (e g. for implementation or optimisation reasons) to identify and

isolate revalidation operations.

Revalidation operations are listed here regardless of possible previous

operations. It is recognised though that previous operations can be used as

clues to a better way of dealing with invalid models subsequently generated.

The following are the atomic revalidation operations identified:

Add volumetric intention. This revalidation operation is similar to the add
feature modelling manipulation, but manipulates FV’s that will be later
identified as a feature (via a proper search label operation). Add volumetric
intention is usually requested after other revalidation operations such as

split.

Delete volumetric intention. This is similar to the delete feature modelling
manipulation, but occurs when FV’s are of conflicting natures and are
therefore inactivated. An add intent (VDI) deleted_by operation is required

when the delete volumetric intention revalidation operation is performed.

Make feature obsolete. When a feature‘s volume has a conjoint VI
interaction (overlaps completely) with another feature’s volume of the
same nature, then this latter feature is said to have been “obsoleted by” the
former and thus it is removed from the model but is kept in a dormant or
intentional status. An add intent (VDI) obsoleted by operation is required

when the make feature obsolete revalidation operation is performed.

Activate feature. Features that were made infentional or inactive in the
model can become part of the active model again via this revalidation
operation. The situation that originally caused the dormant feature should
have been resolved otherwise a possible loop would arise. For instance,

obsoleted (deleted) features can become active and reappear in the model if
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the overlapping (deleting) feature is later removed. A delete intent (VDI)
obsoleted_by (deleted_by) operation is required when the activate feature

revalidation operation is performed.

Split. Divides the FV of a feature against the FV of another one, usually
producing two or three new “smaller” FV’s using convex FV’s, The initial
FV is deleted and the resulting FV’s must be labelled. An add (VD]) intent
split_into operation should be applied between the inactive FV and the
newly generated features. This revalidation operation helps correct

obsolete parameters of the feature.

Merge. Combines the volumetric intentions (FV + FN) of two distinct and
adjomnt VI (touching) features producing a larger feature that needs to be
propetly labelled. The initial volumetric intentions are deleted and the
merged feature is added to the model. An add (VDI) intent merged_from
operation should be created between the inactive FV’s and the newly

merged feature,

Labelling is responsible for operating on the feature’s parameters at the

face level and finding a proper meaning for the result — the feature’s label.

Section 3.5.2 presented the labelling VDI and features as being represented
through a template of face properties (real and virtual faces) - see Figure
3-9 and Figure 8-19. A proper feature label is obtained by comparing the
actual status of all feature faces and the available templates in all possible
orientations. The importance of distinguishing and reasoning with types of
feature faces has long been considered to have great potential for vahidity
analysis (Pratt88). If a feature’s face property changes, the new
configuration can be compared against the template and the labelling VDI

therefore achieved.

Dealing with features via template definition, and supposing that
identifying face properties is a fast and easy task, could give rise to a
localised feature recognition mechanism. Localised FeR considers only a

limited amount of information surrounding the modified feature to perform
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its task and has been receiving a lot of attention in recent research
(Laakko93, Martino94a, Su94). Stroud93 said that “using feature
verification only on modified parts of an object means that feature
structure maintenance is faster than performing a global re-recognition of a

feature structure”,

The labelling revalidation operation consists of three atomic operations:
e Change face’s property to virtual (to_V).
e Change face’s property to real (to_R).

o Search label on the feature library (find a label considering the
pattern of virtual and real face codes) making sure that all possible

orientations are tested.

Ultimately, the search label operation is responsible for keeping the
function-to-shape relationship match of the features in the model, as

defined by the template of every feature's type.

Complement 1s the operation that converts a representation that includes
features with a positive nature into a representation with features only of
negative nature capable of producing the same final shape on the part.
Features of negative nature have special significance for machining
purposes. This conversion can be done by “growing” the stock material
and then adding negative nature features that generate the original shape.
The difficulty lies in the multiplicity of alternatives that come from this
approach (Li90, Perng90, Chamberlain93, Waco94, Tseng94), but it is
important for feature-based modellers that represent features internally in a
DSG scheme.

Rigid propagation extends the effects of an editing or modelling operation
to another feature. Propagation is an important and valuable revalidation

operation that should be carried out or suggested particularly when a
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parent-child or a compound AOI interaction exists between features such

as counter-bore, parent-child or T-slot.

Nevertheless, other GDI's (such as concentric and parallel) can require
such operations. Rigid propagation changes the positioning and orientation
of features and is much easier to tackle than any non-rigid geometric
transformations (e.g. scaling). Rigid propagation is usually associated with

high-level editing operations.

General propagation is required to propagate changes, usually originating
from low-level editing operations, towards features that hold an intent
relationship with the feature being edited. The difficulty with general
propagation (and its difference from the rigid propagation revalidation

operation) lies in identifying what to propagate.

For instance, a shrink low-level edit operation on a feature that has a
nested at the bottom feature would require the latter to be moved in two or
three directions after having the former had been shrunk. Sometimes,
another low-level edit operation is required and therefore these operations
require the designer to fully understand the object and are difficult to

automate,

Add and delete intent are also used as revalidation operations because
some other revalidation operations can be better specified when the

addition or deletion of subsidiary intents can be described.

Make intent obsolete is another revalidation operation that, similar to make
Jeature obsolete, makes an intent become dormant or infentional in the
model, possibly because its related features are either dormant themselves

or one of them is dormant or inactive,.

A dual operation of this one is the activate intent which brings the intent

that was dormant back to a list of active FbDI’s.
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Figure 6-2: The Taxonomy of Feature-based Operations.
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The use of internal operations, such as revalidation operations, has to be
carefully planned to avoid endless Joop iterations. For instance, systems that
perform propagation on parent-child constraint-based features are prone to a
chain reaction problem (ElMaraghy93b). Similarly, intemal operations, such as
rearranging a feature-based representation, have also been reported to cause
endless iferation and thus an undo operation must be automatically issued or

suggested to the user (Su%4).

Figure 6-2 presents the taxonomy of feature-based operations identified in this

chapter.

6.4 A MINIMUM SET OF OPERATIONS

High-level editing operations have frequently been implemented as
combinations of add and delete modelling operations because these operations
seem to suffice for most implementations (Pratt88, Zhang93, Laakko93, Su94,
Kim96). Even a domain-independent formalism for a feature-based design has
only formally defined add and delete feature operations because other operators

were said to be defined through these two (Kim96).

For instance, the change feature operation is usually implemented as delete
feature followed by an add (a new modified) feature operation. It is considered
a complex manipulation because delete operations per se affect children and
surrounding features at the same time that these same (child and surrounding)

features could have been affected by the addition of the new feature.

The advantage of using add and delete modelling operations to implement
high-level editing operations is that all validity checks and rules defined by the
modelling operations can be “inherited” by the editing operations (Zhang93).

Similarly, 1t 1s considered that, alongside to add and delete feature, add and
delete FbDI comprise a minimum set of modelling manipulation operations in

an feature-based intent-driven system.
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6.5 SUMMARY

Instead of defining operations validation criteria for a particular application, a

minimum set of operations have been identified.

Low-level editing operations represent the same manipulation freedom usually
found in conventional and GSM CAD systems but they introduce a complexity
factor that would require a full implementation of a FeR system inside the DbF
implementation in order to cope with the variety of resulting features.

Therefore, for most systems low-level editing operations have been disallowed.
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Validity conditions are the central elements in the conceptual
Jeature-based validation framework. They help assess the
integrity and consistency of other elements/entities already
described. The analysis has been divided into various aspects
which generated sets of reasonings. These reasonings comprise
the verification statements that guarantee the validity of the
model, although this is done via invalidity tests. These

reasonings and their organisation are presented in this chapter.

7.1 ORGANISING THE REASONING

Validity Conditions are the medium by which conceptual feature-based
representation validation is petformed. They are the translation of FbDI's into
verification statements. Validity Conditions are also responsible for the binding
process of the various elements of a conceptual feature-based validation
system: features (and their attributes), feature interactions, feature-based
designer’s mtents (FbDI’s) and feature operations. This is done in a way to
express feature semantics as a 3D solid modelling techmque and relationships
with applications. To achieve this, a structural analysis of the reasoning 1s

required,

a) Prionty or sequencing can also be found in other feature-based systems that

are said to capture designet’s intent (see Dohmen and colleagues’

constraint-based systems in section 2.7): different types of constraints are
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b)

c)

d)

used in the same design and in the same view and they are maintained

through a pre-defined sequence of resolution

Multi-level methods specifically aimed at the validation problem have also
been suggested in a study of a formalism for feature-based design
validation (Kim96, see section 2.7), which defined model validation
(divided into syntax, domain, feature and product levels) and functional

validation.

Local and global validation for ongoing design have also been established
(Requicha89b, Rossignac90) in addition to model and functional validation
(Kim96). For instance, accessibility analysis is performed when features are
added to the model (Jocal accessibility) but also another similar and
complementary analysis is necessary (global accessibility) which can only

be carried out at a later stage when the model is complete.

Phases are another way to organise the validation method and this has
already been presented as the resolution of the feature interaction problem
(Su94); Phase 1 considered volumetric analysis, Phase 2 considered
labelling analysis and Phase 3 performed grouping of unresolved
intersecting features into complex (thereafter resolved) feature sets that

might have importance for an application.

Given the above examples of how validation reasoning has been organised in

related systems it can be assumed that some sort of organisation (sequence,

hierarchy or priority) must be devised.
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7.2 INVALIDITY TESTS

A human-based analysis of a feature-based model is usually accomplished by
searching for invalid situations and therefore much of an engineer’s experience
1s built on the search for invalidity, rather than validity. Although the spectrum
of invalid situations is extremely extensive and application-dependent, it has
been stated that vahdity rules must precisely characterise invalid situations
(Rossignac90). To facilitate the analysis, invalid situations are divided into
subjects that relate to different areas of expertise such as process planning,
setup planming and manufacturing. Thus, it becomes easier to identify and
devise tests for invalid situations than to identify and test valid ones, especially
1n the context of abstract elements such as features that have no mathematical

or well-accepted definition.

Furthermore, invalidity rather than validity tests are suitable for division into
sub-cases that correspond to specific remedies — the revalidation operations.
Therefore, it is pragmatically easier to perform feature-based validation on a

model representation via invalidity tests.

Nevertheless, from the point-of-view of logic, if a model fails all invalidity
tests it can not be considered “completely” valid, but may be thought of as a
non-invalid model for that specific set of criteria. On the other hand, because
no practical distinction can be made between valid and non-invalid models,

they are considered simular in this text and both will be called valid models.

7.2.1 THE VALIDATION PROCESS

The following discussion presents validation as the binding process of all
elements detailed in previous chapters. In particular, how invalidity tests and
revalidation operations work to guarantee a valid model representation output

is considered.
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The process of validation is an analysis loop (see Figure 7-1):

e A feature-based modelling operation starts the validation process. It can
alter the configuration of features, FbDI's and/or feature interactions.
FbDI's are verified through invalidity rules that can become active at any
time. For a rule to be active all its conditions must be fulfilled making it
ready to be executed (fired). A number of rules can become active

simultaneously but only one 1s fired.

¢ The knowledge-based system selects a rule to be fired according to a
prionty strategy (Patterson90, Giarratano93) assigned between rules. If the
configuration of features has been manipulated then a consequent new
feature interaction scenario is calculated (initialls'r at the volumetric

interaction -VI- level) and reasoned against all rules.

¢ Rules perform actions on the feature and FbDI representation via
revalidation operations (which are intended to simplify the situation on
each loop execution). Every time a rule is fired, some active rules can
become inactive and vice-versa producing a new set of active rules from

which another one is selected to be fired.

¢ A rule exists which determines when another level of the feature interaction
scenario is to be determined. This new scenario is again considered by all

rules.

o All features and FbDI's affected by the revalidation operation are
automatically considered by the reasoning. A certain degree of
unpredictability in execution control is expected concerning which feature
and which FbDI will be reasoned first (this is a characteristic of the
knowledge-based system 1mplementation, Chung90b, Giarratano93).
However, this should not make any difference to the final result.
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e When all features and FbDI’s are verified and no more new scenarios are

produced, the validation process loop delivers the resulting feature-based
valid model.

Feature-based Representation Validation

Domain Validity Revalidation .
Charactenzation Conditions Cperations k:
A |- &

4

T:F T ‘;L

INPUT “ OuTPUT g

FBM with # Valid G8M &
Valid GSM mode! | and FBM model :

PTrTTT

Figure 7-1: Feature Validation Reasoning Framework

The input in Figure 7-1 1s a feature-based model just after a modelling
operation is performed and is assumed to be an evaluated and valid GSM

representation.

The framework shows that the domain characterisation (the elicited FbDI's)
drive the validity conditions (invalidity tests) being considered and therefore
the extent of the validation process. The output of the validation process will be
both a valid geometric and a valid feature-based model representation. This
validated model can then be used by any application and no misrepresentation

should exist from the perspectives of the selected FbDI’s.
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7.3 ORGANISATION

Initially the rules were conceived for morphological functional conceptual
validation reasoning without any concern for their global organisation because
the emphasis was on the usefulness and feasibility of the conceptual validation
framework, However, the initial prototype implementation revealed an

interesting organisation of the relationships, which is described below.

7.3.1 REASONING ASPECTS

Morphological functional FbDI's (MFI’s) and the associated volumetric
FbDI's (VDI’s) give a clearer definition of feature semantics. The selective
execution of revalidation operations guarantees the delivery of valid

representations from the FbDI's perspective.

An analysis of VDI's suggests that there are two aspects that help describe a
feature’s behaviour: the volumetric interaction aspect and the labelling-

dependent aspect.

» Volumetric interaction aspects occur when feature natures (FN) are
considered and when feature volumes (FV) interact at the volumetrical (VI)
or boundary (BI) levels. The absence of this aspect means that no
interaction analysis 1s considered whatsoever, another geometrical analysis
is being performed or a low-level interaction (the face level - FI) is

considered.

» Labelling-dependent aspects occur when the feature label is the major
affected element or when the labels of the features involved affect or

determine the reasoning.
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Volumetric interaction aspects are related to changeability, fittability and

redundancy VDI's while labelling-dependent aspects are related to labelling

VDI’s,

7.3.2 REASONING SETS

The combination of these two concerns gives rise to four sets of reasonings
according to whether or not they are part of the rule (see Table 2). The
volumetric interaction aspect is identified by V while the labelling-dependent
aspect is identified by L.

Labelling-dependent Aspect
L)
Without With

Volumetric Without a-L,-V c)+L,-V
Interaction

Aspect With b-L,+V d+L,+V

A2
Table 2: Sets of Validation Reasoning.

These four sets of reasonings identify distinct and important situations when

dealing with conceptual feature validation:

¢ Situations of type (a) are responsible for performing the geometric feature
mteraction scenario identification as well as any other geometric reasoning.
Of particular interest are those geometric reasonings that are simpler,
straight-forward or already available in geometric terms than if considering

extra feature-related information.

Situations of type (a) perform simply geometrical (-L, -V)

analysis/reasonings, but do not include GSM validations.
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A situation of type (b) happens when volumetrical reasonings and/or the
feature nature are enough to fire an action such as when conflicting

volumetrical intents (hollows or satellite volumes) appear in the model.

Situations of type (b) perform simply volumetrical (-L, +V) analysis. Simply
volumetrical tests also include those where an inconung feature interacts
with the stock material, regardless the former’s label. This last reasoning
example has prionty because the stock material is considered to be the
envelope of the whole component (and all its features) and thus, any
volumetrical analysis involving the stock would speed up the processing of

the newly added feature.

A situation of type (c) happens when labels are the main focus of the
reasoning, such as when the system is searching for the correct label for a

specific feature according to its face properties.

Situations of type (c) implement simply labelling (+L, -V) reasonings.
Simply labelling reasonings include all those where low level interactions
(face level - FI) result in a change of a feature face property (from virtual to
real, or vice-versa) and consequently results in a change of its labelling

VD], regardless the feature’s nature.

A sitnation of type {d) happens when both the feature volumetrical
interaction and label aspects determine the actions to be taken. They are
called here complex (+L, +V) reasonings. All other reasonings between
features, except the stock, are also considered as complex verification

statements.
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7.3.3 PRIORITY

It was found that a priority scheme exists among the four reasoning sets in
Table 2 such that every time a situation of higher priority occurs, it is dealt with
immediately and then 1n a descending order of priority up to the point where
there is no pending situation. Within the same prionty level any sequence of
rules can be expected to be fired as previously explained. The priority found,

from the highest to the lowest (see right-hand side of Figure 7-2), 1s:
1. Simply geometrical reasonings (type (a): -L, -V).
2. Simply volumetrical reasonings (type (b): -L, +V).
3. Simply labelling reasonings (type (c): +L, -V).

4, Complex reasonings (type (d): +L, +V).

h .o Valldation Reasoning

Feature Yalidation Framaework

E "
/’—-\ Simplr '_. o | ‘i
N P‘ Geometrical r—-r — ;
Domain Valigity El!> Revalldation
Characterization Conditions Qparailons .
B - o >
H M v Simply k—.k Dalets, L)
- Volumetrical rr—i Make Obsolals [~
A
1
Simply l—u oV to_R, |— )
Labelling '["—' Labal ]
X ™
A
J__. Marge, Spllt, |
Complex T Ao vete
i
INPUT ; oUTPUT -
FBM and Valid GSM
Valid GEM modal and FBM madal ¥ i '
:
ki

Figure 7-2: Sets of MFI Reasonings.
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Simply geometrical reasomng performs GSM reasoning and generates the
interaction scenario between features at various levels of interest (initially

volumetric interaction up to face interactions), as it is requested.

The feature interaction scenario 1s then considered by the subsequent sets of
reasonings. The first of these 1s the simply volumetrical reasonings. If there is
enough information, the labels are verified and (re)assigned via sunply

labelling reasonings.

If the model is still not valid then, there will be enough information with both
labels and feature interactions defined and corrected. In such a case, face

interactions are added and complex reasonings are then performed.

7.4 INTENTS MANAGEMENT

Conceptual feature-based representation validation was performed via MFI
reasoning. MFI reasoning is not only responsible for identifying invalid
morphological situations and deploying revalidation operations but also for
adding and deleting VDI relationships. Occasionally, it is possible that RDI
relationships may be created by MFI reasonings. This suggests that MFI
reasonings drive some RDI reasonings. However, there are RDI reasonings that
are independent of MFI and feature interaction cases. In other words, there are
RDT’s that are dependent on their own functional meanings and therefore have

their own reasonings.

An intent-driven paradigm suggests that a feature-based modelling application
could reason not only with FbDI's embedded in features (as most of the
applications surveyed claim to do), but should also be able to reason about
FbDI's themselves. Therefore, means to validate, recognise, manipulate and

manage FoDI’s are required.
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Intents
Management
|
| ! ]
Yenfication Ennichment Updating
[
] 1
ve_cor Guided Bind act_del
ve_aol_ts ] act_int_dead_feat
| T
Experience-based Inhentance en_cor_b
|:en_cor_g |—inherit,splt_act

en_aol_ts

Figure 7-3: A Classification of Intents Management Rules,

Three ways can be identified to manage FbDI validation (Figure 7-3):
verification, enrichment and updating statements. The figure also exemplifies

some of the rules which are detailed in chapter 8.

7.4.1 VERIFICATION STATEMENTS

The verification statement is used to check if the assigned FbDI 1n the model
complies with 1ts conditions. Otherwise, it can lead to its removal from the

model.

The general outline of verification rules is depicted in Figure 7-4 where:

(Y 1)
!

means existence or true/active;
“~” means absence or falsefinactive;
¢ “FbDI” is the target feature-based designer’s intent;

¢ “Cond” 1s a condition being tested.
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Verification Rules
IF (FbDI)! AND (~Cond; OR ~Cond, OR ...)
THEN Ask “DELETE the FbDI?”
YES, Delete FbDI
NO, Operate Features

Figure 7-4: An Outline of Verification Rules,

7.4.2 ENRICHMENT STATEMENTS

The enrichment (or feature intent recognition) statement works in the opposite
direction to a verification in that it analyses a set of conditions and assigns its

findings to the model (automatically or assisted by the designer).

Verification statements are basically invalidity tests that inactivate a FbDI as
soon as any of its conditions are violated Enrichment statements do the
opposite by considering a set of conditions that suggest a FbDI to be assigned
to the model. However, two ways can be ident:ified to perform such a search:

via guided rules or via blind rules of enrichment.

Blind rules of enrichment involve trying a FbDI relationship against all
possible situations using a minimal condition set and leaving the confirmation
task to the user. This approach is likely to identify an important FbDI but also

leads to a tedious confirmation task.

Guided enrichment rules search for FbDI's where they are more likely to occur
through rules that include basic conditions plus other conditions identified by
experience. Although a less tedious confirmation process follows, it is possible

that a FbDI can be omitted from the model due to an inaccurate or missing rule.

Guided enrichment can be further classified (Figure 7-3) into experience-based

guided enrichment when they are isolated rules as mentioned above and
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inheritance-based guided enrichment when the rules are embedded and

dependent on other (mainly VDI) reasonings.

For instance, it is sensible to think that features that were split from another

tend to inherit the former’s FbDI's (Figure 8-29).

The general outline of enrichment rules are depicted in Figure 7-5:

Enrichment Rules
IF ~(FbDI) AND (Cond; AND Cond; AND ... )!
THEN Ask “ASSIGN the FbDI?”
YES, Add FbDI
NO, nothing to do

Figure 7-5: An Qutline of Enrichment Rules,

7.4.3 UPDATE STATEMENTS

Verification and enrichment are responsible for deleting and adding FbDI

relationships to the model, respectively.

In addition to enrichment and verification statements, other rules are necessary
to help the management of FbDI’s. These are called updating rules (Figure 7-3)
and they consider the status of the features involved in the relationship and

activate or inactivate FbDI’s accordingly. Examples of updating rules include:

¢ Act_del, if a feature that previously made obsolete or deleted another
feature is subsequently inactivated then the latter should be reactivated and

the corresponding VDI inactivated.

o Act_int_dead_feat, if a FbDI exists for inactive features then it should be

inactivated.
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7.5 ACTIVE, INACTIVE AND INTENTIONAL STATUS

The process of design can cause the representation to go through many
intermediate stages. One approach to help cope with these intermediate stages
is to define an intentional or dormant status (which is compatible with the

intent-driven terminology).

The idea of intentional features have been already introduced (Tomyiama90,
Rossignac%1): “Intentional features, originally identified by the designer,
should not be confused with their geometric embodiments which can vary as
the model is edited”. This distinction is essential for representing and
interrogating invalid features and helps the tracing of feature evolution through

the life-cycle of a design model.

Similarly, the validation framework makes use of the mntentional status and
thus features (or more precisely, their volumetric intentions - FV + FN) and

FbDI’s are kept in the framework in one of three possible status:

e The active status, which accounts for all those features and FbDI’s that
represent the actual model. After the reasoning is finished, the active status

identifies validated (non-inval:d) features and validated FbDI’s.

¢ The inactive status, which refers to all features and FbDI's that were
deleted by the reasoning of interacting features or by the user and are not
affecting the actual model. Inactive features and FbDI's explicitly deleted
by the user will not become active in the future and can be effectively

removed from the database.

An inactive FbDI means that the possibility of existence of this FbDI was
considered before, presented to the user and discarded. In this case, an
inactive FoDI would have been created to flag the discarded attempt and
will not be considered subsequently so long as the conditions do not

change,
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The intentional status accounts for dormant or intermediate situations.
Intentional features are those that were made obsolete by another feature,
Their volumetric intentions still affect the model but are encompassed by
the volumetric intention of another feature. If this second, volumetrically
encompassing, feature is removed the former intentional feature should be

activated.

Similarly, feature interaction cases can be of active, inactive or intentional

stafus,

An active feature mteraction is that (possibly recently determined by the
scenario identification methodology) which is considered by the simply
volumetrical and complex VDI reasoning sets. These reasonings can change

the status of the interaction to inactive or intentional.

Intentional feature interactions are those interaction cases that should be
intentionally left unoperated due to their meaning, unforeseen reasons or
other restrictions. These situations usually happen when (a) an arrangement
of (subjoint VI or conjoint FI) interacting features occurs that is interesting
for an optimisation that an application can perform considering their

original interaction or (b) to facilitate and simplify the model.

For instance, if there is no advantage in splitting a hole on the periphery of
and entering a pocket, the enter subjoint VI interaction can be defined as
intentional which later, through another reasoning, can give rise to a “cut-
out” case (see Figure 4-8 in section 4.4.3.2.3). Also, a non-through hole
that crosses a slot, although it could be split due to redundancy VDI
reasons, should be signalled as an intentional cross otherwise there will be

accessibility problems in drilling the internal kole.

An inactive interaction means one of two things: either the interaction was

properly processed and a new scenario emerged so that the originating
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interaction no longer exists, or the possible use of that interaction case has

already been taken into account and should not be tried again.

7.6 INTENT MANAGEMENT PRIORITY

To accommodate FbDI's beyond morphological functional FbDI (MFI)
analysis, i.e. to include geometric relational FbDI (GDI) and application-
oriented relational FbDI (AOI) reasonings, the prionty scheme presented in

Figure 7-6 was conceived by extending the MFI reasoning set organisation

(Figure 7-2).
1€
ri‘
4 Simply Geometrical — Delete
5 “)w
X Lo Delgte,
= Simply Yolumetrical ' Y Make Cbsolete
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Figure 7-6: The Intent-Driven Conceptual Validation Reasoning,
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All the RDI verifications and enrichments are placed with lower prionty than
the MFI reasonings but in two levels: a higher level where a newly added
feature can be rejected by some reasoning, called here the approval phase, such
as the proximity AOI test (see section 4.4.3.2) usually via a verification
statement, and lower level which comprises all other AOI and GDI verification
and enrichment rules, simply called the enrichment phase. These analysis

phases can be turned on and off in the prototype implementation if required.

7.7 UNDERSTANDING THE REASONING ORGANISATION

To help make sense of the priority organisation, a metaphoric parallel can be
established between these reasonings and a linguistic analysis. Linguistic
analysis is achieved in four phases: lexical, syntactical, semantical and

contextual analysis.

It could be said that simply geometrical and simply volumetrical reasonings
correspond to a lexical feature-based analysis where the correct use of letters
(feature elements such as its volume, its faces and its GSM evaluation) to form

words (feature definitions) are analysed.

Simply labelling corresponds to a syntactical feature-based analysis where the
correct disposition of words (the feature definition, in particular its label) of the
vocabulary (feature library) on a phrase (feature model representation) are

analysed. It assumes a lexically correct (valid) set of letters (feature elements).

Complex MFI reasonings correspond to a semantic feature-based analysis
where correct association (feature interactions) of words (features) to produce a
meaningful (conceptually validated representation) phrase is analysed. It

assumes a syntactically correct (valid) phrase (feature model representation).

Update management ensures that the phrase (feature model representation) is
simplified such as when a “double negative” is modified in a linguistic

analysis.
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Table 3: A Metaphoric Parallel (Feature-based Model and a Language).

Feature-based Models .+ Language
Feature elements Letters
(e.g. edges, vertices, faces, volume and (e.g.a,b,c,0, B, 1)
evaluated GSM)
Feature’s label Words
(e.g. slot, pocket, and step) (e.g. cat, dog, and horse)
Feature-based model representation Phrase
Simply geometrical and.simply volumetrical Lexical analysis
reasoning
Simply labelling reasoning Syntactical analysis

Complex MFI reasoning Semantical analysis
Update management Simplifications
Approval management Has meaning,

(e.g. thin-wall tests)

but not for the target context

Other AOI and GDI reasoning

Elaborate context analysis

The approval reasoning analyses the model for cases where the last
manipulation can be immediately rejected such as when an extra word is

syntactically correct but adds no meaning to the context of the phrase.

All further reasoning performs a more elaborate contextual analysis, Contextual
feature-based analysis occurs when the meaning (conceptual validity) of the
phrase (feature model representation) to the context (application) being
considered is analysed. This is done by considering a much broader( spectrum
of FbDI's, beyond MFT’s, that in turn also consider application-dependent

criteria. It assumes a semantically correct (conceptually MFI valid

representation) phrase (feature model representation).
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7.8 SUMMARY

This chapter has introduced the verification and enrichment statements, which
are responsible for FbDI management and the active, inactive, and intentional
status of features, FbDI's and interactions. These characteristics help

implement the validation concept.

The way in which elements of a feature-based vocabulary are bound together to
perform conceptual representation validation has been described. The invalidity

tests are organised in a hierarchical priority and are used to perform validation.

It has also been shown that the prionty is reasonable if a metaphoric

comparison to a lingustic analysis is accepted.

The next chapter describes how these ideas have been implemented in a

prototype system.
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The application of the elicitation process produced a
classification and a taxonomy for feature interactions, feature-
based operations and FbDI's. To validate this development
methodology and philosophy, a working prototype was
implemented that is able to identify intents and feature
interactions, apply modelling operations, perform verifications
and enrichments and deploy revalidation operations (some of

these automatically).

8.1 A PROTOTYPE IMPLEMENTATION

A prototype system known as FRIEND, an acronym for Feature-based
validation Reasoning for Intent-driven ENgineering Design, has been

implemented. The acronym was chosen to emphasise the following aspects:
e It is a system centred on the Feature concept, their elements and properties.

¢ It is a framework for conceptual validation analysis that was implemented

using an expert system shell for its validation Reasoning,
e It is Intent-driven which should produce a more forgiving environment.

e It is intended to accommodate various ENgmeering-related Design

disciplines (applications).
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8.2 RESOURCES

FRIEND has been implemented on a PC-compatible Pentium™ 100Mhz with
24 MB of EDO RAM running Microsoft® Windows 95™ operating system,
The applications used to develop the prototype system are wxCLIPS and
Microstation® 95°’s MODELER.

8.2.1 WxCLIPS

WxCLIPS 1.61, 32 bit version, is a graphical development environment (Figure
8-1) that extends CLIPS’ functionality with hundreds of functions to allow a
graphical user interface to be constructed. It was developed by Julian Smart at
the AJAI (Artificial Intelligence Applications Institute), which is part of
Edinburgh University.

*EIBWBuIes + Apphcation  List s oo e -

i | .. -.- -- Dm waLIPS Beferené;; "% )‘i
Ii e QLIPS 60 Reference LA
O -»... Abuut W'XCL!PS ?z a‘%% «:cws ~ :’3

B i

© ot

ks

o~ o . . e "ﬁ?’\?.\,, PR S b s vy, 2T g
L s Wl el 50 A nedh o B W B B S S0 Y O )

|
|
Figure 8-1: wxCLIPS Environment Screen. |
|
|

CLIPS was designed at NASA/Johnson Space Center and is an acronym for “C
Language Integrated Production System” which recalls its origins. CLIPS 6.0 is

a forward chaining expert system shell and a multiparadigm programming
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language that provides support for rule-based, object-oriented and procedural
programming. It is a parenthetical language and most functions and commands
use a prefix syntax (Figure 8-2, Giarratano93, Donnell94). Figure 8-2 provides
a parallel between CLIPS syntax and a pseudo-code in an attempt to show the

meaning of some of CLIPS code.

PSEUDO-CODE CLIPS Syntax
RULE-NAME “example” (defrule “example”
{F (Comment: Oven Operation Monitoring) | ; Oven Operation Monitoring
“OvenPower” 1s “ON"” AND ?0_p <- (OvenPower ON)
“Pressure” > 5 AND {test (> Pressure 5))
(“Simulation” fact does NOT exist OR {or (not (Simulation))
“Operator_Status” 1s “trainee”) {Operator_Status trainee})
THEN =>
Create “Urgency” fact {assign (Urgency))
Calculate “risk_factor” (risk_factor)
Turn OFF QvenPower (retract ?o_p) (assign (OvenPower
END-RULE OFF))

)

Figure 8-2: CLIPS Syntax.

CLIPS 6 0 provides COOL, which is “CLIPS Object Oriented Language”, and
a comparison between COOL syntax and a pseudo-code for a class definition is

presented in Figure 8-3.

PSEUDO-CODE COOL Syntax
CLASS-NAME “Intent” (defclass Intent
Super-Class “Relation” (1s-a Relation)
Integer “n” (slot n (type NUMBER)
{Vaid Interval 1-3, (allowed-symbols 1 2 3)
Default Value 2) {default 2))
Array of 6 words “a_6_w" {multislot a_6_w (type SYMBOL)
(cardinality 6 6))
END-CLASS )

Figure 8-3: COOL Syntax.

Simplified versions of class and rule definitions will be presented using CLIPS
and COOL syntax. More specific details that are exclusive to the CLIPS and
COOL implementations will be omitted. The understanding of Figure 8-2 and
Figure 8-3 should be sufficient to understand the listings and the accompanying

explanations in the following sections.
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8.2.2 MICROSTATION

Microstation® 95 is a CAD system produced by Bentley Systems that has an
extra module based on the ACIS® 1.7 geometric solid modeller and is called
MODELER 1.0.

8.3 MODULES

For implementation reasons FRIEND (which follows a DbF approach, Figure
2-1) was divided into two main modules that reflect the two items of software
used (Figure 8-4): FRIEND-KBS (1mplemented using wxCLIPS) and FRIEND-
VIEW (implemented using MODELER).

KBS
(CLIPS)

Data

Designer J
ST R

(MODELER) S )

Figure 8-4: FRIEND Modules.

8.3.1 FRIEND-VIEW

FRIEND-VIEW is the module responsible for the geometric evaluation and
visualisation of the feature-based model. It converts features into their

producing volumes (solid primitives), position and orientates the volumes and
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performs chamfering and Boolean operations accordingly. The model can be
visualised either 1n a Boolean operated or in a Boolean unoperated form (see
Figure 9-5). The unoperated form shows all feature volumes without actually
performing the Boolean operations and was made available because the
operated invalid model frequently looks like the operated valid one, confusing

the viewer.

FRIEND-VIEW was prototyped using Microstation’s Basic language, which,
although slow and limited, is simple to use and code, easy to understand and
suffices for the prototype implementation. FRIEND-VIEW is initiated by
pressing the FRIEND icon at the top left-hand corner of MODELER’s
environment (see the “dog” icon in Figure 8-5) which starts the communication

protocol between the modules FRIEND-KBS and FRIEND-VIEW.

le .

LI4D

<
)
gl

Figure 8-5: FRIEND-VIEW Icon.

8.3.2 FRIEND-KBS

FRIEND-KBS is the module responsible for the reasonings. Figure 8-6 presents
the architecture of the FRIEND-KBS module. It details the framework
presented in Figure 7-1 and shows that the data information used for the
reasoning are basically of two types: the feature library (including the template
of each feature) and the reasoning groups presented in section 7.6 divided
according to the type of FbDI involved. The figure also shows that three types
of information are generated and maintained by the reasoning: the feature, the

feature interactions and the FbDI’s of the model. These three items of
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information come in three different flavours: intentional, wvalid/active or

invalid/inactive.

Feature
Library

(Templates})

Vi V&

Modelling
Operation
Revalrdation
S Reasoning thons :D

v T
Inactive/invald Inactive/Invalid Inactive/Invalid
Intentionatl

Intentional Intentional

Active/Valid
Feature
Interactions

T 1 T

b |
Valid Feature-based
Model Representation

Valid/Active
Features

Valid/Active
FbDl's

Figure 8-6: FRIEND-KBS Architecture.

The FRIEND-KBS interface has three main areas (Figure 8-7):

e A text area, in the lower part of the window, where additional information

is displayed as the reasoning is being carried out;

e A button area, for activating fast actions such as “Show Validated Part”
which forces the update of the model’s visualisation in FRIEND-VIEW;
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Figure 8-7: FRIEND-KBS Module.

* A menu area, where various options to manipulate the model are available:
e To manipulate (Figure 8-8), such as add feature (Figure 8-9);

¢ To manipulate a part file (see section 9.2) such as load and save part
file (Figure 8-10);

o To list relations including interaction cases and FbDI's (Figure 8-
11).
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Figure 8-9: Add Feature Option.
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8.4 DATA STRUCTURES

8.4.1 REPRESENTING INTENTS AND INTERACTIONS

It has been suggested that a feature-based model should be more than a list of
active features and should also include all relations such as constraints
(Kraker97) and interactions (Kim96). In addition, instead of evaluating a
feature interaction query every time it is requested, a feature interaction
scenario can be produced between an incoming feature and the existing active
features 1n the model. The result can be stored as active relations that can be

used by the reasoning when needed.

{defclass RELATION
(slot status
(type SYMBOL)
(allowed-symbols active inactive intentional)
(default active))
{slot go_further ; Boolean
(type SYMBOL)
(allowed-symbols YES NO)
(default YES))
{slot has_master
{type SYMBOL)
(allowed-symbeols YES NO)
(default YES))
{slot master
(type INSTANCE-NAME)
(default PNONEY})
{slot n_slaves
(type INTEGER)
(default 1))
{multislot slaves
(type INSTANCE-NAME)
(default “NONE))
; See subclasses for code and type constraints
(slot type
{type SYMBOL))
(slot code
{type SYMBOL)} ‘
|
|
\

Figure 8-12: RELATION Class.
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The relations of interest in this research are interactions and FbDI's. All
relations share the same basic principle of establishing a directional and
meaningful link between elements. Therefore, a class called RELATION
(Figure 8-12) and its two sub-classes, called INTENT (Figure 8-13) and
INTERACTION (Figure 8-14) were defined.

The RELATION class establishes a directional link by defining a master of the
relation and a list of slaves. Elements referred to are features or (index to) a
feature’s (bounding box) face. The specific meaning of the relation is defined
by the type and code, which according to the sub-class, have different lists of
allowed possibilities.

For instance, an INTERACTION can be typed VI and coded conjoint while an
INTENT can be typed VDI and coded split_into.

The implementation does not accommodate relations that carry a reference or
parameter but it is acknowledged that such a resource should be considered in
future implementations. In addition, the labelling VDI is kept as the feature’s
label in the FEATURE class and not as a (unary) INTENT object.
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{defclass INTENT
(1s-a RELATION)

{slot code
(allowed-symbols
; MORPHOLOGICAL DI's (MF!'s)
; VDI - Volumetncal Morphological DI's
spht_into merged_from
deleted_by
obsoleted_by

1 GEOMETRICAL DI's (GDI's)
; HeGDI - Hierarchical Geometncal Relational DI's
nested@bot nested @side

; PosGDI - Positonal Geometrical Relational DI's
concentric
coplanar

; OnGDI - Orientational Geometrical Relational Dl's
parallel perpendicular angular

against co-linear

CoEAD

; StrGDI - Structural GDI's
pattern

ax_symmetry rd_symmetry
co-radius

; APLICATION-ORIENTED INTENTS (AOl's)
t_slot
¢_bore ¢c_sink
x_feat e_feat
cut_out
precede succeed ))

{slot type
{allowed-symbols VDI HieGDI PosGDI StrGDI OnGDI AQI)

{default VDI))

Figure 8-13: INTENT Class.

In the case of the sub-class INTERACTION, an interaction VI could be linked
to many other interactions (BI or FI) and therefore pointers to other interactions

are included in the class (Figure 8-14).
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(defclass INTERACTION
(1s-a RELATION)

(slot code
{allowed-symbols
: VI Volumetric Interactions
connected disconnected
conjoint adjoint disjoint overlap
near far
cross enter crossed entered general

; Bl Boundanng Interactions
limit hmited contain contained

: Fl Facial Interactions
match inside outside

unknown )
(default unknown))

(slot type
(allowed-symbols VI FI BI)
(default VI))

(slot n_elements ; 8-08-96
{type NUMBER})
(allowed-numbers 01234 56)
(default 0))

(multislot elements
(type INSTANCE-NAME) ; pointer to another INTERACTION
(default ?DERIVEY})

(slot GSM_confirms
(type SYMBOL)
(allowed-symbols YES NO DONQ)
(default DONOY))

Figure 8-14: INTERACTION Class.

Because the implementation of the interaction identification was done using the
bounding box envelope, it was necessary to confirm some geometric
interactions at the level of the actual feature volume (FAYV), boundary (FAB)
or face (FAS). To identify if this confirmation had been carried out, a

GSM_confirms flag was included.
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8.4.2 REPRESENTING FEATURES

A feature is 1mplemented by defining a FEATURE class (Figure 8-15) which
stores a sequence number; a feature name as its id; the feature status; the
feature label; feature nature, which can be add for additive or rem for
subtractive volumes; feature volume which can be ¢yl for cylindrical or filleted
features and rect for quadrangular ones; feature radwus that stores the radius of
the cylinder or the chamfer; feature main axis; two rotations used to specify the
feature’s orientation, each rotation is defined by an Euclidean axis and an angle

of rotation.

In addition, every feature has an associated bounding box envelope (Figure 8-
15). The envelope 1s stored as an object of the BBOX class (Figure 8-16)
defined by the minimum and maximum vertex coordinate values. In the
prototype implementation, all the geometric analyses use the envelope instead

of the actual evaluated volume of the feature,

Therefore, the actual volume is projected onto the envelope faces that acquire
characteristics such as face code, token and profile (Figure 8-17). Figure 8-17
presents a step feature, the feature volume with the identification of its codes
and tokens followed by the identification of every face’s projection onto a

rectangular bounding box envelope.
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(defclass FEATURE

(slot sequence (type INTEGER)
{(default 1))

(slot d (type SYMBOL))

(slot status (type SYMBOL)
(allowed-symbols active inactive intentional)
(default inactive))

(slot label {type SYMBOL)
(allowed-symbols pocket hole
slot slot_tru step notch

slab gap hollow satellite)
(default pocket))

;—-——----—-- Volumetnc Intention (FV + FN + onentation) ---—-------—---
(slot nature (type SYMBOL)
(allowed-symbols add rem)
(default rem))
{slot volume (type SYMBOL)
(allowed-symbols cyl rect)
(default rect))
{slot radius (type NUMBER)
(default 0.0))
{slot axis (type INSTANCE-NAME})
(default-dynamic (make-instance (gensym*) of POINT)))
{slot rotation_1 (type SYMBOL)
(allowed-symbols orig rx90 rx180 270
ry90 ry180 ry270 rz90 rz180 rz270)
(default ong))
(slot rotation_2 (type SYMBOL)
(allowed-symbols orig rx80 nc180 rx270
ryS0 ry180 ry270 rz90 rz180 rz270)
(default orig))

;- The Envelope (Bbox + Code + Profile + Token) --—---—---

(slot envelope (type INSTANCE-NAME) ; of BBBOX
(default-dynamic (make-instance (gensym®) of BBOX)))

(slot face_nature (type INSTANCE-NAME} ; of FC_NATURE
{default-dynamic (make-instance (gensym®) of FC_NATURE)))

)

Figure 8-15: FEATURE Class.
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{defclass BBOX

(slot owner

{type INSTANCE-NAME) ; Pointer to a feature

(default ?DERIVE))
{slot Pmin

{default-dynamic (make-instance (gensym®) of POINT)))
{slot Pmax

{default-dynamic {make-instance (gensym®) of POINT)))
)

Figure 8-16: BBOX Class.

For the prototype implementation, the face’s code suffices to identify the
feature label.

A face’s code 1s the 1dentification of the expected face’s contribution to the

boundary model of the part and it can be :

o Virtual (V), if the face is expected not to produce a face on the solid model
or if there is no material on either side of the face and therefore it is access

for a tool.

e Real (R), if the face is expected to produce or impnnt a face on the
evaluated solid model or if there is material on one side of the face and not

the other and therefore it is a face to be machined.

In addition to the face codes, tokens and profiles are assigned to every

projection of the feature volume onto the envelope’s faces.

A face’s token identifies the face’s function. It can be said that a foken is a
specialised version of the face’s code. However, it is difficult to reason where a
real face is a bottom or a side face without having the understanding of the

designer. Face fokens can be:
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Cylindrical Step

il

{}Codes. Tokens

Virtual, Top

Real, Bottom \
Virtual, End %ﬁ Virtual, End

Real, Bottom Virtual, Top
Profn'es

Quadrangular

— Q-
-Q =
Quadrangular

Partral @

Figure 8-17: Feature Face Characteristics.

Partial

e Top (T), a virtual face that identifies a tool’s External Access

Direction (EAD, Gindy89), opposite to a bottom face.
e End (E), a virtual face opposite to another end face.
¢ Bottom (B), a real or virtual face opposite to a fop face.

s Side (S), a real face opposite to another side face.
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(defclass FC_NATURE

{multislot code
(type SYMBOL)
(allowed-symbols R V)
(cardinality 6 6)
(default 7DERIVE))
{muttisiot profile
(type SYMBOL)
(allowed-symbols Q C L A)
(cardinality 6 6)
(default ?DERIVEY}))
{multisiot token
(type SYMBOL)
(allowed-symbols SBTE)
(cardinality 6 6)
(default 2DERIVE))

Figure 8-18: FC_NATURE Class.

the envelope’s face. Profile projections can be:

coincides with the envelope’s face.

A face’s profile identifies the shape that the feature volume (FV) projects onto

Arc (A), when a surface containing an arc is produced.

Quadrangular (Q), when a quadrangular face is produced that

Line (L), when a line is produced by the touching of the projecting

FV’s onto the envelope’s face and is lateral to a face with a C

Partial (P), when a quadrangular face occurs, but it only partially

covers the envelope’s face and is lateral to a face with an A profile.

Circular (C), when a circular face projection occurs.
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- Feature ;| “Quadrangular Volurite = | * Cylindrical Volume
. Label .| -Standard | BboxFaces:| Standard- |:Bbox Faces®
Position |, 53456 | Position |. ;153456

L VVVRRY VVVRRY
 step ‘\ QQQQQQ AQQPPA
(EAD’s =4). ‘ ETTBBE ETTBBE
- VVVRRR VVVRRR
Notch = QQQQQQ AQQPPA
(EAD’s = 3) ““J| TTTBBB TTTBBB
) ) RRVVRR RRVVRR
 Hole QQQQQQ LLCCLL
(EAD’s =2) SSTBSS SSTBSS
. VRVRRR VRYRRR
Slot- QQQQQQ APQPPA
(EAD’s =2) TSTBSB TSTBSB
S RRVRRR RRVRRR
Pocket QQQQQQ LLCCLL
(EAD’s= 1)’ SSTBSS SSTBSS
e RRRRRR RRRRRR
_ Hollow QQQQQQ LLCCLL
(EAD’s = 0) SSTBSS SSTBSS

Figure 8-19: Features and their Codes, Profiles and Tokens.

Figure 8-19 shows some example features 1n their standard ornentation beside a

list of characteristics for every face of the envelope. The first line of the “Bbox

faces” column identifies the face codes; the second, the face profiles and; the

last the face tokens.
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In Figure 8-19, a template pattern of virfual and real codes (presented in bold
underlined italic letters) is used to identify the feature label of that type. The
features are presented in their standard position with no changes to the default

orientation.

Tokens can also be used to perform labelling reasoning (cf. Silva90) but, for
the domain chosen, codes seem to suffice and tokens are assigned to the found
Iabel/orientation as are profiles. Tokens are used to ease some reasonings but,
in this implementation, are dependent on the code and orientation

deterrination.

What has previously been called a feature’s End face in chapter 5 (Figure 5-10)
refers to an envelope’s face with a virtual code (those that can have a Top or
End token).

8.5 INTENTS MANAGEMENT IMPLEMENTATION

Some FbDI's have one enrichment rule and its dual verification rule while
others perform their analysis through many verification statements that

represent many different situations.

The rules proved to be a little more complicated than expected and thus slightly
different from the outlines given in Figure 7-4 and Figure 7-5, although the

principle still applies. There are two reasons for this:

e sometimes it is necessary to consider an intent or interaction where the

feature can be considered either a master or slave of that relation.

e sometimes many situations have the same actions, and are implemented in

one rule only.

There are FbDI's that do not apply to some specific features and some FbDI’s

have specialised versions when facing specific (pairs of) features (for instance
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coaxiality can be defined as a concentricity positional GDI between hole
features). Therefore, once more, a FBM system should consider those FbDI's

that are more suitable for the target domain and avoid overlapping FbDI’s.

8.6 FEATURE INTERACTION IDENTIFICATION IMPLEMENTATION

The methodology of feature interaction identification has been implemented
and bound to FbDI's using feature envelopes (bounding boxes) in order to
achieve reasonable efficiency. It was found that feature interaction cases can be
accurately and quickly predicted through their envelope and references to the
actual volumes and faces. These references allow the system to effectively

apply such determination schemes at a lower level if required.

High levels of identified interaction act as filters or approximations for lower
levels of interaction cases if they are not used promptly for some specific
reasoning before lower levels of interaction are identified. Thus, the

implementation is facilitated and accelerated because of this filtering aspect.
The binding of each interaction case with an action via rules is the process that
allows FRIEND to perform its task — feature-based representation validation.
8.7 FEATURE OPERATIONS IMPLEMENTATION

The following are the operations implemented in FRIEND:

e Analysis operations;

e Add FbDI, delete FbDI, add feature and delete feature modelling

manipulation operations;

s Add FbDI, delete FbDI, add FV, delete FV, make obsolete, make active,

split, merge and label revalidation manipulation operations.
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A simple way to delete a feature is to make it inactive as well as making all
feature interaction cases that refer to it inactive or intentional (which 1s done

automatically via the intent management reasoning).

It should be mentioned again that the most recently requested operation (type
and operation itself, e.g. editing-add intent) is not considered by the validation
reasoning (which works the same way for all operations) although it is
recognised that its use could ease the reasoning. For instance, optimised
validations could be triggered according to the add or delete operation.

However, this was not necessary in the framework established here.

8.8 PRIORITY IMPLEMENTATION

Figure 7-2 shows that to implement the loop of reasoning in FRIEND, the
validation reasoming consists of the various reasoning sets organised in a
hierarchical fashion (as implied by the right-hand side of the figure). There is
also a priority relationship among the situations related to the figure and the
feature interaction identification level (Volumetncal, Boundary and Face). The
reasoning goes deep into the interaction level if 1t can not reason with the
information and inferaction already available, and this 1s another reason why

the framework in Figure 7-2 is a loop.

The implementation of the reasonming sets and the priority arrangement is
achieved using the “salience” facility of CLIPS. A rule’s salience identifies its
priority. A rule with higher salience is selected to be executed (fired) if
compared to another active rule. Groups of rules were assigned different
salience values and placed in various files (to emphasise their meaning and

reasoning set).

In essence, the priority scheme suggests that, after identifying the feature

interaction case (at an appropriate level - initially volumetrical), some basic
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volumetric reasonings analyse the model searching for obvious mistakes of

placement and nature (regardless of the feature’s label).

After correcting basic mistakes, a set of reasonings would guarantee that all
features are correctly labelled (helped by further feature-interaction analysis)
because subsequent reasonings will petform more complex analyses (possibly
application-dependent ones) that will subsume correct labelling and none basic

volumetric misrepresentation.

8.9 REASONING SETS EXAMPLES

The implementation has separate rule-based files that reflect the division and
hierarchy for the feature-based reasoning sets. Simply geometrical reasonings
that identify feature interaction cases could have been implemented as rules as
well but were implemented as functions for efficiency reasons. Also, the search
for a feature’s label, presented in section 6.3.2 as the search_label revalidation
operation, that identifies the feature’s correct label according to 1ts face
properties which could be in any orientation compared to the original template

was also implemented as a function for efficiency reasons.

Some of the rules are presented below using a simplified version of the CLIPS
code where some details of the functions being called will be onutted for clarity

reasons.

8.9.1 SIMPLY GEOMETRICAL REASONING

Disjomnt BI interactions mean that one feature is contained within another and
analysing their FAB will lead to a near or far case. If near, then it is possible
that an “internal thin-wall” problem may occur and if far and if the feature has

no other interaction, it can be interpreted as a hollow in the part.
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For adjoint VI cases there will be a possible merging operation (if a matching
conjoint FI case occur) or a change on the feature’s properties from “blind” to

“through” (:f an inside conjoint FI case occurs, see Figure 5-7).

/
8.9.2 SIMPLY VOLUMETRICAL REASONING

A simply volumetrical reasoning is exemplified below. It is considered a simply
volumetrical reasoning because it uses the match volumetrical interaction (thus,

it is +V) but not the label of the features (thus it is -L):

(defrule mat_wi_1
{declare (salience 415})}
{phase direct_related)
(object (1s-a INTERACTION)
(code match)
{type VI)
{master ?mstr)
(n_slaves 1)
(slaves ?slv))
(object (1s-a FEATURE)
(name 7mstr)
(nature ?nt)
(status activelintentional))
(object (1s-a FEATURE)
(name ?slv)
(nature ?n2&~7n1) ; different natures
(status active))

=>

(f (eq YES (Ask “Are you trying to delete slave feature with master feature 2" })
then
(send ?slv put-status inactive)
; Add Intent

(bind ?new (make-instance (gensym®) of INTENT
(master ?slv) (slaves 7mstr))) )

else

({Tell “l will disconsider last add feature I”)

{send ?mstr put-status inactive)

: Add intent

{bind ?new {make-instance (gensym*) of INTENT
{master ?mstr) (slaves ?siv))))

{send ?new put-code deleted_by)
(+ [REL] ?new)
)

Figure 8-20: A Simply Volumetrical Rule Example
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8.9.3 SIMPLY LABELLING REASONING

A simply labelling reasoning is exemplified below. If a face of a given feature
“abuts” and is completely inserted into another feature’s real face, then the
former must be a virtual face. Using reasonings such as this the labelling VDI

can be maintained.

A function check_label compares the template and the realisation of the feature
and if it does not match then the label is invalid, and the search_label
revalidation operation (inside check_label) will then search for the right match,
The search_label process 1s responsible for keeping the label-to-shape
relationship matching as defined by the template of every feature's type. It
considers a feature interaction at the face level, not at the volumetrical level

(thus it is -V), and immediately affects the feature’s label (thus it is +L).
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{defrule ins_fi_l1b
(declare (salience 305))
{phase direct_related)
{object (1s-a INTERACTION)
{code inside)
{master ?mstr)
{(name ?Int)
(type Fl)
(slaves ?slv)
(status active))
{object (1s-a INTERACTION)
{master ?mstr_feat)
(type VI)
(n_elements ?n&:(> ?n Q)
(elements $7fi_list1 ?int $7i_list2)
(slaves 7slv_feat)
(status active))
{object (1s-a FEATURE)
{(name ?mstr_feat)
(status active))
(object (is-a FEATURE)
(name ?slv_feat)
(status active))
{test (eq (nth$ ?mstr (send ?mstr_feat get-code)) R})
(test (or (eq (nth$ ?slv {send 7slv_{eat get-code}} R) ;R-R,or
(eq (nth$ ?slv (send 7slv_feat get-code)) V))) ;R-V
(test (eq (nth$ ?slv (send ?slv_feat get-profile)) Q) } iP(shv)=Q
=
{if (or {eq {nth$ ?mstr (send ?mstr_feat get-profile)) A)
{eq (nth$ ?mstr (send ?mstr_feat get-profile)) Q)
{eq {nth$ ?mstr {send ?mstr_feat get-profile)) C))
then (send ?mstr_feat put-code {replace$ (send ?mstr_feat get-code)
{eval (format t "%d" ?mstr)) (eval {format t "%d" ?mstr)} (create$ V) )))

{send ?mstr_feat check_label)

)

Figure 8-21: A Simply Labelling Rule,
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8.9.4 COMPLEX REASONING

An example of complex reasoning is exemplified in Figure 8-22 and suggests
that a particular type of feature {non-through) that should not be split if it
crosses another feature because of possible accessibility problems. It considers
the volumetrical cross subjoint VI interaction between the features (thus it is

+V) as well as their labels (thus 1t is +L).

{defrule cro_wi_1

{declare (salience 200))

(phase direct_related)

{object (1s-a INTERACTION)
{code cross)
{name ?int)
{master 7mstr)
{n_slaves 1)
(slaves ?slv)
{status active})

{object (is-a FEATURE)
{name ?mstr)
(label ~hole&~slot_tru&~step&~gap)
{nature 7n1)

(status active))
{object (1s-a FEATURE)
(name ?7slv)
{volume rect)
{nature ?n1) ; same natures 5-7-96
(status active))

==

{if (eq NO {Ask “Will resulting spit features have ACCESSIBILITY ?")

then (send ?int put-go_further NO)
{send 7int put-status intentional )

else
{send ?int put-status inactive)
{send ?mstr ft_split_cross 7slv) )

Figure 8-22: A Complex VDI Rule.
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8.9.4.1 TESTING THIN-WALLS

As discussed in Salmon (1997), a pure geometric reasoning approach for
proximuty (thin-wall) detection could be very demanding (requiring (n® - n)2
Boolean intersection calculations) and cumbersome (requiring the use of a
“Minkowski Sum” grow) for a precise detection. Bounding boxes were used

instead.

Similarly, FRIEND uses the feature envelope and 1s helped by the availability
of the feature interaction cases and the feature envelope face properties (codes
and projections) which makes the FRIEND prediction of possible thin-wall
problems an almost trivial activity.

To exemplify the proximity AOI, a thin-wall test rule using a fixed minimum
wall thickness was established regardless of the machining method and
material involved. Thin-wall cases were observed to originate from adjoint VI
and disjoint VI cases and occur in two ways: feature-to-feature or feature-to-

stock (see Figure 9-9):

e Feature-to-stock disjoint cases, where a thin-wall appears between two

features that are near each other but not touching;

o Feature-to-feature adjoint cases, where a thin-wall appears between two

features despite the fact that they are touching each other;

¢ Feature-to-stock adjoint cases, where a thin-wall appears when a feature

touches the limits of the stock-material;

o Feature-to-feature disjoint cases, where a thin-wall appears when a feature

is near the limits of the stock-material but not touching it;
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In addition, a thin-wall AOI (TW) could be an active, inactive or intentional
intent. An acfive TW intent means that there is a possible thin-wall problem yet
to be resolved. An inactive TW intent means that there is not a thin-wall
problem, the possibility of the existence of a thin-wall problem has been
discarded already or it has already been resolved. An intentional TW intent
means that there is not a thin-wall problem but the features are close enough to
execute the respective rules or that the features are close enough and should be
left as they are because of an unforeseen reason. Figure 8-23 presents an

example of a disjoint thin-wall feature-to-feature AOI test rule.

(defrule tw_1
(phase approval_reascning)
{object (1s-a INTERACTION)
{master ?mstr)
{name 7int)
{slaves 7slv)
(type VI)
{code disjoint)
{status active))
{object (is-a FEATURE)
{name ?mstr)
(id ~STOCK)
{volume rect)
{status active))
(object (1s-a FEATURE)
{name ?slv)
(id ~STOCK)
{volume rect)
{status active))
(test (<= (send (send ?mstr get-envelope) bb_distance {send ?slv get-envelope)) 5))
=
{if (eq YES (Ask “Is there a THIN WALL between features 7" ))
then (send ?int put-code near)
(send ?int put-go_further NO)
else  (send ?int put-go_further NO)
(send ?int put-code far))
)

Figure 8-23: A Thin-Wall AOI Test Rule,

For a more complete implementation of the thin-wall analysis, it would be
necessary to take into account the feature types, their orientations, the selected

machining processes and tools for each feature and the material involved.
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8.10 INTENTS MANAGEMENT EXAMPLES

8.10.1 EXPERIENCE-BASED GUIDED ENRICHMENT

Figure 8-24 presents an example of a guided enrichment for the co-radius GDL
The rule automatically adds the INTENT between active features that are the
result of splitting a feature.

(defrule en_cor_g
(phase ennchment)
(object (1s-a INTENT)
(code sphit_into)
(slaves $7slvs)
(status active))
(object (is-a FEATURE)
{name ?slv_1)
(label ?Ibl)
{volume cyl)
(status active))
(object (is-a FEATURE)
{(name ?slv_28~?slv_1)
(label ?Ibl)
(volume cyl)
(status active))
(test (member$ ?slv_1 ?slvs))
(test (member$ ?slv_2 ?slvs))
(not (object (is-a INTENT)
(code co-radius)
{master ?slv_1) (slaves ?slv_2)))
(not (object (1s-a INTENT)
{code co-radius)
{master ?slv_2) {slaves ?slv_1)))
=>
(bind ?new (make-instance of INTENT
{master ?slv_1) (slaves ?slv_2) (type StrGDI)))
{send ?new put-code co-radwis)
(+ [REL] 7new)
(send 7new put-status active)

)
Figure 8-24: An Experience-based Guided GDI Enrichment.

Because of this it is not necessary to test thesr actual radii and 1t is considered
that the co-radius GDI is an important relationship between these features to
overcome the fact that they have been split. The four actions performed by this
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rule are to create a structural GDI INTENT, instanciate the co-radius code, add
the intent to the list of all RELATIONS and activate the new FbDL

Figure 8-25 presents a guided enrichment for the ¢ slot AOL It is executed
when a gap feature (see feature taxonomy adopted in this work in section 1.5.2)
is nested@side of another rectangular feature and no such INTENT (active or

inactive) already exists.

(defrule en_aoi_ts
{phase ennchment)
(object {1s-a FEATURE)
(name 7f1)
{volume rect)
{label gap)
(status active))
{object {1s-a FEATURE)
(name 7{2&~7f1)
(volume rect)
(label hole)
(status active))
{object (1s-a INTENT)
{master 7f1)
(slaves 7f2)
(code nested @side)
(status active))
{not (object (1s-a INTENT)
{master ?f1)
(slaves ?f2)
(code t_slot)))
=>
{bind 7new (make-instance of INTENT
(master ?f1) (slaves ?12) (type AOI)))
(send Tnew put-code t_slot)

(if {eq YES (Ask “Can you work with a T_SLOT between master and slave™))
then

{send ?new put-status active)

else

{send 7new put-status inactive})

{+ [REL] ?new)
)

Figure 8-25: An AOI Enrichment Rule.

The AOI is created, instantiated and, according to the user’s desire to

acknowledge the FbDI, it is activated or inactivated. Therefore, if an inactive
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AOI 15 created, it will prevent the system from asking again for this relation

between the same features (unless the conditions change).

8.10.2 BLIND ENRICHMENT

Figure 8-26 presents a blind search for a co-radius GDL. It creates the INTENT
for all pairs of cylindrical features that have equal radii where there is no
(active, inactive or intentional) co-radius INTENT between them. No other

condition is implied.

(defrule en_cor_b

(phase ennchment)

(object (1s-a FEATURE)
(name ?mstr)
(volume cyl)

(status active})

{object (is-a FEATURE)
(name ?slv&~?mstr)
{volume cyl)

(status active})

(test {(eq (send ?mstr get-radius) (send ?slv get-radius)))

{not (object (1s-a INTENT)
{code co-radius)
{master ?mstr)
(slaves 7siv)))

{not (object (1s-a INTENT)
(code co-radus)
(master ?slv)
{slaves ?mstr)))

=>
{bind 7new {make-instance of INTENT
{master ?mstr)
(slaves 7slv)
{type StrGDI)))
{send ?new put-code co-radius)
{+ [REL] ?new)
{if {eq YES (Ask “Create co-radius INTENT between features
7}
then; nothing to do, the default status i1s active
else (send ?new put-status inactive))
)

Figure 8-26: Blind Co-radius GDI Enrichment.
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8.10.3 VERIFICATION

Figure 8-27 presents a verification for the co-radius GDL It simply checks the
radu of features in the INTENT. It should either inactivate the GDI or change
one of the features involved to make it comply with the conditions. Function

not_yet means that the option has not yet been implemented.

(defrule ve_cor
{phase enrichment)
(object (1s-a FEATURE)
(name ?mstr)
(volume cyl))
(cbject (1s-a FEATURE)
(name 7slv)
(volume cyl))
(test (neq (send ?mstr get-radius) (send ?slv get-radius)))
{object (1s-a INTENT)

(name 7int)
(code co-radus)
(master ?mstr)
(slaves 7shv)
(status activelintentional))
=>
(if (eq YES (Ask "Delete co-radius GDI between master and slave? *
then
(send ?int put-status inactive)
else

(not_yet "Should suggest change radius of master or slave")

)

Figure 8-27: A Co-radius GDI Verification.
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Figure 8-28 presents a vernification statement for the f_slot AOL It tests the
status and type of the features involved as well as the required rested@side
INTENT between them. It is implemented in an alternative, but equivalent, way
to the outline given in Figure 7-4 and Figure 7-5: It should be noticed that a
Boolean test ~(Cond; AND Cond, AND ...) is equal to (~Cond; OR ~Cond,
OR ...). If the ¢_slot 1s to be removed it is inactivated, otherwise it is made
intentional because it can not be considered active according to how it was
defined here.

{defrule ve_aol_ts
{phase ennchment)
{object (1s-a INTENT)

(name 7intent)
(master 7f1)
(slaves ?{2)
(code t_slot)
(status active))
{not (and
{object (1s-a FEATURE)
{name ?{1)
{volume rect)
{label gap)
(status active))
{object (1s-a FEATURE)
(name ?f2)
{volume rect)
(label hole)
(status active))
{object (1s-a INTENT)
(master ?f1)
(slaves ?f2)
{code nested@side)

{status active)}))
=
(f {(eq YES (Ask “Delete T_SLOT between master and slave 7 "))
then
(send ?intent put-status inactive)
else

{send 7intent put-status intentional)
; should edit feature or feature2

)

Figure 8-28: An AOI Verification Rule.
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8.10.4 INHERITANCE-BASED GUIDED ENRICHMENT

Figure 8-29 presents an enrichment based on the fact that if a feature was
created from the application of the split revalidation operation on another
feature, the INTENTs assigned to the original feature are automatically
inherited by the newly generated feature. It was found that most INTENT'
conditioned by disjoint VI interaction cases can always be inherited. However,

not all INTENTS conditioned by adjoint VI cases can always be inherited.

{(defrule inhert_splt_act

{phase enrichment)

{object {is-a INTENT)
(master ?mstr)
(code split_into)
(slaves $7? ?siv $7)
(status active))

{object (1s-a INTENT)
{name ?int)
(master ?mstr)
(code ?cd&obsoleted_byldeleted_by)
(type ?tp)
(n_slaves 7nslvs)
(slaves $?the_other_slaves)
(status mactive))

{object {is-a FEATURE)
{name ?slv})
(status activelintentional}))

(not (object (1s-a INTENT)
(master ?slv)
{code ?¢d)
(type 7tp)
(slaves $?the_other_slaves)))

=

; The onginal intent 1 removed

(send ?int put-status intentional)

(bind 7new (make-mstance of INTENT

{type ?tp) (master 2slv) (slaves ?the_other_slaves) (n_slaves ?nslvs)})
(send 7new put-code ?cd)

(+ [REL] ?new)

(f (eq YES {Ask “Inherit INTENT form master ?7)
then ; nothing to do, default status is active
else (send ?new put-status inactive))

Figure 8-29: An Inheritance Enrichment Rule Example.
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8.11 FINAL REMARKS ON THE IMPLEMENTATION

| This research was conducted in two main implementation phases:

In the initial phase, the conceptual feature-based representation validation
problem was identified (see section 1.2) and its ongins (see chapter 5 and

section 3.5) were analysed.

This led to the establishment of a validation framework (see section 3.3)
and some revalidation operations (section 6.2.3.3). Subsequently, a priority

orgamsation implied by the reasoning was obtained (section 7.2).

In the second phase, the validation framework and the VDI's were thought
to be suitable to be extended towards an intent-driven reasoning system

where other types of FbDI’s were to be included (see section 4.3).

However, a methodology to identify the elements of thuis wider system
became necessary. Because a classification for features existed and
similarly for feature interaction cases, this was considered an important

aspect of the validation framework and as a possible approach.

It was decided that a process simular to feature elicitation (see section 1.5.2)
was to be used towards the other elements (see section 4.2 and 6.1) which
then helped identify and clarify FbDI's (see section 4.4) and operations
(section 6.3). In addition, the ways of reasoning were extended to

accommodate the other FbDI types (section 7.3).
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8.12 SUMMARY

The implementation of a prototype system, called FRIEND, has allowed the
verification of the elements studied here (i.e. feature interactions, feature-based
designer’s intents, reasoning priority, intent management and feature-based

operations) to compose a working DbF system.

The interaction identification methodology has been applied using the feature
envelope (bounding box) instead of the actual volume. Invalidity tests were
implemented using rules in a knowledge-based system. Rules were typified and

exemplified.

The visualisation was carried out by a commercial CAD system that

communicates with the reasoning system.
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This chapter presents some feature-based part models as test
cases for FRIEND. Some of these models have been used in the
literature as test cases for feature-based modelling system
implementations. It aims to show that the prototype system is
able to represent and reason with components which have been
modelled by and used to test the capabilities of other feature-

based modellers.

9.1 INTRODUCTION

This chapter presents some test parts that are adaptations of parts published 1n
the literature and modelled using feature-based modellers. They are

adaptations of the original parts because:
e Dimensions are frequently not specified for the parts;

¢ The feature taxonomy used to describe the part could be different from that
used by FRIEND;

s Some invalid situations were deliberately introduced in the part definitions

to observe how FRIEND would respond to them;

* Some features implemented in other systems have not been implemented

in the prototype system;
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e Some geometric configurations have been simplified in order to save

computing time.

9.2 STANDARD ORIENTATION

Figure 9-1 presents most of the feature types implemented in FRIEND. They
are placed in their standard orientation, i.e. the features are translated but not
rotated relative to their defining template. Thus is a different way of presenting

FRIEND’s feature taxonomy depicted in Figure 8-19.

Figure 9-1: Features in Standard Orientation.

The model is defined via a part descniption file (“.prt”) which is a simple way
of describing all features that represent a model. This facility avoids the task
of redefining the model feature by feature every time an analysis is to be
performed. The “.prt” file for the part in Figure 9-1 appears in Figure 9-2. The
“.prt” file defines:

e the total number of features in the part (where the stock-material is

considered a satellite feature which has been in Figure 1-6);

o their assigned names (which has nothing to do with their labels);
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their volume type (rect or cyl);
a radius to be used if the feature is cylindrical;
two rotations to identify the orientation of the feature on the part;

two points to specify the envelope (bounding box): the minimum (bottom-
left corner) and maximum (top-right corner) vertices of the bounding box

in a left-handed coordinate system.

12

STOCK, satellite, rect, 0
ong, crig

500 601030
A, slot_tru, cyl, 2
ong, orig

550 101030
B, slot, cyl, 1.5
orig, orig

1550 20105
C, pocket, cyl, 2.5
orig, ong

15510 201015
D, hole, ¢yl, 2.5
ong, ong

15020 201025
E, slot, rect, O
ong, orig

2550 30105
F, pocket, rect, 0
ong, org

25510 301015
G, hole, rect, 0
orig, orng

25020 301025
M, slot_tru, rect, 0
orig, ong

4050 451030
I, notch, rect, 0
orig, orig

3550 40105
J, step, rect, 0
ong, ong

5550 601030
K, notch, cyl, 5
ong, ong

5050 55105

Figure 9-2: Part Description File Example.
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It should be noted that, because the features have faces with determined
properties that go beyond simply describing the primitive volume (such as Top
and Bottom, which could be thought of as a way of describing an upright
orientation), two rotations are required and sufficient to obtain any orientation
in a 3D environment. These rotations are limited though to a group which

always produces a feature parallel to one of the Euclidean axes.

The rotations in Figure 9-2 are set as “orig, orig”, which means that their

orientation have been left as the default. The features are called A, B, C, E, etc.

The stock-material is considered to be a rectangular satellite feature of positive
nature and should be defined as the first feature in the model which contains
the remaining negative features. In addition, similarly to other work (Gindy89,
Gao93), “blind” holes are classified as pocket features with a round or

quadrangular profile.

9.3 LABELLING

Figure 9-3 presents a part from Martino and Giannini (1994a) where the
labelling problem is highlighted. It is shown that the addition of a feature into

a model could change all the existing features 1n the model.

Figure 9-3(a) presents the original part containing an upside down pocket
(elsewhere called a non-through or blind hole) and a quadrangular hole (also
called a through kole). The addition of a step feature renders the existing hole
and pocket features invalid. Figure 9-3(b) presents the final part comprised of
the incoming step, a slot_tru (originally the hole) and another hole (formerly

the pocket).

Figure 9-4 presents the description of the part in Figure 9-3(b) before and after

the validation reasoning,.
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Figure 9-3: Martino and Giannini’s Part,

In this example, the major differences between the valid and invalid parts are
(see bold text in Figure 9-4):

the HOLE-TRU feature, labelled as hole initially, receives the invalid
status and is split into HOLE-TRU_1 and HOLE-TRU_2. HOLE-TRU_1
1s redundant to the volume of the step and therefore it is made obsolete and
thus receives the intentional status. HOLE-TRU_2 is the remaining part
that really affects the stock and thus receives the validated slor_tru label
and an active/valid status. It should be noted that both envelopes are
derived from the HOLE-TRU feature.

Similarly, the BLIND-HOLE feature, labelled correctly at the beginning as
a pocket, is split into invalid and valid parts. The valid part, BLIND-
HOLE_2, is validated as a hole feature and receives the active status.

The STEP feature, labelled step, has indeed been found to be a step feature
but FRIEND corrects its orientation (compare the orientation of the step

features in Figure 9-3(b) with that presented in Figure 9-1).

Both HOLE-TRU_1 and BLIND-HOLE_ 1 become intentional features

because their volumetric intention can reappear if the STEP feature is deleted.
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Before and ...

... After the Validation Reasoning

4
STOCK

satellite, rect, 0
org, ong

000 201020

HOLE-TRU

hole, rect, 0

orig, rz80

0258 207513

BLIND-HOLE

pocket, cyl, 25

orig, rz180

75015 1257565

STEP

step, rect, 0
orig, orig

050 201015

(1): STOCK(gen1),BLUE (satellite, rect, active),
BBox: (1:ong,2:0ng)
P=000.000P=200100200

(2): HOLE-TRU(gen7?),_ (hole, rect, inactive),
BBox: (1:0ng,2.rz80)
P=002580P=2007.513.0

(3). BLIND-HOLE(gen16),_ (pocket, cyl, inactive),
BBox: (1:0ong,2:rz180)
P=750015P=1257586.5

(4). STEP(gen25),GREEN (step, rect, active),
BBox: (1:0rig,2:ry90)
P=005000P=20.010.015.0

(5): HOLE-TRU_1(gen58),_ (hole, rect, intentional),
BBox (1-ong,2:r290)
P=005080P=20.07513.0

(6): HOLE-TRU_2(gen64),RED (slot_tru, rect, active),
Bbox: (1:0ng,2.ry90)
P=002580P=20.05.013.0

(7): BLIND-HOLE_1{gen94),_ {pocket, cyl, Intentional),
BBox: (1:0ng,2:rz180)
P=755015P=1257565

(8)* BLIND-HOLE_2{gen1i00),YELLOW (hole, cyl, active),
BBox: (1 orig,2:ong)
P=750015P=1255.06.5

Figure 9-4: Martino and Giannini’s Part Description.

9.4 VALID PART DESCRIPTION

Figure 9-5 reproduces the part presented in Figure 1-9 before (a) and after (b)

the validation reasoning performed by FRIEND. Figure 9-6 shows the

corresponding part description file. The left-hand side of the figure shows the

non-validated representation and the right-hand side shows FRIEND’s output.

The name of the feature is usually maintained from the “.prt” file unless the

feature is split or merged with another in which case 1t will receive a numeric

addendum (see features number 5 and 6 in the right-hand side of Figure 9-6) or

the “+”sign (see feature number 8 in Figure 9-6) to indicate the original

features, respectively.
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(b)
Figure 9-5: An Example Part Before (a) and After (b) Validation.,

The output produced by FRIEND lists all features in the model This list can
also include invalid/inactive and intentional features in addition to the

valid/active ones. The output gives the following information:
o the name of the feature;

* an internal variable (e.g. gen60) and a colour (only if it is a valid feature

and should be visualised via the FRIEND-VIEW module);
o the label;
o the volume type (rect or cyl);
o the status (valid, invalid or intentional);
e the validated envelope (Bbox) orientation represented by two rotations;

e two points that specify the size and position of the envelope (minimum and

maximum points);
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Before and ...

... After the Validation Reasoning

5

STOCK
satellite, rect, 0
ong, ong
000151020

Entalhe
notch, rect, 0
ong, ong
1050 151010
RasgoNaoPassante
hole, rect, 0

ong, ong

07525 5107.5

FuroNaoPassante
slot_tru, cyl, 2.5
orig, ong

55125 1015175

RasgoQueAlteraTudo
slot, rect, 0

orig, orig

550 101010

{1): STOCK(gen1),BLUE (satellite, rect, active),
BBox. {1:ong,2.ong)
P=000000P=15010020.0

{2): Entalhe{gen?),_ (notch, rect, inactive),
BBox: (1-ong,2:ong)
P=10.5.0.P = 15.10.10.

(3): RasgoNaoPassante(gen17),GREEN (slot_tru, rect,
active),

BBox: (1-orig,2'ry90)

P=07525P=5.10.75

{4): FuroNaoPassante(gen51),_ (pocket, cyl, inactive),
BBox: {1-orig,2:0ng)
P=5.5.125P=10.15.17.5

{5): FuroNaoPassante_1(gen60),RED
active),

BBox: {1:orig,2:0rig)
P=5.5.125P=10.10.17.5

{pocket, cyl,

{6): FuroNaoPassante_2(gen66),_ (pocket, cyl, inactive),
BBox- (1:ong,2-ong)
P=5.10.125P=10.15.175

(7): RasgoQueAlteraTudo{gen82),_ (notch, rect, Inactive),
BBox: (1:0ng,2:0r19)
P=5.5.0.P =10.10. 10.

(8). Rasgo&Entae+(geni26),YELLOW
active),

BBox: (1:orig,2.0ng)
P=5.5.0.P=15.10. 10.

{notch, rect,

Figure 9-6: Non-validated and Validated Model Description.

In addition, FRIEND was able to merge adjacent features to compose a

“Rasgo&Entae+” feature, labelled notch, at the same time that it split the

“FuroNaoPassante” feature, labelled hole, and discarded (made inactive) the

obsolete part “FuroNaoPassante_2”. FRIEND also corrects the label of the

resulting “FuroNaoPassante_1"" and calls it a pocket feature, These features are

highlighted in the respective descriptions. Both these reasonings are related to

the fittability VDI (see section 3.5.2.2) where the features had parameters too

small or too large, respectively.
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Feature RasgoNaoPassante has been incorrectly defined as a slot feature and it
appears corrected as a slot_tru feature (see feature 3 in the right-hand side of
Figure 9-6). This is a typical example of the result of a simply labelling
reasoning presented in section 8.9.3 (Figure 8-21).

As a result of the reasoning, some features were made inactive in order to give

rise to a more accurate representation of the model using active features.

9.5 MORPHOLOGICAL REASONING TEST

Figure 9-7 presents a part similar to Figure 3-10 where a complete conceptual
morphological validation process is carried out. Figure 9-7(a) shows the part
with the original volumes of the features while Figure 9-7(b) shows the output

after the application of associated Boolean operations.

FRIEND is able to discard part of the cylindrical slor outside the stock-
material and the part overlapping the other slot feature.

@ (®)
Figure 9-7: Morphological Validation Reasoning.

In addition, the first added feature (“EnteredFeature”) is incorrectly defined as
a pocket instead of a slot, which appears corrected in the output listing (Figure

9-8). However, FRIEND does not merge the resulting slots (as happens in
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Figure 3-10) because the resulting features have different radii. Nevertheless,

the second cylindrical slot is redefined as slot_tru.

Figure 9-8 presents the description of the part in Figure 9-7 before and after

the conceptual morphological validation reasoning,.

Before and ... ... After the Validation Reasoning
3 (1). STOCK(gen846),BLUE (satellite, rect, active),
STOCK BBox: (1-ong,2:ong)
satellite, rect, 0 P=000.00.0 P =25.025025.0
ong, ong
000 252525 (2) EnteredFeature(gen852),GREEN (slot, rect, active),

BBox: (1:ong,2:ry90)
EnteredFeature P=0010.05.0 P=15.025.020.0
pocket, rect, O
ong, rz270 (3). EnteningFeature{gen891),_ (slot, cyl, inactive),
0105 152520 BBox: (1.ong,2:ry30)

P=12.010.05.0 P = 30.0 25.0 20.0

EntenngFeature
slot, cyl, 4 (4): EntenngFeature_1(gen899),_ (slot, cyl, inactive),
ong, ryS0 BBox; (1.0ng,2:ry270)

121065252520 P=12010050P=250250200

(5): EntenngFeature_2(gen905),_ (slot, cyl, inactive),
BBox: (1'ong,2:ry90)
P=25010050P =30.025.020.0

{6): EntenngFeature_1_1(gen932),__ (slot, ¢yl, intentional),
BBox;: (1.ong,2:ry270)
P=12010050P =15.025.020.0

(7). EntenngFeature_1_2(gen938),RED (slot_tru, cyl, active),
BBox: (1:0n9,2.ry20)
P=15.010.05.0P =25.0 25.0 20.0

Figure 9-8: Part Description Before and After Validation.

Because part of the “EnteringFeature” has a redundant VDI with the
“EnteredFeature” the corresponding feature after the split revalidation
operation (“EnteredFeature_1_1"") receives the infentional status. This means

that if the former “EnteredFeature” 1is deleted from the model,

“EnteredFeature_1_1" can become active again.
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9.6 THIN WALL TEST CASES

Figure 9-9 shows four example parts produced to demonstrate how FRIEND
identifies proximity AOT’s (thin-walls). The figure suggests that thin-wall

reasoning can be built upon feature mteraction cases:

o feature-to-feature adjoint cases are exemplified by a part where a curved

face of a step touches the bottom cylindrical face of a hole feature;

o feature-to-feature disjoint cases are exemplified by a part where a through

slot is too close to a step feature;

¢ feature-to-STOCK adjoint cases are exemplified by a part where a curved

face of a step feature occurs at the limits of the stock material, and;

o feature-to-STOCK disjoint cases are exemplified by a part where hole

features are too close to the limits of the stock material.

Feature-to-Feature Feature-to-STOCK

Adjoint

Cases

Disjoint

Cases

Figure 9-9: Thin-Wall Cases.
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Figure 9-10 presents the validated output produced by FRIEND for the part
exemplified 1n the bottom left corner of Figure 9-9, which corresponds to a
feature-to-feature disjoint thin-wall case. The rule for this case was presented
in Figure 8-23. The volumetric (VI) and boundary (BI} interactions that were
obtained from the model and used in the reasoning of proximity AOQI are

shown in Figure 9-11

{1): STOCK(gen1),BLUE (satellite, rect, active), BBox: (1:0ng,2:0ng)
P=000.000P=20.015.025.0

(2): green(gen7),GREEN (slot_tru, cyl, active), BBox. (1.ong,2:ry90)
P=0.05.07.0P=20.015.016.0

(3): red(gen23),RED (step, cyl, active), BBox: (1 ong,2:ry90)
P=0.05000P=20015.060

(4): yellow(gen35),YELLOW (pocket, cyl, active), BBox: (1:ong,2:0ng)
P=2050180P=6015.0220

(5). pink{gen51),PINK (pocket, cyl, active}, BBox: (1:orig,2-orig)
P=14050180 P=18015.022.0

Figure 9-10: Description of a Part containing Thin-Walls.

{red,RED) -> near -> (1): (green,GREEN)
(yellow,YELLOW) > near -> (1)' (green,GREEN)
{yellow,YELLOW) -> disjoint -> (1): (red,RED)
(pink,PINK) -> near -> {1): (green,GREEN)
(pink,PINK) -> disjoint -» {1): {red,RED)
(pink,PINK) - disjoint -> (1): (yellow,YELLOW)
(green,GREEN) -> imited -> (1): (STOCK,BLUE)
(red,RED) -> imited -> (1): (STOCK,BLUE)
(yellow,YELLOW) -» limited -> (1): (STOCK,BLUE)
(pink,PINK) -> imited -> (1). (STOCK,BLUE)

Figure 9-11: Volumetric and Boundary Interactions.

It is considered that the following thin-wall cases happen in this part: between
the step called “red” and the slot_tru feature called “green”; between both
pocket features, called “yellow” and “pink” and the slot_tru feature called
“green”. The existence of this type of proximity AOI can be tested directly

from the disjoint volumetric interaction (VI) cases, which can thus be
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confirmed or not, generating the near or far disjoint VI cases (highlighted in

Figure 9-11, see also section 8.9.4.1).

9.7 CHANG’S PART

Figure 9-12: Chang’s Test Part.

Chang (1990:208) studied the problems associated with expert process
planning for manufacturing. Figure 9-12 reproduces a test part used to discuss
the problems and reasonings related to the generation of automatic process

plans. Figure 9-13 presents the validated output for this test part.

(1): STOCK(gen585),BLUE (satellite, rect, active}, BBox: (1:0ng,2'ong)
P=000000P=15010.0220

(2): CentreSlot-F1(gen591),GREEN (slot_tru, rect, active), BBox: {1 orig,2°ry90)
P=007040P=15010.018.0

(3): MidHole-F12(gen637),RED (pocket, cyl, active), BBox: (1-orig,2:0nq)
P=805085P=1307.0135

(4): MidHole-F13(gen70),YELLOW (hcle, cyl, active), BBox: (1-orig,2 ong)
P=900095P=1205.0125

(5): EnterSlot-F14(gen682),PINK (slot, rect, active), BBox: {1:0ng,2.ry90)
P=004090P=407.0130

{6): UnderStep-F15(gen719),RED (step, rect, active), BBox: (1:0ng,2:r2180)
P=0.00000P=4.020220

(7). Hole1-F10{gen771),LIGHTBLUE (pocket, cyl, active), BBox: {1:0ng,2:0ng)
P=10801.0P=3010.03.0

(8): Hole2-F9(gen790),BLACK (pocket, cyl, active), BBox: (1.0ng,2.0ong)
P=1208.010P=14.010.03.0

(9): Hole3-F7(gen814),GRAY (pocket, cyl, active), BBox: (1 ong,2-ong)
P=12080190P=14.010.021.0

(10): Hole4-F8(gen843),RED (pocket, cyl, active}, BBox: {(1:0ng,2:ong)
P=1080190P=3010.021.0

Figure 9-13: Validated Output for Chang’s Test Part.
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One strategy adopted by Chang (1990) was to identify “clusters” of features
that share the same tool and/or tool access direction. This information is used
to reason about setup planning. A hierarchical graph that identifies various
types of precedence (such as structural precedence due to process geometry
constraints and loose precedence due to good manufacturing practice) is

| considered for reasoning about precedence planning.

(MidHole-F12,RED) -> nested @bot -> (1): (CentreSlot-F1,GREEN)
(MidHole-F13,YELLOW) -> nested @bot -> (1): (MidHole-F12,RED)
(MidHole-F13,YELLOW) -> paralle! -> (1}: (MidHele-F12,RED)
{MidHole-F13,YELLOW) -> concentric -> {1): (MidHole-F12,RED)
{EnterSlot-F14,PINK) -> nested @bot -> (1): (CentreSlot-F1,GREEN)
{EnterSlot-F14,PINK) -> parallel -> (1): {(CentreSiot-F1,GREEN)
{Hole1-F10,LIGHTBLUE) -> parallel -> (1) (MidHole-F13,YELLOW)
{Hole1-F10,LIGHTBLUE}) -> parallel -> {1): (MidHole-F12,RED)
(Hole2-F9,BLACK) -> co-radius -> (1): (Hole1-F10,LIGHTBLUE)
(Hole2-F9,BLACK) - parallel -> (1): (Hole1-F10,LIGHTBLUE)
(Hole2-F9,BLACK) -> parallel -> (1): (MidHole-F13,YELLOW)
(Hole2-F9,BLACK) -> parallel -> (1}: {MidHole-F12,RED)
(Hole3-F7,GRAY) -> co-radws -> (1): {Hole2-F3,BLACK)
(Hole3-F7,GRAY) -> co-radius - (1): (Hole1-F10,LIGHTBLUE)
(Hole3-F7,GRAY) -> parallel -» (1): (Hole2-F9,BLACK)
(Hole3-F7,GRAY) -> parallel -> (1): (Hole1-F10,LIGHTBLUE)
(Hole3-F7,GRAY) -> parallel -> (1): (MidHole-F13,YELLOW)
(Hole3-F7,GRAY) -> parallel -> (1}: (MidHole-F12,RED)
(Hole4-F8,RED) -> co-radwus -> (1); (Hole3-F7,GRAY)
{(Hole4-F8,RED) -> co-radius -> (1): (Hole2-F9,BLACK)
(Hole4-F8,RED) -> co-radius -> (1): (Hole1-F10,LIGHTBLUE)
(Hole4-F8,RED) -> parallel -> (1): (Hole3-F7,GRAY)
(Hole4-F8,RED) > parallel = (1}: (Hole2-F9,BLACK)
(Hole4-F8,RED) -> parallel -> {1): (Hole1-F10,LIGHTBLUE)
(Hole4-F8,RED) -> parallel -> (1): (MidHole-F13,YELLOW)
(Hole4-F8,RED) -> parallel -> {1): (MidHole-F12,RED)

(MidHole-F13,YELLOW) -> ¢_bore -> (1): (MidHole-F12,RED)
{Hole1-F10,LIGHTBLUE) -> coEAD -> (1): (MidHole-F12,RED)
(Hole2-F9,BLACK) -> coEAD -> (1): {Hole1-F10,LIGHTBLUE)
(Hole2-F9,BLACK) -> coEAD -> (1) (MidHole-F12,RED)
(Hole3-F7,GRAY) -> coEAD -> (1): {Hole2-F9,BLACK)
(Hole3-F7,GRAY) -> coEAD -> (1): (Hole1-F10,LIGHTBLUE)
(Hole3-F7,GRAY) -> coEAD -> (1): (MidHole-F12,RED)
(Hole4-F8,RED) -> coEAD -» (1). (Hole3-F7,GRAY)
{Holed4-FB,RED) -> coEAD -> {1} (Hole2-F2,BLACK)
(Hole4-F8,RED) -> coEAD -> (1): (Hole1-F10,LIGHTBLUE)
{Hole4-F8,RED} -> coEAD -> {1): (MidHole-F12,RED)

Figure 9-14: Designer’s Intents to Assist Precedence and Setup Planning.
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Although generating plans is not FRIEND’s major concern, it gathers
valuable information during the design process that can be readily used for
similar clustering and hierarchical reasoning. For instance, the various types of
GDT's and AOI’s presented in Figure 9-14 obtained while modelling the part
are examples of such valuable information. In addition, FRIEND recognises
the existence of a compound AOI and assigns the appropriate counter_bore

intent between the hole features in the test part.

9.8 A LOSTINTENTION?

Perng and Chang (Perng97b) studied the problems associated with editing a
feature-based model. Figure 9-16 gives the validated output description of the
part in the Figure 9-15(b). It should be noted (see bold text in the figure) that
some features have an inactive status (such as Holel, which was split due to a
cross 1nteraction with USlotTop) while others have an intentional status (such
as Holel_1, Holel_2 and Holel_3, which had their volumes obsoleted_by
other feature).

The major concern was the efficient updating of the solid modelling (both B-
rep and CSG) representations. The conceptual validation problem for the part
shown 1n Figure 9-15(a) arose where the enlargement of the T-slot top part led
to the Holel feature vanishing. Besides asking “how can the system derive the
modified B-rep efficiently”, 1t was also necessary to ask “How shall the
vanished Holel be dealt with?”.
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Figure 9-15: The Vanished Hole Feature,

FRIEND deals with the problem posed by Perng and Chang in the following
way: Every time a feature volume becomes contained within another feature
volume, the former is made obsolete and receives an intentional status. This
happens for the part of the hole feature that is crossed by the USlot-Top as
well as for both remaining hole features that became contained within the top
of the T-Slot feature. This means that if the TSlotTop is subsequently removed
or reduced in size the hole feature will reappear in the model. It should be
noted that although FRIEND does not provide a T-Slot feature, it recognises it
usmg the rule given in Figure 8-25 and assigns the appropriate feature-based

designer’s intent (the 7_slot AOI) to the model.

Figure 9-17 presents the FbDI's gathered from the resulting part discussed
above. The split_into and the obsoleted_by VDI's mentioned above are
highlighted in the figure. Some of the FbDI's have an infentional status

because the relationship has only one active feature.

Note that split_into VDI has an inactive status according to the

“act_int_dead_feat’ intent management rule described in section 7.4.3.
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{1): STOCK(gen1),BLUE (satellite, rect, active), BBox: (1.ong,2:ong)
P=000.00.0P=10010.020.0

(2): Step1{gen7),GREEN (step, rect, active), BBox: (1-orig,2:ry90)
P=002000P=10010.06.0

(3)' Step2{gen36),RED (step, rect, active}, BBox: (1:0ng,2:ry270)
P=0.020140P=10.010.0200 .

(4): USlot-Top(gen67),YELLOW {slot_tru, rect, active), BBox: (1:0rig,2:0rig)
P=20506.0P=8.010.014.0

(5): Hole1{gen94),_ (hole, cyl, Inactive), BBox: (1:0ng,2.rz80)
P=006.090P=100801%10

(6): Hole1_1(gen1086),_ (hole, cyl, intentional), BBox: (1 orig,2'r290)
P=0.06.09.0P=2.08.011.0

(7): Hole1_2(gen112),_ (hole, ¢yl, intentional), BBox: (1:0rig,2'rz90)
P=206.09.0P=808.011.0

(8): Hole1_3(gen118),_ {hole, cyl, intentional), BBox: (1:0ng,2.rz90)
P=8.0609.0P=10.08.011.0

{9): TSlotUnder{gen156},PINK {gap, rect, active), BBox: (1:0rig,2:ry90)
P=0.0009.0P=1002011.0

(10): TSLotTop(gen230),RED (hole, rect, active), BBox: (1.0ng,2 rz90)
P=002080P=10080120

Figure 9-16: Description of Perng and Chang’s Part.
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INTENT HieGDl{gen398) Go: YES, active
(USlot-Top, YELLOW) -> nested@bot -> (1): (Step1,GREEN)

INTENT HieGDIl{gen393) Go: YES, active
(USlot-Top,YELLOW) -> nested@bot -> (1): (Step2,RED)

INTENT VDI(gen431) Go* NO, inactive
(Hole1,_) -> split_into -> {(2): (Hole1_1,_) (Hole1_2,_} (Hole1_3,_)

INTENT VDI{gen448) Go: YES, intentional
(Hole1_2,_) -> obsoleted_by -> (1): (USlot-Top, YELLOW)

INTENT HieGDI(gen453) Go: YES, intentional
(Hole1_1,_) -> nested@side > (1): (USlot-Top, YELLOW)

INTENT HieGDIl{gen454) Go: YES, intentional
(Hole1_3,_) -> nested@side -> (1): (USlot-Top, YELLOW)

INTENT PosGD!{gend57) Go: YES, active
(Hole1_3,_) -> concentric -> (1): (Hole1_1,_)

INTENT StrGDl{(gen458) Go: YES, active
(Hole1_3,_) -> co-radius -> (1): (Hole1_1,_)

INTENT VDI(gen552) Go: YES, intentional
(Hole1_1,_) -> obsoleted_by - (1): (TSLoiTop,RED)

INTENT VDI(gen553) Go: YES, intentional
(Hole1_3,_) -> obsoleted_by > {1): (TSLotTop,RED)

INTENT HieGDI{gen611) Go: YES, active
({TSlotUnder,PINK) -> nested@side -> (1): (TSLotTop,RED)

INTENT AOl{gen612) Go* YES, active
{TSlotUnder,PINK) -> t_slot -> (1): (TSLotTop,RED)

Figure 9-17: Some Recognised Infentions.

By analysing Figure 9-17, it can be inferred that the Holel fegtme was split
into three features which are subsequently all made obsoleted_by another two
features (for two different reasons, i.e. interactions). This means that if the
features that caused them to become obsolete (USlot-Top and TSlotTop) are
subsequently deleted, FRIEND will merge them together and create another
hole feature with the same volumetric intention as the former holel feature
(although it is considered not to be the original Holel feature because of

historical reasons).
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Some of the FbDI's highlighted in Figure 9-17 (such as Holel_3 concentric
Holel_1) are kept active because both features have intentional status. In this

intent would be there and the designer would not be consulted on this again.

INTERACTION Vi{gen546) Go: NO, active
(TSLotTop,RED) -> general -> (1). {USlot-Top, YELLOW)

INTERACTION Vi{gen549) Go: NO, active
(TSLotTop,RED) -> adjont -> (1): (TSlotUnder, PINK)

INTERACTION VI(gen550) Go: NO, active
(Hole1_3,_) - imited -> (1): (TSLotTop,RED)

INTERACTION VI(gen551) Go: NO, active
(Hole1_1,_) -> imited -> (1): (TSLotTop,RED)

INTERACTION VI(gend35) Go: NO, active
(Hole1_1,_) > adjoint -> (1}: {USlot-Top,YELLOW)

INTERACTION Vl(gen439) Go: NO, active
(Hole1_2,_) -> imited -> (1): (USlot-Top,YELLOW)

INTERACTION Vi(gen440) Go: NO, active
(Hole1_2, ) -> adjomt -> (1); (Hole1_1,_)

INTERACTION Vi(gen444) Go* NO, active
(Hole1_3,_) -> adjoint -> {1}: (USlot-Top,YELLOW)

INTERACTION Vi(gen446) Go: NO, active
(Hole1_3,_) -> adjoint -> (1): (Hole1_2,_)

INTERACTION VI{gen350) Go: NO, active
(Step2,RED) - disjoint -> {1): (Step1,GREEN)

INTERACTION Vli(gen410) Go. NO, inactive
{Hole1,_) -> eross -> (1): (USlot-Top, YELLOW)

Figure 9-18: Some Feature Interactions in Perng and Chang’s Part.

|
|
\
way, if any of the features involved are later reactivated the formerly identified
Figure 9-18 shows, among other things, that a general feature interaction ‘
happened between the USlot-Top and TSlotTop features, which means that
none of the interaction cases that can be treated elegantly by FRIEND could ‘
be identified. In addition, the cross interaction between Holel and USlot-Top

is shown with an inactive status because it was already used by a reasoning,
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9.9 INFORMATION FOR PROCESS PLANNING

9.9.1 VISUALISATION

Figure 9-19 presents a part file used in Mantyla et al. (1989) to discuss process

planning problems. The figure shows the feature volumes for both the invalid

(a) and validated (b) part. Both descriptions (presented in Figure 9-20) produce

the same visual appearance (Figure 9-21) when the Boolean operations are

applied.

Figure 9-19: Visualisation Without Applying Boolean Operations.

Before and ...

... After Validation Reasoning

13

STOCK
satellite, rect, 0
org, ong

000 57933

Hole1

hole, cyl, 3

orig, ong

38045 449105

Hole2

hole, cyl, 3

org, ong

380225 44928.5

{1): STOCK(gen1721),BLUE (satellite, rect, active),
BBox: (1:0ng,2 ong)
P=000.000P=57.090330

(8): Stp-Up(gen1847),GREEN (step, rect, active),
BBox: (1:ong,2:0ng)
P=17.0450.0P =57.02.033.0

(10): Hole1_2(gen1894),RED (hole, cyl, active),
BBox: (1 ong,2.0ong)
P=38.00045P=44.04510.5

(12): Hole2_2(gen1925),YELLOW (hole, cyl, active),
BBox: {1 ong,2.ong)
P=38000225P=44045285
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Hole3

hole, cyl, 3

ong, ong

50012 56918

Holea

hole, cyl, 2.5
ong, orig
2701 3296

Holeb

hole, cyl, 2.5
ong, orig
27027 32932

Holec

hole, cyl, 2.5
ong, orig
51027 56932

Stp-Up

step, rect, 0

ong, 80

17450 57933

HoleTransversal
hole, ¢yl, 1.5
270, ry90
038 156 11

Slot

slot, rect, 0
ong, org

700 11928

Stp-Comer
slot, rect, 0
ong, ong

000 2695

Step-front
step, rect, 0
orig, rz270
005 2918

Holao

hole, eyl, 5

orig, ry270
4014 14924

(14) Hole3_2(gen1956),PINK (hole, cyl, active),
BBox: (1-ong,2-orig)
P=50000120P=5604.518.0

(16): Holea_2{(gen1987),RED thole, cyl, active),
BBox: (1:0rig,2:0ng)
P=27.00010P=3204.56.0

(18): Holeb_2{gen2018),LIGHTBLUE (hole, ¢y, active),
BBox: (1.01g,2 ong)
P=27.00027.0P=32.045320

(20): Holec_2(gen2049),BLACK (hole, cyl, active),
BBox: (1:org,2:0n9)
P=51000270P=56.04.532.0

(22): Slot(gen2152),GRAY (slot_tru, rect, active),
BBox: (1:0rig,2:rx270)
P=700000P=11.09.028.0

(24). Stp-Comer_1(gen2235),RED (face, rect, active),
BBox: (1 ong,2:rx270)
P=000000P=7.09.050

(26): Stp-Corner_3(gen2247),DARKGREEN (step, rect,
active},

BBox: {1:rx90,2:ry180)

P=11.00000P=26.0905.0

(27): Step-front{gen2320),GREEN (step, rect, active),
BBox: (1:rx90,2:ry180)
P=000050P=209.0180

(30): HoleTransversal_2_1(gen2420),BLACK (hole, cyl,
active),

BBox: (1:orig,2'r290)

P=203080P=706011.0

(32): HoleTransversal_2_3(gen2432),GRAY (pocket, cyl,
active),

BBox: (1:ong,2:rz90)

P=1103.080P=1506.011.0

(33): Holao{gen2513),LIGHTBLUE (hole, cyl, active),
BBox: (1:0ng,2:ry270)
P=400014.0P =14.09.024.0

Figure 9-20: Miintyli et al’s Part Descriptions.

Some RDI's can be obtained from this part and can be used for process

planning. In particular, the co-radius, parallel and concentric GDI's could
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help identify groups of hole features to be machined in the same setup and

even with the same process and tool.

The last co-radius GDI and the concentric GDI (both presented in bold in
Figure 9-22) were obtained through guided enrichment (because they were
both originally split from the same feature, see section 8.10.1). All the other
co-radius GDI's were obtained from blind enrichment rules (see section
8.10.2).

Figure 9-21: Mintyld’ et al’s Part.

FRIEND also recognised a possible accessibility problem (see section 8.9.4
and Figure 8-22) when splitting the “HoleTransversal” feature. However, it
was considered acceptable just to be able to exemplify in this same part the

various enrichment reasonings.
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{Holec_2,BLACK) -> nested@bot -> (1} (Stp-Up,GREEN)
{Holec_2,BLACK) -> paralle! -> {1}: (Holeb_2,LIGHTBLUE)

{Holeb_2,L IGHTBLUE) - nested@bot -> {1): (Stp-Up,GREEN)
{Holea_2,RED) -> nested @bot -> (1}: (Stp-Up, GREEN)

{Hole3_2,PINK} -> nested @bot -> (1): (Stp-Up,GREEN)
{Hole2_2,YELLOW) -> nested@bot -> (1): (Stp-Up,GREEN)
{Hole1_2,RED) -> nested @bot -> (1): (Stp-Up,GREEN)

{Holec_2,BLACK) -> co-radius > (1): (Holeb_2,LIGHTBLUE)
{Holec_2,BLACK) -> co-radius -> (1): (Holea_2,RED)
{Holeb_2,LIGHTBLUE) -> co-radius -> (1): (Holea_2,RED)
{Hole3_2,PINK} -> co-radius -> (1): (Hole2_2,YELLOW)

{Hole3_2,PINK) -> co-radius -> (1): (Hole1_2,RED)

{Hole2_2,YELLOW) -> co-radius -> {1): (Hole1_2,RED)
{Holec_2,BLACK) -> parallel -> (1}: (Holea_2,RED)

{Holec_2,BLACK) -> parallel -> (1): {Hole3d_2,PINK)

{Holec_2,BLACK) -> parallel -> {1): {(Hole2_2,YELLOW)
{Holec_2,BLACK) -> parallel -> (1): (Hole1_2,RED)
{Holeb_2,LIGHTBLUE) -> parallel -> (1): {Holea_2,RED)
{Holeb_2,LIGHTBLUE) -> parallel -> (1): (Hole3_2,PINK)
(Holeb_2,LIGHTBLUE) -> parallel -> (1): (Mole2_2,YELLOW)
{Holeb_2,LIGHTBLUE) -> parallel - {1): {Hole1_2,RED)

(Holea_2,RED} -> parallel -> {1): {(Hole3_2,PINK)

(Holea_2,RED) -> parallel -> (1): (Hole2_2,YELLOW)

{Holea_2,RED) -> parallel -> (1): (Hole1_2,RED)

(Hole3_2,PINK) -> parallel - {1): (Hole2_2,YELLOW)

(Hole3_2,PINK) -> parallel - (1): {Hole1_2,RED)

(Hole2_2,YELLOW) -> paralle! -> (1): (Hole1_2,RED)
(Stp-Corner_1,RED) -> nested@side -> (1): (Slot,GRAY)
(Stp-Corner_3,DABRKGREEN) -> nested @side -> (1): (Slot,GRAY)
(Stp-Corner_1,RED) -> parallel -> {1): {Stp-Up,GREEN)
(HoleTransversal_2_1,BLACK) -> nested@side -> (1): (Slot, GRAY)
(HoleTransversal_2_1,BLACK) -> nested@bot -> (1}): (Step-front, GREEN)
(HoleTransversal_2_3,GRAY) -> nested @side -> (1): (Slot,GRAY)
(HoleTransversal_2_3,GRAY) -> parallel -> (1): (HoleTransversal_2_1,BLACK)
(HoleTransversal _2_3,GRAY) -> concentric -> (1): (HoleTransversal_2_1,BLACK)
(Step-front, GREEN) -> nested@bot -> (1) (Stp-Corner_1,RED)
(HoleTransversal_2_3,GRAY) -> co-radius -> (1): (HoleTransversal_2_1,BLACK)

Figure 9-22: RDI’s for Mintyli et al’s Part.
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9.9.2 REDESIGN

Figure 9-23 presents an example of a slotted cross-shaped feature-based part
built and validated by FRIEND. This part was adapted from a study reported
in Das96 on setup planning and automated redesign suggestions. Figure 9-24
presents a list of all valid features output by FRIEND after the validation

reasoning.

Figure 9-23: A Slotted Cross-Shaped Part.

Note that all features have a quadrangular volume type, except the hole
feature. A redesign suggestion can be made by considering the FbDI's in
Figure 9-25 to obtain various alternative representations including some
cylindrical volume types. This simple change can produce a better part from

the cost and time savings perspective.
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(1): STOCK(gen1),BLUE (sateliite, rect, active), BBox: (1:0ng,2:0ong)
P=000000 P=2005.020.0

(6): CentreHole(gen177),GREEN (hole, cyl, active), BBox: {1:0rig,2:0ng)
P=800080 P=12.05.012.0

(7): SL1(gen190),RED (slot_tru, rect, active), BBox: {1:0n9,2:rx270)
P=500000 P=1505.03.0

(8): STP1_1(gen207),YELLOW (step, rect, active), BBox: (1:rx180,2.ry90)
P=0.00.000P=501510

(10): STP1_3(gen219),PINK (step, rect, active), BBox: (1-rx180,2:ry90)
P=1500000P=200151.0

(11): STP2_1(gen256),RED (step, rect, active), BBox* (1 ong,2-1y80)
P=003500P=505.01.0

(13): STP2_3(gen268),LIGHTBLUE (step, rect, active), BBox- (1:0ng,2:ry90)
P=1503500P=200501.0

(14): SL2(gen308),BLACK (slot_tru, rect, active), BBox: (1.0r1g,2.rx90)
P=8.00.015.0 P=12.05.017.0

{15): SL3(gen361),GRAY (slot_tru, rect, active), BBox: (1.0ng,2:rx90)
P=5.000170 P=15.05.020.0

(16): STP4_1(gen413),RED (step, rect, active), BBox: (1-ong,2:ry270)
P=003519.0P=505020.0

{18): STP4_3(gen425),DARKGREEN (step, rect, active), BBox: (1.ong,2:ry270)
P=1503519.0 P=20.05.020.0

(19): STP3_1{gen474),GREEN (step, rect, active), BBox: (1:rx90,2:rz270)
P=0000190P=501.520.0

(21). STP3_3(gen486},BLACK (step, rect, active), BBox: (1:rx90,2:rz270)
P=15.000190 P=20015200

(22): SL4{gen602),GRAY (slot_tru, rect, active), BBox;: (1:0ng,2:rx270)
P=8.00030P=1205.050

(24): SLiateral1{gen675),LIGHTBLUE (slot_tru, rect, active), BBox: (1:rx90,2:ry270)
P=0.00.060 P=305.0140

(25): SlLlateral2(gen746),LIGHTGRAY (slot_tru, rect, active), BBox: (1:rx80,2:ry270)
P=30008.5P=4550115

(26): Sllateral3(gen831),BLUE (slot_tru, rect, active), BBox: (1.rx90,2.ry80)
P=17.00.06.0 P=20.05.014.0

(27): SLlateral4{gen898),GREEN (slot_tru, rect, active), BBox: (1'rx90,2:ry90)
P=15.50.085P=17.05.0115

Figure 9-24: Validated Qutput for the Cross-Shaped Part.
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(STP3_1,GREEN)} -> nested @side -> (1) (SL3,GRAY)
(STP3_3,BLACK) -> nested@side -> (1): (SL3,GRAY)
(STP4_1,RED) -> nested@side -> (1): (SL3,GRAY)
(STP4_3,DARKGREEN) -> nested @side -> (1): {SL3,GRAY)
(STP2_1,RED} -> nested@side > (1): (SL1,RED)
(STP2_3,LIGHTBLUE) -> nested@side -> (1): (SL1,RED)
(STP1_1,YELLOW) -> nested@side -> {1): (SL1,RED)
(STP1_3,PINK) -> nested @side -> (1): (SL1,RED)

(SL2,BLACK) -> nested @bot -> {1): {SL3,GRAY)

(SL4,GRAY) -> nested@bot -> (1): {SL1,RED)

(SLtateral2 LIGHTGRAY) -> nested@bot -> (1): (SLlaterall LIGHTBLUE)
(SLlateral4, GREEN) -> nested@bot -> (1): (SLlateral3,BLUE)

(STP3_3,BLACK) -> coEAD -> (1): (STP3_1,GREEN)
(STP3_3,BLACK) -> coEAD -> (1): (STP4_3,DARKGREEN)
(STP3_3,BLACK) -> coEAD -> (1): (STP4_1,RED)
(STP3_3,BLACK) -> coEAD -> (1): (STP1_3,PINK)
(STP3_3,BLACK) -> coEAD -> (1) (STP1_1,YELLOW)
(STP3_1,GREEN) -> coEAD -> (1): (STP4_3,DARKGREEN)
(STP3_1,GREEN) -> coEAD -> (1): (STP4_1,RED)
(STP3_1,GREEN) -> coEAD -> (1): (STP1_3,PINK)
(STP3_1,GREEN) -> coEAD -> (1): (STP1_1,YELLOW)
(STP4_3,DARKGREEN) -> coEAD -> (1): (STP4_1,RED)
(STP4_3,DARKGREEN) -> coEAD -> (1): (STP2_3,LIGHTBLUE)
(STP4_3,DARKGREEN) -> coEAD -> (1): (STP2_1,RED)
(STP4_1,RED) -> coEAD -> (1): (STP2_3,LIGHTBLUE)
(STP4_1,RED) -> coEAD -> (1): (STP2_1,RED)
(SL3,GRAY) -> coEAD -> {1): (SL2,BLACK)
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP2_1,RED)
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP1_3,PINK)
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP1_1,YELLOW)
(STP2_1,RED) -> coEAD -> (1) (STP1_3,PINK)
(STP2_1,RED) -> coEAD -> (1): (STP1_1,YELLOW)
(STP1_3,PINK) -> coEAD -> (1): (STP1_1,YELLOW)
(SL4,GRAY) -> coEAD -> (1): (SL1,RED)
(SLlateral2,LIGHTGRAY) -> coEAD -> (1): (SLtateral1,LIGHTBLUE)
(SLlateral4, GREEN) -> coEAD -> (1); (SLlatera!3,BLUE)

Figure 9-25: Some FbDD’s for the Cross-Shaped Part.
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9.10 EDINBURGH COMPOSITE COMPONENT

Figure 9-26 presents the Edinburgh Composite Component found in Mill93
and defined as a test part for process planning conflict situations. Again,
although FRIEND does not generate a process plan it obtains a plethora of
information that can help analyse and solve some of the planmng difficulties.
This valuable extra information comes in the form of VDI's (Figure 9-28),
GDI'’s (Figure 9-29) and AOT's (Figure 9-30).

Figure 9-26: The Edinburgh Composite Component.
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{1): STOCK(gen718}),BLUE (satellite, rect, acttve), BBox' (1-ong,2:0ng)
P=000000P=330100090.0

(2)' CutOutBig(gen724),GREEN (pocket, rect, active), BBox: {1-cng,2:rz80)
P=00100300P=5.035050.0

{3): CutOutHole(gen732),RED (pocket, cyl, active), BBox: (1:0rig,2'rz90)
P=0.07.037.0P=5,013.043.0

{4): TopCrossA{gen763),YELLOW (slot_tru, rect, active), BBox: (1:ong,2:0ng)
P=13.078.000P=2201000700

(5): TopCrossB(gen774),PINK (slot_tru, rect, active), BBox: (1.ong,2:ry90)
P=00780180P=33.0100027.0

(6): BottomCross{gen802),RED (step, rect, active), BBox: (1-orig,2:ry270)
P=0.078.0700P =33.01000 90.0

(7): BigMiddleSlot(gen835),LIGHTBLUE (slot_tru, rect, active), BBox: (1:x20,2:rz90)
P=0.0300600P=33.0600900

(8): BigHole{gen866),BLACK (hole, cyl, active), BBox: (1-ong,2:rz80)
P=0.045.012.0P =33.070.037.0

(9): CrossingHole(genB87),GRAY (hole, cyl, active), BBox: (1:80,2:0ng)
P=2506000.0P =30.065.090.0

(10): NestedSlotBig(gen905),RED (slot_tru, rect, active), BBox: (1:rx270,2:rz90)
P=0.010000P=33.035.012.0

(11): NestedSlotSmall(gen959),DARKGREEN (slot_tru, rect, active), BBox: (1:rx270,2:rz90)
P=0.015.012.0 P =33.0 30.0 24.0

(12): CBoreHole{gen1029),_ (hollow, cyl, inactive), BBox: (1-ong,2.ong)
P=10.027567.5P =20.062577.5

{(13): CBoreHole_1{gen1059),GREEN (pocket, cyl, active), BBox: (1:0ng,2:0rig)
P=100275675P=20030077.5

(15): CBoreHole_3(gen1071),BLACK (pocket, cyl, active), BBox: {1:0ng,2:rx180)
P=10.060.067.5P =20.0625775

(21): ThinContiguityHole_3_2(gen1232),GRAY (hole, cyl, active), BBox: (1:0ng,2:0ng)
P=125625700P=17578075.0

(23)' ThinContiguityHole_1_2(gen1285),LIGHTBLUE (hole, cyl, active}, BBox. {1:0ong,2:0rig)
P=12500700P=175275750

{24): BottomStep{gen1350),LIGHTGRAY (step, rect, active), BBox: (1:rx90,2:rz270)
P=0.00.080.0P=33010090.0

Figure 9-27: The Qutput for the Edinburgh Composite Component,
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(CBoreHole,_) -> splt_into -> (2)* (CBoreHole_1,GREEN) (CBoreHole_2, )
(CBoreHole_3,BLACK)

(ThinContiguityHole,_) -> split_into -> (2): (ThinContiguityHole_1,_)
(ThinContiguityHele_2,_) (ThinContiguityHole_3,_)

(ThinContiguityHole_3,_) -> sphit_into -> (2): (ThinContiguityHole_3_1,_)
(ThinContiguityHole_3_2,GRAY)

(ThinContiguityHole_1,_) == sphit_into -> (2); (ThinContiguityHole_1_1, )
(ThinContiguityHole _1_2 LIGHTBLUE)

Figure 9-28: VDI’s Gathered from the Edinburgh Composite Component.

(TopCrossA,YELLOW) -> nested@bot -> (1). (BottomCross,RED)

(NestedSlotSmall, DARKGREEN) -> nested @bot -> (1); {NestedSlotBig,RED)
(NestedSlctBig,RED} -> parallel -> (1): (BottomCross,RED)

(NestedSlotBig,RED) -> parallel -> (1) (CutOutBig, GREEN)

(CBoreHole_3,BLACK) -> co-radius -> (1): (CBoreHole_1,GREEN)
(CBoreHole_1,GREEN} -> nested @side -> (1): (BigMiddleS!ot,LIGHTBLUE)
(CBoreHole_3,BLACK) -> nested@side -> (1): (BigMiddleSlot,LIGHTBLUE)
(CBoreHole_3,BLACK) -> parallel -> (1): {CBoreHole_1,GREEN)

(CBoreHole_3,BLACK) -> concentric -> {1): (CBoreHole_1,GREEN)
{ThinConhguityHole_1_2,LIGHTBLUE)} -> nested@bot - (1): (CBoreHole_1,GREEN)
(ThinContigutyHole_1_2,L IGHTBLUE) -> paralle! -> {(1); (ThinContiguityHole_3_2,GRAY)
(ThinContiguityHole_1_2,LIGHTBLUE} -> concentric -> {(1): (ThinContguityHole_3_2,GRAY)
(ThunContiguityHole_3_2,GRAY) -> nested@bot -> {(1): (BottomCross,RED)
(ThinContigutyHole_3_2,GRAY) -> nested@bot -> (1): (CBoreHole_3,BLACK)
(ThinContiguityHole_1_2,LIGHTBLUE)} -> co-radius -> {1): (ThinContiguityHole_3_2,GRAY)
(ThinContiguityHole_1_2,LIGHTBLUE) -> co-radius -> (1): (CrossingHole,GRAY)
{ThinContigurtyHole_3_2,GRAY) -> co-radus -> (1): (CrossingHole,GRAY)
{ThinContiguityHole_1_2,LIGHTBLUE)} -> parallel -> (1): (CBoreHole_1,GREEN)
{ThinContiguityHole_1_2,LIGHTBLUE) -> concentngc -> (1): (CBoreHole_1,GREEN)
{ThainContiguityHole_1_2,LIGHTBLUE) -> parallel -> (1): (CBoreHole_3,BLACK)
{ThinContiguityHole_1_2,L IGHTBLUE) -> concentnic -> (1): {CBoreHole_3,BLACK)
{ThinContiguityHole_3_2,GRAY) -> parallel -> (1): (CBoreHole_1,GREEN)
(ThinConhiguityHole_3_2,GRAY) -> concentric -> (1): (CBoreHole_1,GREEN)
(ThinContiguityHole_3_2,GRAY) -> parallel -> (1): (CBoreHole_3,BLACK)
(ThinContiguityHole_3_2,GRAY) -> concentnc -> (1) (CBoreHole_3,BLACK)
(BottomStep,LIGHTGRAY) -> parallel -> (1): (TopCrossB,PINK)

(BottomStep, LIGHTGRAY) > parallel -> (1): (CutOutHole,RED)
(BottomStep,LIGHTGRAY) > parallel -> (1): (CutOutBig, GREEN)

Figure 9-29: GDI’s Gathered form the Edinburgh Test Component.
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INTENT AOl{gen759) Go: YES, active
(CutOutHole,RED) -> cut_out -> (1): {CutOutBig, GREEN)

INTENT AQIl{gen760) Go: YES, active
(CutQutHole,RED) -> e_feat -> (1): (CutOutBig,GREEN)

INTENT AOl(gen761) Go: YES, active
(CutOutHole,RED) -> coEAD -> (1): (CutOutBig, GREEN)

INTENT AOl(gen799) Go: YES, active
{TopCrossB,PINK) -> x_feat -> (1), (TopCrossA,YELLOW)

INTENT AQl{gen830) Go: YES, active
{TopCrossA,YELLOW) -> coEAD -> (1): (TopCrossB,PINK)

INTENT AOIl(gen903) Go: YES, active
{CrossingHole,GRAY) -> x_feat -> (1): {BigHole,BLACK)

INTENT AOl(gen1014} Go: YES, active
(NestedSlotSmall, DARKGREEN) -> coEAD -> (1): (NestedSlotBig,RED)

INTENT AOl(gen1332) Go: YES, active
{ThinContiguttyHole_1_2,LIGHTBLUE) -> ¢coEAD -> (1): (ThinContiguityHole_3_2,GRAY)

INTENT AOIl{gen1335) Go* YES, active
(ThinContiguityHole_1_2,LIGHTBLUE) -> ¢_bore -> (1): {ThinContigurtytiole_3_2,GRAY)

INTENT AOl(gen1347) Go: YES, active
(ThinContigutyHole_3_2,GRAY) -> ¢_bore -> (1): (CBoreHole_1,GREEN)

INTENT AOl(geni411) Go. YES, active
(BottomStep,LIGHTGRAY) -> coEAD > (1): (BottomCross,RED)

Figure 9-30: AOI’s Gathered from the Edinburgh Composite Component.

The major concern of FRIEND is to make explicit to the designer some of the
intentions (the FbDI's) that can be assigned to the model such as nested @side,
parallelism, x_feat, cut-out and c_bore (see Figure 9-29 and Figure 9-30). No

strategy for planning the processing or production of the part is suggested.
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9.11 A COMPARISON PROBLEM

It was found that a comparison between the functionalities of FRIEND and
other systems is not straightforward because most of the systems studied
perform some sort of geometric reasoning on the complete model (and
therefore, as a post-processing procedure) while FRIEND accumulates
knowledge throughout the design process because it analyses the part model

every time an operation is performed.

Furthermore, some of the test cases presented were obtained from literature
more interested 1n feature-based process planmng problems (of the complete
part model) while the major concern in FRIEND 1s 1n the correctness of the
representation and the FbDI's that can be gathered from and during the design

process.

In doing this, FRIEND is capable of producing much more information than
most feature-based modellers and this information can be used for various
engineering-related activities, not only process planning. Some parts of this
reasoming are straight derivations from the feature-based designer’s intents
(FbDI’s) identified by FRIEND and others would require extra technological

information to reach their conclusion.
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9.12 SUMMARY

This chapter presented some test parts that were adapted from parts found in
the literature. FRIEND could model them and although the production of
process plans was not the objective, it was able to correct some of the
definition mistakes (introduced deliberately) and to produce a plethora of

information that could help downstream applications such as process planning.

Some difficulties were found 1n comparing the functionality of FRIEND with
other work because FRIEND gathers intentions during the ongoing feature-
based modelling task while most of the other systems perform a post-

processing analysis on the final and static feature-based model.

It can be inferred that the way the model 1s built can affect the resulting
amount and type of information produced by FRIEND and this is consistent
with the non-commutability characteristics of the Boolean operations (which

are implied by the feature-based models).
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This chapter critically discusses some of the main aspects and
findings regarding the concepts presented, the implementation

carried out and the results from the test cases.

10.1 THE VALIDATION FRAMEWORK

The validation framework (Figure 3-2) is simple but emphasises the fact that
the domain characterisation (FbDI’s) influences the validity conditions
(reasoning), often helped by the feature interaction identification methodology
and the validity of the model, which subsequently influences the definition of

adequate (revalidation) operations.

The significance of this interconnection is that it suggests how the domain
might be further extended to include other behaviours. For instance, if a new
FbDI is to be considered, it must be ensu}ed that the appropriate reasoning can
be produced to test the suitability of existing feature interaction cases and
analysis operations. As new invalidity tests are likely to emerge, this also tests

the suitability of the existing set of revalidation operations.

The occurrence of any unsuitability raises the question as to why it has
happened, what actions need to be taken and how does the new FbDI fit into
the classification? If it does not fit, a reason has to be sought and methods for
adapting the classification to accommodate the newly added element should
also be addressed.
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This is a simular scenario to that encountered when a new feature type or
parameter is added which leads to a consideration of the suitability of

modelling and editing operations.

The validation framework, and its implementation in FRIEND, implies a
Hybrid DbF and FeR (HDR) approach to some extent and it has been made
clear that a thorough implementation of the ideas presented here would require

a FeR subsystem.

It was also realised that the validity depends on local analysis of the ongoing
design as well as global analysis of the finished model (following the lines of
work presented in Requicha89b and Rossignac90).

10.2 INTENT-DRIVEN VERSUS CONSTRAINT-DRIVEN ONLY
APPROACHES

Approaching a design using a geometric constraining system only represents a
more rigid approach compared to an intent-driven one because 1t demands a
considerable effort in understanding the concepts, equations and relations
involved in a particular design and to establish all fixed constraints (with the
exception of Mantyld94) and 1t can be difficult to edit (numeric, geometric or
algebraic) constraints. In addition, the resulting information (constraint graphs)
may be hard-coded for the particular design, and thus its reuse in another

similar design is difficult.

The use of a geometric constraining approach has already been introduced mnto
FBM (Nielsen91, Sheu93, Mintyla94, Dohmen94, Shah94b) to either represent
features as basic relational elements or to establish relationships between
geometrical constituent elements of different features. However, the approach

is still based on conventional parametric or variational constraining methods
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using mainly low-level geometric entities such as points, edges and faces.

Thus, PDI's have not been detailed in the current FbDI taxonomy.

Parametric FbDI's (geometric constraints) are concerned with any feature,
“sub-feature”™ (faces, edges or vertices) and feature parameters on the same part
or between different parts, In contrast, other types of FbDI's are specified
between features themselves through some well-defined high-level
relationships, which together with an experience-based “non-blind” search, can
lead to a “intent-recognition” procedure enriching the representation and

alleviating the designer of such tedious tasks.

FbDI's can be used to reason about the design knowledge and structure and are
not restricted to the denivation of parameter or dimension values. FbDI’s are
thus considered a generalisation of constraints where not only fixed algebraic
and geometric relationships are considered but also other engineering-related

relations (such as nested@side GDI and x_feat AOI) are included.

If a FbDI becomes active, it can be considered to have become a “loose
constraint” where its main purpose is to make explicit to the designer what
could have been forgotten in terms of intentions to be achieved. This means
that an intent-driven environment is more forgiving when changes to existing
FbDI’s are required. The system accepts changes to the existing configuration
of intents regardless of how drastic they are, can ask for confirmation, could

highlight the effects of the manipulation and even suggest further actions.

The use of a geometric constraint mechanism could enhance the functionality
of FRIEND because it could explicitly capture designer’s intent in the form of
parameter or dimension relationships. However, due to the many intermediate
stages that a design needs to undergo and the trial-and-error nature of design
practices, FbDI’s 1n general have a more dynamic behaviour, being created and

deleted according to the stage of the design.
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Thereupon, 1t can be said that a geometric constraint-driven approach is more
suitable for a performance and function-oriented intricate design while the
intent-driven approach (without PDI's) would suit a more application and
history-oriented design. It is believed that the intent-driven and constraint-
driven approaches can work alongside and indeed, be complementary to each

other.

10.3 USE OF THE ELICITATION PROCESS

The entity elicitation process that was applied to features (section 1.5)
represents a loose formalism that helped in obtaining a more detailed
description of the validation framework elements. Although most of the
individual components were gathered from the literature, they fit well in the

classifications and consequent taxonomues.

The application of the elicitation process, as defined here for featurization, to
the 1tems of information required for the validation task needed no adjustments.
Both validation and elicitation criteria (Figure 1-8) were, however, difficult to
devise for all cases. Even for features themselves there is no agreement on what
such criteria might be. Possibly a more practical implementation with its
consequently more tangible limitations and objectives could help produce a

more tangible set of criteria.

10.4 DESIGNER’S INTENTS

A FBM system driven by FbDI’s is considered of high significance because it
could help to preserve the reasons for a particular decision in a design. For
instance, the reason for a feature to be located at a specific position could be an

axial symmetry structural GDI.
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It could be beneficial to future FBM systems if “featurization” analysis (section
1.5.2) and feature taxonomies are accompanied by similar “intenturization”
analyses (section 4.2) and FbDI's taxonomies to help establish more
meaningful and precise implementation boundaries and the capabilities of a

particular feature-based application.

Feature-based Designer’s Intents (FbDI’s) were divided into three areas:
related to individual features (the VDI’s); related to groups of features (the
geometrical RDI's and PDI's), and; dependent on applications (the application-
oriented RDI’s).

Validation reasoning was carried out at three levels: at the feature class level,
which is defined for all features, at the feature object level, which is defined for
different feature types or instances, and at the application level that, not only

considers the two previous levels, but also considers application restraints.

Some degree of automation can be assigned to the validation process. Most of
the feature validation could be automated at the feature class level but there are
some reasonings at the feature type level that are cumbersome to automate.
However, the assistance of the designer 1s necessary because not all of his

intentions can be captured or, most importantly, predicted (see Zhang93).

It can be inferred from the analysis of Figure 7-6 that some of the validation
could indeed be defined within the feature class itself but as the analysis goes
further down, more and more of the analysis starts to consider feature type
information (e.g. is it a hole or a pocket) and feature type specific information
(making distinctions between the centre radius of a hole and the fillet radms of
a slot feature). Also, as the analysis goes from top to bottom in Figure 7-6, the

focus 1s changed from a more indrvidual level of understanding towards a more
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collective perspective at the same time as it goes from feature dependent

towards application dependent reasoning.

Automatic recognition of pre-established FbDI's and the consequent

representation enrichment can be achieved, raising the quality and usefulness of

the model as well as relieving the designer of these tedious tasks. Feature-based

intent recognition, or representation enrichment, 1s a powerful resource that

would facilitate “intelligent” reasoning.

10.5 FEATURE INTERACTIONS

The feature interaction classification and identification methodology presented

here has several advantages:

It is a DbF-aware scheme and encompasses existing approaches and
classifications (both from FeR systems as well as from narrow DbF
domains), and 1t adds a comprehensive unbound (and therefore, unbiased)

coverage and a clarification of the mterference and interaction terms .

It 1s multi-level, which allows reasoning to be performed at three levels,
The cases are as detailed and accurate as required allowing specific actions
to be taken for apparently similar cases and also allowing it to be used by,
and separated from, different application analyses. All levels share the same
structure and concept of classification (except for a few minor details,
section 5.4.6) promoting the coherence of the scheme. This also avoids
misunderstandings because there is no mixing of geometric entities of

different dimensionality at each level.

Particular attention was paid to choosing words to describe each category
with the aim of producing a clearer, more meaningful and easier to
understand vocabulary. The categories have been formally defined through

simple rules using commonly available Boolean operators and tests, which
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facilitates integration with GSM modellers. Thus, categories are defined

separately and independent of the underlying GSM implementation.

e Neither concave/convex nor planar/non-planar assumptions are made as in
the case in much research work. This is to the minor detriment of
efficiency, but many of the operations and tests can be quickly and

accurately predicted using bounding boxes.

The feature interaction methodology allows a FBM system to build a rich
scenario of the model including information about the feature’s surroundings,
and this information can be valuable and beneficial to other applications. Some
functional meanings (or functional features) can be identified such as when a
slot is near VI to the stock’s end 1t results in a wall feature or when a slot is
near VI to another slot 1t results in a rib feature. The totally different functional
purposes of wall and rib features (Lee94) can be inferred from the model and

subsequently considered in further applications/analysis.

10.6 FEATURE OPERATIONS

Feature-based operations have received little attention in the literature possibly
because it has been considered more an implementation issue than a research
one. The feature operations taxonomy presented here emphasises the fact that
much has to be done to facilitate the manipulation (editing, modelling and

revalidation) of feature-based models.

The variety of feature operations presented in the taxonomy makes the two
usually available operations, add and delete feature, seem so limited and
limiting. In reality, even considering only these two feature operations, it can be
inferred that there are many other types of operations that need to be specified

and implemented that could render the system implementation not trivial at all.
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Being aware of this variety is an important aspect of a design-by-features

system implementation in order to be able to estimate the effort in producing a

system that is easy to manipulate.

Moreover, the taxonomy of operations was observed to be dependent on a

number of factors:

Feature interaction cases.

The revalidation operations reflect partially how features are defined
(dependent on the entity set (Z') used to identify them) and how they are
allowed to interact amongst themselves. For instance, it was observed that
the split revalidation operation could be deployed onto a feature’s volume
automatically if a subjoint VI case occurs. On the other hand, an inside FI
case could use a change face code fo_V labelling revalidation operation

onto a feature face.
Application domain.

Different characterisations of the domain influence the size of the
revalidation operation set. A wider domain possibly needs an extended set
of operations. For instance, rotational features would probably frequently

use a different set of operations than prismatic features.

Editing capabilities .

. The variety and level of manipulations available to the designer greatly

influences the set of revalidation operations to be devised. However, it was
found that there is 2 minimum set of modelling manipulations consisting of
add and delete feature and add and delete FbDI which can be used

internally to implement other editing manipulations.

To provide the full editing flexibility compatible with conventional and GSM

CAD systems a DbF system would need a full implementation of a (localised
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and/or incremental) FeR system to recognise all possible manipulation results
originating from the editing operations. However, the designer might be
tempted to abuse the use of the editing operation, which could produce

unrecognisable features.

Monitoring the designer’s editing capabilities for each case/feature (as
proposed before, Case93c) would be a major task, thus systems have instead
favoured much simpler editing operations in order to avoid this complexity
factor. This emphasises how closely feature operations are related to feature

model validation.

A (localised, incremental or somehow optimised) FeR functionality is
nevertheless required in the validation approach and the level of optimisation
and complexity of the FeR function is dictated by the freedom of manipulation
allowed by the DbF function. Validation has been interpreted as, and closely
related to, Feature Recognition (Dixon90, Pratt93, Martino94a).

If low-level editing manipulations are considered, such as chamfering an edge
or tapering a face, this greatly adds to the complexity of the revalidation
operations. In this case, a taxonomy of operations would include very basic
manipulations such as Euler and Sweeping Operators (Stroud93,
Subrahmanyam95). Therefore, editing manipulations can add to the flexibility

of the system but also certainly add to its complexity.

It was initially thought that editing operations had not been fully implemented
elsewhere solely because of implementation issues. However, it was discovered
that many operations have not been implemented because of fundamental

questions that still exist regarding feature-based operations:

s What are the editing operations that best express the designer’s

vocabulary?
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o What operations are more popular, important and appropriate to a

specific domain?

¢ How are operations to be applied whilst maintaining the validity of the

model?

¢ What are the consequences of implementing new operations, i.e. do
they require further supporting operations or other revalidation

operations?

e What interdependency exists between these feature-based editing

operations?

It was thus found that further research needs to be done on the issues of

defining and implementing feature-based editing operations.

10.7 THE REASONING PRIORITY

The rules were initially implemented without any concern for their prionty
arrangement. This was done in an attempt to use a CLIPS facility that executes

rules in an unpredictable order to achieve its goals.

However, the development was made easier and made more sense when
different levels of priorities were used. These levels stabilised with a set of four
groups of rules (Figure 7-2) for the conceptual MFI validation. Subsequently,
the reasons for their internal relationship was realised through a metaphorical
parallel (see section 7.3.3). RDI's were added with the consequent addition of
more reasoning sets (Figure 7-3) but following the same (linguistic-like)

arrangement.

This possibly means that some sort of organisation of the types and levels of
validation is a requirement for a coherent system implementation. Another way

to obtain and justify a similar priority arrangement could have been through a
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study of the process designers adopt to perform these same analyses but in a

manual (although computer-aided) way.

During the process of developing the rules to accommodate the MFI's and
RDTI’s, an experimentation with different possible priority organisations of the
reasoning sets was carried out. Other arrangements that were used seem to have
worked for some tests but the one presented has worked for all tests. Although
a more elaborate test process can be performed, it is believed that the ones
performed suffice for the prototype implementation in order to validate the
validation framework. Moreover, the result of this experimentation produced a
priority arrangement that fits a metaphorical parallel to another type of analysis
(linguistic) and this is considered an reinforcement of the validity and

switability of the priority arrangement.

10.8 INTENTS MANAGEMENT

Because design is an operation that generates temporary inconsistent states, an
intent-driven DbF system should have automatic verification and enrichment

reasonings that create and delete FbDI relationships, as they occur.

Verification and enrichment statements are the means by which intent-driven
validation is achieved and implemented. However, not all FbDI’s have both
verification and enrichment statements. Enrichment statements in particular are
hard to conceive and, although possible in some cases, they are often not
practical. For instance, Parametric FbDI's are composed essentially by
verification statements (in a cyclic process of deriving parameter values and

checking them against constraints).

Morphological functional conceptual validation is composed mainly of
verification statements while RD] validation makes intensive use of enrichment

statements,
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Despite the fact that the aim of devising a system with PDI enrichment
(automatic constraint recognition) has been established (Mantyld94) this seems
to be an impractical task when viewed from a more comprehensive perspective.
However, narrower attempts to perform some sort of parametric enrichment
have been made by Suzuki et al. (1990) for under-constrained 2D parametric
designs and by Silva et al. (1990) for positional and orientational GDI’s.

10.9 THE IMPLEMENTATION

It can be asserted that if the rule execution sequence is not important for a
knowledge-based system (KBS) implementation and the same result is
achieved regardless the order, then a more pre-determined sequence of

execution should also achieve the same result.

Furthermore, KBS systems, including CLIPS, offer the possibility of defining
knowledge partitions (i.e. modules or groups of rules) and therefore, a pre-
determined sequencing such as the one defined in FRIEND’s reasoning
(section 7.6) does not contradict the KBS paradigm (unless expanded towards

sequencing the rules themselves instead of groups of rules).

CLIPS version 6.0 was used in an effort to understand the KBS technique.
However, its potential (alternative solution search mechanisms) was not fully
explored and, in fact, the prototype system could have been implemented using
a standard C or C++ language. It did prove though, to be an easy and powerful
language/system to work with, especially because of the multi-programming
paradigm characteristic that allows procedural, object-oriented and rule-based

programming to be used wherever it seems most appropriate.

It was found that the active and passive characteristics of the feature mteraction
case (e.g. enter or entered; cross or crossed) did not help simplify the reasoning
and they could always be converted into an active behaviour for both

volumetric (VI) and boundary (BI) cases.
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The same can not be said about FI cases because the master and slave of the
RELATION had already been established at a higher level (VI or BI
RELATION that points to the FI RELATION). Thus, FI cases are still
classified into active and passive cases (e.g. inside or outside). BI active and
passive cases were also unified because they originated from conjoint VI cases
only and thus were implemented as a specialisation of VI cases (and not as a
link to another INTERACTION object) and thus they could be simplified
(inverted).

The implementation of the FRIEND-VIEW module, i.e. the visualisation of the
part description file (“.prt™), using Microstation BASIC language has not been
described because it was considered almost trivial for the following reasons: (a)
a communication file was used as an interfacing technique, (b) the geometric
operations required by the reasoning were implemented within CLIPS; (c) the
geometric simplicity of the feature taxonomy adopted fitted the geometric
primitive solids available in the MODELER module, and (d) the emphasis of
this work was on the reasoning process and capabilities of the validation

analysis rather than on features’ internal low-level representation issues.
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11.1 SUMMARY OF THE THESIS

This thesis can be summarised through the following main accomplishments:

¢ A better understanding of the problems involved in the development of a
feature-based modelling system such as the mode! editing, DbF and FeR
approaches integration and the reasoning and representation of feature

models.

® A comprehensive review and study of the literature concemed with
feature-based modelling has been presented. In particular this covers:
feature-based modelling and systems, feature-based interaction problems

and determination and validation analysis.

e The identification of the validation problem as an important aspect for
existing systems as well as the lack of a more detailed literature on this
subject. It has been alleged that many systems support some kind of
validity checking but details of such functionality are most often omitted.

¢ A novel framework for implementing design-by-features systems where

the validation of a feature-based model representation is the central

concern.
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The determination and use of a methodology, resembling the feature
elicitation process, to help specify the components of the validation

framework.

The production of original classifications and taxonomies for feature-based

designer’s intents (FbDI’s) and feature operators.

The development of a methodology to identify and classify feature-based
interaction cases based on Boolean operators and simple queries to the
GSM representation. This feature-based interaction classification is
independent of possible interpretations of each case therefore could be

applied to other systems.

The development and codification of algorithms and production (IF-
THEN) rules to express FbDI’s, identify feature interactions and perform

feature operations.

The development and successful implementation of the conceptual
reasoming after observing that distinct aspects drive the morphological
functional FobDI (MFI) reasoning and these are responsible for the priority

arrangement which was presented.

The generalisation of the MFI reasoning towards the intent-driven
approach through outlines of enrichment and verification rules and a
management strategy was explained. The statuses of the entities used in
this reasoning and a possible interpretation of the identified priority were

also presented.
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® A distinctive working prototype system, implemented from scratch, using

the proposed framework and taxonomies, which is capable of:

=» Modelling feature-based parts and the monitoring of FbDI's and

features in the model.

=» Maintaining the model’s validity by reasomng with the model and

suggesting or applying selective corrections.

= Understanding enriched and complex feature-based models, by

identifying and representing features, interactions and FbDI’s.

=» Reacting to the effects of manipulating features and FbDI’s.

=» Recognising implicit intents originated through the design-process

via enrichment statements.

= Capturing, representing and manipulating FbDI's and feature

interactions explicitly.
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11.2 CONTRIBUTIONS

It 1s believed that this work has contributed to knowledge in the following

aspects:

11.2.1 CLARIFICATIONS

The nature of the validation problem has been clanfied through the
identification, definition, classification, specification and devising of a

solution for feature-based representation validation.

Within this clarification, the roles of geometric validation and feature-based
representation validation have been established and the terms feature-based
designer’s intents, feature interaction and validation have been formally
defined.

A taxonomy of FbDI's has been created to help in clanfying features
themselves from the perspectives of their intended semantics, expected
behaviour and application. This clarification, and indeed this taxonomy, has

been used as a framework for validating feature-based models.

A contribution has also been made in clarifying and distinguishing some of the
mformation involved in such a system, For instance, some confusion was
found in the literature between the terms feature interaction and feature
interference, between interaction and intents, and between FbDI's and features

themselves.
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11.2.2 EFFECTIVE CAPTURE OF DESIGNER’S INTENTS

The clarification and formal distinctions between the concepts involved, has
allowed a clearer understanding of their extent, and this has made it possible
for this prototype implementation and future full implementations to represent

and capture them distinctively.

The research demonstrates that it is possible for a FBM system to effectively
and explicitly represent, capture, manipulate and use designer’s intents for
reasoning during on-going design. A clear way of defining, identifying and
analysing valid and invalid model representations based on FbDI's has also

been presented.

11.2.3 THE VALIDATION FRAMEWORK

A novel approach for the development of a DbF system centred on the
concepts of representation validation and FbDI management has been
presented. The contents of a valid feature-based model representation have
been defined, and methods to analyse and maintain the validity of the
representation according to the features’ expected behaviours and intents of

have been demonstrated.

e The elements required for such a validation system have been presented,
compnising Information (features and FbDI's), Operations, Interrelations
(FbDI and interaction representations) and an architecture (reasoning sets

and a priority arrangement).

e The interaction of features and their mutual effect on validity have been

studied and implementation methodologies presented (section 7.2). The
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validation framework also provides an important mechanism for
remedying invalid representations through the selective application of

revalidation operations.

The feasibility of the validation framework in validating the representation
and applying a formal but simple validation formalism for developing
FBM systems has been exploited. The implementation has shown that the
validation of the feature’s concept can be made partially at the feature class
level. Feature type reasoning starts to populate the analysis as soon as it

goes further in understanding the model.

The validation framework organises and integrates the information
required for the validation reasoning. Helped by the priority arrangement,
intent management statements and the specification of the information, the
framework binds the information and gives a complete structure for a
system capable of performing intent-driven conceptual feature-based

representation validation,

A major contribution of this study is the novel methodical arrangement (or

structuring) of information used in feature-based modelling in terms of:
¢ aformal implementation via a validation-based approach;

e components and their definition/use/binding (interaction cases,

operations and designer’s intents);

¢ the detailing of the components (the application of the elicitation

process);
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» defining groups of distinct reasonings;

o the organisation of the components (priority and management);

¢ what can be achieved with intent-driven validation environments.

Figure 11-1 shows the structures that have been identified.
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Figure 11-1: Structures Involved in an Intent-driven Validation System.

11.2.4 INFORMATION DETAILING (THE PROCESS)

The application of the entity elicitation process (a loose formalism),
contributed to the detailing of the information required for the intent-driven
validation system. Classifications and taxonomies for the individual elements
were an important outcome of this process. The application of this formalism
was done in such a way that not only was the information properly identified

but also the distinction between types of information was emphasised.
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It is believed that this formalism could be applied to other types of information
and the FBM system could grow to comprise the central core of Product Data
Modelling (PDM) techniques. This future system would have taxonomies for
information such as features, operations and processes, in a similar way to that

implied in Mdntyla97,

11.2.5 CLASSIFICATIONS AND TAXCNOMIES (THE PRODUCTS)

In applying the elicitation process, it has been possible to classify and give

names to various items for each information type involved.

Classifications are important because they help to group properties and to
highlight differences. In particular they help emphasise the completeness of the

subject and in so doing help to identify the absence of elements.

The taxonomies for feature-based designer’s intents, feature interaction cases

and feature operations are singular and each one is a useful contribution per se.

The taxonomy of feature-based designer’s intents (FbDI’s) establishes (Figure
4-10) morphological, theoretical and relational functional designer’s intents as
the highest level. Morphological functional FbDI’s are defined as volumetric
relationships such as fittability, changeability, labelling and redundancy.
Theoretical functional FbDI's are considered related to parametric constraint-
based design approaches. Relational functional FbDI's (RDI’s) are sub-
divided into geometric RDI's and application-oriented RDI's. Geometric
RDI’s are positional, structural, orientational, and hierarchical intentions while
application-oriented RDI's identified include temporal, precedence, compound

and proximity intentions.

The taxonomy of feature interaction cases establishes (Figure 5-13) a
classification framework that is applied at three different levels of the
geometric representation of features. This framework identifies features that

are connected or disconnected. Disconnected features can be adjoint or disjoint
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while connected features can be conjoint or subjoint. These can be further
detailed to obtain interaction cases that include features with matching faces,

features crossing each other, a feature near or far from another, and so on.

The feature interaction classification identification (Figure 5-9) is the unique
product of a well-defined and specified methodology. Moreover, although its
usefulness and feasibility were partially experienced in FRIEND, 1t 1s a

complete and deep research topic that deserves further research.

The taxonomy of feature operations (Figure 6-2) distinguishes between
analysis, manipulation and setup operations. These operations can be further
sub-classified according to the type of information involved (i.e. FbDI's, the
GSM representation or to the FBM representation). Manipulation operations
include editing, modelling and revalidation operations. Editing manipulations
are of either high (applied onto the FBM representation) or low level (applied
to the GSM representation).

11.2.6 PRIORITY ARRANGEMENT

It has also been possible to identify types of rules, intent management
statements and how they can be implemented. Although not final (further FbDI
development would possibly require adaptations) and not definite (alternative
schemes can be invented), the reasoning prionity (Figure 7-6) for all the FbDI’s
mnvolved in this research is a significant contribution because it establishes an
arrangement that forms the basis for discussion and for extensions related to

the future development of FbDI’s.
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11.2.7 ADDED DEVELOPMENT FORMALISM

A few formal architectures, approaches and methodologies for FBM system
development have been found 1n the literature (Gandhi89, Subrahmanyam935,
Hailong95, Kim96) but they are in their infancy despite the fact that many

systems have already been implemented.

The borrowing of methods (feature elicitation process) and mimicking of ideas
(linguistic analysis) is believed to have added an extra formalism i'or the
development of FBM systems and, although these have not been presented as
such, they could be developed further in order to originate a complete

development formalism and methodology.
11.2.8 A COMPARISON FRAMEWORK

Feature based modelling systems and applications are usually compared
through the extent of the feature taxonomy they can represent together with the
analysis or synthesis capabilities of the specific application involved (such as

finite-element analysis, setup planning and tooling planning).

This work contributes in offering other elements to extend this comparison.
FBM systems can now be compared by the intelligence and behaviour of
features (reasoning capabilities), the feature interaction cases supported, the
operations available and by the range of feature-based designer’s intents that

can be represented and reasoned with.
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11.3 FURTHER WORK AND FUTURE RESEARCH

Thus thesis raised some 1ssues that could be divided 1nto two streams: (a) those
that further develop the existing ideas towards a more practical
implementation, which would most probably only consist of implementation
issues, and are thus called extensions, and (b) those that represent future
research in this area, which involves the exploration of related ideas, and are

called expansions.

11.3.1 EXTENSIONS

The purpose of this research was not to produce a fully implemented fully
working system for practical use but to explore some fundamental issues.
Therefore, there is a possibility of re-implementing some details in order to

produce a more practical system:
e A more efficient implementation.

Most of the calculations and functions were built within the CLIPS
environment (even some Boolean operations and bounding box analysis).
It 1s believed that a better integration between the GSM and the KBS
environments could produce a more efficient implementation and add
some useful graphical manipulation capabilities. In addition, some
bounding box tests would then be verified by the GSM module and

therefore, the interaction identification would be more accurate.
o ' Analyse features of additive nature.

Although the stock material was considered and implemented as a satellite
feature (see taxonomy of features adopted in this work in Figure 1-6), of
positive nature, further analysis is required for other positive features in

the model, such as bosses and ribs.
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This would lead to the need for more tentative exploration (possibly
through the use of all KBS capabilities) of revalidation scenarios
(especially when deploying the split and merge revalidation operations)

based on some criteria such as setup or tooling access.
Hierarchical modelling.

System functionality can be improved and implementation facilitated if a
hierarchical parent-child relation is imposed. The current implementation
of FRIEND does not force a hierarchical structure among features.
However, this mechanism facilitates parametric relationships between
features and could therefore it could help to add this level of validation.
Nevertheless, modelling hierarchies and hierarchies of features defined by
attributes or FbDI’s are distinct items of information that should be

clarified and approached in ways yet to be defined.
Thorough extension towards process planning,.

It 1s considered that FbDI's and operations presented here are particularly
valid for CAPP applications because they were gathered from research
reports mainly on CAPP and Design-for-Manufacturing feature-based
systems. This should be verified and a more reliable association between

FbDI-operations-application could be achieved.

To define the extent of the FbDI's usefulness for facilitating (if not
automating) process planning generation it would be interesting to see a
CAPP system thoroughly using FoDI's with few, if any, enquiries to a low-

level geometric reasoning system.
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® A better intent.

A better internal representation of FbDI's would allow some references
and/or values to be stored with the intent This could possibly be achieved
through the use of frames to accommodate parameters and functions as

part of the intent data-structure.

A better FbDI that relates various features would allow the generation of
an intricate mesh of relationships which raises the question of how to
simultaneously present such a plethora of FbDI’s to the user in order to

allow their visualisation and management.

11.3.2 EXPANSIONS

The work presented in this thesis represents a Product Data Modelling (PDM)
approach aimed at producing a better (guaranteed correct and enriched)
representation of a part. The expansions proposed below follow different paths
in fulfilling the modelling of information required for a PDM approach where
it is believed that feature-based intent-driven validation is capable of providing
a bridge between rigid and flexible information embedded 1n the design task.

e Expansion of the reasoning capabilities of FRIEND to accommodate
various applications (e.g. tolerancing, setup planning, fixturing) to study
the concurrency problem alongside FbDI's and to investigate how the

validation framework would respond to this new requirement.

Instead of a linear declarative reasoning, this more concurrent approach
would probably require the use of another AI technique. A “blackboard

system” approach seems more appropriate to perform this reasoning task,

This also would require a taxonomy that classifies FbDI’s not according to

their functional meaning but according to expertise or responsibility. For
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instance, VDI's could be assigned to a designer, PDI's assigned to a

structural analysis engineer and RDI’s to a process planning engineer.

General propagation poses the problem of identifying the variety of
possible alternative operations to propagate. For instance, stretching the
thickness (or height) of the part in Figure 11-4, where the holes were
defined as nested@bot of the step feature produces a plethora of alternative

propagation operations (see Figure 11-2):

u
2

Figure 11-2: Alternative Revalidation Operations

1. Change the step positioning (keep step volumetric intention);
change hole positioning and labels to blind-holes (keep hole

volumetric intentions);

2. Change the step positioning (keep step volumetric intention);

increase the hole height;

3. Change the step volumetric intention; Keep step positioning

(keep hole volumetric intention and positioning);
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4. Kkeep step volumetric intention and positioning; Change the step
label to a slot_tru (keep hole volumetric intentions and

positioning);

5. Invalidate height manipulation because of the functional

significance of the hole/step arrangement.

A possible approach to tackle this problem would be to search all features
affected by the operation and their properties and ask the designer which
are to be kept and which are to be changed. This approach however,
introduces no “intelligence” to the system. A study of possible scenarios
could result in a more guided, usefl and intelligent (reasoned) set of
alternatives/suggestions. An integration of existing FbDI's with constraint-
driven systems could facilitate the determination, and even derivation, of

the more likely and correct alternatives.

One of the problems of form-function relationships is the multiplicity of
forms that could be used to implement a target function. The validation
mechanism could be expanded upwards in the abstraction level and (high-
level) abstract FbDI’s defined. Such a system would track the validity of
(low-level) FoDI's with the possibilities supposedly associated with a
(high-level) abstract FbDI - a function

In this way, even if a totally different FbDI scenario is achieved after an
operation, it could still be valid because it fulfils one of various possible

scenarios that satisfy the implementation of an abstract FbDI.

It could be useful to save abstract FbDI’s as a blue print of that part and
see how this knowledge could be reused in order to design parts that keep

some resemblance in functional terms.

Integration of existing FbDI's with Parametric FbDI's, i.e. a constraint-
dnven approach. Although different validation capabilities will be
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achieved, these should be analysed in conjunction with the ones presented
here because PDI's (constraints) were not considered to be directly

included in the proposed reasoning priority arrangement.

The main benefit of FbDI's relate to the flexibility of the approach
compared to a constraint-driven-only approach. In this sense, all attributes
of a model! (e g. assembly, tolerances) that could be categorised as flexible
(unbound) or fixed (tightly-bound) behaviour could benefit from being
studied and included in the FbDI's taxonomy. Attributes with fixed
behaviours could be defined as those that are assigned to the model to
conform to some requirement while attributes with flexible behaviours
could be those that are included in the model due to completeness

requirements.

A possible solution would be to record this “flexibility” behaviour as a
FbDI parameter, i.e. it would be interesting to have the possibility to assign
behaviours such as unbound, loosely-bound or tightly-bound to determine
how a system would react to changes in the FbDI relationship. For
instance, an unbound FbDI could be created and deleted regardless of the
explicit consent of the user while a change to a tightly-bound FbDI could
only be carried out after being confirmed by the user. This has some

stmilarities to the proposal by Nielsen et al. (Nielsen91).

FbDI's help model (loose) relationships that, possibly via other (loose)
relationships, could be related to a more tightly-defined constraint. A
different co-ordination between PDI's and the other FbDI's is thus required

in order to not lose the flexibility of an intent-driven approach.

Different views of a product could produce not only different feature-based
models but also different associated FbDI perspectives. This raises the
problem of mapping FbDI's across different views. Although this 1s a
problem 1n itself, FbDI mapping could facilitate the mapping of features
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across feature spaces and facilitate the understanding of the component’s
requirements from another perspective. For instance, a process planning
engieer trying to change a parameter could receive messages that this
violates a set of FbDI's when mapped to another, say production planning,

view,

If the flexibility attribute defined earlier were already implemented, those

messages could be:

® warning messages for both views (process and production planning

engineers for the example given) if unbound FbDI's are involved;

® impediment messages if tightly-bound FbDI’s are involved (and
possibly the automatic issuing of a design change request if the
FbDI is also tightly-bound in the other view);

e if the corresponding FbDI in a view “B” 1s of a loosely-bound type,
the required changes in a view “A” would not be prevented but the
user working on the view “B” would be warned of the changes in

the view “A” (and possibly, how they are mapped into view “B”),

In this way, FbDI mapping could greatly enhance the negotiation of

information related to a product from various perspectives.

At the same time, this FbDI integration could help minimise the search
space of possible alternatives for general propagation. A balance would
have to be achieved between unbound (FbDI's) and tightly-bound
designer’s intents (constraints). Because some reasoning and interactions
could be done using bounding boxes, this may be suitable for relaxation
reasoning (Mantyla89, Case92b, Das96) where some of the properties of a
feature (such as its volume or orientation) are left unspecified (fuzzy or

relaxed) and the system would reason about these properties using the
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FbDI’s generated during design against cost/time criteria (for example) and

suggest alternative designs.

Figure 11-3 presents the relaxation group of a slot feature.

Figure 11-3: Alternative Relaxations.

The idea of relaxation can be extended to produce multi-layered models
that present or hide details from the user, through refinement or relaxation
processes (Figure 11-4) according to need and perspective while storing
some of the history of the design. History of the design has proved to be an
important by-product of the design process (Rossignac90, Sreevalsan92,
Rosen93).

For instance, an abstract layer of the feature-based model could be used to
produce fast animations while another (possibly more detailed) model
could be used by the designer by removing some of the relaxation degrees
of freedom. Furthermore, the process planning engineer would receive the
model with all information (or suggestions) for the remaining relaxation

degrees of freedom.

Figure 11-4 shows a part being modelled in various layers. The highest

layer is the most abstract one and outlines the part via its bounding box
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dimensions. Subsequent layers are refinements of higher layers and
produce lower abstraction layers with more detailed (less relaxed)
information of the part. The refinement process has a counterpart which is
the relaxation process. A relaxation process would make the details of a
feature back to a relaxed (less refined) form. Alternative realisation of the

part could be achieved from different refinements from the relaxed form.

It is considered that a PDM technique is concerned with modelling various

types of information regarding a product that include:

modelling the geometry of the product where a validated feature-based
representation and a solid representation derived from it are the most

important elements;

modelling the knowledge associated with the product, where (low-level)
FbDFI's (including unbound, loosely-bound and tightly-bound FbDI’s) and
feature interactions can be an important part of the knowledge alongside
the modelling of processes and the application’s restraints associated with

the product.

modelling the design process used to generate the product, where feature
operations, (high-level) abstract FbDI's and relaxed/refined layered
representation could enhance the history associated to the product

modelling.

It can be inferred through the expansions discussed above that, as a Product

Data Modelling (PDM) technique, a feature-based intent-driven validation

system could represent a valuable development framework.
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Figure 11-4: Multi-Layered Feature-based Relaxed Model.
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11.4 FINAL REMARKS

To summarise the contributions of this work, it can be asserted that a novel
approach for DbF systems development was presented, information structures
were identified and specified, formalisms were applied and priontisations were

established towards a feature-based intent-driven validation system.

The prototype system FRIEND (Feature-based validation Reasoning for
Intent-driven ENgineering Design) has a clear validation procedure (because
1its major concern is the validity of the model) and explicitly captures
designer’s intents (which are not geometric constraints) because it is driven by

intents reasoning.

It is claimed that the ideas presented here have contributed to allow the
development of a FBM system that would give a better support for detailing a
geometric design by giving feedback on the validity of the model regarding
well-defined properties of feature themselves as well as their application

characteristics.

The designing task would be made easier because of the support of an
underlying intelligent and FRIENDIly reasoning capable of understanding
FbDI’s and helping to produce an enriched and valid model.

It is also claimed that the system development task would be greatly facilitated
by considering the formalisms and frameworks presented here as guidelines

and the classifications and taxonomies for comparison and discussion.

It is hoped that this work would, at least, help raise the awareness of the
validation problem in future feature-based modelling system developments
(especially DbF systems) and provide a mitial solution framework for

discussion.
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