
Pilklngton Library

I • Lo~ghb_orough
• Umversrty

Author/Filing Title H~~~ .. ~.~. := / ~.~.~.~.:
.........

AccessJon;Copy No.

Vol. No ••.••••.•••••• Class Mark •••..• ~

1 4 JAN 2000

0401991709

lllllllimll

-,

FEATURE-BASED VALIDATION REASONING

FOR INTENT-DRIVEN ENGINEERING DESIGN

by

Marcelo da Silva Hounsell

A DOCTORAL THESIS

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

July.l998
. ~ 1.

' ~ . ' ,. ~
' .
. . '

©by Ma~celo da Silva Hounsell (1998)
I ._ •••

...... _
' ' .
. .. j

....... ~·

,~-y I J...,.\..;_, ··---

~~~ O'£o t''\'1 17Z> 
.~- ,, 



ACKNOWLEDGEMENTS 

I am deeply indebted to my supervisor, Professor Keith Case, and I would like to 

express my sincere gratitude to him for sharing some of his knowledge w1th me, 

for ills expert guidance, for his friendship, and for his endless help with my 

attempts to grasp the idiosyncrasies of the English language. 

Acknowledgements are due to the Brazilian Federal Agency for Post-Graduate 

Education, CAPES, for providing financial support for this research, and to the 

State University of Santa Catarina (Brazil), UDESC, for granting me study 

leave. 

Special thanks must go to my parents, Eduardo and Regina, who have taught me 

the important things in life, and who have suffered with the burden of the long 

distance of our separauon. 

Special thanks must also go to my mother-in-law, Dona Cata, who came and 

helped my wife and me during a very important penod of our hves. 

I would like to thank all my friends of the 'Brazilian Commumty' in 

Loughborough. Their support and friendship made this work seem less 

laborious. 

Ill 



To Renata and Carolina Hounsell, 

my beloved wife and daughter. 

IV 



~----------------------------------------

ABSTRACT 

Feature based modelling represents the future of CAD systems. However, 

operations such as modelling and editing can corrupt the validity of a feature

based model representation. Feature interactions are a consequence of feature 

operations and the existence of a number of features in the same model. Feature 

interaction affects not only the solid representation of the part, but also the 

functional mtentions embedded within features. A technique is thus required to 

assess the integrity of a feature-based model from various perspectives, 

including the functional intentional one, and tlus technique must take into 

account the problems brought about by feature interactions and operations. The 

understanding, reasoning and resolution of invalid feature-based models 

requires an understandmg of the feature interaction phenomena, as well as the 

characterisation of these functional intentions. A system capable of such 

assessment is called a feature-based representation validation system. 

This research studies feature interaction phenomena and feature-based 

designer's intents as a medmm to achieve a feature-based representation 

validation system. 

It was found that feature mteraction classifications available in the literature are 

strongly oriented towards the feature recognition approach and are mainly 

inappropriate to design-by-features systems. A feature interaction classification 

and identification mechanism is thus proposed. In addition, a taxonomy of 

designer's intents is proposed that makes explicit many of the expected 

behaviours behind the use of features m a representation for specific 

applications. The binding process that relates feature interactions to designer's 

intents allows the validity assessment of the representation and also the 

identification of operations that contribute to the revalidation of the 

representation. This boundmg process leads to a reasoning mechanism that 

performs feature validation and is driven by designer's intents, and, therefore, 

was baptised FRIEND (Feature-based validation Reasoning for Intent-driven 

ENgmeenng Design). 

V 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .......................................................... m 

ABSTRACT ..................................................................................... V 

TABLE OF CONTENTS .............................................................. VI 

LIST OF ABBREVIATIONS ..................................................... XIV 

1. INTRODUCTION ........................................................................ ! 

1.1 CAD Systems ................................................................................................ ! 

1.2 Feature-based CAD systems ........................................................................ 3 

1.3 Commercial Feature-based CAD Systems ................................................. 5 

1.4 The Validation Problem ............................................................................... 5 

1.5 Distinct Validation Aspects ......................................................................... 6 

1.5.1 Model ValidatiOn ................................................................................ 7 

1.5.2 Entity Elicitation .................................................................................. 8 

1.5.3 Representation Validation ................................................................. 15 

1.5.4 Examples of the Validation Aspects ................................................. 18 

1.6 Objectives .................................................................................................... 19 

1.6.1 Mol!vation ...............................•......................................................... 19 

1.6.2 Objecl!ves Statement. ....................................................................... 20 

1.6.3 Specific Objectives ............................................................................ 21 

1.6.4 Generic Scope .................................................................................... 22 

VI 



1.7 Resulting Publications ............................................................................... 22 

1.8 Structure of the Thesis ............................................................................... 24 

1.9 Summary ..................................................................................................... 25 

2. LITERATURE REVIEW .......................................................... 26 

2.1 Feature Definitions ..................................................................................... 26 

2.2 Types of Features ....................................................................................... 29 

2.3 Feature-based Applications ....................................................................... 33 

2.4 Feature Representations ............................................................................ 34 

2.4.1 B-Rep, CSG, Hybrid Schemes and Enhanced Representations ........ 34 

2.4.2 Volume and Surface Features ............................................................ 35 

2.5 Feature Implementation Approaches ....................................................... 36 

2.6 System Approaches .................................................................................... 37 

2.6.1 Design-by-Features (DbF) Approach ................................................ 38 

2.6.2 Feature Recognition (FeR) Approach ............................................... 39 

2.6.3 Hybrid Design-by and Recognise Features Approach (HDR) ........... 41 

2.7 Related Work on Representation Validation ........................................... 43 

2.8 Summary ..................................................................................................... 59 

3. FEATURE-BASED VALIDATION ......................................... 60 

3.1 Facets of Validation .................................................................................... 60 

3.1.1 GSMvalidation ................................................................................. 60 

3.1.2 GSM-Iike Validation ......................................................................... 61 

3.1.3 Constramt ValidatiOn ....................................................................... 61 

3.1.4 Manipulation Restrictions ................................................................. 61 

3.1.5 Associative Validation .................................................................... 62 

3.1.6 Intersection Validation ...................................................................... 62 

VII 



3.1.7 Rule-based Validation ....................................................................... 62 

3.1.8 Consistency Among Representations ................................................ 62 

3.1.9 Feature's Topological Validation ...................................................... 63 

3.1.10 Validation via Recognition .............................................................. 63 

3.2 Representation Validation ......................................................................... 63 

3.2.1 Two Level Validation ........................................................................ 63 

3.2.2 Conceptual Feature Validation .......................................................... 65 

3.2.3 Validation at Feature Class Level... .................................................. 66 

3.3 Feature Validation System ........................................................................ 67 

3.3.1 Domain Characterisation ................................................................. 67 

3.3.2 Validity Conditions ........................................................................... 68 

3.3.3 Operations Characterisation .............................................................. 68 

3.3.4 The Framework ................................................................................. 69 

3.4 Detailed Research Scope ............................................................................ 69 

3.5 What to Validate ? Feature-based Designer's Intents ............................ 70 

3.5.1 Defimtion .......................................................................................... 72 

3.5.2 Which FbDI's? Volumetnc FbDI's .................................................. 73 

3.5.3 What are FbDI's ? The Essence ........................................................ 81 

3.5.4 The Actual VDI's .............................................................................. 82 

3.6 Example of Conceptuall\:IFI Reasoning .................................................. 83 

3.7 Composing a Feature Validation System ................................................. 84 

3.8 Summary ..................................................................................................... 85 

4. AN INTENT-DRIVEN APPROACH ....................................... 86 

4.1 Conceptual Validation and Beyond .......................................................... 86 

4.1.1 Feature-based Designer's Intents Elicitation ..................................... 88 

4.2 Designer's Intents Elicitation Criteria ..................................................... 88 

4.3 Designer's Intents Classification ............................................................... 89 

viii 



4.3.1 Morphological Functional FbDI (MFl) ............................................. 89 

4.3.2 Theoretical Functional FbDI (TDI) .................................................. 90 

4.3.3 Relational Functional FbDI (RDI) .................................................... 91 

4.4 Designer's Intents Taxonomy .................................................................... 92 

4.4.1 Morphological FbDI .......................................................................... 92 

4.4.2 Parametric FbDI ................................................................................ 92 

4.4.3 Geometric FbDI's and Application-Oriented Intents ........................ 94 

4.5 A FbDI Taxonomy .................................................................................... 103 

4.6 ''lntenturization'' Validation ......................................... ; ......................... lOS 

4.7 Summary ................................................................................................... 106 

5. FEATURE-BASED INTERACTION •.•.•.•.•.•.•••••••••••••••••••.•••• 107 

5.1 The Need for a Broad Coverage .............................................................. 107 

5.2 Tenninology .............................................................................................. 109 

5.3 Related Work on Feature lnteraction .................................................... 110 

5 3.1 Types of Feature Interactions .......................................................... 111 

5.3.2 Some Feature Interaction Classifications ........................................ 112 

5 3.3 A Discussion on Existing Classifications ........................................ 119 

5.4 The Classification Framework .................................................................. 121 

5.4.1 Entities and Levels ........................................................................ 121 

5.4.2 Queries to the Underlying GSM ...................................................... 122 

5.4.3 The IdentificatiOn Process ............................................................... 123 

5.4.4 The Basic Framework ..................................................................... 126 

5.4.5 The Complete Classification Tree ................................................... 128 

5.4.6 Special Meanings and a Few Exceptions ........................................ 128 

5.5 Summary ................................................................................................... 131 

6. OPERATING FEATURE MODELS ..................................... 132 

ix 



6.1 Operations and Validation ...................................................................... 132 

6.2 Operations Classification ...............................................................•......... 137 

6.2.1 Analysis Operations ......................................................................... 137 

6.2.2 Manipulation Operations ................................................................ 137 

6.2.3 Setup Operations ............................................................................. 138 

6.2.4 The OperatiOns ClassificatiOn ........................................................ 139 

6.3 Manipulation Operations ........................................................................ 139 

6.3.1 Modelling Operations ...................................................................... 139 

6 3.2 Editing Operations ........................................................................ 141 

6.3.3 Revalidation Operations .................................................................. 142 

6.4 A Minimum Set of0perations ................................................................ 148 

6.5 Summary ................................................................................................... 149 

7. VALIDITY CONDITIONS ..................................................... 150 

7.1 Organising the Reasoning ........................................................................ 150 

7.2 Invalidity Tests ......................................................................................... 152 

7.2.1 The Validation Process .................................................................... 152 

7.3 Organisation ............................................................................................. 155 

7.3.1 Reasoning Aspects .......................................................................... 155 

7.3.2 Reasoning Sets ................................................................................ 156 

7.3.3 Priority ............................................................................................ 158 

7.4 Intents Management ................................................................................ 159 

7.4.1 Verification Statements ................................................................... 160 

7.4.2 Enrichment Statements .................................................................... 161 

7.4.3 Update Statements ........................................................................... 162 

7.5 Active, Inactive and Intentional Status •••••••••••••••••••••••.••.•••••••••.••.••.••••••• 163 

7.6 Intent Management Priority .................................................................... 165 

X 



7.7 Understanding the Reasoning Organisation •••••••••••••••••••••••••..••••.•••.••.••• 166 

7.8 Summary ................................................................................................... 168 

8. IJ\IIPLEMENTATION .............................................................. 169 

8.1 A Prototype Implementation ................................................................... 169 

8.2 Resources ................................................................................................... 170 

8.2.1 WxCLIPS ........................................................................................ 170 

8.2.2 Microstation ................................................................................... 172 

8.3 Modules ..................................................................................................... 172 

8.3.1 FRIEND-VIEW ........................................................................... 172 

8.3.2 FRIEND-KBS ................................................................................. 173 

8.4 Data Structures ......................................................................................... 178 

8.4.1 Representmg Intents and Interactions .............................................. 178 

8.4.2 Representmg Features .................................................................... 182 

8.5 Intents Management Implementation .................................................... 188 

8.6 Feature Interaction Identification Implementation .............................. 189 

8. 7 Feature Operations Implementation ...................................................... 189 

8.8 Priority Implementation .......................................................................... 190 

8.9 Reasoning Sets Examples ......................................................................... 191 

8.9.1 S!IDply Geometrical Reasoning ....................................................... 191 

8.9.2 Simply Volumetrical Reasoning...................... . .......................... 192 

8.9.3 Simply Labelling Reasoning ........................................................... 193 

8.9.4 Complex Reasomng ....................................................................... 195 

8.10 Intents Management Examples ............................................................. 198 

8.10.1 Experience-based Guided Enrichment ......................................... 198 

8.10.2 Blind Ennchment .......................................................................... 200 

8.10.3 Venficatwn .................................................................................. 201 

XI 



8.1 0.4 Inheritance-based Guided Ennchment .......................................... 203 

8.11 Final Remarks on The Implementation ............................................... 204 

8.12 Summary ..••••••••••••••••••••••••••••••••••••••••••••••..••••••••••••••••••••••••••••••••••••••••••••••• 205 

9. TEST CASES ••••••••••.•••••••.••••••••••••••••••••••••••••••••••••••••••••.•••••••••••• 206 

9.1 Introduction .............................................................................................. 206 

9.2 Standard Orientation ............................................................................... 207 

9.3 Labelling ••...•..••••••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 209 

9.4 Valid Part Description ............................................................................. 211 

9.5 Morphological Reasoning Test •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 214 

9.6 Thin Wall Test Cases •••.••••••..••.•••••••••••••••..•.•.••••••••••••.••••.••••••••.•••••••••••••••• 216 

9. 7 Chang's Part ............................................................................................. 218 

9.8 A Lost Intention? ...................................................................................... 220 

9.9 Information for Process Planning ........................................................... 225 

9.9.1 VIsualisation .................................................................................... 225 

9.9.2 Redesign .......................................................................................... 229 

9.10 Edinburgh Composite Component ....................................................... 232 

9.11 A Comparison Problem ......................................................................... 236 

9.12 Summary ................................................................................................. 237 

10. DISCUSSION •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 238 

10.1 The Validation Framework ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 238 

10.2 Intent-Driven versus Constraint-driven Only Approaches •••••••••••••••• 239 

10.3 Use of the Elicitation Process ................................................................ 241 

XII 



10.4 Designer's Intents ................................................................................... 241 

10.5 Feature Interactions ............................................................................... 243 

10.6 Feature Operations ................................................................................ 244 

10.7 The Reasoning Priority .......................................................................... 247 

10.8 Intents Management .............................................................................. 248 

10.9 The Implementation ............................................................................... 249 

11. CONCLUSION ....................................................................... 251 

11.1 Summary of the Thesis .......................................................................... 251 

11.2 Contributions .......................................................................................... 254 

11.2.1 Clarifications ................................................................................. 254 

11.2.2 Effective Capture of Designer's Intents ........................................ 255 

11.2.3 The Validation Framework ........................................................... 255 

11.2.4 Information Detailing (The Process) ........................................... 257 

11.2.5 Classifications and Taxonomies (The Products) ........................... 258 

11.2.6 Priority Arrangement. ................................................................... 259 

11.2. 7 Added Development Formalism ................................................... 260 

11.2.8 A Comparison Framework ........................................................... 260 

11.3 Further Work and Future Research .................................................... 261 

11.3.1 Extensions ..................................................................................... 261 

11.3.2 Expansions .................................................................................... 263 

11.4 Final Remarks ........................................................................................ 271 

12. REFERENCES ....................................................................... 272 

xiit 



LIST OF ABBREVIATIONS 

AI Artificial Intelligence 

AOI Application-Oriented Designer's Intent 

Bbox Bounding Box 

B-rep Boundary Representation 

BI Boundary Interaction 

CAD Computer Aided Design 

CAE Computer Aided Engineering 

CAM Computer- Aided Manufactunng 

CAPC Computer Aided Planrung and Control 

CAPP Computer Aided Process Planning 

CE Concurrent Engmeering 

CLIPS C Language Integrated Production System 

CMM Coordinate Measuring Machine 

CSG Constructive Solid Geometry 

DbF Design-by-Features 

DFA Design for Assembly 

DFFix Design for Fixtliring 

DFM Design for Manufacturability 

DFMould Design for Mouldability 

xiv 



DP Design Process 

DSG Destructive Solid Geometry 

EAD External Access Direction 

ECTOF Extended CSG Tree of Features 

FAB Feature's Associated Boundary 

FAG Feature-Dependency Graph 

FAS Feature's Associated Surfaces or Faces 

FAV Feature Associated Volume 

FbDI Feature-based Designer's Intent 

FBM Feature-based Modelling 

FDG Feature-Dependency Graph 

FeR Feature Recognition 

FI Facial Interaction 

FIG Feature Interaction Graph 

FN Feature Nature 

FPS Feature Producing Surfaces 

FPV Feature Producing Volume 
0 

FRIEND Feature-based validation Reasoning for Intent-driven 

Engineering Design 

FV Feature Volume 

XV 



GDI Geometric Designer's Intent 

GSM Geometric Solid Modelling 

GT Group Technology 

HDR Hybnd Design-by and Recognise Features 

ICAD Intelligent CAD 

KBS Knowledge-based System 

MFI Morphological Functional FbDI's 

MMF Manufacturing Motion Feature 

NA Non Applicable 

PDI Parametric Designer's Intent 

PDM Product Data Modelling 

RDI Relational Designer's Intent 

SE Semantic Entities 

TDI Theoretical Functional Designer's Intent 

VDI Volumetric Designer's Intent 

VI Volumetric Interaction 

XVI 



1. INTRODUCTION 

1.1 CAD SYSTEMS 

Computer Aided Design (CAD) systems are considered an essent:J.al tool for 

detailed geometric design allowing a high level of flexibility, efficiency and 

quality. Tradit:J.onal CAD systems use low level entities such as vertices, 

edges, and faces (see Figure 1-1), as well as low-level operators such as move 

a vertex, create an arc, delete an edge and insert a face for detailing a 

geometric design. 

• • 
\-f 
t=' Edge 

Face 
• " • • 

• • 

\__Vertex 

Figure 1·1: Some Entities of Traditional CAD Systems. 

More recent CAD systems based on Geometric Solid Modelling (GSM) use 

solid primitives of various shapes such as spheres, cones and cylinders (Figure 

1-2) that can be combmed using Boolean operators such as union, mtersection 

and difference. 

Although GSM represents an important, and nowadays widespread, 

Improvement over 2D and 2.5 D computer-aided drafting systems they have 

some unattractive factors when being considered as the medium for integration 

of CAD systems With other computer-aided engineering-related activities 



CHAPTER 1• INTRODUCTION 

(such as process planning - Mantyla89 - and tolerancing analysis - Duan89). 

Such limitations include: 

Figure 1-2: Entities of GSM-based CAD Systems. 

• difficulty in interpreting geometric information from the point of view of 

manufachlring; 

• difficulty in providing associated (non-geometrical) information needed for 

process planning; 

• being large and complex data struchlres themselves, GSM representations 

are not attractive for handling extra attribute information which can be 

complex and voluminous; 

• because GSM represents one level of information (geometry) it has been 

considered to be single-level. Thus, it is difficult to distmguish between 

essential functional aspects of the shape to be used by the application and 

other non-essential aspects; 

• traditional primitives in GSM modellers are not convenient for defimng 

geometric tolerancing and manufachlnng specifications. 

Furthermore, the integration or even mterfacing of current CAD systems with 

other activities such as engineering (CAE), process planning (CAPP), 

manufacturing (CAM) and production control (CAPC) has been shown to be a 

difficult task because current CAD systems are incapable of captunng non

geometric aspects of the designer's intent such as tolerances, part relationships 

or surface fimsh. (NnaJI93, Stroud93, Marefat93b). In addition, more abstract 

design activities such as conceptual design, generation of design alternatives, 

PAGE2 



CHAPTER 1: INTRODUCTION 

reuse and reasoning on design procedures and capturing the functionality of a 

product are JUSt impossible (Henderson93, Taylor96). 

These limitations have generated a research area, which takes their resolution 

as its main objectives and is known as Feature-based Modelling. 

1.2 FEATURE-BASED CAD SYSTEMS 

Feature-based Modelling (FBM) systems enhance existing CAD environments 

through the use of more meaningful entities, ease of use and facihtate 

integration with other computer-aided systems within the manufactunng 

context because they subsume extra non-geometric semantics. 

FBM systems use entities, called features, that are closer to the designer's own 

vocabulary such as holes, slots and steps (Figure 1-3) and are considered the 

means of incorporating knowledge of the form, behaviour, function and related 

manufacturing processes into a single representation (E!Maraghy93a). 

0 

Figure 1-3: Entities of Feature-based Modelling Systems. 

Feature-based Modellmg has already become an enabling product modelling 

technique for a better integration of CAD systems and other engineering

related analyses. Its close integration with specific disciplines such as 

manufacturing and assembly has helped develop approaches such as Design

for-Manufacturing (DFM) and Design-for-Assembly (DFA). It has even been 

asserted that "one of the most popular approaches for manufacturing involves 

features, or recurring shapes With some fixed engineering significance" 

(Mantyla96). 

The possibihty of capturing designer's intent (see discussion on this m section 

3.5), as well as geometric and topological mformation, also helps mediate 

PAGE3 



CHAPTER 1: INTRODUCTION 

multi-disciplinary product development towards a Concurrent Engineering 

(CE) approach (Lim95). 

Furthermore, FBM plays an important role in helping the development of 

Intelligent CAD (ICAD) systems where, with the help of Artificial Intelligence 

(AI) techniques, not only the object, but also the Design Process, can be 

modelled and manipulated (Ohsuda89, Dixon90, Nielsen91). 

Design-by-Features (DbF) is one approach for implementing Feature-based 

CAD systems and offers the designer a library of features to be used to 

represent the desired component. DbF systems are distinct from the Feature 

Recognition (FeR) approach where features are 'discovered' after a session 

using traditional or GSM-based CAD systems. Current thinking is that 

elements of each approach (traditional CAD, GSM CAD, DbF and, FeR) can 

be usefully combined into a DbF-hke system producing a much more useful 

and fleXIble system (see section 2.6.3). 

The power of feature models in manufacturing applications is based on 

associating feature types with manufacturing process models (Mantyla96). 

Tlns assertion emphasises a need for FBM systems to produce correct model 

representatiOns. Correct representations can be used immediately by 

downstream applications without the need for further filtenng of errors or 

misrepresentations introduced by the use of the feature-based modelling 

technique. 

The main advantages of using features include (Ovtcharova92): 

• a feature vocabulary is more natural for expressing the product when 

compared with a purely geometric one; 

• there is a possibility of usmg features as a basis for modelling product 

information in different phases such as design, analysis, process plannmg 

and manufacturing; 

• the use of features can lead to an increase in designer's productivity and 

cost effectiveness. 
PAGE4 



CHAPTER 1: INTRODUCTION 

1.3 COMMERCIAL FEATURE-BASED CAD SYSTEMS 

Feature-based modelling has been reported to have been incorporated in 

(parametric) commercial CAD systems (Shah91, Rosen93). These commercial 

systems include Microstation 95, Pro/ENGINEER, UNIGRAPHICS (Shah91, 

Mitchell96), BRAVO, CADDS 5 and I-DEAS (Lim95). 

However, these implementations have suffered severe criticism: 

• "These CAD systems are often misleadingly construed as true feature

based modelling systems" (Lim95). 

• "In reality, features in these systems are merely viewed as macros that 

facilitate the creation, parameterisation and placement of specific geometry 

forms within a solid modeller" (Pemg97b ). 

However crude the implementatiOns are, many of them have made serious 

comnutment to extend or Implement feature-based modelling in the future. 

Commercial CAD systems, highly influenced by parametric or variational 

constramt-based technology (see section 4.4.2), have created some confusion 

concerning feature technology. In addition, some strange behaviours have been 

reported when editing feature-based models using some of these systems 

(Chen95). 

Therefore, commercial feature-based CAD systems are considered not yet 

mature enough to be widely used as a basic resource for research on feature

related modelling problems. 

1.4 THE VALIDATION PROBLEM 

When a new methodology, technique or theory is developed to model the 

behaviour of a phenomenon it is necessary to validate the model. Validation is 

the process of checkmg that a representation satisfies the cnteria established 

by the domain characterisation in target - the model. Conformance to the 

PAGE5 



CHAPTER 1'/NTRODUCT/ON 

cntena confirms the validity of the model representation (Rossignac90, 

Jablokow94). 

Many authors have pomted out the existence of problems when using feature

based systems and the importance of the validation task (Faux86, Dixon87, 

Emmenk89, Shah90, Rossignac90, Shah91, Sreevalsan92, Requicha92, 

Pratt93, Duan93, Martino94a, Su94, Klm96, Kraker97) but few state what a 

valid representation is in terms of the feature technology. Therefore, even the 

origins of the validity problem are not completely clear. 

Some of these problems related to representation validation have been referred 

to in the literature using the following keywords: manipulations, editability, 

operating, consistency verification, construction and changing feature-based 

models. 

One question to be answered is which restrictions and/or verifications should 

be applied to a feature representation (preferably at the feature representatiOn 

level) in order to guarantee that the model is within its domain and is really 

representing the artefact's geometric semantics. Defining a set of 

representation validity conditions establishes the criteria that must be applied 

to classify it as being in the domain of the model and thus a valid 

representation. 

Although still lacking a proper clanfication, architectures for the future 

feature-based design system have been proposed (Allada95, Klrn96) where 

"feature validation" and "designer's intent" have been considered as necessary 

elements of such arclutectures. As a result, It can be seen that "feature 

validatiOn" is an Important and active research topic and thus needs to be 

further studied, which is one of the aims of this research. 

1.5 DISTINCT VALIDATION ASPECTS 

On analysing the validation problem, at least three aspects can be 

distinguished (Figure 1-4): Model Validation, Entity Validation and Model 

Representation Validation. 
PAGE6 



CHAPTER 1: INTRODUCTION 

Validation Aspects 

a Model 

0 Ent1t1es 

a Representat!on 

Figure 1-4: The Validation Aspects. 

1.5.1 MODEL VALIDATION 

Model validation seeks to prove that the model "does 1ts job" in a variety of 

circumstances and that the model agrees with the "real thing", at least to some 

extent. Most often, there are built-in restraints that apply to the model to 

guarantee the extent of the modelhng and that models are within its 

representation domam. This is called model representation validation. 

Feature-based modelling has already been accepted as a valid (and indeed, 

necessary) modelhng framework (DIXon90, Denzel93) that will promote 

Concurrent Engineering (CE) (Lim95) and a better integration of CAD 

systems w1th other computer-aided engineering activities such as CAPP, CAM 

and CAE. This acceptance can also be inferred from the variety of feature 

applications that thnves in the hterature (some of which are presented in 

section 2.3). 

From the modelhng perspective, feature-based models have the same 

modelling domain capability and limitations as the underlymg geometric 

modeller. Therefore, a CSG-based system would not be validated as a good 

modelhng framework for sculptured parts such as golf clubs or shoe lasts. 

PAGE7 



CHAPTER 1: INTRODUCTION 

Rather, a feature modeller With an underlying "surface modeller" would be 

more appropriate for this domain (Mitchell96). 

1.5.2 ENTITY ELICITATION 

Once feature-based modellmg is accepted as a valid alternative for a product 

domain, it is necessary to identify and validate features for that product 

dornam. This gives rise to two activities: entity elicitation and entzty 

validation. These two together are called the elicitation process. 

The entity elicitation process is an identification methodology. Using 

manufacturing features as an example, tlns process, also called featurization 

and summansed m Shali and Mantyhi (1995) and Mlmtyla et al. (1996), 1s 

reproduced below: 

• determine the scope of the product and processes to be covered; 

• identify the individual process steps within the chosen scope; 

• formalise the process steps as recurring process elements and identify 

process parameters and relationships between processes; 

• identify recurring process sequences related to a certain type of geometry, 

and formalise the relation between the geometry and the process 

parameters of the steps ofthe sequence; 

• call the resulting shapes "manufacturing features" and name each feature 

parameter. 

It can be inferred that there are embedded elicitation criteria such as features 

being required to be associated with a (manufacturing) process step and that 

there are recurring entities. 

Classification schemes have been proposed to ease the task of featurization 

and to facilitate the understandmg of a feature domam and its functionality. 

This has been achieved by categorising features usmg shared behaviours and 

PAGE8 



CHAPTER 1: INTRODUCTION 

characteristics. Various classifications have been proposed but it has been 

stated that "their differences emphasise the difference in feature views between 

researchers even when they share a similar interest in the same application 

(Mitchell96). 

Figure 1-5 presents an example of a form feature classification scheme 

(Pratt85): 

ExpliciUEvaluated 
Form Features 

I 
I I I I 

Through Hole Depression Protrusion Area 
(Passage) 

I I I I 
I I I I I I I I 

Rotational Prismatic Rotational Prismatic Rotational Prismatic Wilhoul With 
Atlribules Atlribules 

I I I 
I I I I 

lcomplele I Partial I Complete I Partial I Completell Partial I 

Figure 1-5: Pratt's Feature Classification. 

The current thesis takes up an adaptationlsirnphfication of Gindy' s 

classification that is based on feature "external access d!rections" (EAD's, 

Gindy89). This adaptation is presented in Figure 1-6. Some of the features 

originated from this classification, accompanied by other details, are presented 

in Figure 8-19. 

The subsequent step in the elicitation process is to better identify and 

enumerate individual entities (features) for use in the particular application 

context. This gives rise to taxonornies of entities (features). 

PAGE9 



CHAPTER 1: INTRODUCTION 

Form·Fealures 
Classiflcalion 

I 
I I 

Prolrusions Depressions 

I I 
I I I I I I 

0 EAD1
S OEm 1 EAD1s 2 EAD1

S 3 EAD1
S 4 EAD1

S 5 EAD1
S 

I I I I I I I I I I I I I 

Close~ Close~ Close~ Close~ Open Close~ Open Open Close~ Close~ 

I I I I I I I I I I I I 

Salelille Boss Hollow Poc~el Hole Slol Slomrou~n Nolcn Slep Gap Slab 

t-Oua~ran~ular t-Oua~ran~ular rQua~ran~ular rQua~ran~ular -Qua~ran~ular -Qua~ran~ular -Qua~ran~ular -Qua~ran~ular -Qua~ran~ular '""0ua~ran~ular '""0ua~ran~u lar 
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '-I '-I '-I -I -I -I -I -I Cjlm~ncal Cjlm~ncal Cjlm~ncal Cjlm~ncal Cjlm~ncal Cjlm~ncal Cylm~ncal Cjlm~ncal Cjlm~ncal 

Figure 1-6: Adaptation of Gindy's Feature Classification. 

PAGE10 



CHAPTER 1' INTRODUCTION 

Both Pratt' s and Gindy' s classifications produce features taxonornies from 

different views. As an example, Pratt' s (Pratt85) feature taxonomy originated 

from his classification (Figure 1-5) and is reproduced in Figure 1-7. 

Taxonomy "is the classification and naming of things ... in groups within a 

larger system, according to their sirnilanties and differences" (Collins87). 

Therefore, it is considered that a taxonomy is the identification, naming and 

placement of entitles in a (possibly already existing) classification that inserts 

spec1fic elements into the classification. 

Taxononues have been categorised accordmg to the prur of process-product 

type and/or their cross-section shapes (Pratt85): Rotational Features; Pnsmatic 

Features; Tlnn-Walled Features and others. 

Examples of taxonornies can be found in Libarch86, D1Xon87, Shah88c, 

Mimtylii89, Chovan91, Ovtcharova92, Kang93 and Rembold93. 

However, there has not been wide agreement on the results of this entity 

e!icitation process. One of the reasons relates to a current deficiency in feature 

taxononues in that blending is absent from much of the research as it is seen as 

a "non-feature-related activ1ty" (Allada95). 

Blends are one of a few "sculptured features" common to predominantly 

prismatic parts, and yet are somehow considered separate and so not included 

as features (Denzel93, Mitchell96). Some exceptions to this include Laakko 

and Mlintylli's transition features (Laakko93), Chen's modifying features 

(Chen95) and Pemg, Chen & Li'sfillet and arc features (Pemg90). 

Another reason why the featurization result is not widely accepted might come 

from the fact that it has been considered that "any feature library (taxonomy) 

in any system can never be complete" (E1Maraghy93a). 

PAGE 11 



I 

Through Hole 
(Passage) 

I 

Rola!1onal 

f-Bore 1·3 LGroove 6 
~Hole 1·4 

I 
I 

Prismalk 
I 

O!her 
I 

Ro!a!1onal 

I 
I L 

I 

Depression 

I 

Exphc~Evalualed 

Form Fealures 
I 

I 

Prisma11c 
I 

O!her 
I 

Rolalional 

I 
L I 

CHAPTER t· INTRODUCTION 

I I I 

Pro!rus1on Area O!her 

I I 
I I I I 

Prismalic O!her W1!houl Wilh 
All1ibu!es Attribules 

~Pad 1 I Complele 11 Partial I r-KeyWay 1 
1- Pockell ,2 
'-Sio12,3 

c-Fial lcomplelell Part1al 
r-Groove 3 'r----' 'r----' 

r-Bead46 r-Bevel1·3 
~Pad 2 r-Chamfer 

r-FIIIel 

1- Knurl1 ,2 
r-SPLN 1,2 
'-Thread 1·3 

r-Bore 4,5 -Grrove 5 
r-CHole -Sio15 
r-CBore 
r-CSink 
r-Groove 1,2,4,7,8 
~Pockel3 

'-Keyway2 L 
'-Nolch 1,2 '-Boss 1 

Figure 1-7: Pratt's Feature Taxonomy. 

'- Rad1us 1·3 

PAGE 12 



CHAPTER 1: INTRODUCTION 

1.5.2.1 FEATURIZATION VALIDATION 

After entity elicitation ifeaturization) a set of entJty candJdates (features) is 

produced and should be validated against the chosen product's domain. 

F eaturization validation represents the process of selecting a reasonably small 

(or mmimum) subset of all feature candidates raised from the elicitation phase, 

in a specific domain, that demonstrates the best properties (including 

expressiveness and flexibility) to suit an application. FeatJrrization validation 

thus requires a set of validation criteria. Examples of featJrrization validating 

crztena include (Miintyhi96, Sha!I95): 

• completeness: is the identified set capable of creating all parts of the 

chosen domain? 

• unambiguity: do the proposed parameters unambiguously Identify a feature 

type? 

• simplicity: are properties (and parameters) only included if they are of use 

in some application? 

• uniqueness or duplication: can nearly identical features be united and the 

part still be uuiquely modelled using the new feature? 

It should be noted that the final set could be a sub-set of the elicited set 

dependJng on the application. 

However, in the context of features the final validation process has been 

relegated to being considered of minor importance because: 

• there is a close relationship between a feature's domain and its application, 

and therefore It is not easy to dissociate features from their application 

semantics; 

• the feature classification process has been earned out in a way that 

emphasises the application needs (see dotted arrow in Figure l-8 showing 

PAGE 13 



CHAPTER 1· INTRODUCTION 

the influence of an applicatiOn over the definition of the classification, and 

therefore, over the elicitation process) 

1.5.2.2 THE COMPLETE £LICITATION PROCESS 

A formalisation of the featurization and featurization validation processes 

glVes rise to a general elicitation process. The feature classification and 

taxonomy are important resulting products of this process, in addition to the 

fmal feature set. 

The complete elicitation process is depicted m Figure 1-8. The following are 

the elements of this process that need to be specified in order to obtain the 

resulting set of entities (e.g. features, mtents): domnin, elicitation criteria, 

classification, taxonomy, validation criteria and application(s). 

Domain 

Elic1tat1on 
Criteria 

Taxonomy 

Entitles 

Classification ........ 

.... ------

Applications 

Figure 1-8: The Complete Elicitation Process. 

PAGE14 



CHAPTER 1: INTRODUCTION 

1.5.3 REPRESENTATION VALIDATION 

Having a library of features elicited and validated for the target domain, the 

designer can use them to model a part. The result is a model representation of 

the part in terms of the avrulable features. 

Operating feature-based model representations can easily produce invalid 

representations. An invalid feature-based model representatiOn occurs when 

any of the behaviours, intentions or conditions pre-defined for any specific 

type of feature is violated. 

An exrunple of an invalid feature-based model representation is g1ven in 

Figure 1-9. The component in the figure has been mistakenly modelled using a 

through hole, a notch, a through slot just beside the notch and a small blind 

slot feature. 

Figure 1-9: An Example of an Invalid Feature-based Model. 

Various sources of invalidity can be attnbuted to Figure 1-9: 

• a "dangling face" appears between the notch and the through slot features 

which causes the geometrical representation to be considered as invalid; 

• a feature has been defined With the funcuonal1ty of a blind slot while, in 

fact, it has the functionality of a through slot. 

PAGE 15 



CHAPTER 1: INTRODUCTION 

• the through hole has been defined with a poss1bly wrong parameter 

(height), and 1t is in fact a blind hole (in this text called pocket, see F1gure 

1-6 and Figure 8-19); 

In addition, the fact that the notch and the through slot features were not 

defined as one "bigger" notch can be considered to be confusing 

Even the most basic operallon of adding a new feature to the part model can 

produce m valid situations (consider the model in F1gure 1-9 before and after 

the add1tion of the through slot as the last operation). This happens because 

features, when placed in the representation of the part, can have their 

semantics changed. Some of the semantic changes that can happen include: 

• extension by composing complex features from simple ones; 

• modification when some properties are affected (e.g. length, width); 

• destruction when a feature suffers the destructive influence of other 

feature( s). 

To keep track of these semanllc changes, to avoid or warn their occurrence and 

to try to correct them it is necessary to constantly verify the representation. 

This checking mechanism has to, at least, guarantee the correct use and 

meaning of the individual atomic features. However, as features are not 

Isolated when apphed in a des1gn, their interactions also give rise to a set of 

design intentions that must be considered. 

This verification process is called model representation validation. Thus, 

model representation validation is the process responsible for verifying the 

feature-based representallon of a part to guarantee that atomic features are 

being used according to their assigned meanings and expected behaviours, and 

that the configuration of all those individual features w1thin a single model is 

also meaningful to the extent of some criteria. 

Feature-based modelhng (FBM), and indeed Design-by-Features (DbF), 

systems are usually based on Geometric Solid Modelling (GSM) techniques. 

PAGE16 



CHAPTER 1: INTRODUCTION 

However, one basic element that makes GSM so well established, important, 

popular and powerful, namely Geometric Validation, Jacks a sibling in the 

FBM world. Th!s is so because features add a layer of complex semantics to 

CAD systems which make it difficult to establish measuring means and are 

subjective to implement. The sibling of geometric validation in the FBM 

context is the feature-based model representation validation. 

Feature-based representation validation is very important because it is the 

process responsible for guaranteeing the delivery of a valid representation (and 

therefore verified, useful and misrepresentation free) to downstream 

applications. 

The model thus needs to be verified constantly. Situations need to be identified 

and dealt with, possibly by an automatic operation. However, features have no 

mathematical properties and their definitions are not widely accepted. 

Therefore, the behaviour of features and their role needs to be defined in order 

to obtain a validation system capable of analysing a feature-based 

representation. 

Validating a feature-based representation is a very subjective and difficult 

problem to handle in the most general sense (Ohsuda89, Salomons93) and in 

fact depends heavily on the role the feature plays with respect to a particular 

application. It is a 'very difficult and obscure task because features themselves 

are not well understood with their extra meaning, purpose and objectives in 

addition to the embedded geometric data representation' (Rossignac90). 

A new philosophy for definmg features is required to help devise such a 

validation capability. This philosophy would define features by their functional 

intents at an objective, measurable and pragmatic level. This type of validation 

should not be confused with geometric or topological val1dations that are 

based on mathematical laws (Shal!95). This distinction emphasises that 1t is 

possible to produce a valid solid model for it but it can still be mvalid from the 

feature-based design perspective. 

PAGE17 



CHAPTER 1· INTRODUCTION 

For instance, even if the dangling face had not been generated the in Figure 1-

9, the remaining feature-based model would still be considered invalid. 

1.5.4 EXAMPLES OF THE VALIDATION ASPECTS 

Figure 1-10 presents the validation aspects applied to the GSM domain and the 

Boundary Representation (B-rep) method. 

B-rep has been validated for modellmg two-manifold polyhedral solids. 

Among other conditions for the solid, open shells, disconnected obJects, 

dangling edges/faces, non-orientable faces, self-intersecting faces, infinite and 

nonsense objects are all disallowed. Needless to say, atomic geometric entities 

such as points, strrught edges and planar faces in 3D Euclidean space are 

validated for this domain. Therefore, model and geometric entities are 

validated for the polyhedral solids domain. 

Boundary Representation 

@ Model 
(Two-Manifold Polyhedral Soluls) 

liif Entities 
(Geometnc Elements Pomt.lme, Arc) 

• Or~amsauonal 
(1 opO Ogreal, H,gh-Lvei) 

• Structural 
(Geomttncal, Z:Ow-Livel) 

Figure 1-10: The Validation Aspects for B-rep. 

B-rep representation validation conditions are divided into topological and 

geometrical sets that perform analysis at two different levels: the high 

organisational and combinatonallevel and the low structural and metric level, 

respectively (Requicha80). 

Exrunples of Topological Validity Conditions include: non-null pointers in the 

data structure, number of faces greater than or equal to 4, number of edges 
PAGE18 



CHAPTER 1: INTRODUCTION 

greater than or equal to 6, number of vertices greater than or equal to 4, the 

relatiOnship between the number of faces, vertices and edges conforming to 

the Euler-Poincare formulae and each edge in a face belonging to exactly 2 

faces of the model. 

Examples of Geometric Validity Conditions include: each vertex must be a 

distinct point, distance between vertices must be greater than zero and all 

vertices in a planar face must satisfy the plane equation. 

The elements shown in this example were reproduced from Jablokow94. 

Further detruls on B-rep representation validation can be found in Requicha80, 

Eastman84, Rossignac91, and Zeid91. 

Feature-based modelling (the modelling technique) and features (the entities) 

are considered to have been validated. However, feature-based representation 

validation has no proper defirution whatsoever and remedying tlus is a major 

objective of this research. 

1.6 OBJECTIVES 

1.6.1 MOTIVATION 

This work has been motivated by a search for a more supportmg feature-based 

CAD system. These systems m general allow the design of mechanical parts 

using an intermediate level vocabulary. They do not normally use high-level 

functional entities such as "conversion of rotational to translational motion" or 

"cooling holes". Neither does the user need to worry about low-level 

representation aspects such as the placement of edges or points. In addition, 

although considered of higher level than current CAD vocabularies, feature

based modelling environments have not been widely used in conceptual 

design. 

It IS felt that feature-based CAD systems have sometimes used a vocabulary 

that addresses conceptual design and sometimes detailed geometric design 

PAGE19 



CHAPTER 1: INTRODUCTION 

because of the lack of a complete vocabulary at the intermediate level of 

features. 

Tlus work seeks to establish through, a complete intermediate level 

vocabulary, a feature-based modelling system capable of performing validation 

of the representation as one of its supporting roles. Also, the methodology 

used m the search and in the validation process are of concern. 

The careful selection of words throughout the text to describe some of the 

concepts defined in this research should be noted. For instance, the term 

designer's intent is sometimes used instead of the term design intent to 

emphasise the fact that design intent reflects the intention of the project or 

product wlule designer's intent reflects some of the ways that the designer 

uses to achieve the former. 

1.6.2 OBJECTIVES STATEMENT 

The objective of this research is to establish methods for assessing the 

correctness and integrity of feature-based model representations. It seeks to 

identtfy major elements that influence the validity of feature-based 

representations. These elements would enable the identification of an 

architecture for a feature-based validation system that would analyse, reason 

with and correct feature-based representations. 

This approach would be able to better support the design task, raising 

awareness of many important aspects of feature-based design and guaranteeing 

the usefulness of the model for downstream applications, according to certain 

criteria. 

PAGE20 



CHAPTER 1· INTRODUCTION 

1.6.3 SPECIFIC OBJECTIVES 

• Understand and specify the vahdat10n problem and its various aspects in 

the context of Design-by-Features (Db F) systems. 

• Identify major elements required to compose a framework for the 

validation analysis centred on the feature's concept. 

• Specify and establish means to identify (and possibly correct if necessary) 

valid and invalid feature-based model representations. 

• Define the roles that the "designer's intent", "feature interaction" and 

"feature operations" entities/phenomena have in the context of validation 

analysis and devise a methodology to refine them for this task in a way 

that: (a) produces a complete vocabulary to aid assessment of the model's 

correcmess/validity; (b) keeps them in an intermediate-level, the feature 

level; (c) maintains a DbF approach perspective of the validation analysis, 

and; (d) keeps their concepts and use separate from each other as far as 

possible. 

• Investigate how much of this analysis can be performed at the feature class 

level as opposed to the feature type level, I.e. in an object-oriented 

implementation, how much of the analysis can be attributed to the feature 

class and therefore be inheritable by all feature types (objects). 

• Determine means to integrate and organise the resulting vocabulary of 

entities in order to produce an architecture for a meaningful validation 

assessment. 

• Test the feasibility of implementing such a validation framework in the 

form of a prototype system that Illustrates some of the validation issues. 

PAGE21 



CHAPTER t· INTRODUCTION 

1.6.4 GENERIC SCOPE 

Tlus research concerns the use of a design-by-features approach (see section 

2.6) to model individual mechanical parts. Orthogonal prismatic (laid parallel 

or perpendicular to the main axes) form features are of major concern, 

favouring analysis usually undertaken for manufacturing and process planning 

using milling and drilling processes. However, many of the ideas have 

considerable applicatlon potential in other areas (e.g. assembly). 

This research has concentrated on three of the perceived outstanding research 

issues of Feature-based Modelling each of which has been recognised for some 

time but received inadequate attention: 

• Feature Validation, as perceived by Salomons93; 

• Feature Interaction, as perceived by Dixon90 and Allada95, and; 

• Capturing Designer's Intents, perceived by Dixon90 and Salomons93. 

1.7 RESULTING PUBLICATIONS 

The followmg publications resulted from previous versions of the ideas 

generated throughout this period of research. They are listed chronologically 

and will not be referred to in the rest of this text. 

1. Hounsell, M. S. and Case, K. "Representation Validatlon m Feature-Based 

Modelling: A Framework for Design Correctness Analysis and 

Assurance". Proceedings of the 12th National Conference on 

Manufacturing Research (NCMR'96) (ISBN: 1 85790 031 6), Bath, UK, 

Vol. 1, pp. 256-260. September, 1996. 

2. Hounsell, M. S. and Case, K. "Structured Multi-level Feature Interaction 

Identification". Proceedmgs of the 32nd MATADOR Conference (ISBN 0 

333 71655 8), A. A. Kochhar (ed.), UMIST and Macnullan Press Ltd, 

Manchester, England, Vol. 1, pp. 495-500. July, 1997. 

PAGE22 



CHAPTER 1: INTRODUCTION 

3. Hounsell, M. S. and Case, K. "Intent-Driven Reasorung Prionties in a 

Feature-Based Validation System". 'Sustainable Technologies in 

Manufacturing Industries', Proceedings of the (IMC'97) 14th Conference 

of the Irish Manufacturing Committee, (ISBN: 1 897606 16 8), J. 

Monaghan and C. G. Lyons (eds.), Dublin, Ireland, Trinity College Dublin, 

Vol. 1, pp. 115-124. September, 1997. 

4. Hounsell, M. S. and Case, K. "Morphological and Volumetrical Feature

based Designer's Intents". (NCMR'97) 13th National Conference on 

Manufacturing Research. Advances in Manufacturing Technology XI 

(ISBN: 1 9012 4811 9), D. K. Harrison (ed.), Glasgow, Scotland, Vol. 1, 

pp. 64-68. September, 1997. 

5. Hounsell, M. S. and Case, K. "Operating Invalid Feature-based Models". 

(IDPT'98) Third World Conference on Integrated Design and Production 

Technology (ISSN 1090-9389), Editors: A. Ertas, D. Gibson, F. Belli, F. 

Veniali, R. Noorani and P. Chedmall. Berlin, Germany, Vol. 3, pp 151-

158. July, 1998. 

6. Hounsell, M. S. and Case, K. "A Taxonomy of Feature-based Designer's 

Intents". (IMC'98) 15'h Conference of the Irish Manufacturmg Committee, 

Belfast, Ireland, September, 1998. 

The first publication outlmed the general principles of the feature-based 

representation validation that is discussed in chapter 3. 

The second publication presented detailed analysis on one component required 

for the validation process that is discussed in chapter 5. 

The third publication presented part of the priority organisation of the 

reasoning in the validatiOn analysis (that is discussed m section 7.3). 

The fourth publication presented some of the aspects being validated (that are 

discussed in section 3.5.2). 

PAGE23 



CHAPTER 1: INTRODUCTION 

The fifth publication presented the types of remedy operations that help 

guarantee the validity of the model (that IS discussed in section 6.3.3) 

The sixth publication presented the whole taxonomy of featJ.Ire-based 

designer's mtent that has been obtained with this research (that is discussed in 

chapter4). 

1.8 STRUCTURE OF THE THESIS 

This chapter presented the area of featJ.Ire-based modelling and the problem of 

representation validation. 

Chapter 2 presents a general literatJ.Ire review of important issues and 

particularly related work that utJ.lises some sort of validation. However, some 

subsequent chapters also present reviews of work related to the concepts of 

their specific topic. 

Chapter 3 presents a solution for the validation problem, the validation 

framework and Its elements/entities, that will be discussed in detail in the three 

subsequent chapters. 

Chapter 4 concentrates on the concept of Feature-based Designer's Intents, 

chapter 5 concentrates on classifying and identifying Feature-based Interaction 

cases while chapter 6 classifies Feature-based Operations. 

Chapter 7 mtroduces the reasoning and organisation of the elements into a 

reasomng system. 

Chapter 8 presents the implementation and exemplifies some of the 

reasonings. 

Chapter 9 shows test parts that have been modelled elsewhere and how the 

prototype implementation deals with them. 

Chapter 10 presents some findings and critically discusses the work. 

PAGE24 



CHAPTER 1: INTRODUCTION 

Chapter 11 summarises the work, enumerates contnbutions and suggests 

future work. 

1.9 SUMMARY 

The various aspects involved in the validation of a modelling technique have 

been presented. It has been shown that in the case of feature-based modelling 

there seems to be no doubt that the modellmg technique and its entities are 

valid components to express mechanical parts. However, little has been 

asserted concerning the validation of the model representation and its analysis. 

It has also been shown that representation validation is an important and 

intrinsic aspect of feature-based modelling and that there is a lack of definition 

in the literature despite other types of validations being considered required, 

implied and applied. In addition, the role of geometnc representation 

validation in a feature-based system has been established. 

The objectives and the scope of this thesis have been laid down as well as the 

structure of the text. 

The importance of the topic seems to comes from the fact that validation IS 

part of the "feature concept" (and therefore could be an inheritable property in 

an object-oriented approach) rather than part of the definition of each 

individual feature. Therefore, studymg the validation problem could result in a 

clearer understanding of features themselves. 

PAGE25 



2. LITERATURE REVIEW 

Feature-based technology is now a mature field (Case93a) and 

indeed, has already been incorporated into some commercial 

CAD systems. However, basic issues such as the properties and 

definitions of features still have an open interpretation desp1te 

the fact that much work has already been published on feature

based modelling. This chapter reviews some of these issues that 

are important in comprehending the context of feature-based 

validatwn and the followmg chapters. 

2.1 FEATURE DEFINITIONS 

Early detailed reports on various aspects of feature-based modelling technology 

implementation include Pratt85, Faux86 and Shah88c. 

Good review papers on Feature-based Modelling include Shah91, 

Bronsvoort93, Case93a, Salomons93 and Allada95. 

Some analysis of open issues and suggested future research developments can 

be found in Shah90, Dixon90, Rosen93 and Mantyla96. 

Feature defimtions presented exhaustively and in chronological order can be 

found in Shah88c and a definition classification in Bronsvoort93. No single 

defimtion Will be adopted. Instead, It IS hoped that the feeling of what features 

are can be gathered from the following discussion and definitions. 



CHAPTER 2· LITERATURE REVIEW 

Many authors have commented upon the variety of existing defirutions and 

interpretations (Shah88c, Chung90a, Case93a, Lenau93, Pratt93) regarding the 

powerful and promising technology known as Feature-Based Modelling 

(FBM). 

According to Sreevalsan and Shah (Sreevalsan92) the concept of features first 

appeared in manufacturing engmeering m the mid 1970's when A. R. Grayer 

(1976, referred to in Shah91) was looking to automate NC part programming 

when it was felt that: 

'Features represent shapes and technological attributes associated 

with manufacturing operations and tools'. 

The need to automate the recogniuon of these features from a CAD geometric 

database gave rise to techniques that are now known as Feature Recognition 

(FeR). 

Features were regarded as being exclusively geometry-driven and this has 

influenced many succeeding defirutJons: 

'A feature is a region of interest on the surface of a part' (Pratt85). 

'Features are defined as geometric and topological patterns of interest 

in a part model and which represent high level entities useful in part 

analysis' (Henderson90). 

Some Implementations establish direct relationships between features and 

manufacturing tasks (Grayer76, Chm84, Herbert90) whereas others are more 

flexible (see section 2.3). 

Again, according to Sreevalsan and Shah (Sreevalsan92), the Design-by

Features (DbF) approach was first proposed and concepts to support form 

features with a solid modeller were first established by Pratt and Wilson 

(Pratt85) followed by Faux (Faux86). Thereafter, analyses of manufacturing 

heuristics were conducted to produce Feature Taxonomies (see section 1.5.2). 

PAGE27 



CHAPTER 2. LITERATURE REVIEW 

Features were then used to spec1fy a part but were still limited to 

geometric/shape implications. Nevertheless, as CAD/CAM is not solely 

concerned with machining, but also encompasses other engineering activities 

such as conceptual design, features began to assume a wider meaning than 

simply geometric (see section 2.2) and the definitions started to change: 

'A feature is a solid which can be manipulated (by Boolean operators 

like union, intersection and difference) over another one with defined 

validations' (Requicha92). 

'Features are information sets that refer to aspects of form or other 

attributes of a part' (Lenau93). 

Some definitions consider features that are related to various downstream 

applications such as mesh generatlon, finite-element analys1s, turning, 

machining, assembly, etc. Hence, definitions began to incorporate such 

behaviours in a global sense in much the same way as the dictionary defimtion 

of features: 

'A feature of somethmg is a particular part of it (e.g. a component) or 

characteristic that it has, which you notice because it seems important 

or interesting' (Collins87). 

Shall ( 1990) summarised the requirements for something to be a feature and is 

considered one of the fullest and most exact definitions (according to 

Ovtcharova94): 

'A feature is a physical constituent of a part, is mappable to a generic 

shape, has engineering significance and has predictable properties'. 

The search for a generalised definition has to a large extent failed because 

many authors came to realise that features are process-application dependent 

(Butterfield85, Cunningham88, Shall88b, Shall91, Pratt93) and this seems to be 

the only consensus regarding feature defimtions. As summarised by Pratt 

(1993), 'features are expected to be used m diverse ways by organisations 

having widely differing product ranges, design methods, manufacturing 

PAGE28 



I ' 

I 

CHAPTER 2: LITERATURE REVIEW 

methods and facilities and general organisation philosophies'. Consequently, a 

single definition does not suffice. 

It has been noticed though, that features could be implemented without any 

geometric representation (Dixon87, Shah88c) but they have, at least, geometric 

or shape semantics (Emmerik89, Ovtcharova92). 

To summarise, 'The essence of the feature concept is that a product 

description not only says what the product is, but also contains implicit 

and explicit information on how it may be transformed to or from some 

other state' (Case92a). 

2.2 TYPES OF FEATURES 

As can be seen from the variety of feature definitions presented in the previous 

section one can devise a type of feature and its taxonomy depending on what 

one sees as important or interesting for one's application. Different sets of 

features have to be defined in order to cater for different application areas or 

process-application pairs (e.g. "sand casting' - 'cost analysis", Denzel93). 

Therefore, a plethora of feature types can be found m the literature and include 

the following: 

a) Functional features only expresses the function and not the shape (Pratt85, 

Lenau93, E1Maraghy93b). They have also been called Abstract (Shah90) 

and Design features (Mill93). They are entities that cannot be physically 

realisable until all variables have been specified or denved from the model 

feature). 

Functional features describe the part at an abstract level where there are 

several different possible geometries that could provide a specific solution 

(e.g. bearing, sealing, ventilation openings, lubrication grooves, cooling 

slots, fixing holes, keyseats). Despite the fact that abstract features could be 

incomplete at any given tJme, this does not prevent automatJc reasonings 

being envisaged. Nevertheless, they must be a physical constituent of a part 

wherever information about them is complete (Shah90). 
PAGE29 



CHAPTER 2: LITERATURE REVIEW 

All sorts of features (especially form features, see item d below) have been 

called functional features (Zhang93, Martino94a) because other features are 

considered to have mtrinsic functional meaning beyond simple geometry. 

The following difference between functional features and form features 

(given by E1Maraghy93b m the context of CAPP systems) is accepted in 

this work: form features refer to recognisable shapes that can not be further 

decomposed, as otherwise they will reduce to meaningless geometric 

entities such as lines, points and surfaces. Form features may or may not 

have by themselves a functional purpose. Functional features are more 

natural for use by designers in comparison with geometric abstractions or 

form features. 

b) Structural features are non-geometric features that specify the 

relationships among form features. They have also been called 'embedded' 

features (Rimscha90) because they have no existence of their own without 

reference to their environment. Assembly features (see item j below) are 

examples of 'embedded' features. Although these embedded relationships 

are well understood and important, many authors have only considered 

parent-child hierarchies (see connectivity in Gmdy93). Structural features 

can be said to have a siffillar meaning as the skeletons in Lenau93. 

c) Physical features (Kmyama91) provide the designer with knowledge about 

physical phenomena and mechanical elements at conceptual design stages. 

They consist of mechanical elements and "causal-related" physical 

phenomena that occur within the elements. For instance, a wedge has two 

intersectmg faces and causes forces applied to a third face to act through the 

former two. Other examples of physical features include a pair of gears, a 

spring and a pulley. 

d) Form or Geometric (form) features are the most widespread kind of 

features used (and sometimes confused as being the only available features) 

m modem experimental and commercial CAD/CAM systems. 

PAGE30 



CHAPTER 2· LITERATURE REVIEW 

Form features have been considered the least application dependent type of 

feature because "they do not carry any specific non-geometric semantics" 

(Krause93). However, each form feature could have a set of possible 

manufacturing processes for obtaining the desired shape (a hole could be 

drilled, bored or punched). If such a strong geometrical and technological 

interrelation drives the vocabulary used to deal with form features, then 

they are called Manufacturing features. 

'Manufacturing features and processes mutually depend on, refer to and 

precondition each other' (Vancza93) and basically consider material 

removal processes (Hurnmel89). 

In addition, if form features are meant to represent shapes obtained by 

swept volumes of tool cutting paths they are sometimes called Machining 

features (Young93). Therefore they have been srud to correspond to regiOns 

that can be cut by a machine tool (Requicha89b). 

Alternatively, if the designer's vocabulary or mechaJUcal functions dnve 

the terminology of form features, they can also be called Design features 

(Requicha89b, Rosen93). 

Because it has been asserted that the shape of a part, and thus its form 

features, are results of the physical nature of the manufacturing process, 

form features have been subdivided according to process capability and a 

comprehensive sub-classification has been suggested (Butterfield85): 

• Prismatic form features have been the subject of considerable effort 

in defining general taxonomies (Gindy89, Shah91, Ovtcharova92) 

and implementations (Anderson90, Duan93, Gao93) for shapes 

produced by extrusion, milling, drilling and similar processes; 

• Rotational form features (Nielsen91, E!Maraghy91, Duan93) also 

called Turning form features are related to products with axial 

symmetry; 

PAGE31 



CHAPTER 2· LITERATURE REVIEW 

• Sheet-Metal form features (Cunrungham88, Chung90a, 

Crawford93) refer to bending, fonning and punching processes 

where the change in thickness is only incidental (Rembold93); 

• Casting or Moulding form features (Luby86, Cunningham88, 

Lee94) model investment casting, forging, injection moulding and 

similar processes. 

• Sculptured form features (Jones93, M!tchell96) model complex 

curved surfaces such as those found in golf clubs and shoe lasts. 

e) Precision features (Shah88a, Lenau93, Salomons93) contain explicit 

dimensions, dimensional constraints, surface finishes, and tolerances such 

as s1ze, height, diameters, roundness, straightness, flatness and diameters. 

f) Material features (Shah88a) specify treatments to materials and surfaces, 

the material of the stock component to be used and its ability to produce 

specified physical characteristics such as rigidity, elasticity, durability and 

resistance. 

g) Datum features provide regions of the component from which the positions 

of the component on the machine table can be defined. They can be 

(Young93) holes, corners and boxes, or (Chen95) points, axes and planes. 

h) Fixture features (Y oung93, Pratt93) provide regions of a workpiece that 

can be used for fixturing. Fixture features include clamps, primary locations 

and secondary locations. 

i) Technological features (Shah88a) contain information about part 

performance and technological restrictions such as tool availability, 

machine operating variables (cutter velocity, feed velocity), directions of 

access, number of simultaneous operations and precision achieved by each 

machine; 

j) Assembly features are geometric relationships between (parts of) 

topological entities or features belonging to different sub parts of the whole 

PAGE32 



CHAPTER 2: LITERATURE REVIEW 

component (compounding what is called a 'handle lattice', Rimscha90). 

The main concerns are matching faces, accessibility and feasibility 

(Sodlu91, Molloy93, Harun96). A semantic sub-classification of assembly 

features can be found elsewhere (Ovtcharova92). 

k) Manufacturability features are process-capability dependent and are 

concerned with Mouldability (Lee94), Tumability, Machinabihty, etc. 

I) Modifying features (Chen95) or blend features (Laakko93, Denzel93) are 

localised geometric operations that alter the boundary configurations of 

parts. They represent sculptured features common in the predominantly 

pnsmatic domain and include chamfers and fillets. 

The list of feature types seems almost endless and one can also find analysis, 

tolerance and inspection features (Sodhi9l, Marefat93a, Pratt93a) as well as 

production engineering features (V ancza93, Mill93. 

2.3 FEATURE-BASED APPLICATIONS 

The variety of feature types reflects the wide variety of applications that use 

feature-based modelling. Some of the feature-based applications found in the 

literature include: Design for Manufacture and/or Assembly (DFMA -

Shah88c, Jakiela89, Rlmscha90, Ovtcharova92, Denzel93, Duan93, Harun96), 

Design-for-Mouldability (DFMould - Chung90a, Lee94), Computer Aided 

Process Planning (CAPP - Anderson90, Gupta92, Mill93, Young93, 

Vancza93, E!Maraghy93b), Automatic Inspection with Coordinate Measuring 

Machines (CMM - Requicha89a, Marefat93a, Medland93), Design-for

Fixtunng (DFFix - Hayes89, Murray93), Setup Planning (Gindy93, Zhang94), 

Intelligent CAD systems (ICAD - Shah88a, Cunningham88, Ohsuda89, 

Nielsen9l, Marghitu93), Automatic Group Technology code generation (GT

Srikantappa94) and Concurrent Engineering systems (CE- Fu94, Martino94a, 

Chen94 , Lim95, Mantyla96). 

PAGE33 



CHAPTER 2: LITERATURE REVIEW 

This variety of applicatiOn also suggests that feature-based modelling is a very 

powerful technique that can be applied to a wide variety of engineenng-related 

activities and this emphasises its importance. 

2.4 FEATURE REPRESENTATIONS 

2.4.1 8-REP, CSG, HYBRID SCHEMES AND ENHANCED REPRESENTATIONS 

Features have been represented in four primary ways: 

• by using one of the two maJor solid model representation schemes, i.e. 

Boundary representation (B-rep, e.g. those that produce an evaluated 

geometric representation) or Constructive Solid Geometry (CSG, e.g. those 

that produce a tree of unevaluated prilllltive volumes related via Boolean 

operators) schemes (Zeid91); 

• by usmg a simplification of the B-rep or CSG. For instance, destructive 

solid geometry (DSG) has been used (Anderson90, Li90, Perng90, 

Waco94). This is a reduced version of CSG containing only the difference 

Boolean operator. 

• by developing a hybrid of B-rep and CSG (It is understood that in such a 

hybnd scheme, primitives are represented as closed evaluated B-rep solids, 

these B-rep primitives are operated m a Boolean fashion and stored in a tree 

structure, E!Maraghy93b, Martino94a, Perng97b ); 

• by devlSlng an enhancement to one of the previous approaches to 

accommodate feature-based information (Rossignac90, Stroud93, Su94, 

Mayer94). 

Only a few attempts to model prismatic or rotational features were found not to 

be somehow related to the two major solid representation schemes (B-rep and 

CSG). For instance, "octree representation" has been mentioned (Tseng94, 

Allada95). 

PAGE34 



CHAPTER 2 LITERATURE REVIEW 

Hybrid B-rep/CSG implementatiOn schemes seem to offer the best option for 

most reqmrements, with the minor disadvantage of redundancy and have been 

favoured by most research groups working w1th design-by-features systems 

(Pratt88, Shah90, Gomes91, Salomons93, Mdl93, Denzel93, Suh95a, 

Allada95, Pemg97a). 

The advantages of such schema representation IS related to the advantages of 

both B-rep and CSG representation schemes while also incorporating a 

beneficial bi-level parallel representation that is said to not only capture the 

history of the design (via a tree of simple set of operations) but also to offer 

detruled geometry if and when required. 

It has already been predicted that a hybrid B-rep/CSG/Surface modelling 

approach will be used as the most generally applicable system of the future 

(Mitchell96). 

2.4.2 VOLUME AND SURFACE FEATURES 

Pratt classified feature implementations mto Volume and Surface form 

features (Pratt88). Surface features are collectiOns of faces of a part model that 

do not form a closed volume and are also a subset of the boundary of a 

volumetric feature - the solid (Requicha89b ). Volume features are full

dimensional pointsets of the part or its complement that do identify a closed 

volume. 

In a B-rep context, the essential difference between surface and volume feature 

representations is the existence in the latter case of closure faces which, when 

associated With the remaimng feature faces (also called support face- Su94- or 

real faces that actually lie on the part surface), define a closed and self

contained volume. To emphasise this difference in th!s context, an interesting, 

although dimensiOnally incorrect, equation has been suggested (Pratt88, 

Gomes91, Bronsvoort93): 

"volume features = surface features + closure faces" 

PAGE35 



CHAPTER 2. LITERATURE REVIEW 

Closure faces have become a persistent and beneficial aspect of most 

implementations. They help identify which faces of the generic feature 

template Will have an impression on the part and which ones must not. Those 

faces that are absent m the explicit evaluated representation have also been 

called imagznary faces (Gindy89), virtual faces (Faux86, Silva90), entrance 

faces (Pratt88, Mayer94) or even dummy faces (Martino94b). 

Although no particular disadvantage of using surface features can be 

emphasised, volumetric features have some noticeable advantages, especially 

in the context of design-by-features systems (Pratt88, Gomes9 I, 

Bronsvoort93): 

• interaction between features can be easier to deal with; 

• feature operations are simpler to implement. For instance, it has been 

asserted that volumetric features make delete operations easier and have 

other advantages over surface features (Pratt88); 

• it is easy to extend feature concepts to general machining volumes; 

• it is easier to manipulate and check the result of an automatic 

decomposition mto delta volumes; 

• the problem of individual faces belonging to different features is overcome; 

• representation of more complex features composed of a number of simple 

features is simpler (Bronsvoort93). 

2.5 FEATURE IMPLEMENTATION APPROACHES 

On implementing feature-based modellers, Pratt classified the ways of defining 

features according to the status of the information as being implicit and 

explicit (Pratt85). 

An Implicit feature definition is an unevaluated one supplying the nunimal 

amount of information to allow unambiguous evaluation when circumstances 

PAGE36 



CHAPTER 2: LITERATURE REVIEW 

require it. Implicit models produce very concise representations that resemble 

CSG models and smularly imply a procedural evaluation of the representation 

to obtain the exact and extensive information. Besides being compact, implicit 

feature Implementations also use a parameterised representation of the feature 

volume at a very abstract level. 

Implicit feature representation can be saved as a binary CSG tree where each 

node is a feature and where intersection Boolean operations are excluded. This 

binary tree can be efficiently traversed and manipulated (Su94, Mayer94, and 

Martino94a) in a sequential manner. Therefore, implicit features are also 

referred to as procedural or unevaluated features. Procedural models give rise 

to mteresting problems that emphasise the non-commutative aspect of Boolean 

operations (Denzel93) but they are nevertheless easy to implement. 

In contrast, explicit, evaluated or enumerated defimtions refer to features that 

are sets of boundaries that together explicitly describe the actual status of the 

component boundary. Therefore, such representations are closer to a B-rep 

GSM core representation, which is extensive and complicated to manipulate 

from the feature's point-of-view. 

Another interesting classification defined intentional or geometric features 

(Rossignac90, Tomiyama90) as an abstraction for accessing groups of 

geometric elements and for associating type and certain properties defined for 

all the features of a particular type. Intentional features are treated as hints and 

related to geometric elements through collections of unevaluated references. 

Some or all of these references are permitted to not correspond to any 

geometric element. On the other hand Geometric features are considered to be 

a collection of geometric elements that actually form a subset of the part's 

mterior, boundary and/or complement. 

2.6 SYSTEM APPROACHES 

Feature-based systems can be divided into three main approaches from the 

mterfacing point-of-view: Design-by Features (DbF); Feature Recogmtion 

PAGE37 



CHAPTER 2· LITERATURE REVIEW 

(FeR) and; Hybrid Design-by and Recognise Feature (HDR) approaches. Note 

the subtle difference in the arrows' directions in the respective fignres (Fignre 

2-1, F1gnre 2-2 and Fignre 2-3). 

2.6.1 DESIGN-BY-FEATURES (DBF) APPROACH 

The DbF approach (Fignre 2-1) provides the user with a set of features m tended 

to represent the designer's needs and a vocabulary for the type of component 

being modelled. Designers mteractively select features, instanciate parameters 

and perform placements and positionings. 

Feature 

Georretric 
Modeller 

Figure 2-1: A Design-by-Features (DbF) System Approach. 

A significant DbF advantage is that a great variety of non-geometric 

information can be stored and manipulated in addition to the geometry itself 

(Laakko93, Stroud93). A more natural design language, closer to the designer 

expertise, is used improving design's effectiveness and the set of features 

available helps towards standardisation. 

DbF systems can ease the integration with design-related tools and downstream 

applications. It is considered that designer's intents, can be captured, 

manipulated and monitored. A more abstract, effective, conversational and 

iterative user interface can be built and integration with parametric, variational 

and constraint-based systems can be achieved. 

PAGE38 



CHAPTER 2' LITERATURE REVIEW 

A DbF approach disadvantage is that the designer is restrained to only a 

handful of already programmed features. Nevertheless, similar criticisms did 

not impede early CSG systems in becoming a major GSM representation 

technique. 

It will be seen that direct manipulations of low-level geometric or topological 

entitles has a drastic effect on feature models and is a complicated matter to 

cope with. Although feature-based systems imply an apparently simpler set of 

operations (such as add and delete) from which other operations can be built, 

features themselves have an intrinsic union or difference (but not intersection) 

Boolean behaviour, and therefore feature intersections produce another 

dramatic impact on feature semantics. Furthermore, (Boolean) operations are 

one of the centrepieces in the CSG representation scheme but there is no 

similar set of well-defined building operations in FBM. Therefore it can be 

concluded that the degree of flexibility and freedom found in conventional 

CAD systems is lost m DbF systems (Case93a). 

DbF systems have been criticised in that if only features that correspond 

directly to manufactunng operations are made available by DbF systems 

designers would have to think in manufacturing terms even though they may 

find it unnatural to do so (Mlmtyla96). In addition, a DbF system requires the 

user to become familiar with a new interface paradigm although this interface 

has been considered to be easier and more efficient. 

2.6.2 FEATURE RECOGNITION (FER) APPROACH 

In a FeR approach designers mteract through a conventional or GSM CAD 

system. After producing a complete description of the model, post-processmg 

of the geometric data is performed to "discover" the intended features. 

Advantages of the FeR approach include: a recognition process could be 

strongly optimised to a specific application (Laakko93); conventional CAD 

systems (and their well-known flexible, powerful and low-level manipulations) 

can be interfaced to other feature-based applications through FeR; there is 

PAGE39 



CHAPTER 2. LITERATURE REVIEW 

mampulation freedom and no need to invest in training on new interface 

paradigms; investment savings can also be expected if the FeR approach IS 

used because existing conventional CAD systems will still be used and legacy 

files m traditional CAD formats can be saved and used as input to FeR and can 

also act as a converter to DbF systems. 

Feature 
Modeller 

t 
Georretric 
Modeller 

Data 

Figure 2-2: A Feature Recognition (FeR) System Approach. 

However, FeR approaches have some remarkable drawbacks. They are usually 

hard-coded, very complex, tlme-consmning, difficult to achieve, lack generality 

(Miintylii96) and sometimes are incomplete for the diversity of possible 

interactions among features (Gadh95a). Feature interactions make the 

recognition processes difficult and existing approaches only deal With 

interactions to a limited extent (Rosen93). FeR systems are also limited to the 

features that the procedures were prepared to recognise and if the number of 

recognisable features grows, the processmg time grows combinatorialy or 

exponentially (Gadh95a). 

Despite much effort and significant improvements in FeR systems, various 

specialised features that capture special manufactunng processes cannot be 

"recognised" (Mantyhi96) and FeR procedures are not unique or standardised 

1.e. the same geometry may output different results for distinct implementations 

(Case93a); non-geometric mformatwn (such as tolerancing) can not be 

recognised and in some cases even some geometrical mformatlon can not be 

retrieved (Lenau93). Furthermore, FeR is a redundant process or, at least, 

PAGE40 



CHAPTER 2: LITERATURE REVIEW 

implies double translations (designer's mtent to geometry then to CAD/CAM 

database) which makes it more prone to the introduction of errors. 

The recognitiOn is performed after the complete model IS created, making it 

difficult to support concurrent designs or any other supporting analysis during 

ongoing designs and minor variations in the feature geometry/topology (such as 

straight-slot and rounded-slot) require a different pattern for searchmg and 

matching. Sometimes additional inferences are requued to solve ambiguities 

(such as for distinguishmg between a boss and a slot that have the same 

topology) which tends to make the procedures lughly dependent on the 

underlying GSM representation scheme (for efficiency reasons) as well as 

application-dependent (Gomes91, Bronsvoort93, Gadh95a). Attempts at 

context-free feature recognition approaches have been recognised as suffering 

from both severe capability limits and performance problems (Mayer94). 

2.6.3 HYBRID DESIGN-BY AND RECOGNISE FEATURES APPROACH (HDR) 

In DbF, designers are limited to a number of already implemented features. 

This !mutation is unlikely to be overcome because, although features are 

application specific and their interpretations are application dependent, the set 

of features used m design is large and sometimes even considered to be "not 

finite" (Shal!91 ). Some attempts have tried to overcome this loss of flexibility 

(Requicha89b, Li90, Laakko93, Martino94a, Kim96) by providing ways of 

defining new features. 

Nevertheless, a wide range of applications can cope with a limited number of 

features as they have been copmg with other geometnc lirmtations (e.g. in a 

Constructive Solid Geometry Modelling environment the designer is limited to 

a few pre-defined primitives). On the other hand such limitations could reflect 

standardisation and company practice that is sometimes very useful and 

required. 

It seems hard to believe that FeR could "discover" high level features like 

structural and functional ones by any geometric reasoning. 

PAGE41 



Feature 
MJdeller 

Georretric 
MJdeller 

CHAPTER 2: LITERATURE REVIEW 

Data 

Figure 2-3: A Hybrid DbF/FeR (HDR) System Approach. 

FeR is suitable for migrating to FBM for companies that only perform analysis 

and manufacturing of third party products and where data exchange is via some 

file standard. DbF systems are suitable for companies involved in all stages of 

the product life cycle and which are introducing new paradigms such as 

concurrent engineering. FeR allows the interfacing of CAD to CAPP, CAM 

and other activities while DbF allows their integratwn promoting DFM and 

DFA methodologies (Rosen93, Lenau93). 

It can be said that features in DbF systems are more design-oriented while 

those from FeR are more application-oriented i.e. they are for different 

purposes, and having one set does not imply a lack of need for the other 

(Rosen93). 

As both approaches have strengths and weakness some authors (Dixon90) have 

no doubt that the final solution to obtain an ideal feature based system is the 

integration of the DbF and the FeR approaches. Therefore, more recent 

thinking (Sreevalsan92, Zhang93, Laakko93, Martino94a, Lim95, Han97) has 

favoured a hybrid DbF/FeR (HDR) Implementation as it has been recognised 

that DbF systems need some procedures usually avrulable anyway in FeR 

approaches. 

According to Martino94a, Sreevalsan's Master's Thesis pioneered the 

development of an Integrated DbF/FeR system followed by more complete 

PAGE42 



CHAPTER 2' LITERATURE REVIEW 

proposals from Laakko93, and Martino's group itself (Martino94a, 

Martmo94b). 

At least four ways have been identified to integrate FeR in a DbF-like system 

(Pratt93, Martmo94a). 

• as a FeR system itself, to convert legacy data from conventional and GSM 

CAD systems; 

• to perform validation of operations; 

• to solve some feature-interaction problems (Mill93, Suh95a); 

• to convert features to application-specific feature-spaces (Bronsvoort93). 

2.7 RELATED WORK ON REPRESENTATION VALIDATION 

Although many systems have claimed to implement some sort of monitoring or 

validation system (see section 3.1), few have tackled the feature-based model 

representation validation problem specifically. Nevertheless, some points have 

been raised that are of importance to this work and are presented in the 

following discussion: 

a) Denzel93 pointed out how frequent and drastic is the difference between 

the feature before and after being mcorporated in the model" (and even 

suggested keepmg them as two separate classes). It was suggested that these 

situations should be avoided through "warnings" rather than trymg to cater 

for them. 

b) Dixon and Cunningham (Dixon87) presented a Design-with-Features 

system where designer's intents are captured as constraints and argued the 

need for the system to have a monitor that ensures that the operations 

requested and performed by the designer are allowable and understandable 

by the system. It was also argued that this could represent a limitation or 

advantage depending on the completeness and sophistication of the 

PAGE43 



CHAPTER 2. LITERATURE REVIEW 

Implementation and therefore, the value of the design-with-feature 

approach is very dependent on the momtoring and reasoning it can provide. 

c) Requicha and Vanderbrande (1989b) presented a set of four types of 

validation rules that surface features must satisfy. Requicha' s rules include 

representation tests (presence and non-intrusion rules) as well as 

application-dependent ones (accessibility and dimensional rules) from a 

manufactunng viewpoint. They are performed at distinct levels: volumetric 

(non-intrusiOn and accessibility rules), surface (presence rules) and 

parametric level (dimensional rules). 

It was argued that a good sophisticated architecture for a design-by-features 

system based on functional (design) features and CSG would imply a 

feature "constructor''. A feature constructor would ensure that features are 

always valid. It would expand the feature operations into CSG, check the 

validation rules and automatically correct any violations. However, it was 

said that methods to Implement such a system were not known. 

It was exemplified that some val1datJons have a local and global aspect. 

Local aspects can be tested throughout the ongoing design whilst global 

aspects can only be performed at, and therefore should be deferred to, a later 

stage (see local and global accessibility in Reqmcha89b). 

d) Work conducted by da Silva and colleagues presented an intermediate 

representation (lower than the feature level but higher than the solid 

representation level, Silva90, Srikantappa94) that IS a language capable of 

expressing feature geometrical spatial relationships. These can be 

interacting (basically adjacent or touching cases) and inteifeature 

relationships (when features do not physically interact but a spatial 

relationship exists). The language uses feature axes or faces as a reference 

to establish the inteifeature relationship between each other and these can 

be planar, coplanar, offset, parallel, orthogonal, eo-linear or angular. 

V al1dation IS achieved through rules that use these relationships to 1dentJfy 

and operate changes in the model. The relationships are considered an 

PAGE44 



CHAPTER 2: LITERATURE REVIEW 

Important and useful by-product of the feature extraction process 

(Srikantappa94) and are expressed in a semantic network (a graph). 

It is believed that a representation of spatial relationships, such as the one 

proposed, allows the representation of manipulations and reasoning with 

the knowledge contained in mechanical parts and would allow this 

knowledge to be measured against ambiguity and completeness of form. 

Srikantappa and Crawford (1994) extended this approach to additive 

features and axi-symmetric features with the intention of automating Group 

Technology (GT) coding of feature-based parts. 

e) Sheu and Tm (1993) argued that captunng the designer's intent, parts 

functionality and geometry through a feature-based dimension-driven 

system would facilitate modifications of the model. 

A feature representation scheme was presented where sizes and location 

dimensions are explicitly defined and 'constraints are defined to restnct the 

special behaviour of form features'. These constraints help prevent the 

violation of the validity of the part. A Feature-Dependency Graph (FDG) is 

part of the scheme and establishes the hierarchy of features and their 

dimensions. It was argued that (a) feature validation is context sensitive, (b) 

that complicated decisions can be made by the applications with the 

mformatlon supported by the FDG and (c) that constrruning rules must be 

abundant to model the behaviour of form features and the requrrements of 

applications. 

f) Case and colleagues (Gindy89, Case92b, Case93c, Gao93, Case94) have 

developed a DbF system called LUT-FBDS, Loughborough University of 

Technology Feature-based Design System. This system was fully integrated 

to a conventional B-rep solid modeller, Pafec lmagmer®, and rumed to 

define a feature representation scheme that has a Widespread usage in 

CAD/CAM activities. 

The B-rep representation influenced the feature taxonomy developed in the 

group (Gindy89), which emphasises "External Access Directions" 

PAGE45 



CHAPTER 2· LITERATURE REVIEW 

(EAD's). Relationslups between features such as tolerances, dimensions, 

parent-child and compound features, are considered the most important and 

difficult task in the development of a DbF system. A hierarchical 

representation of the model is used and stresses the benefit and use of the 

parent-child relatJ.onship. This relationship is defined through sub-features 

(such as faces, edges and vertices) and geometric conditions (such as 

comcidence and containment of faces of different features). 

The importance of the correctness of the representation for process and 

productJ.on planning, in particular after modelling operations was 

recognised. Of principal concern for a validation analysis was said to be 

geometric feature attributes that define position, orientation, 

dimensionality, class and feature relationships (such as parent-child, 

Case94). The proposed validation analysis aimed to detect and display all 

the possible changes in the attributes mentioned above when a feature is 

created or deleted (Case93c). The verifications performed are: 

• Is a feature positioned or dragged beyond the boundary of the stock

material? 

• Is a feature intersecting another when It is positioned or dragged ? 

The designer then has to decide whether or not accept any changes and to 

update the database. This analysis is performed via a set of rules for each 

feature primitive (Case93c) and for every manipulation case (such as 

"move in the +x direction" or "move in the -z d!rection"). Also, a 

mechanism that used the details of the B-rep feature description (such as 

the feature's EAD's and face properties) has been suggested to recognise 

class changes of a feature (Gmdy89). These are ingenious, although 

lengthy, ways to analyse the model using the implicit data mformation, not 

always requiring access to the explicit (B-rep) data 

g) Stroud (1993) discussed various general classes of non-geometric 

information that can be associated w1th Boundary representation and the 

nsks of this association becommg corrupted due to modelling 

PAGE46 



CHAPTER 2· LITERATURE REVIEW 

manipulations. Categories of usable information for descnbing a shape were 

enumerated: 

• basic shape (edges, faces, etc.); 

• shape modifiers (blends, screws threads, etc.); 

• features (holes, slots, etc.); 

• attributes (colour, price, origin, etc.); 

• constraints on the shape (surface finish, tolerancing, etc.); 

• geometric frameworks (centre lines, movement guides, etc.); 

• linlalges (static and movable assemblies). 

Strategies were presented on how to keep correct associations between 

categories. The basic shape mformation (B-rep GSM model) was 

considered to be the primary and quantifiable model with which the extra 

information has to be associated. For features, a handling strategy suggested 

to maintam consistency IS to have a set of modelling operations for each 

feature type. 

These operations would then take care of preservmg the integrity of the 

feature data structure and any associated information. However, it was 

concluded that further investigation was required to consider features as 

high-level information sets rather than collections of low-level elements, 

and to consider how they are allowed to interact. This analysis was left out 

of the discussion and low-level tech!!iques were descnbed instead. 

Localised feature recognition and extraction were suggested to handle 

information modification of modelling operations at edges, vertices and 

point levels. 

h) Shah and colleagues (Shah88c Shah88d, Shah88e, Shah90, Shah91, 

Shah95) proposed a system where the user has the freedom to define new 

generic features during a "setup phase". During this phase an interpretative 

PAGE47 



CHAPTER 2· LITERATURE REVIEW 

language helps define rules for solid representation, user-defined 

parameters, parameter inheritance between hierarchically defined features, 

interpreting/mapping features for applications and also uses rules for 

performing validity checks on features. 

Validity checking rules are called "cognition rules". They represent 

dimensional constraints on how features can be used via size and placement 

restrictions. These rules must be defined for every single feature because it 

was considered that 'there exists no universally applicable methods for 

checking the validity of features' (Shah91). Therefore, a large number of 

rules have to be implemented to cover a wide range of features. 

Four types of validation checks were identified (Shah95): 

• Attachment validation involves the determination of the 

compatibility of adJacent features, compatibility of neighbours and 

compatibility of geometric entity type on which a feature is defined; 

• Dimension limits are restrictions on size parameters of a feature 

specified in order to maintain certain engmeering meaning; 

• Location limzts are restrictions on the position and onentabon 

parameters of features; 

• Feature interactions (see chapter 5) are intersectiOns of feature 

boundaries with those of other features such that either the shape or 

the semant1cs of a feature are altered from the standard or generic 

definition. 

i) Work conducted by Pratt and colleagues (Pratt85, Pratt88, Pratt93), 

recommended that the geometric validity of the feature-based model should 

be made dependent upon the transformations applied to the features in the 

model. V al1d and mval1d transformations are defined according to the 

compatibility between the transformation and the way features are 

embedded in the part. 

PAGE48 



CHAPTER 2: LITERATURE REVIEW 

It was considered that only valid transformations should be available to the 

designer, but every feature has different valid transformations accordmg to 

its placement. A feature is only considered to be validly positioned with 

respect to a part body 1f certain rules are met. It was smd that GSM 

validations are not enough to represent realistic engineering objects and 

therefore "another layer of validation becomes necessary". 

It was also cons1dered that validation and revalidation processes are closely 

related to feature recognition and that there is a need for a standard method 

of describing features m terms of rules to which they conform (Pratt93). 

Boolean operations were used to check (validate) an unwanted topological 

change after model maJUpulation (Pratt88). 

Pratt88 suggested that a reasonable first step towards a fully automated 

validation may be based on feature class rnles. These rules include 

constraints on position, orientatiOn, sizes and connectivity of feature faces. 

j) Zhang and colleagues (Zhang93, E!Maraghy93b) claimed to have 

considerably expanded Pratt' s basic idea to cover general cases. 

It was pondered that the addition of a feature might invalidate the model if 

an mterference occurred. Interference cases examined are "cover" and 

"collision". Volumes and faces are used to check interferences (Zhang93, 

see section 5.3.2). Deletion was considered to cause a wound on the 

boundary model that was healed using a localised re-evaluation of the solid 

model. 

Parent-child relationships were used with bmlt in restraints (such as 

checking the compatibility between features) which served three purposes: 

(a) building a linkage between features; (b) inheriting the parent attributes, 

and (c) locating the child feature relative to its parent. Also, the 

hierarchical dependency between features and the use of an attribute-based 

language helped establish a parametric constraint-based environment. The 

system is claimed to be able to capture any production and manufacturing 

related functional data (E!Maraghy93b ). 

PAGE49 



CHAPTER 2· LITERATURE REVIEW 

The feature-based modeller uses a hybnd CSG/B-rep data structure and 

was said to be capable of validatmg any construction of features by 

applying a few general rules by combining the advantages of solid 

modelling and feature modellmg (E1Maraghy93b). Invalid models can be 

avoided by imposing manipulation constraints. However, a chain reaction 

problem originated by parametric relationships among different feature 

parameters was reported. 

Because the same interference can be considered valid (intended) or 

invalid (inadvertent) according to the applicatiOn, it was stated that it is 

necessary to consider the designer's intent in the validation method. 

Designer's intent is captured by simply attaching a special attribute to flag 

an intended interference or by making the system infer this respective 

connectivity between features and providing the user with a YES/NO 

option to validate the case. 

The validation is performed whenever the product model is modified and 

invalid Situations are left to the user to be corrected (Zhang93). 

Manipulations mclude the addition and deletion of features which are also 

used to Implement manipulations others such as edzt (divided in two steps: 

delete the old feature, and add the newly edited feature to the model) and 

paste (copy the feature parameters and add the new feature With different 

positJ.orung parameters). Add and delete operations have separate analysis 

procedures within the validation method, and were applied to a hierarchical 

representation of the product. Their system deals with depression and 

protrusion features and both volumetric and surface features are evaluated 

in the validity check. 

k) Dohmen and colleagues (Dohmen94, Dohmen96, Kraker97) considered the 

problem of maintaining the validity (consistency) of a constraint -based 

feature-based modelling system that allows multiple views of the model. 

Constraints are used to specify feature validation rules and relations 

between feature instances. Each feature is considered to have a well

defined meaning expressed by constraints describmg feature validity 

PAGE 50 



CHAPTER 2. LITERATURE REVIEW 

conditions (Kraker97). Maintainmg a feature's meaning, i.e. constraints, is 

called feature validation. 

For a single view, validation constraints are divided into: 

• shape constraints, which correspond to the type of feature shape, e.g. 

a block for a slot; 

• attach constraints, which specify how a feature element (e.g. a face) 

contacts and aligns with an existing feature in the model. 

Attachments are used instead of parent-child relatJonships; 

• semantic constraints, which specify topological propemes of feature 

elements such as which element must or must not lie on the product 

boundary; 

• geometric constraints, which specify geometric relations such as 

parallelism and dzstance between feature elements; 

• dimension constraints, which specify mtervals for the value of 

feature parameters; 

• algebraic constraints, which specify equations constraining feature 

parameters. 

A Constraint Manager applies several dedicated constraint solvers and 

deals with all types of constraints adoptJng the following solving sequence: 

attach, shape, fix (automatic constraint that specifies that the value of 1ts 

vanable may not be changed by the Constraint Manager), geometric, 

dimenswn, algebrazc and finally semantic constraints are solved. 

I) In Rossignac90, validity checks were said to assess the compliance of the 

feature-based models with the designer's m tent. It was shown how a rich 

geometric representation scheme can be used to s!mpl!fy the expression and 

evaluation of validity rules. It was suggested that, because features can be 

invalidated by subsequent creatJon of other features, in order to assess the 

PAGE 51 



CHAPTER 2· LITERATURE REVIEW 

validity of the design the intentions of creating features must be preserved 

and methods for accessing the corresponding geometric elements and 

testing the compliance of these elements with feature validity rules should 

be available. 

An extended mixed-dimensional boundary representation scheme was 

proposed to represent a solid part and its additive and subtractive volume 

features. Intentional features and geometric features were presented. 

Geometric features are the evaluated geometric embodiment of the feature 

while the intentional features are unevaluated abstractions for accessing 

groups of geometric elements and for associating with them a type and 

consequently certain properties. This association mdicates a designer's 

intention to have that specific feature type in the model. However, 

mtentional features are not implicit features (see section 2.5) because they 

are considered only as hints and could have references that do not 

correspond to any geometric element of the model's boundary at some 

particular stage of the design process. 

It was assumed that no automated solutiOn exists to correct the side effects 

of editing operations and that human intervention is necessary. To help the 

designer validate the model facilities for interrogating important properties 

are suggested. These properties are called validity. 

The scheme improved the performance of updating the B-rep of a part 

model when a volume feature IS modified. It was asserted that the validity 

criteria are domam dependent and two validation levels were considered 

important. 

• The first, individual level, represents the verification that an 

intentional feature has associated to it a geometry that satisfies 

explicitly the requirements for that particular type. 

• The second, is the relational level, where the relation between 

several features is needed to assess the validity of complex parts. 

PAGE 52 



CHAPTER 2: LITERATURE REVIEW 

m) Su and colleagues (Su94, Mayer94) presented the Extended CSG Tree of 

Features (ECTOF). Features are tree nodes that compnse the explicit 

representation (self-contained or basic volume) as polyhedral winged-edge 

B-rep data structures and the implicit representation (parameters and other 

data to model the shape). 

Representation validation was performed to maintain the last user's intent 

(Su94), regardless of possible intersection with other features and 

regardless of the feature's respective position (level) in the tree. To achieve 

this algorithms to rearrange the features in the tree were presented. Only 

simple orthogonal interference cases that generate basic volumes or empty 

sets were examined. 

Rigid transformatiOns (such as translation and rotation) and parameter 

editing are allowed as well as manipulations of feature size and shape as 

long as it remains a basic volume, which is a simple, closed set in a 3D 

Euclidean space bounded by a fmite number of hyperplanes (Mayer94). 

Besides rearrangmg the tree, reasonings were presented to decompose 

intersecting features and for removing redundant features. A three-phase 

sequential analysis and resolution of the interaction problem was presented. 

• the first phase identifies "simple interference" cases that can be 

reasoned with. The interference may require the ECTOF to be 

rearranged in order to be consistent with the user's intention. Next, 

interacting features are spilt to identify effective volumes (and 

therefore, effective features) and to remove obsolete parts. 

• the second phase reclassifies the remaining features to their correct 

types. This phase was designed to be activated by the user. 

• the third phase groups and flags unresolved intersecting features as 

complex (and thereafter considered "resolved complex feature sets", 

Su94). 

PAGE 53 



CHAPTER 2: LITERATURE REVIEW 

V alidatlon is, though, a method to solve the feature interaction problem in 

the proposed representation scheme. 

User's intent was considered to be the last operation (insertion or 

manipulation) although no option seems to be given to the user regarding 

splitting and removing interacting features and reclassification must be 

requested explicitly. Also, the design history (usually saved as the hierarchy 

of nodes in the CSG-tree itself) is lost. 

n) Martino, Ovtcharova and associates (Martino94a Martino94b, 

Ovtcharova94) studied the integration of a DbF and a FeR system. It was 

argned that a DbF-l!ke modelling environment w1th a FeR-like mechanism 

seems to be the solution to an efficient feature-based modelling system in a 

concurrent engineering scenario. The FeR mechanism can be used in three 

different ways: 

• as a standard recognition approach from geometric models; 

• as a mapping mechanism to taxonomies of application-specific 

features; 

• the recognitiOn process can be also responsible for maintainmg the 

feature-based model consistency when degenerations or interactions 

with another feature makes the feature lose its characteristics. 

The last item was called feature validation and was done by a localised 

feature recognition process (Martino94a). It was suggested that some 

interaction cases are better left unresolved depending on the application 

context. 

The mechanisms used to update the explicit evaluated feature-based 

representation are simplification (merge features, reducing the complexity 

of the representation, Martino94b) and subdivision (splitting features, dual 

operation of simplification). These operations are responsible for producing 

alternative representations in different application contexts. 

PAGE 54 



CHAPTER 2: LITERATURE REVIEW 

Combinations of predefined features can be defined by the user as new 

features. However, new features defined by means of the solid modeller 

can only be completely defined via programming due to the complexity of 

the new shape, manipulation tools, mternal representation and recognition 

procedures. An mtermediate representation was suggested to bridge 

geometric and feature-based models. The geometric model is regarded as 

the link between all feature-based models and the collection of all feature

based models creates the product model. 

The user can interact via a feature modeller or the solid modeller. 

However, to reduce violations and degeneratiOn when manipulating the 

boundary elements of the design, feature parameter constraints are used to 

restrict manipulations (Ovtharova94a) and no complex manipulations are 

allowed at this level (boundary elements can not be added explicitly or 

have therr attributes changed - such as changing a straight edge into an 

arc). 

o) Kim and O'Grady (Kim96) proposed a validation formalism for the design 

process based on features. Four model validation levels exist and are used 

to characterise feature operators: 

• Syntax level. Verifies that the model P IS described only with the 

vocabularies of the feature algebra (which is part of the formalism 

and accounts for a feature taxonomy and two feature operators). 

• Domam level. Verifies that the model P is valid at the syntax level 

and that P satisfies a set of [geometric] domain integrity rules, e.g. 

the solid model for a mechanical part should be two manifold. 

• Feature level. Verifies that the model P is valid at the syntax level 

and all features assigned to the model maintain their semantic 

meanmg despite feature interactions. This was said to be dependent 

on the feature definition and on how the design was performed. 

PAGE 55 



CHAPTER 2: LITERATURE REVIEW 

• Product level. Verifies that the model P IS valid at both the domain 

level and the feature level and the model P can be mapped into a 

realisable set of attribute values (defined via "concurrent 

engineenng" constraints). 

The formalism included a sequential loop-based algorithm responsible for 

maintaining the model's validity. However, the model validation scheme 

performed by feature operators only covered a portion of the validity of the 

model and functional validity checking was also necessary (through the 

venfication of function-to-form transformations which are the mappings of 

functional requirements onto features). 

p) Bidarra and associates (Bidarra93, Bidarra94, Bidarra96) presented an 

approach to validating a feature-based model that is "an intent to 

encapsulate interaction detection and reaction methods in each feature class 

definition, thus providing an automated mechanism for feature validity 

maintenance throughout the interaction phenomena" (B!darra93). 

Features are expected to exhibit a specified behaviour for a respective 

feature class. These are predictable properties, associated with some 

definite engineering semantics, expressed in terms of the feature associated 

volume (FA V), local morphology (the additive or subtractive nature of a 

feature's volume), the characteristics of the feature associated boundary 

(FAB, subsets of the feature's boundary that do or do not actually belong to 

the model's boundary) and "a high-level graph representation of 

interactions, called FIG. FAB is divided in semantic entity (SE) sets that 

specify and mdiv1dualise the behaviour for a respective feature class (these 

are either positive SE's - boundaries that are present in the fmal model - or, 

negative SE's - feature boundaries that are absent in the final model). The 

essential subset of the F AB for a g1ven feature class is called a definitional 

entity set of that feature e.g. a slot feature should always have the 

defimtional entities roof and floor. 

Interaction cases identified are (see section 5.3.2 for detruls): 

PAGE 56 



CHAPTER 2· LITERATURE REVIEW 

• topological interactiOn, an overlappmg interaction that maintains 

both feature parameters and a semantically complete definitwnal 

entity set; 

• transmutational interaction, that causes a g1ven feature to exhibit a 

defmitional entity set of another feature class; 

• geometric interaction, that causes some dimension parameters to 

lose their correspondence to the actual feature geometry; 

• closure or absorption interactions, closed feature boundaries that 

become open and vice-versa. 

In Bidarra96 the following interactions were added: splitting, 

disconnection, clearance and general. These and the previous ones 

represent a classification of the interaction phenomena by their functional 

(geometrical or topological) or technological meaning. Semantic constraints 

were said to be the key to specifying validity conditions. Semantic 

constraints are predicate expressions that establish the feature's canonical 

status which IS the definition of the semantics (pos1tive or negative) of 

every boundary in the FAB. By these means, Bidarra's scheme is able to 

monitor every operation such as insertion, removal and modification within 

the DbF system and recognise the feature's class producing the feature's 

valid (complete) or invalid (intentional) status. 

Constraint-based validation, where operations that invalidate the model are 

rejected or forbidden, were considered too ngid. Instead, ideally, the system 

was said to automatically adapt the model to get a valid one, although the 

user should be consulted (Bidarra96). Also, it was stated that most validity 

violations are caused by feature interactions which arise from modelling 

operations. 

q) Perng and Chang (Perng90, Perng97a, Perng97b) discussed the dynamic 

editing problem of a Design-by-Features system. In editing a feature-based 

part two problems for the part description were encountered: (a) changes m 

PAGE 57 



CHAPTER 2" LITERATURE REVIEW 

the boundary and (b) changes in the destructive solid geometry (DSG) 

representation. Seven orthogonally prismatic (parallel or perpendicular to 

the coordinate axes) volumetric machming features were represented as 

DSG-nodes (a volume and a difference Boolean operator) and the equivalent 

B-rep evaluation. Volumetric feature interaction properties (cases) were 

detailed and used to derive localised modification functions. 

The dynamic editing manipulations are adding, edzting, modifying, 

stretching and shrinking a feature. The validity of the model was guaranteed 

via restrictions on the marupulations such as: 

• not allowing a change m the feature's type; 

• constraining the positioning reference of the feature to lie on the 

surface of the existing model; 

• preventing the volume of the feature from exceeding the volume of 

the existing model; 

• not allowing a modified feature to be enclosed within any existing 

feature. 

If a valid manipulation is used, a valid representation (CSG tree and B-rep 

evaluation) can be computed efficiently according to the interaction 

properties (cases). It was found that the cases of enclosure and intersection 

dictated the way the representation is updated. According to this, as a first 

stage, cases can be Identified where an efficient local update can be applied 

to the B-Rep (stage 1) without the need to completely re-evaluate it from 

the DSG tree. A second stage applies surular reasorung to update the DSG

tree. Without complex effort in defining an augmented/modified sohd 

representation scheme, the feature redundancy of a part descnption is 

examined by spatial enclosure checking. 

PAGE 58 



CHAPTER 2· LITERATURE REVIEW 

2.8 SUMMARY 

The variety of defirutions, types, taxonomies and applications of features 

emphasise two important aspects: features are well accepted as an important 

development medium for CAD systems, but little agreement exists on their 

formal characteristics (implementation, role as a 3D modelling environment, 

etc.). Possibly this is because of the very fact that they have been applied to 

such a plethora of applicauons. 

In whatever context features are considered, they are the carriers of information 

beyond simply geometry and topology, but nevertheless the information carried 

is closely related to geometry and topology. 

It has been shown what features are, methods of implementing features using 

various solid modelling techniques and how to approach tlus implementation. 

These techniques give rise to various issues in validating feature-based model 

representatiOns. However most of the validation approaches are related to how 

features have been implemented rather than validating the concept of features. 

The next chapter discusses the various validation approaches in the literature 

and introduces a validation methodology centred on the feature's expected 

behaviour which is closely related to the concept regarded as features. 

PAGE 59 



3. FEATURE-BASED V All DATION 

Feature-based modelling allows extra meaning to be added to 

geometry, but lacks the equivalent representation verification 

formalism that exists in conventional and Geometnc Solid 

Modelling (GSM) computer aided design (CAD) systems. A 

framework for a Design-by-Features (DbF) system with 

representation validation is presented that supports intent

driven modelling, encompasses existing low-level geometric 

verifications and incorporates operations to assure its 

correctness. 

3.1 FACETS OF VALIDATION 

Different feature-based modelling implementations have interpreted feature

based representation validation differently and were found to perform one or 

more of the validations described in the followmg sections. 

3.1.1 GSM VALIDATION 

Systems that use well-known solid representation techniques (such as CSG, B

rep or Hybrids) have implemented feature-based representation validation as 

GSM validation (Dixon87, Requicha89b Kang93, Duan93, Bidarra94, 

Pemg97a, Pemg97b). Possibly tlus is so because, although feature data 



CHAPTER 3· FEATURE-BASED VALIDATION 

structures are separate from the basic shape of the part, they contain basically 

the same sort of information (Stroud93). 

For these systems, feature-based validation has been considered to be the 

venfication of the existence of a "proper'' valid evaluated GSM counterpart of 

the implicit unevaluated form of the feature representation. 

3.1.2 GSM-LIKE VALIDATION. 

Feature based modellers supported by an augmented or modified geometric 

solid representation scheme usually consider feature based validation as a 

GSM-like validation (Rossignac90, Gomes91) in the sense that their data 

structure integrity analyses are surular to those found in GSM representation 

schemes, but usmg a modified representation scheme arrangement. This is 

related to the effects of the feature manipulations on the representation scheme 

and the ability of the scheme to represent features. 

3.1.3 CONSTRAINT VALIDATION 

Systems that implement features on top of geometric constraint-based systems 

consider that feature-based validation has to be done by resolvmg conflicting 

parameter relationships that, for these systems, are associated with or are part 

of the feature (Nielsen91, Emmerik91, Sheu93, Bronsvoort93, Ovtcharova94, 

Shal!94b, Dohmen96, Kraker97). 

3.1.4 MANIPULATION RESTRICTIONS 

Some systems restnct the avrulability of manipulations that are more likely to 

produce complex, faulty or unknown situations from the system's 

implementation point of view (Pratt85, Dixon87, Stroud93, Denzel93, 

Shal!94b, Mimtyll\94, Martino94b, Su94, Mayer94, Zhang93, Pemg97a). 

For mstance, "cognition rules" have been defined (Shal!88e) as size and 

placement constraints that are evaluated to ensure the valid use of features. 

PAGE61 



CHAPTER3· FEATURE-BASED VALIDATION 

However, different features in different situations can have different sets of 

allowed or disallowed manipulations and thus identifying those allowed 

manipulations could become a complex task in itself. A more linear and 

simplified alternative is to limit the manipulations to a small number that can 

easily be handled. 

3.1.5 ASSOCIATIVE VALIDATION 

Some systems that claim to mtegrate DbF and FeR, and where low-level 

topological elements can be manipulated, implement validation by verifymg 

that all low level geometric entities are associated with some feature 

(Sreevalsan92, Laakko93, Martino94a). 

3.1.6 INTERSECTION VALIDATION 

Others systems interpret the validation problem as the solution of problems 

originating from (geometrically) overlapping intersecting features only 

(Case93c, Salomons93, Su94, Mayer94, Suh95b, Pemg97b). 

3.1.7 RULE·BASEDVALIDATION 

Some systems present the validation problem in a broad sense, including 

considerations and rules that express how features should behave. These rules 

state behaviOurs such as the compatibility of a feature's neighbourhood, size 

and positioning (Shah95), aspects of manufacturability (Silva90, Gadh95b) or 

accessibility (Requicha89b, Rossignac90). 

3.1.8 CONSISTENCY AMONG REPRESENTATIONS 

Some systems that allow multiple representations of the object in different 

feature representation spaces (to represent It more appropriately for different 

audiences and to minimise the "nbs versus slof' or "designer versus engineer's 

view" problems) and that allow marnpulations on the models in any of these 

views (promoting concurrent engineering) consider validation as the 

PAGE62 



CHAPTER 3. FEATURE-BASED VALIDATION 

maintenance of consistency among these representations (Shah90, 

Bronsvoort93, Dohmen96, Kraker97). 

3.1.9 FEATURE'S TOPOLOGICAL VALIDATION 

Some systems perform validatton of a feature model through inferring 

geometric properties such as concavity/convexity edges/loops and venfying the 

consistency of the representation with topological rules estabhshed for a 

specific feature-type (Rossignac90, Stroud93, Zhang93, Duan93, Btdarra94). 

3.1.1 0 VALIDATION VIA RECOGNITION 

Some systems perform global or local feature recognition, especially when an 

intersection is detected, on the GSM evaluated data to compare or update a 

(parallel) feature-based implicit model (Stroud93, Pratt93, Martino94a). 

3.2 REPRESENTATION VALIDATION 

3.2.1 TWO LEVEL VALIDATION 

B-rep GSM representation systems were shown (see section 1.2.2.4) to have 

two levels of validity conditions: organisational (topological) and structural 

(geometrical). Similarly, Krause93 has categonsed some of the fundamental 

challenges in product modelling in terms of syntactical and semantical 

consistency. 

Existing feature-based validation systems are basically geometry-driven. 

However, it has already been suggested that 'another layer of validatiOn 

becomes necessary' beyond the geometric one (Pratt93). Low-level information 

modelling and integrity handhng has been considered transparent and therefore 

poses no great challenge for the product modeller, at least those based on B-rep 

(Stroud93). 

PAGE63 



CHAPTER 3· FEATURE-BASED VALIDATION 

It has been affirmed that modelling systems that fail to notify (or acknowledge) 

a change m a feature's functional meaning are in essence only geometric 

modelling systems, and not real feature modelling systems, because they do not 

maintain the meaning of features (Bidarra96). 

Low-level integrity handling (for all GSM techniques that have been applied to 

feature-based modelling) poses no problem because of the extensive research 

already devoted to this topic. Therefore, a validation approach centred on the 

feature's concept and imphed designer's intents is needed (Sheu93, 

Dohmen94). 

It is also considered here that feature-based representation validation is divided 

into two levels (see Figure 3-1): 

• Considering that the majority of feature modellers are integrated in some 

way to an underlying GSM system, it can be said that both sets of GSM 

validity tests - geometrical and topological - represent the structural or 

syntactic validity conditions for feature-based representation validation. 

Feature-based 
Representation Validation 

l!i Model 

!!!)' Featunzatton 

0 

Figure 3-1: Organisational and Structural Validation Levels. 

• The other organisational or semantical validity conditions are termed 

hereafter Conceptual Validity Conditions because they are concerned with 

PAGE64 



CHAPTER 3· FEATURE-BASED VALIDATION 

the feature's concept (their role and semantics as a 3D modelling technique, 

their expected behaviour and their high-level organisational meanings). 

3.2.2 CONCEPTUAL FEATURE VALIDATION 

Features play an important role in captunng the designer's intent in computer

aided design (CAD), raising the abstraction level of geometric design and 

facilitating integration with applicatwns such as computer-aided manufacturing 

(CAM) and computer-aided process planning (CAPP). However, such 

mtegration will only be profitable if the feature model is valid in terms of the 

feature's concept or functional meaning. For instance, if a pocket (or a blind 

hole) in the model is allowed to pass through the part, this misrepresentation 

could cause maclune damage, mistakes or, at least, non-optimised decisions by 

a CAPP system. 

Feature-based validation allows CAD systems (usually more preoccupied With 

representing and producing feature-like shapes within a geometrically 

constrained environment) to interface more easily for example with CAPP 

systems (usually more preoccupied with planning problems than with the 

correctness of the representation). 

As DbF systems usually subsume an implementation on top of a GSM scheme 

(such as CSG, B-rep or hybrid), then they also subsume the availability of low 

level modelling operators (such as Euler or Boolean Operators) as well as GSM 

validations (such as Euler-Poincare formulae verification or Boolean 

regularisation, Zeid91). These low-level operators are not included in this 

study. Other approaches (Stroud93, Subrahrnanyam95) go into this level. 

Conceptual feature-based model representation validation thus implies that the 

verification of the intended functionality of a given feature must conform with 

the geometric semantic meaning assigned to that specific feature type. 

Conceptual Feature Validity Conditions may be translated as reasonings and 

'enquiries to the underlymg GSM as well as to information stored into the 

Feature Modeller, alone or altogether' (Rossignac90). 

PAGE65 



CHAPTER 3: FEATURE-BASED VALIDATION 

Like structural validity conditions, Conceptual Feature Validity Conditions 

may have to be evaluated frequently because many common manipulations can 

lead to a valid solid representation but not to a valid feature-based 

representation. A DbF system that allows the use of high level entities such as 

features to represent abstract concepts of designer's intents should guarantee 

that this representation is valid and should reason using a vocabulary of the 

same high and abstract level, the conceptual or semantical level. The feature

based reasoning should use mainly feature types, descriptions and parameters 

(rather than their geometrical B-rep or CSG evaluations) as a 'vocabulary' for 

validation analysis and manipulation operations. 

Structural, low-level and syntactical representation validation has received 

considerable attention in the literature (see validation facet types from sections 

3.1.1, 3.1.2, 3.1.4, 3.1.5 and 3.1.6). 

Work conducted by Pratt, Duan, Bidarra, Martino, Su, Shah and Zhang and 

respective colleagues is considered to have recognised feature-based 

conceptual representation validation to some extent. 

3.2.3 VALIDATION AT FEATURE CLASS LEVEL 

Denzel93 argued that there is sull scope for reducing programming effort in 

defining new features. An approach that deals with feature validation regardless 

of the feature type would help ease that effort. The term conceptual feature

based validation suggests an approach in this direction: the validation of the 

feature's concept as a whole and not of its particulars. 

Therefore, generic validation reasonings that can be applied to all feature types 

are of major concern m this research. In approaching the problem in this way, 

the task of defining totally new features (which greatly enhances the system 

flexibility) is facilitated because few extra behaviour and validation activities 

need to be defined and programmed. 

In an object-oriented approach 1t could be called a feature-class reasoning 

because it is defined for the feature class and all the objects (feature types) 

PAGE66 



CHAPTER 3· FEATURE-BASED VALIDATION 

derived from it (such as a slot and a hole) would inherit the behaviOur and 

validation reasonings of the class. 

3.3 FEATURE VALIDATION SYSTEM 

Although there are no universally applicable methods for checking the valic:hty 

of features, three elements were identified as necessary to compose a 

conceptual feature-based representation validation system (see Figure 3-2). 

Figure 3-2: Conceptual Feature-based Validation Framework. 

3.3.1 DOMAIN CHARACTERISATION 

To perform conceptual feature-based representation validation it is necessary to 

establish properties with wluch a representation must comply. This is done by a 

proper domain charactensation that reflects and makes exphcit some common

sense feature behaviours as a 3D modelling technique. The domain 

characterisation should produce a set of properties that are mtnnsic to feature 

technology and to the Idea of using features as a modelling resource. In 

addition, these properties should be made measurable otherwise they would not 

contribute to the automatic validity analysis of the feature-based model. 

PAGE67 



CHAPTER 3. FEATURE-BASED VALIDATION 

3.3.2 VALIDITY CONDITIONS 

Another element of the validation framework is the set of conditions that are 

produced to assess the conformity of the representation w1th the properties that 

characterise the domain. These are called validity conditions. Validity 

conditions are important because the richness of the model assessment dictates 

the success of the representation validation. For instance, it has been said that 

the capability of checking various types of technical validity criteria is critical 

for using features in manufacturing planning (Shah95). Therefore, the 

conditions should consider a great variety of situations for each property being 

analysed. 

3.3.3 OPERATIONS CHARACTERISATION 

Considenng the domain characterisation and verifying the model with validity 

conditions allowing the identification of mval1d and val1d representations is an 

advantageous aspect of a feature-based system. However, it is possible that a 

better understanding of the invalidity phenomena could come from a better 

understandmg of their origins: operatwns and the consequent feature 

interaction phenomena. Therefore, a characterisation of the operations 

available in the system is the third element of a feature validation system 

framework. 

In particular, for pragmatic reasons, an enormous advantage could be achieved 

if operations capable of correctmg invalid representations can be identified. 

For the example shown in sectlon 1.5.4 these operations for invalid B-rep solid 

representations (revalidation operations) include: 

• elimination of dangling faces and edges; 

• performing "regularisation"; 

• unificatiOn of vertices referencing the same pomt and then trying to validate 

the result; 

PAGE68 



CHAPTER 3: FEATURE-BASED VALIDATION 

• re-orienting a face's edge loop; 

• eliminating NULL pointers from the data structure. 

There are no similar well-defined revalidation operations in the feature-based 

context, and therefore further research on this topic is required. These 

revalidation operations could be automatically invoked or offered to the 

designer by the system according to the invalidity case. 

3.3.4 THE FRAMEWORK 

To support conceptual feature-based representation validation a system must be 

bmlt upon a thorough definition of the constituent elements (Figure 3-2). The 

very definition of features and their characterisation should be made in such a 

way as to be suitable for venfication and to be in accordance w1th expected 

common sense behaviour of features. A volumetric analysis of features seems 

to be an adequate (feasible) candidate for this purpose. 

Further, 1f the characterisation formalism is made clear, verifiable and 

representative enough the system could perform automatically the identification 

of complex relationships between features. This automatic recognition will 

promote the designer's freedom from this tedious task and the enrichment of 

the representation. However, the human understanding of the model and her/his 

intervention will be necessary to accept or reject a recognised relationship as an 

important and deSired one. Moreover, once these relationships are as 

meaningful as features are, th!s process could possibly dnve a more efficient 

modelling environment. 

3.4 DETAILED RESEARCH SCOPE 

In this research volumetric features have been Implemented m a Hybrid 

CSG/B-rep solid representation scheme where features are closed sets of 

boundaries and Boolean operations are available. The rum is to perform 

PAGE69 



CHAPTER3· FEATURE-BASED VALIDATION 

feature-based model representation validation, and model and entity 

(featurization) validation are outside the scope of the work. 

This interest m the conceptual representation demands that a Design-by

Features approach is adopted where features are instantiated from a library 

rather than recognised from a geometric model. The validation analysis 

discussed here considers that all features are in the same (form) feature 

representation space and therefore no conversion or mapping procedure is 

performed or considered. 

Procedural modelling is used in the sense that the CSG-tree is traversed and re

evaluated when required, thus removing the need for facilities for localised 

updating of the GSM data. Neither parametric nor geometric constraint-driven 

environments were used. 

Orthogonal positioning is used, i e. features are placed parallel or perpendicular 

to one of the Euchdean axes. Prismatic features related to milling and drilling 

are the main concern. Tolerance conditions have not been considered. Stock 

material Is limited to a rectangular block. 

Model bmlding is achieved with add and delete operations and no access to 

low level geometric or topological entities IS required for editing operations. 

Hierarchical representation/modelling is not required and parent-child 

relationships are not forced. 

3.5 WHAT TO VALIDATE? FEATURE-BASED DESIGNER'S INTENTS 

It has been alleged that designer's intention is not always described explicitly in 

the result of a geometric design using current (conventional and GSM) CAD 

systems (Yoshikawa87) and that "features are expected to reflect the designer's 

thoughts" (Lenau93). FBM represents a step forward to overcome this 

limitation. However, capturing design intent is difficult as it can be extremely 

variable and unstandardised. Also, very few feature types and implementations 

are available at the high abstraction levels (closer to the conceptual design 

stages). 
PAGE70 



CHAPTER3: FEATURE-BASED VALIDATION 

Designer's mtent has been considered part of a validation method and even 

considered essential in decision-making where different lands of interference 

happens among features (Zhang93). This is so because interference can be valid 

m one application but invalid in others. In addition, capturing and storing 

designer's intents in the part model make tasks such as feature modification 

much easier (Sheu93). 

Features themselves have been claimed to be a convenient vocabulary for 

formulating validity checks that assess the compliance of the model with the 

designer's intent (Rossignac90) because features widely capture designer's 

intent provided that their semantics are onented to the application (Gomes91 ). 

On the other hand, there is some confusion between a feature's own 

functionality and the functionality of various features acting together: Rimscha 

(Rimscha90), has classified features into two categones: free features which 

are geometric form features that compose the part and embedded features 

which have no existence on their own but which establish all sorts of 

relationships between free features or assembled parts and embedded features 

were said to occur at various levels of the part representation (Nnaji93, 

Rosen93). 

Features are intimately related to designer's m tent. However, although it has 

been claimed that FBM systems capture and represent designer's intents to 

some extent (Dixon87, Rossignac90, Si!va90, Runscha90, Nielsen91, 

Rossignac91, Zhang93, E!Maraghy93a E!Maraghy93b, Su94, Shah94b, 

Chen95, Taylor96), few attempts (Dixon90, Henderson93, Nnaji93) were 

found to define, clarify and identify designer's intents within the feature-based 

modelling context. 

Therefore, a domain characterisatiOn that leans towards conceptual feature

based representation validation should be achieved by defining Feature-based 

Designer's Intents (FbDI's) that express feature behaviour. 

It seems difficult to conceive at first that another vague and abstract term, 

namely Designer's Intents, could be the measurable means to perform 

PAGE71 



CHAPTER 3: FEATURE-BASED VALIDATION 

conceptual feature validation. Nevertheless, the absence of a formal 

mathematical definition for features and a consensus that they are the carriers 

of designer's intents make this option look more invtting. 

3.5.1 DEFINITION 

Designer's intent's are of "high importance to be preserved but their 

understandmg has a complicated nature" (Y oshikawa87). Some of the 

clarifications for designer's intent in the context of feature-based modelling 

mclude: 

• 'Design intents state the purpose of an aspect or underlying rationale behind 

an object' (Henderson93) that help justify a design decision. For instance, a 

hole could act as an oil outlet or a fixing point, which later will help decide 

on machining tolerances. 

• 'Designer's intents are the feature's reason for bemg in the design and 

hence, the reasons certain chmensions and spatial relationships are what 

they are' (Dixon90). 

• 'Designer's intents are a set of functwns wluch the product will provide or 

require' (Nnaji93). 

It has been acknowledged that "the information that constitutes intent, and how 

to capture and use intent are all research issues to be explored" (Dixon90) . . 
Thus, it is herein defined that 

Feature-based Designer's Intents (FbDI's) represent a variety of 

concerns that help decide on a specific feature attnbute or 

configuration. They are factual peculiarities of the geometric design 

that are mtrinsic to features themselves or to the use of features in the 

deszgn and have engineering-related purposes. FbDI's are properties 

that are expected to arise m the model because of the use of a feature in 

a specific location or because of the interactions that a feature 

provokes wzth the existing surrounding features in the model. 

PAGE72 



CHAPTER3· FEATURE-BASED VALIDATION 

FbDI' s represent information that should be verified and maintained 

throughout the detmled design process and could be used as restraints to drive 

the deciSion-making process of a downstream application. Because they are 

considered intrinsic to features, they are sometimes left out of the formal and 

explicit description of a design. 

Their presence could be easily overlooked but their absence is immediately 

recognised by the designer. For instance, a senes of hole features on a part in 

an intentional pattern suitable for a optunisation could be overlooked but if 

they are not in such a pattern, no optirnisation of that kind would ever be tried. 

Either presence or absence affects engineering-based reasonings and computer

aided systems such as CAPP, CAM and CAE. 

3.5.2 WHICH FeCI's ? VOLUMETRIC FeCI'S 

Despite any Implementation issues, it is common sense that form features have 

a strong volumetnc meaning (Pratt85, Pratt88, Shal!88e, Dixon90, Li90, 

Rossignac90, Perng90, Rosen93, Tseng94) and usually their expected 

behaviour as shape builders is guided by their volumes. Therefore, Volumetric 

Feature-based Designer's Intents (VDI's) are concerned with the feature's 

expected volumetric behaviour, or volumetric intention, which is comprised of 

a feature's nature and a feature's volume: 

• A feature's volume (FV) specifies that there is an intention to imprint a 

specific volume or shape onto a part. It has also been called a Feature 

Producing Volume (FPV, Pratt85), Volumetric Cell (Gomes91), Self

Contained Volume (Gindy89, Su94), Basic Volume (Mayer94) and Feature 

Associated Volume (FAV, Bidarra94). 

• A feature's nature (FN, Lenau93, Kraker97) specifies that there is an 

intention of adding matenal (when It is smd to have a positive volume) or 

removing material (when it IS smd to have a negative volume) from the 

component. 

PAGE73 



CHAPTER3' FEATURE-BASED VALIDATION 

FV and FN (see Figure 3-3) together define how to imprint a specific shape 

onto the component. FV' s do not need to have all the explicit evaluated 

surfaces that represent the FV in the evaluated feature model - the component 

(as suggested by Rossignac90 for Intentional Features, see section 2.7). 

Feature Slot-Through Hole Boss 

Feature ~ e e Volume 

Feature Negative Negative Positive 
Nature (-) (-) (+) 

Figure 3-3: Examples of a Feature's Nature and Volume. 

Figure 3-3 presents examples of features and their respective volumetric 

intention, FV' s and FN' s. It should be noticed that, apart from the orientations, 

the FV's are very siiiDlar and only when positioned and with FN's established 

IS a specific feature type achieved on the component's surface. This shows the 

Importance of volumetric intentions to FBM. 

The volumes associated with a feature are so important that not only the actual 

feature volume has been used but the whole removmg and clearance volume 

swept by a tool during the process of manufactunng a feature has been 

considered and this has been called 'manufacturing motion feature' (MMF, 

Medland93). Also, feature volumetnc intentions have proved to be very 

important resource for planning and machining optirnisations (Li90, Tseng94) 

PAGE74 



CHAPTER 3· FEATURE-BASED VALIDATION 

Thus, the Conceptual Feature Validation concerned here is biased by a 

volumetric mterpretation of features although it is applicable to surface feature 

implementations and in fact, also includes some boundary reasoning. 

Volumetric FbDI' s are considered particularly important when an interaction 

occurs between feature volumes. To deal with VDI's, the semantics of non

conflicting and conflictmg volumetric mteraction between features have to be 

defined. This analysis led to the identification of four VDI's (see Figure 3-4): 

Changeability, Fittability, Redundancy and Labelling. 

Volumetrical 
Designer's Intents 

I 
I I I 

I Fittability J !changeability 11 Redundancy 11 Labellmg I 
~------~ ~----~~ 

Figure 3-4: Volumetric Feature-based Designer's Intents. 

3.5.2. 1 CHANGEABILITY VD/ 

A Feature's nature implies that a change m the feature-based representation 

must result m a change in the volume and surface of the component being 

modelled. This feature requirement and ability to change the existing model is 

called the changeability VDI. However, it does not require that all the 

boundaries of the FV should be shaped into the part. The changeability 

requirement m validates obsolete features (Shah90) that occur when a feature is 

completely inserted into another and has the same nature. 

Obsolete features have no functional sigruficance to the model and this should 

be acknowledged by downstream applications or they should be eliminated in 

the first place. 

PAGE75 



CHAPTER 3· FEATURE-BASED VALIDATION 

Figure 3-5: Invalid Representation Containing Two Obsolete Features. 

Figure 3-5 shows a feature-based representation with two counter-bored hole 

features, one placed disconnected to the stock material and the other placed 

inside the removing volume of a through slot. Both holes are considered 

obsolete because their volumetric intentions do not affect (change) the actual 

representation of the part. Therefore this is an invalid representation. 

3.5.2.2 FJTTABILITY VD/ 

A feature must have adequate parameters to properly express the extent of its 

underlying intentions and functionality. Thus the feature must fit within the 

limits where it is intended to be placed (in the same way as an edge is limited 

by its two exact ends, called vertices, in B-rep). This aspect is called the 

fittability VDI. 

The fittability requirement invalidates the problems of feature's parameter 

made obsolete (partially considered by Shah90) where a feature's parameters 

do not descnbe exactly the extent of what it imprints on the part and two cases 

can be identified (see Figure 3-6): 

PAGE76 



Parameter 

is too Large 

Parameter 

1s too Small 

Invalid Representation 

CHAPTER 3· FEATURE-BASED VALIDATION 

Validated Representation 

Figure 3-6: Examples of the Fittability VDI Problem. 

• Parameter is too large such as when a feature exceeds the limits of the 

stock material. 

• Parameter is too small such as when two features touch each other with a 

perfect face match such that they can be united or replaced by another 

feature that encompasses both behaviours. 

However, adequate parameters could also mean that part of the feature does not 

affect the component and hence, the hole m Figure 3-7.(a) is a valid 

representation as a single through-hole. 

' 
-\{ 

(a) (b) 

Figure 3-7: Volumetric FbDI's Analysis and Adequate Parameter. 

PAGE77 



CHAPTER3· FEATURE-BASED VALIDATION 

3.5.2.3 REDUNDANCY VD/ 

Interesting and difficult situatrons arise when redundant volumetric intentions 

are found. Consider a part (Figure 3-7(a)) compnsed of a slot and a hole 

(modelled as a single long cylmder). There is a redundancy of VD I' s where the 

hole crosses the slot. This is a feature interaction problem that has been 

receiving much attention in the literature as bemg of special difficulty to handle 

(see chapter 5). Nevertheless, concerns are dtawn here regardmg the 

redundancy VDI management and not the featute recognition, extraction or 

even internal representational problem. 

Thus, whether to accept the feature redundant removal intent in the 

representation or to spilt the long hole into two short hole features has 

consequent implications: 

• If the redundant portion is allowed, care should be taken during further 

analysis to avoid redundant manufacturing operations (for example). 

• On the other hand, if two separate short hole features are created, the 

redundant geometric part must be deleted from the model and other types of 

intents (such as the equal radius and concentricity intents between the two 

short holes) must be added to the representation. 

However, elinunatrng the redundant part also eliminates the removal intent at 

that location. For instance, consider now adding a boss into the slot (Figure 3-

7(b)). Should this boss have the former hole mtent as well? Or, consider 

removing the slot if the second approach is taken: what happens to the formerly 

deleted and redundant part of the hole feature? 

Capturing and maintaining VDI's is a subjective problem. For instance, simple 

operations such as adding a boss inside a slot (Figure 3-7(b)), could be 

interpreted as an acceptable Situatron (when it leads to the formation of a 

protrusion for example) or could be interpreted as a VDI conflict since it is 

precluded by a material removal intent. Inverse operations (superimpose a 

matenal removal over an additional intent) can cause hollows/cavities (usually 

PAGE78 



CHAPTER 3· FEATURE-BASED VALIDATION 

undesirable) or the loss of (part of) the initial addition intent (deleting the 

previous feature at that same location). 

Similar FbDI management problems appear when simple delete operations are 

required. Imagine the volumes used to produce a component formed by a step, 

a slot and a hole feature (Figure 3-S(a)). Now imagine re-adding the volume 

that produced the slot as a way to delete the slot. Not only is the slot deleted but 

also the step is turned into two notches and the shape of the hole is affected. A 

clearly unwanted VDI scenario has emerged instead of the simple deletion of 

the slot. This is a matter of managing the redundancy VDI. If the system was 

able to identify the portions of the feature that represented a redundant material 

removal procedure then it would have known that the deletion of that part 

should not be made by just re-adding material, although for cases of non

redundant intents re-adding the mitial volume suffices. 

a) b) c) 

Figure 3-8: Deleting Volumetric FbDI's. 

A proper delete operation could be achieved if the history of the design was 

stored allowing the later reconstruction of the model. However, high computing 

time will be required to reconstruct the model after every manipulation, and 

thus there are some approaches that perform "local updates" on the model to 

save computing time (Rossignac90, Gomes91, Sheu93, Vandenbrande93). 

3.5.2.4 LABELLING VD/ 

The labelling VDI identifies the relationships between all feature faces and 

their attributes. Every feature has a set of relationships that is kept as the 

feature's label and identifies features as being of a specific shape and having a 

unique behaviour. Labelling IS basically defined by a template of virtual and 

PAGE79 



CHAPTER 3. FEATURE-BASED VALIDATION 

real faces that wrap the feature volume of a feature type (see Figure 3-9). 

Virtual faces basically identify tooling external access directions and real faces 

identify surfaces to be imprinted on the part. 

Feature 
Label 

Through 

Slot 

Step 

Real 
Faces 

Virtual 
Faces 

Figure 3-9: Feature's Template of Virtual and Real Faces. 

It should be noted in Figure 3-9 that the step and through slot features have a 

very similar volume (FV) and the same negative nature (FN) and therefore a 

very similar volumetric intention. However, the set of real and virtual faces 

helps identify the proper label for each case, which leads to very functionally 

different features. 

A feature's nature and volume are closely and complementarily related to the 

feature's label (its positioning and template of real and virtual faces). A label 

is considered to be the link between the geometric modelling realisation of the 

feature-based model and other non-geometrical information associated with a 

specific feature type. 

For instance, the same nature and same location but slightly different template 

description would result in a different feature label (such as for through slot 

and step features, see Figure 3-9). On the other hand, a feature's label is 

dependent on the feature's positioning and thus changing a feature's position 

could possibly change the feature label. 

If a face of a given feature abuts and IS completely inserted into another 

feature's real face, the former must be a virtual face (Silva90). Using 

reasorungs such as this the labelling aspect can be maintained (refer to section 
PAGEBO 



CHAPTER 3· FEATURE-BASED VALIDATION 

8.9.3). If the template and the realisatiOn do not match, the feature label is 

mvalid and a "revalidation" operation of searching for the appropriate label 

should be invoked. 

3.5.3 WHAT ARE FBDI'S? THE ESSENCE 

To continue arguing that FbDI's can be explicitly captured and manipulated, a 

sensible internal representation needs to be found. This raises the question of 

what are FbDI's in practical terms? 

FbDI' s have been considered to be constraints by many authors (Dixon87, 

Nielsen91, Dohmen96) because the resulting geometric relationships are set by 

the designer in a conscious manner to express some of the design objectives. 

However, the way a network/graph of constramts IS set up is particular to a 

specific design or applicatiOn, and therefore 1t will be impossible for the 

designer to generalise the constraints to cover all possible situations of similar 

designs (Zhang93). 

Furthermore, it has been alleged that a constraint-based system is neither 

sufficient nor easy to work with (Rossignac90) for a design application. In 

addition, constraints were regarded as unable to accommodate all sorts of 

associations (Hailong95) or relations (Henderson93) in a design. Therefore, it 

is difficult to accept that a very specific set of relationships can be regarded as 

all possible FbDI's that exist in a design. Besides, these constraints have been 

established using geometry information rather that feature-based information. 

Because of these considerations, it is believed that constraints are part of the 

FbDI concept and thus the FbDI concept must accommodate constraints in 

some way. Furthermore, considering that FbDI' s have also been regarded as 

connectivities between features and as flags for intended interference 

(Zhang93), FbDI's are defined as general relationships between features 

(preferably) and/or feature elements (thus, accommodating geometric 

constraints). 

PAGE81 



CHAPTER3" FEATURE-BASED VALIDATION 

3.5.4 THE ACTUAL VDI'S 

The following are the FbDI relationships originated from the volumetric FbDI' s 

reasoning: 

• A feature identified as mergedJrom another two features onginates 

from afittabzlity VDI analysis. 

• A feature identified as split_into two or three other features also 

originates from afittability VDI analysis. 

• A feature identified as obsoleted_by another feature onginates from 

a changeability VDI analysis. 

• A feature identified as deleted_by another feature ongmates from a 

redundancy VDI analysis. 

• The label of a particular feature (one of its properties) originates 

from a labelling VDI analysis. 

PAGE82 



CHAPTER3: FEATURE-BASED VALIDATION 

3.6 EXAMPLE OF CONCEPTUAL MFJ REASONING 

Blind-~ ~~nd-Siot 

~ov 
...[]_ Split 

~ 
...[]_ Delete 

~ Invalid Model 

...[]_ Merge 

~ 
--0- Label 

-Slot 

Valid Model 

Figure 3-10: Example of Conceptual MFI Validation. 

Figure 3-10 presents an example of conceptual representation validation 

reasoning and some of the operations involved in this process. The right-hand 

side of the figure shows how the model would appear if no validation reasoning 

is applied, while the left-hand side shows, operation by operation (see chapter 

6), how a conceptual representation validation reasoning can be applied m 

order to obtain a valid model at the end of the process. 

PAGE83 



CHAPTER 3• FEATURE-BASED VALIDATION 

3.7 COMPOSING A fEATURE VALIDATION SYSTEM 

Validzty conditions should be devised to verify the semantics of the domain 

characterisation (Volumetric FbDI's). This can be achieved through a suitable 

vocabulary to express the conditions regardless of whether they are to be 

implemented in a Knowledge-based System (KBS) or in a C-Iike language. It 

can be inferred that three elements influence the way VDI's have been 

presented and explained, and therefore should be used to compose such a 

vocabulary. These vocabulary elements are: 

• The way that features interact ( e g. mserted face and cross feature). 

• Feature attributes (e.g. feature's nature, face's virtual or real attribute). 

• The way that features are operated on (e.g. delete and add a feature, split 

feature and search for new label). 

Furthermore, some ways in which VDI reasomngs relate to other types of 

intents (e.g. eo-radius and concentricity) have already been mentioned (section 

3.5.2.3) and can be created as a consequence of a VDI reasoning. 

This makes it clear that there are non-VDI intents, that these other types of 

intents also need to be properly defined and specified and that VDI reasoning is 

not an isolated reasoning. This suggests that conceptual feature validation can 

be extended to a much broader spectrum of designer's intents becoming an 

mtent-dnven approach for reasoning about feature-based models. 

PAGE84 



CHAPTER 3· FEATURE-BASED VALIDATION 

3.8 SUMMARY 

Modelling and editing feature-based models produces models that potentially 

violate the feature's expected behaviours. A step of verification and validation 

is therefore essential, although what to validate is still open for interpretation. 

This validation process is difficult because the extra information, or designer's 

intents, that features carry is not easy to formalise and quantify. 

Conceptual feature-based representation validation requires the definition of 

feature volumetric intentions. These terms, intents and volumetric intentiOns, 

have been identified and specified. These reasonings arise from the elements of 

a vocabulary. Tlus vocabulary includes feature interaction, intents interaction, 

feature attributes and operations. The elements that comprise a system capable 

of analysing a representation against such volumetric FbDI' s have been 

identified. 

When features are manipulated or introduced into a part's representation they 

become part of a complex arrangement of entities, which are initially Isolated, 

but which subsequently mteract with each other. Therefore, two intrinsic 

dimensions of information identify a feature before and after being

incorporated into the model: intents and interaction. Feature interaction seems 

to be useful in testing, validating and correcting feature-based models from the 

designer's intents perspective. 

In the following chapters these vocabulary elements (feature-based designer's 

intents, feature interactions and feature operations) are presented and properly 

classified, typified and specified to comprise not just a validation system but 

also an intent-driven reasoning approach. 

PAGE85 



4. AN INTENT-DRIVEN APPROACH 

Features have extra non-geometrical semantics and have been 

considered to carry designer's intents which are used by many 

applications but never related back to these designer's intents. 

Th1s chapter presents a classification of designer's intents and, 

as they are considered to be properties that are intrinsic to 

feature-based modelling, they will be used as the means by 

which validation conditions are set. Therefore, adopting the 

approach of defining a taxonomy of designer's intents helps 

define the role of features m geometric design and, indeed, 

allows future feature-based modelling SYStems to better 

represent, store and reuse such information. Moreover, it allows 

a more formal approach to mampulating, verifying and 

maintaining designer's intents throughout the design process, 

which is invaluable support for genuinely intelligent CAD 

SYStems. 

4.1 CONCEPTUAL VALIDATION AND BEYOND 

Although features are a proclaimed and accepted means of capturing and 

representing feature-based designer's mtents (FbDI's), existing systems do not 

deal with FbDI's as their major concern. The main reasons for this are 

threefold: 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

• first, there still is a lack of a formal well-accepted definition for features 

and their role as a geometric modelling technique. 

• second, there is the same lack of understandmg of what FbDI' s are, 

especially in the context of FBM. 

• third, identified intents are usually blended, immersed or diluted within the 

application under consideration. 

Capturing FbDI's at early stages of the design in a more user-friendly interface 

that includes a vocabulary meaningful to the designer is a property of a design

by-features (DbF) system that allows more intelligent decisions and reasonings 

to be made and has been considered as a necessity for Intelligent CAD 

(Cunnmgham88, Dixon90). 

A validation system need not be used solely for conceptual validation and the 

associated volumetric mtentzon reasoning. It could also be extended to validate 

various other types of intents and therefore become an intent-driven reasoning 

system. To identify and understand these other types of FbDI's an entities 

elicitation process (explamed for feature elicitation in section 1.5.2 and 

summarised in Figure 1-8) is suggested. 

Depicting all sets of FbDI' s present in the designer's mind is beyond the scope 

of this research and is a very cumbersome approach even in a limited domain. 

The objectives of this chapter are to (a) explicitly categorise FbDI's in such a 

way that this extra information could be effectively and consciously 

instantiated into a model, and (b) provide a set of characteristics that a DbF 

system could be based upon. In this way, the capturing, verifying and 

maintaining of FbDI's could be performed by, and even automatically 

discovered by, a DbF system. 

Moreover, this approach provides another dimension to be considered when 

designing and implementing FBM systems as these would be constructed upon 

the concept of intents to be achieved and validated, and not just the set of 

features to be manipulated. 

PAGE87 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

4.1.1 FEATURE-BASED DESIGNER'S INTENTS ELICITATION 

As discussed earlier (section 1.5.2), the elicitation process requires the 

characterisation of a domain. A process of identification based on elicitatwn 

criteria follows and tlus can be helped by an appropriate classification. A 

taxonomy is then produced considering an application and another set of 

criteria validates a (possibly smaller) set of elements for a chosen application 

domain. 

The domain adopted for this research is the integration of feature-based CAD 

and CAPP and information related to it has been mainly gathered from related 

publications, and therefore FbDI' s presented are the ones perceived from these 

systems. 

4.2 DESIGNER'S INTENTS ELICITATION CRITERIA 

A reasonable set of "manageable" FbDI's should be clearly identified and 

classified to match feature semantics and this IS achieved via a suitable set of 

elicitation criteria. 

Keeping a pragmatic awareness of the implications for DbF implementations, 

the following set of elicztation criteria were established to select objective, 

concrete and venfiable FbDI's: 

• they must have importance to the decisiOn-making process of detailing a 

geometric design and hence, are not for documentation or illustrative 

purposes solely. "Designer's mtents" that do not usually constitute a 

representation of the design knowledge to be used for subsequent 

venfications or to trigger reasonings should be avoided. 

• they must have geometric semantics expressed in a way that is suitable for 

association with features and for bmldmg a reasoning process. 

• they can be of hierarchical nature, where high-level more abstract FbDI's 

can be defmed, but there are basic atomic FbDI's which are preferable. 

PAGE BB 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

• major attention should be paid to FbDI's that are computable and inferred 

during the design process rather than to those that can only be explicitly 

stated by the des1gner (Silva90, Dixon90, Suzuki90, Zhang93, Vancza93, 

Salomons93, Mill93). This does not mean that this process is easy or 

already available but does mean that 1t is conceivable. 

• FbDI' s that bwld a hierarchy witll tight dependency should be avoided or 

kept as a distinct class to maintain simplicity of the reasomng (see 

Parametric FbDI' s, section 4.4.2). 

4.3 DESIGNER'S INTENTS CLASSIFICATION 

A feature model IS considered invalid if it does not fulfil its functions 

(Martino94a). Three types of FbDI's have been identified (see F1gure 4-1): 

morphological functional, theoretical functional and relational functional. 

Feature-based 
Designer's Intents 

I 
I I I 

Morphological Theoretical Relational 
Functional Functional Functional 

Figure 4-1: A Classification of Feature-based Designer's Intents (FbDI's). 

4.3.1 MORPHOLOGICAL FUNCTIONAL FBDI (MFI) 

Features represent a good means to embed functional significance mto the 

geometric detailed design phase and this fact can be inferred by some 

definitions applied to features. Features have been defined as: 

• the addition of functionality to geometric forms (Dixon90, Sodhi91, 

NnaJ!93); 

• high-level morphological mformation with well-defined functional meaning 

(Gomes91); 

PAGE89 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

• high-level functionally significant entities (Laakko93, Bronsvoort93). 

In addition to topological and geometrical analysis that is usually applied to 

identify features (as in Feature Recognition approaches), extra functional 

factors have been added to better specify the elements of a feature fanuly. 

For instance, a cylindrical boss family of features could be specialised into a 

disk if limited to a certain height-to-diameter ratio range; otherwise, it becomes 

a rod (Nielsen91 ). In addition, a hole feature can be assigned as a 

morphological functional FbDI but it Will only be categonsed as drilled hole, 

bored hole or punched hole when the application domain is considered (in this 

case, manufacturing capabilities). 

This functional specialisation generates a drastically different manufacturing 

approach. In the case of the example above, it could be machining the disk or 

welding the rod. 

It has even been considered that, If an application considers only functional 

morphological information (shape) then the term "form feature" can be used 

(Dohmen94). These considerations clearly expose features as having 

morphological functional FbDI' s (MFI's). 

4.3.2 THEORETICAL FUNCTIONAL FBDI (TDI) 

Features are also linked to the function concept itself which has been defined as 

"the behaviour of an object, an operation of energy, material, mformation or 

signal that tells what the design does" (Tomiyama93) and "include not only in

use purpose, but also manufacturing and life-cycle considerations' (Dixon90). 

Although some researchers have addressed the relationship between form and 

junction, it is not formally understood yet because of many difficulties 

(Shal!90, Salomons93). 

• firstly, the abstract nature and understanding of the function concept. 

PAGE90 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

• secondly, functionality can be a composite result of many interacting sub

functions. 

• thirdly, a given function could be performed by several forms and one form 

could be used to perform different functions. 

Functions make specific shape aspects appear on the part's surface, control the 

part's overall outlook and are driven by a close relationship between a feature's 

theoretical functional behaviour and its form. This is possible by manipulating 

and controlling the hierarchy or dependency of parameters that establish 

dimensions, profiles (e.g. quadric, circular, spherical), parameterised local 

operations (blending, chamfering, trimming) and so on. 

This function concept has been implemented as physics-based or engineering

based laws, rules or formulae depending on the underlying theory, such as heat 

propagation, torque or force transference or stress analysis (Taylor96). Thus, 

they are called theoretical functional FbDI's (TDI's). 

4.3.3 RELATIONAL FUNCTIONAL FBDI (RDI) 

While TDI' s are usually expressed by formulae, engineering constraints are 

expressed in the form of relationships between entities. Thus, they are called 

relational functional FbDI's (RDI's). 

RDI' s comprise different disciplines and are dependent on the application of 

the feature-based model. RDI' s are mostly geometrical facts that have a 

functional significance for an application. 

For instance, a "nested at the bottom" relational FbDI (see section 4.4.3.1) is a 

geometry-based and provable fact that could be used by a CAPP system to 

establish machining precedence among features. 

PAGE91 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

4.4 DESIGNER'S INTENTS TAXONOMY 

Each FbDI type has a set of objective and tangible properties at a "pragmatlc" 

level, which helps to implement FbDI's w1tlun the geometric realm. FbDI types 

specify general engmeering concepts or behaviours while the acrual FbDI' s are 

computable relationships between features themselves or elements of the 

feature-based model such as feature faces (and their attributes) and feature 

parameters, and are to be implemented in a system. 

The FbDI' s presented below comply w1th the elicitation criteria presented 

before and thus, are venfiable, measurable and manageable. Tlus enumeration 

ofFbDI's can be said to build up a taxonomy ofFbDI's. 

4.4.1 MORPHOLOGICAL FBDI 

Morphological functional FbDI's (MFI's) can be achieved through Volumetric 

FbDI's (VDI's) introduced and detailed in section 3.5.2. 

Fittab1llty 

m erged_from 
spllt_into 

Volumetric 
Designer's Intents 

obsoleted_by deleted_by 

Labelling 

Figure 4-2: Taxonomy of Volumetric FbDI's 

4.4.2 PARAMETRIC FBDI 

Theoretlcal Functional FbDI's (TDI's) can be incorporated into featllre-based 

modelling via parametric or variational constraint-based systems respectively 

generating the so-called procedural and declarative approaches (Shall94a, 

Shall94b). The main distinction between (constraint-based implementations ot) 

feature-based modelling and parametric/variational modelling has been said to 

PAGE92 



CHAPTER 4• AN /NTENT·DR/VEN APPROACH 

be in the level of detaiVabstraction (Shah94b ). Feature models are structures m 

which constraints can be applied both at nucroscopic and macroscopic levels. 

V alidatJ.on systems based on the geometric constraining approach do not allow 

manipulations to be interpreted as a change of the designer's intent, rather they 

prevent such situations from occurring (Ovcharova94, Shah94b) because the 

designer's intents are explicitly gathered beforehand via the establishment of a 

hierarchy/dependency of parameters and constramts. The designer needs a 

complete understanding of the functionality of the part bemg designed and all 

the Important dimensional relationships involved. Experimentation is done 

afterwards when all the relationships are set. Different variatJ.ons of the part can 

be obtained easily. However, for loosely specified parts this formal approach is 

not appropriate. 

A considerable amount of research has been done on representing and solving 

geometric constraints (Serrano88, Suzuki90, Chung90c, Nielsen91, 

Bronsvoort93). Because many theoretical functJ.onal FbDI' s can be captured 

and represented via a geometnc constraining approach, they can also be called 

Parametric FbDI's (PDI's) 

Constraining is usually a parameter-driven (e.g. dimensions, distances) relatJ.on 

between (parts of) features (Dohrnen94). "Parameters may be dimensions, but 

they may also be values without geometric meaning that are used to compute 

dimensions" (Dohmen94). Geometric constraining is one ofthe most Important 

and practised way of captunng (parametric) FbDI' s because "much of the 

design process is driven by functJ.onal constraints that turn into geometrical 

ones as the design proceeds" (Suzuki90). These constraints are important for 

representing designer's intent as product models because they represent high

level design relationships that must be satisfied and maintained (Ernmenk91 ). 

Geometric constraming systems can be roughly chvided mto two categories: 

parametric or variational design (Chung90c ). 

In a parametric constraining design the designer uses basic geometric elements 

(e.g. lines, arcs, vertices) and applies a set of geometric constraints (e.g. 

PAGE93 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

parallelism, distance, length, perpendicularism) between the geometric 

elements. Dependent and independent parameters are assigned and related 

using engineering equations. A way to relate geometry to function parameters 

is provided and an equatJon solver is often available. After completion of the 

design changes to the dimensions or an equation parameter can be made and all 

the constraints can stJll be solved to determine the values of all dimensions of 

the model. Geometric relationslups can only be solved sequentially and 

equations that depend on the geometric constraints for their solution must be 

avoided. What the parametric approach can not do is solve the engineering 

equations and consider the geometric constraints at the same time. 

The variational approach allows the engineer to experiment with a design that 

iS under-dimensioned or not fully constrained or specified in any order. In 

addition, the engineer can specify engmeering equations that need to be solved 

simultaneously with the geometric constraints. 

PDI' s represent explicitly defined intents that establish tight dependencies 

between features and feature parameters and thus they are kept distinct from 

other FbDI's (see criteria in section 4.2). 

This work does not contemplate the use of a geometric constraint-based CAD 

system of any sort (parametric of variational) and therefore these types of 

FbDI's are not further developed. 

4.4.3 GEOMETRIC FBDI'S AND APPLICATION-ORIENTED INTENTS 

Although recognised as crucial (Salomons93, Gindy93, Snkantappa94 ), 

relational FbDI' s have been limited to the separate considerations of parent

child, patterns, compound (Faux86, Emmenk89, Gindy93) and assembly 

relationships (Rimscha90, Nnaji93). Perhaps this is because designers normally 

do not explicitly state constraints hke perpendicularity, parallelism, etc. 

(Suzuki90, Silva90), except when using geometric constraint-driven systems. 

PAGE94 



CHAPTER 4• AN INTENT-DRIVEN APPROACH 

A taxonomy of relational FbDI' s has been established by analysing the plethora 

of designer's intents found in the literature concerned with the feature-based 

manufacturing and process planning of prismatic parts. 

Relational FbDI's describe physical and/or spatial relationships between 

features and are divided mto two categories: 

• application-dependent but mostly geometry-dependent, called Geometnc 

FbDI's (GDI's). 

• geometry-dependent but mostly application-oriented, called Application

Oriented Intents (AOI's). 

4.4.3. 1 GEOMETRIC FBDI's 

Despite the fact that "it is almost impossible to pre-defme all (geometric) 

feature relationships" (Gindy93), the importance of GDI's has been recognised 

by systems that incorporate tlus spatial information in various ways (Dixon87, 

Suzuki90, Silva90, Nielsen91, V ancza93, Lenau93, Shali94b ). 

Figure 4-3 presents a taxonomy of GDI' s. It is not intended to be complete but 

highlights important categories and relationships that are found in previously 

mentioned feature-based systems. 

Pos1tional 

concentnc 
oppos1te 
planar 
eo-planar 
oils et 

Geometric RDI's 
(GDI's) 

Orientational 

parallel 
perpendicular 
angulanty 
agamst 
co-hneanly 
coEAD 

Hierarchical 

nested@ bot 
nested@ side 

pattern 
(L, C, P, S) 

symmetry 
(axial, radial, mirror) 
co-rad1us 

Figure 4-3: A Taxonomy of Geometric RDI's. 

PAGE95 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

4 4.3.1.1 Positional GDI 

Positlonal GDI' s are attnbutes that identify the relative positioning of features 

that mainly affect feature machining precedence (Mill93, Shah95), process/tool 

selection and assembly (If assigned between parts, Harun96). They include 

(Silva90, Chovan91, Vancza93, Snkantappa94): 

• opposite, If the feature's axes are opposite and eo-linear. 

• concentricity (or co-axiality), if the feature's axes are the same. 

• planarity, if two features have any pair of virtual faces that are located 

mside the borders of one planar face. 

• co-planarity, if features have virtual faces located in the same plane (not 

necessarily within the borders of the same face). 

• offset, if both virtual faces are located in parallel planes and their normals 

point in the same direction. 

hole! 

hole4 

• pocket] is eo-planar to pocket2 

• pocket] is planar to hole I and hole2. 

• hole I and hole2 are offset to hole3 and hole4. 

Figure 4-4: Examples of Positional GDI's. 

Figure 4-4 shows a test part where features manifest various positional GDI' s. 

It should be noted that the pocket features share the same plane and thus are co

PAGE96 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

planar, pocket], holel and hole2 share the same plane and the same face, and 

are thus planar and; hole] and hole2 share the same normal direction but are in 

different planes as hole3 and hole4, and are thus offset. 

4.4.3.1.2 Orientational GDI 

Orientational GDI' s establish how feature axes or other geometric entities are 

oriented with respect to each other (Silva90, Rosstgnac90, Sodhi91, V ancza93, 

Shah94b, Srikantappa94). Any deviation from these orientational intents dunng 

machining operations must conform to a two-bounded quantitative allowance 

(Parametric FbDI) specified as a tolerance (Suzuki90). They include: 

• parallelism, when the feature axes are parallel. 

• perpendicularism or orthogonality, when the axes are mutually inclined at 

90-degrees. 

• against (or aligned), if the features' External Access Direction point in 

opposite (or same) direction. 

• eo-linearity, if the feature axes are aligned (not necessanly at the same 

position or in the same direction). 

• angularity, when an important angle can be identified between the feature 

axes. 

• coEAD, when features share the same tool "external access direction" 

(EAD) usually verified via the orientation of virtual faces. 

4.4.3.1.3 H1erarch1cal GDI 

Hierarchical GDI' s have importance to systems implementation, graphical 

edttmg, tooling and process planning. In addition, assembly feature 

relationships are considered to be a structural hierarchy among different parts 

of a product (Rimscha90, Ovtcharova92). Some hierarchical GDI's can be 

defined by a nesting relationship (Silva90, Anderson90, Dohmen94): 

PAGE97 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

• Nested at the bottom (nested@bot) of a feature, when a virtual face of a 

feature is contamed w1thm a bottom face of another feature (see feature 

face properties in section 8.4.2). 

• Nested at the side (nested@side) of a feature, when a virtual face of a 

feature is contamed within a side face of another feature. 

Figure 4-5: Example of Nested at the Bottom Hierarchical GDI. 

Figure 4-5 presents two blind hole features nested at the bottom face of another 

blind hole feature as an example of a nesting hierarchical GDI. 

4.4.3.1.4 Structural GDI 

Structural GDI's recognise combinations of other GDI's such as a linear pattern 

of features with axial parallelism between each other, and co-axiality of 

surfaces that have axes perpendicular to a reference. Structural GDI' s descnbe 

general organisation, placement and orientation of the whole model or of some 

group of features on the model (similar to skeletons, Lenau93). 

The pattern structural GDI IS one of the most popular FbDI's (see Figure 4-6 

for an example). Although it has been said that "if not specified in advance it 

will be Impossible to identify pattern features" (Pratt88) it is believed that with 

the help of the user and guided reasoning some pattern structural GDI' s can be 

recognised. 

Structural GDI's represent displacement patterns of features (Faux86, 

Emmerik89, Ovtcharova92) that, for example, affect process planning 

(Rossignac90, Vancza93) and mclude: 

PAGE98 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

• linear (L), when elements are regularly spaced along a line. 

• circular (C), when elements are regularly spaced on a pitch circle diameter 

(PCD). 

• planar (P), when elements are displaced m a plane fonning figures such as 

squares and triangles (V ancza93). 

• spatial (S), when a three-dimensional figure, such as a cube, can be 

identified as having features at its vertices. 

Counter-Bore Hole 
Pattern of Holes 

Slot 

Figure 4-6: Example of a Planar Pattern Structural GDI. 

The symmetry structural GDI happens when the distance between a feature and 

a reference is equal to the distance between another feature and the same 

reference. Symmetry could be assigned to a group of features or to the whole 

model and can influence the cost of assembly and maclune setups (J akiela89). 

Types of symmetry include: 

• Axial symmetry, when the reference is one of the Euclidean axes, X, Y or 

z. 

• Radial symmetry, when the reference is, for example, the axis of another 

feature (say a hole feature) (Vancza93). 

• Mirror symmetry, when the reference is a plane (mirror). 

PAGE99 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

4.4.3.2 APPLICATION-ORIENTED FaDJ's {AOJ's) 

GDI' s are geometrical facts and intentional relationships between entities in a 

feature-based modelling system but they alone do not suffice for an application. 

For instance, a luerarchical GDI is needed in order to define machining 

precedence but other geometrical reasonings such as "supporting walls" and 

"tool accessibility" must be considered as well. 

GDI' s are defined m the detail geometric designer's domain but there are also 

"process planning engineer's intents" (V ancza93) as well as "manufacturing 

engineer's intents", and so on. The intents from all these other application 

domains are called Application-Oriented RDI's (AOI's). Many of these intents 

are concerns to be fulfilled that guarantee the physical realisation of the design 

constrained by pragmatic and technological requirements such as cost, quality, 

r time, accessibility and feasibility. 

AOI's exist to establish a more definite interpretation from the application's 

pomt-of-view. In contrast to GDI's, these intents consider information beyond 

geometrical relational facts. This extra information includes tool availability, 

process optirnisation and precedence constraints. Thus different applications 

could interpret the same factual GDI's differently. 

4.4.3.2.1 Temporal AOI 

Examples of AOI' s include temporal manufacturing relationslups. Temporal 

relationships for machining purposes are embedded m FBM (even if not based 

on underlying CSG procedural models) due to accessibility of the feature's 

faces (Hummel89, Gupta93) and are categorised as coEAD orientational GDI's. 

When analysed against other requirements, such as tolerances and time 

optirnisations, temporal AOI can help constrain setup planning (Vancza93, 

Mi1193) suggesting operations to be performed at (see Figure 4-7): 

• same setup, when features have the same EAD and same feature type; 

• different setup, when the EAD's do not match. 

PAGE100 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

Hole2 

Holel 

•Slot] same_setup slot2. 

•Hole] different_setup hole2. 

Figure 4-7: Example of Temporal AOI's. 

4.4.3.2.2 Precedence AOI 

A parent-chzld AOI happens when a nested at the bottom hierarchical GDI IS 

interpreted as a precedence mtent for process planning purposes after an 

analysis that eliminates other precedence alternatives. 

However, other uses of the parent-child intent can be found in the literature 

such as when they are used to model how features are positioned with respect 

to each other (Laakko93). 

Another example of the parent-child AOI interpretation occurs when 

manipulation constraint reasonings are propagated from a parent feature 

towards child features (Faux86, Shah90, Gindy93, Sheu93). In this context they 

can be seen as a simplified form of nesting, explicitly included by the designer 

for vanous reasons. 

A final and definite AOI would establish which feature should precede the 

machining of another feature. 

PAGE101 



CHAPTER 4• AN INTENT-DRIVEN APPROACH 

4.4.3.2.3 Compound AOI 

Another example of an AOI happens when complexly shaped features (and 

tools) subsume the behaviour of two or more intents and this has been called a 

compound feature (Pratt88, Gao93, Case93c ). For example: 

• A counter-bore or counter-sink hole feature, when two nested at the bottom 

hierarchical GDI and concentric positional GDI hole features exist; 

• Unresolved Crossjeatures (X-feat) such as stepped-hole of slotted-pocket 

(Bidarra93, Shah95); 

• Cut-out arrangement (M!ll93), also called keyway (Pratt85) or keyseat 

(ElMaraghy93b) which is a "small" recess (another feature) in the periphery 

of a "larger" feature (Figure 4-8). 

Figure 4-8: A Cut-Out Interaction Case. 

Similarly, T-slots and Entered-features (E-feat) can be defined. 

PAGE102 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

4.4.3.2.4 Proximity AOI 

A proximity AOI is usually an intent to be avoided or kept inactive. It is 

represented by a thin-wall (TW) relationship and depends on the material, 

features and processes involved. 

A wall is the unmachined material left between two features. A thin-wall can 

produce a deformation on the component during the machining procedure and 

therefore should be avoided. Figure 4-9 shows a part containing a thin-wall 

between a filleted step and a slot-through feature. 

Figure 4-9: A Part Containing a Thin-Wall. 

4.5 A FBDI TAXONOMY 

Figure 4-10 presents the complete taxonomy of feature-based designer's 

intents. The leaves of the classification tree are the identified FbDI 

relationships. It should be noted that because no geometric constraint-driven 

system has been used, the PDI node has not been further specified (refer to 

Dohmen96 for a classification ofPDI's). 

PAGE 103 



CHAPTER 4" AN INTENT DRIVEN APPROACH -
Feature-based Des1gne!s Intents 

(FbDI's) 
I 

I 

Morphological Functional FbDI Theoretical Functional FbDI Relational Functional FbDI 
(MFI's) (TDI's) (RDI's) 

I I 

Volumetric MFI's Parametnc TFI's Geometric RDI's AphcatiOn·Onented RDI's 
(VDI's) (PDI's) (GDI's) (AOI's) 

I 
I I I I I I I I t 

Changeab1hcy Fittability Redundancy Labelling Pos111onal Onentallonal Hierarchical Structural Temporal Precedence Corn pound Proximity 
VD! VDI VD! VDI GDI GDI GDI GDI AOI AOI AOI AOI 

lobsoleted_by -Merged_from lDeleted_by r-Concentric f- Parallel -Nested@bot - Pattern r-Same_setup r-Parent·Child - T·slot '-Thin-wall 
-Spht_into r-Opposite c-Perpend1cu!ar -Nested @side (L, C, P, S) '-Different_setup '-Precede -X·feat 

c- Planar c- Angularicy - Symmetry - Counter·B ore/Sink 
"' c-Co·planar c-Agamst (Radial, Axial, Mirror) -Cut-Out ~ 

:§< 
u '-Offset r-Co-hnear -eo-radius '-E·feat e 
0 '-CoEAD < 

'-

Figure 4-10: A Feature-based Designer's Intent Taxonomy. 

PAGE 104 



CHAPTER 4· AN INTENT-DRIVEN APPROACH 

4.6 "INTENTURIZATION" VALIDATION 

To comply with the elicitation process the following are some designer's 

intents validation criteria. They help to identify a minimum set of FbDI's most 

suitable for an application. Because this has been called featurizatJ.on 

validation for features, it will be called intenturization validation for FbDI' s: 

• Selectable FbDI' s can be conflicting, and hence care should be taken to 

select only non-conflicting FbDI' s for a specific design application. In 

this way, reasonings will not interfere destructively with each other and 

loops will be avoided. 

For instance, parallel and perpendicular GDI' s can both be used in the 

same design or application but they are conflicting 1f used to relate the 

same pair of features. Although obvious to humans, the computer 

model could result in a loop if both mtents are assigned to the same 

parr. 

• Because there are partially redundant intents, such as those used to 

define abstract hierarchical FbDI's, atomic intents that have non

overlapping concepts/defirutlon should be preferred. Thereafter, tricky 

situations with redundant FbDI's can also be avoided. 

For instance, a parent-child AOI could be defined using a nested@bot 

GDI which makes it partially redundant in some implementations. 

However, these FbDI's could also have completely dissociated 

definitions. These definitions need to be clear to the user. 

As the mtents were mainly gathered from CAD/CAM and CAPP FBM 

systems, they are consequently all valid candidates for these applications. The 

intent validation process is relegated to minor Importance because no other 

domain was considered and because no specific application was considered. 

Therefore, this step of the ehcitation process was not fully applied. 

PAGE 105 



CHAPTER 4: AN INTENT-DRIVEN APPROACH 

4.7 SUMMARY 

A better understanding and categorisation of Feature-based Designer's Intent 

(FbDI's) meaning within a feature-based CAD system is a necessary step to 

foresee how feature reasoning could be embedded into future Intelligent CAD 

systems. Nonetheless, the feature reasoning process at this level is a complex 

and difficult matter. 

The main objective of this chapter was to distinguish and separate the 

geometrical, factual and intentional feature-based data from its use and 

mterpretation by an applicatJ.on. In doing so, the complex intent-driven 

engineering reasoning is reduced to a more atomic level. In addition, because 

FbDI' s are then considered as separate entities, it is easier for an application to 

store, manipulate and reuse this information. It can also be explicitly and 

consciously assigned to the design (through a d1rect instantiation or confirmed 

automatic recognition). 

The taxonomy helps developers to dev1se feature-based modelling systems that 

are aware of how FbDI' s are captured and represented through the feature 

concept. It is sufficiently extensive to offer an insight to help obtain a minimal 

set of designer's intents for a specific implementation via a proper 

"mtenturization" validation. 

As features are high-level abstract geometrical entities, they imply multi-level 

representation and reasoning that should be emphasised for efficiency and 

expressiveness (Marefat93b ). FbDI' s presented here help to maintain an 

abstract and intermediate-level (not as high as the functional conceptual design 

level and not as low as the geometric detailing design level) vocabulary that 

feature-based modelling requires and concur to achieve one of the objectives 

of this research. 

PAGE106 



/ 

5. FEATURE-BASED INTERACTION 

Feature interactions are innate to feature-based modelling and 

pose a difficulty in representation and manipulation for 

geometric design. This chapter presents a formal and 

structured geometric spatial feature interaction identification 

method alongside a broad multi-level classification. Initially, 

various feature interaction definitwns and classifications are 

surveyed. It was observed that various partwl proposals for a 

feature interaction classification have been made, especially by 

research involved with the feature recognition approach, but 

without a general framework. The classification herein 

encompasses existing feature interaction cases found in the 

literature and defines a smgular framework that leads to a 

general classification structure. 

5.1 THE NEED FOR A BROAD COVERAGE 

The use of meaningful entitles at an mtermediate-level of description such as 

features and Feature-based Designer's Intents (FbDI's) suggests the need for 

mtermec.hate-level ways to estabhsh the interactions within the Feature-based 

Modelling (FBM) context (not as low as geometrical mteractions, such as 

mterseclion between a plane face and another, and not as high as abstract 

interactions such as a keyway preventing a cyhndncal mlet from rotatmg). 

Feature interactions occur when features cannot be considered in isolation 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

within the model because some meaningful and significant influence 1s exerted 

among them (e.g. for manufacturing engineering purposes). 

A lack of attention to formalising the concept and classification of feature 

interaction can be seen in currently available design-by-features (DbF) systems 

even though this 1s a well-known, important and active issue of research. 

Interactions between features are at the heart of any FBM environment because 

"they are directly and inevitably produced while manipulating the model" 

(Bidarra93). Besides, intended interferences are common practice in 

engineering and can be found for example in tolerances, assembly 

relationships or when assigning d1stnbutton patterns of features (Zhang93). 

Feature interactions have been studied (V ancza93) with particular interest in 

their effects on the planning capabilities of a CAPP FBM system. A test part 

containing various identified feature interaction cases has even been suggested 

as a resource to analyse how a CAPP FBM system would cope with them 

because, "feature interactions are the cause of some of the most serious 

problems in the development of generative computer-aided process planning 

systems" (Mi1193, see also section 9.11). 

Feature interaction is a major obstacle for DbF systems and some systems 

simply disallow any combination that potentially creates a physically 

unrealisable feature. If combmattons are allowed then appropriate feature

recognition (FeR) functions are required (Lim95). 

Feature interactions are important for detennining process sequences and 

sometimes the processes themselves (Anderson90, Vancza93, Tseng94, 

Regli96) and it has been churned that the study of feature interactions is 

especially useful for feature validation (Allada95). 

Therefore, feature interaction urgently needs to be further investigated, 

precisely defined and established with a comprehensive coverage. This chapter 

presents a formal and comprehensive feature interaction identification and 

classification methodology. It aims to apply an entity ellcitation process and 

thus obtain a classification and taxonomy of feature mteractions. 

PAGE 108 



CHAPTER 5' FEATURE-BASED INTERACTIONS 

A common-sense feature interaction definition is established and a 

dJ.fferentiation between this term and related ones found in the literature within 

the prismatic DbF systems context IS presented. Also, the classification and 

taxonomy presented here will help differentiate feature interactJon cases from 

their corresponding interpretation and use by an application, which has created 

some confusion with the FbDI concept. Feature interaction classificatJons are 

surveyed and placed into a simple and unified framework that is mdependent 

and unbiased in its interpretation and application. The classificatJon 

framework is also an identification methodology based on Boolean operators. 

It is then shown that this framework can be consistently applied at various 

levels of the feature-based representation to produce a hierarchical 

classification for all feature interaction cases. 

5.2 TERMINOLOGY 

Allada and Amand (1995) distinguished between feature (spatial) relations 

and interactions. The former were argued to be non-overlappmg Situations 

while the later alter the feature's internal (volumetric and surface) geometric 

representation. However, more often both relation and interaction 

classifications present touching and/or adjacency and are based on geometric 

reasoning. This indicates that these two classifications could be based on the 

same reasoning and within a unified framework. 

For the purpose of this research, feature mteraction is defined as a mutual 

action or influence that exists between features (Collins87). This definition 

stresses that an interaction occurs when features cannot be considered isolated 

within the model and thus, could occur between volumetric overlapping 

features as well as between non-overlapping and even non-contacting features. 

Both interaction cases have importance for engineenng the component. For 

instance, features that are volumetrJcally separate may mfluence each other 

due to a proximity AOI. On the other hand, if two feature volumes intersect 

their morphological functional FbDI's could have been compromised. 

PAGE 109 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

Nevertheless, some confusion exists because the term interference is also used 

in the literature to mean interaction, although It is frequently associated merely 

with the volumetric overlapping cases of feature interaction. Interference has 

sometimes been used to refer to interactions as a whole because it represents 

one example of a very important feature interaction case With direct impact on 

manufacturing decisions. Some authors, for example, would claim that 

interaction Implies intersection between the entities of a feature (Shal!90, 

S!lva90, Bidarra93, Tseng94, Martino94a, Gadh95b, Suh95b). 

It is understood here that, in fact, interferences are special cases of feature 

interactions where destructive influences occur and possibly lead to a 

redundancy or loss of the initial properties of a feature or its associated 

volumetric intentwns. 

The terms interrelation and relationship have also been used in the literature 

to actually mean what is here considered to be special cases of feature 

interaction. Therefore, some confusion can arise between FbDI relationships 

and feature interaction relationships which the followmg sections help clarify. 

The common-sense definition of the feature interaction term adopted in this 

research, and defined above, encompasses all special cases above and this 

definition should be regarded as such hereafter. Geometric spatial feature 

interaction is based on geometric reasoning for determination and uses 

volumes, surfaces, dimensions and parameters. 

5.3 RELATED WORK ON FEATURE INTERACTION 

Feature interaction is an active and important issue but has pnncipally been 

explored by researchers who are involved with FeR systems. It is considered as 

a challenge as It has been claimed that the number of features may be finite but 

features resulting from their interactions are mfinite (Kumara94, Tseng94, 

Allada95, Gadh95b). A consequence is that no general approach to recognise 

all interactions is yet known (Tseng94, Allada95). 

PAGE 110 



CHAPTER 5 FEATURE-BASED INTERACTIONS 

It could be useful to both DbF and FeR systems to Identify interaction cases 

before executing them to produce a set of new features. fu this way, extra 

information is captured that might be significant for subsequent operations and 

reasoning. 

5.3.1 TYPES OF FEATURE INTERACTIONS 

Feature interactions m the literature contemplate many different aspects such 

as: 

• Feature-to-stock interactions, which happen when the effects of adding a 

feature onto an existing part's body are analysed (Zhang93, Pemg97b ). 

• Feature-to-manufacturing constraint interactions, which happen when 

features are analysed against their manufacturing constraints such as those 

interactions between form features and fixtures, datums, (one or multiple) 

setups or tolerances (Hayes89, Young93). 

• Feature-to-feature interactions among features from different 

representation spaces, which happen when the interaction is analysed 

depending on the meaning and effects of a feature perceived from different 

modelling VIewpoints. For instance, interaction analysis between form 

features and machining features, or functional features and mouldability 

features (Lee94). These interactions support the analysis and trade-off 

negotiation process between chfferent feature-based perspectives of the 

model. 

• Life-cycle mteractions, which happen m a multi-purpose FBM system 

between features in different application areas of the product's life-cycle 

(Regh96). This includes relationships between features at the plan-level 

(mostly within individual components) such as precedence, accessibility 

and tolerance constraints; at the production-level (on multiple-components 

or across multiple manufacturing processes) such as scheduling 

constraints; and throughout the product's life-cycle such as when 

PAGE 111 



CHAPTER 5" FEATURE·BASED INTERACTIONS 

manufacturing constraints influence features that impact the part's 

maintainab!lity and disposal. 

• Explicit or implicit feature-to-feature interactions within the same 

representation space. Explicit interacl!ons are established categorically by 

the designer (e.g. geometric tolerances) while implicit interactions are 

calculated by the system (e.g. "obstrucl!on" and "proximity", Mi1193). 

Implicit interactions are considered difficult as they lack a universal 

definition. 

• Spatial feature-tojeature interactions on one component within the same 

representation space. These identify how features are spaually related to 

other surrounding features in the same part (partially considered by 

Regli96). Many other authors have proposed sub-sets of feature interaction 

for this domain, but with emphasis on the impact on manufacturing 

applications (Pratt88, Gomes9l, Su94). 

• Spatial feature-tojeature interactions of features among various 

components, which specify mating conditions for assembly purposes (also 

called assembly features). 

5.3.2 SOME FEATURE INTERACTION CLASSIFICATIONS 

Some feature interactiOn classification proposals are briefly presented followed 

by a discussion of their drawbacks. It should be noted that the use of different 

terms for feature interaction are shown underlmed 

As features have a volumetric mtention (see section 3.5.2), feature volumes 

(FV's) have been used as the means by which feature interactions are 

determined. For mstance, Su and colleagues (Su94) have attempted to solve 

feature interaction problems which were classified into two types of 

volumetric interference: 

• overlap which happens when there IS a non-null volume intersection; 

PAGE 112 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

• combination (also called compound features by Pratt88), wluch happens 

when features can be decomposed into a collection of simple features. 

Alternatively, a feature interaction classification based exclusively on a 

feature's nature (Its additive or subtractive character) has been proposed and 

used as an important element of a solid modelling scheme for representing 

features (Gomes91, Kraker95) and was considered the most promising, 

powerful and yet simple basis for a sound definition of feature interactions 

(Bidarra96). 

Regli and Pratt (1996) divided spatial feature interactions into interference, 

adjacency and remote interactions. However, no formal identification 

procedure was given, a mixture of geometrical elements was found and the 

examples did not help understanding: interference interactions were defined as 

havmg "some volume shared by the two features", but "gripping features" 

sharing "some common area" were given as an example. 

Pure boundary implementations of features have also been used as the 

foundation for feature interaction classifications. For instance, a fast 

interaction identification and classificatiOn method based on polyhedral 

features was devised by Talwar and Manoochehri (1994), but was dependent 

on the internal B-rep scheme and had separate approaches for concave and 

convex features. 

Some interaction classifications exclusively use feature faces (also called "sub

features" or "pmrutlve features", Anderson90) as an internal representation 

technique (Silva90, Srikantappa94) as well as an aid for feature recognition 

(Tseng94, Krunara94, Shali94b) and editing (Kim93, Suh95b). Some 

interactions are between faces of different features and others between faces 

within the same feature. 

Anderson and Chang ( 1990) considered that there are two critical feature 

(spatial) relationship types for CAPP applications: 

PAGE 113 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

• Nesting, classified as at the bottom and at the side (Figure 5-1), which happens 

when a contact-type relationship between two features exists and one feature 

opens mto another. Nesting is a special case of a touching spatial feature 

interaction relationship when one feature's face is real and the other feature's 

face is virtual so that the former is contained within the latter. 

• Intersection, which was classified as between features of "the same type" and 

of "different types" because of manufacturing importance (Figure 5-3). 

Nesting is concerned with situations of the touching of features' faces while 

intersecuon IS concerned with the type of the features involved (and implicitly 

with their volumetric intentions). This nuxture of geometnc elements of 

different types and dimensionality (features and faces) within the same 

classification framework emphasises that many applications require the 

classification to contemplate different levels of mteractions. Only binary 

geometric relationships were considered and non-contacting interactions were 

ignored. 

Figure 5-1: Anderson's nesting at the bottom Interaction Case. 

It can be inferred that nesting interactions are, in fact, a process planning 

interpretation of a more geometrically-driven relationslup (touching) helped by 

extra information (face property) and reasoning. Thus, there is an associated 

confusion between the interaction case and its use. 

Figure 5-1 shows a feature-based part where a hole feature is nested at the 

bottom of a slot feature wluch is also nested at the bottom of a step feature. 

Zhang and E!Maraghy (1993) classified interferences into two categories: 

PAGE 114 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

• Collision, when a machining feature volume intersects the part generating 

non-functional features, unwanted geometry or non-standard topology 

(F1gure 5-3). 

• Cover, where even though there is no common volume between the part 

and the feature, an interference may occur (such as when a protrusion 

covers a depression feature partly or completely) thus generating 

inaccessible covered features (Figure 5-5). 

Zhang also used a complementary set of criteria at the face level for checking 

the validity of an operation and also claimed that an interference could be valid 

in one application but invalid in others. 

Similarly, Shali' s (1990) classification is based on the effects that the feature 

interaction phenomena could have on the model: 

• a feature could be made non-functional. 

• feature (standard generic shapes) could generate non-generic shapes. 

• a feature could have its parameters rendered obsolete (see Figure 5-8). 

• non-standard topologies could arise (see Figure 5-3). 

• a feature could be deleted by another (Figure 5-6). 

Bidarra and colleagues (Bidarra93, Bidarra94, Bidarra96) have presented a 

taxonomy for the feature interaction phenomenon. The classification is based 

on the functional (topological and geometrical) and technological meaning of 

the interaction: 

• Topological. The designer's intent is preserved and an individual feature's 

parameters maintained, despite the feature volumes overlapping. Later 

work subdivided this into splitting (Figure 5-3) and disconnection 

interactions (F1gure 5-2). 

PAGE 115 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

Figure 5-2: Bidarra's Disconnection Interaction. 

Figure 5-3: Crossing VI Case (Zhang's Collision, Bidarra's Splitting 

Interaction, Anderson's "same type" Intersection). 

• Clearance. When a total or partial obstruction of a feature of negative 

nature occurs (Figure 5-4). 

Figure 5-4: Bidarra's Volumetrical Clearance Interaction. 

• Closure. This occurs when access to a feature is closed (F1gure 5-5), and 

can be considered to be an extreme case of the clearance interaction in that 

1t causes total inaccessibility of a feature with negative nature. 

PAGE 116 



CHAPTER 5' FEATURE-BASED INTERACTIONS 

Figure 5-5: Adjoint VI and Inside FI Cases (Zhang's Cover, Bidarra's 

Closure, Anderson's "at the bottom" Nesting Interaction). 

• Absorption. The feature's behaviOur is absorbed by another feature (see 

Figure 5-6). 

Figure 5-6: Bidarra'sAbso17'tion Interaction. 

• Transmutation. The intended semantic behaviour of a feature is destroyed 

by feature manipulation. For example the insertion of a slot may cause 

encroachment on an adjacent slot and give it the behaviour of a through 

slot (Figure 5-7). 

Figure 5-7: Bidarra's Transmutation Interaction Case. 

PAGE 117 



CHAPTER 5' FEATURE-BASED INTERACTIONS 

• Geometric. The feature's geometry is affected without affecting its 

semantic behaviOur (basically parameter-driven manipulations, Figure 5-

8). Manipulating one feature's parameters could change another feature's 

parameters but not its functionality. 

Through-Slot Through-Slot 

.. 
Figure 5-8: Bidarra's Geometric Interaction Case. 

• General. These are interaction cases that do not fit any of the previous 

cases. 

Feature interaction cases and moreover, their associated properties have been 

used to determine how features can be effectively updated (Perng97b) in a 

DSG implementation (with its respective B-rep evaluation). Feature 

interaction cases such as enclosure or intersection (that happen when part or 

all of a feature volume is removed from the component) were identified. 

Interaction properties were defined by considering possible interaction 

scenarios with a third existing feature on the model. Therefore, the editing of a 

feature would require a posstble updating procedure ranging from straight· 

forward addition or deletion of the feature from the representation tree up to a 

complete recalculation or re-revaluation of both the B-rep and the DSG 

depending on these properties. 

PAGE 118 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

5.3.3 A DISCUSSION ON EXISTING CLASSIFICATIONS 

The existing feature interaction classifications, although possibly very efficient 

in some cases, do not comply with any comprehensive classification scheme, 

are oriented towards specific applications and are thus, biased and constrruned 

by their domain. Furthermore, "neighbouring" or "adjacency" of features has 

been considered (Pratt88, Shah90, Lee94) to be of crucial importance for 

applications (such as computing tool approach directions) but neglected in 

most classifications because they are not considered to be interferences 

(Allada95). 

Many classifications mix chfferent types of geometrical data dunng analysis 

(Anderson90, Zhang93, Talwar94) producing a resulting confusion. For 

instance, Talwar and Manoocheehn's classification considered that a feature 

contained by another is in a chfferent class from intersecting features, but this 

contradicts the common-sense understanding of the volumetric intersection 

operation. This mixture problem suggests the need for a classification 

framework that could be applied to vmous levels of geometric information, 

but in a structured and consistent manner. 

Functional technological classifications are prone to have new meanings and 

types of feature mteractions being added (as happened for Bidarra94 and 

Bidarra96) because this type of classification is dependent on the application's 

"understanding" and coverage of the interaction case. Therefore, separating the 

means of defining the case from 1ts meaning and use would be more 

appropriate and therefore more application-independent. 

It can be inferred that spatial feature interactions seem to drive other types of 

interactions presented in section 5.3.1, and thus should be as accurate, 

extensive and detailed as possible in order to be used by a great variety of 

applications. This detailed interaction classification should include various 

levels such as the volumetnc and boundary ones. 

PAGE 119 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

The aspects presented above suggest that there is a need to keep interaction 

identification (calculation and classification) and its semantics (use, reactton or 

reasoning) as separate processes because of: 

• the distinction between spatial feature interactions and other types of 

interactiOns or relations (Allada95, Regh96); 

• the ever growing or functional/technological interpretation (Shah90, 

Bidarra94, Bidarra96) of the interaction phenomena; 

• the widespread use of feature interaction cases to identify application

dependent uses and (Anderson90); 

• the fact that different applications could have different interpretations, 

valid or invalid, for the same feature interaction (Shah90, Zhang93). 

The binding of the interaction case to a specific semantic should be a 

subsequent reasoning dependent on the application so that information 

concerning the designer, the product, standards with which to comply, 

manufacturing processes, etc. can be then considered. 

From the discussion above, it can be seen that feature interaction classification 

should: 

• consider a broad spectrum, including adjacency and remote cases. 

• avoid the mixing of geometric entities but consider all different levels. 

• have a unified framework able to be applied to all levels and, 

• be independent of the GSM and indifferent to concave and convex 

features. 

This chapter presents a classification framework to identify spahal feature 

interactions in one component within the same feature representation space 

and aims to fulfil the above criteria. 

PAGE120 



CHAPTER 5. FEATURE-BASED INTERACTIONS 

The variety of classifications and mterpretations presented above not only 

shows how non-standardised this topic is, but also shows how important and 

how widespread the application of featl!re mteraction identification and 

classification is. 

5.4 THE CLASSIFICATION FRAMEWORK 

The idea is to have a basic classification framework between any two entities 

(Figure 5-9) and reproduce it at different levels using the same principle and 

identification procedures. Simple Boolean expressions are used to identify 

each category. 

The entities used in the framework are presented first, details on how the 

identification procedure works, and the semantics, categories and levels follow 

and the overall classification structl!re is presented at the end of the chapter 

(Figure 5-13). 

(A, B) 
Ent1t1es 

Figure 5-9: The Basic Interaction Classification Framework. 

5.4.1 ENTITIES AND LEVELS 

The analysis considers a pair of elements at a time, called the joint A and B, 

from a specific entity set (L) with a relative level (I). This is denoted by (A, B) 

E I: I. 

PAGE121 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

The classification is made according to the results of operations on the joint. 

Table 1 exemplifies entity sets at various levels with their relative level. It also 

exemplifies possible sources of respective entities. 

The classification scheme is applied to three levels of interaction: volumetric 

(VI), boundary (BI) and facial (FI). Similarly to FA V, mentioned earlier, FAB 

is defined as the Feature's Associated Boundary (closed set of boundaries) and 

FAS as the Feature's Associated Surfaces (inchvidual faces of the FAB). It has 

already been shown that many applications need to be able to identify the 

interaction between features and their components at all of these levels. The 

framework, however, is consistent and comprehensive for all levels. 

Relative level (I) is a term used here only to clarify and to distinguish between 

entities with respect to their relative complexity and comparative dimensional 

representation but no mathematical meaning or relationship is used or implied. 

FAB 

FAS ··· 

NULL 

Possible Source 
CSG representation 

Boundary 
evaluation of CSG 

Surfaces of 
aB-re • 

Degenerate 
Result 

Degenerate 
ReSult 

Absence of Result 

Table 1: Entity Sets and Examples of Members. 

5.4.2 QUERIES TO THE UNDERLYING GSM 

Two Boolean operators are used to make enquiries to the geometric solid 

modeller (GSM): Non-regularised Boolean intersection (represented as 11) and 

regularised Boolean intersection (represented as 11*). Boolean intersection 

operations are commonly available in GSM CAD systems and can be applied 

to volumes, closed boundaries or even faces. These operators are used to 

obtain C and D which are the respective results of the intersection operations 
PAGE122 



CHAPTERS· FEATURE·BASED INTERACTIONS 

on A and B for a particular "L1
• Thus, the operations performed by the GSM 

and the results used to classify and sub-classify interactions are: 

• C = A ()* B, (A, B) e "L1 

• D = A () B, (A, B) e "L1 

Other queries are the set membership tests such as: 

• "which feature does the face F belong to?'', 

• "is the entity X of the same type as entity Y ?", 

• "what is the entity W? (a volume, face, edge or, a vertex)". 

Tills information can be obtained directly from the FBM database because it is 

usually kept as reverse reference pointers from the FBM to entities in the GSM 

data-structure. 

5.4.3 THE IDENTIFICATION PROCESS 

5.4.3. 1 CONNECTED OR DISCONNECTED ? 

According to the result C, interacting entities can be classified into two types: 

connected and disconnected. 

• Connected interacting cases occur when C is not NULL. The word 

"connected" is chosen to emphasise that the connection between entities will 

only occur tf an enlity of the same relative level as the inputs is used to 

establish the connection (and the same can be said of the regularised Boolean 

intersection). 

• Disconnected entities occur when C is NULL, which means that there is no 

relationship entity of the same relative level as a connection between A and B. 

PAGE123 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

Connected and disconnected are sub-classified by analysing the geometric 

result D, as described in the following sections. 

5.4.3.2 SUB-CLASSIFICATION OF CONNECTED ENTITIES 

Connected entities are sub-classified into conjoint (coincident) and subjoint 

( overlappmg) interactions. 

Conjoint connected cases are those where one entity is completely 

supenmposed or inserted mto another because the output of the Boolean 

operation is one of the original entities (C =A or C =B). Conjoint interaction 

occurs because the output coincides with one or both inputs. Conjoint cases 

can be further divided into: 

• Cases where the inputs A and B exactly match each other (C = A and C = 

B, which means that A and B are the same). 

• Where one entity is completely inside the other (C = A or C = B but, A * 
B or simply, if they are conJoint connected but do not match). 

Subjoint connected cases (the prefix "sub" when added to nouns refers to an 

entity, C, that is part of a larger one, A or B, and, in this case, of the same 

relative level), also called overlapping, occur when complex non-standard 

topologies arise. Such interaction could not affect the entity meaning itself but 

could have a severe impact on downstream applications. 

For instance, if subjoint connected features (Figure 5-3) are not identified and 

represented properly they will result in redundant machining operations if they 

have the same nature. SubJomt connected cases can be sub-classified into: 

• Enter, when one entity's end is completely inserted into another entity and 

a projection of that feature face is inserted on the face it is being projected 

onto (see Figure 5-10). An entity's end is of lower relative level than the 

entity itself. For instance, a featl!re's end (1=5) is a face (1=3), in a similar 

way that an edge's end (1=2) is a vertex (1=1). 

PAGE124 

• 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

• Cross, when neither end of an entity IS inside the other (at the same 

relative level) and the ends have projections on different sides of the other 

featl!re and is inserted on the face It is bemg projected onto. 

Figure 5-10: Feature's End Face and its Projection. 

Figure 5-10 shows two features, a step and a through slot, combined together 

in a way to result in the step crossing the through slot, regardless of which 

featl!re is added first. The shaded faces are the projection of the end faces of 

the step onto faces of the through slot. 

• A range of other cases that can be identified for pragmatic purposes but are 

left here as a general sub-class for simplicity. 

5.4.3.3 SUB-CLASSIFICATION OF DISCONNECTED ENTITIES 

Disconnected interacting cases (partially considered by Shah90) occur when 

C, the regularised Boolean intersection result, is NULL. Additionally, D 

happens to be an entity of an inferior relative level. Two situations can occur: 

adjoint (adjacent) and disjoint (separate) disconnected interaction. 

Disjoint disconnected interaction (the prefix "dis" usually describes the 

opposite state of something, in this case, the joint) occurs when there is no 

intersection whatsoever, C and D are NULL, and features are considered 

separate. Disjoint cases are be sub-classified as: 

• Far when the entities are "really" distant from each other (the distance 

between them is greater than a specified value). 

PAGE125 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

• Near when the entities, although not touching, are close to each other and 

have no other entity in-between. 

Conversely, adjoint (this word means next to each other, adjacent, touching) 

disconnected cases happen when D is not NULL and the input entities "share 

a topological entity'' (Shah90, Pratt88) oflower relative level, the result D (see 

Figure 5-11 ). 

(a) (b) 

Figure 5-11: Adjoint FI Causing Features to Share a Face or an Edge. 

5.4.4 THE BASIC FRAMEWORK 

The framework that uses the entities and procedures presented above IS shown 

m detail in Figure 5-12 and needs to be applied to the three different levels of 

interest to obtain the complete classification (see sectlon 5.1). 

The Boolean operations and set membership tests mentioned in section 5.4.2 

are reproduced in Figure 5-12 for clarity purposes. Each arc represents a test 

and each box represents either an operation or a status of the interaction. A and 

B are the joint entltles, C and D the results of the operations, m is the relative 

level of D and n is the relative level of the inputs. The bottom part of F1gure 5-

12 indicates how this classification framework is related to the levels of 

interest and presents the few exceptions or special meanings (in brackets). 

PAGE126 



CHAPTER 5' FEATURE-BASED INTERACTIONS 

(A, B)e En 
C=An*B 
D=AnB 

C=NULV Ce En 
De I:m,m<n 

Disconnected Connected 
Entities Entitles 

O<m</~m=O C=AorB/~=PartofAo 
but, not A nor 

rB 
B 

Adjoint (adjacent) Disjoint Conjoint (coincide) Sub joint 
If VI seeFI (separate) If VI see BI (overlap) 

\ \ I I 
:E I VS. Adjoint Disjoint Conjoint Sub joint 

Interaction (Adjacent) (Separate) (Coincide) (Overlap) 

cases Result Result Result Result 

Volumetnc => -Near => -Enter 
Interaction FI -Far BI -Cross 
(VI, I= 5) cases cases -General 

Boundary => -Near 
Interaction Fl -Far -Match N/A_ 
(BI, I= 4) cases (Contain) 

Facial -Match -Enter 
Interaction (Liimt) -Far -Inside -Cross 
(FI, I= 3) -General 

Figure 5-12: The Basic Framework for Classifying Feature Interactions. 

The sub-cases that occur at each leaf of the classification tree are also shown 

in the table at the bottom of Figure 5-12. Some of these are links or pointers to 

a lower level of the interaction classification. These are identified in the table 

by the symbol "=>" pointing to the lower interaction level. The arrows/links 

indicate that the classification can go deeper (if required) in order to 

distingwsh between cases that otherwise would be treated equally. 

PAGE127 



CHAPTER 5: FEATURE-BASED INTERACTIONS 

5.4.5 THE COMPLETE CLASSIFICATION TREE 

To apply the framework to the classification of volumetric interactions (VI), 

the inputs are FV's and the output for a connected VI feature interaction 

should be a valid GSM volume (solid). 

Another way of presenting Figure 5-12 is shown in Figure 5-13 where the 

following situations should be noted: 

• if conjoint connected cases occur at the VI level then the same structure 

can be applied to obtain further details but at the boundary level (BI) 

which, in its turn, will lead to a FI analysis if an adjoint BI interaction case 

occurs. 

• if adjoint disconnected VI features occur then various interaction cases 

could be identified with the same organisational structure as the VI cases, 

but at the face level (FI) and these are further detailed in Figure 5-13. 

Therefore, adJoint VI or BI cases are linked to many FI interaction 

relationships as required for each face of the feature's realisation. 

• the framework in Figure 5-12 is repeated four times at three different 

levels throughout the taxonomy of interaction cases presented in Figure 5-

13. 

5.4.6 SPECIAL MEANINGS AND A FEW EXCEPTIONS 

A few special meanmgs and exceptions have been found when applying the 

framework to the three levels (these are shown in Figure 5-12 as bracketed· 

words and as boxes of discontinuous lines in Figure 5-13): 

An ad joint FI case is called a limit because it means that one feature is actually 

being limited by another. 

Disjoint BI cases are called contained because they Identify that one FV IS 

totally inserted into another's FV and they do not touch from the inside. 

PAGE128 



Disconnected 
Faces 

Ad joint 
Faces 

see Figure 5-11 

(A, B) E FAV 
VI Cases 

Disconnected 
Features 

Disjoint 
Features 

(external) near 
(external) far 

Conjoint 
Faces 

Connected 
Faces 

(external) match 
Inside 
outside 

Sub joint 
Faces 

enter 
cross 
general 

Disconnected 
Faces 

I ;;;;;/olnt] 
Faces -----· 

see Figure s-11 

Ad joint 
Boundaries 

Disconnected 
Boundaries 

L_llmlt 

Connected 
Faces 

1
- --] Subjolnt 

... ~';'.:.~~ .... 

CHAPTER 5· FEATURE-BASED INTERACTIONS 

Connected 
Features 

Subjolnt 
Features 

enter 
cross 
general 

Connected 
Boundaries 

contain 
(Internal) near/far 

[---- -g Subjolnt 

.. !~~~~~!.~ 

Figure 5-13: A Taxonomy of Feature Interaction Cases. 

PAGE 129 



CHAPTER 5· FEATURE·BASED INTERACTIONS 

The interactions presented are not always commutative and thus the interaction 

relationships have an active or passive response accordmg to which input entity 

(A or B) is the reference. Hence, active or passive interactions mclude crossing 

or crossed, inside or outside and limiting or limited. The exceptions to the 

active and passive response are the commutative interactions: match, near and 

far. 

BI cases are considered only for conjoint VI cases and this fact affects the 

meaning of BI sub-cases: 

• Disjoint BI cases mean that a feature that is inserted mto another's FV does 

not have external access through the former. It must have an interaction 

with another feature in order to guarantee that it has "accessibility'' to be 

machmed (for example). 

• FAB's are considered to be closed set of faces, so no two conjoint VI 

features would have a subjoint BI case (the intersection operation would 

return an open boundary) thus, it is marked in the table of Figure 5-12 as 

Non-Applicable (N/A). 

Disjoint FI cases in fact do not happen at all (if derived from BI cases) or as far 

as this research is concerned do not have useful meaning (if derived from an 

ad joint VI case). 

PAGE130 



CHAPTER 5· FEATURE-BASED INTERACTIONS 

5.5 SUMMARY 

A new feature interaction class1fication framework has been presented that 

allows a comprehensive and unified feature interaction taxonomy structure to 

be conceived. 

The classification framework has many advantages such as accuracy (even 

using Bounding Box data), power (identifies complex cases), elegance (easy to 

understand), consistency (has a formally defined structure that repeats itselt), 

multi-level (works at volumetnc, boundary and face levels) and simplicity 

(uses s1mple GSM-based operators and t~sts). It requires almost no knowledge 

of the intricacies of GSM representation schemes, although some efficiency is 

lost because of this. 

The classification and identification methodology presented here led to a 

taxonomy of Feature Interaction cases. It should be stressed that feature 

interactions have an interpretation in terms of FbDI' s that are therefore 

application-specific but they were presented here separately. Thus, the 

validatiOn reasoning mechanism will also be responsible for promoting the 

binding of these two elements. 

PAGE131 



6. OPERATING FEATURE MODELS 

Freedom of manipulation is an intrinsic advantage of using a 

conventional CAD system and it is taken for granted. For 

Feature-based CAD systems however, even the most basic 

manipulation, such as "adding" a feature to a model, is 

capable of disrupting the validity of a representation. Invalid 

representations could compromise the usefulness of any 

analysis subsequently carried out on the model. Thus 

identifying means to operate feature-based models and the 

effects that operations have on the validity of the model is a 

necessity for Feature-based CAD systems. 

6.1 OPERATIONS AND VALIDATION 

The importance of feature operations as a research issue is that it is closely 

related to feature validation. In applying feature operators the most challenging 

task is to handle the interactions between features (Klm96) and the consequent 

validity of the model. 

The importance of feature operations to feature model validation have been 

stressed by the suggestion of using only "appropriate" valid operations which 

are responsible for guaranteeing valid output models (Pratt85, Case93c, 

Zhang93, Kim96). In addition, to creation and deletion, other operations such 

as interrogation have also been identified as important (Pratt88). 



CHAPTER 6· OPERATING FEATURE MODELS 

a) The semantics of editing a procedural constraint-driven feature-based 

model have been studied (Chen95) and editing operations have been 

classified as: 

• inserting or deleting an entire feature; 

• changing feature attributes, e.g. from a blind hole to a through hole; 

• mod!fymg dimension values and/or placements; 

• changing the dimensioning schema; 

• changing the feature shape defimtion, e.g. changing the cross

section 

The first four editing operations were analysed by extracting common 

procedural steps from which these operations can be composed. This 

analysis has shown that editing operations of type (I) are d!fferent from 

editmg operatiOns of types (2), (3) and (4) (Chen95). 

A distinction was made between generated, modifying and datum features. 

Generated features include extruded or revolved (form) features. 

Modifying features add chamfers and rounds to edges, or draft angles to a 

set of faces. Datum features include datum points, axes and planes. 

The reported editing problems occur because the procedural evaluation of 

the model could have, at some stage, a missing reference for its evaluation 

(a modifying feature can lose the reference to an edge, depending on 

editing operations on the model). Therefore, an appropriate way of 

"naming" references was proposed to solve the problem and produce a 

more predictable behaviour for an ed!ted model. These ed!tmg problems 

seem to originate from the apparent mixture of entities from different 

levels, i.e. modifying features are, in fact, localised operations on low-level 

entities such as edges, not on high-level entities such as features. 

PAGE133 



CHAPTER 6: OPERATING FEATURE MODELS 

b) Su and associates (Su94, Mayer94) presented a procedure to deal With 

(validate) feature interaction problems. Operations contemplated by the 

interaction resolution method include: undo, decompose, reclassify, 

parameter modification operation, resolution (remove redundant features) 

and modelling operations (union and difference). 

ECTOF (Extended CSG Tree of Features, see section 2.7) is the result of 

the proposed feature recognition process (FeR) where the designer uses 

union and difference Boolean operations to insert features or modify the 

parameters of existing features on the part which is subsequently 

"featurised". 

Some phases of this resolution method were executed as background tasks 

(phases 1 and 3) and others were to be called by the user (phase 2). The 

operations used on the interactiOn resolution seem to be unavrulable as 

normal modelling operations and this suggests a distinction between 

modelling (foreground) and revalidation (background) operations. 

c) Ross1gnac (1990) studied editmg operations of feature-based solid models 

in terms of the efficiency and representational aspects. The effects of low

level manipulations (such as face extrusion) on the syntactic validation of 

the model were analysed. It was shown that no automated solution exists 

and that human intervention IS necessary to correct the side effects of these 

editing operations. 

To assist the analysis, a rich mixed dimensional vocabulary was defined. It 

was considered a requirement that "this vocabulary must be 'convenient' 

so that validity rules can correspond to high-level operations and so that 

validity rules are simple to formulate and powerful enough to trap common 

design errors". 

It was also claimed that the validity of individual features may not be 

sufficient to assess the validity of a complex part, and sometimes a relation 

between several features is also important". 

PAGE134 



CHAPTER 6· OPERATING FEATURE MODELS 

An interesting separation of internal and external operations was made: 

operations such as editing and even Boolean operations were decomposed 

into combinations of three fundamental steps (or operations): subdivision 

(which splits the intersection of two objects), selection (which associates 

geometry to features) and simplification (wluch performs deletion or 

merging without changing the pointsets). 

d) Anderson and Chang (1990) studied geometric reasoning for process 

planning (such as approach and feed directions, process selection, tool 

selection and operations sequencing). Features were considered 

abstractions of manufacturing processes. The operations of merging and 

splitting were presented as manufacturing optilnisations (e.g. for setup 

planning). 

Splitting was suggested to decompose an unmachinable feature into 

subfeatures wluch can be machined separately. Merging was said to group 

features machinable in one fixturing setting. However, a major d!fficulty in 

merging was reported in that if features of different types were allowed to 

merge, the merged feature could be extremely complex and the benefits of 

merging lost. 

It is considered in this research that these two operations are not only 

closely related to manufacturing analysis but to the concept of features 

themselves and therefore, both are included for conceptual feature-based 

representation validation and not for manufacturing analysis. 

e) The two most common operations (add and delete) were detruled by Zhang 

and colleagues (Zhang93, E1Maraghy93b) as an attempt to carry out the 

validation analysis in their system. 

An addition operation tnggers the following analysis: 

• identify If an unwanted interaction has occurred (this includes only 

colliswns); 

PAGE135 



CHAPTER 6' OPERATING FEATURE MODELS 

• check if the connectivity constraints of the target feature allow it to 

be related to its parent feature; 

• test that the feature is not deletmg (covering) another feature, 

making it obsolete. 

A deletion operation tnggers the following analysis: 

• identify if features become independent of any parent; 

• check if obsolete or non-functional features are produced; 

• test if the feature's compatibility with the geometric model was 

affected; 

• mvestigate if any other inadvertent modification has occurred. 

In existing FBM CAD systems the range and number of operators varies 

greatly depending on the flexibility the system wishes to offer to the designer. 

These operations have been dictated mainly by the ability to Implement a 

specific operation rather than on an analysis of what operators belong to the 

designer's vocabulary and therefore should be available in the systems. 

Furthermore, influences from GSM operations have been observed. 

The remaining sections of this chapter describe the application of the 

elicitation process to obtain a classification and taxonomy of operations and a 

reasonably small set of operations for a DbF conceptual intent-driven 

validation system. However, elicitation criteria are driven only by the 

proposed classification, validation criteria are ignored and the domain is 

limited to CAD/CAM and CAPP FBM systems. 

PAGE136 



CHAPTER 6· OPERATING FEATURE MODELS 

6.2 OPERATIONS CLASSIFICATION 

Three types of operations can be identified: analysis, manipulation and setup. 

6.2.1 ANALYSIS OPERATIONS 

Analysis operations query about the elements of the model for specific 

relationships (among features, FbDI's or GSM elements): 

• Queries to the FbDI' s include enquiries on their existence and status 

(active, inactive or dormant). 

• The identification of feature mteraction scenarios (that is all the 

interactions at a given moment) can be translated into lower-level atomic 

(Boolean) GSM analysis operations and set membership queries. 

• Another analysis operation with some interest in the literature (see section 

3.1.5 and section 3.1.9) is a test label wluch analyses if a given feature can 

be verified for all properties associated with a feature of that particular type 

(i.e. label). 

6.2.2 MANIPULATION OPERATIONS 

Manipulation operations change the representation (implicit and explicit data) 

in some way. The most frequent manipulation operations are add and delete 

but many others can be identified. However, a distinction can be made 

between modelling, editing and revalidation operations: 

• Modelling operations are principally responsible for creating the model. 

• Editing operations are responsible for manipulating and altering the 

characteristics of an existing feature-based model. They have also been 

associated with redesigning a part and it has been considered that 

modelling feature-based models is a complicated matter from the 

PAGE 137 



CHAPTER 6' OPERATING FEATURE MODELS 

validation point-of-view and editing the model complicates it further 

(Chen95). 

• Revalidation operations are responsible for manipulating invalid feature

based models (with the objective of converting them to valid models) 

while the former two operations manipulate already valid representations 

but potentially leave the model in an invalid state. 

6.2.3 SETUP OPERATIONS 

The operation of definmg a (new) feature is neither a query and nor is it a 

manipulation operation. It is considered to be a setup operation (similar to 

defining the metric system; the chmens10nal limits of the drawing and the 

palette of operations to be used in a CAD session). It requires great effort in 

understanding the chosen system and in prograrmning the new feature (using 

either a low-level language like "C" or any other high-level language provided 

by the system). 

Similarly, grouping features to compose a "macro" feature or for any other 

purpose is also considered to be a setup operation. It should be noted that 

compound features are different from macro features. The former is associated 

with an application meaning (such as when a T-slot is defined due to the 

avrulability of a specific tool). The later is an arrangement of, otherwise 

unrelated, features for manipulation or other purposes. 

If a "macro" feature becomes closely associated with an application it should 

be promoted to a compound feature and other characteristics established and 

programmed (possibly including its automatic recognition by the system) via a 

define feature operation. 

PAGE138 



.... 

CHAPTER 6" OPERATING FEATURE MODELS 

6.2.4 THE OPERATIONS CLASSIFICATION 

Feature-based operations can be classified into manipulation, analysis and 

setup operations (see Figure 6-1). As can be seen from the figure, Analysis and 

Mampulation operations can be further classified accordmg to the mformation 

type involved in the operation This can be FbDI, GSM or FBM entitles . 

Fealure-~ase~ 

O~eralions C~araclerisalion 

I 

I I 

Analrsis Mani~ulalion Selu~ 

I 
I I I I I 

FbDI GSM FBM E~il Mo~ellin~ Revali~alion 

I 
_L_L ,L ,- ,L ,L rL- ,L 
HDI GSM FBM F~DI GSM FBM F~DI GSM FBM 
- '-- '--- L- '-- L- '-- '--- '--

Figure 6-1: The Classification of Feature-based Operations. 

6.3 MANIPULATION OPERATIONS 

6.3.1 MODELLING OPERATIONS 

The followmg are modelhng operatiOns that can be used in a conceptual 

intent-driven validation DbF system: 

• Add feature, adds a new feature from a library to the implicit 

representation database with user-defined parameters and produces a 

predefined shape on the stock-material. The feature label and parameters 

such as sizes, location and orientation have to be specified. 

PAGE139 



CHAPTER 6: OPERATING FEATURE MODELS 

• If a parent-child AOI is part of the hierarchical feature-based 

representation, a select parent feature operation is associated with the add 

feature operation and IS performed alongside the add feature operation. 

• As an alternative to defining feature parameters, a derive parameter 

operation can be carried out, once a parent feature is selected. Similarly, an 

operation for the attachment of properties or attribute values can be 

performed (Pratt88). 

• Delete feature, removes a feature from the feature-based implicit 

representation database as well as removmg its influence on the stock's 

volume and surface. 

• Add and delete intent modelling operations create or remove an intent 

relationship between features, similar to add and delete feature. Features as 

well as FbDI's are maintained m the model as lists of active, inactive and 

intentional entities (see section 7.5) that help reasoning after later 

manipulations of the model. 

Auxiliary modelling operations that reflect the trial-and-error design approach 

can also be identified: 

• The Undo operation, returns the model to the status and configuration 

before the last (additiOn or deletion) operation. 

• The Redo operation, recovers the status of the model after the last (add or 

delete) operation. 

In addition, combinations of the previous operations are recognised as 

important. Special attention should be paid to them because, for example, the 

addition of multiple instances of a feature (e.g. add array of features 

operation) in a specified pattern has an associated structural GDI that should 

also be included (add intent). 

PAGE140 



CHAPTER 6· OPERATING FEATURE MODELS 

6.3.2 EDITING OPERATIONS 

6.3.2.1 (HIGH-LEVEL) FBDI/FBM EDITING OPERATIONS 

High-level editmg operations ease the task of manipulating an existmg FBM. 

They include operations such as: 

• Copy and paste feature operations that have been implemented as a 

different way of adding a feature (Zhang93). 

• The change feature operation manipulates feature parameters and has also 

been called modify feature, shrink (stretch) feature's width (length) 

(Perng97a, Marttno94a). It could be achieved via deletion and re

evaluation of the feature with modified parameters (Pratt88). 

• Move feature, which 1s achieved via a translational and/or rotational 

transformation, is also considered a complex topic, particularly from the 

validation point-of-view (Pratt88). 

6.3.2.2 (LOW-LEVEL) GSM EDITING OPERATIONS 

GSM (low-level) editing operations allow the designer to edit a FBM 

representation at the GSM level and therefore allows the editing of its 

constituents such as points, arcs and edges. 

Martmo and colleagues' work (Martino94a, Martino94b) is an example of the 

use of both feature-based modelling and geometric solid modelling operations 

but it was emphasised that the use of the latter can g~ve nse to "degenerated" 

situations in which the existing features no longer have meaning or some of 

their characteristics are changed. It was claimed that this could only be 

corrected through a feature recognition process which not only recognises the 

(sohd) modelling operation in terms of features but also updates the feature 

model according to the effects of the last (geometric) operation. 

Besides the use of GSM Boolean operations, other low-level editing 

operations mclude: 

PAGE 141 



CHAPTER 6 OPERATING FEATURE MODELS 

• Change cross-section or (sweeping) profile (Chen95); 

• Change constituent, such as move vertex, change a straightedge into an arc 

or enlarge a face; 

• Apply chamfer, in the form of add a modifying feature (Chen95); 

• Apply fillet, in the form of make fillet feature (Pemg97b ). 

6.3.3 REVALIDATION OPERATIONS 

In earlier chapters it was made clear that verification in not only an important 

task, but that it is of equal importance and usefulness to be able to operate the 

model when an invalid situation is found. This gives rise to revalidation 

manipulation operations. 

Revalidation operations can be applied automatically, but are usually applied 

m an assisted marmer. Editing operations can produce substantial topological 

changes that require user intervention (Chen95). Revalidation operations have 

even been proposed (Stroud93) as a supposedly general strategy for handlmg 

all types of information in a product model (including B-rep and feature 

models) to maintain the integrity of the data structure. However, It was still 

found necessary to "request a user to venfy if the information is stlll correct" 

after an operation. 

Although delete operations can cause a wound in the model and therefore a 

wound healing strategy should be devised to maintrun the validity of the model 

(Zhang93), it is believed that all manipulation operations, and not only delete 

operations, require subsequent revalidation operations. 

If modellmg and editing manipulation operations are defined without the 

assurance of a valid result then revalidation operations need to be identified as 

a separate set of operations that can be used on request but would preferably be 

applied automatically. 

PAGE142 

- I 



CHAPTER 6· OPERATING FEATURE MODELS 

If, on the other hand, one implements validation via a set of "valid" editing 

and modelling operations that by themselves guarantee a valid result, then 

revalidation operations can be associated with, and indeed embedded Within, 

these operations. Nevertheless, even for this last case it is possible and 

beneficial (e g. for implementation or optimisation reasons) to identify and 

isolate revalidation operations. 

Revalidation operations are listed here regardless of possible previous 

operations. It is recognised though that previous operations can be used as 

clues to a better way of dealmg with invalid models subsequently generated. 

The following are the atomic revalidation operations identified: 

• Add volumetric intention. This revalidation operation is similar to the add 

feature modelling manipulation, but manipulates FV' s that will be later 

identified as a feature (via a proper search label operation). Add volumetric 

intention is usually requested after other revalidation operations such as 

split. 

• Delete volumetric intention. This is similar to the delete feature modelling 

manipulation, but occurs when FV's are of conflicting natures and are 

therefore inactivated. An add intent (VDI) deleted_by operation is required 

when the delete volumetric intention revalidation operation is performed. 

• Make feature obsolete. When a feature's volume has a conjoint VI 

interaction (overlaps completely) with another feature's volume of the 

same nature, then this latter feature is said to have been "obsoleted by" the 

former and thus it is removed from the model but is kept in a dormant or 

intentional status. An add intent (VD I) obsoleted_by operation is requrred 

when the make feature obsolete revalidation operation is performed. 

• Activate feature. Features that were made intentional or inactive in the 

model can become part of the active model again via this revalidation 

operation. The situation that originally caused the dormant feature should 

have been resolved otherwise a possible loop would arise. For instance, 

obsoleted (deleted) features can become actJ.ve and reappear in the model if 

PAGE143 



CHAPTER 6· OPERATING FEATURE MODELS 

the overlapping (deleting) feature is later removed. A delete intent (VD I) 

obsoleted_by (deleted_by) operation is required when the activate feature 

revalidation operation is performed. 

• Split. Divides the FV of a feature against the FV of another one, usually 

producing two or three new "smaller'' FV' s using convex FV' s. The initial 

FV is deleted and the resultmg FV's must be labelled. An add (VD I) intent 

split_into operation should be applied between the inactive FV and the 

newly generated features. This revalidation operation helps correct 

obsolete parameters of the feature. 

• Merge. Combines the volumetric intentions (FV + FN) of two distinct and 

adjomt VI (touching) features producmg a larger feature that needs to be 

properly labelled. The initial volumetric intentiOns are deleted and the 

merged feature is added to the model. An add (VDI) intent mergedJrom 

operation should be created between the inactive FV's and the newly 

merged feature. 

• Labelling is responsible for operating on the feature's parameters at the 

face level and finding a proper meaning for the result- the feature's label. 

Section 3.5.2 presented the labelling VDI and features as being represented 

through a template of face properties (real and virtual faces) - see Figure 

3-9 and Figure 8-19. A proper feature label is obtained by comparing the 

actual status of all feature faces and the available templates in all possible 

orientations. The importance of distinguishing and reasoning with types of 

feature faces has long been considered to have great potential for validity 

analysis (Pratt88). If a feature's face property changes, the new 

configuration can be compared agamst the template and the labelling VDI 

therefore achieved. 

Dealing with features Via template definition, and supposing that 

identifying face properties is a fast and easy task, could give nse to a 

localised feature recognition mechanism. Localised FeR considers only a 

limited amount of informatiOn surrounding the modified feature to perform 

PAGE 144 



CHAPTER 6· OPERATING FEATURE MODELS 

Its task and has been receiving a lot of attention in recent research 

(Laakko93, Martino94a, Su94). Stroud93 said that "using feature 

verification only on modified parts of an object means that feature 

structure maintenance is faster than performing a global re-recogrution of a 

feature structure". 

The labelling revalidation operation consists of three atomic operations: 

• Change face's property to virtual (to_V). 

• Change face's property to real (to_R). 

• Search label on the feature library (find a label considenng the 

pattern of virtual and real face codes) making sure that all possible 

orientations are tested. 

Ultimately, the search label operation is responsible for keeping the 

function-to-shape relationship match of the features in the model, as 

defined by the template of every feature's type. 

• Complement IS the operation that converts a representation that includes 

features With a positive nature into a representation with features only of 

negative nature capable of producing the same final shape on the part. 

Features of negative nature have special significance for machining 

purposes. This conversion can be done by "growing" the stock material 

and then adding negative nature features that generate the original shape. 

The difficulty lies in the multiplicity of alternatives that come from this 

approach (Li90, Perng90, Charnberlain93, Waco94, Tseng94), but it is 

important for feature-based modellers that represent features internally in a 

DSGscheme. 

• Rigid propagation extends the effects of an editing or modelling operation 

to another feature. Propagation is an important and valuable revalidation 

operation that should be carried out or suggested particularly when a 

PAGE145 



CHAPTER 6· OPERATING FEATURE MODELS 

parent-ch1ld or a compound AOI interaction ex1sts between features such 

as counter-bore, parent-child or T-slot. 

Nevertheless, other GDI's (such as concentric and parallel) can require 

such operations. Rigid propagation changes the positioning and orientation 

of features and is much easier to tackle than any non-rigtd geometric 

transformations (e.g. scaling). Rigid propagation is usually associated with 

high-level editing operations. 

• General propagation is required to propagate changes, usually originating 

from low-level editing operations, towards features that hold an intent 

relationship with the feature being edited. The difficulty with general 

propagation (and its difference from the rigid propagation revalidation 

operation) lies in identifying what to propagate. 

For instance, a shrink low-level edit operation on a feature that has a 

nested at the bottom feature would require the latter to be moved in two or 

three directions after having the former had been shrunk. Sometimes, 

another low-level edit operation is required and therefore these operations 

requ1re the designer to fully understand the object and are difficult to 

automate. 

• Add and delete intent are also used as revalidation operations because 

some other revalidation operations can be better specified when the 

addition or deletion of subsidiary intents can be described. 

• Make intent obsolete is another revalidation operation that, similar to make 

feature obsolete, makes an intent become dormant or intentional in the 

model, poss1bly because its related features are either dormant themselves 

or one of them is dormant or inactive. 

• A dual operation of this one is the activate intent which brings the intent 

that was dormant back to a hst of active FbDI' s. 

PAGE146 



status 
existence 

set-membership 
Boolean operations 

tes!_label 
parallel 
perpendicular 

identi~ 
feature interaction 

apply chamfer 
apply fillet 
change profile 
change constituent 

Feature-based 
Operations Characterisation 

move feature add 
copy feature delete 
paste lea tu re 
change parameter 
[stretch, shrink) 

add 
delete 
undo 
redo 
multiple add 
multiple delete 
select parent 
denve parameters 

CHAPTER 6: OPERATING FEATURE MODELS 

make obsolete 

add 
delete 

GSM 

make obsolete 
make active 
split 
merge 
label, to.V, to_R 
complement 
rigid propagation 
general propagation 

Define Feature 
Group Features 

Figure 6-2: The Taxonomy of Feature-based Operations. 

PAGE 147 



CHAPTER 6: OPERATING FEATURE MODELS 

The use of internal operations, such as revalidation operations, has to be 

carefully planned to avoid endless loop Iterations. For instance, systems that 

perform propagation on parent-child constraint-based features are prone to a 

chain reaction problem (E!Maraghy93b). Similarly, internal operations, such as 

rearrangmg a feature-based representation, have also been reported to cause 

endless iteration and thus an undo operation must be automatically issued or 

suggested to the user (Su94). 

Figure 6-2 presents the taxonomy of feature-based operations identified in this 

chapter. 

6.4 A MINIMUM SET OF OPERATIONS 

High-level editing operations have frequently been implemented as 

combinations of add and delete modelling operations because these operations 

seem to suffice for most implementations (Pratt88, Zhang93, Laakko93, Su94, 

Kim96). Even a domain-independent formalism for a feature-based design has 

only formally defined add and delete feature operations because other operators 

were said to be defined through these two (Kim96). 

For instance, the change feature operation is usually implemented as delete 

feature followed by an add (a new modified) feature operation. It is considered 

a complex marupulation because delete operations per se affect children and 

surroundmg features at the same time that these same (child and surrounding) 

features could have been affected by the adchtion of the new feature. 

The advantage of using add and delete modelling operations to implement 

high-level editing operations is that all validity checks and rules defined by the 

modelling operations can be "mhented" by the echting operations (Zhang93). 

Similarly, 1t 1s considered that, alongside to add and delete feature, add and 

delete FbDI comprise a minimum set of modellmg manipulation operations in 

an feature-based intent-driven system. 

PAGE148 



CHAPTER 6· OPERATING FEATURE MODELS 

6.5 SUMMARY 

Instead of defirung operations validation criteria for a particular application, a 

minimum set of operations have been identified. 

Low-level echtmg operations represent the same manipulation freedom usually 

found in conventional and GSM CAD systems but they introduce a complexity 

factor that would require a full implementation of a FeR system inside the DbF 

implementation in order to cope with the variety of resulting features. 

Therefore, for most systems low-level editing operations have been disallowed. 

PAGE149 



7. VALIDITY CONDITIONS 

Validity conditions are the central elements in the conceptual 

feature-based validation framework. They help assess the 

integrity and consistency of other elements/entities already 

described. The analysis has been divided into varzous aspects 

which generated sets of reasonings. These reasonings comprise 

the verification statements that guarantee the valld1ty of the 

model, although this is done via invalidity tests. These 

reasonings and their organisation are presented in this chapter. 

7.1 ORGANISING THE REASONING 

Validity Conditions are the medium by which conceptual feature-based 

representation validation is performed. They are the translation of FbDI' s into 

venfication statements. V alid1ty Conditions are also responsible for the binding 

process of the various elements of a conceptual feature-based validatiOn 

system: features (and their attributes), feature interactions, feature-based 

designer's mtents (FbDI's) and feature operations. This is done in a way to 

express feature semantics as a 3D solid modelling technique and relationships 

With applications. To achieve this, a structural analysis of the reasoning IS 

required. 

a) Prionty or sequencmg can also be found in other feature-based systems that 

are said to capture designer's intent (see Dohmen and colleagues' 

constraint-based systems in section 2.7): different types of constraints are 



CHAPTER 7: VALIDITY CONDITIONS 

used in the same design and in the same view and they are maintained 

through a pre-defined sequence of resolution 

b) Multi-level methods specifically aimed at the validation problem have also 

been suggested in a study of a formalism for feature-based design 

validation (Kim96, see section 2. 7), which defmed model validation 

(divided into syntax, domain, feature and product levels) and functional 

validatiOn. 

c) Local and global validation for ongoing design have also been established 

(Requicha89b, Ross!gnac90) m addition to model and functional validation 

(Kim96). For instance, accessibility analysis is performed when features are 

added to the model (local accessibility) but also another similar and 

complementary analysis is necessary (global accessibility) which can only 

be carried out at a later stage when the model is complete. 

d) Phases are another way to organise the validation method and this has 

already been presented as the resolution of the feature interaction problem 

(Su94); Phase 1 considered volumetric analysis, Phase 2 considered 

labellmg analysis and Phase 3 performed grouping of unresolved 

intersecting features into complex (thereafter resolved) feature sets that 

might have importance for an application. 

Given the above examples of how validation reasomng has been organised in 

related systems it can be assumed that some sort of organisation (sequence, 

hierarchy or prionty) must be devised. 

PAGE 151 



CHAPTER 7: VALIDITY CONDITIONS 

7.2 INVALIDITY TESTS 

A human-based analysis of a feature-based model is usually accomplished by 

searching for invalid situations and therefore much of an engineer's experience 

IS bmlt on the search for mvalidity, rather than validity. Although the spectrum 

of mvalid situations is extremely extensive and application-dependent, it has 

been stated that validity rules must precisely charactense invalid situations 

(Rossignac90). To facilitate the analysis, invalid situations are divided into 

subjects that relate to different areas of expertise such as process planning, 

setup plannmg and manufacturing. Thus, it becomes easier to identify and 

devise tests for invalid situations than to identify and test valid ones, especially 

m the context of abstract elements such as features that have no mathematical 

or well-accepted definition. 

Furthermore, invalidity rather than validity tests are suitable for division into 

sub-cases that correspond to specific remedies - the revalidation operations. 

Therefore, it is pragmatically easier to perform feature-based validation on a 

model representation via invalidity tests. 

Nevertheless, from the point-of-view of logic, if a model fails all invalidity 

tests it can not be considered "completely" valid, but may be thought of as a 

non-invalid model for that specific set of cnteria. On the other hand, because 

no practical distinction can be made between valid and non-invalid models, 

they are considered silDllar in this text and both will be called valid models. 

7.2.1 THE VALIDATION PROCESS 

The following discussiOn presents validation as the binding process of all 

elements detailed in previous chapters. In particular, how invalidity tests and 

revalidation operations work to guarantee a valid model representation output 

is considered. 

PAGE152 



CHAPTER 7: VALIDITY CONDITIONS 

The process of validation is an analysis loop (see Figure 7-1): 

• A feature-based modelling operation starts tbe validation process. It can 

alter the configuration of features, FbDI's and/or feature interactions. 

FbDI' s are venfied through invalidity rules that can become active at any 

time. For a rule to be active all its conditions must be fulfilled making it 

ready to be executed (fired). A number of rules can become active 

simultaneously but only one 1s fired. 

• The knowledge-based system selects a rule to be fired according to a 

prionty strategy (Patterson90, Giarratano93) assigned between rules. If the 

configuration of features has been manipulated then a consequent new 

feature interaction scenario is calculated (initially at tbe volumetric 

interaction-VI-level) and reasoned agamst all rules. 

• Rules perform actions on tbe feature and FbDI representation via 

revalidation operatiOns (which are intended to s1mphfy tbe situation on 

each loop execution). Every time a rule is fired, some active rules can 

become inactive and vice-versa producing a new set of active rules from 

which another one is selected to be fired. 

• A rule exists which detennines when another level of tbe feature interaction 

scenario is to be detennined. This new scenario is again considered by all 

rules. 

• All features and FbDI' s affected by the revalidation operation are 

automatically considered by tbe reasoning. A certain degree of 

unpredictability in execution control is expected concerning which feature 

and which FbDI will be reasoned first (this is a characteristic of the 

knowledge-based system Implementation, Chung90b, Giarratano93). 

However, this should not make any difference to the final result. 

PAGE153 



CHAPTER 7: VALIDITY CONDITIONS 

• When all features and FbDI's are venfied and no more new scenarios are 

produced, the validation process loop delivers the resultmg feature-based 

valid model. 

I Feature-based Representation Validation I ~ 

Domatn n( 9 Vahd1ty 91 Revaltdatton I 
Charactenzat1on Cond1t1ons Operations ' 

1f ~ ' I 

' 
~ 

~ 
~ 

INPUT OUTPUT 
FBM wtth Yaltd GSM 

Valid GSM model and FBM model I 

I 

' 

Figure 7-1: Feature Validation Reasoning Framework 

The input in Figure 7-1 IS a feature-based model just after a modelling 

operation is performed and is assumed to be an evaluated and val1d GSM 

representation. 

The framework shows that the domain characterisation (the elicited FbDI's) 

drive the validity conditions (invalidity tests) being considered and therefore 

the extent of the validation process. The output of the validation process will be 

both a valid geometric and a valid feature-based model representation. This 

validated model can then be used by any application and no misrepresentation 

should exist from the perspectives of the selected FbDI's. 

PAGE154 



CHAPTER 7: VALIDITY CONDITIONS 

7.3 ORGANISATION 

Initially the rules were conceived for morphological functional conceptual 

validation reasoning Without any concern for their global organisation because 

the emphasis was on the usefulness and feasibility of the conceptual validation 

framework. However, the initial prototype implementation revealed an 

interesting organisation of the relationships, which is described below. 

7 .3.1 REASONING ASPECTS 

Morphological functional FbDI's (MFI's) and the associated volumetric 

FbDI's (VDI's) give a clearer definition of feature semantics. The selective 

execution of revalidation operations guarantees the delivery of valid 

representations from the FbDI' s perspective. 

An analysis of VD I' s suggests that there are two aspects that help describe a 

feature's behaviour: the volumetric interaction aspect and the labelling

dependent aspect. 

• Volumetric interaction aspects occur when feature natures (FN) are 

considered and when feature volumes (FV) interact at the volumetrical (VI) 

or boundary (BI) levels. The absence of this aspect means that no 

mteraction analysis IS considered whatsoever, another geometrical analysis 

is being performed or a low-level interaction (the face level - Fl) is 

considered. 

• Labelling-dependent aspects occur when the feature label is the maJor 

affected element or when the labels of the features involved affect or 

determine the reasoning. 

PAGE155 



CHAPTER 7• VALIDITY CONDITIONS 

Volumetric interaction aspects are related to changeability, fittability and 

redundancy VD I' s while labelling-dependent aspects are related to labelling 

VDI's. 

7.3.2 REASONING SETS 

The combination of these two concerns gives rise to four sets of reasonings 

according to whether or not they are part of the rule (see Table 2). The 

volumetric interaction aspect is identified by V while the labelling-dependent 

aspect is identified by L. 

Volumetric 
Interaction 

Aspect 

(V) 

Without 

With 

Labelling-dependent Aspect 

(L) 

Without With 

a) -L,- V c)+L,- V 

b)-L,+V d)+L,+ V 

Table 2: Sets of Validation Reasoning. 

These four sets of reasonings identify distinct and important situations when 

dealing with conceptual feature validation: 

• Situations of type (a) are responsible for perfonning the geometric feature 

mteraction scenano identification as well as any other geometric reasoning. 

Of particular interest are those geometnc reasonings that are simpler, 

strrught-forward or already available in geometnc terms than if considering 

extra feature-related information. 

Situations of type (a) perform simply geometrical ( -L, -V) 

analysis/reasonings, but do not include GSM va!Idations. 

PAGE156 



CHAPTER 7• VALIDITY CONDITIONS 

• A situation of type (b) happens when volumetrical reasonings and/or the 

feature nature are enough to fire an action such as when conflicting 

volumetrical intents (hollows or satellite volumes) appear in the model. 

Situations of type (b) perform simply volumetrical (-L, +V) analysis. Simply 

volumetrical tests also include those where an incommg feature interacts 

With the stock material, regardless the former's label. Tlus last reasoning 

example has prionty because the stock material is considered to be the 

envelope of the whole component (and all its features) and thus, any 

volumetncal analysis involving the stock would speed up the processing of 

the newly added feature. 

• A situation of type (c) happens when labels are the main focus of the 

reasoning, such as when the system is searching for the correct label for a 

specific feature accordmg to its face properties. 

Situations of type (c) implement simply labelling ( +L, -V) reasonings. 

Simply labellzng reasonings include all those where low level interactions 

(face level - Fl) result in a change of a feature face property (from virtual to 

real, or v1ce-versa) and consequently results in a change of 1ts labelling 

VDI, regardless the feature's nature. 

• A situatiOn of type (d) happens when both the feature volumetrical 

interaction and label aspects determine the actions to be taken. They are 

called here complex ( +L, +V) reasonings. All other reasonings between 

features, except the stock, are also considered as complex verification 

statements. 

PAGE157 



I 

CHAPTER 7· VALIDITY CONDITIONS 

7.3.3 PRIORITY 

It was found that a pnority scheme eXIsts among the four reasoning sets in 

Table 2 such that every time a situation of higher pnority occurs, it is dealt with 

immediately and then m a descendmg order of prionty up to the point where 

there is no pending situation. Within the same pnonty level any sequence of 

rules can be expected to be fired as previously explained. The priority found, 

from the highest to the lowest (see right-hand side of Figure 7-2), Is: 

1. Simply geometrical reasonings (type (a): -L, -V). 

2. Simply volumetrical reasonings (type (b): -L, +V). 

3. Simply labelling reasonings (type (c): +L, -V). 

4. Complex reasonings (type (d): +L, +V). 

~ ,, 
Validation Reaaonlng ' 

' 

I t . . . 
Feature Validation Framework 

' . 
/ ~ I • 

F= l I "··'· Oelfle I . Gtometrtcat 

( ''"''" ~~~ VatldiiY <> f '"'"'""" Cllaraeterlutlon Condlllona Opt~atlou 
' I . . 

Deltlt, f= ~ c.--1v 11 ""''' ~ Volumetrical Make Ob1otete 

I . 

< ll Simply IH to_V to_R, f= I . 
Labelling Label 

. 
. . . 

11 
Complex Merge, Split, f= 

Add, Oeltte 

. 
INPUT OUTPUT ' 

FBM and Valid GSM 
Valid GSiol model lnd FBM model ' • . ' 

Figure 7-2: Sets ofMFI Reasonings. 

PAGE158 



CHAPTER 7: VALIDITY CONDITIONS 

Simply geometrical reasorung performs GSM reasoning and generates the 

interaction scenario between features at vanous levels of interest (initially 

volumetric interaction up to face interactlons), as it is requested. 

The feature interactiOn scenano IS then considered by the subsequent sets of 

reasonings. The first of these IS the simply volumetrical reasonings. If there is 

enough information, the labels are verified and (re )assigned via s1mply 

labelling reasonings. 

If the model is still not valid then, there will be enough mformation with both 

labels and feature interactions defined and corrected. In such a case, face 

interactions are added and complex reasonings are then performed. 

7.4 INTENTS MANAGEMENT 

Conceptual feature-based representatiOn validation was performed v1a MFI 

reasoning. MFI reasoning is not only responsible for identifying invalid 

morphological situations and deploying revalidation operations but also for 

addmg and deletmg VDI relationships. Occasionally, it is possible that RDI 

relationships may be created by MFI reasonings. This suggests that MFI 

reasonings drive some RDI reasonings. However, there are RDI reasonings that 

are independent of MFI and feature interaction cases. In other words, there are 

RDI' s that are dependent on their own functional meanings and therefore have 

their own reasonings. 

An intent-driven paradigm suggests that a feature-based modelling applicatiOn 

could reason not only with FbDI's embedded in features (as most of the 

applicatlons surveyed claim to do), but should also be able to reason about 

FbDI's themselves. Therefore, means to validate, recognise, manipulate and 

manage FbDI's are required. 

PAGE159 



CHAPTER 7: VALIDITY CONDITIONS 

I 

I Venficat1on 

Intents 
Management 

I 

I Ennchment I 
I 

r--ve_cor I Guided I I Blind 
'-ve_aol_ls 

!Experience-based 1

1

1 lnher:tance I Len_cor_b 

-en_cor_g Lnherit_splt_act 
-en_aol_ls 

I Updatmg I 
1 r-act del 

'-- act_mt_dead_feat 

Figure 7-3: A Classification oflntents Management Rules. 

Three ways can be identified to manage FbDI validation (Figure 7-3): 

verification, enrichment and updating statements. The figure also exemplifies 

some of the rules which are detailed in chapter 8. 

7.4.1 VERIFICATION STATEMENTS 

The verification statement is used to check if the assigned FbDI m the model 

complies With 1ts condltJ.ons. Otherwise, it can lead to its removal from the 

model. 

The general outline of verification rules is depicted in Figure 7-4 where: 

• "!" means existence or true/active; 

• "-"means absence or false/inactive; 

• "FbDf' is the target feature-based designer's intent; 

• "Cond" 1s a cond!tion bemg tested. 

PAGE160 



CHAPTER 7: VALIDITY CONDITIONS 

Verification Rules 

IF (FbDI)! AND (-Condi OR -Condz OR ... ) 

THEN Ask "DELETE the FbDI?" 

YES, Delete FbDI 

NO, Operate Features 

Figure 7-4: An Outline of Verification Rules. 

7.4.2 ENRICHMENT STATEMENTS 

The enrichment (or feature intent recognition) statement works in the opposite 

direction to a verification in that it analyses a set of conditions and assigns its 

fmdings to the model (automatically or assisted by the designer). 

Verification statements are basically invalidity tests that inactivate a FbDI as 

soon as any of Its conditions are violated Enrichment statements do the 

opposite by considering a set of conditions that suggest a FbDI to be assigned 

to the model. However, two ways can be identified to perform such a search: 

Via guided rules or Via blind rules of enrichment. 

Blind rules of enrichment involve trying a FbDI relationship against all 

possible situations using a minimal condition set and leavmg the confirmation 

task to the user. This approach is hkely to identify an important FbDI but also 

leads to a tedious confirmation task. 

Guided enrichment rules search for FbDI's where they are more hkely to occur 

through rules that include basic conditions plus other conditions identified by 

experience. Although a less tedwus confirmation process follows, it is possible 

that a FbDI can be omitted from the model due to an inaccurate or missing rule. 

Guided enrichment can be further classified (Figure 7-3) into experience-based 

guided enrichment when they are isolated rules as mentioned above and 

PAGE 161 



CHAPTER 7· VALIDITY CONDITIONS 

inheritance-based guided enrichment when the rules are embedded and 

dependent on other (mainly VD I) reasonings. 

For instance, it is sensible to think that features that were split from another 

tend to inherit the former's FbDI's (Figure 8-29). 

The general outline of enrichment rules are depicted in F1gure 7-5: 

Enrichment Rules 

IF -(FbDI) AND (Cond1 AND Cond2 AND ... )! 

THEN Ask "ASSIGN the FbDI?" 

YES, Add FbDI 

NO, nothing to do 

Figure 7-5: An Outline of Enrichment Rules. 

7.4.3 UPDATE STATEMENTS 

Verification and enrichment are responsible for deleting and addmg FbDI 

relationships to the model, respectively. 

In addition to enrichment and verificatwn statements, other rules are necessary 

to help the management ofFbDI's. These are called updating rules (Figure 7-3) 

and they consider the status of the features involved in the relationship and 

activate or inactivate FbDI's accordingly. Examples of updating rules include: 

• Act_del, if a feature that previously made obsolete or deleted another 

feature is subsequently inactivated theri the latter should be reactivated and 

the correspondmg VDI inactivated. 

• Act_int_deadJeat, if a FbDI exists for inactive features then it should be 

inactivated. 

PAGE162 



CHAPTER 7: VALIDITY CONDITIONS 

7.5 ACTIVE, INACTIVE AND INTENTIONAL STATUS 

The process of design can cause the representation to go through many 

intermediate stages. One approach to help cope with these intermediate stages 

is to define an intentional or dormant status (whtch is compatible With the 

intent-driven terminology). 

The idea of intentional features have been already introduced (Tomyiama90, 

Rossignac91): "Intentional features, originally identified by the designer, 

should not be confused with their geometric embodiments which can vary as 

the model is edited". This distinction is essential for representing and 

interrogating invalid features and helps the tracing of feature evolutiOn through 

the life-cycle of a design model. 

Smularly, the validation framework makes use of the mtentional status and 

thus features (or more precisely, their volumetric intentions - FV + FN) and 

FbDI' s are kept in the framework in one of three possible status: 

• The active status, whtch accounts for all those features and FbDI' s that 

represent the actual model. After the reasoning is finished, the active status 

identifies validated (non-invalid) features and validated FbDI's. 

• The inactive status, which refers to all features and FbDI' s that were 

deleted by the reasonmg of interacting features or by the user and are not 

affecting the actual model. Inactive features and FbDI's explicitly deleted 

by the user will not become active in the future and can be effectively 

removed from the database. 

An inactive FbDI means that the possibility of existence of this FbDI was 

considered before, presented to the user and discarded. In this case, an 

inactive FbDI would have been created to flag the discarded attempt and 

will not be considered subsequently so long as the conditions do not 

change. 

PAGE163 



CHAPTER 7: VALIDITY CONDITIONS 

• The intentional status accounts for dormant or intermediate situations. 

Intentional features are those that were made obsolete by another feature. 

Their volumetric intentions still affect the model but are encompassed by 

the volumetric intention of another feature. If this second, volumetrically 

encompassing, feature is removed the former intentional feature should be 

activated. 

Smularly, feature interaction cases can be of active, inactive or intentional 

status. 

• An active feature mteractlon is that (possibly recently determined by the 

scenario identification methodology) which is considered by the simply 

volumetrical and complex VDI reasoning sets. These reasomngs can change 

the status of the mteraction to inactive or mtentwnal. 

• Intentional feature interactions are those interaction cases that should be 

intentionally left unoperated due to their meaning, unforeseen reasons or 

other restrictions. These situations usually happen when (a) an arrangement 

of (subjoint VI or conjoint FI) interacting features occurs that is interesting 

for an optirnisation that an application can perform considering their 

original interaction or (b) to facilitate and simplify the model. 

For instance, if there is no advantage in splitting a hole on the periphery of 

and entering a pocket, the enter subjoint VI interaction can be defined as 

intentional which later, through another reasoning, can give rise to a "cut

out" case (see Figure 4-8 in section 4.4.3.2.3). Also, a non-through hole 

that crosses a slot, although it could be split due to redundancy VDI 

reasons, should be signalled as an intentional cross otherwise there will be 

accessibility problems in drilling the internal hole. 

• An inactive interaction means one of two things: either the interaction was 

properly processed and a new scenario emerged so that the originating 

PAGE164 



CHAPTER 7: VALIDITY CONDITIONS 

interaction no longer exists, or the possible use of that interaction case has 

already been taken into account and should not be tned again. 

7.6 INTENT MANAGEMENT PRIORITY 

To accommodate FbDI's beyond morphological fimctional FbDI (MFI) 

analysis, i.e. to mclude geometric relational FbDI (GDI) and application

oriented relational FbDI (AOI) reasonings, the prionty scheme presented m 

Figure 7-6 was conceived by extending the MFI reasoning set organisation 

(Figure 7-2). 

"' " ' 

' 

S1mpty Geometrical Delete 

' 

11 Delete, 
Simply Votumetr~cal Make Obsolete 

,, ,,, 
' 

H1gher 

I" to_ V, to_R, ' 
Simply labelling Label 

E' 
0 

If. 

Complex MFI I , 
Merge, Split. 

& 
Update Management I ' 

Add, Delete 
' 

ll ' 

Lower 

'Approval' Verll!cal!ons I Add and Delete 
(AOI) I Feature 

ll 
All Oiher AOI and GDI 

I , 
Add and Delete r--

reasonmgs I FbDI 

t' ll ,' 1 t 
' 

Figure 7-6: The Intent-Driven Conceptual Validation Reasoning. 

PAGE165 



CHAPTER 7: VALIDITY CONDITIONS 

All the RDI verifications and enrichments are placed with lower prionty than 

the MFI reasomngs but in two levels: a lugher level where a newly added 

feature can be rejected by some reasoning, called here the approval phase, such 

as the proximity AOI test (see sectiOn 4.4.3.2) usually via a verification 

statement, and lower level which comprises all other AOI and GDI verification 

and enrichment rules, simply called the enrichment phase. These analysis 

phases can be turned on and off in the prototype implementation if required. 

7.7 UNDERSTANDING THE REASONING ORGANISATION 

To help make sense of the priority organisatiOn, a metaphoric parallel can be 

established between these reasonings and a linguistic analysis. Linguistic 

analysis is achieved in four phases: lexical, syntactical, seman!!cal and 

contextual analysis. 

It could be said that szmply geometrical and simply volumetrical reasomngs 

correspond to a lexical feature-based analysis where the correct use of letters 

(feature elements such as its volume, its faces and its GSM evaluation) to form 

words (feature definitions) are analysed. 

Simply labelling corresponds to a syntactical feature-based analysis where the 

correct disposition of words (the feature definition, in particular its label) of the 

vocabulary (feature library) on a phrase (feature model representa!!on) are 

analysed. It assumes a lexically correct (valid) set of letters (feature elements). 

Complex MFI reasonings correspond to a semantic feature-based analysis 

where correct associa!!on (feature interacuons) of words (features) to produce a 

meaningful (conceptually validated representation) phrase is analysed. It 

assumes a syntacucally correct (valid) phrase (feature model representation). 

Update management ensures that the phrase (feature model representation) is 

simplified such as when a "double negative" is modified in a linguistic 

analysis. 

PAG£:166 



CHAPTER 7• VALIDITY CONDITIONS 

Table 3: A Metaphoric Parallel (Feature-based Model and a Language). 

FeaiUre'-based Models , " c 

Language 
cc " ' 

Feature elements Letters 

(e.g. edges, vertices, faces, volume and (e.g. a, b, c, a, ~. X) 
evaluated GSM) 

Feature's label Words 

(e.g. slot, pocket, and step) (e.g. cat, dog, and horse) 

Feature-based model representation Phrase 

Simply geometrical and simply volumetrical Lexical analysis 
reasoning 

Simply labellmg reasoning Syntactical analysis 

Complex MFl reasoning Semantical analysis 

Update management Simplifications 

Approval management Has meaning, 

(e.g. thin-wall tests) but not for the target context 

Other AOI and GDI reasoning Elaborate context analysis 

The approval reasoning analyses the model for cases where the last 

manipulation can be immediately reJected such as when an extra word is 

syntactically correct but adds no meaning to the context of the phrase. 

All further reasorung performs a more elaborate contextual analysis. Contextual 

feature-based analysis occurs when the meaning (conceptual validity) of the 

phrase (feature model representation) to the context (application) being 

considered is analysed. Tlus is done by considering a much broader spectrum 

of FbDI's, beyond MFI's, that in turn also consider application-dependent 

cntena. It assumes a semantically correct (conceptually MFI valid 

representation) phrase (feature model representation). 

PAGE167 



CHAPTER 7. VALIDITY CONDITIONS 

7.8 SUMMARY 

This chapter has introduced the verification and enrichment statements, which 

are responsible for FbDI management and the active, inactive, and intentional 

status of features, FbDI' s and interactions. These characteristics help 

implement the validation concept. 

The way in which elements of a feature-based vocabulary are bound together to 

perform conceptual representation validation has been described. The invalidity 

tests are organised in a hierarchical priority and are used to perform validation. 

It has also been shown that the pnonty is reasonable if a metaphoric 

comparison to a lingUistic analysis is accepted. 

The next chapter describes how these ideas have been implemented in a 

prototype system. 

PAGE168 



8. IMPLEMENTATION 

The application of the elicitation process produced a 

classification and a taxonomy for feature interactions, feature

based operations and FbDI's. To validate this development 

methodology and philosophy, a working prototype was 

implemented that is able to identify intents and feature 

interactions, apply modelling operations, perform verifications 

and enrichments and deploy revalidation operations (some of 

these automatically). 

8.1 A PROTOTYPE IMPLEMENTATION 

A prototype system known as FRIEND, an acronym for Feature-based 

validation Reasoning for Intent-driven ENgineering Design, has been 

implemented. The acronym was chosen to emphasise the following aspects: 

• It is a system centred on the Feature concept, their elements and properties. 

• It is a framework for conceptual validation analysis that was implemented 

using an expert system shell for its validation Reasoning. 

• It is Intent -driven which should produce a more forgiving environment. 

• It is intended to accommodate various ENgmeenng-related Design 

disciplines (applications). 



CHAPTER 8: IMPLEMENTATION 

8.2 RESOURCES 

FRIEND has been implemented on a PC-compatible Pentium™ lOOMhz with 

24 MB of EDO RAM running Microsoft® Windows 95™ operating system. 

The applications used to develop the prototype system are wxCLIPS and 

Microstation® 95's MODELER. 

8.2.1 WxCLIPS 

WxCLIPS 1.61, 32 bit version, is a graphical development environment (Figure 

8-1) that extends CLIPS' functionality with hundreds of functions to allow a 

graphical user mterface to be constructed. It was developed by Julian Smart at 

the AIAI (Artificial Intelligence Applications Institute), which is part of 

Edinburgh University. 

Figure 8-1: wxCLIPS Environment Screen. 

CLIPS was designed at NASNJohnson Space Center and is an acronym for "C 

Language Integrated Production System" which recalls its origms. CLIPS 6.0 is 

a forward chaining expert system shell and a multiparadigm progranuning 

PAGE170 



CHAPTERB: IMPLEMENTATION 

language that provides support for rule-based, object-oriented and procedural 

programming. It is a parenthetical language and most functions and commands 

use a prefix syntax (Figure 8-2, Giarratano93, Donne1194). Figure 8-2 provides 

a parallel between CLIPS syntax and a pseudo-code in an attempt to show the 

meaning of some of CLIPS code. 

PSEUDO-CODE CLIPS Syntax 
RULE-NAME "example" (defrule "example" 
IF (Comment: Oven Operation Momtoring) ; Oven Operation Mon1tonng 
"OvenPower" 1s "ON" AND ?o_p <- (OvenPower ON) 
"Pressure• > 5 AND {test (> Pressure 5)) 
("S1mulat1on• fact does NOT ex1st OR {or (not (Simulation)) 
"Operator_Status• 1s "tramee") {Operator_Status trainee)) 

THEN => 
Create "Urgency" fact {ass1gn (Urgency)) 
Calculate "risk_factor" {risk_factor) 
Turn OFF Oven Power {retract ?o_p) (ass1gn (Oven Power 
END-RULE OFF)) 

l 

Figure 8-2: CLIPS Syntax. 

CLIPS 6 0 provides COOL, wluch is "CLIPS Object Oriented Language", and 

a comparison between COOL syntax and a pseudo-code for a class definition is 

presented in Figure 8-3. 

PSEUDO-CODE COOL Syntax 
CLASS-NAME "Intent" (defclass Intent 
Super-Class "Relat1on• (1s-a Relation) 

Integer •n• (slot n (type NUMBER) 
(Vahd Interval 1-3, (allowed-symbols 1 2 3) 
Default Value 2) (default 2)) 

Array of 6 words "a_6_w" (mult1slot a_6_w (type SYMBOL) 

END-CLASS 
) (card1nahty 6 6)) 

Figure 8-3: COOL Syntax. 

Simplified versions of class and rule definitions will be presented usmg CLIPS 

and COOL syntax. More specific details that are exclusive to the CLIPS and 

COOL Implementations will be omitted. The understanding of Figure 8-2 and 

Figure 8-3 should be sufficient to understand the listings and the accompanying 

explanations in the following sections. 

PAGE 171 



CHAPTERS: IMPLEMENTATION 

8.2.2 MICROSTATION 

Microstation® 95 is a CAD system produced by Bentley Systems that has an 

extra module based on the ACIS® 1. 7 geometric solid modeller and is called 

MODELER 1.0. 

8.3 MODULES 

For implementation reasons FRIEND (which follows a DbF approach, Figure 

2-1) was divided into two main modules that reflect the two items of software 

used (Figure 8-4): FRIEND-KBS (Implemented using wxCLIPS) and FRIEND

VIEW (implemented using MODELER). 

KBS 
(CLIPS) ~ rrj Fe~ased 

VIEW 
(MODELER) 

Figure 8-4: FRIEND Modules. 

8.3.1 FRIEND-VIEW 

Data 

FRIEND-VIEW is the module responsible for the geometnc evaluation and 

visualisation of the feature-based model. It converts features into their 

producing volumes (solid pnmitives), position and orientates the volumes and 

PAGE172 



CHAPTER8: IMPLEMENTATION 

performs chamfering and Boolean operations accordmgly. The model can be 

visualised either m a Boolean operated or in a Boo lean unoperated form (see 

Figure 9-5). The unoperated form shows all feature volumes without actually 

performing the Boolean operations and was made available because the 

operated invalid model frequently looks like the operated valid one, confusing 

the viewer. 

FRIEND-VIEW was prototyped using Microstation's Basic language, which, 

although slow and limited, is simple to use and code, easy to understand and 

suffices for the prototype implementation. FRIEND-VIEW is initiated by 

pressmg the FRIEND icon at the top left-hand corner of MODELER's 

environment (see the "dog" icon in Figure 8-5) which starts the communication 

protocol between the modules FRIEND-KBS and FRIEND-VIEW. 

Figure 8-5: FRIEND-VIEW Icon. 

8.3.2 FRIEND·KBS 

FRIEND-KBS is the module responsible for the reasorungs. Figure 8-6 presents 

the architecture of the FRIEND-KBS module. It details the framework 

presented in Figure 7-1 and shows that the data information used for the 

reasoning are basically of two types: the feature library (including the template 

of each feature) and the reasoning groups presented m section 7.6 divided 

according to the type of FbDI involved. The figure also shows that three types 

of information are generated and maintained by the reasoning: the feature, the 

feature interactions and the FbDI' s of the model. These three items of 

PAGE173 



CHAPTER 8· IMPLEMENTATION 

information come in three different flavours: intentional, valid/active or 

invalid/inactive. 

Modellmg 
Operation 

I 

\ 

Feature 
L1brary 

(Templates) 

ActlveNahd 
Feature 

Interactions 

Valid Feature-based 
Model Representation 

1\ 

I/ 

VDI 
Rules 

'----,---YAOI 

Rules 

Valtd/Act1ve 
Features 

Revalidation 
Operations 

Vahd/Actlve 
FbDI's 

Figure 8-6: FRIEND-KBS Architecture. 

The FRIEND-KBS interface has three main areas (Figure 8-7): 

• A text area, in the lower part of the window, where additional information 

is displayed as the reasoning is being carried out; 

• A button area, for activating fast actions such as "Show V al1dated Part" 

which forces the update of the model's visualisation in FRIEND-VIEW; 

PAGE174 



n:Read: EnteredFeature pocket cyl 5.000000 orig orlg 
15.1100000 5.000000 5.000000 15.000000 20.000000 15.000000 

n:Read: EnteringFeature pocket rect 0.000000 orig orig 
4.000000 5.000000 8.000000 16.000000 20.000000 11.000000 

Figure 8-7: FRIEND-KBS Module. 

• A menu area, where various options to manipulate the model are available: 

• To manipulate (Figure 8-8), such as add feature (Figure 8-9); 

• To manipulate a part file (see section 9.2) such as load and save part 

file (Figure 8-10); 

• To list relations includmg interaction cases and FbDI' s (Figure 8-

11). 

PAGE175 



CHAPTER8"/MPLEMENTATION 

Figure 8-8: Feature Manipulations in FRIEND. 

Figure 8-9: Add Feature Option. 

PAGE176 



CHAPTERS: IMPLEMENTATION 

Figure 8-10: Load a Part File Option. 

ltst .S.orfte R91atio'OS ~ '> 
(0'~ ~ '"''':: ~ t' 
Add~ Relat;on v< ~w<1'«<> 
D. elate Relation"~ ,,i ,cJ' t 

Figure 8-11: FRIEND-List Relations Option. 

PAGE177 



CHAPTERS: IMPLEMENTATION 

8.4 DATA STRUCTURES 

8.4.1 REPRESENTING INTENTS AND INTERACTIONS 

It has been suggested that a feature-based model should be more than a list of 

active features and should also include all relations such as constraints 

(Kraker97) and interactions (Kim96). In addition, instead of evaluating a 

feature interaction query every time it is requested, a feature interaction 

scenario can be produced between an incoming feature and the existing active 

features m the model. The result can be stored as active relations that can be 

used by the reasoning when needed. 

(defclass RELATION 
(slot status 

(type SYMBOL) 
(allowed-symbols act1ve 1nact1ve 1ntent1onal) 
(default act1ve)) 

(slot go_further ; Boolean 
(type SYMBOL) 
(allowed-symbols YES NO) 
(default YES)) 

(slot has_master 
(type SYMBOL) 
(allowed-symbols YES NO) 
(default YES)) 

(slot master 
(type INSTANCE-NAME) 
(default ?NONE)) 

(slot n_slaves 
(type INTEGER) 
(default 1)) 

(mui!ISiot slaves 
(type INSTANCE-NAME) 
(default ?NONE)) 

; See subclasses for code and type constraints 
(slot type 

(type SYMBOL)) 
(slot code 

(type SYMBOL)) 
) 

Figure 8-12: RELATION Class. 

PAGE178 



CHAPTER8"/MPLEMENTATION 

The relations of interest in this research are interactions and FbDI' s. All 

relations share the same basic principle of establishing a directional and 

meaningful link between elements. Therefore, a class called RELATION 

(Figure 8-12) and its two sub-classes, called INTENT (F1gure 8-13) and 

INTERACTION (Figure 8-14) were defined. 

The RELATION class establishes a directional link by defining a master of the 

relation and a list of slaves. Elements referred to are features or (index to) a 

feature's (bounding box) face. The spec1fic meaning of the relation is defined 

by the type and code, which according to the sub-class, have different lists of 

allowed possibilities. 

For mstance, an INTERACTION can be typed VI and coded conjoint while an 

INTENT can be typed VDI and coded split_into. 

The implementation does not accommodate relations that carry a reference or 

parameter but it is acknowledged that such a resource should be considered m 

future implementations. In addition, the labelling VDI is kept as the feature's 

label in the FEATURE class and not as a (unary) INTENT object. 

PAGE179 



CHAPTER 8: IMPLEMENTATION 

(defclass INTENT 
(1s-a RELATION) 

(slot code 
(allowed-symbols 

; MORPHOLOGICAL Dl's (MFI's) 
; VDI - Volumetncal Morphological Dl's 
spht_mto merged_lrom 
deleted_by 
obsoleted_by 

; GEOMETRICAL Dl's (GDI's) 
; HieGDI - Hierarchical Geometncal Relational Dl's 
nested@bot nested@sJde 

; PosGDI- Positonal Geometncal RelatiOnal Dl's 
concentnc 
coplanar 

; OnGDI - Orientational Geometncal Relational Dl's 
parallel perpendicular angular 
aga1nst eo-linear 
coEAD 

; StrGDI -Structural GDI's 
pattern 
ax_symmetry rd_symmetry 
co-rad1us 

; APLICATION-ORIENTED INTENTS (AOI's) 
t_slot 
c_bore c_s1nk 
x_feat e_feat 
cut_ out 
precede succeed )) 

(slot type 
(allowed-symbols VDI H1eGDI PosGDI StrGDI OnGDI AOI) 
(default VDI)) 

Figure 8-13: INTENT Class. 

In the case of the sub-class INTERACTION, an interaction VI could be linked 

to many other interactions (BI or Fl) and therefore pointers to other interactions 

are included in the class (Figure 8-14 ). 

PAGE180 



CHAPTERB·/MPLEMENTATION 

(defclass INTERACTION 
(1s-a RELATION) 

(slot code 
(allowed-symbols 
; VI Volumetric Interactions 
connected disconnected 
conjoint adJoin! diSJOint overlap 
near far 
cross enter crossed entered general 

; 81 8oundanng InteractiOns 
hm1t hm1ted contain contained 

; Fl Facial Interactions 
match 1ns1de outs1de 

unknown) 
(default unknown)) 

(slot type 
(allowed-symbols VI Fl 81) 
(default VI)) 

(slot n_elements ; 8-08-96 
(type NUMBER) 
(allowed-numbers 0 1 2 3 4 5 6) 
(default 0)) 

(multislot elements 
(type INSTANCE-NAME); pointer to another INTERACTION 
(default ?DERIVE)) 

(slot GSM_conf1rms 
(type SYMBOL) 

) 

(allowed-symbols YES NO DONO) 
(default DONO)) 

Figure 8-14: INTERACTION Class. 

Because the implementation of the interaction identification was done using the 

bounding box envelope, it was necessary to confirm some geometric 

interactiOns at the level of the actual feature volume (FA V), boundary (FAB) 

or face (FAS). To identify if this confirmation had been carried out, a 

GSM_confirms flag was included. 

PAGE181 



CHAPTERS: IMPLEMENTATION 

8.4.2 REPRESENTING FEATURES 

A feature is Implemented by defining a FEATURE class (Figure 8-15) which 

stores a sequence number; a feature name as its id; the feature status; the 

feature label; feature nature, which can be add for additive or rem for 

subtractlve volumes; feature volume wluch can be cyl for cylindrical or filleted 

features and rect for quadrangular ones; feature radzus that stores the radius of 

the cylinder or the chamfer; feature main axis; two rotations used to specify the 

feature's orientation, each rotation is defined by an Euclidean axis and an angle 

of rotatlon. 

In addition, every feature has an associated bounding box envelope (Figure 8-

15). The envelope IS stored as an object of the BBOX class (Figure 8-16) 

defined by the minimum and maximum vertex coordinate values. In the 

prototype implementation, all the geometric analyses use the envelope instead 

of the actual evaluated volume of the feature. 

Therefore, the actual volume is projected onto the envelope faces that acquire 

characteristics such as face code, token and profile (Figure 8-17). Figure 8-17 

presents a step feature, the feature volume with the identification of its codes 

and tokens followed by the identification of every face's projection onto a 

rectangular bounding box envelope. 

PAGE182 



CHAPTER8"/MPLEMENTATION 

(defclass FEATURE 

(slot sequence (type INTEGER) 
(default 1)) 

(slot 1d (type SYMBOL)) 
(slot status (type SYMBOL) 

(allowed-symbols act1ve 1nact1ve 1ntent1onal) 
(default inactive)) 

(slot label (type SYMBOL) 
(allowed-symbols pocket hole 
slot slot_tru step notch 

slab gap hollow satellrte) 
(default pocket)) 

;----------- Volumetnc Intention (FV + FN + onentation) --------------
(slot nature (type SYMBOL) 

(allowed-symbols add rem) 
(default rem)) 

(slot volume (type SYMBOL) 
(allowed-symbols cyl rect) 
(default rect)) 

(slot radius (type NUMBER) 
(default 0.0)) 

(slot ax1s (type INSTANCE-NAME) 
(default-dynamic (make-Instance (gensym*) of POINT))) 

(slot rota!IOn_1 (type SYMBOL) 
(allowed-symbols ong rx90 rx180 rx270 
ry90 ry180 ry270 rz90 rz180 rz270) 

(default ong)) 
(slot rota!IOn_2 (type SYMBOL) 

(allowed-symbols orig rx90 rx180 rx270 
ry90 ry180 ry270 rz90 rz180 rz270) 

(default orig)) 

; --------The Envelope (Bbox +Code+ Prof1le +Token) -----------
(slot envelope (type INSTANCE-NAME); of BBBOX 

(default-dynamic (make-instance (gensym*) of BBOX))) 
(slot face_nature (type INSTANCE-NAME); of FC_NATURE 

(default-dynamic (make-instance (gensym*) of FC_NATURE))) 
) 

Figure 8-15: FEATURE Class. 

PAGE183 



CHAPTER 8. IMPLEMEI'VTATION 

(defclass BBOX 

(slot owner 
(type INSTANCE-NAME) ; Pointer to a feature 
(default ?DERIVE)) 

(slot Pm1n 
(default-dynamic (make-instance (gensym*) of POINT))) 

(slot Pmax 
(default-dynamic (make-Instance (gensym*) of POINT))) 

) 

Figure 8-16: BBOX Class. 

For the prototype implementauon, the face's code suffices to identify the 

feature label. 

A face's code 1s the Identification of the expected face's contribution to the 

boundary model of the part and it can be : 

• Virtual (V), if the face is expected not to produce a face on the solid model 

or If there is no material on either side of the face and therefore it is access 

for a tool. 

• Real (R), if the face is expected to produce or impnnt a face on the 

evaluated solid model or if there is material on one side of the face and not 

the other and therefore it is a face to be machined. 

In addition to the face codes, tokens and profiles are assigned to every 

projection of the feature volume onto the envelope's faces. 

A face's token identifies the face's function. It can be said that a token is a 

specialised version of the face's code. However, it is difficult to reason where a 

real face is a bottom or a side face without having the understanding of the 

designer. Face tokens can be: 

PAGE184 



CHAPTER B· IMPLEMENTATION 

Real, Bottom 

Real, Bottom 

Partial 

Arc 

Part1al 

Cylmdr~cal Step 

Virtual, Top 

~roftles 

-----~adrangular 

"'~-----

J t:JArc 

------~] 
[ __ -;;0::-:u:ad:;._ran gular 

-=;::::::;:::::::::::...,.::=.. 
"'<~---~-

Figure 8-17: Feature Face Characteristics. 

• Top (T), a virtual face that identifies a tool's External Access 

Direction (EAD, Gmdy89), opposite to a bottom face. 

• End (E), a vzrtual face opposite to another end face. 

• Bottom (B), a real or virtual face opposite to a top face. 

• Side (S), a real face opposite to another side face. 

PAGE185 



CHAPTER 8· IMPLEMENTATION 

(defclass FC_NATURE 

(mui!Jslot code 
(type SYMBOL) 
(allowed-symbols R V) 
( cardmahty 6 6) 
(default ?DERIVE)) 

(multJslot profile 
(type SYMBOL) 
(allowed-symbols Q C LA) 
(cardJnahty 6 6) 
(default ?DERIVE)) 

(multJslot token 

) 

(type SYMBOL) 
(allowed-symbols S B T E ) 
(card1nahty 6 6) 
(default ?DERIVE)) 

Figure 8-18: FC_NATURE Class. 

A face's profile identifies the shape that the feature volume (FV) projects onto 

the envelope's face. Profile projections can be: 

• Arc (A), when a surface containing an arc is produced. 

• Quadrangular (Q), when a quadrangular face is produced that 

coincides with the envelope's face. 

• Line (L), when a line is produced by the touching of the proJecting 

FV's onto the envelope's face and is lateral to a face with a C 

profile. 

• Partial (P), when a quadrangular face occurs, but it only partially 

covers the envelope's face and is lateral to a face with an A profile. 

• Circular (C), when a circular face projection occurs. 

PAGE186 



Feature 

Label 

Step 
' 

(E~D's=4) 

Notch ,, 

'(EAD's'=3) 

Hole 

'(EAD's = 2)~ 

Slot, 

,(EAD's=2) 

Pocket ' 

(EAD's 1:; 1)' 

Hollow 
' 

(EAD's=O) 
*~ '(' ** 

Position 
BboxFaces~ 

c123456~ 

VVVRRV 

QQQQQQ 
ETTBBE 

Y,ITRRR 

QQQQQQ 
TTTBBB 

RRVVRR 

QQQQQQ 
SSTBSS 

J::R VRRR 

QQQQQQ 
TSTBSB 

RRVRRR 

QQQQQQ 
SSTBSS 

RRRRRR 

QQQQQQ 
SSTBSS 

CHAPTERS: IMPLEMENTATION 

BboxFaces' 

Y,ITRRV 
AQQPPA 
ETTBBE 

VVVRRR 

AQQPPA 
TTTBBB 

RR,EYRR 
LLCCLL 

SSTBSS 

VRJ::RRR 
APQPPA 
TSTBSB 

RRVRRR 
LLCCLL 

SSTBSS 

RRRRRR 
LLCCLL 

SSTBSS 

Figure 8-19: Features and their Codes, Profiles and Tokens. 

Figure 8-19 shows some example features m their standard onentat10n beside a 

list of characteristics for every face of the envelope. The first line of the "Bbox 

faces" colunm identifies the face codes; the second, the face profiles and; the 

last the face tokens. 

PAGE187 



CHAPTERS: IMPLEMENTATION 

In Figure 8-19, a template pattern of virtual and real codes (presented in bold 

underlined italic letters) is used to identify the feature label of that type. The 

features are presented m their standard position With no changes to the default 

orientation. 

Tokens can also be used to perform labelling reasoning (cf. Silva90) but, for 

the domain chosen, codes seem to suffice and tokens are assigned to the found 

label/orientation as are profiles. Tokens are used to ease some reasonings but, 

in this implementation, are dependent on the code and orientation 

determination. 

What has previously been called a feature's End face in chapter 5 (Figure 5-l 0) 

refers to an envelope's face with a virtual code (those that can have a Top or 

End token). 

8.5 INTENTS MANAGEMENT IMPLEMENTATION 

Some FbDI' s have one enrichment rule and its dual verification rule while 

others perform their analysis through many verification statements that 

represent many different situations. 

The rules proved to be a little more complicated than expected and thus slightly 

different from the outlines g1ven in F1gure 7-4 and Figure 7-5, although the 

principle still applies. There are two reasons for this: 

• sometimes it is necessary to consider an intent or interaction where the 

feature can be considered either a master or slave of that relation. 

• sometimes many situations have the same actions, and are implemented in 

one rule only. 

There are FbDI' s that do not apply to some specific features and some FbDI' s 

have specialised versiOns when facing specific (pairs of) features (for instance 

PAGE188 



CHAPTERS· IMPLEMENTATION 

coaxiality can be defined as a concentricity positional GDI between hole 

features). Therefore, once more, a FBM system should consider those FbDI's 

that are more suitable for the target domain and avoid overlapping FbDI' s. 

8.6 FEATURE INTERACTION IDENTIFICATION IMPLEMENTATION 

The methodology of feature mteracuon identification has been implemented 

and bound to FbDI's using feature envelopes (bounding boxes) in order to 

achieve reasonable efficiency. It was found that feature interaction cases can be 

accurately and quickly predicted through their envelope and references to the 

actual volumes and faces. These references allow the system to effectively 

apply such determination schemes at a lower level if required. 

High levels of idenufied interaction act as filters or approximations for lower 

levels of interaction cases if they are not used promptly for some specific 

reasoning before lower levels of interaction are identified. Thus, the 

implementation is facilitated and accelerated because of this filtering aspect. 

The binding of each interacuon case with an action via rules is the process that 

allows FRIEND to perform its task- feature-based representation validauon. 

8.7 FEATURE OPERATIONS IMPLEMENTATION 

The followmg are the operations implemented in FRIEND: 

• Analysis operations; 

• Add FbDI, delete FbDI, add feature and delete feature modelling 

marupulation operations; 

• Add FbDI, delete FbDI, add FV, delete FV, make obsolete, make active, 

split, merge and label revalidation manipulation operations. 

PAGE189 



CHAPTERB·/MPLEMENTATION 

A simple way to delete a feature is to make it inactive as well as making all 

feature mteract10n cases that refer to it inactive or intentional (which IS done 

automatically via the intent management reasoning). 

It should be mentioned again that the most recently requested operation (type 

and operation itself, e.g. editing-add intent) is not considered by the validation 

reasoning (which works the same way for all operations) although it is 

recognised that its use could ease the reasoning. For instance, optirnised 

validations could be triggered according to the add or delete operation. 

However, this was not necessary in the framework established here. 

8.8 PRIORITY IMPLEMENTATION 

Figure 7-2 shows that to implement the loop of reasoning in FRIEND, the 

validation reasorung consists of the various reasoning sets organised in a 

hierarchical fashion (as implied by the right-hand side of the figure). There is 

also a priority relationship among the situations related to the figure and the 

feature interaction identification level (Volumetncal, Boundary and Face). The 

reasoning goes deep into the interaction level if It can not reason with the 

information and interaction already available, and this IS another reason why 

the framework in Figure 7-2 is a loop. 

The implementation of the reasorung sets and the priority arrangement is 

achieved using the "salience" facility of CLIPS. A rule's salience identifies its 

priority. A rule with higher salience is selected to be executed (fired) if 

compared to another active rule. Groups of rules were assigned different 

salience values and placed in various files (to emphasise their meaning and 

reasoning set). 

In essence, the priority scheme suggests that, after identifying the feature 

interaction case (at an appropriate level - initially volumetncal), some basic 

PAGE190 



CHAPTER8•/MPLEMENTATION 

volumetric reasonings analyse the model searching for obvious mistakes of 

placement and nature (regardless of the feature's label). 

After correcting basic mistakes, a set of reasonings would guarantee that all 

features are correctly labelled (helped by further feature-interaction analysis) 

because subsequent reasonings Will perform more complex analyses (possibly 

application-dependent ones) that Will subsume correct labelling and none basic 

volumetric misrepresentation. 

8.9 REASONING SETS EXAMPLES 

The implementation has separate rule-based files that reflect the division and 

hierarchy for the feature-based reasoning sets. Simply geometrical reasonings 

that identify feature interaction cases could have been implemented as rules as 

well but were implemented as functions for efficiency reasons. Also, the search 

for a feature's label, presented in section 6.3.2 as the search_label revalidation 

operation, that identifies the feature's correct label according to 1ts face 

properties which could be in any orientation compared to the onginal template 

was also implemented as a function for efficiency reasons. 

Some of the rules are presented below using a simplified version of the CLIPS 

code where some detmls of the functions being called will be mrutted for clarity 

reasons. 

8.9.1 SIMPLY GEOMETRICAL REASONING 

Disjomt BI mteractions mean that one feature is contained within another and 

analysing their F AB will lead to a near or jar case. If near, then it is possible 

that an "internal thin-wall" problem may occur and 1f far and if the feature has 

no other interaction, it can be interpreted as a hollow in the part. 

PAGE 191 



CHAPTER 8· IMPLEMENTATION 

For adjoint VI cases there Will be a possible merging operation (if a matching 

conjoint Fl case occur) or a change on the feature's properties from "blind" to 

"through" (If an inside conjoint F1 case occurs, see Figure 5-7). 

I 

8.9.2 SIMPLY VOLUMETRICAL REASONING 

A simply volumetrical reasoning is exemplified below. It is considered a simply 

volumetrical reasonmg because it uses the match volumetrical interaction (thus, 

it is +V) but not the label of the features (thus it is -L): 

(defrule mat_ vU 
(declare (salience 415)) 
(phase dlrect_related) 
(Object (1s-a INTERACTION) 

(code match) 
(type VI) 
(master ?mstr) 
(n_slaves 1) 
(slaves ?slv)) 

(object (1s-a FEATURE) 
(name ?mstr) 
(nature ?n1) 
(status act1vellntentional)) 

(object (1s-a FEATURE) 
(name ?slv) 

=> 

(nature ?n2&-?n1) ; different natures 
(status active)) 

(1f (eq YES (Ask "Are you try1ng to delete slave feature w1th master feature?")) 
then 
(send ?slv put-status mact1ve) 
; Add Intent 
(bind ?new (make-instance (gensym*) of INTENT 

(master ?slv) (slaves ?mstr))) ) 

else 
(Tell "I will d1scons1der last add feature I") 
(send ?mstr put-status Inactive) 

; Add mtent 
(bind ?new (make-instance (gensym*) of INTENT 

(master ?mstr) (slaves ?slv)))) 

(send ?new put-code deleted_by) 
(+ [REL] ?new) 
) 

Figure 8-20: A Simply Volumetrical Rule Example 

PAGE192 



CHAPTER 8· IMPLEMENTATION 

8.9.3 SIMPLY lABELLING REASONING 

A simply labelling reasoning is exemplified below. If a face of a given feature 

"abuts" and is completely inserted into another feature's real face, then the 

former must be a virtual face. Usmg reasomngs such as this the labellmg VDI 

can be maintained. 

A function check_label compares the template and the realisation of the feature 

and if it does not match then the label is invalid, and the search_label 

revalidation operation (inside check_label) will then search for the right match. 

The search_label process IS responsible for keeping the label-to-shape 

relationship matching as defined by the template of every feature's type. It 

considers a feature mteraction at the face level, not at the volumetncal level 

(thus it is -V), and immediately affects the feature's label (thus it is +L). 

PAGE193 



CHAPTERS: IMPLEMENTATION 

(defrule ins_fi_l1 b 
(declare (salience 305)) 
(phase dlrect_related) 
(object (1s-a INTERACTION) 

(code 1ns1de) 
(master ?mstr) 
(name ?1nt) 
(type Fl) 
(slaves ?slv) 
(status act1ve)) 

(Object (1s-a INTERACTION) 
(master ?mstr_feat) 
(type VI) 
(n_elements ?n&:(> ?n 0)) 
(elements $?f1_hst1 ?mt $?fl_hst2) 
(slaves ?slv_feat) 
(status act1ve)) 

(object (1s-a FEATURE) 
(name ?mstr_feat) 
(status active)) 
(object (is-a FEATURE) 
(name ?slv_feat) 
(status act1ve)) 

(test (eq (nth$ ?mstr (send ?mstr_feat get-code)) R)) 
(test (or (eq (nth$ ?slv (send ?slv_feat get-code)) R) 

(eq (nth$ ?slv (send ?slv_feat get-code)) V))) 
(test (eq (nth$ ?slv (send ?slv_feat get-prof1le)) Q)) 

=> 
(1f (or (eq (nth$ ?mstr (send ?mstr_feat get-profile)) A) 

(eq (nth$ ?mstr (send ?mstr_feat get-prof1le)) Q) 
(eq (nth$ ?mstr (send ?mstr_feat get-profile)) C)) 

;R-R,or 
;R-V 
; P(slv) = Q 

then (send ?mstr_feat put-code (replace$ (send ?mstr_feat get-code) 
(eval (format t '%d' ?mstr)) (eval (format t "%d' ?mstr)) (create$ V)))) 

(send ?mstr_feat check_label) 
) 

Figure 8-21: A Simply Labelling Rule. 

PAGE194 



CHAPTERB·IMPLEMENTATION 

8.9.4 COMPLEX REASONING 

An example of complex reasoning is exemplified in Figure 8-22 and suggests 

that a particular type of feature (non-through) that should not be split if it 

crosses another feature because of possible accessibility problems. It considers 

the volumetrical cross subjoint VI interaction between the features (thus it is 

+V) as well as therr labels (thus It is +L). 

(defrule cro_vl_ 1 
(declare (salience 200)) 
(phase direct_related) 
(Object (1s-a INTERACTION) 

(code cross) 
(name ?1nl) 
(master ?mstr) 
(n_slaves 1) 
(slaves ?slv) 
(status act1ve)) 

(object (is-a FEATURE) 
(name ?mstr) 
(label -hole&-sloUru&-step&-gap) 
(nature ?n1) 

(status act1ve)) 

=> 

(object (1s-a FEATURE) 
(name ?slv) 
(volume reel) 
(nature ?n1); same natures 5-7-96 
(status act1ve)) 

(1f (eq NO (Ask "Will resulting spht features have ACCESSIBILITY?') 
then (send ?int put-go_further NO) 

(send ?1nl put-status intentional ) 
else 

(send ?1nl put-status 1nact1ve) 
(send ?mstr ft_sphLcross ?slv) ) 

Figure 8-22: A Complex VDI Rule. 

PAGE195 



CHAPTERS' IMPLEMENTATION 

8.9.4.1 TESTING THIN-WALLS 

As discussed in Salmon (1997), a pure geometric reasoning approach for 

proxinuty (thin-wall) detection could be very demanding (requiring (n2 
- n)/2 

Boo lean intersection calculations) and cumbersome (requiring the use of a 

"Minkowski Sum" grow) for a precise detection. Bounding boxes were used 

mstead. 

Similarly, FRIEND uses the feature envelope and IS helped by the availability 

of the feature interaction cases and the feature envelope face properties (codes 

and projections) which makes the FRIEND prediction of possible thin-wall 

problems an almost trivial activity. 

To exemplify the proximity AOI, a thin-wall test rule using a fixed minimum 

wall thickness was established regardless of the machining method and 

material involved. Thin-wall cases were observed to originate from adjoint VI 

and disjoint VI cases and occur in two ways: feature-to-feature or feature-to

stock (see Figure 9-9): 

• Feature-to-stock disjoint cases, where a thin-wall appears between two 

features that are near each other but not touching; 

• Feature-to-feature adjoint cases, where a tlun-wall appears between two 

features despite the fact that they are touching each other; 

• Feature-to-stock adjoint cases, where a thin-wall appears when a feature 

touches the linuts of the stock-material; 

• Feature-to-feature disjoint cases, where a thin-wall appears when a feature 

is near the limits of the stock-material but not touching it; 

PAGE196 



CHAPTERS: IMPLEMENTATION 

In addition, a thin-wall AOI (TW) could be an active, inactive or intentional 

intent. An act1ve TW intent means that there is a possible thin-wall problem yet 

to be resolved. An inactive TW intent means that there is not a thin-wall 

problem, the possibility of the existence of a thin-wall problem has been 

discarded already or it has already been resolved. An intentional TW intent 

means that there is not a thin-wall problem but the features are close enough to 

execute the respective rules or that the features are close enough and should be 

left as they are because of an unforeseen reason. Figure 8-23 presents an 

example of a disjoint thin-wall feature-to-feature AOI test rule. 

(defrule tw_1 
(phase approval_reasomng) 
(ob1ect (1s-a INTERACTION) 

(master ?mstr) 
(name ?1nt) 
(slaves ?slv) 
(type VI) 
(code diSJoint) 
(status act1ve)) 

(obrect (is-a FEATURE) 
(name ?mstr) 
(1d -STOCK) 
(volume rect) 
(status act1ve)) 

(object (1s-a FEATURE) 
(name ?slv) 
(1d -STOCK) 
(volume rect) 
(status act1ve)) 

(test(<= (send (send ?mstr get-envelope) bb_d1stance (send ?slv get-envelope)) 5)) 
=> 
(If (eq YES (Ask "Is there a THIN WALL between features?")) 
then (send ?1nl put-code near) 

(send ?1nt put-go_further NO) 
else (send ?mt put-go_further NO) 

(send ?mt put-code far)) 
) 

Figure 8-23: A Thin-Wall AOI Test Rule. 

For a more complete implementation of the thin-wall analysis, it would be 

necessary to take into account the feature types, their orientations, the selected 

machining processes and tools for each feature and the material involved. 

PAGE197 



CHAPTERB·/MPLEMENTATION 

8.1 0 INTENTS MANAGEMENT EXAMPLES 

8.1 0.1 EXPERIENCE-BASED GUIDED ENRICHMENT 

Figure 8-24 presents an example of a guided ennchment for the eo-radius GDI. 

The rule automatically adds the INTENT between active features that are the 

result of splitting a feature. 

(defrule en_cor_g 
(phase ennchment) 
(object (Is-a INTENT) 

(code spiiUnto) 
(slaves $?slvs) 
(status active)) 

(object (is-a FEATURE) 
(name ?slv_1) 
(label ?lbl) 
(volume cyl) 
(status active)) 

(object (is-a FEATURE) 
(name ?slv_2&-?slv_1) 
(label ?lbl) 
(volume cyl) 
(status act1ve)) 

(test (member$ ?slv_1 ?slvs)) 
(test (member$ ?slv_2 ?slvs)) 
(not (object (is-a INTENT) 

(code co-rad1us) 
(master ?slv_1) (slaves ?slv_2))) 

(not (object (1s-a INTENT) 
(code co-rad1us) 
(master ?slv_2) (slaves ?slv_1))) 

=> 
(b1nd ?new (make-mstance of INTENT 

(master?slv_1) (slaves ?slv_2) (type StrGDI))) 
(send ?new put-code co-rad1us) 
(+ [REL] ?new) 
(send ?new put-status active) 
) 

Figure 8·24: An Experience-based Guided GDI Enrichment. 

Because of this it is not necessary to test their actual radii and It is considered 

that the eo-radius GDI is an important relationship between these features to 

overcome the fact that they have been split. The four actions performed by this 

PAGE198 



CHAPTERB: IMPLEMENTATION 

rule are to create a structural GDI INTENT, instanciate the eo-radius code, add 

the intent to the list of all RELATIONS and activate the new FbDI. 

Figure 8-25 presents a guided enrichment for the t_slot AOI. It is executed 

when a gap feature (see feature taxonomy adopted in this work in section 1.5.2) 

is nested@side of another rectangular feature and no such INTENT (active or 

inactive) already exists. 

( defrule en_aoi_ts 
(phase ennchment) 
(object (1s-a FEATURE) 

(name ?f1) 
(volume reel) 
(label gap) 
(status active)) 

(object (1s-a FEATURE) 
(name ?f2&-?f1) 
(volume reel) 
(label hole) 
(status active)) 

(Object (1s-a INTENT) 
(master ?f1) 

(slaves ?f2) 
(code nested@ side) 
(status act1ve)) 

(not (ObjeCt (1s-a INTENT) 
(master ?f1) 
(slaves ?f2) 
(code Lslot))) 

=> 
(b1nd ?new (make-Instance of INTENT 

(master ?f1) (slaves ?f2) (type AOI))) 
(send ?new put-code t_slot) 

(1f (eq YES (Ask "Can you work w1th aT _SLOT between master and slave")) 
then 
(send ?new put-status act1ve) 
else 
(send ?new put-status inactive)) 

(+ [REL] ?new) 
) 

Figure 8-25: An AOI Enrichment Rule. 

The AOI is created, instantiated and, according to the user's desire to 

acknowledge the FbDI, it is activated or inactivated. Therefore, if an inactive 

PAGE199 



CHAPTERB: IMPLEMENTATION 

AOI IS created, it will prevent the system from asking again for this relation 

between the same features (unless the conditions change). 

8.1 0.2 BLIND ENRICHMENT 

Figure 8-26 presents a blind search for a eo-radius GDI. It creates the INTENT 

for all pairs of cylindrical features that have equal radii where there is no 

(actzve, inactive or intentional) eo-radius INTENT between them. No other 

condition is implied. 

(defrule en_cor_b 
(phase ennchment) 
(objeCt (IS-a FEATURE) 

(name ?mstr) 
(volume cyl) 
(status act1ve)) 

(object (is-a FEATURE) 
(name ?slv&-?mstr) 
(volume cyl) 
(status act1ve)) 

(test (eq (send ?mstr get-rad1us) (send ?slv get-radius))) 
(not (object (1s-a INTENT) 

(code co-rad1us) 
(master ?mstr) 
(slaves ?slv))) 

(not (object (Is-a INTENT) 
(code co-rad1us) 
(master ?slv) 
(slaves ?mstr))) 

=> 
(b1nd ?new (make-mstance of INTENT 

(master ?mstr) 
(slaves ?slv) 
(type StrGDI))) 

(send ?new put-code eo-radius) 
(+ [REL] ?new) 

(1f (eq YES (Ask "Create co-rad1us INTENT between features 
?") 

) 

then; nothing to do, the default status IS act1ve 
else (send ?new put-status mact1ve)) 

Figure 8-26: Blind Co-radius GDI Enrichment. 

PAGE200 



CHAPTERS: IMPLEMENTATION 

8.1 0.3 VERIFICATION 

Figure 8-27 presents a verification for the eo-radius GDI. It simply checks the 

radu of features in the INTENT. It should either inactivate the GDI or change 

one of the features involved to make it comply with the conditions. Function 

not _yet means that the option has not yet been implemented. 

(defrule ve_cor 
(phase enrichment) 
(Object (1s-a FEATURE) 

(name ?mstr) 
(volume cyl)) 

(object (1s-a FEATURE) 
(name ?slv) 
(volume cyl)) 

(test (neq (send ?mstr get-radius) (send ?slv get-rad1us))) 
(object (1s-a INTENT) 

(name ?mt) 
(code co-rad1us) 
(master ?mstr) 
(slaves ?slv) 
(status act1vehntent1onal)) 

=> 
(1f (eq YES (Ask "Delete eo-radius GDI between master and slave? • 
then 

(send ?1nt put-status InactiVe) 
else 

(not_yet 'Should suggest change rad1us of master or slave') 
)) 

Figure 8-27: A Co-radius GDI Verification. 

PAGE201 



CHAPTER 8: IMPLEMENTATION 

Figure 8-28 presents a venfication statement for the t_slot AOI. It tests the 

status and type of the features involved as well as the required nested@side 

INTENT between them. It is implemented in an alternative, but equivalent, way 

to the outlme gtven in Figure 7-4 and Figure 7-5: It should be noticed that a 

Boolean test -(Condt AND Cond2 AND ... )is equal to (-Condt OR -Cond2 

OR ... ). If the t_slot IS to be removed it is inactivated, otherwise it is made 

intentional because it can not be considered active according to how it was 

defmed here. 

(defrule ve_aOI_ts 
(phase ennchment) 
(object (1s-a INTENT) 

(name ?mtent) 
(master ?11) 
(slaves ?12) 
(code t_slot) 
(status act1ve)) 

(not (and 
(Object (1s-a FEATURE) 

(name ?f1) 
(volume rect) 
(label gap) 
(status act1ve)) 

(object (1s-a FEATURE) 
(name ?12) 
(volume reel) 
(label hole) 
(status active)) 

(Object (1s-a INTENT) 
(master ?f1) 

(slaves ?f2) 

=> 

(code nested@slde) 
(status act1ve)))) 

(1! (eq YES (Ask "Delete T _SLOT between master and slave? ')) 
then 

else 
(send ?intent put-status 1nact1ve) 

(send ?Intent put-status 1ntent1onal) 
; should ed1t feature1 or feature2 
) 

Figure 8-28: An AOI Verification Rule. 

PAGE202 



CHAPTER8'/MPLEMENTATION 

8.10.4 INHERITANCE-BASED GUIDED ENRICHMENT 

Figure 8-29 presents an enrichment based on the fact that if a feature was 

created from the application of the split revalidation operation on another 

feature, the INTENTs assigned to the original feature are automatically 

inhented by the newly generated feature. It was found that most INTENTs 

conditioned by disjoint VI interaction cases can always be inherited. However, 

not all INTENTs conditioned by adJoint VI cases can always be inherited. 

(defrule lnhenLspiLact 
(phase enrichment) 
(object (is-a INTENT) 

(master ?mstr) 
(code split_into) 
(slaves $? ?slv $?) 
(status active)) 

(Object (1s-a INTENT) 
(name ?int) 
(master ?mstr) 
(code ?cd&obsoleted_byldeleted_by) 
(type ?tp) 
(n_slaves ?nslvs) 
(slaves $?the_other_slaves) 
(status 1nact1ve)) 

(object (is-a FEATURE) 
(name ?slv) 
(status act1vellntent1onal)) 

(not (Object (1s-a INTENT) 
(master ?slv) 
(code ?cd) 
(type ?tp) 
(slaves $?the_other_slaves))) 

=> 
; The ong1nal intent 1s removed 
(send ?int put-status Intentional) 

(bind ?new (make-Instance of INTENT 
(type ?tp) (master ?slv) (slaves ?the_other_slaves) (n_slaves ?nslvs))) 
(send ?new put-code ?cd) 
(+ [REL] ?new) 

(1f (eq YES (Ask "lnhent INTENT form master?") 
then ; nothing to do, default status is active 
else (send ?new put-status 1nact1ve)) 

Figure 8-29: An Inheritance Enrichment Rule Example. 

PAGE203 



CHAPTER8"/MPLEMENTATION 

8.11 FINAL REMARKS ON THE IMPLEMENTATION 

This research was conducted in two main implementation phases: 

• In the initial phase, the conceptual feature-based representation validation 

problem was identified (see section 1.2) and its ongins (see chapter 5 and 

section 3.5) were analysed. 

This led to the establishment of a validation framework (see section 3.3) 

and some revaltdation operations (section 6.2.3.3). Subsequently, a priority 

orgamsation Implied by the reasoning was obtained (section 7 .2). 

• In the second phase, the validation framework and the VDI's were thought 

to be suitable to be extended towards an intent-driven reasoning system 

where other types ofFbDI's were to be included (see section 4.3). 

However, a methodology to identify the elements of tlus wider system 

became necessary. Because a classification for features existed and 

similarly for feature interaction cases, this was considered an important 

aspect of the validation framework and as a possible approach. 

It was decided that a process sinular to feature elicitation (see section 1.5.2) 

was to be used towards the other elements (see section 4.2 and 6.1) which 

then helped identify and clarify FbDI's (see section 4.4) and operations 

(section 6.3). In addition, the ways of reasoning were extended to 

accommodate the other FbDI types (section 7.3). 

PAGE204 



CHAPTERS: IMPLEMENTATION 

8.12 SUMMARY 

The implementation of a prototype system, called FRIEND, has allowed the 

verification of the elements studied here (i.e. feature interactions, feature-based 

designer's intents, reasoning priority, intent management and feature-based 

operations) to compose a working DbF system. 

The interaction identification methodology has been applied using the feature 

envelope (bounding box) instead of the actual volume. Jnval1d!ty tests were 

implemented using rules in a knowledge-based system. Rules were typified and 

exemplified. 

The visualisation was carried out by a commercial CAD system that 

communicates with the reasoning system. 

PAGE205 



9. TEST CASES 

This chapter presents some feature-based part models as test 

cases for FRIEND. Some of these models have been used in the 

literature as test cases for feature-based modelling system 

implementations. It aims to show that the prototype system is 

able to represent and reason with components which have been 

modelled by and used to test the capabilitzes of other feature

based modellers. 

9.1 INTRODUCTION 

This chapter presents some test parts that are adaptations of parts published m 

the literature and modelled using feature-based modellers. They are 

adaptations of the original parts because: 

• Dimensions are frequently not specified for the parts; 

• The feature taxonomy used to describe the part could be different from that 

used by FRIEND; 

• Some invalid situations were deliberately introduced in the part definitions 

to observe how FRIEND would respond to them; 

• Some features implemented in other systems have not been implemented 

in the prototype system; 



CHAPTER 9· TEST CASES 

• Some geometric configurations have been simplified in order to save 

computmg time. 

9.2 STANDARD ORIENTATION 

Figure 9-1 presents most of the feature types implemented in FRIEND. They 

are placed in their standard orientation, i.e. the features are translated but not 

rotated relative to their defining template. Tlus is a different way of presenting 

FRIEND's feature taxonomy depicted in Figure 8-19. 

Figure 9-1: Features in Standard Orientation. 

The model is defined via a part descnption file (".prt") which is a simple way 

of describing all features that represent a model. This facility avOids the task 

of redefining the model feature by feature every time an analysis is to be 

performed. The '.prt" file for the part in Figure 9-1 appears in Figure 9-2. The 

".prt" file defines: 

• the total number of features in the part (where the stock-material is 

considered a satellite feature which has been in Figure 1-6); 

• their assigned names (which has nothing to do with their labels); 

PAGE207 



CHAPTER 9· TEST CASES 

• their volume type (rector cyl); 

• a radius to be used 1f the feature is cylindrical; 

. • two rotations to identify the onentation of the feature on the part; 

• two points to specify the envelope (bounding box): the minimum (bottom

left corner) and maximum (top-right corner) vertices of the bounding box 

in a left-handed coordinate system. 

12 
STOCK, satellite, rect, 0 
ong, orig 
-500 601030 
A, slot_tru, cyl, 2 
ong,ong 
550 101030 
B, slot, cyl, 1.5 
orig, orig 
1550 20105 
C, pocket, cyl, 2.5 
orig, ong 
15 5 10 20 10 15 
D, hole, cyl, 2.5 
ong,ong 
15020 201025 
E, slot, rect, 0 
ong,ong 
2550 30105 
F, pocket, rect, 0 
ong,ong 
25 5 10 30 10 15 
G, hole, rect, 0 
ong,ong 
25020 301025 
H, sloUru, rect, 0 
orig, ong 
4050 451030 
I, notch, rect, 0 
orig, orig 
3550 40105 
J, step, rect, 0 
ong,ong 
5550 601030 
K, notch, cyl, 5 
ong,ong 
5050 55105 

Figure 9-2: Part Description File Example. 

PAGE208 



CHAPTER 9· TEST CASES 

It should be noted that, because the features have faces with determined 

properties that go beyond simply descnbing the primitive volume (such as Top 

and Bottom, wluch could be thought of as a way of describing an upright 

orientation), two rotations are required and sufficient to obtain any orientation 

in a 3D environment. These rotations are limited though to a group which 

always produces a feature parallel to one of the Euclidean axes. 

The rotations in Figure 9-2 are set as "orig, orig", which means that their 

orientation have been left as the default. The features are called A, B, C, E, etc. 

The stock-material is considered to be a rectangular satellite feature of positive 

nature and should be defined as the first feature in the model which contains 

the remaining negative features. In addition, similarly to other work (Gindy89, 

Gao93), "blind" holes are classified as pocket features with a round or 

quadrangular profile. 

9.3 lABELLING 

Figure 9-3 presents a part from Martino and Giannini ( 1994a) where the 

labelling problem is highlighted. It is shown that the addition of a feature into 

a model could change all the existing features m the model. 

Figure 9-3(a) presents the original part contaming an upside down pocket 

(elsewhere called a non-through or blind hole) and a quadrangular hole (also 

called a through hole). The additiOn of a step feature renders the existing hole 

and pocket features invalid. Figure 9-3(b) presents the final part comprised of 

the incoming step, a slot_tru (originally the hole) and another hole (formerly 

the pocket). 

Figure 9-4 presents the description of the part in Figure 9-3(b) before and after 

the validatiOn reasonmg. 

PAGE209 



-~ 
/ 

' ' ' ' - ' 
o/ 

' 

' 
' ' ' ' ' 

(a) 

CHAPTER 9: TEST CASES 

(b) 

Figure 9-3: Martino and Giannini's Part. 

In this example, the major chfferences between the valid and invalid parts are 

(see bold text in Figure 9-4): 

• the HOLE-TRU feature, labelled as hole initially, receives the invalid 

status and is split into HOLE-TRU_l and HOLE-TRU_2. HOLE-TRU_l 

1s redundant to the volume of the step and therefore it is made obsolete and 

thus receives the intentional status. HOLE-TRU_2 is the remaining part 

that really affects the stock and thus receives the validated slot_tru label 

and an active/valid status. It should be noted that both envelopes are 

derived from the HOLE-TRU feature. 

• Sinularly, the BLIND-HOLE feature, labelled correctly at the beginning as 

a pocket, is split into invalid and valid parts. The valid part, BLIND

HOLE_2, is validated as a hole feature and receives the actzve status. 

• The STEP feature, labelled step, has indeed been found to be a step feature 

but FRIEND corrects its orientation (compare the orientation of the step 

features in Figure 9-3(b) with that presented in Figure 9-1). 

Both HOLE-TRU_l and BLIND-HOLE_! become intentional features 

because their volumetric mtention can reappear if the STEP feature is deleted. 

PAGE210 



Before and ... 
4 
STOCK 
satellite, rect, 0 
ong,ong 
000 201020 

HOLE-TRU 
hole, rect, 0 
ong, rz90 
02.58 207.513 

BLIND-HOLE 
pocket, cyl, 2 5 
orig, rz180 
7.5 01.5 12.5 7.5 6.5 

STEP 
step, rect, 0 
orig, orig 
050 201015 

CHAPTER 9: TEST CASES 

... After the Validation Reasoning 
(1): STOCK(gen1),BLUE (satellite, rect, act1ve), 
BBox: (1 :ong,2:ong) 
p = 0 0 0.0 0.0 p = 20 010 0 200 

(2): HOLE-TRU(gen7),_ (hole, rect, 1nact1ve), 
BBox: (1 :ong,2.rz90) 
p = 0.0 2.5 8.0 p = 20 0 7.5 13.0 

(3). BLIND-HOLE(gen16),_ (pocket, cyl, inact1ve), 
BBox: (1 :ong,2:rz180) 
p = 7.5 0.0 1.5 p = 12.5 7.5 6.5 

(4). STEP(gen25),GREEN (step, rect, active), 
BBox: (1 :orig,2:ry90) 
p = 0.0 5.0 0 0 p = 20.0 10.0 15.0 

(5): HOLE-TRU_1 (gen58),_ (hole, reel, intentional), 
BBox· (1·ong,2:rz90) 
p = 0.0 5.0 8.0 p = 20.0 7.5 13.0 

(6): HOLE-TRU_2(gen64),RED (slot_tru, rect, act1ve), 
Bbox: (1 :ong,2.ry90) 
p = 0.0 2.5 8.0 p = 20.0 5.0 13.0 

(7): BLIND-HOLE_1 (gen94),_ (pocket, cyl, Intentional), 
BBox: (1 :ong,2:rz180) 
p = 7.5 5.0 1.5 p = 12.5 7 56 5 

(8)· BLIND-HOLE_2(gen1 OO),YELLOW (hole, cyl, active), 
BBox: (1·orig,2·ong) 
p = 7 50 01.5 p = 12.5 5.0 6.5 

Figure 9-4: Martino and Giannini's Part Description. 

9.4 V A LID PART DESCRIPTION 

Figure 9-5 reproduces the part presented in Figure 1-9 before (a) and after (b) 

the validation reasoning performed by FRIEND. Figure 9-6 shows the 

corresponding part description file. The left-hand side of the figure shows the 

non-validated representation and the right-hand side shows FRIEND's output. 

The name of the feature is usually maintained from the ".prt" file unless the 

feature is split or merged with another in which case It will receive a numeric 

addendum (see features number 5 and 6 in the right-hand side of Figure 9-6) or 

the "+"sign (see feature number 8 in Figure 9-6) to indicate the original 

features, respectively. 

PAGE211 



CHAPTER 9: TEST CASES 

' 0! - ' 

(b) 

Figure 9-5: An Example Part Before (a) and After (b) Validation. 

The output produced by FRIEND lists all features in the model This list can 

also include invalid/inactive and intentional features in addition to the 

valid/active ones. The output gives the following information: 

• the name of the feature; 

• an internal variable (e.g. gen60) and a colour (only if it is a valid feature 

and should be visualised via the FRIEND-VIEW module); 

• the label; 

• the volume type (rector cyl); 

• the status (valid, invalid or intentional); 

• the validated envelope (Bbox) orientation represented by two rotations; 

• two points that specify the size and position of the envelope (minimum and 

maximum points); 

PAGE212 



Before and ... 
5 
STOCK 
satellite, rect, 0 
ong,ong 
000151020 

Ental he 
notch, reel, 0 
ong,ong 
10 50 15 10 10 

RasgoNaoPassante 
hole, rect, 0 
ong,ong 
0 7.5 2.5 510 7.5 

FuroNaoPassante 
slot_tru, cyl, 2.5 
orig, ong 
55125 101517.5 

RasgoQueAiteraTudo 

CHAPTER9:TESTCASES 

... After the Validation Reasoning 
(1): STOCK(gen1),BLUE (satellite, rect, act1ve), 
BBox. (1 :ong,2.ong) 
p = 0.0 0.0 0.0 p = 15.0 10 0 20.0 

(2): Entalhe(gen7),_ (notch, rect, inactive), 
BBox: (1·ong,2·ong) 
p = 10. 5. 0. p = 15. 10. 10. 

(3): RasgoNaoPassante(gen17),GREEN (slot_tru, rect, 
act1ve), 
BBox: (1·orig,2·ry90) 
p = 0 7.5 2.5 p = 5. 10. 7.5 

(4): FuroNaoPassante(gen51),_ (pocket, cyl, inactive), 
BBox: (1·orig,2:ong) 
p = 5. 5. 12.5 p = 10. 15. 17.5 

(5): FuroNaoPassante_1 (gen60),RED (pocket, cyl, 
act1ve), 
BBox: (1 :orig,2:orig) 
p = 5. 5. 12.5 p = 10. 10. 17.5 

slot, rect, 0 (6): FuroNaoPassante_2(gen66),_ (pocket, cyl, inactive), 
orig, orig BBox· (1 :ong,2·ong) 
550 101010 P=5.10.12.5P=10.15.17.5 

(7): RasgoQueAiteraTudo(gen82),_ (notch, rect, Inactive), 
BBox: (1 :ong,2:ong) 
p = 5. 5. 0. p = 1 0. 10. 10. 

(8). Rasgo&Entae+(gen126),YELLOW (notch, rect, 
act1ve), 
BBox: (1 :orig,2.ong) 
p = 5. 5. 0. p = 15. 10. 10. 

Figure 9-6: Non-validated and Validated Model Description. 

In addition, FRIEND was able to merge adjacent features to compose a 

"Rasgo&Entae+" feature, labelled notch, at the same time that it split the 

"FuroNaoPassante" feature, labelled hole, and discarded (made inactive) the 

obsolete part "FuroNaoPassante_2". FRIEND also corrects the label of the 

resulting "FuroNaoPassante_l" and calls it a pocket feature. These features are 

highlighted in the respective descriptions. Both these reasonings are related to 

the fittability VDI (see section 3.5.2.2) where the features had parameters too 

small or too large, respectively. 

PAGE213 



CHAPTER 9· TEST CASES 

Feature RasgoNaoPassante has been incorrectly defined as a slot feature and it 

appears corrected as a slot_tru feature (see feature 3 in the right-hand side of 

Figure 9-6). This is a typical example of the result of a simply labellmg 

reasoning presented in section 8.9.3 (Figure 8-21). 

As a result of the reasoning, some features were made inactive in order to give 

nse to a more accurate representation of the model using active features. 

9.5 MORPHOLOGICAL REASONING TEST 

Figure 9-7 presents a part similar to Figure 3-10 where a complete conceptual 

morphological validation process is carried out. Figure 9-7(a) shows the part 

with the original volumes of the features while Figure 9-7(b) shows the output 

after the application of associated Boo lean operations. 

FRIEND is able to discard part of the cylindrical slot outside the stock

material and the part overlapping the other slot feature. 

(a) 

- ' ' ' 

(b) 

Figure 9-7: Morphological Validation Reasoning. 

' 

In addition, the first added feature ("EnteredFeature") is incorrectly defined as 

a pocket instead of a slot, which appears corrected in the output listing (Figure 

9-8). However, FRIEND does not merge the resulting slots (as happens in 

PAGE214 



CHAPTER 9· TEST CASES 

Figure 3-10) because the resulting features have different radii. Nevertheless, 

the second cylindrical slot is redefined as slot_tru. 

Figure 9-8 presents the description of the part in Figure 9-7 before and after 

the conceptual morphological validation reasoning . 

Before and ... ... After the Validation Reasonina 
3 (1 ). STOCK(gen846),BLUE (satellite, reel, act1ve), 
STOCK BBox: (1·ong,2:ong) 
satellite, reel, 0 p = 0 0 0.0 0.0 p = 25.0 25.0 25.0 
ong,ong 
000 252525 (2)· EnteredFeature(gen852),GREEN (slot, reel, act1ve), 

BBox: (1 :ong,2:1)'90) 
EnteredFeature p = 0 0 10.0 5.0 p = 15.0 25.0 20.0 
pocket, reel, o 
ong, rz270 (3). EntenngFeature(gen891 ),_ (slot, cyl, inactive), 
0105 152520 BBox: (1.ong,2:1)'90) 

p = 12.0 10.0 5.0 p = 30.0 25.0 20.0 
EntenngFeature 
slot, cyl, 4 (4): EntenngFeature_1 (gen899),_ (slot, cyl, Inactive), 
ong,l)'90 BBox: (1.ong,2:1)'270) 
12105252520 p = 12 010.0 50 p = 25 0 25 0 20 0 

(5): EntenngFeature_2(gen905),_ (slot, cyl, Inactive), 
BBox: (1·ong,2:1)'90) 
p = 25 0100 50 p = 30.0 25.0 20.0 

(6): EntenngFeature_1_1 (gen932),_ (slot, cyl, intentional), 
BBox: (1.ong,2:1)'270) 
p = 12 0 10 0 50 p = 15.0 25.0 20.0 

(7). EntenngFeature_1_2(gen938),RED (slot_tru, cyl, active), 
BBox: (1 :ong,2.1)'90) 
p = 15.0 10.0 5.0 p = 25.0 25.0 20.0 

Figure 9-8: Part Description Before and After Validation. 

Because part of the "EnteringFeature" has a redundant VDI with the 

"EnteredFeature" the corresponding feature after the split revalidation 

operation ("EnteredFeature_l_l") receives the intentional status. This means 

that if the former "EnteredFeature" is deleted from the model, 

"EnteredFeature_l_l" can become active again. 

PAGE215 



CHAPTER 9· TEST CASES 

9.6 THIN WALL TEST CASES 

Figure 9-9 shows four example parts produced to demonstrate how FRIEND 

identifies proximity AOI's (thin-walls). The figure suggests that tlun-wall 

reasoning can be bmlt upon feature mteraction cases: 

• feature-to-feature adjoint cases are exemplified by a part where a curved 

face of a step touches the bottom cylindrical face of a hole feature; 

• feature-to-feature disjoint cases are exemplified by a part where a through 

slot is too close to a step feature; 

• feature-to-STOCK adjoint cases are exemplified by a part where a curved 

face of a step feature occurs at the limits of the stock material, and; 

• feature-to-STOCK disjoint cases are exemplified by a part where hole 

features are too close to the limits of the stock material. 

Adjoint 

Cases 

Disjoint 

Cases 

Feature-to-Feature Feature-to-STOCK 

Figure 9-9: Thin-Wall Cases. 

PAGE216 



---------------------'C!.OH=:A.PTER 9' TESTC:A.SES 

Figure 9-10 presents the validated output produced by FRIEND for the part 

exemplified m the bottom left corner of Figure 9-9, which corresponds to a 

feature-to-feature disjoint thin-wall case. The rule for th!s case was presented 

in Figure 8-23. The volumetric (VI) and boundary (BI) interactions that were 

obtained from the model and used m the reasoning of proximity AOI are 

shown in Figure 9-11 

(1): STOCK(gen1),BLUE (satellite, reel, actJve), BBox: {1:ong,2:ong) 
p = 0.0 0.0 0 0 p = 20.015.0 25.0 

(2): green(gen7),GREEN (slot_tru, cyl, actJve), BBox. (1.ong,2:ry90) 
p = 0.0 5.0 7.0 p = 20.015.016.0 

(3): red(gen23),RED (step, cyl, active), BBox: (1·ong,2:ry90) 
p = 0.0 5.0 0.0 p = 20 015.0 6 0 

(4): yellow(gen35),YELLOW (pocket, cyl, act1ve), BBox: (1 :ong,2:ong) 
p = 2.0 5.018 0 p = 6 015.0 22 0 

{5). pmk(gen51),PINK (pocket, cyl, actJve), BBox: (1:orig,2·orig) 
P=14050180 P=18015.022.0 

Figure 9-10: Description of a Part containing Thin-Walls. 

(red, RED)-> near-> (1): (green,GREEN) 
(yellow, YELLOW)-> near-> (1)· (green,GREEN) 
(yellow, YELLOW)-> diSJOint-> (1): (red,RED) 
(pmk,PINK) ->near-> (1): (green,GREEN) 
(pink,PINK) ->disjoint-> (1): (red, RED) 
(pink,PINK) ->disjoint-> (1): (yellow, YELLOW) 
(green,GREEN) ->limited-> (1): (STOCK,BLUE) 
(red,RED) -> limited -> (1 ): (STOCK, BLUE) 
(yellow,YELLOW) ·>limited·> (1): (STOCK,BLUE) 
(pink,PINK) ->limited-> (1). (STOCK, BLUE) 

Figure 9-11: Volumetric and Boundary Interactions. 

It is considered that the following thin-wall cases happen in this part: between 

the step called "red" and the slot_tru feature called "green"; between both 

pocket features, called "yellow" and "pink" and the slot_tru feature called 

"green". The existence of this type of proximity AOI can be tested directly 

from the disjoint volumetric interaction (VI) cases, which can thus be 

P:A.GE217 



CHAPTER 9· TEST CASES 

confirmed or not, generating the near or far diSJOint VI cases (highlighted in 

Figure 9-11, see also section 8.9.4.1). 

9.7 CHANG'S PART 

Figure 9-12: Chang's Test Part. 

Chang (1990:208) studied the problems associated with expert process 

planning for manufacturing. Figure 9-12 reproduces a test part used to discuss 

the problems and reasonings related to the generation of automatic process 

plans. Figure 9-13 presents the validated output for this test part. 

(1): STOCK(gen585),BLUE (satellite, reel, act1ve), BBox: (1:ong,2·ong) 
p = 0.0 0 0 0 0 p = 15.0 10.0 22.0 
(2): CentreSiot-F1(gen591),GREEN (sloUru, reel, active), BBox: (1·orig,2·ry90) 
P =007.040 P= 15010.018.0 
(3): MldHole-F12(gen637),RED (pocket, cyl, active), BBox: (1·orig,2:ong) 
p = 8.0 50 8 5 p = 13 0 7.0 13 5 
(4): MidHole-F13(gen70),YELLOW (hole, cyl, act1ve), BBox: (1·ong,2 ong) 
p = 9 0 0.0 9 5 p = 12 0 5.0 12.5 
(5): EnterSiot·F14(gen682),PINK (slot, rect, act1ve), BBox: (1:ong,2.ry90) 
p = 0 0 4.0 9 0 p = 4.0 7.0 13 0 
(6): UnderStep-F15(gen719),RED (step, rect, act1ve), BBox: (1:ong,2:rz180) 
p = 0.0 0.0 0.0 p = 4.02 0 22 0 
(7): Hole1-F1 O(gen771 ),LIGHTBLUE (pocket, cyl, act1ve), BBox: (1 :ong,2:ong) 
P = 1.0 801.0 P=30 10.03.0 
(8): Hole2-F9(gen790),BLACK (pocket, cyl, act1ve), BBox: (1.ong,2.ong) 
p = 12.0 8.0 1.0 p = 14.0 10.0 3.0 
(9): Hole3-F7(gen814),GRAY (pocket, cyl, act1ve), BBox: (1·ong,2·ong) 
p = 12 0 8 0 19 0 p = 14.0 10.0 21.0 
(10): Hole4·F8(gen843),RED (pocket, cyl, act1ve), BBox: (1:ong,2·ong) 
p = 1 0 8.019 0 p = 3 010.0 21.0 

Figure 9-13: Validated Output for Chang's Test Part. 

PAGE218 



CHAPTER 9: TEST CASES 

One strategy adopted by Chang (1990) was to identify "clusters" of features 

that share the same tool and/or tool access direct:J.on. This information is used 

to reason about setup planning. A hierarchical graph that identifies various 

types of precedence (such as structural precedence due to process geometry 

constraints and loose precedence due to good manufactunng practice) is 

considered for reasoning about precedence planning. 

(M1dHole-F12,RED) ·> nested@bot ·> (1): (CentreSiot-F1,GREEN) 
(MidHole-F13,YELLOW) ·> nested@bot ·> (1): (M1dHole-F12,RED) 
(M1dHole-F13,YELLOW) ·>parallel-> (1): (MidHole-F12,RED) 
(MidHole-F13,YELLOW) ->concentric·> (1): (MidHole-F12,RED) 
(Enter51ot-F14,PINK) -> nested@bot -> (1): (CentreSiot-F1,GREEN) 
(EnterSiot-F14,PINK) ·> parallel ·> (1 ): (CentreSiot-F1 ,GREEN) 
(Hole1-F10,LIGHTBLUE) ·>parallel-> (1)· (M1dHole-F13,YELLOW) 
(Hole1-F10,LIGHTBLUE) ·>parallel-> (1): (MidHole-F12,RED) 
(Hole2-F9,BLACK) ·> eo-radius ·> (1 ): (Hole1-F1 O,LIGHTBLUE) 
(Hole2-F9,BLACK) ->parallel-> (1): (Hole1-F10,LIGHTBLUE) 
(Hole2-F9,BLACK) ·>parallel·> (1): (MidHole-F13,YELLOW) 
(Hole2-F9,BLACK) ->parallel-> (1): (MidHole-F12,RED) 
(Hole3-F7,GRAY) ·> eo-rad1us ·> (1): (Hole2-F9,BLACK) 
(Hole3-F7,GRAY) ·>eo-radiUS-> (1): (Hole1-F10,LIGHTBLUE) 
(Hole3-F7,GRAY) ·>parallel-> (1): (Hole2-F9,BLACK) 
(Hole3-F7,GRAY) ·>parallel-> (1): (Hole1-F10,LIGHTBLUE) 
(Hole3-F7,GRAY) ·>parallel-> (1): (M1dHole-F13,YELLOW) 
(Hole3-F7,GRAY) ·>parallel-> (1): (M1dHole-F12,RED) 
(Hole4-F8,RED) -> eo-rad1us ·> (1): (Hole3-F7,GRAY) 
(Hole4-F8,RED) ·> eo-radiUS ·> (1 ): (Hole2-F9,BLACK) 
(Hole4-F8,RED) ·>eo-radiUS·> (1): (Hole1-F10,LIGHTBLUE) 
(Hole4-F8,RED) ·>parallel-> (1): (Hole3-F7,GRAY) 
(Hole4-F8,RED) ·> parallel ·> (1 ): (Hole2-F9,BLACK) 
(Hole4-F8,RED) ->parallel·> (1): (Hole1-F10,LIGHTBLUE) 
(Hole4-F8,RED) ->parallel-> (1): (M1dHole-F13,YELLOW) 
(Hole4-F8,RED) ->parallel-> (1): (MidHole-F12,RED) 

(MidHole-F13,YELLOW) ·> c_bore ·> (1): (MidHole-F12,RED) 
(Hole1-F10,LIGHTBLUE) ·> coEAD -> (1): (MidHole-F12,RED) 
(Hole2-F9,BLACK) -> eoEAD -> (1): (Hole1-F10,LIGHTBLUE) 
(Hole2-F9,BLACK) -> eoEAD ·> (1 )• (MidHole-F12,RED) 
(Hole3-F7,GRAY) ·> eoEAD -> (1): (Hole2-F9,BLACK) 
(Hole3-F7,GRAY) -> eoEAD ·> (1): (Hole1-F10,LIGHTBLUE) 
(Hole3-F7,GRAY) ·> eoEAD -> (1): (M1dHole-F12,RED) 
(Hole4-F8,RED) -> eoEAD -> (1). (Hole3-F7,GRAY) 
(Hole4-F8,RED) ·> eoEAD ·> (1) (Hole2-F9,BLACK) 
(Hole4-F8,RED) ·> eoEAD -> (1 ): (Hole1-F1 O,LIGHTBLUE) 
(Hole4-F8,RED) -> eoEAD ·> (1): (M1dHole-F12,RED) 

Figure 9-14: Designer's Intents to Assist Precedence and Setup Planning. 

PAGE219 



CHAPTER 9: TEST CASES 

Although generating plans is not FRIEND's major concern, it gathers 

valuable information during the design process that can be reachly used for 

similar clustering and hierarchical reasoning. For instance, the various types of 

GDI' s and AOI' s presented in Figure 9-14 obtained while modelling the part 

are examples of such valuable information. In adchtion, FRIEND recognises 

the existence of a compound AOI and assigns the appropriate counter _bore 

intent between the hole features in the test part. 

9.8 A LOST INTENTION? 

Perng and Chang (Perng97b) studied the problems associated with editing a 

feature-based model. Figure 9-16 gives the validated output description of the 

part in the Figure 9-15(b). It should be noted (see bold text in the figure) that 

some features have an inactive status (such as Holel, which was split due to a 

cross mteractJ.on With USlotTop) wlule others have an intentional status (such 

as Holel_l, Hole1_2 and Holel_3, which had their volumes obsoleted_by 

other feature). 

The major concern was the efficient updating of the solid modellmg (both B

rep and CSG) representations. The conceptual validation problem for the part 

shown m Figure 9-15(a) arose where the enlargement of the T-slot top part led 

to the Hole! feature vanishing. Besides asking "how can the system derive the 

modified B-rep efficiently", it was also necessary to ask "How shall the 

vanished Hole! be dealt with?". 

PAGE220 



CHAPTER9·TE5TCA5E5 

(a) (b) 

Figure 9-15: The Vanished Hole Feature. 

FRIEND deals with the problem posed by Pemg and Chang in the following 

way: Every time a feature volume becomes contained within another feature 

volume, the former is made obsolete and receives an intentional status. This 

happens for the part of the hole feature that is crossed by the US lot-Top as 

well as for both remaining hole features that became contained within the top 

of the T-Slot feature. This means that if the TSlotTop is subsequently removed 

or reduced in size the hole feature will reappear in the model. It should be 

noted that although FRIEND does not provide a T-Slot feature, it recognises it 

usmg the rule given in Figure 8-25 and ass1gns the appropriate feature-based 

designer's intent (the t_slot AOI) to the model. 

F1gure 9-17 presents the FbDI' s gathered from the resulting part discussed 

above. The split_into and the obsoleted_by VDI's mentioned above are 

highlighted in the figure. Some of the FbDI' s have an intentional status 

because the relationship has only one active feature. 

Note that spl!t_into VDI has an inactive status according to the 

"act_int_dead_feat' intent management rule described in section 7.4.3. 

PAGE221 



CHAPTER 9· TEST CASES 

(1): STOCK(gen1),BLUE (satellite, rect, act1ve), BBox: (1.ong,2:ong) 
p = 0 0 0.0 0.0 p = 10 0 10.0 20.0 

(2): Step1(gen7),GREEN (step, rect, act1ve), BBox: (1·orig,2·ry90) 
p = 0 0 2.0 0.0 p = 10 010.0 6.0 

(3)· Step2(gen36),RED (step, rect, act1ve), BBox: (1 :ong,2:ry270) 
p = 0.0 2.0 14.0 p = 10.0 10.0 20 0 

(4): US1ot-Top(gen67),YELLOW (slot_tru, rect, active), BBox: (1:orig,2:orig) 
p = 2.0 50 6.0 p = 8.0 10.0 14.0 

(5): Hole1(gen94),_ (hole, cyl, Inactive), BBox: (1:ong,2.rz90) 
p = 0.0 6.0 9.0 p = 10 0 8 0 11 0 

(6): Hole1_1(gen106),_ (hole, cyl, intentional), BBox: (1·orig,2·rz90) 
p = 0.0 6.0 9.0 p = 2.0 8.0 11.0 

(7): Hole1_2(gen112),_ (hole, cyl, intentional), BBox: (1:orig,2·rz90) 
p = 2.0 6.0 9.0 p = 8.0 8.0 11.0 

(8): Hole1_3(gen118),_ (hole, cyl, intentional), BBox: (1:ong,2.rz90) 
p = 8.0 6.0 9.0 p = 10.0 8.0 11.0 

(9): TSiotUnder(gen156),PINK (gap, rect, act1ve), BBox: (1:orig,2·ry90) 
p = 0.0 0 0 9.0 p = 10 0 2 0 11.0 

(10): TSLotTop(gen230),RED (hole, rect, act1ve), BBox: (1.ong,2 rz90) 
p = 0.0 2.0 8.0 p = 10 0 8 012.0 

Figure 9-16: Description ofPerng and Chang's Part. 

PAGE222 



CHAPTER 9: TEST CASES 

INTENT HleGDI(gen398) Go: YES, active 
(USiot-Top,YELLOW) -> nested@bot -> (1): (Step1 ,GREEN) 

INTENT HJeGDI(gen399) Go: YES, active 
(USiot-Top,YELLOW) ·> nested@bot -> (1): (Step2,RED) 

INTENT VDI(gen431) Go· NO, Inactive 
(Hole1 ,_) -> split_into -> (2): (Hole1_1 ,_) (Hole1_2,_) (Hole1_3,_) 

INTENT VDI(gen448) Go: YES, intentional 
(Hole1_2,_) -> obsoleted_by -> (1): (USiot-Top,YELLOW) 

INTENT H1eGDI(gen453) Go: YES, intentional 
(Hole1_1,_) -> nested@sJde -> (1): (USiot-Top,YELLOW) 

INTENT HleGDI(gen454) Go: YES, intentional 
(Hole1_3,_) -> nested@sJde -> (1): (USiot-Top,YELLOW) 

INTENT PosGDI(gen457) Go: YES, active 
(Hole1_3,_) ->concentric-> (1): (Hole1_1,_) 

INTENT StrGDI(gen458) Go: YES, act1ve 
(Hole1_3,_) ->eo-radius-> (1): (Hole1_1,_) 

INTENT VDI(gen552) Go: YES, Intentional 
(Hole1_1,_) -> obsoleted_by -> (1): (TSLotTop,RED) 

INTENT VDI(gen553) Go: YES, intentional 
(Hole1_3,_) -> obsoleted_by -> (1): (TSLotTop,RED) 

INTENT HleGDI(gen611) Go: YES, act1ve 
(TSiotUnder,PINK) -> nested@side -> (1): (TSLotTop,RED) 

INTENT AOI(gen612) Go· YES, act1ve 
(TSiotUnder,PINK) -> t slot-> (1): (TSLotTop,RED) 

Figure 9-17: Some Recognised Intentions. 

By analysing F1gure 9-17, it can be inferred that the Holel fe.ature was split 

into three features which are subsequently all made obsoleted_by another two 

features (for two different reasons, Le. interactions). This means that if the 

features that caused them to become obsolete (USlot-Top and TSlotTop) are 

subsequently deleted, FRIEND will merge them together and create another 

hole feature with the same volumetrzc intention as the former holel feature 

(although it is considered not to be the original Holel feature because of 

historical reasons). 

PAGE223 



CHAPTER 9· TEST CASES 

Some of the FbDI's highlighted in Figure 9-17 (such as Hole1_3 concentric 

Hole1_1) are kept active because both features have mtentional status. In this 

way, if any of the features involved are later reactivated the formerly identified 

intent would be there and the designer would not be consulted on th!s again. 

INTERACTION Vl(gen546) Go: NO, act1ve 
(TSLotTop,RED) ->general-> (1). (USiot-Top,YELLOW) 

INTERACTION Vl(gen549) Go: NO, act1ve 
(TSLotTop,RED) ->adJOin!-> (1): (TSiotUnder,PINK) 

INTERACTION Vl(gen550) Go: NO, act1ve 
(Hole1_3,_) -> hm1ted -> (1): (TSLo!Top,RED) 

INTERACTION Vl(gen551) Go: NO, act1ve 
(Hole1_1,_) -> hm1ted -> (1): (TSLo!Top,RED) 

INTERACTION Vl(gen435) Go: NO, act1ve 
(Hole1_1 ,_)->adjoin!-> (1): (USiot-Top,YELLOW) 

INTERACTION Vl(gen439) Go: NO, act1ve 
(Hole1_2,_) ->limited-> (1): (USiot-Top,YELLOW) 

INTERACTION Vl(gen440) Go: NO, act1ve 
(Hole1_2,_) ->adJOin!-> (1 ): (Hole1_1,_) 

INTERACTION Vl(gen444) Go· NO, active 
(Hole1_3,_) ->adjoin!-> (1): (USiot-Top,YELLOW) 

INTERACTION Vl(gen446) Go: NO, act1ve 
(Hole1_3,_) ->adjoin!-> (1)· (Hole1_2,_) 

INTERACTION Vl(gen350) Go: NO, active 
(Step2,RED) ->disJOint-> {1): (Step1,GREEN) 

INTERACTION Vl(gen410) Go. NO, inactive 
(Hole1,_) ->cross-> (1): (USiot-Top,YELLOW) 

Figure 9-18: Some Feature Interactions in Perng and Chang's Part. 

Figure 9-18 shows, among other things, that a general feature interaction 

happened between the USlot-Top and TSlotTop features, which means that 

none of the interaction cases that can be treated elegantly by FRIEND could 

be identified. In addition, the cross interaction between Holel and USlot-Top 

is shown With an inactive status because it was already used by a reasoning. 

PAGE224 



CHAPTER 9; TEST CASES 

9.9 INFORMATION FOR PROCESS PLANNING 

9.9.1 VISUALISATION 

Figure 9-19 presents a part file used in Mantyla et al. (1989) to discuss process 

planning problems. The figure shows the feature volumes for both the invalid 

(a) and validated (b) part. Both descriptions (presented in Figure 9-20) produce 

the same visual appearance (Figure 9-21) when the Boolean operations are 

applied. 

(a) (b) 

Figure 9-19: Visualisation Without Applying Boolean Operations . 

Before and ... 
13 
STOCK 
satellite, reel, 0 
ong,ong 
000 57933 

Hole1 
hole, eyl, 3 
orig, ong 
38 0 4.5 44 9 10.5 

Hole2 
hole, eyl, 3 
ong,ong 
38 0 22.5 44 9 28.5 

... After Validation Reason in 
(1): STOCK(gen1721),BLUE (satellite, reel, act1ve), 
BBox: (1 :ong,2 on g) 
p = 0.0 0.00 0 p = 57.0 9 0 33 0 

(8): Stp-Up(gen1847),GREEN (step, reel, active), 
BBox: (1 :ong,2:ong) 
p = 17.0 4.5 0.0 p = 57.0 9.0 33.0 

(10): Hole1_2(gen1894),RED (hole, cyl, active), 
BBox: (1 ong,2.ong) 
p = 38.0 0 0 4.5 p = 44.0 4.5 10.5 

(12): Hole2_2(gen1925),YELLOW (hole, cyl, act1ve), 
BBox: (1 ong,2.ong) 
p = 38 0 0.0 22.5 p = 44 0 4.5 28 5 

PAGE225 



Hole3 
hole, cyl, 3 
ong,ong 
50012 56918 

Holea 
hole, cyl, 2.5 
ong,ong 
27013296 

Holeb 
hole, cyl, 2.5 
ong,ong 
27027 32932 

Holec 
hole, cyl, 2.5 
ong, orig 
51027 56932 

Stp-Up 
step, rect, 0 
ong, rx90 
17450 57933 

Hole Transversal 
hole, cyl, 1.5 
rx270, ry90 
038 15611 

Slot 
slot, rect, 0 
ong,ong 
700 11928 

Stp-Comer 
slot, reel, 0 
ong,ong 
000 2695 

Step-front 
step, reel, 0 
ong, rz270 
005 2918 

Holao 
hole, cyl, 5 
orig, ry270 
4014 14924 

CHAPTER~TESTCASES 

(14)· Hole3_2(gen1956),PINK (hole, cyl, active), 
BBox: (1·ong,2·orig) 
p =50 0 0 012.0 p =56 0 4.518.0 

(16): Holea_2{gen1987),RED (hole, cyl, act1ve), 
BBox: (1 :orig,2:ong) 
p = 27.0 0 01.0 p = 32.0 4.5 6.0 

(18): Holeb_2(gen2018),LIGHTBLUE (hole, cyl, act1ve), 
BBox: (1.ong,2 ong) 
p = 27.0 0 0 27.0 p = 32.04.5 32 0 

{20): Holec_2(gen2049),BLACK (hole, cyl, active), 
BBox: (1 :ong,2:ong) 
p = 51.0 0 0 27 0 p = 56.0 4.5 32.0 

(22): Slot(gen2152),GRAY (slot_tru, rect, act1ve), 
BBox: (1 :orig,2:rx270) 
p = 7 0 0 0 0 0 p = 11.0 9.0 28.0 

(24). Stp-Comer_1 (gen2235),RED (face, reel, active), 
BBox: (1 ong,2:rx270) 
p = 00 0 0 0 0 p = 7.0 9.0 5.0 

(26): Stp-Comer_3(gen2247),DARKGREEN (step, rect, 
active), 
BBox: (1 :rx90,2:ry180) 
p = 11.0 0.0 0 0 p = 26.0 9 0 5.0 

(27): Step-front(gen2320),GREEN (step, rect, act1ve), 
BBox: (1 :rx90,2:ry180) 
p = 0 0 0 0 5.0 p = 2 0 9.0 18 0 

(30): HoleTransversal_2_1 (gen2420),BLACK (hole, cyl, 
act1ve), 
BBox: (1 :orig,2·rz90) 
P=20 3.080 P = 706011.0 

(32): HoleTransversa1_2_3{gen2432),GRAY (pocket, cyl, 
act1ve), 
BBox: (1 :ong,2:rz90) 
p = 11.0 3.0 8.0 p = 15.0 6.011.0 

(33): Holao(gen2513),LIGHTBLUE (hole, cyl, active), 
BBox: (1 :ong,2:ry270) 
p = 4 0 0.0 14.0 p = 14.0 9.0 24.0 

Figure 9-20: Mlintylii et al's Part Descriptions. 

Some RDI's can be obtained from this part and can be used for process 

planning. In particular, the eo-radius, parallel and concentric GDI's could 

PAGE226 



CHAPTER9·TESTCASES 

help identify groups of hole features to be machined in the same setup and 

even with the same process and tool. 

The last eo-radius GDI and the concentric GDI (both presented in bold in 

Figure 9-22) were obtained through guided enrichment (because they were 

both originally split from the same feature, see section 8.1 0.1 ). All the other 

co-rad1us GDI's were obtained from blind enrichment rules (see section 

8.10.2). 

Figure 9-21: Miintylii' et al's Part. 

FRIEND also recognised a possible accessibility problem (see section 8.9.4 

and Figure 8-22) when splitting the "HoleTransversal" feature. However, it 

was considered acceptable just to be able to exemplify in this same part the 

various ennchment reasonings. 

PAGE227 



CHAPTER 9· TEST CASES 

(Holec_2,BLACK) -> nested@bot -> (1)· (Stp-Up,GREEN) 
(Holec_2,BLACK) ->parallel-> (1): (Holeb_2,LIGHTBLUE) 
(Holeb_2,LIGHTBLUE) -> nested@bot -> (1): (Stp-Up,GREEN) 
(Holea_2,RED) -> nested@bot -> (1): (Stp-Up,GREEN) 
(Hole3_2,PINK) -> nested@bot -> (1): (Stp-Up,GREEN) 
(Hole2_2,YELLOW) -> nested@bot -> (1): (Stp-Up,GREEN) 
(Hole1_2,RED) -> nested@bot -> (1): (Stp-Up,GREEN) 
(Holec_2,BLACK) ->eo-radius-> (1): (Holeb_2,LIGHTBLUE) 
(Holec_2,BLACK) ->eo-radius-> (1): (Holea_2,RED) 
(Holeb_2,LIGHTBLUE) ->eo-radius-> (1): (Holea_2,RED) 
(Hole3_2,PINK) ->eo-radius-> (1): (Hole2_2,YELLOW) 
(Hole3_2,PINK) ->eo-radius-> (1 ): (Hole1_2,RED) 
(Hole2_2,YELLOW) ->eo-radius-> (1): (Hole1_2,RED) 
(Holec_2,BLACK) ->parallel-> (1): (Holea_2,RED) 
(Holec_2,BLACK) ->parallel-> (1): (Hole3_2,PINK) 
(Holec_2,BLACK) ->parallel-> (1): (Hole2_2,YELLOW) 
(Holec_2,BLACK) ->parallel-> (1): (Hole1_2,RED) 
(Holeb_2,LIGHTBLUE) ->parallel-> (1): (Holea_2,RED) 
(Holeb_2,LIGHTBLUE) ->parallel-> (1): (Hole3_2,PINK) 
(Holeb_2,LIGHTBLUE) -> parallel-> (1 ): (Hole2_2,YELLOW) 
(Holeb_2,LIGHTBLUE) ->parallel-> (1): (Hole1_2,RED) 
(Holea_2,RED) ->parallel-> (1): (Hole3_2,PINK) 
(Holea_2,RED) ->parallel-> (1): (Hole2_2,YELLOW) 
(Holea_2,RED) ->parallel-> (1): (Hole1_2,RED) 
(Hole3_2,PINK) ->parallel-> (1): (Hole2_2,YELLOW) 
(Hole3_2,PINK) ->parallel-> (1): (Hole1_2,RED) 
(Hole2_2,YELLOW) ->parallel-> (1): (Hole1_2,RED) 
(Stp-Corner_1,RED) -> nested@slde -> (1): (Siot,GRAY) 
(Stp-Corner_3,DARKGREEN) -> nested@side -> (1): (Siot,GRAY) 
(Stp-Corner_1,RED) ->parallel-> (1): (Stp-Up,GREEN) 
(HoleTransversai_2_1,BLACK) -> nested@slde -> (1): (Slot, GRAY) 
(HoleTransversai_2_1,BLACK) -> nested@bot -> (1): (Step-front,GREEN) 
(HoleTransversa1_2_3,GRAY) -> nested@side -> (1): (Siot,GRAY) 
(HoleTransversai_2_3,GRAY) ->parallel-> (1): (HoleTransversai_2_1,BLACK) 
(HoleTransversa1_2_3,GRAY) ->concentric-> (1): (HoleTransversai_2_1,BLACK) 
(Step-front,GREEN) -> nested@bot -> (1)· (Stp-Corner_1,RED) 
(HoleTransversal 2 3,GRAY) ->eo-radius-> (1): (HoleTransversal 2 1,BLACK) 

Figure 9-22: RDI's for Miintylii et al's Part. 

PAGE228 



CHAPTER 9· TEST CASES 

9.9.2 REDESIGN 

Figure 9-23 presents an example of a slotted cross-shaped feature-based part 

built and validated by FRIEND. This part was adapted from a study reported 

in Das96 on setup planning and automated redesign suggestions. Figure 9-24 

presents a list of all valid features output by FRIEND after the validation 

reasoning. 

Figure 9-23: A Slotted Cross-Shaped Part. 

Note that all features have a quadrangular volume type, except the hole 

feature. A redesign suggestion can be made by considering the FbDI's in 

Figure 9-25 to obtain various alternative representations including some 

cylindrical volume types. This simple change can produce a better part from 

the cost and tlme savings perspective. 

PAGE229 



CHAPTER 9· TEST CASES 

(1): STOCK(gen1),BLUE (satellite, reel, act1ve), BBox: (1:ong,2:ong) 
p = 0 0 0 0 0 0 p = 20 0 5.0 20.0 

(6): CentreHole(gen177),GREEN (hole, cyl, act1ve), BBox: (1:orig,2:ong) 
P=800080 P=12.05.012.0 

(7): SL 1 (gen190),RED (slot_tru, reel, active), BBox: (1 :ong,2:rx270) 
p = 5.0 0.0 0 0 p = 15 0 5.0 3.0 

(8): STP1_1(gen207),YELLOW (step, rect, active), BBox: (1:rx180,2.ry90) 
p = 0.0 0.0 0.0 p = 5.0 1.51.0 

(10): STP1_3(gen219),PINK (step, rect, act1ve), BBox: (1·rx180,2:ry90) 
p = 15 0 0 0 0 0 p = 20 0 1.5 1.0 

(11): STP2_1 (gen256),RED (step, rect, active), BBox· (1·ong,2·ry90) 
p = 0.0 3.5 0 0 p = 5 0 5.0 1.0 

(13): STP2_3(gen268),LIGHTBLUE (step, rect, active), BBox· (1:ong,2:ry90) 
p = 15 0 3 50 0 p = 20 0 501.0 

(14): SL2(gen308),BLACK (slot_tru, rect, act1ve), BBox: (1.ong,2.rx90) 
p = 8.0 0.0 15.0 p = 12.0 5.0 17.0 

(15): SL3(gen361),GRAY (slot_tru, rect, act1ve), BBox: (1.ong,2:rx90) 
p = 5.0 0.0 17 0 p = 15.0 5.0 20.0 

(16): STP4_1 (gen413),RED (step, reel, act1ve), BBox: (1·ong,2:ry270) 
p = 0 0 3519.0 p =50 50 20.0 

(18): STP4_3(gen425),DARKGREEN (step, reel, act1ve), BBox: (1.ong,2·ry270) 
p = 15 0 3 5 19.0 p = 20.0 5.0 20.0 

(19): STP3_1(gen474),GREEN (step, rect, act1ve), BBox: (1:rx90,2:rz270) 
P=OOOO 190 P =50 1.520.0 

(21). STP3_3(gen486),BLACK (step, reel, active), BBox: (1:rx90,2:rz270) 
P=15.000190 P=20.01.5200 

(22): SL4(gen602),GRAY (slot_tru, rect, act1ve), BBox: (1 :ong,2:rx270) 
p = 8.0 0.0 3 0 p = 12.0 5.0 50 

(24): Sllateral1(gen675),LIGHTBLUE (sloUru, reel, active), BBox: (1:rx90,2:ry270) 
p = 0.0 0.0 6 0 p = 3 0 5.0 14 0 

(25): Sllateral2(gen746),LIGHTGRAY (sloUru, reel, act1ve), BBox: (1:rx90,2:ry270) 
p = 3 0 00 8.5 p = 4.5 5.011.5 

(26): Sllateral3(gen831),BLUE (slot_tru, rect, act1ve), BBox: (1.rx90,2.ry90) 
p = 17.0 0.0 6.0 p = 20.0 5.0 14.0 

(27): Sllateral4(gen898),GREEN (sloUru, rect, act1ve), BBox: (1·rx90,2:ry90) 
p = 15.5 0.0 8.5 p = 17.0 5.011.5 

Figure 9-24: Validated Output for the Cross-Shaped Part. 

PAGE230 



CHAPTER9:TESTCASES 

(STP3_1 ,GREEN) -> nested@ side -> (1 )' (SL3,GRAY) 
(STP3_3,BLACK) -> nested@slde -> (1): (SL3,GRAY) 
(STP4_1 ,RED)-> nested@slde -> (1): (SL3,GRAY) 
(STP4_3,DARKGREEN) -> nested@slde -> (1): (SL3,GRAY) 
(STP2_1 ,RED)-> nested@side -> (1): (SL 1,RED) 
(STP2_3,LIGHTBLUE) -> nested@ s1de -> (1 ): (SL 1 ,RED) 
(STP1_1,YELLOW) -> nested@side -> (1): (SL1,RED) 
(STP1_3,PINK) -> nested@slde -> (1): (SL1,RED) 

(SL2,BLACK) -> nested@bot -> (1): (SL3,GRAY) 
(SL4,GRAY) -> nested@bot -> (1): (SL 1,RED) 
(SL1aterai2,LIGHTGRAY) -> nested@bot -> (1): (SL1aterai1,LIGHTBLUE) 
(SL1aterai4,GREEN) -> nested@bot -> (1): (SL1aterai3,BLUE) 

(STP3_3,BLACK) -> coEAD -> (1): (STP3_1,GREEN) 
(STP3_3,BLACK) -> coEAD -> (1): (STP4_3,DARKGREEN) 
(STP3_3,BLACK) -> coEAD -> (1): (STP4_1,RED) 
(STP3_3,BLACK) -> coEAD -> (1): (STP1_3,PINK) 
(STP3_3,BLACK) -> coEAD -> (1)· (STP1_1,YELLOW) 
(STP3_1,GREEN) -> coEAD -> (1): (STP4_3,DARKGREEN) 
(STP3_1 ,GREEN) -> coEAD -> (1 ): (STP4_1 ,RED) 
(STP3_1,GREEN) -> coEAD -> (1): (STP1_3,PINK) 
(STP3_1,GREEN) -> coEAD -> (1): (STP1_1,YELLOW) 
(STP4_3,DARKGREEN) -> coEAD -> (1 ): (STP4_1 ,RED) 
(STP4_3,DARKGREEN) -> coEAD -> (1): (STP2_3,LIGHTBLUE) 
(STP4_3,DARKGREEN) -> coEAD -> (1 ): (STP2_1 ,RED) 
(STP4_1 ,RED) -> coEAD -> (1 ): (STP2_3,LIGHTBLUE) 
(STP4_1 ,RED) -> coEAD -> (1 ): (STP2_1 ,RED) 
(SL3,GRAY) -> coEAD -> (1): (SL2,BLACK) 
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP2_1,RED) 
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP1_3,PINK) 
(STP2_3,LIGHTBLUE) -> coEAD -> (1): (STP1_1,YELLOW) 
(STP2_1,RED) -> coEAD -> (1)· (STP1_3,PINK) 
(STP2_1,RED) -> coEAD -> (1): (STP1_1,YELLOW) 
(STP1_3,PINK) -> coEAD -> (1): (STP1_1,YELLOW) 
(SL4,GRA Y) -> coEAD -> (1 ): (SL 1 ,RED) 
(SLiaterai2,LIGHTGRAY) -> coEAD -> (1 ): (SL1ateral1 ,LIGHTBLUE) 
(SLiaterai4,GREEN) -> coEAD -> (1): (SL1aterai3,BLUE) 

Figure 9-25: Some FbDI's for the Cross-Shaped Part. 

PAGE231 



CHAPTER 9: TEST CASES 

9.1 0 EDINBURGH COMPOSITE COMPONENT 

Figure 9-26 presents the Edinburgh Composite Component found in Mill93 

and defined as a test part for process planning conflict situations. Again, 

although FRIEND does not generate a process plan it obtains a plethora of 

information that can help analyse and solve some of the planrung difficulties. 

This valuable extra information comes in the form of VDI's (Figure 9-28), 

GDI's (Figure 9-29) and AOI's (Figure 9-30). 

I ' 
- 1--

/ ---/ 
I 

)- - -' -; 
/ / 

/ 

/ 

/ 

' I 
' -- -- -) 

/ rT----=-.:.::_" 
' I / 

/ 

I' 
tJ. 

' I 
I 
I 

-- -~ / 

' ' 

~~·_:' -~- ·_o 

/ 

Figure 9-26: The Edinburgh Composite Component. 

PAGE232 



CHAPTER 9: TEST CASES 

(1): STOCK(gen718),BLUE (satellite, rect, act1ve), BBox· (1·ong,2:ong) 
p = 0 0 0 0 0 0 p = 33 0100 0 90.0 

(2)· Cut0utBig(gen724),GREEN (pocket, rect, act1ve), BBox: (1·ong,2:rz90) 
p = 0 010.0 30 0 p = 5.0 35 0 50.0 

(3): Cut0utHole(gen732),RED (pocket, cyl, act1ve), BBox: (1:orig,2·rz90) 
p = 0.0 7.0 37.0 p = 5.0 13.0 43.0 

(4): TopCrossA(gen763),YELLOW (slot_tru, rect, active), BBox: (1·ong,2:ong) 
p = 13.0 78.0 0.0 p = 22.0 100.0 70 0 

(5): TopCrossB(gen774),PINK (slot_tru, rect, act1ve), BBox: {1.ong,2:ry90) 
p = 0 0 78.018 0 p = 33.0100 0 27.0 

(6): BottomCross(gen802),RED (step, rect, active), BBox: (1·orig,2:ry270) 
p = 0.0 78.0 70 0 p = 33.0100 0 90.0 

(7): BlgMiddleSiot(gen835),LIGHTBLUE (sloLtru, rect, act1ve), BBox: (1 :rx90,2·rz90) 
p = 0.0 30.0 60 0 p = 33.0 60 0 90 0 

(8): BigHole(gen866),BLACK (hole, cyl, active), BBox: (1·ong,2:rz90) 
p = 0.0 45.0 12.0 p = 33.0 70.0 37.0 

(9): CrosslngHole(gen887),GRAY (hole, cyl, active), BBox: (1:rx90,2:ong) 
p = 25 0 60 0 0.0 p = 30.0 65.0 90.0 

(1 0): NestedSiotBig(gen905),RED (slot_tru, rect, act1ve), BBox: (1 :rx270,2:rz90) 
p = 0.0 10.0 0.0 p = 33.0 35.0 12.0 

(11): NestedSiotSmall(gen959),DARKGREEN (slot_tru, rect, act1ve), BBox: (1:rx270,2:rz90) 
p = 0.0 15.0 12.0 p = 33.0 30.0 24.0 

(12): CBoreHole(gen1029),_ (hollow, cyl, mact1ve), BBox: (1·ong,2.ong) 
p = 10.0 27.5 67.5 p = 20.0 62.5 77.5 

(13): CBoreHole_1(gen1059),GREEN (pocket, cyl, act1ve), BBox· (1:ong,2:orig) 
p = 10 0 27 5 67.5 p = 20 0 30 0 77.5 

(15): CBoreHole_3(gen1071),BLACK (pocket, cyl, active), BBox: (1:ong,2:rx180) 
p = 10.0 60.0 67.5 p = 20.0 62.5 77.5 

(21 ): ThinContlguityHole_3_2(gen1232),GRA Y (hole, cyl, act1ve), BBox: {1 :ong,2:ong) 
p = 12.5 62.5 70.0 p = 17.5 78 0 75.0 

(23)' ThlnConiiQUityHole_1_2(gen1285),LIGHTBLUE (hole, cyl, act1ve), BBox. (1:ong,2:orig) 
p = 12.5 0.0 70.0 p = 17.5 27.5 75 0 

(24): BottomStep(gen1350),LIGHTGRAY (step, reel, act1ve), BBox: {1:rx90,2:rz270) 
p = 0.0 0.0 80.0 p = 33 0 10 0 90.0 

Figure 9-27: The Output for the Edinburgh Composite Component. 

PAGE233 



CHAPTER 9: TEST CASES 

(CBoreHole,_) -> splrt_rnto -> (2)' (CBoreHole_1 ,GREEN) (CBoreHole_2,_) 
(CBoreHole_3,BLACK) 

(ThrnContigurtyHole,_) -> splrUnto -> (2): (ThrnContrgurtyHole_1 ,_) 
(ThinContrgurtyHole_2,_) (ThrnContrgurtyHole_3,_) 

(ThinContrgurtyHole_3,_) -> splrt_into -> (2): (ThinContiguityHole_3_1 ,_) 
(ThinContrgurtyHole_3_2,GRAY) 

(ThrnContrgurtyHole_1 ,_) -> splrUnto -> (2): (ThrnContrgurtyHole_1_1 ,_) 
(ThrnContrguityHole 1 2,LIGHTBLUE) 

Figure 9-28: VDI's Gathered from the Edinburgh Composite Component. 

(TopCrossA,YELLOW) -> nested@bot -> (1). (BottomCross,RED) 
(NestedSiotSmaii,DARKGREEN) -> nested@bot -> (1): (NestedSiotBrg,RED) 
(NestedSiotBig,RED) -> parallel -> (1 ): (BottomCross,RED) 
(NestedSiotBig,RED) -> parallel -> (1 )· (CutOutBig,GREEN) 
(CBoreHole_3,BLACK) -> co-radrus -> (1 ): (CBoreHole_1 ,GREEN) 
(CBoreHole_1 ,GREEN)-> nested@side -> (1): (BigMiddleSiot,LIGHTBLUE) 
(CBoreHole_3,BLACK) -> nested@srde -> (1): (BrgMrddleSiot,LIGHTBLUE) 
(CBoreHole_3,BLACK) -> parallel -> (1 ): (CBoreHole_1 ,GREEN) 
(CBoreHole_3,BLACK) -> concentrrc -> (1): (CBoreHole_1,GREEN) 
(ThrnContrgurtyHole_1_2,LIGHTBLUE) -> nested@ bot -> (1 ): (CBoreHole_1 ,GREEN) 
(ThrnContrgurtyHole_1_2,LIGHTBLUE) ->parallel-> (1): (ThinContiguityHole_3_2,GRAY) 
(ThrnContrgurtyHole_1_2,LIGHTBLUE) -> concentric-> (1 ): (ThrnContrgurtyHole_3_2,GRA Y) 
(ThrnContrgurtyHole_3_2,GRAY) -> nested@bot -> (1): (BottomCross,RED) 
(ThrnContrgurtyHole_3_2,GRAY) -> nested@bot -> (1): (CBoreHole_3,BLACK) 
(ThinContrgurtyHole_1_2,LIGHTBLUE) -> co-radrus -> (1): (ThrnContrgurtyHole_3_2,GRAY) 
(ThrnContrgurtyHole_1_2,LIGHTBLUE) ->eo-radius-> (1): (CrossrngHole,GRAY) 
(ThrnContrgurtyHole_3_2,GRA Y) -> co-radrus -> (1 ): (CrossingHole,GRA Y) 
(ThinContrgurtyHole_1_2,LIGHTBLUE) ->parallel-> (1): (CBoreHole_1,GREEN) 
(ThinContrguityHole_1_2,LIGHTBLUE) -> concentnc -> (1): (CBoreHole_1,GREEN) 
(ThrnContrgurtyHole_1_2,LIGHTBLUE) ->parallel-> (1): (CBoreHole_3,BLACK) 
(ThrnContrguityHole_1_2,LIGHTBLUE) -> concentnc -> (1): (CBoreHole_3,BLACK) 
(ThrnContrgurtyHole_3_2,GRA Y) -> parallel -> (1 ): (CBoreHole_1 ,GREEN) 
(ThrnContrgurtyHole_3_2,GRA Y) -> concentrrc -> (1 ): (CBoreHole_1 ,GREEN) 
(ThrnContrgurtyHole_3_2,GRAY) -> parallel -> (1 ): (CBoreHole_3,BLACK) 
(ThrnContigurtyHole_3_2,GRA Y) -> concentnc -> (1 )· (CBoreHole_3,BLACK) 
(BottomStep,LIGHTGRAY) ->parallel-> (1): (TopCrossB,PINK) 
(BottomStep,LIGHTGRAY) ->parallel-> (1): (CutOutHole,RED) 
(BottomStep,LIGHTGRAY) ->parallel-> (1): (CutOutBrg,GREEN) 

Figure 9-29: GDI's Gathered form the Edinburgh Test Component. 

PAGE234 



CHAPTER 9· TEST CASES 

INTENT AOI(gen759) Go: YES, act1ve 
(CutOutHole,RED) -> cut_ out-> (1 ): (CutOutB1g,GREEN) 

INTENT AOI(gen760) Go: YES, act1ve 
(CutOutHole,RED) -> e_feat -> (1): (CutOutB1g,GREEN) 

INTENT AOI(gen761) Go: YES, act1ve 
(CutOutHole,RED) -> coEAD -> (1): (CutOutB1g,GREEN) 

INTENT AOI(gen799) Go: YES, act1ve 
(TopCrossB,PINK) -> x_feat -> (1). (TopCrossA,YELLOW) 

INTENT AOI(gen830) Go: YES, act1ve 
(TopCrossA,YELLOW) -> coEAD -> (1): (TopCrossB,PINK) 

INTENT AOI(gen903) Go: YES, act1ve 
(CrossmgHole,GRAY) -> x_feat -> (1): (BigHole,BLACK) 

INTENT AOI(gen1014) Go: YES, act1ve 
(NestedSiotSmaii,DARKGREEN) -> coEAD -> (1 ): (NestedSlotBig,RED) 

INTENT AOI(gen1332) Go: YES, act1ve 
(ThmContigurtyHole_1_2,LIGHTBLUE) -> coEAD -> (1): (ThinContiguityHole_3_2,GRAY) 

INTENT AOI(gen1335) Go· YES, act1ve 
(ThmContiQUilyHole_1_2,LIGHTBLUE) -> c_bore -> (1 ): (ThinContiQUityHole_3_2,GRAY) 

INTENT AOI(gen1347) Go: YES, act1ve 
(ThinContJguJtyHole_3_2,GRA Y) -> c_bore -> (1 ): (CBoreHole_1 ,GREEN) 

INTENT AOI(gen1411) Go. YES, act1ve 
(BottomStep,LIGHTGRAY) -> coEAD -> (1): (BottomCross,RED) 

Figure 9-30: AOI's Gathered from the Edinburgh Composite Component. 

The major concern of FRIEND is to make explicit to the designer some of the 

intentions (the FbDI's) that can be assigned to the model such as nested@side, 

parallelism, xJeat, cut-out and c_bore (see Figure 9-29 and F1gure 9-30). No 

strategy for planrung the processing or production of the part is suggested. 

PAGE235 



CHAPTER 9' TEST CASES 

9.11 A COMPARISON PROBLEM 

It was found that a companson between the functionahties of FRIEND and 

other systems is not straightforward because most of the systems studied 

perform some sort of geometnc reasomng on the complete model (and 

therefore, as a post-processing procedure) while FRIEND accumulates 

knowledge throughout the design process because it analyses the part model 

every time an operation is performed. 

Furthermore, some of the test cases presented were obtained from literature 

more interested m feature-based process planrung problems (of the complete 

part model) while the major concern in FRIEND IS m the correctness of the 

representation and the FbDI' s that can be gathered from and during the design 

process. 

In doing this, FRIEND is capable of producing much more information than 

most feature-based modellers and this information can be used for various · 

engineering-related activities, not only process planning. Some parts of this 

reasomng are straight derivations from the feature-based designer's intents 

(FbDI's) Identified by FRIEND and others would require extra technological 

information to reach theu conclusiOn. 

PAGE236 



CHAPTER~ TESTCASES 

9.12 SUMMARY 

This chapter presented some test parts that were adapted from parts found in 

the literature. FRIEND could model them and although the production of 

process plans was not the objective, it was able to correct some of the 

definition mistakes (introduced del!berately) and to produce a plethora of 

mformation that could help downstream applications such as process planrung. 

Some difficulties were found m comparing the functionality of FRIEND with 

other work because FRIEND gathers intentions dunng the ongoing feature

based modellmg task wlule most of the other systems perform a post

processing analysis on the final and static feature-based model. 

It can be inferred that the way the model IS built can affect the resultmg 

amount and type of information produced by FRIEND and this is consistent 

with the non-commutability characteristics of the Boolean operations (which 

are implied by the feature-based models). 

PAGE237 



1 0. DISCUSSION 

This chapter critically discusses some of the main aspects and 

findings regarding the concepts presented, the implementation 

carried out and the results from the test cases. 

10.1 THE VALIDATION FRAMEWORK 

The validation framework (Figure 3-2) is simple but emphasises the fact that 

the domain characterisation (FbDI's) mfluences the validity conditions 

(reasoning), often helped by the feature interaction identification methodology 

and the validity of the model, which subsequently mfluences the definition of 

adequate (revalidation) operatwns. 

The significance of this interconnection is that It suggests how the domain 

might be further extended to include other behaviours. For instance, if a new 

FbDI is to be considered, it must be ensured that the appropriate reasoning can 

be produced to test the suitability of existing feature interaction cases and 

analysis operatJons. As new invalidity tests are likely to emerge, this also tests 

the suitability of the existing set of revalidation operations. 

The occurrence of any unsuitability raises the questJon as to why it has 

happened, what actions need to be taken and how does the new FbDI fit into 

the classification? If it does not fit, a reason has to be sought and methods for 

adapting the classification to accommodate the newly added element should 

also be addressed. 



CHAPTER 10: DISCUSSION 

This is a sirmlar scenario to that encountered when a new feature type or 

parameter is added which leads to a consideration of the suitability of 

modelling and editing operations. 

The validation framework, and its implementatiOn in FRIEND, implies a 

Hybrid DbF and FeR (HDR) approach to some extent and it has been made 

clear that a thorough implementation of the ideas presented here would require 

a FeR subsystem. 

It was also realised that the validity depends on local analysis of the ongoing 

design as well as global analysis of the finished model (followmg the lines of 

work presented in Requicha89b and Rossignac90). 

10.2 INTENT-DRIVEN 

APPROACHES 

VERSUS CONSTRAINT-DRIVEN ONLY 

Approaching a design using a geometric constraimng system only represents a 

more rigid approach compared to an intent-driven one because It demands a 

considerable effort in understanding the concepts, equations and relations 

involved in a particular design and to establish all fixed constraints (with the 

exception of MantyHi94) and It can be difficult to ed!t (numeric, geometric or 

algebraic) constraints. In addition, the resulting information (constraint graphs) 

may be hard-coded for the particular design, and thus its reuse in another 

similar design is difficult. 

The use of a geometric constraining approach has already been introduced mto 

FBM (Nielsen91, Sheu93, Miintyla94, Dohmen94, Shah94b) to either represent 

features as basic relatwnal elements or to establish relationships between 

geometrical constituent elements of different features. However, the approach 

is still based on conventional parametric or vanational constraining methods 

PAGE239 



CHAPTER 10· DISCUSSION 

using mainly low-level geometnc entitles such as points, edges and faces. 

Thus, PDI's have not been detailed in the current FbDI taxonomy. 

Parametric FbDI' s (geometric constraints) are concerned with any feature, 

"sub-feature" (faces, edges or vertices) and feature parameters on the same part 

or between different parts. In contrast, other types of FbDI' s are specified 

between features themselves through some well-defined high-level 

relationships, which together with an experience-based "non-blind" search, can 

lead to a "intent-recognition" procedure enriching the representation and 

alleviating the designer of such tedious tasks. 

FbDI's can be used to reason about the design knowledge and structure and are 

not restricted to the denvation of parameter or dimension values. FbDI' s are 

thus considered a generalisation of constraints where not only fixed algebraic 

and geometric relationships are considered but also other engineering-related 

relations (such as nested@side GDI and xJeat AOI) are included. 

If a FbDI becomes active, it can be considered to have become a "loose 

constraint" where its main purpose is to make explicit to the designer what 

could have been forgotten in terms of intentions to be achieved. This means 

that an intent-dnven environment is more forgiving when changes to existing 

FbDI' s are required. The system accepts changes to the existing configuration 

of intents regardless of how drastic they are, can ask for confirmation, could 

highlight the effects of the manipulation and even suggest further actions. 

The use of a geometric constraint mechanism could enl!ance the functionality 

of FRIEND because it could explicitly capture designer's intent in the form of 

parameter or dimension relationships. However, due to the many intermediate 

stages that a design needs to undergo and the trial-and-error nature of design 

practlces, FbDI' s m general have a more dynamic behaviour, being created and 

deleted according to the stage of the design. 

PAGE240 



CHAPTER 10· DISCUSSION 

Thereupon, 1t can be said that a geometric constraint-driven approach is more 

smtable for a performance and function-oriented intricate design while the 

intent-driven approach (without PDI's) would suit a more application and 

history-oriented design. It is believed that the intent-driven and constraint

driven approaches can work alongside and indeed, be complementary to each 

other. 

10.3 USE OF THE ELICITATION PROCESS 

The entity el1citation process that was applied to features (section 1.5) 

represents a loose formalism that helped in obtaining a more detailed 

description of the validation framework elements. Although most of the 

mdividual components were gathered from the literature, they fit well in the 

classifications and consequent taxononues. 

The application of the elicitation process, as defined here for featurization, to 

the 1tems of information required for the validation task needed no adjustments. 

Both validation and elicitation criteria (Figure 1-8) were, however, difficult to 

devise for all cases. Even for features themselves there is no agreement on what 

such cnteria might be. Poss1bly a more practical implementation with its 

consequently more tangible hnutations and objectives could help produce a 

more tangible set of criteria. 

1 0.4 DESIGNER'S INTENTS 

A FBM system driven by FbDI's is cons1dered of high significance because it 

could help to preserve the reasons for a particular decision in a design. For 

instance, the reason for a feature to be located at a specific position could be an 

axial symmetry structural GDI. 

PAGE241 

1 



CHAPTER 10· DISCUSSION 

It could be beneficial to future FBM systems if "featurization" analysis (section 

1.5.2) and feature taxonomies are accompanied by similar "intenturization" 

analyses (section 4.2) and FbDI's taxonomies to help establish more 

meaningful and precise implementation boundaries and the capabilities of a 

particular feature-based application. 

Feature-based Designer's Intents (FbDI's) were divided into three areas: 

related to individual features (the VDI's); related to groups of features (the 

geometrical RDI's and PDI's), and; dependent on applications (the application

onented RDI's). 

Validation reasoning was earned out at three levels: at the feature class level, 

which is defined for all features; at the feature object level, which is defined for 

different feature types or instances, and at the application level that, not only 

considers the two previous levels, but also considers application restraints. 

Some degree of automation can be assigned to the validation process. Most of 

the feature validation could be automated at the feature class level but there are 

some reasonings at the feature type level that are cumbersome to automate. 

However, the assistance of the designer IS necessary because not all of his 

intentions can be captured or, most Importantly, predicted (see Zhang93). 

It can be inferred from the analysis of Figure 7-6 that some of the validation 

could indeed be defined within the feature class itself but as the analysis goes 

further down, more and more of the analysis starts to consider feature type 

information (e.g. is it a hole or a pocket) and feature type specific information 

(making distinctions between the centre radius of a hole and the fillet radius of 

a slot feature). Also, as the analysis goes from top to bottom in Figure 7-6, the 

focus IS changed from a more individual level of understanding towards a more 

PAGE242 



CHAPTER 10: DISCUSSION 

collective perspective at the same time as it goes from feature dependent 

towards application dependent reasoning. 

Automatic recognition of pre-established FbDI' s and the consequent 

representation enrichment can be achieved, raising the quality and usefulness of 

the model as well as relieving the designer of these tedious tasks. Feature-based 

intent recognition, or representation enrichment, IS a powerful resource that 

would facilitate "mtell!gent" reasoning. 

10.5 FEATURE INTERACTIONS 

The feature interaction classification and identification methodology presented 

here has several advantages: 

• It is a DbF-aware scheme and encompasses existing approaches and 

classifications (both from FeR systems as well as from narrow DbF 

domains), and 1t adds a comprehensive unbound (and therefore, unbiased) 

coverage and a clarification of the mterference and interaction terms . 

• It IS multi-level, which allows reasoning to be performed at three levels. 

The cases are as detailed and accurate as required allowing specific actions 

to be taken for apparently shnilar cases and also allowmg it to be used by, 

and separated from, different application analyses. All levels share the same 

structure and concept of classificatiOn (except for a few minor details, 

section 5.4.6) promoting the coherence of the scheme. Th!s also avoids 

misunderstandings because there is no mixing of geometric entities of 

different dimensionality at each level. 

• Particular attention was paid to choosing words to describe each category 

with the aim of producing a clearer, more meaningful and easier to 

understand vocabulary. The categories have been formally defmed through 

simple rules using commonly available Boolean operators and tests, which 

PAGE243 



CHAPTER 10: DISCUSSION 

facilitates integration with GSM modellers. Thus, categories are defined 

separately and independent of the underlying GSM implementation. 

• Neither concave/convex nor planar/non-planar assumptions are made as in 

the case in much research work. This is to the minor detriment of 

efficiency, but many of the operations and tests can be quickly and 

accurately predicted using boundmg boxes. 

The feature interaction methodology allows a FBM system to build a rich 

scenario of the model including information about the feature's surroundings, 

and this mformation can be valuable and beneficial to other applications. Some 

functional meanings (or functional features) can be identified such as when a 

slot is near VI to the stock's end It results in a wall feature or when a slot is 

near VI to another slot It results in a nb feature. The totally different functional 

purposes of wall and nb features (Lee94) can be inferred from the model and 

subsequently considered in furt!Ier applications/analysis. 

10.6 FEATURE OPERATIONS 

Feature-based operations have received little attention in the literature possibly 

because it has been considered more an implementation issue than a research 

one. The feature operations taxonomy presented here emphasises the fact that 

much has to be done to facilitate the manipulation (editing, modelling and 

revalidation) of feature-based models. 

The variety of feature operations presented in the taxonomy makes the two 

usually available operations, add and delete feature, seem so limited and 

limiting. In reality, even considering only these two feature operations, it can be 

inferred that there are many other types of operations that need to be specified 

and implemented that could render the system implementation not tnvial at all. 

PAGE244 



CHAPTER 10: DISCUSSION 

Being aware of tlus variety is an important aspect of a design-by-features 

system implementation in order to be able to estimate the effort in producing a 

system that is easy to manipulate. 

Moreover, the taxonomy of operations was observed to be dependent on a 

number of factors: 

• Feature interaction cases. 

The revalidation operations reflect partially how features are defined 

(dependent on the entity set (1::1) used to identify them) and how they are 

allowed to interact amongst themselves. For instance, it was observed that 

the split revalidation operation could be deployed onto a feature's volume 

automatically if a subjoint VI case occurs. On the other hand, an inside F1 

case could use a change face code to_ V labelling revalidation operation 

onto a feature face. 

• Application domain. 

Different characterisations of the domain influence the size of the 

revalidation operation set. A wider domam possibly needs an extended set 

of operations. For instance, rotational features would probably frequently 

use a different set of operations than prismatic features. 

• Editing capabilities . 

. The variety and level of manipulations available to the designer greatly 

influences the set of revalidation operations to be devised. However, it was 

found that there is a minimum set of modelling manipulations consisting of 

add and delete feature and add and delete FbDI which can be used 

internally to implement other editing manipulations. 

To provide the full editing flexibility compatible with conventional and GSM 

CAD systems a DbF system would need a full implementation of a (localised 

PAGE245 



CHAPTER 10: DISCUSSION 

and/or incremental) FeR system to recognise all possible manipulation results 

originating from the editing operations. However, the designer might be 

tempted to abuse the use of the ed!tmg operatJ.on, which could produce 

unrecognisable features. 

Monitoring the designer's editing capabilities for each case/feature (as 

proposed before, Case93c) would be a major task, thus systems have instead 

favoured much simpler ed!ting operations in order to avoid this complexity 

factor. This emphasises how closely feature operations are related to feature 

model validation. 

A (localised, incremental or somehow optimised) FeR functJ.onality is 

nevertheless required in the validation approach and the level of optimisation 

and complexity of the FeR function is dictated by the freedom of manipulation 

allowed by the DbF functJ.on. Validation has been interpreted as, and closely 

related to, Feature Recognition (Dixon90, Pratt93, Martino94a). 

If low-level editing manipulations are considered, such as chamfering an edge 

or tapering a face, this greatly adds to the complexity of the revalidation 

operations. In this case, a taxonomy of operations would include very basic 

manipulations such as Euler and Sweeping Operators (Stroud93, 

Subralnnanyam95). Therefore, editing manipulations can add to the flexibility 

of the system but also certainly add to its complexity. 

It was imtially thought that editlng operations had not been fully rmplemented 

elsewhere solely because of implementation issues. However, it was discovered 

that many operations have not been implemented because of fundamental 

questions that stJ.ll eXIst regarding feature-based operations: 

• What are the editing operatJ.ons that best express the designer's 

vocabulary? 

PAGE246 



CHAPTER 10· DISCUSSION 

• What operations are more popular, important and appropriate to a 

specific domain? 

• How are operations to be applied whilst maintaining the validity of the 

model? 

• What are the consequences of implementing new operations, i.e. do 

they require further supporting operations or other revalidation 

operations? 

• What interdependency exists between these feature-based editing 

operations? 

It was thus found that further research needs to be done on the issues of 

defining and implementing feature-based editing operations. 

10.7 THE REASONING PRIORITY 

The rules were initially implemented without any concern for their prionty 

arrangement. This was done in an attempt to use a CLIPS facility that executes 

rules in an unpredictable order to achieve its goals. 

However, the development was made easier and made more sense when 

different levels of priorities were used. These levels stabilised with a set of four 

groups of rules (Figure 7-2) for the conceptual MFI validation. Subsequently, 

the reasons for their internal relationship was realised through a metaphorical 

parallel (see section 7.3.3). RDI's were added with the consequent addition of 

more reasoning sets (Figure 7-3) but followmg the same (lmguistic-like) 

arrangement. 

Tlns possibly means that some sort of organisation of the types and levels of 

validation is a requirement for a coherent system implementation. Another way 

to obtain and justify a similar priority arrangement could have been through a 

PAGE247 



CHAPTER tO· DISCUSSION 

study of the process designers adopt to perform these same analyses but in a 

manual (although computer-aided) way. 

During the process of developing the rules to accommodate the MFI's and 

RDI' s, an experimentation with different poss1ble priority organisations of the 

reasoning sets was carried out. Other arrangements that were used seem to have 

worked for some tests but the one presented has worked for all tests. Although 

a more elaborate test process can be performed, it is believed that the ones 

performed suffice for the prototype implementation in order to validate the 

validation framework. Moreover, the result of this experimentation produced a 

priority arrangement that fits a metaphorical parallel to another type of analysis 

(linguistic) and this is considered an remforcement of the validity and 

smtab1lity of the priority arrangement. 

10.8 INTENTS MANAGEMENT 

Because design is an operation that generates temporary inconsistent states, an 

intent-driven DbF system should have automatic verification and enrichment 

reasonings that create and delete FbDI relationships, as they occur. 

Verification and enrichment statements are the means by which intent-driven 

validation is achieved and implemented. However, not all FbDI's have both 

verification and enrichment statements. Enrichment statements in particular are 

hard to conceive and, although possible in some cases, they are often not 

practical. For instance, Parametric FbDI' s are composed essentially by 

verification statements (in a cyclic process of deriving parameter values and 

checking them against constrrunts). 

Morphological functional conceptual val1dat1on is composed mainly of 

verification statements while RDI validation makes intensive use of enrichment 

statements. 

PAGE248 



CHAPTER tO· DISCUSSION 

Despite the fact that the aim of devising a system with PDI enrichment 

(automatic constraint recognition) has been established (Mantylli94) this seems 

to be an impractical task when viewed from a more comprehensive perspective. 

However, narrower attempts to perform some sort of parametric enrichment 

have been made by Suzuki et al. (1990) for under-constrained 2D parametric 

designs and by Silva et al. (1990) for positional and orientational GDI's. 

10.9 THE IMPLEMENTATION 

It can be asserted that if the rule execution sequence is not important for a 

knowledge-based system (KBS) implementation and the same result is 

achieved regardless the order, then a more pre-determined sequence of 

execution should also achieve the same result. 

Furthermore, KBS systems, including CLIPS, offer the possibility of defining 

knowledge partitions (i.e. modules or groups of rules) and therefore, a pre

determined sequencing such as the one defined in FRIEND's reasoning 

(section 7.6) does not contradict the KBS paradigm (unless expanded towards 

sequencing the rules themselves instead of groups of rules). 

CLIPS version 6.0 was used in an effort to understand the KBS technique. 

However, its potential (alternative solution search mechanisms) was not fully 

explored and, in fact, the prototype system could have been implemented using 

a standard C or C++ language. It did prove though, to be an easy and powerful 

language/system to work with, especially because of the multi-programming 

paradigm characteristic that allows procedural, object-onented and rule-based 

programming to be used wherever it seems most appropriate. 

It was found that the active and passive characteristics of the feature mteraction 

case (e.g. enter or entered; cross or crossed) did not help simplify the reasoning 

and they could always be converted into an active behaviour for both 

volumetric (VI) and boundary (BI) cases. 

PAGE249 



CHAPTER 10: DISCUSSION 

The same can not be said about FI cases because the master and slave of the 

RELATION had already been established at a higher level (VI or BI 

RELATION that points to the FI RELATION). Thus, FI cases are still 

classified into active and passive cases (e.g. inside or outside). BI active and 

passive cases were also unified because they originated from conjoint VI cases 

only and thus were implemented as a specialisation of VI cases (and not as a 

link to another INTERACTION object) and thus they could be simplified 

(inverted). 

The implementation of the FRIEND-VIEW module, i.e. the visualisation of the 

part description file (".prt"), using Mlcrostation BASIC language has not been 

described because it was considered almost trivial for the following reasons: (a) 

a communication file was used as an interfacing technique, (b) the geometric 

operations required by the reasoning were implemented within CLIPS; (c) the 

geometric simplicity of the feature taxonomy adopted fitted the geometric 

primitive solids available in the MODELER module, and (d) the emphasis of 

this work was on the reasoning process and capabilities of the validation 

analysis rather than on features' internal low-level representation issues. 

PAGE250 



11. CONCLUSION 

11.1 SUMMARY OF THE THESIS 

This thesis can be summarised through the following mam accomplishments: 

• A better understanding of the problems involved in the development of a 

feature-based modelling system such as the model editmg, DbF and FeR 

approaches integration and the reasoning and representation of feature 

models. 

• A comprehensive review and study of the literature concerned with 

feature-based modelling has been presented. In particular tins covers: 

feature-based modelling and systems, feature-based mteraction problems 

and detenninatJ.on and validation analysis. 

• The identification of the validation problem as an important aspect for 

existing systems as well as the lack of a more detruled literature on this 

subject. It has been alleged that many systems support some kmd of 

validity checking but details of such functionality are most often omitted. 

• A novel framework for implementing design-by-features systems where 

the validation of a feature-based model representation is the central 

concern. 



CHAPTER 11: CONCLUSION 

• The detenrunation and use of a methodology, resembling the feature 

elicitation process, to help specify the components of the validation 

framework. 

• The production of original classifications and taxonomies for feature-based 

designer's intents (FbDI's) and feature operators. 

• The development of a methodology to identify and classify feature-based 

interaction cases based on Boolean operators and simple queries to the 

GSM representation. This feature-based interaction classification is 

independent of possible interpretations of each case therefore could be 

applied to other systems. 

• The development and codification of algorithms and production (IF

THEN) rules to express FbDI' s, identify feature interactions and perform 

feature operations. 

• The development and successful implementation of the conceptual 

reasonmg after observing that distinct aspects drive the morphological 

functional FbDI (MFI) reasoning and these are responsible for the priority 

arrangement which was presented. 

• The generalisation of the MFI reasoning towards the intent-driven 

approach through outlines of enrichment and verification rules and a 

management strategy was explained. The statuses of tl!e entitles used in 

this reasoning and a possible interpretation of the identified priority were 

also presented. 

PAGE252 



CHAPTER 11· CONCLUSION 

• A distinctive working prototype system, implemented from scratch, usmg 

the proposed framework and taxonomies, which is capable of: 

~ Modelling feature-based parts and the monitoring of FbDI's and 

features in the model. 

~ Maintaining the model's validity by reasomng with the model and 

suggesting or applying selective corrections. 

~ Understanding enriched and complex feature-based models, by 

identifymg and representing features, interactions and FbDI's. 

~ Reacting to the effects of manipulating features and FbDI' s. 

~ Recogmsmg Implicit intents originated through the design-process 

via enrichment statements. 

~ Capturing, representing and manipulating FbDI's and feature 

interactions explicitly. 

PAGE253 



CHAPTER 11· CONCLUSION 

11.2 CONTRIBUTIONS 

It IS believed that this work has contributed to knowledge in the following 

aspects: 

11.2.1 CLARIFICATIONS 

The nature of the validation problem has been clanfied through the 

identification, definition, classification, specification and devising of a 

solution for feature-based representation validation. 

Within this clarification, the roles of geometric validation and feature-based 

representation validation have been established and the terms feature-based 

designer's intents, feature interaction and validation have been formally 

defined. 

A taxonomy of FbDI's has been created to help in clanfymg features 

themselves from the perspectives of their intended semantics, expected 

behaviour and application. This clarification, and indeed tins taxonomy, has 

been used as a framework for validating feature-based models. 

A contribution has also been made in clarifying and distinguishing some of the 

mformation involved m such a system. For mstance, some confusion was 

found in the literature between the terms feature interaction and feature 

interference, between interaction and intents, and between FbDI's and features 

themselves. 

PAGE254 



CHAPTER 11: CONCLUSION 

11.2.2 EFFECTIVE CAPTURE OF DESIGNER'S INTENTS 

The clarification and formal distinctions between the concepts involved, has 

allowed a clearer understanding of their extent, and this has made it possible 

for this prototype implementation and future full implementations to represent 

and capture them dtstinctively. 

The research demonstrates that it is posstble for a FBM system to effectively 

and explicitly represent, capture, manipulate and use destgner' s intents for 

reasoning during on-gomg design. A clear way of defining, identifying and 

analysing valid and invalid model representations based on FbDI's has also 

been presented. 

11.2.3 THE VALIDATION FRAMEWORK 

A novel approach for the development of a DbF system centred on the 

concepts of representation valtdation and FbDI management has been 

presented. The contents of a valid feature-based model representation have 

been defined, and methods to analyse and maintain the validity of the 

representation according to the features' expected behaviours and intents of 

have been demonstrated. 

• The elements required for such a validation system have been presented, 

compnsing Information (features and FbDI's), Operations, Interrelations 

(FbDI and interaction representations) and an architecture (reasoning sets 

and a priority arrangement). 

• The interaction of features and their mutual effect on validity have been 

studied and implementation methodologies presented (section 7.2). The 

PAGE255 



CHAPTER 11· CONCLUSION 

validation framework also provides an important mechanism for 

remedying invalid representations through the selective application of 

revalidation operations. 

• The feasibility of the validation framework in validating the representation 

and applying a formal but simple validation formalism for developing 

FBM systems has been exploited. The implementation has shown that the 

validation of the feature's concept can be made partially at the feature class 

level. Fea!J.!re type reasoning starts to populate the analysis as soon as it 

goes further in understanding the model. 

• The validation framework organises and integrates the information 

required for the validation reasoning. Helped by the priority arrangement, 

intent management statements and the specification of the information, the 

framework binds the mformation and gives a complete struc!J.!re for a 

system capable of performing intent-driven concep!J.!al fea!J.!re-based 

representation validation. 

• A major contribution of this s!J.!dy is the novel methodical arrangement (or 

structuring) of information used in fea!J.!re-based modelling in terms of: 

• a formal Implementation via a validation-based approach; 

• components and their definition/use/binding (interaction cases, 

operations and designer's intents); 

• the detailing of the components (the application of the elicitation 

process); 

PAGE256 



CHAPTER 11· CONCLUSION 

• defining groups of distinct reasonings; 

• the organisation of the components (priority and management); 

• what can be achieved with intent-driven validatiOn environments. 

Figure 11-1 shows the structures that have been identified. 

Figure 11-1: Structures Involved in an Intent-driven Validation System. 

11.2.4 INFORMATION DETAILING {THE PROCESS) 

The application of the entity elicitation process (a loose formalism), 

contributed to the detatling of the information reqmred for the intent-driven 

validation system. Classifications and taxonomies for the mdividual elements 

were an important outcome of this process. The application of this formalism 

was done in such a way that not only was the information properly identified 

but also the distinction between types of information was emphasised. 

PAGE257 



CHAPTER 11· CONCLUSION 

It is believed that this formalism could be applied to other types of information 

and the FBM system could grow to comprise the central core of Product Data 

Modelling (PDM) techniques. This future system would have taxonomies for 

information such as features, operations and processes, in a similar way to that 

implied in Mantyla97. 

11.2.5 CLASSIFICATIONS AND TAXONOMIES (THE PRODUCTS) 

In applying the elicitation process, it has been possible to classify and give 

names to vanous 1tems for each information type involved. 

Classifications are important because they help to group properties and to 

highlight differences. In particular they help emphasise the completeness of the 

subject and in so doing help to identify the absence of elements. 

The taxonomies for feature-based designer's intents, feature interaction cases 

and feature operations are singular and each one is a useful contribution per se. 

The taxonomy of feature-based designer's intents (FbDI's) establishes (Figure 

4-10) morphological, theoretical and relational functional designer's intents as 

the highest level. Morphological functional FbDI' s are defined as volumetric 

relationships such as fittability, changeability, labelling and redundancy. 

Theoretical functional FbDI's are considered related to parametric constraint

based design approaches. Relational functional FbDI's (RDI's) are sub

divided into geometric RDI' s and application-oriented RDI' s. Geometric 

RDI's are positional, structural, orientatlonal, and hierarchical intentlons while 

application-oriented RDI' s identified include temporal, precedence, compound 

and proximity intentions. 

The taxonomy of feature interaction cases establishes (F1gure 5-13) a 

classification framework that is applied at three different levels of the 

geometric representation of features. This framework identlfies features that 

are connected or disconnected. Disconnected features can be adjoint or disjoint 

PAGE258 



CHAPTER 11: CONCLUSION 

while connected features can be conjoint or subjoint. These can be further 

detailed to obtain interaction cases that mclude features w1th matching faces, 

features crossing each other, a feature near or far from another, and so on. 

The feature interaction classification identification (Figure 5-9) is the unique 

product of a well-defined and specified methodology. Moreover, although its 

usefulness and feasibility were partially experienced in FRIEND, 1t IS a 

complete and deep research topic that deserves further research. 

The taxonomy of feature operations (Figure 6-2) distmguishes between 

analysis, manipulation and setup operations. These operations can be further 

sub-classified according to the type of information mvolved (i.e. FbDI's, the 

GSM representation or to the FBM representation). Manipulation operations 

include editing, modelling and revalidation operations. Editing manipulations 

are of either high (applied onto the FBM representation) or low level (applied 

to the GSM representation). 

11.2.6 PRIORITY ARRANGEMENT 

It has also been possible to identify types of rules, intent management 

statements and how they can be implemented. Although not final (further FbDI 

development would possibly require adaptations) and not definite (alternative 

schemes can be invented), the reasoning prionty (Figure 7 -6) for all the FbDI' s 

mvolved in tlus research is a significant contribution because it establishes an 

arrangement that forms the basis for discussion and for extensions related to 

the future development ofFbDI's. 

PAGE259 



CHAPTER 11: CONCLUSION 

11.2. 7 ADDED DEVELOPMENT FORMALISM 

A few formal architectures, approaches and methodologies for FBM system 

development have been found m the literature (Gandhi89, Subralunanyam95, 

Hailong95, Kim96) but they are in their infancy despite the fact that many 

systems have already been implemented. 

The borrowing of methods (feature elicitation process) and mimicking of ideas 

(linguistic analysis) is believed to have added an extra formalism for the 

development of FBM systems and, although these have not been presented as 

such, they could be developed further in order to originate a complete 

development formalism and methodology. 

11.2.8 A COMPARISON FRAMEWORK 

Feature based modelling systems and applications are usually compared 

through the extent of the feature taxonomy they can represent together with the 

analysis or synthesis capabilities of the specific application involved (such as 

fimte-element analysis, setup plarming and tooling planning). 

This work contributes in offering other elements to extend this comparison. 

FBM systems can now be compared by the intelligence and behaviour of 

features (reasoning capabilities), the feature interaction cases supported, the 

operations available and by the range of feature-based designer's intents that 

can be represented and reasoned with. 

PAGE260 



CHAPTER 11: CONCLUSION 

11.3 FURTHER WORK AND FUTURE RESEARCH 

Tius thesis rrused some Issues that could be divided mto two streams: (a) those 

that further develop the existing ideas towards a more practical 

implementation, which would most probably only consist of implementation 

issues, and are thus called extensions, and (b) those that represent future 

research in this area, which involves the exploration of related ideas, and are 

called expansions. 

11.3.1 EXTENSIONS 

The purpose of this research was not to produce a fully Implemented fully 

working system for practical use but to explore some fundamental issues. 

Therefore, there is a possibility of re-implementing some details in order to 

produce a more practical system: 

• A more efficient implementation. 

Most of the calculations and functions were built within the CLIPS 

environment (even some Boolean operations and boundmg box analysis). 

It 1s believed that a better mtegration between the GSM and the KBS 

environments could produce a more efficient implementation and add 

some useful graphical manipulation capabilities. In addition, some 

boundmg box tests would then be verified by the GSM module and 

therefore, the mteraction identification would be more accurate. 

• · Analyse features of additive nature. 

Although the stock material was considered and implemented as a satellite 

feature (see taxonomy of features adopted in this work in Figure 1-6), of 

positive nature, further analysis is reqmred for other positive features in 

the model, such as bosses and ribs. 

PAGE261 



CHAPTER 11: CONCLUSION 

This would lead to the need for more tentative exploration (possibly 

through the use of all KBS capabilities) of revalidation scenarios 

(especially when deploying the split and merge revalidation operations) 

based on some criteria such as setup or tooling access. 

• Hierarchical modelling. 

System functionality can be improved and implementation facilitated if a 

hierarchical parent-child relation is imposed. The current implementation 

of FRIEND does not force a hierarchical structure among features. 

However, this mechanism facilitates parametnc relationships between 

features and could therefore it could help to add this level of validation. 

Nevertheless, modelling hierarchies and hierarchies of features defined by 

attributes or FbDI' s are distinct items of information that should be 

clarified and approached in ways yet to be defined. 

• Thorough extension towards process planning. 

It IS considered that FbDI' s and operations presented here are particularly 

valid for CAPP applications because they were gathered from research 

reports mainly on CAPP and Design-for-Manufacturing feature-based 

systems. This should be verified and a more reliable association between 

FbDI-operations-apphcation could be achieved. 

To define the extent of the FbDI's usefulness for facilitating (If not 

automating) process planning generation it would be interesting to see a 

CAPP system thoroughly usmg FbDI's with few, if any, enquiries to a low

level geometric reasoning system. 

PAGE262 



CHAPTER 11: CONCLUSION 

• A better intent. 

A better internal representation of FbDI's would allow some references 

and/or values to be stored with the intent This could possibly be achieved 

through the use of frames to accommodate parameters and functwns as 

part of the intent data-structure. 

A better FbDI that relates various features would allow the generation of 

an intricate mesh of relationships which rruses the question of how to 

simultaneously present such a plethora of FbDI' s to the user in order to 

allow their visualisation and management. 

11.3.2 EXPANSIONS 

The work presented in this thesis represents a Product Data Modelling (PDM) 

approach aimed at producing a better (guaranteed correct and enriched) 

representation of a part. The expansions proposed below follow different paths 

in fulfilling the modellmg of information required for a PDM approach where 

it is believed that feature-based intent-driven validation is capable of providing 

a bndge between rigid and flexible information embedded m the design task. 

• Expansion of the reasoning capabilities of FRIEND to accommodate 

various applications (e.g. tolerancing, setup planning, fixturing) to study 

the concurrency problem alongside FbDI' s and to investigate how the 

validation framework would respond to this new requirement. 

Instead of a linear declarative reasoning, this more concurrent approach 

would probably require the use of another AI technique. A "blackboard 

system" approach seems more appropnate to perform this reasoning task. 

This also would require a taxonomy that classifies FbDI' s not accordmg to 

their functional meaning but according to expertise or responsibility. For 

PAGE263 



CHAPTER 11: CONCLUSION 

instance, VDI's could be assigned to a designer, PDI's assigned to a 

structural analysis engineer and RDI' s to a process planning engineer. 

• General propagation poses the problem of identifying the variety of 

possible alternative operations to propagate. For instance, stretching the 

thickness (or height) of the part in Figure 11-4, where the holes were 

defined as nested@bot of the step feature produces a plethora of alternative 

propagation operations (see Figure 11-2): 

2) 

3) 4) 

Figure 11-2: Alternative Revalidation Operations 

1. Change the step positioning (keep step volumetric intention); 

change hole positiorung and labels to bllnd·holes {keep hole 

volumetric intentions); 

2. Change the step positioning (keep step volumetric intention); 

increase the hole height; 

3. Change the step volumetric intention; Keep step positioning 

(keep hole volumetric intentwn and positioning); 

PAG£264 



CHAPTER 11: CONCLUSION 

4. keep step volumetnc intention and positioning; Change the step 

label to a slot_tru {keep hole volumetric intentions and 

positiomng); 

5. Invalidate height manipulation because of the functional 

significance of the hole/step arrangement. 

A poss1ble approach to tackle this problem would be to search all features 

affected by the operation and their properties and ask the designer which 

are to be kept and which are to be changed. This approach however, 

introduces no "intelligence" to the system. A study of possible scenarios 

could result in a more guided, usefl and intelligent (reasoned) set of 

alternatives/suggestions. An mtegratJ.on of existing FbDI's with constraint

driven systems could fac1Iitate the determination, and even derivation, of 

the more hkely and correct alternatives. 

• One of the problems of form-funct10n relationships is the multiplicity of 

forms that could be used to implement a target function. The validation 

mechanism could be expanded upwards in the abstraction level and (high

level) abstract FbDI' s defined. Such a system would track the validity of 

(low-level) FbDI' s with the possib1htJ.es supposedly associated with a 

(high-level) abstract FbDI- a function 

In thls way, even 1f a totally d1fferent FbDI scenario is achieved after an 

operation, it could still be valid because it fulfils one of various possible 

scenarios that satisfy the implementation of an abstract FbDI. 

It could be useful to save abstract FbDI' s as a blue print of that part and 

see how this know ledge could be reused in order to design parts that keep 

some resemblance in functional terms. 

• Integration of existing FbDI's with Parametric FbDI's, i.e. a constraint

dnven approach. Although d1fferent val1dation capab1hties will be 

PAGE265 



CHAPTER 11: CONCLUSION 

achieved, these should be analysed in conjunction with the ones presented 

here because PDI's (constraints) were not considered to be directly 

included in the proposed reasoning priority arrangement. 

The main benefit of FbDI' s relate to the flexibility of the approach 

compared to a constraint-driven-only approach. In this sense, all attributes 

of a model (e g. assembly, tolerances) that could be categorised as fleXIble 

(unbound) or fixed (tightly-bound) behaviour could benefit from being 

studied and included in the FbDI's taxonomy. Attnbutes with fixed 

behaviours could be defined as those that are assigned to the model to 

conform to some requirement while attnbutes with jlex1ble behaviours 

could be those that are included in the model due to completeness 

requirements. 

A possible solution would be to record this "flexibility" behaviour as a 

FbDI parameter, i.e. it would be interestmg to have the possibility to assign 

behaviours such as unbound, loosely-bound or tightly-bound to detemune 

how a system would react to changes in the FbDI relationship. For 

instance, an unbound FbDI could be created and deleted regardless of the 

explicit consent of the user while a change to a tightly-bound FbDI could 

only be carried out after being confirmed by the user. This has some 

surularities to the proposal by Nielsen et al. (Nielsen91). 

FbDI' s help model (loose) relationships that, possibly via other (loose) 

relationships, could be related to a more tightly-defined constraint. A 

different co-ordination between PDI's and the other FbDI's is thus required 

in order to not lose the flexibility of an intent-driven approach. 

• Different views of a product could produce not only different feature-based 

models but also different associated FbDI perspectives. This raises the 

problem of mapping FbDI' s across different views. Although this IS a 

problem m itself, FbDI mapping could facilitate the mapping of features 

PAGE266 



CHAPTER 11· CONCLUSION 

across feature spaces and facilitate the understanding of the component's 

reqmrements from another perspective. For instance, a process planning 

engmeer trying to change a parameter could receive messages that this 

violates a set of FbDI' s when mapped to another, say production planning, 

view. 

If the flexibility attribute defined earlier were already implemented, those 

messages could be: 

• warning messages for both views (process and production planning 

engineers for the example given) if unbound FbDI' s are involved; 

• impediment messages if tightly-bound FbDI's are involved (and 

possibly the automatic issuing of a design change request if the 

FbDI is also tightly-bound in the other view); 

• if the corresponding FbDI in a view "B" IS of a loosely-bound type, 

the required changes in a view "A" would not be prevented but the 

user working on the view "B" would be warned of the changes in 

the view "A" (and possibly, how they are mapped into view "B"). 

In this way, FbDI mapping could greatly enhance the negotiation of 

information related to a product from various perspectives. 

• At the same time, this FbDI integratiOn could help minimise the search 

space of possible alternatives for general propagation. A balance would 

have to be achieved between unbound (FbDI's) and tightly-bound 

designer's intents (constraints). Because some reasoning and interactions 

could be done using bounding boxes, tlus may be smtable for relaxation 

reasoning (Mantyllt89, Case92b, Das96) where some of the properties of a 

feature (such as its volume or orientation) are left unspecified ifuzzy or 

relaxed) and the system would reason about these properties using the 

PAGE267 



CHAPTER 11: CONCLUSION 

FbDI' s generated during design agamst cost/time criteria (for example) and 

suggest alternative designs. 

Figure 11-3 presents the relaxation group of a slot feature. 

Figure 11-3: Alternative Relaxations. 

The idea of relaxation can be extended to produce multi-layered models 

that present or Jude details from the user, through refinement or relaxation 

processes (Figure 11-4) accordmg to need and perspective while storing 

some of the history of the design. History of the des1gn has proved to be an 

important by-product of the design process (Rossignac90, Sreevalsan92, 

Rosen93). 

For instance, an abstract layer of the feature-based model could be used to 

produce fast animations while another (possibly more detruled) model 

could be used by the designer by removing some of the relaxation degrees 

of freedom. Furthermore, the process planning engineer would receive the 

model with all information (or suggestions) for the remaining relaxation 

degrees of freedom. 

Figure 11-4 shows a part being modelled in various layers. The highest 

layer is the most abstract one and outlmes the part via its bounding box 

PAGE268 



CHAPTER 11: CONCLUSION 

dimensions. Subsequent layers are refinements of higher layers and 

produce lower abstraction layers with more detailed (less relaxed) 

information of the part. The refinement process has a counterpart which is 

the relaxation process. A relaxation process would make the details of a 

feature back to a relaxed (less refined) form. Alternative realisation of the 

part could be achieved from different refinements from the relaxed form. 

It is considered that a PDM technique is concerned with modelling vanous 

types of information regarding a product that include: 

• modelling the geometry of the product where a validated feature-based 

representation and a solid representation derived from it are the most 

Important elements; 

• modelling the knowledge associated with the product, where (low-level) 

FbDI's (including unbound, loosely-bound and tightly-bound FbDI's) and 

feature interactions can be an important part of the knowledge alongside 

the modelling of processes and the application's restraints associated with 

the product. 

• modelling the design process used to generate the product, where feature 

operations, (high-level) abstract FbDI's and relaxed/refined layered 

representation could enhance the history associated to the product 

modelling. 

It can be inferred through the expansions discussed above that, as a Product 

Data Modelling (PDM) technique, a feature-based intent-driven validation 

system could represent a valuable development framework. 

PAGE269 



CHAPTER 11: CONCLUSION 

Relax Refine 

Relax Refine 

Relax a 'Q Refine 
~ \0 Relax 

Figure 11-4: Multi-Layered Feature-based Relaxed Model. 

PAGE270 



CHAPTER 11: CONCLUSION 

11.4 FINAL REMARKS 

To summarise the contributions of this work, it can be asserted that a novel 

approach for DbF systems development was presented, information structures 

were identified and specified, formalisms were applied and priontisations were 

established towards a feature-based intent -dnven vahdatwn system. 

The prototype system FRIEND (Feature-based validation Reasoning for 

Intent-driven ENgineering Design) has a clear validation procedure (because 

1ts major concern is the validity of the model) and explicitly captures 

designer's intents (which are not geometric constraints) because it is driven by 

intents reasoning. 

It is claimed that the ideas presented here have contributed to allow the 

development of a FBM system that would give a better support for detailing a 

geometric design by giving feedback on the validity of the model regarding 

well-defined properties of feature themselves as well as their application 

charactenstics. 

The designing task would be made easier because of the support of an 

underlying intelligent and FRIENDly reasoning capable of understanding 

FbDI's and helping to produce an ennched and val1d model. 

It is also churned that the system development task would be greatly facilitated 

by considering the formalisms and frameworks presented here as guidelines 

and the classifications and taxonomies for compmson and d!scusswn. 

It is hoped that this work would, at least, help raise the awareness of the 

validation problem in future feature-based modelling system developments 

(especially DbF systems) and provide a mitial solution framework for 

discussion. 

PAGE271 



12. REFERENCES 

(AIIada95) Allada, V. and S. Amand. "Feature-based Modelling Approaches 

for Integrated Manufacturing: State-of-the-art Survey and Future 

Directions". International Journal of Computer Integrated Manufacturing. 

Vol. 8(6), pp. 411-440. 1995. 

(Anderson90) Anderson, D. C. and T. C. Chang. "Geometric Reasoning in 

Feature-Based Design and Process Planning". Computers and Graphics. 

Vol. 14(2), pp. 225-235. 1990. 

(Bidarra93) Bidarra, R. and J. C. Teixeira. "Intelligent Form Feature 

Interaction Management in Cellular Modeling Scheme". (ACMIIEEE) 

Second Symposium on Solid Modeling and Applications, May 19-21, 

Montreal, Canada. Vol. 1, pp. 483-485. 1993. 

(Bidarra94) Bidarra, R. and J. C. Teixeira. ''A Semantic Framework for 

Flexible Feature Validity Specification and Assessment". (ASME) 

International Computers in Engineering Conference and Exlubition. Vol. 

1, pp. 151-158. 1994. 

(Bidarra96) Bidarra, R. and W. F. Bronsvoort. "Towards Classification and 

Automatic Detection of Feature Interactions". Proceedings of the 29th 

ISATA Conference; Mechatronics- Advanced Development Methods & 

Systems for Automotive Product, Florence, Italy. Vol. 1, pp. 99-108. 

1996. 

PAGE272 



(Bronsvoort93) Bronsvoort, W. F. and F. W. Jansen. "Feature Modelling and 

Conversion - Key Concepts to Concurrent Engmeering". Computers in 

Industry. Vol. 21(1), pp. 61-86. 1993. 

(Butterfield85) Butterfield, W. R., M. K. Green, D. C. Scott and W. J. 

Stocker. "Part Features for Process Planning". CAM-I Inc, Arlmgton, 

Texas, USA. Vol. 1, 1985. 

(Case92a) Case, K. "Feature Technology- an Integration Methodology for 

CAD and CAM". International Conference on Manufacturing Automation, 

Hong-Kong. Vol.1, pp. 613-624. 1992. 

(Case92b) Case, K. "Feature-based CAD Systems for Process Capability 

Modelling". International Congress on Computer Graphics-

CICOMGRAF'92, Sao Paulo, Brazil, 30th. July. Vol. 1, pp. 1-14. 1992. 

(Case93a) Case, K. and J. Gao. "Feature Technology: An Overview". 

International Journal of Computer Integrated Manufacturing. Vol. 6(1-2), 

pp. 2-12. 1993. 

(Case93c) Case, K., J. Gao, and N. N. Z. Gindy. "LUT-FBDS: A Feature

based Design System". Final Report, SERC Grant GR/035657, 

Loughborough University ofTechno1ogy. 1993. 

(Case94) Case, K., J. X. Gao, and N. N. Z. Gindy. "The Implementation of a 

Feature-based Component Representation for CAD/CAM Integration". 

Journal of Engineering Manufacture - Proceedings of the Institution of 

Mechanical Engineers (IMechE) Part B .. Vol. 208(Bl), pp. 71-80. 1994. 

(Chamberlain93) Chamberlain, M. A. "Protrusionjeatures Handling in 

Design and Manufacturing Planning". Computer Aided Design. Vol. 

25(1), pp. 19-28. 1993. 

(Chang90) Chang, T.-C. "Expert Process Planning for Manufacturing (ISBN 

0-201-18297-1)". Add!son-Wesley Publislung Company, Reading, USA. 

1990. 

PAGE273 



(Chen94) Chen, C. L. P. and S. R. LeClair. "Integratwn of Design and 

Manufacturing: Solving Setup Generation and Feature Sequencing Using 

an Unsupervised-Learning Approach". Computer Aided Design. Vol. 

26(1), pp. 59-75. 1994. 

(Chen95) Chen, X. and C. M. Hoffmann. "On Editability of Feature-based 

Design". Computer Aided Design. Vol. 27(12), pp. 905-914. 1995. 

(Choi84) Choi, B. K., M. N. Barasan, and D. C. Anderson. "Automatic 

Recognition of Machined Suifaces from 3D Solid Modelling". Computer 

Aided Design. Vol. 16(2), pp. 81-86. 1984. 

(Chovan91) Chovan, J. D. and M. B. Waldron. "Identifying the Fundamental 

Geometric Attributes of Design: an application of distinctive feature 

theory". 3rd. InternatiOnal Conference on Design Theory and 

Methodology (ASME-DE). Vol. 31, pp. 209-216. 1991. 

(Chung90a) Chung, J. C. H., D. R. Pate!, R. L. Cook and M. K. Simmons. 

"Feature-Based Modelling for Mechanical Design". Computers and 

Graphics. Vol. 14(2), pp. 189-199. 1990. 

(Chung90b) Chung, P.W.H., et al. "Chapter 9: Overview of Artificial 

Intelligence Tools" in Knowledge-Based Systems for Industrial Control, 

Peter Peregrinus Ltd. pp. 165-188. 1990. 

(Chung90c) Chung, J. C. H. and M. D. Schussel. "Technical Evaluation of 

Variational and Parametric Design". (ASME) Computers in Engineering. 

Vol. 1, pp. 289-298. 1990. 

(Collins87) "Collins COBUIW English Language Dictionary (ISBN: 0-00-

370023-213)". Developed and Compiled in the English Department at the 

University ofBimungham. HarperCollins Publishers. 1987. 

(Crawford93) Crawford, R. "Integrating 3D Modelling and Process Planning 

by Features: a Case Study". International Journal of Computer Integrated 

Manufacturing. Vol. 6(1-2), pp. 113-118. 1993. 

PAGE274 



(Cunningham88) Cunningham, J. J. and J. R. Dixon. "Designing with 

Features: the Origin of Features". ASME Computers in Engineering 

Conference. Vol. 1, pp. 237-243. 1988. 

(Das96) Das, D., S. K. Gupta, and D. S. Nau. "Generating Redesign 

Suggestions to Reduce Setup Cost: A Step Towards Automated Redesign". 

Computer Aided Design. Vol. 28(10), pp. 763-782. 1996. 

(Denzel93) Denzel, H. and G.-C. Vosniakos. "A Feature-based Design System 

and Its Potential to Unify CAD and CAM". Interfaces in Industrial 

Systems for Production and Engineering (IFIP-Transactions B: 

Applications in Technology), Elsevier Science Publishers B. V. (North

Holland). Vol. B-10, pp. 131-144. 1993. 

(Dixon87) Dixon, J. R. and J. J. Cunningham. "Research in Designing with 

Features".IFIP WG 5. 2, Conference on Intelligent CAD, Boston. Vol. 1, 

pp. 137-148. 1987. 

(Dixon90) Dixon, J. R., E. C. Libardt Jr, and E. H. Nielsen. "Unresolved 

Research Issues in Development of Design-with-Features Systems". IFIP 

WG 5. 2/ NSF Working Conference on Geometric Modelling, Wozny, M. 

J., Turner, J. V. and Preiss, K Editors. ResselaerVille, USA, Elsevier 

Science Publishers B. V. (North-Holland). Vol.1, pp. 183-196. 1990. 

(Dohmen94) Dohmen, M. "Constraint Techniques in Interactive Feature 

Modeling". Report 94-16, Delft University of Technology (TUDelft), 

Facu1ty of Technical Mathematics and Informatics. 1994. 

(Dohmen96) Dohmen, M., K. J. d. Kraker, and W. F. Bronsvoort. "Feature 

Validation in a Multiple-View Modelling System". (ASME) Destgn 

Engineering Technical Conference and Computers in Engineering 

Conference, Irvme, California, USA. Vol. DETC-96, pp. 1-10. 1996. 

(Donnell94) Donnell, B. L. "Object/Rule Integration m CLIPS". Expert 

Systems. Vol. 11(1), pp. 29-45. 1994. 

PAGE275 



(Duan89) Duan, W., W. Qifu, and J. Zhou. "The Research of Feature Solid 

Modelling". 5th International Conference on Computer-Aided Production 

Engineering, Edinburgh, Scotland, UK. November. Vol. 1, pp. 391-396. 

1989. 

(Duan93) Duan, W., J. Zhou, and K. Lai. "FMST: A Feature Solid Modelling 

Tool for Feature-Based Design and Manufacture". Computer Aided 

Design. Vol. 25(1), pp. 29-38. 1993. 

(Eastman84) Eastman, C. M. and K. Preiss. "A Review of Solid Shape 

Modeling Based on Integrity Verification". Computer Aided Design. Vol. 

16(2), pp. 66-80. 1984. 

(E1Maraghy91) E!Maraghy, H. A. "Intelligent Product Design and 

Manufacture". In Artificial Intelligence m Design, D. T. Pharn, Editor. 

Spnnger-Verlag. pp. 147-168. 1991. 

(EIMaraghy93a) ElMaraghy, H. A. "Evolution and Future Perspectives of 

CAPP". Annals of the CIRP. Vol. 42/2, pp. 739-751. 1993. 

(EIMaraghy93b) ElMaraghy, H. A., K. F. Zhang, and H. Chu. "A Functional

Oriented Mode/er Prototype". (ASME) Design Engineering Conference 

(Conference Code 18671) ISBN:0-79-181136-0, Chicago, USA, March. 

Vol. DE-52, pp. 57-62. 1993. 

(Emmerik89) Emrnerik, M. J. G. M. v. and F. W. Jansen. "User Interface for 

Feature Modelling". (IFIP) Computer Applications in Production and 

Engineering Conference, Elsevier Science Publishers B. V. (North

Holland). Vol. 1, pp. 625-632. 1989. 

(Emmerik91) Emrnerik, M. J. G. M. v. "Interactive Design of 3D Models with 

Geometric Constraints". The Visual Computer. Vol. 7(5-6), pp. 309-325. 

1991. 

PAGE276 



(Faux86) Faux, I. D. "Reconciliation of Design and Manufacturing 

Requirements for Product Description Data Using Functional Primitive 

Part Features". Report R-86-ANC/GM/PP-01.1, CAM-I Inc., 1986. 

(Fu94) Fu, Z. and A.Y.C. Nee. "lnterpretmg Feature Viewpoint to Concurrent 

Engineering". (ASME) International Computers in Engineering 

Conference and Exhibition, Minneapolis, Minnesota, USA, September, 

11-14. Vol.1, pp. 405-411. 1994. 

(Gadh95a) Gadh, R. and F. B. Prinz. "A Computationally Efficient Approach 

to Feature Abstraction in Designjor-Manufacturing Integration". Journal 

of Mechanical Design. Vol.l17(February), pp. 16-27. 1995. 

(Gadb95b) Gadh, R. and F. B. Prinz. "Automatic Determination of Feature 

Interaction in Designjor-Manufacturing Analysis". Journal of 

Mechanical Design. Vol. 117(March), pp. 2-9. 1995. 

(Gandhi89) Gandhi, A. and A. Myklebust. "A Natural Language Approach to 

Feature Based Modeling". (ASME-DE) 15th Design Automatton 

Conference, Montreal, Quebec, CA. September 17-21. Vol. 19-1, pp. 69-

77. 1989. 

(Gao93) Gao, J. X. and K. Case. "Information Mapping Between a Feature

based Design and an Integrated Process Planning System". Proceedings 

of the 281
h MATADOR Conference, Macmillan Press. Vol. 1, pp. 551-

558. 1993. 

(Giarratano94) Giarratano, J. C. and G. Riley "Expert Systems: Principles 

and Programming (ISBN: 0-534-93744-6)". 2"d ed. PWS Publislung 

Company. Boston, USA. 1995. 

(Gindy89) Gindy, N. N. Z. "A Hierarchical Structure of Form Feature". 

International Journal of Production Research. Vol. 27(12), pp. 2089-2103. 

1989. 

PAGE277 



(Gindy93) Gindy, N. N. Z., X. Huang, and T. M. Ratchev. "Feature-based 

Component Model for Computer-aided Process Planning". International 

Journal of Computer Integrated Manufacturing. Vol. 6(1-2), pp. 20-26. 

1993. 

(Gomes91) Gomes, A. J. P. and J. C. G. Teixeira. "Form Feature Modelling in 

a Hybrid CSG/Brep Scheme". Computers and Graphics (Pergamon Press). 

Vol. 15(2), pp. 217-229. 1991. 

(Grayer76) Grayer, A. R. "A Computer Link Between Design and 

Manufacture". Ph.D. Thesis. University ofCambndge. September 1976. 

(Gupta92) Gupta, S. K., P. N. Rao, and N. K. Tewari. "Development of a 

CAPP System for Prismatic Parts Usmg Feature Based Design 

Concepts". InternatiOnal J. of Advanced Manufacturing Technology. Vol. 

7, pp. 306-313. 1992. 

(Gupta93) Gupta, S. K. and D. S. Nau. "Generation of Alternative Feature

Based Models and Precedence Orderings for Machming Applications". 

Second Symposium on Solid Modeling and Applications, May 19-21, 

Montreal, Canada. Vol. 1, pp. 465-466. 1993. 

(Hailong95) Hailong, L., D. Jinxiang, T. Min and H. Zhijun. "A Schema of 

Developing Feature-based Modelling Systems". Proceedmgs of SPIE- The 

International Society for OptJcal Engineering (IS:0-81-942012-3). Vol. 

2620, pp. 76-80. 1995. 

(Han97) Han, J. and A. A. G. Requicha. "Integration of Feature based Design 

and Feature Recognition". Computer Aided Design. Vol. 29(5), pp. 393-

403. 1997. 

(Harun96) Harun, W.A.R.J.B.W. "Feature-Based Representation for 

Assembly Modelling". PhD Thesis, Loughborough University, September 

1996. 

PAGE278 



(Hayes89) Hayes, C. and P. Wright. "Automating Process Planning: Using 

Feature Interactions to Guide Search". Journal of Manufacturing 

Systems. Vol. 8{1), pp. l-15. 1989. 

(Henderson90) Henderson, M. R., et al. "Graph-Based Feature Extraction". 

Arizona State University, USA. 1990. 

(Henderson93) Henderson, M. R. "Representing Functionality and Design 

Intent in Product Models". Second Symposmm on Solid Modeling and 

Applications, May 19-21, Montreal, Canada. Vol. 1, pp. 387-396. 1993. 

(Herbert90) Herbert, P. J., C. J. Hinde, A. D. Bray, Y. A. Launders, D. Round 

and D. M. Temple. "Feature Recognition within a Truth Maintained 

Process Planning System". International Journal of Computer Integrated 

Manufacturing. Vol. 3(2), pp. 121-132. 1990. 

(Hummel89) Hummel, K. E. "Coupling Rule-Based and Object-oriented 

Programming for the Classification of Machined Features". ASME 

Computers in Engineering Conference and Exposition, Anahe1m, 

California, USA. Vol. 1, pp. 409-418. 1989. 

(Jablokow94) Jablokow, A. G., J. J. Uicken Jr., and D. A. Turcic. 

"Verification of Boundary Representation of Solid Models". Journal of 

Mechanical Design. Vol. 116(June), pp. 666-668. 1994. 

(Jakiela89) Jakiela, M. J. and P. Y. Papalambros. "Concurrent Engmeermg 

with Suggestion Making CAD Systems: Results of Initial User Tests". 

(ASME-DE) 15th Design AutomatiOn Conference, Montreal, Quebec, CA. 

Sept 17-21. Vol. 19-1, pp. 223-230. 1989. 

(Kang93) Kang, T.-S. and B. 0. Nnaji. "Feature Representation and 

Classification for Automatic Process Planning System". Journal of 

Manufacturing Systems. Vol.12(2), pp. 133-145. 1993. 

PAGE279 



(Kim93) Kim, H. S., H. Ko, and K. Lee. "Incremental Feature-Based 

Modeling". Second Symposium on Sohd Modeling and Applications, May 

19-21, Montreal, Canada. Vol. 1, pp. 469-470. 1993. 

(Kim96) Kim, C. and P. J. O'Grady. "A Representation Formalism for 

Feature-based Design". Computer Aided Design. Vol. 28(6n}, pp. 451-

460. 1996. 

(Kiriyama91) Kiriyama, T., T. Tomiyama, and H. Yoshikawa. "The Use of 

Qualitative Physics for Integrated Design Object Modeling". (ASME-DE) 

DTM'91: Design Theory and Methodology, Miami, Florida, USA. 

September 22-25. Vol. 31, pp. 53-60. 1991. 

(Kraker97) Kraker, K. J. d. "Feature Validation and Conversion". In CAD 

Systems Development: Tools and Methods (ISBN: 3-540-62535-6)", D. 

Roller and P. Brunet, Editors. Springer-Verlag. NY, USA, pp. 121-142. 

1997. 

(Krause93) Krause, F.-L., H. Jansen, M. Biemet and F Major "Product 

Modelling". Annals of the CIRP. Vol. 42/2, pp. 695-706. 1993. 

(Kumara94) Kumara, S. R. T., C.-Y. Kao, M. G. Gallagher and R. Kasturi. 

"3-D Interacting Manufacturing Feature Recognition". Annals of the 

CIRP. Vol. 4311, pp. 133-136. 1994. 

(Laakko93) Laakko, T. and M. Mitntyla. "Feature Modelling by Incremental 

Feature Recognition". Computer Aided Design. Vol. 25(8), pp. 479-492. 

1993. 

(Lee94) Lee, R.J.V., A.H.S. Al-Ashaab, and R.I.M. Young. "Resolving 

Feature Interactions in Design for Injection Moulding". Proceedings of 

the lOth National Conference on Manufacturing Technology (NCMR'94) 

in Advances in Manufacturing Technology VIll, Uruversity of York. Vol. 

10,pp.274-278. 1994. 

PAGE280 



(Lenau93) Lenau, T. and L. Mu. "Features in Integrated Modelling of 

Products and their Production". International Journal of Computer 

Integrated Manufacturing. Vol. 6(1-2), pp. 65-73. 1993. 

(Li90) Ll, R.-K. and M.-H. Yu. "A Framework for Prismatic Pan-data 

Generation- Unit-Machzned Loop Concept". International Journal of 

Computer Integrated Manufacturing. Vol. 3(2), pp. 96-111. 1990. 

(Libardi86) L1bardi Jr., E. C., J. R. Dixon, and M. K. Simmons. "Designing 

with Features: Design and Analysis of Extrusions as an Example". 

(ASME) Spring Nat. Design Engineering Conference and Show, Chicago, 

Illinois, USA. Vol. 86-DE-4, pp. 1-8. 1986. 

(Lim95) Lim, S. S., I. B. H. Lee, C. E. N. Lim and B. K. A. Ngoi. "Computer

aided Concurrent Design of Product and Assembly Process: a Literature 

Review". Journal of Design and Manufacturing. Vol. 5(2), pp. 67-88. 

1995. 

(Luby86) Luby, S. C., J. R. D1xon, and M. K. Simmons. "Creating and Using 

a Feature Data Base". Journal of Mechanical Engineering. Vol. 5(3), pp. 

25-33. 1986. 

(Mlintylli89) Mantyhi, M., J. Opas, and J. Puhakka. "Generative Process 

Planning of Prismatic Pans by Feature Relaxation". (ASME-DE) 15th 

Design Automation Conference, Montreal, Quebec, CA. Sept 17-21, 

1989. Vol. 19-1, pp. 49-60. 1989. 

(Mlintylli94) Miintylii, M., K. Lagus, T. Laakko and G. Sohlenius. 

"Application of Constraint Propagation in Pan Family Modelling". 

Annals oftbe CIRP. Vol. 43/1, pp. 129-132. 1994. 

(Mlintylli96) Miintyhi, M., D. Nau, and J. Shah. "Challenges in Feature-based 

Manufacturing Research". Communications of tbe ACM. Vol. 39(2), pp. 

77-85. 1996. 

PAGE281 



(Miintylii97) Mantylil, M. "Extracting Reusable Product Data". In CAD 

Systems Development: Tools and Methods (ISBN: 3-540-62535-6)", D. 

Roller and P. Brunet, Editor. Springer-Verlag. NY, USA, pp. 89-105. 

1997. 

(Marefat93a) Marefat, M., S. Malhotra, and R. L. Kashyap. "Object-oriented 

Intelligent Computer-Integrated Design, Process Planning and 

Inspection" IEEE Computer. Vol. 26(3), pp. 54-65. 1993. 

(Marefat93b) Marefat, M., P. Banerjee, R. L. Kashyap and C. L. Moodie. 

"Capturing Intelligence as a Reusable Framework for Manufacturing 

Decision Processes". International Journal of Production Research. Vol. 

31(8), pp. 1767-1795. 1993. 

(Marghitu93) Marghitu, D., A. H. Dogru, and D. B. Johnson. "Intelligent 

CAD Systems: A Requirement Study". (ASME-PD) Computer 

Applications and Design Abstraction. Vol. 49, pp. 151-156. 1993. 

(Martino94a) Martino, T. D. and F. Giannini. "The Role of Feature 

Recognition in Future CAD Systems". 1F1P International Conference on 

Feature Modelling and Recognition in Advanced CAD/CAM Systems, 

Valenciennes, FR. Vol. 1, pp. 343-355. 1994. 

-
(Martino94b) Martino, T. D., B. Falcidieno, F. Giannini, S. Hassinger and J. 

Ovtcharova. "Feature-based Modelling by Integrating Design and 

Recognition Approaches". Computer Aided Design. Vol. 26(8), pp. 646-

653. 1994. 

(Mayer94) Mayer, R. J., C. J. Su, T.-L. Sun. and R. A. Wysk "ECTOF: a 

Feature Representation Technique for Concurrent Engineering 

Applications". Journal of Design and Manufacturing. Vol. 4, pp. 49-65. 

1994. 

(Medland93) Medland, A. J. and G. Mullineux:. "A Constraint Approach to 

Feature-based Des1gn". International Journal of Computer Integrated 

Manufacturing. Vol. 6(1-2), pp. 34-38. 1993. 

PAGE282 



(Mill93) Mill, F. G., J. C. Salmon, and A. G. Pedley. "Representation 

Problems in Feature-based Approaches to Design and Process Planning". 

International Journal of Computer Integrated Manufacturing. Vol. 6(1-2), 

pp. 27-33. 1993. 

(Mitche1196) Mitchell, S. R. "A Feature-based Approach to the Computer 

Aided Design of Sculptured Products". PhD Thesis, Loughborough 

University, July 1996. 

(Molloy93) Molloy, E., H. Yang, and J. Browne. "Feature-based Modelling in 

Design for Assembly". International Journal of Computer Integrated 

Manufacturing. Vol. 6(1-2), pp. 112-125. 1993. 

(Murray93) Murray, J. L. and Y. Yue. "Automatic Machining of 2,5D 

Components with ACIS Modeller". International Journal of Computer 

Integrated Manufacturing. Vol. 6(1-2), pp. 94-104. 1993. 

(Nielsen91) Nielsen, E. H., J. R. Dixon, and E. E. Zinsmeister. "Capturing 

and Using Designer Intent in a Design-with-Features System". DTM'91: 

3rd. International Conference on Design Theory and Methodology 

(ASME-DE), Miami, Florida, USA. Sept 22-25. Vol. 31, pp. 95-102. 

1991. 

(Nnaji93) Nnaji, B. 0., H.-C. Liu, and U. Rembold. "A Product Modeller for 

Discrete Components". International Journal of Production Research. Vol. 

31(9), pp. 2017-2044. 1993. 

(Ohsuda89) Ohsuda, S. "Toward intelligent CAD systems". Computer Aided 

Design. Vol. 21(5), pp. 315-337. 1989. 

(Ovtcharova92) Ovtcharova, J., G. Pahl, and J. Rix. "A Proposal for Feature 

Classification in Feature-based Design". Computers and Graphics 

(Pergamon Press). Vol.16(2), pp. 187-195. 1992. 

(Ovtcharova94) Ovtcharova, J. and U. Jasnoch. ·~n Integration of Feature

Based Design and Consistency Management in CAD Management". IFIP 

PAGE283 



International Conference on Feature Modeling and Recognition in 

Advanced CAD/CAM Systems, Valenciennes, May. Vol. 2, pp. 739-756. 

1994. 

(Patterson90) Patterson, D. W. "Introduction to Artificial Intelligence and 

Expert Systems". New-Jersey. Prentice-Hall Inc. Pub. 1990. 

(Pemg90) Pemg, D.-B., Z. Chen, and R -K. Li. "Automatic 3D Machining 

Feature Extraction from 3D CSG Solid Input". Computer Aided Design. 

Vol. 22(5), pp. 285-295. 1990. 

(Perng97a) Pemg, D.-B. and C.-F. Chan. "A New Feature-based Design 

System with Dynamic Editing". Computers in Industrial Engineering. Vol. 

32(2), pp. 383-397. 1997. 

(Pemg97b) Pemg, D.-B. and C.-F. Chang. "Resolving Feature Interactions in 

3D Part Editing". Computer Aided Design. Vol. 29(10), pp. 687-699. 

1997. 

(Pratt85) Pratt, M. J. and P. R. Wilson. "Requirements for Support of Form 

Features in a Solid Modelling System". Final Report R-85-ASPP-01. 

CAM-I Inc., Arlington, Texas, USA. 1985. 

(Pratt88) Pratt, M. J. "Synthesis of an Optimal Approach to Form Feature 

Modelling". (ASME) International Computers in Engineering Conference 

& Exhibition, California, USA. Vol. 1, pp. 263-274. 1988. 

(Pratt93) Pratt, M. J. "Application of Features Recognition in the Product 

Life-Cycle". International Journal of Computer Integrated Manufacturing. 

Vol. 6(1-2), pp. 13-19. 1993. 

(Regli96) Regli, W. C. and M. J. Pratt. "What Are Feature Interactions ?". 

(ASME) Design Engineering Teclmical Conference and International 

Computers in Engineering Conference, lrvine, Caltfomta, USA. Vol. 

DFM-1285, pp. 1-12. 1996. 

PAGE284 



(Rembold93) Rembold, U., B. 0. Nnaji, and A. Storr. "Computer Integrated 

Manufacturing and Engineering". Addison-Wesley Publishing Co. 1993. 

(RequichaSO) Requicha, A. A. G. "Representations for Rigid Solids: Theory, 

Methods, and Systems". ACM Computing Surveys. Vol. 12(4), pp. 437-

464. 1980. 

(Requicha89a) Requicha, A. A. G. "Solid Modeling and Its Applications: 

Progress in Tolerancmg, Inspection, and Feature Recognition". 16th NSF 

Design & Manufacturing Systems Grantees Conference. Vol. 1, pp. 1-12. 

1989. 

(Requicha89b) Reqmcha, A. A. G. and J. H. Vanderbrande. "Form Features 

for Mechamcal Design and Manufacturing". (ASME) International 

Computers in Engineering Conference and Exibition. Vol. 1, pp. 47-52. 

1989. 

(Requicha92) Requicha, A. A. G. and J. R. Rossignac. "Solid Modelling and 

Beyond". IEEE Computer Graphics and Applications. Vol. 

12(September), pp. 31-44. 1992. 

(Rimscha90) Rirnscha, M. v. "Feature Modelling and Assembly Modelling- A 

Unified Approach". IFIP/GI, WG 5. 2, Advanced Geometric Modelling 

for Engineering Applications, F.-L. Krause and H. Jansen Editors. Berlin, 

Germany. Elsevier Science Publishers B. V. (North-Holland). Vol. 1 •. pp. 

203-214. 1990. 

(Rosen93) Rosen, D. W. "Feature-Based Design: Four Hypothesis for Future 

CAD Systems". Research in Engineering Design. Vol. 5, pp. 125-139. 

1993. 

(Rossignac90) Rossignac, J. R. "Issues on Feature-based Editing and 

Interrogation of Solid Models". Computers and Graphics. Vol. 14(2), pp. 

149-172. 1990. 

PAG£285 



(Rossignac91) Rossignac, J. R. "Through the Cracks of the Solid Modelling 

Milestone". Eurographics'91 Technical Report Series, Vienna- Austria- 2-

6 Sept.. Vol. EG91STAR, pp. 23-109. 1991. 

(Salmon97) Salmon, J.C. "Geometric Reasoning for Process Planning". PhD 

Thesis, The University of Edinburgh. December 1997. 

(Salomons93) Salomons, 0. W., F. J. A. M. van Houten, and H. J. J. Kals. 

"Review of Research in Feature-Based Design". Journal of Manufacturing 

Systems. Vol.12(2), pp. 113-132. 1993. 

(Serrano88) Serrano, D. and D. Gossard. "Constraint Management in 

MCAE". In Artificial Intelligence in Engineering: Design, J. S. Gero, 

Editor. Elsevier Science Publishers B. V. (North-Holland). Amsterdam. 

pp. 217-240. 1988. 

(Shah88a) Shah, J. J. and M. T. Rogers. "Functional Requirements and 

Conceptual Design of Feature-based Modellmg System". Computer

Aided Engmeering Journal. Vol. 5(1), pp. 9-15. 1988. 

(Shah88b) Shah, J. J. "Feature Transformation between Application-specific 

Feature Spaces". Computer-Aided Engineering Journal. Vol. 5(6-

December), pp. 247-255. 1988. 

(Shah88c) Shah, J. J., P. C. Sreevalsan, M. T. Rogers, R. Billo and A. 

Mathew. "Current Status of Feature Technology". Report R-88-GM-04.1 

CAM-I Inc. Arlington, Texas, USA. 1988. 

(Shah88d) Shah, J. J. and M. T. Rogers. "Feature Based Modeling Shell: 

Design and Implementation". (ASME) International Computers in 

Engineering Conference and Exhibition. Vol. 1, pp. 255-261. 1988. 

(Shah88e) Shah, J. J. and M. T. Rogers. "Expert Form Feature Modelling 

Shell". Computer Aided Design. Vol. 20(9), pp. 515-524. 1988. 

PAGE286 



(Shah90) Shah, J. J. "Philosophical Development of Form Feature Concept". 

Report P-90-PM-02. CAM-I Inc. Arlington, Texas, USA. Vol. 1990. 

(Shah91) Shah, J. J. "Assessment of Feature Technology". Computer Aided 

Design. Vol. 23(5), pp. 331-343. 1991. 

(Shah94a) Shah, J.J., et al. "Comparative Study of Procedural and 

Declarative Feature Based Geometric Modellmg". IFIP International 

Conference on Feature Modeling and Recogrution in Advanced 

CAD/CAM Systems, Valenciennes, May. Vol. 2, pp. 647-671. 1994. 

(Shah94b) Shah, J. J., A. Ali, and M. T. Rogers. "Investigation of Declarative 

Feature Modeling". (ASME) Computers in Engineering Conference and 

Exhibition, Mmneapohs, Minnesota, USA, September, 11-14. Vol. 1, pp. 

1-11. 1994. 

(Shah95) Shah, J. J. and M. Mimtylli. "Parametric and Feature-Based 

CAD/CAM: Concepts, Techniques and Applications". John Wiley and 

Sons Inc. 1995. 

(Sheu93) Sheu, L.-C. and J. T. Tm. "Representation Scheme for Defining and 

Operating Form Features". Computer Aided Design. Vol. 25(6), pp. 333-

347. 1993. 

(Silva90) Silva, R. E. d., K. L. Wood, and J. J. Beaman. "Representing and 

Manipulating Interacting Inteifeature Relationships in Engineering 

Design for Manufacture". (ASME) Advances in Design Automation. Vol. 

DE-23-1, pp. 1-8. 1990. 

(Sodhi91) Sodhi, R. and J. U. Turner. "Representing Tolerance and Assembly 

Information in a Feature-Based Design Environment". (ASME) Advances 

in Design Automation Conference. Vol. DE-32-1, pp. 101-108. 1991. 

(Sreevalsan92) Sreevalsan, P. C. and J. J. Shah. "Unification of Form Feature 

Definition Methods". IFIP Transaction B, WG 5. 2, Intelligent Computer 

PAGE287 



Aided Design, North-Holland, Elsevier Science Publishers. Vol. B-4, pp. 

83-106. 1992. 

(Srikantappa94) Srikantappa, A. B. and R. H. Crawford. "Automatic Part 

Coding Based on Interfeature Relationship". Manufacturing Research and 

Technology, Elsevier Science Publishers B. V. (North-Holland). Vol. 20, 

pp. 215-237. 1994. 

(Stroud93) Stroud, I. "Modelling Techniques for Handling Non-Geometric 

Information". Second SymposiUm on Solid Modeling and Applications, 

May 19-21, Montreal, Canada. Vol. 1, pp. 367-376. 1993. 

(Su94) Su, C. J., R. J. Mayer, T.-L. Sun and R. A. Wysk. "A Three-phase 

Method for Feature Interaction Resolution". Journal of Design and 

Manufacturing. Vol. 4, pp. 153-166. 1994. 

(Subrahmanyam95) Subral!rnanyarn, S., W. DeVries, and M. J. Pratt. 

"Feature Attributes and Their Role in Product Modeling". Symposium on 

Solid Modeling and Applications. Vol. 1, pp. 115-124. 1995. 

(Suh95a) Suh, H., R. S. Ahluwalia, and J. E. Miller. "Dynamic Feature 

Generation During Design". Journal of Design and Manufacturing. Vol. 

(5), pp. 115-126. 1995. 

(Suh95b) Suh, H. and R. S. Ahluwalia. "Feature Modification in Incremental 

Feature Generation". Computer Aided Design. Vol. 27(8), pp. 627-635. 

1995. 

(Suzuki90) Suzuki, H., H. Ando, and F. Kimura. "Geometric Constraints and 

Reasoning for Geometrical CAD Systems". Computers and Graphics 

(Pergarnon Press). Vol. 14(2), pp. 211-224. 1990. 

(Talwar94) Talwar, R. and S. Manoochehn. "Algorithms to Detect Geometric 

Interactions in a Feature-based Design System". Advances in Design 

Automation (ASME-DE). Vol. 69-1(1), pp. 307-314. 1994. 

PAGE288 



(Taylor96) Taylor, L. E. and M. R. Henderson. "Validating a Feature-based 

Meta-model for Mechanical Products: a Case Study". In Advanced 

CAD/CAM Systems: State-of-the-art and future trends in feature 

technology, R. Soenen and G. L. Ollmg, Editor. Chapman & Hall (IFIP). 

London. pp. 219-239. 1996. 

(Tomiyama90) Tomiyama, T. and P. J. W. ten Hagen. "Representing 

Knowledge in two D1stmct Description: Extensional vs. Intensional". 

Artificial Intelligence in Engineering. Vol. 5(1), pp. 23-32. 1990. 

(Tomiyama93) Tomiyama, T., Y. Umeda, and H. Y oshikawa. ''A CAD for 

Functional Des1gn". Annals of the CIRP. Vol. 42/1, pp. 143-146. 1993. 

(Tseng94) Tseng, Y.-J. and S B. Joshi. "Recognizmg Multiple Interpretations 

of Interacting Machimng Features". Computer Aided Design. Vol. 26(9), 

pp. 667-688. 1994. 

(Vancza93) Vancza, J. and A. Markus. "Features and the Principle of Locality 

in Process Planning". International Journal of Computer Integrated 

Manufacturing. Vol. 6(1-2), pp. 126-136. 1993. 

(Waco94) Waco, D. L. and Y. S. Kim. "Geometric Reasoning for Machining 

Features using Convex Decomposition". Computer Aided Design. Vol. 

26(6), pp. 477-489. 1994. 

(Y oshikawa87) Y oshikawa, H. and K. Ando. "Intelligent CAD in 

Manufacturing". Annals of the CIRP. Vol. 36/1, pp. 77-80. 1987. 

(Young93) Young, R. I. M. and R. Bell. "Des1gn by Feature: Advantages and 

Limitations in Machining Planning Integration". International Journal of 

Computer Integrated Manufacturing. Vol. 6(1-2), pp. 105-112. 1993. 

(Zeid91) Zeid, I. "CAD/CAM: Theory and Practice". Computer Science 

Senes, McGraw Hill International Editions. 1991. 

PAGE289 



(Zhang93) Zhang, K. F. and H. A. E!Maraghy. "Validity Check for a 

Functional-oriented Modeler". (ASME) Advances in Design Automation 

(conf. code 19400, ISBN: 0-79-981181-6). Vol. DE-65-2, pp. 293-300. 

1993. 

(Zhang94) Zhang, Y. F., A. Y. C. Nee, and J. Y. H. Fuh. "A Hybrid Approach 

to Computer-Aided Process Planning for Przsmatic Pans". (ASME) 

International Computers in Engineering Conference and Exhibition, 

Minneapolis, Minnesota, USA. September 11-14. Vol. 1, pp. 437-444. 

1994. 

PAGE290 



·' 


