14,553 research outputs found

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    Simulation of low rigidity part machining applied to thin-walled structures

    Get PDF
    The aim of this study is to evaluate the modelling of machining vibrations of thin-walled aluminium work- pieces at high productivity rate. The use of numerical simulation is generally aimed at giving optimal cutting conditions for the precision and the surface finish needed. The proposed modelling includes all the ingredients needed for real productive machining of thin-walled parts. It has been tested with a specially designed machining test with high cutting engagement and taking into account all the phenomena involved in the dynamics of cutting. The system has been modelled using several simulation techni- ques. On the one hand, the milling process was modelled using a dynamic mechanistic model, with time domain simulation. On the other hand, the dynamic parameters of the system were obtained step by step by finite element analysis; thus the variation due to metal removal and the cutting edge position has been accurately taken into account. The results of the simulations were compared to those of the experiments; the discussion is based on the analysis of the cutting forces, the amplitude and the frequency of the vibrations evaluating the presence of chatter. The specific difficulties to perfect simulation of thin-walled workpiece chatter have been finely analysed

    Identification of polymer concrete damping properties

    Get PDF
    The damping properties of a commercial polymer concrete are the subject of this application-driven study, which is aimed to investigate the material suitability as a filler of machine bed components to limit vibrations arising in machine tools and automatic machines working at high dynamics. Two main goals are targeted: (i) quantitative evaluation of the elastodynamic effects due to the polymer concrete insertion into typical components of machine beds, in order to effectively assess its practical potential and (ii) determination of reliable models of the material, needed to simulate the dynamic response of new design solutions of machines featuring structural components filled with the polymer concrete. The paper is mainly focused on the methodological approach of both the experimental campaign and the signal processing that were carried out. Based on the promising results achieved, the possible use of the polymer concrete as a viable solution to enhance the dynamic behavior of an automatic machine is finally investigated and discussed as a case study

    Index to NASA Tech Briefs, January - June 1966

    Get PDF
    Index to NASA technological innovations for January-June 196

    The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report

    Full text link
    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with operating schemes that will make full use of the machine capacity to explore the physics. The accelerator design, construction, and performance are presented, as well as the layout and performance of the experiments. The proposed staging example is accompanied by cost estimates of the accelerator and detectors and by estimates of operating parameters, such as power consumption. The resulting physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.Comment: 84 pages, published as CERN Yellow Report https://cdsweb.cern.ch/record/147522

    Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam) and Aluminum Foam Filled Structures

    Get PDF
    The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM) to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam

    The comprehensive analysis of milling stability and surface location error with considering the dynamics of workpiece

    Get PDF
    Cutting movement is still one of the main means to obtain the desired machined surface. As the most representative cutting method in subtractive manufacturing, milling is widely used in industrial production. However, the chatter induced by the dynamic interaction between machine tool and process not only reduces the accuracy of the machined workpiece, but also increases the tool wear and affects the rotary accuracy of the spindle. The stability lobe diagram can provide stable machining parameters for the technicians, and it is currently an effective way to avoid chatter. In fact, the dynamic interaction between the machine tool and process is very complicated, which involves the machine tool, milling tool, workpiece and fixture. The induced mechanism of chatter depends on different machining scenarios and is not entirely dependent on the vibration modes of milling tool. Therefore, it is important to obtain stable machining parameters and to know the dynamic surface location error distribution, which can ensure machining quality and improve machining efficiency. In this dissertation, two methods for constructing stability lobe diagram are first introduced, and then two machining scales, macro milling and micro milling, are studied. For the macro-milling scale, the dynamic response of the in-process workpiece with time-varying modal parameters during the material removal process is analyzed. The stability lobe diagrams for thin-walled workpiece and general workpiece with continuous radial immersion milling are established respectively. Besides, the cumulative surface location error distribution is also studied and verified for the general workpiece. For the micro-milling scale, the dynamics at the micro-milling tool point is obtained by means of the receptance coupling substructure analysis method. The stability lobe diagram and surface location error distribution are analyzed under different restricted/free tool overhang lengths. The relationship between measurement results and burrs is further explained by cutting experiments, and the difference between the two milling scales is compared in the end

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore