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Abstract

Remote sensing is the discipline that studies acquisition, preparation and
analysis of spectral, spatial and temporal properties of objects without di-
rect touch or contact. It is a field of great importance to understanding the
climate system and its changes, as well as for conducting operations in the
Arctic. A current challenge however is that most sensory equipment can
only capture one or fewer of the characteristics needed to accurately describe
ground objects through their temporal, spatial, spectral and radiometric res-
olution characteristics. This in turn motivates the fusing of complimentary
modalities for potentially improved accuracy and stability in analysis but it
also leads to problems when trying to merge heterogeneous data with differ-
ent statistical, geometric and physical qualities.

Another concern in the remote sensing of arctic regions is the scarcity of
high quality labeled data but simultaneous abundance of unlabeled data as
the gathering of labeled data can be both costly and time consuming. It
could therefore be of great value to explore routes that can automate this
process in ways that target both the situation regarding available data and
the difficulties from fusing of heterogeneous multimodal data. To this end
Semi-Supervised methods were considered for their ability to leverage smaller
amounts of carefully labeled data in combination with more widely available
unlabeled data in achieving greater classification performance.

Strengths and limitations of three algorithms for real life applications are
assessed through experiments on datasets from arctic and urban areas. The
first two algorithms, Deep Semi-Supervised Label Propagation (LP) and
MixMatch Holistic SSL (MixMatch), consider simultaneous processing of
multimodal remote sensing data with additional extracted Gray Level Co-
occurrence Matrix texture features for image classification. LP trains in
alternating steps of supervised learning on potentially pseudolabeled data
and steps of deciding new labels through node propagation while MixMatch
mixes loss terms from several leading algorithms to gain their respective
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benefits. Another method, Graph Fusion Merriman Bence Osher (GMBO),
explores processing of modalities in parallel by constructing a fused graph
from complimentary input modalities and Ginzburg-Landau minimization
on an approximated Graph Laplacian. Results imply that inclusion of ex-
tracted GLCM features could be beneficial for classification of multimodal
remote sensing data, and that GMBO has merits for operational use in the
Arctic given that certain data prerequisites are met.
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Chapter 1

Introduction

While Sea ice has been a defining feature of the arctic for the last 13-14
million years the arctic ocean is now projected to become seasonally ice free
by 2040. Periods of lowered amounts of sea ice due to orbital variations
has occurred, the last being in the early Holocene, but the recent decline is
without equal for the last several thousand years and can not be explained
by natural sources. This is expected to cause great changes to European and
North American climate, as well as cascading problems for life in the arctic
[1]. Apart from climate concerns many countries also conduct operations
in the arctic where sea ice poses a challenge for ship traffic and they are
therefore dependent on reliable research and monitoring of ice movement [2].
Ice monitoring has therefore long been an important focus of remote sensing.

Modern monitoring of ice activity via plane and satellite became prominent
after the second world war with satellite gradually becoming the most widely
used method for the last 30 years [2]. Earlier methods included measuring
only visible and infrared channels but these were highly dependent on weather
conditions and has seen some decline after the introduction of microwave
based methods, which in principle can acquire images day and night time
without impediments from cloud or lighting situation.

Remote sensing satellites generally measure reflected radiation over a spec-
trum of wavelengths. With enough of the wavelength spectrum known it
is possible to characterize properties of the reflection source, e.g. discern-
ing between different thicknesses of sea ice. The Sentinel-1 is a Synthetic
Aperture Radar that captures two polarizations. SAR has the advantage
of operating on wavelengths not heavily affected by clouds or lighting, as
well as good temporal resolution. Drawbacks of SAR is how prone it is to
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CHAPTER 1. INTRODUCTION

problem with scatternoise, e.g. from wind, and its coarse spatial resolution.
To overcome these issues, different sources of information could be used in
conjunction with the Sentinel-1 data, such as optical sensors. Specifically,
optical bands from Sentinel-2 could be a valid option, as SAR and optical
data has been used together for accuracy gain in ML classification tasks, e.g.
by [3]. Sentinel-2 provides high spatical resolution over 13 optical bands with
high potential applicability in the study of snow/ice thickness[4]. Addition-
ally, texture data can be extracted from the bands in the form of a Grey
Level Co-occurence Matrix (GLCM). If containing complimentary informa-
tion using the three modalities, Sentinel-1,-2, and GLCM together could have
a positive impact when training a classifier.

Supervised methods could be considered for classification and/or segmen-
tation of the satellite image data as there exist many powerful models in
this field [5][6][7]. These will however generally require very large labeled
datasets to perform well. Currently there are vast amounts of satellite data
from different sensory equipment available, of which very little is labeled.
This is because labeling the data manually is as of now typically a very time
consuming process which requires great expertise and is inherently subjective
to limits/bias of the human observer. It could therefore be of great use to
explore routes to automate this process in such a way that all available infor-
mation, unlabeled and smaller amounts of carefully labeled data acquired by
multiple sensors and platforms into multimodal datasets, is utilized to gen-
erate fast and accurate classifications [8]. This however also leads to some
challenges. In fact, integrating heterogeneous datasets and characterizing
the relationships among diverse records is not a trivial task, as it implies
the use of higher order moments in data analysis [9]. Intuitively, there will
often also be some modes contributing a lot more to overall accuracy than
others. Moreover, the degree of reliability and informativity might change
across modalities. On the other hand, the benefit is that exploiting small
training sets with multimodal analysis could potentially lead to a level of
detail greater than that of single modality [10].

In this work, data analysis strategies aiming at tackling the aforesaid chal-
lenges have been considered. In particular, data analysis architectures based
on semisupervised learning approaches and applied to multimodal remote
sensing data have been investigated. The ultimate goal of these schemes is
to improve the ability of an automatic learning system to retrieve details on
the region of interest by integrating the properties grasped by the hetero-
geneous sensors, while addressing information extraction in case of limited
training sets. In order to retrieve a thorough review of the actual capacity
and limitations of this approach, three algorithms based on different analysis
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CHAPTER 1. INTRODUCTION

principles have been explored. Specifically, two methods process the mul-
timodal datasets simultaneously [11][12], aiming to take advantage of the
diversity of the datasets to obtain a robust understanding of the phenomena
occurring on the Earth surface. On the other hand, another method [13] will
explore processing of the different modalities separately, fusing the relevant
information at a later stage. In this work, the properties of these strategies
are explored, so to provide an exhaustive description of the main advantages
and drawbacks of these architectures. The aforementioned schemes have
been tested on several multimodal remote sensing datasets acquired on sea
ice areas and urban scenarios to obtain a reliable assessment of the actual
capacity of each scheme. Experimental results show semisupervised learning
could be applied to multimodal remote sensing datasets in order to address
the scarcity of training datasets that characterizes the operational use of
remote sensing data analysis in real life applications.
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Chapter 2

Background

This chapter reports on key aspects of remote sensing for sea ice classification
and of semi-supervised learning as this is one of the main targets of this thesis.

Since the majority of the experiments fall under SSL algorithms the general
problem and solution to training a classifier on split labeled- and unlabeled
subsets (Xl, Xu) is introduced and put into perspective with the other lead-
ing ML directions of supervised-, unsupervised- and reinforcement learning.
Following subchapters presents each of the algorithms used in the experi-
ments, with an overarching description of each algorithm, a short listing of
its main components, and a further elaboration on those components.

Because of how the thesis progressed with a focus on image classification
for the first two algorithms and image segmentation for the two last the
background section and successive chapters have groupings of two, as this
seemed the most natural when drawing comparisons. This is however not
to say that some of the methods can’t have several use cases as e.g. Label
Propagation only needs a general undirected fixed graph structure.

2.1 Elements of Remote sensing for sea ice

classification

The general purpose of remote sensing is measuring radiation that is backscat-
tered towards a sensor and interpreting it along with how the radiation
has been affected from interaction with atmospheric constituents and hit
objects[14]. When measured for different wavelengths there are several points
of comparison to make up an objects spectral signature. If enough of an ob-
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CHAPTER 2. BACKGROUND 2.1. REMOTE SENSING

jects spectral distribution is known this can be used to discerning many
properties of the targeted object. Remote sensing systems are broadly di-
vided into active and passive sensors. The source of radiation energy might
be natural or artificial in the sense of a sensor emitting illumination. Active
sensors emits known energy wavelengths towards a target object on earth and
measures the energy reflected back. Passive sensors measure energy originat-
ing from outside the sensors, e.g. the object itself or an outside source such
as the sun.

In this thesis the purpose is separating ice from background such as soil
or ocean, and even further to discriminate between different physical- and
chemical properties, as well as thickness of ice. Variations in temperature,
emissivity, reflectivity and differences from open ocean are all important
indicating factors for classifying sea ice. This makes remote sensing from
satellites a popular choice for collecting sea ice data, as many of these fea-
tures are picked up on by specific wavelengths. There are however a number
of problems when interpreting the backscattered radiation for classifying ob-
jectives. For one, sensitivity to emissivity and thermometric temperature
is higly dependent on the selected brightness temperatures of polarization
and/or frequencies [4]. Especially during warmer seasons melting ice and
the forming of melt ponds often lead to an underestimation of reported ice
consentration. In this case, including data from microwave methods help
in correcting the result as they can better account for ponding and ice sur-
face status. Another consideration is noise degradation of data, e.g. from
atmospheric constituents such as cloud liquid water[4]. A possibility would
be correcting for this by estimating cloud liquid water and ice brightness
temperature variability, but these are hard to accurately estimate, instead,
including frequencies least sensitive to the noise wavelengths are often in-
cluded. Thin ice can be measured quite accurately from passive microwave.
For thicker ice, thickness can not be measured directly from SAR data alone.
Ice salinity and roughness is however a good indicator for ice age which SAR
can measure. This also provides further basis for including GLCM as it is
a texture measure. Seasonal evolution of snow/ice thickness is often studied
from surface albedo. This can be deduced from optical data, which is part
of the background for including 13 optical bands in the dataset.

One widely available active microwave imaging datatype for sea ice monitor-
ing used today is the Synthetic Aperture Radar or SAR from the Sentinel-1
mission with two bands of different polarization. SAR gained popularity be-
cause it remains operable in all weather, day and night with good temporal
coverage. A large con of this method is how prone it is to back scatter noise
when moving through flow turbulence, wind or vegetation[15]. Passive sen-
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sors of Sentinel-2 with its 13 optical bands can then be used to support the
data from Sentinel-1. This has been done with accuracy gain on machine
learning tasks such as classification in [3]. It is possible to extract further
info from the satellite images by calculating the Gray Level Co-occurence
Matrix GLCM for each band. This is a texture measure which can in some
cases easier pick up on spatial patterns than the bands themselves, and have
been used previously for accuracy gain in image classification tasks [16]. If
the different modalities (SAR, optical and GLCM) contain complementary
data it would intuitively be of interest to leverage as much information as
possible for classification in a deep learning setting.

2.2 SSL in the landscape of ML

The traditional engineering approach for designing an algorithmic solution to
a problem would often consist of acquiring domain knowledge and using this
to create a mathematical model for the physics of the experimental set-up and
from this an optimized algorithm that can produce the desired output from
an input with some performance guarantees given that the physics model
is accurate [17]. The decisions of the optimized algorithm however needs
to be specifically programmed and the algorithm will not be focused on a
progressively improving but rather just churning out outputs given input.

Machine Learning was revolutionary as instead of acquiring domain knowl-
edge it is focused on the possibly easier task of gathering (or simulating as
often is the situation in RL) enough wanted behaviour into a training set and
using this to train a computer program how to make its own predictions/deci-
sions when faced with new unseen input based on experience learned through
some performance measure feedback from working with the training set [17].
ML is generally thought to consist of four main branches: Supervised Learn-
ing, Unsupervised Learning, Reinforcement Learning and Semi-Supervised
Learning. Which branch is best when faced with an ML task will depend
based on amount of available data, importance of training/inference time,
physicality, structure and capture mechanism of the data as well as the over-
all learning needs for that task. For reasons described below Semi-Supervised
Learning was the chosen approach for most of the experiments but it can be
good to place SSL into the broader context of the other leading branches in
ML.

In a Supervised Learning setting all samples have a known groundtruth
label and the goal is to learn a mapping function between the input and
output spaces. The difference between the expected and actual mapping for
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a given point can quantified through a cost function which can be minimized
through e.g. gradient descent. More specifically for N pairs of feature vectors
X and labels Y that forms the training set s.t.

{(x1, y1) , . . . , (xN , yN)}

and we wish to learn the function f : X → Y that makes f(x) a good
prediction for y. This branch has been particularly popular in computer
vision due to its efficiency when coupled with convolutional nets but requires
large amounts of expertly labeled data.

Unsupervised Learning on the other hand is used when no groundtruth
is available and thus seeks to identify groupings inherent to the data [18].
One is therefore expecting there to be hidden interesting patterns in the data
that can be exploited in training a model, e.g. for clustering tasks.

Reinforcement Learning has a framework close to the framework in su-
pervised learning with an input frame that is run through a neural network
model to produce an output action. The main difference is that RL does
not use predetermined structure of a dataset (labeled or unlabeled) to train,
but rather starts out with a completely random network that is fed an input
frame from an environment and outputs a random action that is sent back to
the environment, where the network only receives feedback from the environ-
ment after an action is taken. The environment then produces a new input
frame based on the past action which together with a reward/penalty based
on the current system state is fed back into the agent and this continues in
a training loop.

RL has the advantage of letting the agent explore the environment somewhat
freely with trial and error through random actions, which can in turn lead to
policies with potentially better rewards and behaviors than would be possible
in the traditional supervised or unsupervised sense where the model has more
of a ceiling in that it can only be trained to be as good as the provided
data. For this reason RL has recently seen more popularity in fields like
medical delivery systems, robotics and game AIs, as well as natural language
processing [19]. RL is most widely used for problems of sequential decision
making and/or where it is preferential to simulate an environment rather than
gathering real life data and was therefore not considered for the experiments
of this thesis.

Semi-Supervised learning (SSL) shares aspects of both supervised and
unsupervised learning. Often some labeled data is available but not enough to
reliably train a supervised classifier and the majority of data is still unlabeled
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as gathering can be both an expensive and time consuming task. If also
assuming the distribution of the more abundant unlabeled data has some
inherent structure that makes it possible to distinguish samples based on class
and this information is complimentary to the labeled data then including this
could lead to an increase in classifier performance. This was the direction
used in most of the experiments as the overall goal and problem situation of
having access to rich amounts of unlabeled data with fewer labeled samples
seemed particularly suited towards Remote Sensing problems.

Common assumptions [20] about the underlying data distributions are

• Manifold Assumption Data of higher dimensional input space lie on
lower dimensional substructures called manifolds that are topological
spaces locally resembling of Euclidean space. All sample points belong
to a manifold and points lying on the same manifold belong to the same
class. By determining all manifolds and which points belong to which
manifold it is therefore possible to infer the labels of unlabeled data
from the labeled samples.

• Cluster assumption Similar points (based on a chosen similarity con-
cept) are more likely to belong to the same class. For objects X ⊂ X
drawn from input space X with distribution p(x) a cluster is the set of
datapoints C ⊆ X more similar to eachother than other points in X
and determining clusters is done by finding a function that maps each
input x ∈ X to a cluster with label y = f(x). Since the distribution
p(x) is not known this needs to be approximated from the drawing and
chosen concept of similarity.

For SSL image classification the goal is to train a classifier on a data set
X = (xi)i∈[n] of two subsets, Xl := (x1, . . . , xl) and Xu := (xl+1, . . . , xl+u),
where the first subset has labels Yl := (y1, . . . , yl) and the second subset is
unlabeled[8]. A general overview of Semi-Supervised Learning can be found
in [8].
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Chapter 3

Methods

The first two algorithms described are LP and MixMatch and while both
fall under SSL they belong to different branches of SSL; label propagation is
a transductive graph based approach; MixMatch is based on combining loss
terms. The last algorithm, Graph Fusion MBO, is a spectral Semi-supervised
method that does not train a model with spectral filters but rather performs
classification directly on the data.

3.1 Label Propagation for Deep

Semi-supervised Learning

Label propagation in itself is not a newer algorithm and has been used in
ML for node labeling by propagating similar nodes through graphs since 2007
[11]. Although the method itself is not considered state-of-the-art because
of newer more powerful methods, the recent transductive learning approach
where a nearest neighbour graph is constructed from feature embeddings and
a model is trained in alternating steps of supervised (on labeled and pseu-
dolabeled samples) and deciding labels of nodes through label propagation
makes this method close to or comparable to newer algorithms. Label prop-
agation belongs to a group of pseudo labeling algorithms i.e. SSL methods
that gives unlabeled samples a pseudolabel and includes this in training with
a supervised loss. Other promising methods in this field include [21][22][23].

The Label propagation algorithm has two main steps. First, a model is
trained only on labeled data with supervised loss Ls (XL, YL). A nearest
neighbour graph is then constructed from feature embeddings θ of the la-
beled nodes and all data is included as nodes in the graph. Labeled nodes
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are then propagated through unlabeled nodes to generate pseudolabels until
all unlabeled nodes on the dataset has a predicted pseudo-label. The model
is again trained supervised, but now with labeled and pseudo-labeled loss

and dataset s.t. Lw

(
X, YL, ŶU

)
and this repeats iteratively. Issues of dif-

ferent certainty of predictions and class imbalance are solved by introducing
certainty weight wi and class weight ξi for sample xi. By fusing supervised
training, nearest neighbour graph, label propagation and weights iteratively
a classifier can be effectively trained on unlabeled data, with particular ad-
vantage compared to other SSL classifiers when running on sets with very
few sampled data available[24]. Below the preliminaries to and explicit de-
scriptions of the components are stated.

3.1.1 Preliminaries

The trained classifier should map new samples X to existing class labels by
a vector of class confidence scores where each class is predicted with some
probability, s.t. fθ : X → Rc for network parameters θ. This is done by
extracting a feature vector φθ : X → Rd from the input and sending the
feature vector through fully connected- and softmax layers to get confidence
scores. A prediction is made for the highest probable class

ŷi := arg max
j
fθ (xi)j (3.1)

and j corresponds to the dimension of one of the original classes.

Traditional supervised learning models are trained by minimizing supervised
loss, e.g. Cross-entropy ls (s, y) := − log sy, s ∈ U y ∈ C, for a labeled
dataset XL.

LS (XL, YL; θ) := Σl
i=1ls (fθ (xi) ŷi) (3.2)

This term is often included in the total loss for semi supervised models.

If however the dataset has an unlabeled subset with pseudo predicitons
XU , ŶU , then an additional loss term must be included

Lp

(
XU , ŶU ; θ

)
:= Σn

i=1+lls (fθ (xi) ŷi) (3.3)

Label propagation(transductive diffusion) is about computing a matrix of
class predictions Z. Most algorithms today don’t do this directly but via an
approximation [25] but the what and why to the original problem should still
be mentioned. For the extracted feature vectors used earlier V =

(
v1, . . . , vl,
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vl+1, . . . vn
)

a symmetric adjacency matrix W can be made to represent how
the feature vectors are connected. W ∈ Rn×n has positive elements ij be-
tween 0 and 1 to show how strongly features vi and vj are connected. It is
0 along its diagonal, since a feature vector cannot be connected to itself. To
symmetrically normalize the adjacency matrix multiply by the degree matrix
D := diag (W1n) s.t. W = D−1/2WD−1/2. The final part needed to calculate
Z is the label matrix Y of size n×c and rows of one hot encoded labels where
n corresponds to a labeled sample and rows of 0 otherwise. With parameter
α ∈ [0, 1) diffusion matrix Z can be computed by

Z := (I − αW)−1 Y (3.4)

Predicted pseudo-labels can then be found by choosing the highest probable
class j for each row in Z

ŷi := argmax
j
zij (3.5)

3.1.2 Method

A nearest neighbour graph from a network with parameters θ is described
through the set of vertices V = (v1, . . . , vl, vl+1, . . . , vn) and each vertex by
vi := φθ (xi). Connections between vertices are represented in the sparse
affinity matrix A ∈ Rn×n having elements

aij :=
[
vTi vj

]γ
+
, if i 6= j ∧ vi ∈ NNk (vj) 0, otherwise

and NNk is the set of k nearest neighbors inX, γ is a parameter from manifold
search. Finding affinity matrix of the nearest neighbour matrix for large n
is feasible, the full affinity matrix is not. Therefore using W := A + AT is
preferred, having symmetric nonnegative properties and zero diagonal.

As mentioned label propagation on the Z matrix directly by equation 3.4 is
not the preferred method for large n since the inverse matrix (I − αW )−1 is
not sparse and instead conjugate gradient is used to solve the linear system.

(I − αW )Z = Y (3.6)

This can be done because (I − αW ) is positive-definite. Pseudo-labels are
inferred as ŶU = (ŷl+1, . . . , ŷn) and pseudo-labels are inferred same way as
previously.

Different pseudo-label predictions are predicted with differing certainty and
pseudo label classes might not be predicted with the same frequency. The
chosen loss function should reflect this, which can be done by introducing
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certainty and class weights. Certainty weight ωi of sample xi consists of a
row normalized version of Z s.t. ẑij =

zij
σkzik

and maximum possible entropy

log (c). They have the form

ωi := 1− H (ẑ)

log c

Class weight ζj are given to class j based on an inverse of the unlabeled-(Uj)
and labeled (Lj) populations of that class, written as ζj := (|Lj|+ |Uj|)−1
The total loss for labeled and pseudo-labeled samples becomes

Lω

(
X, YL, ŶU ; θ

)
:= Σl

i=1ζu, ls (fθ (xi) , yi) + Σn
i=l+1ωiζŷils (fθ (xi) , ŷi) (3.7)

For a randomly initialized network with network parameters θ, T training
epochs are run on the fully supervised loss in equation 3.2. Feature vectors
are extracted, used to generate normalized affinity matrix W and pseudo
labels are propagated by 3.5. One epoch is run on the entire training set X
with combined pseudo-loss from equation 3.7 and feature extraction/pseudo-
loss steps are repeated iteratively.

3.2 MixMatch Holistic SSL

MixMatch Holistic Semi-Supervised Learning [12] is state of the art and
mixes the loss terms from many recent SSL approaches: entropy minimiza-
tion, consistency regularization and traditional regularization. These have
the respective benefits of confident predictions on unlabeled data, same out-
put distributions for perturbed inputs and less overfitted models. Although
all loss components are important, when discussed in the broader term of
SSL methods this could fall under consistency regularization models. Mix-
Match builds on the works of MixUp [26] with its innovative approach to less
confident between boundary predictions for better generalization and shares
similarities with other methods such as FixMatch[27] and ReMixMatch[28].

MixMatch in short takes as input two equal sised batches of labeled and un-
labeled data, X and U , and outputs augmented versions X ′ and U ′. From
augmented labeled and unlabeled batches a loss function is computed by
combining three commonly used state-of-the-art loss terms. These are En-
tropy Minimization, Consistency Regularization and Generic Regularization.
The goal in MixMatch is to gain benefits from all three loss terms.
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3.2.1 Loss terms

Consistency regularization In Supervised learning data augmentation is
often used to increase training data by augmenting already existing labeled
data into new ones e.g. by adding noise or translation by a few pixels or
other input transformations without changing class semantics. For unlabeled
samples in a semi-supervised setting the same intuition should hold s.t. the
unlabeled sample x and its augmentation Augment (x) should still share the
same label, but this needs to be enforced by adding a penalty to the loss term
and is called Consistency regularization. In a domain where labeled data is
scarce to begin with consistency regularization has been established as a
highly important component in other semi-supervised models [29][30][31].
The added loss term in MixMatch for consistency regularization is derived
from prior work [32] and is stated as

||pmodel (y| Augment (x) ; θ)− pmodel (y| Augment (x) ; θ) ||22 (3.8)

where the two augment terms differ due to being stochastic transformations.

Entropy minimization Entropy Minimization ensures classes are from
more distinct distributions by making sure decision boundaries does not go
through high density probability distributions of class subsets. An interpre-
tation of this would be that having more distinct class populations means
having more confident predicitions as a result of classes bleeding less into
decision boundaries of other classes. This can be done by forcing the clas-
sifier to give predictions for unlabeled samples lower entropy. In MixMatch
this is achieved by a sharpening function where Sharpen (p, T ) for categorical
distribution p and a chosen hyperparameter temperature T is defined as

Sharpen (p, T )i := p
1
T
i /Σ

L
j=1p

1
T
j (3.9)

When average class prediction over augmentations found in equation 3.20 is
inserted as the categorical distribution and temperature is lowered this leads
to lower-entropy predicitons. This comes as a result of 3.9 approaching a
Dirac distribution for lower T values.

Traditional regularization is a broad term used for tweaks to a deep
neural net that makes it better at generalizing to new unseen data, e.g.
dropout and batchnorm, by mitigating its memorization of training data
[33]. The authors of the original MixMatch paper [12] applied a weight decay
penalizing the L2 norm of model parameters, as well as MixUp [26]. When
training one way of minimizing the empirical risk is to memorize training data
and overfit towards the empirical distribution of the training samples. This
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in turn leads to bad generalization and a worse performing classifier when
applied to samples outside of the training data. MixUp seeks to alleviate
this by creating artificial points interpolated from pairs of real datapoints by
adding and mixing them by a mixing factor λ s.t. predictions from points
between datapoints become less sure. The mixing factor λ comes from a
β distribution β (α, α) and smoothly approaches the traditional empirical
risk minimization as α approaches 0. Prior to MixUp data augmentation is
applied to both labeled and unlabeled data. Each labeled sample xb has one
augmented version x̂b = Augment(xb) while each unlabeled sample has K
different augmentations applied like so ûb,k = Augment(ub,k), k ∈ (1, . . . , K).

MixUp trains on convex combination pairs of samples and labels and keeps
input and output close. This results in strict linearity among samples. For
two samples with labels, (x1, p1) and (x2, p2), the new artificially interpolated
data (x′, p′) can be generated by

λ ∼ Beta (α, α, ) (3.10)

λ′ = max (λ, 1− λ) (3.11)

x′ = λ′x1 + (1− λ′)x2 (3.12)

p′ = λ′p1 + (1− λ′) p2 (3.13)

where this differs from the vanilla method on supervised data by adding 3.11
to keep x′ closer to x1 and thus preserving the ordering of the batch after
concatenating respectively labeled and unlabeled into the same batch. The
combined batchW is created by shuffling together the two batches of labeled
samples with true labels and unlabeled samples with guessed labels

X̂ = ((x̂b, pb) b ∈ (1, . . . B)) (3.14)

Û = ((ûb,k, qb) b ∈ (1, . . . B) , k ∈ (1, . . . K)) (3.15)

and for all sample label pairs in X̂ computing MixUp(X̂i,Wi) and adding
it to X ′ and likewise for unlabeled samples with guesses MixUp(Ûi,Wi+|X̂ |)
and adding it to U ′ but now using the rest of W not used in X ′.

3.2.2 MixMatch

Mixmatch uses two inputs, batch X of labeled one-hot targeted data from L
classes, and batch U with the same size as X of unlabeled data. This gives
two outputs of augmented data, X ′ and U ′. X ′ still shares the same labels as
its original batch while U ′ has a set of guessed labels. The augmented batches
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can then be used to calculate labeled and unlabeled loss as following:

X ′,U ′ = MixMatch (X ,U , T,K, α) (3.16)

LX =
1

|X ′|
Σ

x,p∈X ′
H (p, pmodel (y|x; θ)) (3.17)

LU =
1

L|U ′|
Σ

u,q∈U ′
||q − pmodel (y|u; θ) ||22 (3.18)

L = LX + λULU (3.19)

with cross-entropy H between distributions p and q and hyperparameters T,
K, α, λU as previously described.

Labels for the unlabeled data U are guessed from model predictions by aver-
aging over class distributions for K augmentations of unlabeled samples ub
s.t.

q̄b =
1

K
ΣK
k=1p (y|ûb,k; θ) (3.20)

and the average is used as the probability distribution input to the previously
mentioned sharpening function to generate guessed labels.

The coding implementation for Label propagation and MixMatch continues
the pytorch frameworks of [34] [35], extending them to a multimodal dataset
of large scale satellite images. When comparing models each run will be
affected by choice of hyperparameters, number of labeled data and the su-
pervised model running beneath the SSL algorithm. Oliver et al [29] proposes
a set of guidelines for determining these.

For the supervised architecture beneath many SSL algorithms, having the
same architecture and not one overly specialized towards a specific algo-
rithm could make comparison between SSL algorithms easier. It should
however still be a powerful, widely used, and a reasonable architecture for
the type of ML problem. For image classification both [29] and [12] adopts
a WideResNet[36] which was considered for both LP and MixMatch. The
WideResNet was kept for the MixMatch implementation but was disregarded
for the LP implementation as the WideResNet appeared to easily stagnate
or heavily underperform during training. The WideResNet used was WRN-
28-2 with depth 2 and width 28. The downside to this approach is that
the algorithm of MixMatch might not obtain state-of-the-art results, or at
least not their highest potential compared to LP, as the latter runs on a
net specialized for the image classification task. An 8-layered ConvNet was
used for LP after testing of a 16-layered ConvNet lead to overfitting at the
cost of testing accuracy. In further work with LP, a deeper network can be
reconsidered if larger multimodal datasets obtainable.
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[29] found that when giving equal budget to tuning hyperparameters per-
formance gap between SSL and supervised methods is mostly smaller than
typically reported. To give algorithms fair comparison several runs on the
same amount of labeled data was performed with differing hyperparameters
to approach an algorithms best performance case. Ideally the tuning would
be further studied, e.g. through black-box hyperparameter optimization or
just more runs but this did not fit under the scope of this project. Each run
of an algorithm takes considerable time and preferably more runs would be
dedicated towards studying hyperparameters for more label data sizes than
the ones considered. Some algorithms are more sensitive to labeled data size
than others.

The amount of labeled data that has been considered in this work was 120,
180 and 240. In the research papers Deep SSL Label Propagation reported
high performance for smaller labeled datasets compared to its peers[11], while
MixMatch is generally considered a more powerful approach. It is therefore
expected that MixMatch will have higher performance gain compared to
Label prop as labeled data is increased.

3.3 The Graph Laplacian

As the Graph Laplacian is a core operator in spectral graph theory and an
integral part of the coming spectral based method, Graph Fusion MBO, it is
included as a separate subchapter here.

In the continuous domain there is only one definition, i.e. the Laplace-
Beltrami operator but in graph domain there are several possible definitions.
For a graph with weight matrix W and degree matrix D the normalized
symmetric graph Laplacian L is defined as

Ls = I −D−
1
2WD−

1
2 .

Besides the symmetric normalized Laplacian some other popular ones in-
cludes the unnormalized Laplacian and the random walk Laplacian but these
are not the focus of this work. Important properties of the graph Laplacian
include[37]:

• Ls is symmetric and positive definite.

• The smallest eigenvalue of L is 0 with corresponding eigenvector 1|L|.

• The smallest eigenvalues multiplicity is the same as the number of
connected components in the graph.
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The first two are important as they contribute to numerical stability, e.g.
since the diffusion step of MBO will always be stable for λ ≥ 0 and SPD
guarantees positive eigenvalues. Also for SPD the singular value decompo-
sition coincides with the eigendecomposition which for most programming
languages is more numerically stable. Furthermore definite matrices in opti-
mization tasks guarantees the existence of global maxima and minima.

Considering a general function, if the function is smooth then the Laplacian
applied to it will also be smooth, and conversely if the function oscillates a
lot/has high frequencies then the Laplacian picks up on this and will have
high values [38][39]. The eigenvalues and -vectors of the Laplacian, often
called Fourier modes, can therefore be seen as more interesting than their
Euclidean counterparts as they contain a lot of information related to graph
geometry and communities. As a result the eigendecomposition of the Lapla-
cian is very useful for classification and segmentation tasks, as will be seen
in later sections on Graph MBO. In MBO a smaller number of eigenvalue/-
vector pairs from the Laplacian can be used to approximate the nodespace of
the graph from a smaller number of nodes and this serves as input to MBO
for node classification.

3.4 Graph based data fusion and segmenta-

tion for multimodal images

The Graph Fusion MBO algorithm [13] stands among many other MBO
graph node classification schemes based around energy minimization of the
Ginzburg-Landau functional after approximating graph Laplacian eigenvec-
tors [40][41][42] often with minor variations of energy function and inclusion
of fidelity data. It is part of a newer paradigm in MBO based around a
coordinate change[43] that makes comptutation of the diffusion step highly
efficient. Some competing options to MBO algorithms for classification of
multimode data are graph cuts [44] and other spectral methods such as graph
induced learning on subspaces [45] that seeks to improve classification perfor-
mance by including small amounts of high quality information rich data and
aligning it with more abundant low information in a latent shared subspace.
The subspace aligned methods especially could make for good comparisons
to MBO in future work.

The graph based approach for data fusion and segmentation of multimodal
images introduced by Iyer et al[13] is an interesting new approach to clas-
sification of multimodal data. It consists of a novel method for fusing of
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graph elements from different modes, constructing a weighted adjacency ma-
trix, approximating the spectral decomposition of the graph Laplacian to
the adjacency matrix by Nyström, and finally running classification on the
decomposition through an iterative MBO scheme alternating between a dif-
fusion and thresholding step which minimizes the Ginzburg-Landau func-
tional. Their MBO implementation is made distinct because of the addition
of a semi-supervised term in the energy function that imposes human prefer-
ence to classes and can generate good classifications from a relatively small
amount of known labels, as well as a coordinate change which makes the dif-
fusion step highly efficient. A schematic of the process from multiple input
modes to a final classification matrix C is shown in figure 3.1. Components of
the semi-supervised graph based data fusion method are explained in detail
below.
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Fused Similarity
Matrix W

Weighted
Graph W1

Weighted
Graph Wk

Modality 1 Modality k

Approximate Φ, λ̃
with Nyström

Spectral Clustering
or

Graph MBO

Figure 3.1: Figure showing the work flow of the Graph based data fusion
and segmentation model. It takes as input k different modalities captured
from sensors of differing physical and geometric properties. The distances
for each modalitity is calculated (different distance measures can be cho-
sen for different modes, i.e. gaussian, vector angle measure) and distances
are scaled based on their respective modality and used to generate weighted
graph representations. Graph representation modes are then fused into one
similarity matrix W representing the full input. Landmark nodes are drawn
from the fused matrix and used to approximate eigenvalues λ̃ and eigenvec-
tors Φ of the graph Laplacian Lsym of W to best represent the node space of
W . Spectral clustering can be performed directly on the eigenvales/-vectors
or they can be used as input to Graph MBO together with a small amount
of semi-supervised nodes û. The final output is a matrix C that classifies the
nodes V of W into m separate classes.

3.4.1 Graph fusion

A similarity matrix is a square symmetrical matrix where the ith element
of the jth column represents the similarity between the ith and jth nodes
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of the graph G = (V,E)[46]. Many similarity measures can be used but the
radial basis function with scaling parameter σ below

wij = exp (−dist (vi, vj) /σ)

is a popular choice within machine learning and spectral clustering for data
in Euclidean domain. Distance metric is chosen based on what is assumed to
best represent distances in the space the data the graph nodes were derived
from. Euclidean distance is often reasonable for datapoints in Euclidean
space but for e.g. hyperspectral data a vector angle measure could provide
a more viable representation[37]. The scaling parameter is included because
although depicting the same area different co-registered sets may have vastly
different scales depending on their capturing sensor. The sets must therefore
first be scaled to make distances comparable prior to fusing. A possibility
is including the standard deviation of each set in the expression of their
respective graph representation[37]. The scaling factor of modality l is then
defined

λl = std dev
(
distl

(
xli, x

l
j

))
1 ≤ i, j ≤ n

which is included in the radial basis function to form the graph representa-
tions of each modality. Using the co-registration assumption a single fused
graph can be formed from these [13][37]. The number of points is equal for
all sets I = |X1| = · · · = |Xl| and they share a common indexing where xli
references point i in X l. The notion of distance between collections of graph
nodes xi and xj is

dist (xi, xj) = max

(
dist1

(
x1i , x

1
j

)
λ1

, . . . ,
distk

(
xki , x

k
j

)
λk

)

,i.e. the weighted maximum across all modes, and this will be the distance
measure of each element in our radial basis function as below

wij = exp (−dist (xi, xj))

for the full weighted affinity matrix W = (wij)1≤i,j≤I . The intuition behind
creating the fused graph out of elementwise maximum distances across sets is
that of it possibly being that sets most important discriminative feature for
segmentation. An illustration of this would be a dual mode set where the first
modality is an elevation dataset and the second is regular RGB imaging. For
spectral image segmentation separating grey pavement with similar texture
to nearby grey rooftiles could be challenging in RGB domain but trivial in
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elevation domain, while similar height items of different colors would have
the opposite problem. Since distance need to be similar in both domains for
two points to be the same class using the max will ideally remove redundant
information while emphazising information unique to a set [13].

A property of each distance distl being a formal metric is that the dist on X
will also be a formal metric where dist(., 0) is a norm on the concatenated
data set X1, . . . Xk[37]. Consequently the distance metric does not need to
be the same across modalities, and it is possible to choose 2 or more separate
modalities if a modality is considered unsuited for euclidean space. [13]
however generally found that standard euclidean space performed best on
image segmentation manifolds.

3.4.2 Spectral Clustering

The general appeal of the spectral clustering algorithms as considered in
[47][13][48] is the transformation of abstract datapoints xi into points yi ∈ Rk

by use of the graph Laplacian. This is because inherent properties of trans-
formations using the graph Laplacian will have the effect of enhancing clus-
tering properties of the data, making classification in the new representation
trivial[48].

For the adjacency matrix W of the similarity graph the most direct way of
partitioning the graph into m subsets A1, . . . , Am with minimized similarity
between subsets is simply

cut (A1, . . . Am) :=
1

2

m∑
i=1

W
(
Ai, Āi

)
(3.21)

with Ā denoting the complimentary of A and adjacency matrix between
subsets (A,B) being

W (A,B) =
∑

i∈A,j∈B

wij.

In practice however, minimizing based solely on distinct connections will
often result in one large subset and m − 1 smaller, e.g. many subsets of a
single point, which is undesirable. If the volume of subset Ai is defined as

vol (Ai) =
∑

i∈A,j∈A

wij = W (A,A)

then the function
∑k

i=1 (1/V ol(Ai)) is minimized when all vol(Ai) are equally
large and using this in the cut will lead to a tradeoff between making sets
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of reasonable size and minimized between cluster connection. Introducing
the volume function to equation 3.21 we can write the normalized graph
NCut[47] as

NCut (A1, . . . Am) =
1

2

m∑
i=1

W
(
Ai, Āi

)
vol (Ai)

(3.22)

which will decide subset sizes based on edge weights.

It is possible to view graph min-cut as solving for an indicator matrix H
where row i corresponds to point i of input data and column m corresponds
to class m, s.t. H has dimensions (i×m) and

Hij =

{
1, if xi ∈ Aj
0, otherwise

Since NCut performs hard classification each row of H will have a single 1.
Finding the graph NCut is known to be O(|V |m2)[13][49] hard and therefore
too computationally intensive to perform on many datasets. A relaxation to
the problem proven in [48] is to instead write the NCut with trace Tr

NCut (A1, . . . , Am) = Tr
(
HTLsymH

)
using orthogonal matrices

argminY ∈Rn×mTr
(
Y TLsymY

)
where Y TY is equal to the identity matrix. For symmetrical Lsym and or-
thogonal Y can be minimized by finding Y from the m eigenvectors of the
m smallest eigenvalues. This is used to make an embedding of the abstract
datapoints xi into vectors yi ∈ Rm from the i’th row of Y which is a solution
to the relaxed problem. The new featurespace is more suited towards clus-
tering and classification algorithm can be used on top of the eigenvectors to
generate a final prediction. Furthermore the obtained eigenvectors can also
be valuable for objecdetection as shown in the method section and plays a
major part in the graph MBO algorithm.

K-Means [50] can be used for two separate purposes in the following work: as
an optional preprocessing step for choosing highly representative landmark
nodes prior to Nyström and as a final step in spectral clustering for compari-
son purposes. In the Nyström approximation sampling nodes at random will
often be sufficient for a close approximation to the real eigenvectors [13]. For
datasets with properties that are hard to accurately capture from a random
sample, e.g. too many classes with low occurring frequency, K-Means can
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be used as an unsupervised alternative by choosing landmark nodes from
centroids found on the initial unprocessed data.

In terms of spectral clustering K-Means can be used as a final classification
into m classes. K-Means is of course not state of the art and as such not
expected to perform great, but it serves as a quickly implemented source
of comparison. It is expected to provide some indication on the validity of
classification based on eigenvectors and may also be able to show the contrast
in how a naive method can fail to beneficially merge modes of input captured
by sensors with differing statistic and geometric properties as compared to
Graph Fusion MBO.

3.4.3 Nyström Extension

The Nyström approximation[40][41][51] is a popular matrix completion algo-
rithm for applications where calculating the full matrix is unfeasible. It has
previously seen use in image processing, kernel principle analysis and spec-
tral clustering. In Graph MBO and spectral clustering as explored by this
thesis, pixel nodes are segmented based on an approximation to the Graph
Laplacian L eigenvectors of W . There are alternative methods to approxi-
mating the eigenvectors of L, such as only connecting nearby pixels of the
image, making L sparse and thus enabling use of an efficient eigensolver like
Lanczos as was considered in [52]. This however has the drawback of not
maintaining long range connections between nodes, in addition to approx-
imation properties that are harder to interpret which makes Nyström the
preferred option.

The symmetric normalized graph Laplacian Lsym and weighted graph repre-
sentation W are related through the equations

D−
1
2WD−

1
2φ = ξφ

Lsymφ =
(

1−D−
1
2WD−

1
2

)
φ

= (1− ξ)φ = λ̃φ

where ξ, λ̃ are matrices with eigenvalues along their diagonals and φ is the
eigenvector matrix. D is the degree matrix of W . The important result of
this is that the eigenvalues λ̃ of Lsym are equal to the eigenvalues 1 − ξ of

D−
1
2WD−

1
2 , and eigenvectors φ are shared.

If W is an n × n matrix where n is the number of nodes the computations
of its graph Laplacian involving W will have complexity O

(
n2
)

and as such
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will be quite computationally intensive for large n. Instead Nyström solves
an approximate eigenvalue equation by quadrature rule, a way of finding
K interpolation weights aj (y) and K interpolation points X = {xj}. The
eigenvalue equation is defined as∫

ω

w (y, x)φ (x) dx = γφ (y) (3.23)

where w (y, x) is the weight function between points y and x, φ is the eigen-
vector and γ is the eigenvalue. The approximation also introduces an error
term E (y) s.t. equation 3.23 becomes

K∑
j=1

aj (y)φ (xj) =

∫
ω

w (y, x)φ (x) dx+ E (y) (3.24)

with interpolation weight function aj (y) over all sampled landmark nodes
K = |X|.

The error depends on how close the sampled nodes X comes to represent-
ing the whole nodespace V [13]. It will be defined more strictly later but is
mentioned here as it is an important consideration for sampling of landmark
nodes. There are several ways of choosing the landmark nodes X. They
can be sampled completely at random which [13] found to be adequate for
generating good segmentation results on many modern data fusion segmen-
tation datasets such as the Data Fusion Challenge 2013 and 2015. Datasets
of larger scale and with a large number of classes will be harder to accu-
rately represent, in which case ”hand picking” a balanced number from each
class of semisupervised data is possible. This requires a larger portion of
known ground-truth which is not always available for many datasets repre-
senting real world problems. A third completely unsupervised option would
be choosing landmark nodes from the centers of k-means run on the ini-
tial data. Random sampling, k-means or handpicking should therefore be
considered on a case-by-case basis after exploration of the dataset.

After sampling X by one of the previously mentioned methods V can be
divided into two separate sets: landmark nodes X and remaining nodes Y ,
to which the following applies V = X ∪ Y and X ∩ Y = ∅. By setting φk (x)
and λk as respectively the k’th eigenvector and eigenvalue, the system of
equations for solving these becomes∑

xj∈X

w (yi, xj)φk (xj) = λkφk (yi) ∀yi ∈ Y, ∀k ∈ 1, . . . , K (3.25)
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but this cannot be solved directly without knowing the eigenvectors. In-
stead, K eigenvectors are approximated through submatrices of W . These
are not guaranteed to be orthogonal and must therefore be orthogonalized at
a later stage. A possible drawback to this is that the number of calculated
eigenvectors cannot be larger than the sampled amount K.

Define WXY as

WXY =

w (x1, y1) · · · w (x1, yN−L)
...

. . .
...

w (xL, y1) · · · w (xL, yN−L)

 (3.26)

i.e. connections from nodes in X to nodes in Y . Likewise WXX and WY Y

are the connections from nodes of the first subscript to nodes of the second
subscript, and WY X = W T

XY if W is undirected. The weighted affinity ma-
trix W ∈ RK × RK and its eigenvectors φ ∈ RK can then be rewritten by
submatrices into

W =

[
WXX WXY

WY X WY Y

]
and φ =

[
φTXφ

T
Y

]
. Now we wish to express equation 3.25 in matrix form

through these submatrices and must therefore first apply spectral decompo-
sition to WXX

WXX = BXΓBT
X

where BX is an X ×X matrix of eigenvector columns and Γ is the diagonal
matrix of eigenvalues. Using this new notation for equation 3.25 we get

BY = WY XBXΓ−1

and the full approximation of eigenvectors in W becomes B = [BXBY ] =
[BXWY XBXΓ−1] with related approximation of W

W =

[
WXX WXY

WY X WY XW
−1
XXWXY

]
If |Y | � |X| then the majority of computations lie in WY Y but as shown
above this can be approximated using the much smaller submatrices WXX ,
WXY , with a known error of ||WY Y −WY XW

−1
XXWXY || [40][51]. This is the

major benefit of Nyström as the extension only has computational complexity
of approximately O

(
n
)
[40] but instead of using this directly the approxima-

tion should first be orthogonalized.
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Consider an arbitrary unitary matrix A and diagonal matrix Ξ s.t.

Φ =

[
WXX

WY X

] (
BXΓ−1/2BT

X

) (
AΓ−1/2

)
Diagonalize W by making A unitary, i.e. ΦTΦ = 1 and rewriting W = ΦΓΦT

to get an expression with correct A

ΦTΦ =
(
Y T
)−1

WXXY
−1 +

(
Y T
)−1

W
−1/2
XX WXYWY XW

−1/2
XX Y −1 (3.27)

where Y = AΓ−1/2. Multiply the rightside of equation 3.27 by Γ1/2A and
leftside by its transpose

ATΓA = WXX +W
−1/2
XX WXYWY XW

−1/2
XX (3.28)

and finally output the columns of Φ and diagonal elements of Γ as respectively
the i’th eigenvector and -value pairs.

If Ls is to be used further for segmentation purposes W should also be nor-
malized. This is done by

[
dX
dY

]
=

[
WXX WXY

WY X WY XW
−1
XXWXY

] [
1K

1N−L

]
=

[
WXX1K +WXY 1N−L

WY X1K +
(
WY XW

−1
XXWXY

)
1N−L

]
sX =

√
dX

sY =
√
dY

WXX = WXX ./
(
sXS

T
X

)
WXY = WXY ./

(
sXs

T
Y

)
where 1K is the K-dimensional unit vector and A./B denotes the componen-
twise divison between matrix elements in A and B. Algorithm 1 summarizes
the steps in a pseudocode following the general layout in [40] with slight
changes to fit better with the following segmentation.
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Algorithm 1 Nyström approximation

Input: A set of features V = {xi}Xi=1

Output: K eigenvalue-eigenvector pairs
(
φi, λ̃i

)
where φi is the ith column

of Φ and λ̃i = 1− ξi is the ith diagonal element of Ξ
1: Partition the set Z into Z = X ∪ Y (by one of the discussed drawing

methods), where X consists of L selected elements.
2: Calculate WXX and WXY by equation 3.26
3: dX = WXX1L +WXY 1N−L
4: dY = WY X1L +

(
WY XW

−1
XX

)
(WXY 1N−L).

5: sX =
√
dX and sY =

√
dY .

6: WXX = WXX ./
(
sXs

T
X

)
.

7: WXY = WXY ./
(
sXs

T
Y

)
.

8: BXΓBT
X = WXX (using the SVD).

9: S = BXΓ−1/2BT
X .

10: Q = WXX + S (WXYWY X)S.
11: AΞAT = Q (using the SVD).

12: Φ =

[
BXΓ1/2

WY XBXΓ−1/2

]
BT
X

(
AΞ−1/2

)
diagonalizes W .

Note that for lines 8 and 11 of algorithm 1 the singular value decomposition
and eigendecomposition coincide since WXX and Q are symmetric positive
definite matrices.

3.4.4 Semi-supervised MBO Classification

Much recent work has been done on classification of graph nodes by use of
the Merriman-Bence-Osher scheme[40][41][42]. The contribution of this the-
sis mainly considers a particular direction of the multimode semisupervised
segmentation MBO based on a coordinate change involving the eigendecom-
position of the graph Laplacian that greatly improves efficiency of the diffu-
sion calculation of the Ginzburg-Landau functional in the MBO, as explored
previously by [13][43].

As in [13] make u the assignment matrix, similar to the H of NCut, of
dimension Ri × Rm where the i-th row represents point i and the m-th row
element represents how closely associated that point is to class m. Elements
of u for intermediary diffusion half-steps will be real valued probabilites where
the largest is chosen during thresholding and when the MBO has converged
the thresholding of the final iteration is returned as the classification vector
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Ci. u can be initialized either by randomly assigning a 1 to each row or by
setting all row elements to 1

m
. The energy function consists of three terms:

the Dirichlet energy, the multiwell potential and a fidelity term, and is defined

E (u) = ε · Tr
(
uTLsymu

)
+

1

ε

∑
i

W (ui)

+
∑
i

µ

2
χ (xi) ||ui − ûi||2L2

(3.29)

where the multiwell potential with standard basis vector ek is

W (ui) = Πm
k=1

1

4
||ui − ek||2L1

(3.30)

and û represents the fidelity data points of the semi-supervised input s.t.

χ (xi) =

{
1, if xi is part of the semisupervised input

0, otherwise

The first and second terms of equation 3.29 approximates the classical
Ginzburg-Landau and as ε approaches 0 these will converge to the total
graph variation norm[53] as shown below

TV (u) =
∑
i,j

wij|ui − uj| (3.31)

Minimizing the energy function by gradient descent is done through the
Allen-Cahn equation with an additional semi-supervised term, i.e.

∂u

∂t
= −εLsymu−

1

ε
W ′ (u)− ∂F

∂u
(3.32)

where F is the third term of equation 3.29 s.t.

∂F

∂u
=
∂ µ

2
χ(x)(u− û)2

∂u
= µχ(x)(u− û)

which inserted into 3.32 yields

∂u

∂t
= −εLsymu−

1

ε
W ′ (u)− µχ (x) (u− û) (3.33)

A variation of solving this with the MBO scheme[13] is to iteratively minimize
the energy in two separate steps and letting un denote the prediction of
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iteration n. The first step minimizes terms 1 and 3 of the energy equation by
diffusion and the second step minimizes the second term by thresholding on
the probabilities calculated in the diffusion step. Starting from the diffusion
equation

un+
1
2 − un

dt
= −Lsymun+

1
2 − µ

(
un+

1
2 − û

)
+ (1− χ (x)) (un − û) (3.34)

the next half-step is calculated by solving for un+
1
2

un+
1
2 − un = −Lsymun+

1
2dt− µ

(
un+

1
2 − û

)
dt

+ (1− χ (x)) (un − û) dt

un+
1
2 + Lsymu

n+ 1
2dt+ µun+

1
2dt = un + µûdt+ (1− χ (x)) (un − û) dt

and writing out the last term to get

un+
1
2 + Lsymu

n+ 1
2dt+ µun+

1
2dt = un + µûdt+ (un − û) dt− χ (x) (un − û) dt

(3.35)
The eigendecomposition of the symmetric Graph Laplacian Lsym is

Lsym = HΛHT (3.36)

where H is the matrix of columnwise eigenvectors and Λ is the diagonal
matrix with eigenvalues along its diagonal. This can be used to write the
following coordinate changes

un = Han, χ(x)(un − û) = Hdn,

û = −Hd
n

χ(x)
+ un = −Hd

n

χ(x)
+Han

which when applied to the left side of equation 3.35 becomes

Han+
1
2 +HΛHTHan+

1
2dt+ µHan+

1
2dt

=Han+
1
2 +HΛan+

1
2dt+ µHan+

1
2dt

=Han+
1
2 (1 + Λ + µdt)

and right side of equation 3.35

Han +Handt+ µ

(
−Hd

n

χ(x)
+Han

)
dt−

(
−Hd

n

χ(x)
+Han

)
dt−Hdndt

=Han − µHd
n

χ(x)
dt+ µHandt+

Hdn

χ(x)
dt−Hdndt.
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Notice that all terms of both the left and right side contain H and use this
so simplify further by using that HTH = I and χ(x) = 1 for fidelity points

HTHan+
1
2 (1 + Λ + µdt) = HTH (an − µdndt+ µandt+ dndt− dndt)

and finally factoring out and dividing by (1 + Λ + µdt) we get

an+
1
2 =

(1 + µdt) an − µdt · dn

1 + µdt+ dtΛ

Now the diffusion step for eigenvalue k, λk, in ascending order can be calcu-
lated as

an+1
k =

(1 + µdt) ank − µdt · dnk
1 + µdt+ dtλk

(3.37)

which will always be stable if λk ≥ 0 for k = 0, . . . K, as long as µ and dt are
chosen to be positive. The choice of µ is generally found through trial when
exploring a specific dataset. It is representative of the expected quality of the
semi-supervised input and is often therefore set quite high, e.g., µ ≥ 103[43].
Heuristically dt can be thought of as akin to the learning rate in neural nets.
It is a hyperparameter that controls model runtime and the final accuracy
of the model where the two are inversely related. After diffusing un will
be a matrix of real valued probabilities. The second step thresholds on the
probabilties, choosing the class with the highest probability for each row i.e.

un+1
i = er where r = argmaxju

n+ 1
2

ij (3.38)

The diffusion step is performed once between each thresholding in [13], but
it can also be repeated s times before thresholding as done in [43].

For larger graphs calculating all the eigenvectors is unfeasible. As the eigen-
vectors belonging to the smallest eigenvalues will have the least computa-
tional significance one can instead approximate a smaller number of eigen-
vectors and use this as a truncated substitute for H in equation 3.36, making
the MBO model much less computationally intensive. A recap of the method
is shown in algorithm 2.
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Algorithm 2 Semi-Supervised MBO

Input: Graph embedded input u and semi-supervised input û both dim
Ri×m. Parameters s, µ, dt.

Output: Matrix C ∈ Ri×m of class predictions
1: Approximate k � i smallest eigenvalues λ and eigenvectors H of the

symmetrical graph Laplacian.
2: Initialize u0 randomly and d0k = 0 for all k
3: while Purity(un+1, un) < 99.99% do
4: an = HTun

5: for j ← 1 to s do . Step1: Diffuse s times

6: an+1
k =

(1+µdt)ank−µdt·d
n
k

1+µdt+dtλk
for k = 1 to k = K

7: un+
1
2 = Ha

8: dn = HTχ(x) (un − û)
9: end for
10: un+1

i = er, r = argmaxju
n+ 1

2
ij . for i = 1 to i = I . Step 2:

threshold
11: n← n+ 1
12: end while
13: return last un as the final classification C
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Chapter 4

Experimental Results

This chapter starts by presenting the different datasets used in the experi-
ments. The first two methods, LP for DSSL and MixMatch, were used for
semi-supervised classification of satellite images with additional extracted
GLCM texture features where the modalities are processed simultaneously
and they are therefore compared against each other, weighing potential ben-
efits and drawbacks of each method and also including an ablation study
into the relative importance of each methods optional modules. Results on
Graph Fusion MBO is shown and evaluated last as it focused on processing
of different modalities and fusing at a later stage for image segmentation of
multimodal satellite images.

4.1 Dataset North-East Svalbard

The dataset used in LP and MixMatch for image classification tasks and
later in Graph Fusion MBO consists of multi-sensor sea ice images of south-
ern Svalbard captured by the Sentintel-1 and Sentinel-2 earth observation
missions. The first 13 optical bands are from Sentinel-2 and covers visible,
near infrared, and short infrared parts of the spectrum. The last two bands
is from two polarization bands of Sentintel-1, HH and HV.

Names of bands are as following:

• Band 1 - Coastal aerosol

• Band 2 - Blue

• Band 3 - Green
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• Band 4 - Red

• Band 5 - Vegetation red edge

• Band 6 - Vegetation red edge

• Band 7 - Vegetation red edge

• Band 8 - NIR

• Band 8A - Narrow NIR

• Band 9 - Water vapor

• Band 10 - SWIR-CIRRUS

• Band 11 - SWIR

• Band 12 - SWIR

• HH Polarisation

• HV Polarisation

Below is a short introduction to some common uses for the different bands.

The visible spectrum, 0.38 − 0.72µm made up by the blue, green and red
bands, is a small part of the spectrum width, yet has traditionally been and
still is an important part of remote sensing. It is however affected by similar
limitations as the human visual system, e.g. measurements in this range can
be next to useless due to noise from atmospheric interaction or clouds, and
as such is often not enough alone for remote sensing classification tasks.

The NIR(Near Infrared) channels 0.76 − 0.90µm are often used for plant
structure and more importantly for this ice/water classification task for bor-
ders between water and other features, as water completely absorbs radiation
in this wavelength.

Short wave infrared or SWIR bands have wavelengths of 1000− 3000nm and
has application in discerning moisture, mineral content and different types
of snow/ice.

Additionally, 14 Gray Level Co-occurrence Matrix(GLCM) textural features
have been extracted from each band of both sensors. The GLCM matrix
is a texture measure of difference between spatial brightness values, giving
insight to possible spatial patterns. The motive for including this additional
information is that the regular bands can measure chemical properties of the
ground, while the GLCM can pick up information on possible spatial patterns
that the bands might not provide. The different information is therefore
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not necessarily dependent and could be complementary to each other thus
resulting in a higher accuracy than just the band images alone [16]. For a
general description of GLCM and its uses [16] is also a good source. GLCM
has been used previously with accuracy gain for image classification tasks,
e.g. by [54][55][56].

The bands have the following GLCM attributes

1. Band/Polarisation

2. Angular second Moment(Energy)

3. Contrast

4. Correlation

5. Variance

6. Inverse difference Moment(Homogeneity)

7. Sum Average

8. Sum Variance

9. Sum Entropy

10. Entropy

11. Difference Variance

12. Difference Entropy

13. Information Measure of Correlation I

14. Information Measure of Correlation II

15. Maximal Correlation Coefficient

The NE Svalbard dataset consists of 1458 by 1830 pixels, with 15 bands times
15 attributes for a total of 225 channels, or (1458, 1830, 225). Each pixel is
originally labeled a class between 0 to 5, for a total of 6 classes. The classes
are Background, Grey Ice, Grey-White Ice, Open Water, Thick First year ice
and Thin first year ice. An image description is shown in figure 4.1 where
one pixel on the image corresponds to 60 meters in real life.
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Figure 4.1: Description image of the North-East Svalbard multimodal dataset
captured by the Sentinel 1 and Sentinel 2 missions. The image shows 6
classes, of which 1 is background and 5 are different ice types. Background
makes up most of the image with scattered clusters of ice.

The first two methods this project aims to explore, Label propagation and
MixMatch, are image classification methods while the data is more geared
towards an image segmentation problem. Therefore either the models must
be adapted to the dataset or the dataset must be adapted to the models. Be-
cause there is little to no guarantee that an image classification SSL method
will work well on segmentation problems the latter was chosen for these
methods. Smaller images of size 32 by 32 was cut out of the original image
with an overlap/stride of 4 pixels. These smaller image patches were labeled
as the majority ice class (not background), given that enough pixels of the
majority label occurred in the image patch were found. Cut off was set to
1/6 of an image being that class as this seemed a fair amount after inspection
of samples. An interesting continuation for further work would be compar-
ing this with a pixel-wise segmentation and seeing if the Label propagation
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and/or MixMatch are able to obtain similar or better results than image wise
classification to an adapted dataset.

Although there are many possible (200.000+) image patches to create a
dataset from, the vast majority of these would be labeled as background. The
classes should ideally be somewhat balanced so one class does not dominate
training. Some amount of background labeled images saved was therefore
not included in the dataset since having much greater amount of this class
than all other classes might not provide much benefit. After this, remain-
ing difference between classes can be accounted for by using class weights or
by duplicating the less occurring classes until having an even distribution,
which has been found to be beneficial for training neural nets [57]. There
is no easy way of telling exactly how much data a deep learning algorithm
needs to perform well, but some insight can be gained by increasing amount
of training samples and seeing if train error increases while test error de-
creases. This would mean that the model is harder to fit to training data
and better generalizes to test data as a result. After running models on the
original data the training accuracy converged towards 100, a clear sign of
overfitting. To mitigate this the dataset was artificially increased through
data augmentation.

4.2 Dataset Southern Svalbard

The dataset Southern Svalbard consists of 2 SAR polarizations captured by
Sentintel 1 and 2 passive microbands HH and HV from AMSR. It spans 7955
by 10365 pixels by 4 channels/bands and as such is both the largest dataset
and the one with the least amount of bands. Figure 4.2 shows a description
image of the Southern Svalbard dataset with mainly background and smaller
clusters of brash ice, first-year ice and open water spread around, similar to
the NE Svalbard set but with significantly more class clusters occurring.
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Figure 4.2: Description image of the Southern Svalbard multimodal dataset
captured by the Sentinel 1 and AMSR missions. The image shows 4 classes,
of which 1 is background and 5 are different ice types. Background makes
up most of the image with scattered clusters of ice.

4.3 Dataset Trento

The first dataset used for pixel node classification is the Trento dataset which
depicts countryside landscape from outside of Trento, Italy. It consists of
600 by 166 pixels from two types of sensors where the first 7 bands are
LIDAR DSM data captured by an Optech ALTM 3100EA sensor and the
next 70 bands are hyperspectral data from an AISA Eagle sensor for a total
of 77 bands. The hyperspectral bands have wavelengths ranging from 402.89
to 989.0 nm and spectral resolution of 9.2 nm. Both sensors have a spatial
resolution of 1 m. There are 7 classes in the dataset, i.e. Background, Apple
tree, Building, Ground, Wood, Vineyard and Water. Figure 4.3 shows several
interpretations of the Trento dataset. Looking at the testing data in image
four of that figure one can see that most classes have large distinct clusters
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while the Ground and Water classes consists of thinner stretches.

Figure 4.3: A figure showing different aspects of the Trento dataset. It
shows respectively a LIDAR raster data image, an RGB visualization of the
hyperspectral bands where red is represented by band 40, blue by 20 and
green by 10, groundtruth feature maps for training and testing samples, as
well as a colordescription of the classes.
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4.4 Dataset Houston

The Houston dataset was part of the 2013 IEEE Geo Science and Remote
Sensing Data Fusion Contest. It is an urban dataset showing the campus and
surroundings of the University of Houston campus. The first seven bands are
again LIDAR DSM images while the last 144 bands are hyperspectral imagery
ranging from 380 nm to 1050 nm. The spatial resolution of both the LIDAR
and hyperspectral modalities are 2.5 m. It has significantly more classes than
most other explored sets at 16 classes.

4.5 Ablation study: LP and MixMatch

The separate Sentinel-1, Sentinel-2 and GLCM data was evaluated over 80
epochs for the supervised phase 1 of LP to compare how much they con-
tributed to classification. The mean accuracies were respectively 72.99, 72.83
and 81.83. S1 and S2 had nearly identical mean accuracies, while GLCM had
quite a lot higher mean, which gives some basis for including this in the mixed
dataset.

Table 4.1 shows the ablation results for Deep Label propagation. Overall the
error rate was quite high for this algorithm. Out of the tested components
the L2 normalization seemed to have the clearest impact on classificaiton, as
the error rate from baseline LP increased by 2.71 and 1.97 for respectively
120 and 240 labels. Adding the Mean teacher exponential moving average
seemed to give a slight boost to accuracy, but it does not deviate enough
from the regular LP implementation to confirm this. What is not reflected
from the error rate table is however that MT EMA resulted in generally
higher phase 1 accuracy, as well as more stable learning. Decreasing the
labeled batch size makes the model depend more on unlabeled data. This
hyperparameter did not seem to make a large difference on results. It is
possible that the contributions of both MT and size of labeled samples per
batch towards lowered error rate would be more pronounced for a better
tuned set of hyperparameters or a larger dataset. A large problem for LP
was obtaining a good phase 1 as a starting point for phase 2. During early
testing it was found that e.g. too few or too many training epochs in phase 1
could lead to very stagnant learning, or models not learning at all. A possible
reason for this is that the learned parameters θ from phase 1 used in creating
the nearest neighbour graph must lead to a good general node representation
that can distinguish class. If not trained enough it is likely that the learned
parameters does not yet give a good class representation, while if trained
for too long (1̃00 epochs+) testing accuracy seemed to decline in favor of
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training accuracy due to overfitting.

Ablation 120 labels 240 labels
Label propagation 13.54 10.95
Label propagation, without L2 normalization 16.25 12.92
Label propagation, with Mean teacher 11.46 10.63
Label propagation, labeled batchsize = 15 12.51 11.79
Label propagation, labeled batchsize = 10 11.67 12.50

Table 4.1: Table showing error-rates of Label Propagation on the multimodal
dataset SE Svalbard. Ablations were done for 120 and 240 labeled samples.

Ablations for MixMatch are shown in table 4.2. The regular MixMatch
implementation outperformed the LP one with error rates of 9.39 and 5.40
for respectively 120 and 240 labeled samples. MixMatch appeared more
sensitive than LP towards amount of labeled samples, as error rate at 240
labels was half than that of LP. The Temperature sharpening and MixUp
components were compared to the barebones approach. Both Sharpening
and MixUp contributed towards lower error rate, but MixUp considerably
more so. When removing MixUp the error rate of MixMatch was comparable
to regular LP.

Ablation 120 labels 240 labels
Mixmatch 9.39 5.40
MixMatch, without temperature sharpening T=1 10.33 7.04
Mixmatch, without MixUp 12.44 8.22

Table 4.2: Table showing error-rates of MixMatch on the multimodal dataset
NE Svalbard presented in Section 4.1. Ablations were done for 120 and 240
labeled samples.
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4.6 Graph based data fusion and segmenta-

tion for multimodal images

4.6.1 Fusing

Implementation-wise the fusing operation was straightforward, as construct-
ing the affinity between weighted nodes from a Euclidean basis function is
not as inclined as the Cosine distance measure in [43] to have infinite/neg-
ative similarity weights and therefore have well defined weighted graphs for
all nodes. As such problems arising from the fusing operations in these ex-
periments were not as easy to identify as the final classification maps are
dependent also on the Nyström and MBO modules and possible difficulties
due to the fusing module are more subtle. From the results however it can be
reasonably expected that a significant part of the problems when classifying
datasets with higher numbers of bands/modalities such as the Houston set
was due to the fusing operation discarding too much of the data needed to
generate accurate classifications. The Graph Fusion is an intuitive method
for potentially fusing complimentary data and removing redundancies. When
the data is too large to effectively condense down into a fused graph how-
ever it may be quite desctructive since all but one mode of information is
discarded per node.

Another concern is that a maximum betwen all distances as a similarity
measure is not necessarily the best to distinguish class in many real world
datasets. It can at times be since samples need to be similar for every modal-
ity to be classified as the same class. E.g. if color similarity of a hyperspec-
tral modality and height and shape data of a LIDAR modality both have
complimentary data relevant to classification, as worked well in the Trento
dataset. This is however not guaranteed by any means to transfer well to
other datasets.

In many cases it can also be thought that similarity between modalities can
be helpful for classification tasks but not necessarily enough on its own and
needs to be coupled with supplementary distinguishing factors for drawing
class boundaries. For datasets where ground truth is unknown one may not
necessarily know enough to settle on maximum (or other similarity measures)
as a good source of discrimination for distinguishing classes. Usage of the
fusing operation therefore requires careful consideration and knowledge about
each dataset.
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4.6.2 Nyström

A challenge with the Nyström approximation was numerical stability when
manipulating the fused weighted affinity matrices for landmark nodes WXX

and from landmark nodes to remaining nodes WXY as the successive applica-
tion of MBO/Spectral clustering algorithms require non negative eigenvalues
for stability and guaranteed convergence.

In theory a symmetric positive semi-definite matrix is guaranteed non neg-
ative eigenvalues and its eigendecomposition and singular value decomposi-
tions coincide. This is however not always the case when working numerically
with real-valued data. Subroutines for many popular programming libraries
(e.g. numpy and C++ LAPACK) differ between divide-and-conquer and
regular QR approaches for their respective SVD and eigendecompositions.
The study by Nagatsukasa et al [58] compares stability of different solvers
and generally found the divide-and-conquer solvers to be both more efficient
and more stable than traditional QR solvers. When running experiments
the Nyström approximation would be prone to crashes with regular eigende-
composition as it would at times output slightly negative trailing eigenvalues
due to rounding errors. Instead adopting SVD for all decompositions had
a positive impact as it in the experiments guaranteed non negative singular
values for intermediate steps 8 and 11 of algorithm 1.

The second problem seemed to stem especially from matrix inverses and
the long chain of matrix multiplications and calculations in algorithm 1.
Relatively small rounding errors from floating point numbers can have a
large impact when accumulated over many steps and possibly ruin the final
result. For a standard implementation of Nyström the smallest eigenvalues
of the approximated graph Laplacian for landmark nodes L ≤ 100 when
negative mostly ranged between 1×10−15 to 1×10−16 which can be reasonably
considered within the margin of error and did not seem to negatively affect
the results when rounded down to 0. The error however increased with the
number of landmark nodes up to 1×10−3 for L > 400, likely because of WXX

being more critical for the eigenvector/-value computations than WXY and
thus contributing more to error.

The authors of [43] needed to add a small value ε = 0.1 to input images to en-
sure numerical stability when using a cosine distance measure. As mentioned
there were no problems in constructing valid submatrices of W , potential
problems with numerical stabiity arose from the long chain of matrix multi-
plications of Nyström. Something analogous to the added ε was considered
in adding a small ridge to WXX+IL ·ε as was done by [59]. Other articles also
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consider different ways of improving stability for calculations of the inverse
in Nyström and Nyström-like algorithms by avenues such as truncation of
the pseudoinverse by discarding summands of SVD [60][61], which can be
especially helpful for ill-conditioned matrices. Considering the first approach
this may not be ideal as the added ridge is essentially adding meaningless fea-
tures to WXX. In practice for small ε there was no noticeable degradation of
results, but neither no improvement to stability for ε < 1×10−15. The added
ridge needed to be around ε > 1× 10−4 for any meaningful improvement to
stability, which render results useless as the added ridge would severely alter
results.

For N = 4096 nodes the average run time when calculating the decom-
position of the true graph Laplacian was 26.579 s ± 0.775 s. With the same
number of nodes but solving eigenvectors/-values of the graph Laplacian with
the Nyström approximation average run time decreased to 0.214 s± 0.024 s.
Use of the Nyström method therefore resulted in a quite significant decrease
in computing time, which could likely be improved upon even further by
optimizing the code through vectorization and parallelization.

Observed advantages of this method was severely decreased computational
cost, but as a result of this it was also possible to run graph MBO in cases
where computations of the square terms of the graph Laplacian would oth-
erwise be impossible with a regular solver since number of nodes is equal to
the squared number of pixels. In ideal cases it can represent the true node
space well enough to generate good predictions during diffusions without the
need to calculate the full decomposituion. It can be run on entirely randomly
picked landmark nodes which is reportedly often enough[13] but this did not
generate adequate results in the experiments.

When landmark nodes are handpicked it also generally require very small
amounts of semi-supervised data (5−10%). A possible drawback of Nyström
is therefore that some datasets requires landmark nodes from a balanced draw
across all classes to give good results. For many real world datasets without
a fully labeled groundtruth this will not be possible. Figure 4.4 shows an
image where the predicted MBO classification map from randomly drawn
Nyström landmark nodes has inadequately recreated the space spanned by
the true nodespace.

Cases were the Nyström method seemed to struggle especially were in datasets
with large numbers of classes such as the Houston set, in accordance with [13].
This can be explained in part by the coordinate change an = HTun which
discards large amounts of data and when trying to project the original data
into a space spanned by only a set of approximated leading eigenvectors from
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(a) Ground truth. (b) GMBO segmentation mask.

Figure 4.4: Figure showing ground truth (a) and Graph MBO prediction
mask (b) for a Trento data sample. Landmark nodes are here drawn ran-
domly and this image was chosen to illustrate a case where the choice of
randomly selected landmark nodes has severely failed to project the full data
onto a space spanned by the eigenvectors approximated from random land-
mark node resulting in a heavily skewed, distorted and noisy prediction mask.

the landmark nodes this is dependent on all classes being well represented in
the approximation.

Furthermore a challenge can be that other than through inspection of the
segmentation map assessing the quality of different Nyström runs compared
to the eigendecomposition of the true graph Laplacian is hard without actu-
ally performing calculations involving the full squared weighted graph matrix
W . When the node space recreation of Nyström is highly inadequate this
might result in severely skewed segmentation maps with characteristics that
make it possible to conclude Nyström is the bottleneck in a classifier as was
discussed with figure 4.4, but assessing this through inspection will likely
often not be feasible if the errors are not as severe and/or typical for a badly
projected eigenspace.

4.6.3 Segmentation masks and evaluation metrics

In theorems 5.3 and 4.2 of [62] the authors show that not all small choices
for dt are valid. For too small timesteps the MBO model will not propagate
label probabilities at all and remains stationary at its initialization. The
diffusion will not be sufficient to change nodes neighboring the semisupervised
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input nodes and the algorithm will not learn. If the timestep is too large
however not only does the next iterate for the heat equation degrade because
of inability to accurately approximate the mean curvature of but the MBO
will reach a stationary state after only one iteration resulting in very little
propagation of class probabilities and therefore a segmentation mask very
close to the initialized values. In practice this was solved by choosing a
timestep dt of 0.1 ± 0.3 as changes within this range gave nearly identical
results (when accounting for randomness of each run), while deviation below
above this range would yield random segmentation maps with convergence
after one run. Going below this range gave very slow or no convergence with
inadequate results.

Figures 4.5 (a) and (b) shows ground truths and predicted segmentation
masks from the Trento datasample. Performance of the sample image was
representative for the Trento set. The overall shapes of ground truth objects
are generally correctly placed but with slight segmentation artifacts in bor-
ders between objects. The shapes and space is not particularly skewed or
thwarted which could indicate that the Nyström approximation performed
well and that the artifacts between object borders are more likely to stem
from the MBO convergence.

The Houston segmentation map in figure 4.5 (c) and (d) has gotten a slight
part of the road class cluster correct but not all and with significant bleed
from the road class into its surroundings. Some of the road class is cor-
rectly placed and much of the background is correctly predicted but there
is significant amounts of wrongly predicted pixels leaking from the road into
the background. Class clusters in the Houston set differ from all other sets
by ranging from only one to a couple of pixels wide, which seems to have
negatively impacted the MBO algorithm as most noise often happens be-
tween borders. Other influencing factors are likely to be the large number of
classes in this set which was found to be an issue for both reconstruction of
the nodespace from eigenvectors in Nyström and the MBO in [13].

An example of the GMBO used on Svalbard NE in figure 4.6 (a) and (b) has
achieved a segmentation mask very close to the ground truth. MBO seems
to propagate outwards from the fidelity input and here again most noise
happens between object borders, except for two smaller incorrectly labeled
background clusters on the bottom right side. This could come from a bad
random initialization in MBO or from those points being more similar than
other parts around them to the background class. Perhaps most importantly
is that the main shapes of ice is identified. If used for locating ice regions
from a small amount of fidelity further analysis by human experts could be
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considered in determining the classes of the two smaller erronous clusters if
no ground truth were available for those areas.

Sample ground truths and segmentation masks for the last dataset S Svalbard
are shown in respectively (c) and (d) of figure 4.6. The phenomena here
seemed especially interesting for its lack of uncertainty except between class
borders and odd indent in the middle of the image. It would seem there
could be a transitional landscape between the classses, perhaps with thinner
and/or melting ice that blends closely with landscape in mode similarities.
An explanation for the indentation could be due to MBO misclassification
but considering this is only a smaller snippet from an extremely large satellite
image it is also thinkable that the indentation is closer to the real landscape
than ground truth and that ground truth was roughly placed relatively to
the size of the image patch.

A table for comparing accuracies and mean IoU metrics for the Trento, Hous-
ton, NE Svalbard and S Svalbard datasets classified with Graph Fusion MBO
is shown in table 4.3. Tables 4.4 and 4.5 respectively show class IoU scores
for Trento and for Houston. Houston had the significantly higher accuracy of
0.991 next to Trentos accuracy of 0.707, while Trento outperformed Houston
in Mean IoU with a mean IoU of 0.462 compared to 0.137 of Trento. The
class IoU tables of Houston show an especially high class IoU for background
and otherwise a trend of very poor classification scores for all other classes.

When evaluating performance on the different datasets one needs to consider
the overall goal of the method used. While the Graph Fusion MBO scored
higher in accuracy on the Houston dataset than on Trento, this can be ex-
plained by the majority of images from the Houston set showing background
with a few scattered pixels of ground objects. Most of the background were
correctly classified but very few of object classes were correctly identified.
Furthermore, the data seem to show that a possible strength of the Graph
Fusion MBO algorithm seems to lie in being able to indicate presence of class
objects from a relatively small number of labeled fidelity input. In Trento
were MBO worked especially well this seemed to be the case but a possible
drawback was the artifacting and noise especially in the borders between ob-
jects, so for finer segmentation masks neural nets could be a better choice at
the cost of more labeled data. Taking this into account correctly classifying
large amounts of background would therefore most often come as a secondary
concern in Remote Sensing tasks compared to indicating presence of object
classes, as this is what Graph Fusion MBO would likely be used for in RS.
The results from Trento could therefore be thought of as intuitively more
valuable than results from the Houston set.
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(a) Ground truth. (b) GMBO segmentation mask.

(c) Ground truth. (d) GMBO segmentation mask.

Figure 4.5: A figure showing ground truths and their corresponding segmen-
tation masks for Graph Fusion MBO in sample data from the Trento (a),
(b) and Houston (c), (d) datasets. Trento shows background in dark blue,
houses in light blue and road in yellow. In Houston background is shown in
dark blue and road in yellow.
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(a) Ground truth. (b) GMBO segmentation mask.

(c) Ground truth. (d) GMBO segmentation mask.

Figure 4.6: A figure showing ground truths and their corresponding segmen-
tation masks for Graph Fusion MBO in sample data from the NE Svalbard
(a), (b) and S Svalbard (c), (d) datasets. The NE Svalbard sample shows
grey-white ice in yellow and background in blue. In the S Svalbard sample
background is also shown in blue and brash ice is shown in yellow.
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Dataset Accuracy Mean IoU
Trento 0.707 0.462
Houston 0.991 0.137
NE Svalbard 0.982 0.526
S Svalbard 0.993 0.715

Table 4.3: Table showing Accuracy and Mean Intersection over Union for
different remote sensing datasets classified with the Graph Fusion MBO al-
gorithm.

The arctic sea ice datasets had the highest mean IOUs of respectively 0.526
and 0.715 for NE- and S Svalbard. These datasets had the least amount of
classes and very distinct clusters which has earlier been linked to improved
performance in GMBO [13]. The high scoring Mean IOUs on S Svalbard can
also be affected by the small number of channels as this set had only 4 regu-
lar bands compared to ranges between 15 and 70 bands for most other sets.
Earlier studies has strengthened the case for not always including additional
bands or modalities as beneficially merging them does not necessarily guar-
antee improvements to robustness nor accuracy of analysis [9]. Furthermore
it was odd that open water was the class with the simultaneously lowest and
highest mean IOUs for respectively the NE Svalbard and S Svalbard datasets.
A possible explanation could be the use of different sensory equipment, i.e.
that the AMSR sensor or bands included in S Svalbard are more relevant to
distinguishing open water than the optical and SAR combination present in
NE Svalbard.

For a closing remark it should be noted that the GMBO performed surpris-
ingly good on the sea ice datasets that in part motivated this thesis. This
despite that it to the authors knowledge has not been conducted extensively
studies into MBO characterization of sea ice data for these combinations of
SAR, AMSR and optical modalities without LIDAR data in popular GMBO
papers [13][43]. The low amount of classes and distinct clusters typical in the
ice data was indeed proved quite fitting for use of the Nyström and MBO al-
gorithms. The method had its drawbacks and might not be fitting if needing
finer segmentation masks or more labeled data is available. It also struggled
especially for large numbers of classes which could change results similarly to
what happened with the Nyström methods inability to represent each class
for the Houston set.
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Class name Class IoU score
0: Background 0.626
1: Apple trees 0.326
2: Buildings 0.437
3: Ground 0.269
4: Wood 0.758
5: Vineyards 0.398
6: Roads 0.390

Table 4.4: Classes and their belonging class IoU scores for the Trento dataset
when classified with Graph Fusion MBO. The classes with the two highest
scores are Wood and background, while the lowest class scores are ground
and apple trees.

Class name Class IoU score
0: Background 0.991
1: Healthy Grass 0.112
2: Stressed Grass 0.097
3: Synthetic Grass 0.000
4: Trees 0.003
5: Soil 0.000
6: Water 0.243
7: Residential 0.033
8: Commercial 0.015
9: Road 0.089
10: Highway 0.016
11: Railway 0.116
12: Parking Lot 1 0.047
13: Parking Lot 2 0.075
14: Tennis Court 0.218
15: Running Track 0.000

Table 4.5: Classes and their belonging class IoU scores for the 2013 IEEE
GRSS Data Fusion Houston dataset when classified with Graph Fusion MBO.
Notably the background class has a score much higher than the others at
0.991 while the second best class water has a class IoU of only 0.243. Most
classes besides background had very poor performances on this dataset with
class IoUs ranging between 0 and 0.01.
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Class name Class IoU score
0: Grey Ice 0.667
1: Grey-White Ice 0.460
2: Open Water 0.257
3: Thick FYI 0.363
4: Thin FYI 0.421
5: Background 0.989

Table 4.6: Classes and their belonging class IoU scores for the NE Svalbard
dataset when classified with Graph Fusion MBO. Background is the highest
scoring class, with Ice classes scoring significantly less.

Class name Class IoU score
0: Background 0.972
1: Brash Ice 0.546
2: FYI 0.606
3: Open Water 0.738

Table 4.7: Classes and their belonging class IoU scores for the S Svalbard
dataset when classified with Graph Fusion MBO. This set only consisted of
four classes but their IoUs were were mostly higher than the other sets, with
the largest after background being 0.738 for Open Water.
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Chapter 5

Conclusions and next steps

The motivations behind this work were to evaluate Semi-Supervised meth-
ods used successfully in other research communities together with inclusion
of additionally extracted GLCM texture feature data in the analysis. Deep
Label propagation and Holistic MixMatch were SSL methods that considered
processing of multimodal datasets simultaneously for image classification ob-
jectives. The last method, Graph Fusion MBO, looked into the parallel han-
dling of modalities with graph fusion at a later stage with a focus on spectral
graph image segmentation. Each method was experimentally evaluated on
real world arctic and urban datasets to provide an exhaustive description of
their respective drawbacks and advantages for operational use.

Out of LP and MixMatch the former were the lowest scoring algorithm which
coincided with the original hypothesis of MixMatch being a more powerful
algorithm since LP is somewhat outdated. Baseline LP had error rates of
13.54 and 10.95 while MixMatch had 9.39 and 5.40 for 120 and 240 labeled
samples. Generally LP had error rates between 10-14, with little dependence
on tested hyperparamters except for the L2 normalization which was an im-
portant part of LP. LP was also highly dependent on phase 1 generating
learned parameters representative of class. It is possible that a different set
of hyperparameters, dataset or number of epochs trained in phase 1 would
decrease the difference between error rates of LP and MixMatch. MixMatch
was more sensitive to changes in amount of labeled samples, and hyperpa-
rameters than LP. The most important component of MixMatch was MixUp.

If the experiments for image classification in this project, i.e. Label propaga-
tion and MixMatch, are to be recreated, the following would ideally be done
differently/added.
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• Larger dataset: A challenge in remote sensing is the lack of well labeled
data, and a larger more varied dataset could be beneficial to model
performance. Clusters of the NE Svalbard combined dataset were very
distinct, and at most 3-4 larger clusters existed per class. The dataset
should be large and varied enough such that the model is able to learn a
well generalized representation of data to classify new samples. When
only trained on one area the trained models are likely to face some
overfitting, and might not work well if used on data from a different
location, or with less distinctly separated class clusters.

• Other architectures: Concatenated mixed input data fed into WideRes-
Nets or ConvNets might not be the best models for classifying multi-
modal satellite image data. A possible alternative for mixed data is
sending different modes in parallell networks, e.g. ConvNets for S1 and
S2 data and a Multilayer perceptron for GLCM, and concatenating
learned features at a later stage with learned weighting based on the
importance of each mode.

• More finely tuned hyperparameters: This is a timeconsuming process,
but especially LP could have benefitted from this considering how im-
portant the first phase was.

A continuation for future work with LP and MixMatch could be attempting
pixel-wise segmentation with these methods. This would be of value as it
would be more true to the original dataset as it is labeled per pixel, and would
open for comparisons with GMBO. For ice classification there could also be
practical cases requiring higher precision where an image wise classification is
not enough. There is no guarantee that these image classification algorithms
will work well when used directly in semantic segmentation. This could be
hypothesised for LP as it was found to be the lowest performing method in
this study, and could be considered somewhat outdated. MixMatch used for
semantic segmentation would however be especially interesting as the original
authors states an interest in it being used for other domains, as well as in
hybrid with other SoA methods.

Another possibility is comparing the currently implemented SSL algorithms
to more state-of-the-art algorithms, especially since LP is not a SoA approach
and introducing more algorithms could be better suited for comparing with
MixMatch, as well as performing better on multimodal satellite images. Par-
ticularly Graph Convolutional Networks for Hyperspectral Image Classifi-
cation [63] and FixMatch [27]. GCN for Hyperspectral Image Classification
would be a good comparison for LP as a more recent graph based state of the
art method. FixMatch was created by many of the authors of MixMatch and
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consistently scored higher than MixMatch and other SoA on the commonly
used benchmarks Cifar10, Cifar100 and SVHN.

The performance of the Graph Fusion MBO algorithm varied significantly de-
pending on the dataset. GMBO struggled especially on the Houston set with
a mean IOU of only 0.137 which could be explained in part due to the large
number of bands needed to be condensed down by a fusing operation with
inherent information-loss and a large amount of classes that both Nyström
and MBO struggles to represent from a smaller number of landmark nodes
and labeled data. For the datasets where it performed better such as Trento,
with a mean IOU of 0.462, it still generated coarse segmentation maps in the
regions between objects and as such might not be suitable for all use cases
depending on how fine the segmentation map needs to be. Potential uses
are more likely to involve object detection, as it can have merit in indicating
classes given quite small amounts of sampled data 5 − 10% and when the
Nyström method was able to adequately recreate the graph node space from
approximated eigenvectors it decreased the computation time drastically and
also allowed computations for graphs larger than what would be feasible us-
ing calculations involving the true Graph Laplacian. The best performance
was achieved for the sea ice datasets where NE Svalbard had a mean IOU
of 0.526 and S Svalbard had 0.715. Experimental results seemed to indicate
that their inherent clustering properties and fewer number of classes is ideal
for GMBO.

For the GMBO algorithm thoughts about further work and recreating the
experiments includes:

• Implementation of other methods for comparison purposes. Graph In-
duced Learning on subspaces[45] is more closely related to GMBO and
seeks to better utilize the higher quality modality over others by align-
ing a shared subspace graph. The Graph Convolutional Network of
[64] trains spectral filters of a deep learning model but still goes un-
der the scope of spectral graph based methods for a slightly different
perspective.

• A further look into the stability of the Nyström method. The long
chain of matrix operations could induce large errors starting from small
rounding errors, and the methods aimed at tackling this as well as
computations of the pseudoinverse for PSD matrices from other papers
mainly included their own flaws.

• Ablation studies targeting choice of GMBO hyperparameters. This
process was made difficult due to the stability issues discussed above
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when the number of landmark nodes increased, and would be more
attainable after stability is improved. Some hyperparameters did not
seem to change results much as long as they were within a given range
but this should be looked into again after stability is further improved.

• More datasets. More thorough testing can always be beneficial to eval-
uating an algorithms robustness when facing data of different statistical
and physical properties. In short term this would likely mean gathering
sea ice data with 10 or above classes to see if an increase of classes in
sea ice data leads to as sharp of a degrade in results as for Houston
would be an interesting continuation.

• Other hyperspectral modality fusion procedures, including other choices
of similarity measures for the currently implemented fusion module.
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