104,091 research outputs found

    Remote lab of robotic manipulators through an open access ROS-based platform

    Get PDF
    The research, training, and learning in robotic systems is a difficult task for institutions that do not have an appropriate equipment infrastructure, mainly due to the high investment required to acquire these systems. Possible alternatives are the use of robotic simulation platforms and the creation of remote robotic environments available for different users. The use of the last option surpasses the former one in terms of the possibility to handle real robotic systems during the training process. However, technical challenges appear in the management of the supporting infrastructure to use the robotic systems, namely in terms of access, safety, security, communication, and programming aspects. Having this in mind, this paper presents an approach for the remote operation of real robotic manipulators under a virtual robotics laboratory. To this end, an open access and safe web-based platform was developed for the remote control of robotic manipulators, being validated through the remote control of a real UR3 manipulator. This platform contributes to the research and training in robotic systems among different research centers and educational institutions that have limited access to these technologies. Furthermore, students and researchers can use this educational tool that differs from traditional robotic simulators through a virtual experience that connects real manipulators worldwide through the Internet.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio

    Lessons taught and learned from the operation of the solar energy e-learning laboratory

    Get PDF
    The solar energy e learning laboratory (solar e-lab) in Cyprus is a good example of a web-based, remote engineering laboratory. It comprises a pilot solar energy conversion plant which is equipped with all necessary instrumentation, data acquisition, and communication devices needed for remote access, control, data collection and processing. The impact that the solar e-lab had during its nearly 5 years of operation is indeed high. Throughout this period, the solar e-lab has been accessed by users from over 500 locations from 79 countries spread all over the world. In the period of November 2004 to October 2008, more than a million visits were recorded, out of which 25000 have registered on the site and surfed through studying the supplied material. Around 1000 hits concerned registered users that passed the pre-lab test and performed the experimentation part. The four years of operation of the solar e-lab demonstrated how the Internet can be used as a tool to make the laboratory facilities accessible to engineering students and technicians located outside the laboratory, including overseas. In this way, the solar energy e-learning lab, its equipment and experimental facilities were made available and shared by a number of interested people, thus widening educational experiences. Judging from the online evaluation reports that were received from the solar e-lab users during the last 2 years of operation, it can be concluded that there is nearly excellent satisfaction by the users

    FORGE: An eLearning Framework for Remote Laboratory Experimentation on FIRE Testbed Infrastructure

    Get PDF
    The Forging Online Education through FIRE (FORGE) initiative provides educators and learners in higher education with access to world-class FIRE testbed infrastructure. FORGE supports experimentally driven research in an eLearning environment by complementing traditional classroom and online courses with interactive remote laboratory experiments. The project has achieved its objectives by defining and implementing a framework called FORGEBox. This framework offers the methodology, environment, tools and resources to support the creation of HTML-based online educational material capable accessing virtualized and physical FIRE testbed infrastruc- ture easily. FORGEBox also captures valuable quantitative and qualitative learning analytic information using questionnaires and Learning Analytics that can help optimise and support student learning. To date, FORGE has produced courses covering a wide range of networking and communication domains. These are freely available from FORGEBox.eu and have resulted in over 24,000 experiments undertaken by more than 1,800 students across 10 countries worldwide. This work has shown that the use of remote high- performance testbed facilities for hands-on remote experimentation can have a valuable impact on the learning experience for both educators and learners. Additionally, certain challenges in developing FIRE-based courseware have been identified, which has led to a set of recommendations in order to support the use of FIRE facilities for teaching and learning purposes

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identifi cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and fl exible, inverter-equipped testing microgrids. To this end, the combination of fl exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    Load flow studies on stand alone microgrid system in Ranau, Sabah

    Get PDF
    This paper presents the power flow or load flow analysis of Ranau microgrid, a standalone microgrid in the district of Ranau,West Coast Division of Sabah. Power flow for IEEE 9 bus also performed and analyzed. Power flow is define as an important tool involving numerical analysis applied to power system. Power flow uses simplified notation such as one line diagram and per-unit system focusing on voltages, voltage angles, real power and reactive power. To achieved that purpose, this research is done by analyzing the power flow analysis and calculation of all the elements in the microgrid such as generators, buses, loads, transformers, transmission lines using the Power Factory DIGSilent 14 software to calculate the power flow. After the analysis and calculations, the results were analysed and compared

    Using Remote Access for Sharing Experiences in a Machine Design Laboratory

    Get PDF
    A new Machine Design Laboratory at Marquette University has been created to foster student exploration and promote “hands-on” and “minds-on” learning. Laboratory experiments have been developed to give students practical experiences and expose them to physical hardware, actual tools, and design challenges. Students face a range of real-world tasks: identify and select components, measure parameters (dimensions, speed, force), distinguish between normal and used (worn) components and between proper and abnormal behavior, reverse engineer systems, and justify design choices. The experiments serve to motivate the theory, spark interest, and promote discovery learning in the subject of machine design. This paper presents details of the experiments in the Machine Design Laboratory and then explores the feasibility of sharing some of the experiences with students at other institutions through remote access technologies. The paper proposes steps towards achieving this goal and raises issues to be addressed for a pilot-study offering machine design experiences to students globally who have access to the internet
    corecore