1,007 research outputs found

    IntelligentAutonomous SystemsLearningSequential SkillsforRobot Manipulation Tasks

    Get PDF
    denangegebenenQuellenundHilfsmittelnangefertigtzuhaben. AlleStellen,di

    Interactive Imitation Learning of Bimanual Movement Primitives

    Full text link
    Performing bimanual tasks with dual robotic setups can drastically increase the impact on industrial and daily life applications. However, performing a bimanual task brings many challenges, like synchronization and coordination of the single-arm policies. This article proposes the Safe, Interactive Movement Primitives Learning (SIMPLe) algorithm, to teach and correct single or dual arm impedance policies directly from human kinesthetic demonstrations. Moreover, it proposes a novel graph encoding of the policy based on Gaussian Process Regression (GPR) where the single-arm motion is guaranteed to converge close to the trajectory and then towards the demonstrated goal. Regulation of the robot stiffness according to the epistemic uncertainty of the policy allows for easily reshaping the motion with human feedback and/or adapting to external perturbations. We tested the SIMPLe algorithm on a real dual-arm setup where the teacher gave separate single-arm demonstrations and then successfully synchronized them only using kinesthetic feedback or where the original bimanual demonstration was locally reshaped to pick a box at a different height

    Model-free Probabilistic Movement Primitives for physical interaction

    Get PDF
    Physical interaction in robotics is a complex problem that requires not only accurate reproduction of the kinematic trajectories but also of the forces and torques exhibited during the movement. We base our approach on Movement Primitives (MP), as MPs provide a framework for modelling complex movements and introduce useful operations on the movements, such as generalization to novel situations, time scaling, and others. Usually, MPs are trained with imitation learning, where an expert demonstrates the trajectories. However, MPs used in physical interaction either require additional learning approaches, e.g., reinforcement learning, or are based on handcrafted solutions. Our goal is to learn and generate movements for physical interaction that are learned with imitation learning, from a small set of demonstrated trajectories. The Probabilistic Movement Primitives (ProMPs) framework is a recent MP approach that introduces beneficial properties, such as combination and blending of MPs, and represents the correlations present in the movement. The ProMPs provides a variable stiffness controller that reproduces the movement but it requires a dynamics model of the system. Learning such a model is not a trivial task, and, therefore, we introduce the model-free ProMPs, that are learning jointly the movement and the necessary actions from a few demonstrations. We derive a variable stiffness controller analytically. We further extent the ProMPs to include force and torque signals, necessary for physical interaction. We evaluate our approach in simulated and real robot tasks

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Neural Learning of Vector Fields for Encoding Stable Dynamical Systems

    Get PDF
    Lemme A, Reinhart F, Neumann K, Steil JJ. Neural Learning of Vector Fields for Encoding Stable Dynamical Systems. Neurocomputing. 2014;141:3-14

    Extracting low-dimensional control variables for movement primitives

    Get PDF
    Movement primitives (MPs) provide a powerful framework for data driven movement generation that has been successfully applied for learning from demonstrations and robot reinforcement learning. In robotics we often want to solve a multitude of different, but related tasks. As the parameters of the primitives are typically high dimensional, a common practice for the generalization of movement primitives to new tasks is to adapt only a small set of control variables, also called meta parameters, of the primitive. Yet, for most MP representations, the encoding of these control variables is pre-coded in the representation and can not be adapted to the considered tasks. In this paper, we want to learn the encoding of task-specific control variables also from data instead of relying on fixed meta-parameter representations. We use hierarchical Bayesian models (HBMs) to estimate a low dimensional latent variable model for probabilistic movement primitives (ProMPs), which is a recent movement primitive representation. We show on two real robot datasets that ProMPs based on HBMs outperform standard ProMPs in terms of generalization and learning from a small amount of data and also allows for an intuitive analysis of the movement. We also extend our HBM by a mixture model, such that we can model different movement types in the same dataset

    Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates

    Get PDF
    Neumann K, Lemme A, Steil JJ. Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates. Presented at the Int. Conference Intelligent Robotics and Systems, Tokio

    Robot learning from demonstration of force-based manipulation tasks

    Get PDF
    One of the main challenges in Robotics is to develop robots that can interact with humans in a natural way, sharing the same dynamic and unstructured environments. Such an interaction may be aimed at assisting, helping or collaborating with a human user. To achieve this, the robot must be endowed with a cognitive system that allows it not only to learn new skills from its human partner, but also to refine or improve those already learned. In this context, learning from demonstration appears as a natural and userfriendly way to transfer knowledge from humans to robots. This dissertation addresses such a topic and its application to an unexplored field, namely force-based manipulation tasks learning. In this kind of scenarios, force signals can convey data about the stiffness of a given object, the inertial components acting on a tool, a desired force profile to be reached, etc. Therefore, if the user wants the robot to learn a manipulation skill successfully, it is essential that its cognitive system is able to deal with force perceptions. The first issue this thesis tackles is to extract the input information that is relevant for learning the task at hand, which is also known as the what to imitate? problem. Here, the proposed solution takes into consideration that the robot actions are a function of sensory signals, in other words the importance of each perception is assessed through its correlation with the robot movements. A Mutual Information analysis is used for selecting the most relevant inputs according to their influence on the output space. In this way, the robot can gather all the information coming from its sensory system, and the perception selection module proposed here automatically chooses the data the robot needs to learn a given task. Having selected the relevant input information for the task, it is necessary to represent the human demonstrations in a compact way, encoding the relevant characteristics of the data, for instance, sequential information, uncertainty, constraints, etc. This issue is the next problem addressed in this thesis. Here, a probabilistic learning framework based on hidden Markov models and Gaussian mixture regression is proposed for learning force-based manipulation skills. The outstanding features of such a framework are: (i) it is able to deal with the noise and uncertainty of force signals because of its probabilistic formulation, (ii) it exploits the sequential information embedded in the model for managing perceptual aliasing and time discrepancies, and (iii) it takes advantage of task variables to encode those force-based skills where the robot actions are modulated by an external parameter. Therefore, the resulting learning structure is able to robustly encode and reproduce different manipulation tasks. After, this thesis goes a step forward by proposing a novel whole framework for learning impedance-based behaviors from demonstrations. The key aspects here are that this new structure merges vision and force information for encoding the data compactly, and it allows the robot to have different behaviors by shaping its compliance level over the course of the task. This is achieved by a parametric probabilistic model, whose Gaussian components are the basis of a statistical dynamical system that governs the robot motion. From the force perceptions, the stiffness of the springs composing such a system are estimated, allowing the robot to shape its compliance. This approach permits to extend the learning paradigm to other fields different from the common trajectory following. The proposed frameworks are tested in three scenarios, namely, (a) the ball-in-box task, (b) drink pouring, and (c) a collaborative assembly, where the experimental results evidence the importance of using force perceptions as well as the usefulness and strengths of the methods
    • …
    corecore