2,739 research outputs found

    Dynamic Convolution Self-Attention Network for Land-Cover Classification in VHR Remote-Sensing Images

    Get PDF
    The current deep convolutional neural networks for very-high-resolution (VHR) remote-sensing image land-cover classification often suffer from two challenges. First, the feature maps extracted by network encoders based on vanilla convolution usually contain a lot of redundant information, which easily causes misclassification of land cover. Moreover, these encoders usually require a large number of parameters and high computational costs. Second, as remote-sensing images are complex and contain many objects with large-scale variances, it is difficult to use the popular feature fusion modules to improve the representation ability of networks. To address the above issues, we propose a dynamic convolution self-attention network (DCSA-Net) for VHR remote-sensing image land-cover classification. The proposed network has two advantages. On one hand, we designed a lightweight dynamic convolution module (LDCM) by using dynamic convolution and a self-attention mechanism. This module can extract more useful image features than vanilla convolution, avoiding the negative effect of useless feature maps on land-cover classification. On the other hand, we designed a context information aggregation module (CIAM) with a ladder structure to enlarge the receptive field. This module can aggregate multi-scale contexture information from feature maps with different resolutions using a dense connection. Experiment results show that the proposed DCSA-Net is superior to state-of-the-art networks due to higher accuracy of land-cover classification, fewer parameters, and lower computational cost. The source code is made public available.National Natural Science Foundation of China (Program No. 61871259, 62271296, 61861024), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2021JC-47), in part by Key Research and Development Program of Shaanxi (Program No. 2022GY-436, 2021ZDLGY08-07), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-634, 2022JQ-018), and in part by Shaanxi Joint Laboratory of Artificial Intelligence (No. 2020SS-03)

    A review on data fusion in multimodal learning analytics and educational data mining

    Get PDF
    The new educational models such as smart learning environments use of digital and context-aware devices to facilitate the learning process. In this new educational scenario, a huge quantity of multimodal students' data from a variety of different sources can be captured, fused, and analyze. It offers to researchers and educators a unique opportunity of being able to discover new knowledge to better understand the learning process and to intervene if necessary. However, it is necessary to apply correctly data fusion approaches and techniques in order to combine various sources of multimodal learning analytics (MLA). These sources or modalities in MLA include audio, video, electrodermal activity data, eye-tracking, user logs, and click-stream data, but also learning artifacts and more natural human signals such as gestures, gaze, speech, or writing. This survey introduces data fusion in learning analytics (LA) and educational data mining (EDM) and how these data fusion techniques have been applied in smart learning. It shows the current state of the art by reviewing the main publications, the main type of fused educational data, and the data fusion approaches and techniques used in EDM/LA, as well as the main open problems, trends, and challenges in this specific research area

    An incremental learning framework to enhance teaching by demonstration based on multimodal sensor fusion

    Get PDF
    Though a robot can reproduce the demonstration trajectory from a human demonstrator by teleoperation, there is a certain error between the reproduced trajectory and the desired trajectory. To minimize this error, we propose a multimodal incremental learning framework based on a teleoperation strategy that can enable the robot to reproduce the demonstration task accurately. The multimodal demonstration data are collected from two different kinds of sensors in the demonstration phase. Then, the Kalman filter (KF) and dynamic time warping (DTW) algorithms are used to preprocessing the data for the multiple sensor signals. The KF algorithm is mainly used to fuse sensor data of different modalities, and the DTW algorithm is used to align the data in the same timeline. The preprocessed demonstration data are further trained and learned by the incremental learning network and sent to a Baxter robot for reproducing the task demonstrated by the human. Comparative experiments have been performed to verify the effectiveness of the proposed framework

    Extracting Information from Multimodal Remote Sensing Data for Sea Ice Characterization

    Get PDF
    Remote sensing is the discipline that studies acquisition, preparation and analysis of spectral, spatial and temporal properties of objects without direct touch or contact. It is a field of great importance to understanding the climate system and its changes, as well as for conducting operations in the Arctic. A current challenge however is that most sensory equipment can only capture one or fewer of the characteristics needed to accurately describe ground objects through their temporal, spatial, spectral and radiometric resolution characteristics. This in turn motivates the fusing of complimentary modalities for potentially improved accuracy and stability in analysis but it also leads to problems when trying to merge heterogeneous data with different statistical, geometric and physical qualities. Another concern in the remote sensing of arctic regions is the scarcity of high quality labeled data but simultaneous abundance of unlabeled data as the gathering of labeled data can be both costly and time consuming. It could therefore be of great value to explore routes that can automate this process in ways that target both the situation regarding available data and the difficulties from fusing of heterogeneous multimodal data. To this end Semi-Supervised methods were considered for their ability to leverage smaller amounts of carefully labeled data in combination with more widely available unlabeled data in achieving greater classification performance. Strengths and limitations of three algorithms for real life applications are assessed through experiments on datasets from arctic and urban areas. The first two algorithms, Deep Semi-Supervised Label Propagation (LP) and MixMatch Holistic SSL (MixMatch), consider simultaneous processing of multimodal remote sensing data with additional extracted Gray Level Co-occurrence Matrix texture features for image classification. LP trains in alternating steps of supervised learning on potentially pseudolabeled data and steps of deciding new labels through node propagation while MixMatch mixes loss terms from several leading algorithms to gain their respective benefits. Another method, Graph Fusion Merriman Bence Osher (GMBO), explores processing of modalities in parallel by constructing a fused graph from complimentary input modalities and Ginzburg-Landau minimization on an approximated Graph Laplacian. Results imply that inclusion of extracted GLCM features could be beneficial for classification of multimodal remote sensing data, and that GMBO has merits for operational use in the Arctic given that certain data prerequisites are met

    Advancing Land Cover Mapping in Remote Sensing with Deep Learning

    Get PDF
    Automatic mapping of land cover in remote sensing data plays an increasingly significant role in several earth observation (EO) applications, such as sustainable development, autonomous agriculture, and urban planning. Due to the complexity of the real ground surface and environment, accurate classification of land cover types is facing many challenges. This thesis provides novel deep learning-based solutions to land cover mapping challenges such as how to deal with intricate objects and imbalanced classes in multi-spectral and high-spatial resolution remote sensing data. The first work presents a novel model to learn richer multi-scale and global contextual representations in very high-resolution remote sensing images, namely the dense dilated convolutions' merging (DDCM) network. The proposed method is light-weighted, flexible and extendable, so that it can be used as a simple yet effective encoder and decoder module to address different classification and semantic mapping challenges. Intensive experiments on different benchmark remote sensing datasets demonstrate that the proposed method can achieve better performance but consume much fewer computation resources compared with other published methods. Next, a novel graph model is developed for capturing long-range pixel dependencies in remote sensing images to improve land cover mapping. One key component in the method is the self-constructing graph (SCG) module that can effectively construct global context relations (latent graph structure) without requiring prior knowledge graphs. The proposed SCG-based models achieved competitive performance on different representative remote sensing datasets with faster training and lower computational cost compared to strong baseline models. The third work introduces a new framework, namely the multi-view self-constructing graph (MSCG) network, to extend the vanilla SCG model to be able to capture multi-view context representations with rotation invariance to achieve improved segmentation performance. Meanwhile, a novel adaptive class weighting loss function is developed to alleviate the issue of class imbalance commonly found in EO datasets for semantic segmentation. Experiments on benchmark data demonstrate the proposed framework is computationally efficient and robust to produce improved segmentation results for imbalanced classes. To address the key challenges in multi-modal land cover mapping of remote sensing data, namely, 'what', 'how' and 'where' to effectively fuse multi-source features and to efficiently learn optimal joint representations of different modalities, the last work presents a compact and scalable multi-modal deep learning framework (MultiModNet) based on two novel modules: the pyramid attention fusion module and the gated fusion unit. The proposed MultiModNet outperforms the strong baselines on two representative remote sensing datasets with fewer parameters and at a lower computational cost. Extensive ablation studies also validate the effectiveness and flexibility of the framework

    Dynamic Data Driven Applications System Concept for Information Fusion

    Get PDF
    AbstractWe present a framework of Information Fusion (IF) using the Dynamic Data Driven Applications Systems (DDDAS) concept. Existing literature at the intersection of these two topics supports environmental modeling (e.g., terrain understanding) for context enhanced applications. Taking advantage of sensor models, statistical methods, and situation- specific spatio-temporal fusion products derived from wide area sensor networks, DDDAS demonstrates robust multi-scale and multi-resolution geographical terrain computations. We highlight the complementary nature of these seemingly parallel approaches and propose a more integrated analytical framework in the context of a cooperative multimodal sensing application. In particular, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between IF and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements – an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and identification

    SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery

    Full text link
    Accurately and timely detecting multiscale small objects that contain tens of pixels from remote sensing images (RSI) remains challenging. Most of the existing solutions primarily design complex deep neural networks to learn strong feature representations for objects separated from the background, which often results in a heavy computation burden. In this article, we propose an accurate yet fast object detection method for RSI, named SuperYOLO, which fuses multimodal data and performs high-resolution (HR) object detection on multiscale objects by utilizing the assisted super resolution (SR) learning and considering both the detection accuracy and computation cost. First, we utilize a symmetric compact multimodal fusion (MF) to extract supplementary information from various data for improving small object detection in RSI. Furthermore, we design a simple and flexible SR branch to learn HR feature representations that can discriminate small objects from vast backgrounds with low-resolution (LR) input, thus further improving the detection accuracy. Moreover, to avoid introducing additional computation, the SR branch is discarded in the inference stage, and the computation of the network model is reduced due to the LR input. Experimental results show that, on the widely used VEDAI RS dataset, SuperYOLO achieves an accuracy of 75.09% (in terms of mAP50 ), which is more than 10% higher than the SOTA large models, such as YOLOv5l, YOLOv5x, and RS designed YOLOrs. Meanwhile, the parameter size and GFLOPs of SuperYOLO are about 18 times and 3.8 times less than YOLOv5x. Our proposed model shows a favorable accuracy and speed tradeoff compared to the state-of-the-art models. The code will be open-sourced at https://github.com/icey-zhang/SuperYOLO.Comment: The article is accepted by IEEE Transactions on Geoscience and Remote Sensin

    A Survey of Multimodal Information Fusion for Smart Healthcare: Mapping the Journey from Data to Wisdom

    Full text link
    Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of various data modalities. The review explores different approaches such as feature selection, rule-based systems, machine learning, deep learning, and natural language processing, for fusing and analyzing multimodal data. This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive survey presented in this paper form the foundation for more successful implementation of multimodal fusion in smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.Comment: This work has been submitted to the ELSEVIER for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore