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Abstract: The current deep convolutional neural networks for very-high-resolution (VHR) remote-
sensing image land-cover classification often suffer from two challenges. First, the feature maps extracted
by network encoders based on vanilla convolution usually contain a lot of redundant information,
which easily causes misclassification of land cover. Moreover, these encoders usually require a large
number of parameters and high computational costs. Second, as remote-sensing images are complex
and contain many objects with large-scale variances, it is difficult to use the popular feature fusion
modules to improve the representation ability of networks. To address the above issues, we propose a
dynamic convolution self-attention network (DCSA-Net) for VHR remote-sensing image land-cover
classification. The proposed network has two advantages. On one hand, we designed a lightweight
dynamic convolution module (LDCM) by using dynamic convolution and a self-attention mechanism.
This module can extract more useful image features than vanilla convolution, avoiding the negative
effect of useless feature maps on land-cover classification. On the other hand, we designed a context
information aggregation module (CIAM) with a ladder structure to enlarge the receptive field. This
module can aggregate multi-scale contexture information from feature maps with different resolutions
using a dense connection. Experiment results show that the proposed DCSA-Net is superior to state-
of-the-art networks due to higher accuracy of land-cover classification, fewer parameters, and lower
computational cost. The source code is made public available.

Keywords: land-cover classification; feature fusion; self-attention; lightweight

1. Introduction

Very-high-resolution (VHR) remote-sensing image land-cover classification refers to
the process of identifying land objects according to spectral, texture, shape, and other
characteristics of the objects in remote-sensing images. Nowadays, VHR remote-sensing
images can clearly express the spatial structure and surface texture characteristics of ground
objects and provide the conditions and basis for geoscience interpretation and analysis;
they are widely used in tasks such as land-cover classification in complex scenes [1–3].

In the early VHR remote-sensing image land-cover classification methods, most were
based on traditional threshold segmentation algorithm and clustering algorithms. For
example, Andres et al. [4] used a threshold segmentation method along with the classifier-
extraction method to analyze remote-sensing images. Zanottta et al. [5] proposed a seg-
mentation algorithm based on regional growth to improve the classification accuracy of
remote-sensing images. In addition, other methods such as fuzzy c-means clustering [6],
support vector machine [7], and random forest [8] are widely used in VHR remote-sensing
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image land-cover classification tasks. Although the above methods realized the classifica-
tion of remote-sensing images to a certain extent, they rely on manual feature extraction,
thus these algorithms are usually susceptible to noise, having poor robustness and limited
practical value.

In recent years, thanks to the rapid development of deep learning, convolutional neural
networks (CNNs) have shown great success in image feature representation [9], which plays
an important role in computer vision fields such as target detection, image segmentation,
image recognition, visual reconstruction, etc. Benefiting from the emergence of CNNs,
Long et al. proposed a full convolutional neural network (FCN) for image semantic
segmentation [10]. Based on this, a large number of improved semantic segmentation
networks have emerged, such as SegNet [11], U-Net [12], PSPNet [13], and DeepLab [14].
Some scholars have applied these improved networks to the task of VHR remote-sensing
image land-cover classification, and these networks have shown excellent performance
compared with traditional algorithms [15–17].

Inspired by the human visual system, the attention mechanism is widely used in
neural networks since it can suppress irrelevant features and enhance sensitive features.
The mainstream attention mechanism can be divided into channel attention, spatial atten-
tion, combined attention, and non-local attention. Channel or spatial attention combines
pooling operation with the fully connected network to obtain the weight coefficient on the
channel dimension or spatial dimension and realize feature weightings, such as SENet [18],
GatherExcite [19], and GCNet [20]. In combined attention, channel attention and spatial
attention are associated in series or parallel sequences to strengthen the collaborative
function between channels and space, such as DANet [21] and CBAM [22]. Self-attention
realizes global feature correlation modeling by learning the long-range dependency be-
tween different positions of feature maps, such as non-local and transformer. Owning to
the advantages of the attention mechanism, scholars applied the attention mechanism to
VHR remote-sensing image land-cover classification and proposed SCAttNet [23], TCHD-
Net [24], and SCViT [25]. These networks improve the accuracy of VHR remote-sensing
image land-cover classification to varying degrees compared with traditional CNNs.

Although many deep learning models have been proposed and applied to VHR
remote-sensing image land-cover classification, they are still facing some problems. Firstly,
due to the complexity of the high-resolution remote sensing scene, the image features ex-
tracted by the conventional convolution encoder usually have a large amount of redundant
information, which will lead to incorrect classification results. At the same time, the existing
encoder models are usually large-scale and have high calculation costs. Secondly, due
to the complexity of high-resolution remote sensing scenes and the large-scale difference
between targets, the existing feature-fusion module is difficult to effectively improve the
feature representation ability of networks. Thirdly, the existing skip connection operations
often ignore the differences between the features of different layers and cannot explore
enough useful information from a full-scale perspective, thus cannot accurately determine
the location and boundary information of the target.

To solve the aforementioned problems, in this paper we propose a dynamic con-
volution self-attention network (DCSA-Net) for VHR remote-sensing image land-cover
classification. DCSA-Net adopts an encoder-decoder network with the residual structure
as the backbone. The encoder mainly consists of two components: the lightweight dynamic
convolution module (LDCM) and the context information aggregation module (CIAM). For
the LDCM, we propose two strategies (LDCM_v1 and LDCM_v2) for single-mode feature
fusion and multi-mode feature fusion, respectively. In LDCM_v1, we use dynamic convo-
lution to replace traditional convolution, reduce feature redundancy, and improve network
representation ability, In LDCM_v2, we combine dynamic convolution with self-attention.
Introducing self-attention can make up for the defect of poor semantic information, im-
prove the semantic representation ability, and optimize the feature map by using long-range
dependency. In the CIAM module, the context information extracted through pooling win-
dows of different sizes and deeper features are combined in a hierarchical residual fusion
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method to form more abundant multi-scale context information. In addition, from the per-
spective of full-scale capture of fine-grained details and coarse-grained semantics, we also
propose a full-scale feature interaction strategy, which can transfer more abundant encoder
information to the decoder, effectively improving the fusion effect of high-resolution and
low-resolution semantic features. The main contributions of this paper are summarized
as follows:

• We design a lightweight dynamic convolution module, which combines dynamic
convolution with self-attention to extract more useful feature information at a lower
cost and avoid the negative impact of redundant features on classification results.

• We design a ladder-shaped context information aggregation module, which can effec-
tively expand the receptive field, fully integrate the multi-scale context information of
different resolution feature maps, and effectively solve the problems of fuzzy target
contour and large-scale changes in the remote-sensing image scene.

• We propose a full-scale multi-modal feature fusion strategy to maximize the effective
fusion of high-level and low-level features, to obtain more accurate location and
boundary information.

The rest of this paper is arranged as follows. The second section mainly introduces
the related work. The third section describes the proposed method in detail. In the fourth
section, the experiment carried out is described, and the experimental results are analyzed
and discussed in detail. The experimental results and discussion of key issues are reported
in the fifth section. In the sixth section, there is a discussion of the whole paper. The code is
available at https://github.com/Julia90/DCSA-Net (accessed on 25 September 2022).

2. Related Work
2.1. Lightweight Network for Land-Cover Classification

At present, most methods in the field of computer vision are based on large-scale models
to achieve high accuracy. However, it is not sensible to simply pursue high accuracy while
ignoring the computational cost. Therefore, a series of lightweight convolutional neural net-
works have been proposed. For example, SqueezeNet [26] replaced part of 3 × 3 convolution
kernels with 1×1 convolution while reducing the number of input channels to reduce the
number of network parameters. ERFNet [27] introduced alternative thinking that used an
asymmetric convolution to decompose standard 3× 3 convolution into 1× 3 convolution and
3× 1 convolution to further reduce the network parameters. To capture the spatial correlation
and cross-channel correlation of the feature maps respectively, MobileNet [28] proposed the
depthwise separable convolution to decompose the vanilla convolution into depthwise convo-
lution and pointwise convolution, further reducing the consumption of vanilla convolution.
Inspired by asymmetric convolution and depth separable convolution, Lv et al. [29] proposed
a novel lightweight network for VHR remote-sensing image land-cover classification. It uses
an asymmetric depthwise separable convolution to replace the vanilla convolution to reduce
network parameters and the experimental results fully show the effectiveness of this network.
Inspired by the group convolution of MobileNet, ShuffleNet [30] proposed a channel shuffle
operation, which can alleviate the problem of information loss caused by the lack of informa-
tion exchange between channels. Based on the idea of ShuffleNet, Qiao et al. [31] designed a
lightweight network for VHR remote-sensing image land-cover classification, which is based
on channel attention combined with the modified ShuffleNet unit. Han et al. [32] pointed
out that there is a lot of redundancy in generating rich feature maps by neural networks,
thus they proposed GhostNet. This uses a series of linear transformations instead of vanilla
convolution operations to generate many ‘Ghost’ feature maps with a reduced number of
operations. Paoletti et al. [33] designed another lightweight CNN architecture and applied the
modified Ghost module to the task of VHR remote-sensing image land-cover classification
to achieve high-precision feature classification at a smaller cost. Additionally, in order to
improve land-cover classification accuracy, Cao et al. [34] explored multiple lightweight multi-
modality fusion methods to achieve high accuracy and low computational complexity. Peng
et al. [35] combined the idea of dense connection and fully convolutional networks to provide

https://github.com/Julia90/DCSA-Net


Remote Sens. 2022, 14, 4941 4 of 20

fine-grained semantic segmentation. Due to its dense architecture, its model complexity is
proportional to the small-valued growth rate and layer number. Thus, this method achieves
lower time complexity than conventional CNN. Ferrari et al. [36] proposed replacing the VGG-
like encoders with the lightweight EfficientNet in a hybrid attention-aware fusion network to
ensure the prediction accuracy and computation efficiency on the task of building mapping.

Although convolution operation can fuse global information by stacking multiple
convolution layers, the receptive field of the convolution kernel is still limited and only
focuses on the local area, which may lead to weak feature representation ability. How-
ever, the attention mechanism can effectively obtain the global relationship of the feature
map, and improve the representation ability of the network from the global perspective,
effectively improving the land-cover classification accuracy. For example, Li et al. [37]
proposed a multi-level attention network with linear complexity to reduce a large number
of computing requirements in attention operations. This design makes the combination of
the attention mechanism and neural network more flexible and universal. Zhang et al. [38]
improved the self-attention mechanism and proposed a lightweight double branch network
with an attention module and a feature fusion module. The network can effectively reduce
the interference of noise and redundant information in the feature maps while reducing the
network complexity.

2.2. Feature Fusion for Land-Cover Classification

In convolutional neural networks, the input features usually go through multiple
downsampling layers to gradually expand the receptive field to obtain high-level semantic
features. High-level features do usually have stronger semantic information, but their
resolution is usually low and poor at perceiving details. Contrary to high-level features, low-
level features have high resolution and thus contain more location and detailed information,
but these features go through fewer convolution layers. Thus, the semantic information
is not rich and usually has serious noise interference. Because of the above phenomena,
the question of how to carry out efficient image feature fusion has become a hot issue for
scholars in recent years. The U-Net network proposed by Ronneberger et al. [12] combines
shallow features with deep features through the idea of skip connection, which effectively
improves the accuracy of the segmentation task. Liu [39] and others proposed a progressive
fusion network based on the idea of skip connection of the U-Net network and applied
it to the task of VHR remote-sensing image land-cover classification. Unlike U-Net, it
progressively fuses features of different scales from coarse to fine, which can generate more
refined fusion features, to improve the accuracy of VHR remote-sensing image land-cover
classification. U-Net++ [40] redesigns the structure of skip connection based on U-Net so
that the features extracted by the encoder can be more flexibly integrated into the decoder
to improve the performance of the network.

Although the networks such as U-Net and U-Net++ can effectively integrate high-level
and low-level features by using skip connection, thus enhancing the network’s feature
representation ability, they do not consider the multi-scale characteristics of the target.
Therefore, when applying these networks to the VHR remote-sensing image land-cover
classification tasks with large-scale differences in the target, the accuracy is often limited.
The pyramid pooling module proposed by PSPNet [13] can effectively solve the problem
of limited feature expression caused by large-scale changes in the target. Likewise, Wang
et al. [41] proposed a multi-scale feature pyramid module to obtain the fine-grained feature
maps of multi-scale global features. Though it has improved the result of land-cover classi-
fication at multiple object scales, it is a simple fusion method that has high computational
complexity, resulting in low accuracy. Xu et al. [42] established different forms of feature
fusion adaptive dilated space pyramid pooling module, which can not only extract and fuse
more extensive multi-scale features but also reduce the degradation of model performance
caused by dilated convolution. DeepLab v3+ [43] incorporates the convolutions of various
dilation rates and a global average pooling into the network to obtain a multi-scale context
feature. Although this method can effectively improve the accuracy, it only considers the
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local features and lacks the consideration of the global features. Tian et al. [44] combined
the self-attention mechanism, dilated convolution, and pyramid pooling module to extract
features. Afterward, the refined feature pyramid structure is used to fuse the multi-scale
features. This method not only assigns adaptive weights to the local features but also
considers the global. Similarly, Liu et al. [45] used a dense connectivity pattern and parallel
multikernel convolution to implement various-sized receptive fields. Additionally, this
uses spatial and channel relation-enhanced blocks to learn global contextual relations. Lei
et al. [46] applied atrous spatial pyramid pooling with different atrous rates and a non-local
block, which not only extracts and integrates multi-scale feature maps, but also enhances
intra-class features by using the remote dependency of the spatial context. Shang et al. [47]
employed two layers of atrous convolutions with different dilation rates and global pooling
to extract multi-scale context information. To effectively fuse the semantic features, an
adaptive weighted channel attention mechanism is used. Nie et al. [48] proposed a novel
multiscale image generation network. It introduced a multi-attention mechanism, an edge
supervised module, and a multiscale image fusion algorithm based on the Bayes model to
ensure segmentation accuracy.

3. Proposed Method
3.1. Overview

DCSA-Net adopts an encoder-decoder network with the residual structure as the
backbone network as shown in Figure 1. The inputs of the network are IRRG and nDSM
respectively. IRRG is an image format composed of three bands of near-infrared (IR),
red (R), and green (G). Compared with the RGB image format, it can provide better
classification performance due to the use of near-infrared light. The digital surface model
(DSM) refers to the ground elevation model including the heights of surface buildings,
bridges, and trees. nDSM is a picture format after normalizing DSM. The encoder mainly
consists of two components: the lightweight dynamic convolution module (LDCM) and the
context information aggregation module (CIAM). For the LDCM, we propose two strategies
(LDCM_v1 and LDCM_v2) for single-mode feature fusion and multi-mode feature fusion,
respectively. Different from the traditional multi-modal fusion network structure, LDCM
generates better feature maps at a lower cost than vanilla convolution while processing
different modal data. The CIAM not only incorporates improved multi-scale contextual
information but also retains the original multi-modal features. The decoder still uses a
residual structure, consisting of continuous bilinear interpolation. In addition, DCSA-Net
uses a full-scale feature interaction strategy to effectively improve the semantic feature
fusion effect of high- and low-resolution.
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Figure 1. The overall structure of dynamic convolution self-attention network (DCSA-Net). The input
comprises near-infrared, red, and green (IRRG) data and normalized digital surface model (nDSM)
data. The two formats of data are encoded respectively and fused afterward by the lightweight
dynamic convolution module (LDCM) to extract the useful feature. Then the feature is processed by
multisize pooling kernels and then hierarchical residual fusion by the context information aggregation
module (CIAM) to obtain a multiscale context feature. Finally, the feature is decoded using a full-scale
feature interaction strategy to obtain the predicted output.
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3.2. Lightweight Dynamic Convolution Module

To mine the image feature information deeply, we select an encoder with a three-
branch structure in the feature extraction stage, including a spectral branch, a depth
branch, and a fusion branch. Because the high-resolution remote sensing scene is relatively
complex, the image features extracted by the encoder based on vanilla convolution are
often accompanied by a large amount of redundant information, which easily causes wrong
classifications, and these encoders usually need a huge number of parameters. To solve
this problem, as shown in Figure 2a, we combine dynamic convolution with self-attention
and design a lightweight dynamic convolution module, which can extract more useful
image features at a lower cost and avoid the impact of redundant features on the final
classification results.

Most of the CNNs often employ the vanilla convolution or depthwise separable
convolution in the coding stage of networks. A vanilla convolution usually suffers from
the problems of a large number of model parameters and a high computational complexity.
Although depthwise separable convolution can effectively reduce the number of network
parameters by performing depthwise convolution and pointwise convolution separately, it
usually leads to the degradation of the performance of the model. No matter it’s a vanilla
convolution or a depthwise separable convolution, once the network training is completed,
the convolution kernel parameters in the network will be fixed, and the network will
process all input data equally, so adaptive feature-coding cannot be realized. In this regard,
dynamic convolution realizes the adaptive coding of the network for different input data
by dynamically generating a convolution kernel, which not only effectively improves the
feature representation ability of the network, but also reduces the parameters of the model.
Since the VHR remote-sensing image land-cover classification network is faced with the
problems of complex feature types and huge network models, we use dynamic convolution
to replace vanilla convolution to realize a lightweight dynamic convolution network for
VHR remote-sensing image land-cover classification.

In deep convolution neural networks, the attention mechanism is a strategy widely
used to improve the representation ability of models. Due to the long imaging distance
of remote-sensing images, the detailed information of objects is not obvious, and the
long-range correlation of pixels is particularly important in VHR remote-sensing image
land-cover classification. To further improve the feature representation ability of the
network, we introduce a self-attention mechanism into the network model to capture
the global information of feature maps and use long-range dependency to improve the
feature representation ability of the network. Since multimodal data requires a three-branch
encoder, considering that if the self-attention mechanism is introduced into the three-branch
encoder, the computational cost is quite high, the coupling of feature representation is strong
and there are too many redundant calculations. Therefore, to balance the contradiction
between the computational cost and the feature representation ability, we do not introduce
the self-attention mechanism to the single-mode branch and the deep branch, but introduce
the self-attention mechanism to the fusion branch, because the fusion branch can take into
account all the features of the single-mode branch and the deep branch, so it contains more
abundant feature information.

To sum up, we have designed two structures in the LDCM module, namely LDCM_v1
and LDCM_v2, using LDCM_v1 for single-mode branches and deep branches, use LDCM_v2
for fused branches. The structures of LDCM_v1 and LDCM_v2 are shown in Figure 2b,c.

In LDCM_v1, we have introduced dynamic convolution to replace the vanilla convo-
lution, reduce feature redundancy information, improve the feature representation ability
of the network, and reduce the parameters of the model. The dynamic convolution calcu-
lation process is mainly divided into two parts. First, the dynamic convolution kernel is
generated. All channel pixels at a certain spatial position of the input image are selected,
which are expanded by a linear transformation to obtain the dynamic convolution kernel
K× K× 1. Then the convolution is calculated. The generated dynamic convolution kernel
is first duplicated and stacked into K× K× C. Then, it is multiplied by the original feature
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map at the original pixel position to complete the dynamic convolution calculation. In
Figure 3, we show the structure of LDCM_v2. The input image is first subjected to the
dynamic convolution. Then, to capture the long-range dependence of the feature map,
the feature map generated from dynamic convolution is respectively passed through the
self-attention channel module and the self-attention space module. Finally, the outputs of
the two branches are added together to obtain the final result.
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The principle of self-attention channel module is denoted by Ach(X) ∈ RC×1×1, as
shown in Equation (1).

Ach(X) = FSG

[
Wz|θ1

(
σ1(Wv(X))× FSM

(
σ2
(
Wq(X)

)))]
(1)

where Wz, Wv and Wq are 1× 1 convolution, σ1 and σ2 are two-dimensional transformation
operations, FSM and FSG represent So f tmax function and Sigmoid function, respectively,
and × is matrix dot product operation. To reduce the computation cost, the number of
the internal channels Wz, Wv and Wq is set to C/2. The output of the self-attention pure
channel filtering module is Zch = Ach(X)⊗ X ∈ RC×H×W and ⊗ is the multiplication of
the channel dimension.

The principle of self-attention space module is denoted by Asp(X) ∈ R1×H×W , which
is defined as:

Asp(X) = FSG
[
σ3
(

FSM
(
σ1
(

FAP
(
Wq(X)

)))
× σ2(Wv(X))

)]
(2)

where σ3 is the dimension transformation operation and FP is the average pooling operation.
The output of the self-attention space filtering module is Zsp = Asp(X)⊗ X ∈ RC×H×W ,
and ⊗ is the multiplication operation on the spatial dimension. The detailed module is
shown in Figure 3.

The above two modules are combined to form a self-attention module (SFM), as shown
in Equation (3), where + refers to pixel-level addition operations.

SFM(X) = Zch + Zsp = Ach(X)⊗ X + Asp(X)⊗ X (3)

H × W, the dynamic convolution is calculated for each spatial location: the pixel
value of all the channels at one spatial location is linearly transformed and reshaped
into a dynamic convolution kernel of dimension K× K× 1, and then the feature map of
each channel at this location is multiplied by this kernel, generating a new feature with
dimension K × K × C. This new feature generated from dynamic convolution is then
processed by the channel module and the spatial module using self-attention respectively.
Wz, Wv and Wq are all 1 × 1 convolutions to construct corresponding attentions. The
outputs from the channel and the spatial modules are added together to generate the result.
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Figure 3. The structure of LDCM_v2. For an input data with dimension C × H ×W, the dynamic
convolution is calculated for each spatial location: the pixel value of all the channels at one spatial
location is linearly transformed and reshaped into a dynamic convolution kernel of dimension
K × K × 1, and then the feature map of each channel at this location is multiplied by this kernel,
generating a new feature with dimension K × K × C. This new feature generated from dynamic
convolution is then processed by the channel module and the spatial module using self-attention
respectively. Wz , Wv and Wq are all 1× 1 convolutions to construct corresponding attentions. The
outputs from the channel and the spatial modules are added together to generate the result.

It can be seen from the LDCM module that we have used dynamic convolution
instead of the vanilla convolution, which effectively reduces the parameters of the network.
Although dynamic convolution can enhance the representation ability of spatial features,
because dynamic convolution is still a local operation, it is difficult to obtain the global
features of the image, which is not conducive to the classification of semantic information.
The introduction of self-attention mechanism can just make up for the defect of poor
semantic information and use long-range dependence to improve the ability of semantic
expression and optimize the feature map.

3.3. Context Information Aggregation Module

In VHR remote-sensing images, targets usually have large-scale differences. Large-
scale targets may exceed the receptive field of the full convolution neural network, resulting
in discontinuous prediction. Many mispredicted areas are related to the context and the
global information of different receptive fields. Therefore, it is very important to integrate
effectively the context information into the VHR remote-sensing image land-cover classifi-
cation. However, PSP and ASPP, which use large-scale pooling or convolution operations,
will lose some detailed information. At the same time, the dilated convolution expansion
rate is large, which may cause the checkerboard effect and high computational complexity.
To solve the above problems, we propose a novel context information aggregation mod-
ule, which can obtain very rich context information, enhance the integrity between target
edges and internal tightness, and improve the accuracy of VHR remote-sensing image
land-cover classification.

The specific structure of the CIAM module is shown in Figure 4. In this module, the
input first passes through the average pooling operation and adaptive average pooling
operation with steps of 1, 2, and 4, respectively, in parallel to generate feature maps with
different resolutions. Next, the generated feature maps are inputted into a 1× 1 convolution
to change the number of channels. The 1× 1 convolution fuses channel information, making
the whole feature maps combine local and global information, but the above operation is
insufficient for the aggregation of multi-scale context information. Inspired by Res2Net [49],
we first upsample the feature maps outputted by 1× 1 convolution layers, and then a larger
receptive field is obtained through 3× 3 convolution. Finally, the receptive field regions of
different scales are fused by the fusion of hierarchical residuals. Due to the combined effect,
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more characteristic scales are generated. Finally, all feature maps are concatenated and
compressed using 1× 1 convolution. In addition, the module also adds a 1 × 1 convolution
to optimize the feature-mapping. If the input is denoted by X, yi at different scales is
defined as:

yi =


C1×1(X) i = 1;

C3×3(U(C1×1(PAP(X))) + yi−1) 1 < i < 5;
C3×3(U(C1×1(PAAP(X))) + yi−1) i = 5.

(4)

where C1×1 and C3×3 represent 1× 1 convolution and 3× 3 convolution, and U represents
upsampling. PAP represents average pooling, and PAAP represents adaptive average pooling.
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Figure 4. Context information aggregation module.

The CIAM module combines the context information extracted from pooling windows
of different sizes with deeper features to form richer multi-scale context information. Dif-
ferent from the previous fusion methods, it fuses the multi-scale information in the way of
hierarchical residuals, which greatly improves the accuracy of ground object classification.

3.4. Full-Scale Feature Interaction Strategy

As mentioned above, we first use dynamic convolution and self-attention mechanisms
to realize adaptive feature extraction and improve the effect of spatial feature extraction.
Secondly, the context information aggregation module is proposed to realize the multi-scale
feature fusion of context information. However, in CNNs, low-level feature maps usually
have rich edge and texture details as well as spatial information. This is conducive to
highlighting the boundary of segmentation targets and obtaining more refined results. In
contrast, high-level feature maps pay more attention to the semantic location information
of images, which is more conducive to the semantic classification of images. Therefore,
the combination of low-level and high-level features is also the key to improving network
performance. However, popular networks such as U-Net and U-Net++ often ignore the
differences between the characteristics of different layers and cannot explore enough useful
information from a full-scale perspective, so they cannot accurately determine the location
and boundary information of ground object targets. Therefore, to make full use of multi-
scale features, and from the perspective of capturing fine-grained details and coarse-grained
semantics at full scale, we propose a full-scale feature interaction strategy (FF) as shown in
Figure 5. Each decoder in the network integrates the full-scale feature maps in the encoder.
Figure 5 constructs the full-scale fusion features by taking only one stage as an example
(stage 2), it is fused with the features of the corresponding scale of the decoder.

Different from the skip connection in U-Net, this strategy downsamples the features
from stage 1 in the encoder to the resolution of stage 2 feature map, upsamples the features
from stage 3 and stage 4 to the resolution of stage 2, and finally fuses the feature map of the
original resolution with the changed feature map. This not only retains the original feature
information of this stage, but also the shallow edge contour information is effectively
fused with the deep semantic information. It is worth noting that, in the full-scale feature
interaction strategy, because our purpose is to obtain the edge texture information of
shallow features, we choose the maximum pool operation that can learn the image edge
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texture information, and use bilinear interpolation for upsampling. The full-scale feature
fusion strategy will transfer more abundant encoder information to the decoder, providing
more accurate position perception and boundary perception for VHR remote-sensing image
land-cover classification.
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4. Experimental Results and Analysis

To verify the effectiveness of DCSA-Net, we conducted experiments on the Vaihingen
and Potsdam datasets of ISPRS [50]. Our experiment adopts the quantitative accuracy
evaluation methods of overall accuracy (OA) and F-score to evaluate the classification
results. In addition, the performance of our model is compared with state-of-the-art
methods for VHR remote-sensing image land-cover classification. Finally, ablation studies
are performed to verify further the superiority of DCSA-Net.

4.1. Datasets Description

The dataset is provided by the Third Committee of the International Society for
Photogrammetry and Remote Sensing, containing high-resolution true orthophoto (top)
slices, DSMS, and corresponding ground truth (GT) labels of two German urban areas.

All the images in the Potsdam dataset [51] are multi-model data that include four
bands: near-infrared (IR), red (R), and green (G), and the corresponding normalized digital
surface model (nDSM). The spatial resolution of these images is 5 cm, and image size is
6000 × 6000 pixels. Impervious surfaces, buildings, low vegetation, trees, vehicles, and
debris are marked on each pixel of the 24 images. Compared with the RGB image format,
the IRRG image can provide better classification performance due to the utilization of
IR. Therefore, we used IRRG and nDSM image formats in our experiments. We select
image sequence numbers 5_12, 6_7, and 7_9 for validation, image number 5_10 and 6_8 for
prediction, and train the remaining images.

The Vaihingen dataset [52] contains 33 images with an average size of 2500 × 2100 pixels
and a spatial resolution of 9 cm. In this dataset, only 16 images have real labels, and each
image has the same band and label as the Potsdam dataset. We also used IRRG and nDSM
image formats to improve the classification performance. In this experiment, five images are
selected as the prediction set to analyze the network, and the serial numbers were 11, 15, 28,
30, and 34, respectively. Three images are used as the verification set, with sequence numbers
7, 23, and 37, and other images are used as the training set. Figure 6 shows two groups of
images from these two datasets.
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Figure 6. Sample images of Potsdam and Vaihingen datasets, digital surface models, and their
corresponding labels. (a) Potsdam TOP, (b) Potsdam DSM, (c) Potsdam GT, (d) Vaihingen TOP,
(e) Vaihingen DSM, and (f) Vaihingen GT.

Due to the limitation of GPU memory, it is necessary to crop the original images to
adapt to the network input size. Therefore, each image was cropped to 256 × 256 pixels,
with an overlap of 128 pixels, and the final prediction was spliced. To avoid overfitting the
network, we applied the random flip and the random rotation on images to achieve data
enhancement. Therefore, the network could effectively avoid the overfitting during the
training process, and thus shows strong robustness.

4.2. Training Details

We used ResNet50 [53] pretrained on ImageNet [54] as the backbone network. We
implemented the proposed method with the Pytorch framework and trained it on an
NVIDIA GeForce GTX 3090 GPU with 25.4GB VRAM, and an Adam optimizer with a
momentum of 0.9, weight decay of 0.004, and initial learning rate of 0.001 was applied
to optimize the network. We used cross-entropy as the loss function of the network. The
total number of training rounds and the total batch size of training were set to 200 and
16, respectively.

4.3. Metrics

We adopted the most common evaluation metrics in the field of land-cover classifi-
cation, F-score (F1), Overall Accuracy (OA), and mean intersection-over-union (mIoU), to
evaluate the performance of the different methods. The metrics are defined as follows:

F1 = 2× Precision× Recall
Precision + Recall

(5)

OA =
TP + TN

TP + TN + FP + FN
(6)

mIoU =
1

k + 1

k

∑
i=0

TP
TP + FP + FN

(7)

where
Precision =

TP
TP + FP

(8)

Recall =
TP

TP + FN
(9)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. These results usually
convert the segmentation image into a single channel category index and conduct a pixel-
by-pixel statistical comparison through the confusion matrix [55] and the real label to
evaluate the segmentation accuracy.
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4.4. Results and Analysis

In this section, we present the performance analysis between DCSA-Net and compara-
tive methods including DeepLab v3+ [43] (2018), MANet [47] (2020), DSMFNet [34] (2019),
REMSNet [45] (2020), DP-DCN [35] (2019), and MMAFNet [46] (2021). These networks can
be mainly divided into two groups: the networks with spatial relations and the networks
without spatial relations, in which both REMSNet and MMAFNet introduce spatial rela-
tionships. It is worth noting that different from other networks, DeepLab v3+ does not use
digital surface models. We evaluated DCSA-Net and comparative methods on Potsdam
and Vaihingen datasets. The experimental results are shown in Tables 1 and 2.

Table 1. Experimental results of F1, OA, and mIoU on the Potsdam dataset (%). The best results are
shown in bold.

Methods Imp. Surf. Building Low veg. Tree Car Mean F1 OA mIoU

Deeplab v3+ [43] 89.88 93.78 83.23 81.66 93.50 88.41 87.72 79.35
MANet [47] 91.33 95.91 85.88 87.01 91.46 90.32 89.19 81.42

DSMFNet [34] 93.03 95.75 86.33 86.46 94.88 91.29 90.36 82.47
DP-DCN [35] 92.53 95.36 87.21 86.32 95.42 91.37 90.45 82.55
REMSNet [45] 93.48 96.17 87.52 87.97 95.03 92.03 90.79 83.56
MMAFNet [46] 93.61 96.26 87.87 88.65 95.32 92.34 91.04 84.03

DCSA-Net 93.69 96.34 88.05 88.87 95.63 92.52 91.25 84.24

The experimental results on the Potsdam dataset are shown in Table 1. We compared
DCSA-Net with DeepLab v3+, MANet, DSMFNet, DP-DCN, REMSNet, and MMAFNet.
The experimental data show that the average F1, OA, and mIoU of our DCSA-Net are higher
than the comparative methods. Compared with DeepLab v3+ and DP-DCN, the increment
of DCSA-Net on the average F1 is 4.11% and 1.15%, respectively, which proves that the
LDCM makes full use of DSM features and has better feature fusion ability. Compared
with REMSNet, DCSA-Net improves the classification of low vegetation and tree categories
by 0.53% and 0.90%.

To compare the classification performance of different methods intuitively, we visu-
alized the experimental results on some images from the Potsdam dataset in Figures 7
and 8. From the comparison of the marked areas in the dotted box, it can be seen that
all the comparative methods perform badly on segmenting the vehicles covered by trees.
Additioanally, the trees next to the vehicles are mistakenly classified as vehicles. It is
especially hard to distinguish between low vegetation and trees, as well as to recognize the
vehicles under the tree shelter for comparative methods. Moreover, both REMSNet and
MMAFNet generate too much redundant information, thus the low vegetation is almost
completely classified as trees. Contrary to the above methods, the proposed DCSA-Net can
clearly judge the junction of the two types of targets in the area and thus provides better
land-cover classification results.

Figure 8 shows the comparison of classification results of a complete image in the
Potsdam prediction set. As the low vegetation contains complex context information
and the debris recognition also has challenging structure and texture, the comparative
methods are prone to misjudge these categories. However, DCSA-Net uses the CIAM to
obtain richer context information and repeatedly model the relationship between the global
spatial dimension and channel dimension many times. The proposed method obtains
better classification results and alleviates some misclassification. Therefore, our model has
stronger robustness.
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The evaluation results of the experiment on the Vaihingen dataset are shown in Table 2.
The proposed DCSA-Net achieves average F1 of 88.81%, OA of 90.58%, and mIoU of
78.93%. Compared with DeepLab v3+, the average F1, OA, and mIoU increased by 3.33%,
3.36%, and 3.49%, respectively. Compared with MMAFNet, the average F1, OA, and
mIoU increased by 0.20%, 0.31%, and 0.28%, respectively. Among all categories, the clear
improvement is the classification of trees, which proves that DCSA-Net makes better use
of DSM features to assist classification. We also visualized the experimental results of this
data as shown in Figures 9 and 10.

Table 2. Experimental results of F1, OA, and mIoU on the Vaihingen dataset (%). The best results are
shown in bold.

Methods Imp. Surf. Building Low veg. Tree Car Mean F1 OA mIoU

Deeplab v3+ [43] 87.67 93.95 79.17 86.26 80.34 85.48 87.22 75.44
MANet [47] 90.12 94.08 81.01 87.21 81.16 86.72 88.17 76.79

DP-DCN [35] 91.47 94.55 80.13 88.02 80.25 86.89 89.32 77.09
DSMFNet [34] 91.47 95.08 82.11 88.61 81.01 87.66 89.80 77.76
REMSNet [45] 92.01 95.67 82.35 89.73 81.26 88.20 90.08 78.16
MMAFNet [46] 92.06 96.12 82.71 90.01 82.13 88.61 90.27 78.65

DCSA-Net 92.11 96.19 83.04 90.31 82.39 88.81 90.58 78.93
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Figure 9 shows the classification diagram obtained by five different models on the
Vaihingen dataset. Compared with other models, DCSA-Net obtains a more coherent and
accurate classification map, especially for the distinction between trees and low vegetation
in the dotted box marked area in the first and third lines. In addition, it can be observed that
our method can obtain more fine-grained classification results for vehicle recognition in the
marked area as shown in the second line. Combined with the F1 of vehicles in Table 2, it is
obvious that our method has effectively improved the classification results of small targets.
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As shown in Figure 10, the comparative methods cannot distinguish between regular
targets and irregular targets at the same time, especially for the buildings and roads, leading
to inaccurate vehicle positioning. The main reason is that these methods always focus on
exploring spatial context information using features extracted by convolution, which is not
enough to provide useful clues to distinguish different objects, in particular the isolated
objects. Innovatively, DCSA-Net introduces the dynamic convolution and a more complex
context information aggregation module to convert the relationship between different
categories of objects into adaptive, which can obtain clearer boundaries in the segmentation
of all categories and has higher accuracy in complex high-resolution remote sensing scenes.
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4.5. Model Complexity

To further evaluate the model performance, the experiment mainly uses the floating-
point operation rate per second (GFLOPs) and the model parameters (Params) to evaluate
the model complexity. The specific results are given in Table 3. We can see that the proposed
DCSA-Net has a lower model complexity and higher classification accuracy than the com-
parative methods. Different from vanilla convolution, the proposed dynamic convolution
kernels are different in the spatial space but shared along the channel dimension. As the
number of feature channels decides the dimension of dynamic convolution kernels, the
model complexity is proportional to it, which has been greatly reduced. Compared with
MMAFNet, the number of parameters was reduced by 71%, yet OA was improved by 0.31%.
The results demonstrate that our proposed DCSA-Net not only reduces the number of
parameters and model size but also achieves higher accuracy for land-cover classification.

Table 3. Performance comparison of different methods on Vaihingen dataset.

Methods GFLOPs (GB) Params (M) Mean F1 OA

DeepLab v3+ [43] 89 47 85.48 87.22
MANet [47] 63 85 86.72 88.17

DP-DCN [35] 25 28.5 86.89 89.32
DSMFNet [34] 53 52 87.66 89.80
MMAFNet [46] 69 93 88.61 90.27

DCSA-Net 21 27 88.81 90.58

4.6. Ablation Studies

We applied the ablation experiments on the Vaihingen dataset to verify the effective-
ness of different modules proposed by DCSA-Net by comparing them with the baseline
model. The evaluation indexes were F1 and OA. The experiment decomposed and com-
bined the proposed modules, including Res50, Res50+LDCM, Res50+CIAM, Res50+FF,
Res50+LDCM+CIAM, Res50+LDCM+FF, Res50+CIAM+FF, and All Modules (DCSA-Net).
The specific contents are shown in Table 4.

Table 4. Quantitative analysis of Ablation Experiment in Vaihingen dataset (%). The best results are
shown in bold.

Method Imp. Surf. Building Low veg. Tree Car Mean F1 OA

Res50 86.94 89.67 75.83 84.42 77.40 82.85 84.98
Res50+LDCM 88.23 93.81 78.36 86.99 80.31 85.54 87.42
Res50+CIAM 88.17 92.22 77.80 85.88 79.06 84.63 86.58

Res50+FF 89.81 94.04 79.15 87.36 81.49 86.37 87.98
Res50+LDCM+CIAM 89.03 93.90 78.76 87.21 80.95 85.97 87.86

Res50+LDCM+FF 91.57 95.62 81.94 89.22 81.53 87.98 89.85
Res50+CIAM+FF 90.68 94.97 81.18 88.48 81.46 87.35 89.19

DCSA-Net 92.11 96.19 83.04 90.31 82.39 88.81 90.58

Res50 refers to a baseline consisting of two pre-trained ResNet50 that extract features
from different modalities and fuse these features after each res block. We chose this model
as the baseline for ablation experiments.

Owing to the introduction of LDCM, the extracted features of each layer contain
richer semantic information, thus Res50+LDCM increases the average F1 and OA by 2.69%
and 2.44%, respectively, compared with the baseline. Among all categories, the clearest
improvement was for buildings, with an increase of 4.14%. Through repeatedly modeling
the self-attention feature map many times, LDCM can readjust the filtered weights to the
multimodal features, which enhances the most useful information for classification and
reduces the misclassification of similar categories. It demonstrates that a reasonable and
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efficient fusion of multimodal features can improve the classification performance of our
proposed network.

Res50+CIAM integrates multi-scale context information, aggregates and optimizes
deeper semantic information, and expands the global relationship at the image level.
Mitigating some misclassification through richer contextual information, compared with
the baseline, the average F1 and OA are increased by 1.78% and 1.60%, respectively, which
strengthens the performance of the network and makes the model more robust.

Res50+FF adopts the full-scale feature fusion strategy in the feature fusion stage and
integrates the feature-mapping of each layer based on retaining the original resolution
features. The benefit of interaction between high-resolution features and low-resolution
features is huge, thus the improvement of the model compared with the baseline is also the
highest, with an average F1 and OA increased by 3.52% and 3.00%, respectively.

To further verify the effectiveness of our proposed module, we superimposed the
modules in pairs, and the results are shown in Table 4. Res50+LDCM+CIAM can not
only extract more useful feature information, but also obtain more abundant context
information, compared with res50+LDCM and res50+CIAM, F1 and OA were improved
by 0.43%, 0.44% and 1.34%, 1.28%, respectively. Res50+LDCM+FF can extract more useful
feature information while fully interacting with high and low-resolution features, compared
with res50+LDCM and res50+FF, F1 and OA are improved by 2.44%, 2.43% and 1.61%,
1.87%, respectively. Res50+CIAM+FF not only obtains richer context information, but also
fully interacts with high and low-resolution features, compared with res50+CIAM and
res50+FF, F1 and OA are improved by 2.72%, 2.61% and 0.98%, 1.21%, respectively.

Finally, all modules are integrated into the baseline to form the proposed DCSA-Net.
Compared with the baseline, the proposed DCSA-Net improves the average F1 by 5.96%
and OA index by 5.60%. All the above ablation experiments clearly show that the DCSA-
Net proposed in this paper can significantly improve the land-cover classification accuracy
for VHR remote-sensing images.

5. Discussion
5.1. Discussion on the Effectiveness of the LDCM

LDCM can extract more useful image features at a lower cost, avoiding the impact of
redundant features on the final classification results. The visualization results are shown in
Figure 11, which further verifies its effectiveness. Specifically, on the Vaihingen verification
dataset, the outputs of the encoder with and without the introduction of the LDCM are
shown in Figure 11, with red indicating the high attention area and blue indicating the low
attention area. In Figure 11d,e show that the LDCM is not introduced and that the LDCM
is introduced, respectively. We can see that after the LDCM is introduced, the boundaries
between categories are more obvious, the network pays more attention to the target object,
and reduces the influence of irrelevant features, which is conducive to improving the
classification accuracy.
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Figure 11. Visualization with and without LDCM. (a) IRRG, (b) nDSM, (c) ground truth, (d) output
of LDCM is not introduced, (e) output after the introduction of LDCM.

5.2. Discussion on the Optimal Selection of Key Parameters in the CIAM

CIAM is to obtain rich context information, enhance the integrity between target edges
and internal compactness, and improve the accuracy of remote-sensing image feature
classification. In this module, the context information extracted from different-size pooling
windows is combined with deeper features to form richer multi-scale context information.
However, it is a problem to determine an appropriate window size. In view of this problem,
we conducted experiments on different scales of windows and their combinations, and the
experimental results are shown in Table 5. It can be found that when the scale value is too
large or too small, CIAM cannot achieve the best performance. Finally, the scale of (3,5,9)
produces the best performance in our experiment.
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Table 5. Comparison of different pool size combinations in CIAM on the Vaihingen dataset (%). The
best results are shown in bold.

Method Imp. Surf. Building Low veg. Tree Car Mean F1 OA

CIAM(3,5,7) 92.01 96.11 82.64 90.21 82.28 88.65 90.47
CIAM(3,7,11) 92.08 96.16 82.98 90.26 82.33 88.76 90.55
CIAM(3,5,11) 92.10 96.16 83.00 90.29 82.37 88.78 90.56
CIAM(3,5,9)
DCSA-Net 92.11 96.19 83.04 90.31 82.39 88.81 90.58

6. Conclusions

In this paper, we analyzed the problems existing in the current VHR remote-sensing
image land-cover classification task based on deep learning and proposed a dynamic
convolution self-attention network, named DCSA-Net. The main innovation of this work
is to ensure high-quality multimodal internal features with low computational costs. In
terms of network structure, the LDCM is introduced into the encoder to improve the
multimodal characteristics. At the same time, the CIAM is introduced at the end of the
encoder to expand the deeper semantic information of multi-scale context. Finally, richer
full-resolution mixed features are obtained by a full-scale feature fusion. The experiments
show that the proposed network is superior to the mainstream networks on F1 and OA,
and has lower model complexity. In addition, in the ablation experiments on the Vaihingen
dataset, we have verified the performance of the proposed modules, and further verified
the effectiveness of DCSA-Net in VHR remote-sensing image land-cover classification.
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