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Abstract

Cutting movement is still one of the main means to obtain the desired machined surface. As
the most representative cutting method in subtractive manufacturing, milling is widely used in
industrial production. However, the chatter induced by the dynamic interaction between
machine tool and process not only reduces the accuracy of the machined workpiece, but also
increases the tool wear and affects the rotary accuracy of the spindle. The stability lobe
diagram can provide stable machining parameters for the technicians, and it is currently an
effective way to avoid chatter. In fact, the dynamic interaction between the machine tool and
process is very complicated, which involves the machine tool, milling tool, workpiece and
fixture. The induced mechanism of chatter depends on different machining scenarios and is
not entirely dependent on the vibration modes of milling tool. Therefore, it is important to
obtain stable machining parameters and to know the dynamic surface location error

distribution, which can ensure machining quality and improve machining efficiency.

In this dissertation, two methods for constructing stability lobe diagram are first introduced,
and then two machining scales, macro milling and micro milling, are studied. For the macro-
milling scale, the dynamic response of the in-process workpiece with time-varying modal
parameters during the material removal process is analyzed. The stability lobe diagrams for
thin-walled workpiece and general workpiece with continuous radial immersion milling are
established respectively. Besides, the cumulative surface location error distribution is also
studied and verified for the general workpiece. For the micro-milling scale, the dynamics at
the micro-milling tool point is obtained by means of the receptance coupling substructure
analysis method. The stability lobe diagram and surface location error distribution are
analyzed under different restricted/free tool overhang lengths. The relationship between
measurement results and burrs is further explained by cutting experiments, and the difference

between the two milling scales is compared in the end.

Keywords: Macro & micro milling; In-process workpiece; Frequency response function;

Stability lobe diagram; Cumulative surface location error.
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Radial depth of cut

Axial depth of the cut
Damping matrix

Diameter of the milling tool

Damped natural frequency (Hz)
Quasi-periodic chatter frequency (Hz)
Frequency function of dominant mode
Period one frequency (Hz)

Period doubling frequency (Hz)
Spindle frequency (Hz)

Tooth passing frequency (Hz)

Feed per tooth

Milling force

Assembly receptance

Instantaneous uncut chip thickness
Entry of R, : displacement-to-force

Receptance of micro-milling tool point in X and Y direction
Stiffness matrix

Indentation coefficient
Cutting force coefficients in tangential and normal direction

Edge force coefficients in tangential and normal direction
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k Excitation location

Zskv Entry of R, : displacement-to-couple
M Mass matrix

m, Number of excited modes of milling tool
m,, Number of excited modes of workpiece
N Number of teeth

N, Ordinal number of lobe

My Entry of R, : rotation-to-force

Dy, Entry of R, : rotation-to-couple

r Tool radius

7, Radius of cutting edge

R, K, Generalized receptances matrix

S Measurement location

Sec Current position vector

Sp Previous position vector

T Tooth passing period

Q Spindle speed (rpm)

g Damping ratio

w, Natural frequency (rad/s)

Wrd Natural frequency matrix (rad/s)

W, chatter frequency (rad/s)

T Time delay



Angular position

) State transition matrix

(w, b,) Normal vector and displacement of hyperplane
H Frictional coefficient

& Phase shift between previous and current tooth
v Tool cutting angle (counterclockwise)

v' Phase shift of eigenvalue

) Rotation angle between previous and current tooth
Abbreviation

CMM Coordinate Measurement Machine

CMS Component Mode Synthesis

CSLE Cumulative Surface Location Error

EMA Experimental Modal Analysis

FEM Finite Element Method

FRF Frequency Response Function

IPW In-process Workpiece

MRR Material Removal Rate

RC Receptance Coupling

RCSA Receptance Coupling Substructure Analysis
SDM Structural Dynamic Modification

SLD Stability Lobe Diagram

SLE Surface Location Error

SVM Support Vector Machine



1 Introduction

1.1 Background and scientific significance

Milling process involves machine tool, milling tool, workpiece and fixture, and it is
important to improve machining efficiency and make the whole process stable and
controllable [1]. However, the unfavorable interactions between process and machine tool,
such as machining error and chatter, threaten the milling process [2], [3]. There are two
imperative indicators to evaluate machining process and machined surface: stability lobe
diagram (SLD) and surface location error (SLE). The SLD can show stable and unstable
prediction regions before machining. The SLE is an offset error defined as the maximal
distance between the desired surface and the machined surface. On the basis of SLD and SLE,
the stable parameters can be selected and the machining error can be controlled within the
range of machining tolerance. Therefore, it is necessary and important to obtain the SLD and
SLE. In terms of machining scale, milling process can be divided into macro-milling and
micro-milling. In the macro-milling process from rough to finish machining, the material is
removed continuously and the dynamic behavior of the workpiece changes accordingly. As a
result, when the dimension of workpiece reaches the condition of thin-walled workpiece, the
dynamics of workpiece makes the milling process more complicated. When the in-process
workpiece (IPW) dynamics is ignored, though the dynamic model of the system can be
simplified, the predicted SLD and SLE will deviate the practical machining results severely.
Therefore, the stability analysis of in-process thin-walled workpiece and SLE during
continuous machining should be given higher priority in macro-milling.

As we all know, multiple factors are involved in the dynamic model. For example, the
cutting force model includes the regenerative effect and process damping, and the dynamic
equation includes several coupled modes of tool-workpiece system. Considering the multiple
modes of tool-workpiece and process damping effect can further expand the influence factors
of traditional model and effectively improve the prediction accuracy. After the dynamics of
IPW is determined, especially for the continuous radial material removal, the prediction
model for SLD and SLE along tool path will be constructed with the modal parameters from
both machine tool and IPW. According to the SLD and the predicted model of SLE, the
machining quality will be improved by adjusting the depth of cut, the spindle speed and cutter
location compensation, which helps to control the error within allowable range. The

comprehensive analysis of SLD and SLE with dynamics of workpiece can overcome the



shortcomings of machining parameters based on the experience database or a single static
SLD, which has higher engineering practice.

With the rapid development of miniaturized components, many products require higher
accuracy with significantly decreased size. Like macro-milling, micro-milling also faces the
problems of machining stability and error. Due to the existence of size effect in micro-milling,
micro-milling also exhibits its unique processing characteristics [4]. In addition, the geometric
size of micro-milling is small, and its rigidity is far less than that of workpiece. Therefore, the
research focus of micro-milling is to determine the frequency response function (FRF) of tool
point. Through the dynamic analysis of the micro-milling process, the error during stable
machining process can be predicted and the appropriate machining parameters can be

obtained.

1.2 Literature review

1.2.1 SLD and IPW dynamics for flexible machining system

Due to the increasing popularity of lightweight design, thin-walled workpieces are widely
used in aerospace, communications and other fields. With characteristics of geometric
topology and weak rigidity of thin-walled workpiece, great challenges are brought to the
milling process. Besides, the interaction effects between process and machine tool, such as the
large deformation error, the low quality of the machined surface, the serious damage of the
tool, the dynamics changes of the workpiece and the chatter phenomena, are more pronounced
in flexible milling systems.

Based on regenerative effects, Budak and Altintas [5] built the chatter prediction model of
the milling tool and obtained the two-dimensional SLD that can provide suitable parameters
for technicians before machining (See Fig. 1). Bravo et al. [6] applied the relative movement
analysis of the subsystems to obtain the stability analysis of flexible system. Eksioglu et al.
[7] established the vibration model at tool-workpiece contact zone by introducing mode
shapes of both tool and workpiece for each discrete node. Therefore, the dynamic response of
tool and workpiece should be considered simultaneously for the flexible system. For the
dynamic equation, the delay differential equation of the system is solved mainly with different
methods, i.e., frequency domain or time domain [8], [9]. Among former research work, it was
worth mentioning that Peng et al. [10] and Friedrich et al. [11] estimated the SLD by using
off-line and on-line machine learning method respectively.

In fact, the transfer function in frequency domain is the bridge to solve the equation

because it can be transformed into state space in time domain under given conditions. In most



cases, the modal parameters of the dynamic system are required to make the equation
concrete. However, the predicted results of the two-dimensional SLD tended to have a certain
deviation from the processing results. Except for the prediction precision of different
algorithms, this is mainly due to the uncertainty of modal parameters of the system dynamics
[12], the simplification of the model and other influences of nonlinear factors [13], [14].
During the interactive process between machine tool and workpiece, multiple modal
characteristics would appear [15], which contributes to the uncertainty as well. Hence, it is
particularly important to establish accurate prediction models, select appropriate machining

parameters and identify machining frequencies to avoid the chatter in flexible system.
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Fig. 1 An illustration for SLD [1] Fig. 2 Example for material removal simulation [30]

Under the effect of strong milling force, multiple modes of the workpiece would be excited
to affect the machined quality. Seguy et al. [15] concluded that the actual chatter frequency
was always close to the natural frequency of thin-walled workpiece, and they pointed out that
the modes of thin-walled workpiece played a dominant role of the whole system. The
challenge is that the machining system may not have only one dominant mode when the
possible modes were excited during the machining process [16], [17], [18]. Therefore, the
change of the modes makes it difficult to identify the dominant mode of the system, and the
modes that do not generate local displacement ought to be eliminated. If all the modes that
may be excited were considered into the equations, the efficiency of the SLD would be
constrained severely. Zhang et al. [19] considered multiple modes into the dynamic equation
by calculating the maximum transfer function values and obtained a conservative two-
dimensional SLD. During the machining process, not only the FRF of tool point changes with
the spindle speed [20], but also the dynamic response of the IPW will change with the
material removal [21]. In the practical cutting process, it is difficult to determine the dynamic
response of the in-process tool point FRF. Once the dynamic variation of tool point is
considered, it will make the dynamic equation of system more complicated. Therefore, the

rotation-free model of spindle has the priority when it comes to the dynamics of the machine-
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spindle-holder-tool. Since the first few natural frequencies of the thin-walled workpiece are
small, these modes are relatively easy to be excited. Thus, it is very significant to determine
the real-time dynamic response of the thin-walled workpiece.

For the continuous material removal of workpiece (See Fig. 2), component mode synthesis
(CMYS) and structural dynamic modification (SDM) are widely used to deal with time-varying
dynamics of IPW, which makes it possible to acquire the FRF of the IPW in real-time. Olvera
et al. [22] applied the SDM to study the FRF of thin-walled components with compensating
mass loading effects of accelerometer. Biermann et al. [23] presented a simulation system
considering the finite element (FE) model of turbine blades and material removal effect to
study the regenerative chatter during the five-axis machining process. Stepan et al. [24]
developed a material removal model with FE method as well and established the SLD along
tool positions for turning process, which could avoid chatter effectively. Although Bravo et al.
[6] developed a more exact SLD with considering the stage dynamics of both machine and
workpiece, to the best of our knowledge, they failed to obtain the dynamics during each stage
for material removal. Thevenot et al. [25] used FE model to obtain the modal parameters and
identify the dynamic characteristics varying along the tool path, but the dynamics of IPW was
unable to be solved and dealt with properly in this way. In order to deal with the dynamics of
IPW, Tuysuz et al. [26], [27] and Song et al. [28] adopted reduced-order dynamic
substructuring and Sherman-Morrison-Woodbury formula methods respectively to get the
modal parameters during the IPW. Dang et al. [29] and Hamann et al. [30] also applied the
model order reduction to generate the [IPW dynamics. Budak et al. [21] and Yang et al. [31]
used SDM, based on FRF database and modal database respectively, to obtain the dynamics
of IPW. These methods expanded the way to acquire dynamics during [PW.

1.2.2 Milling force with process damping effect in dynamic analysis

The milling force models are divided into linear models and non-linear models, and the
choice of models depends on different purposes. Nonlinear models mainly include different
kinds of exponential models and empirical models. Linear cutting force models are widely
used because of the advantages in the construction and solution to dynamic equations. From
the viewpoint of calculation, the cutting force model is divided into single point model and
discrete element model [32], and the difference between the two models is whether the helix
angle and mode shape of milling tool are considered into the model or not. The single point
model lumps the force to the tool point, which cannot analyze the error along the axial
direction. In contrast, the discrete element model can predict the error along the axial

direction, but the calculation for the model would become time-consuming.



As shown in Fig. 3, the widely accepted mechanism of the process damping is that the tool
flank face intrudes undulations on the machined surface and the indentation volume forms,
especially at low spindle speed region, which can consume a part of energy of the chatter and
restrain the tool amplitude of vibration [34]. Das and Tobias [35] first studied the process
damping, and they introduced the velocity as an additional damping term for the kinetic
equation at the low velocity region. Sission and Kegg [36] analyzed the mutual interference
between the workpiece and tool, and put forward the corresponding damping force model.
Chio and Liang [37] considered the tool wear and developed the SLD with process damping
effect. After that, many researchers began to introduce the process damping effects, i.e.,
process damping force or process damping coefficient, into stability analysis [38], [39], [40].
Molnar et al. [41] investigated the process damping by further reconsidering the velocity-
dependent mechanism and gave possible explanations. Recently, Feng et al. [42] expanded the
velocity-dependent model [41] and concluded that the velocity-dependent mechanism had

more influence on formation of process damping for thin-walled workpiece.
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Fig. 3 Generation mechanism of process damping around separation point [33]

Since the regenerative chatter belongs to self-excited vibration, the equivalent damping of
the whole machining process system is less than or equal to zero when the chatter occurs. So
the system is in the state of negative damping, the vibration amplitude between the milling
tool and workpiece will be divergent in this case and may lead the machining process to chaos
that different initial states correspond to completely different machining results. For the
milling tool, the motion state including the velocity and displacement of the mass point can be
represented on the phase plane, and one of its states corresponds to a point on the phase plane.
Therefore, the motion of the system can be developed by the trajectory of the points. On the
phase plane, an isolated closed phase trajectory is the so-called limit cycle [38], and the

corresponding machining system will show self-excited vibration. During the milling process,
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different processing parameters can lead to different phase trajectory behaviors. The stable
milling process of tool belongs to periodic motion with the limit cycle of the system closed. In
unstable case, process damping will suppress part of the disturbances and chatter amplitude

with the system phase trajectory converging to the vicinity of limit cycle.

1.2.3 Distribution of SLE during material removal
During the milling process from rough to fine machining, increasing the material removal

rate (MRR) is the primary goal. The definition of MRR is
MRR = a bf. NQ (1.1)

where d. is the radial depth of cut (mm), b is the axial depth of the cut (mm), /- is the feed per
tooth, N is the number of teeth, and € is the spindle speed (rpm).

From the viewpoint of MRR, it is better to use high-speed machining under the given
condition of feed per tooth and depth of cut. In order to obtain a good machined surface,
technicians should not only avoid the occurrence of chatter, but also reduce the machining
error [1]. When chatter occurs, the machined surface shows lots of chatter marks and even
separates from the milling tool. Accordingly, only under the condition of stable milling, the
prediction and control for the machining error would become meaningful.

For the offset error caused by forced vibration at the tool-workpiece contact zone, namely
the SLE, it mainly refers to the relative deflection between the tool and the workpiece during
the stable milling process, which makes the actual surface deviate from the intended surface
(See Fig. 4). Meanwhile, the SLE is an imperative indicator to evaluate machined surface in
terms of the accuracy. Although Schmitz [1] and Insperger [44] defined the SLE with
different forms, the essence of SLE is the relative dynamic displacement of the tool-
workpiece under stable cutting. Like the method for SLD development, the calculation for
SLE is well developed with different methods: frequency domain method, temporal finite
element analysis, time domain simulation and full discretization method [45], [46], [47], [48],
[49]. Schmitz et al. [1], [50], [51] did lots of pioneering and creative research on machining
dynamics, and they made a deep study of the distribution of SLE at tool point and along the
axial direction (with and without runout). Besides, they studied the whole machining process
intensively and simulated the cutting force in time domain with numerical (Euler) iterative
algorithm for macro-milling. Based on the optimization criterion of SLE, Kurdi [52] analyzed
the selection of robust machining parameters with uncertainties. Ramos [53] applied decision
analysis and established a solution model of SLE in frequency domain with considering

system dynamics into decision tree. Due to the introduction of uncertainties, the research from
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Kurdi [52] and Ramos [53] had higher engineering application in the process of machining
parameters optimization. Bachrathy et al. [54] studied the surface properties by surface
quality parameters, i.e. surface roughness and SLE, and obtained the function of surface error
for helical-edged tool. Eksioglu et al. [7] constructed a model to predict the process states
such as cutting forces, vibrations and SLE at discrete-time domain intervals analytically, and
the proposed model was validated in down milling. Siebrecht et al. [55] simulated the SLE by
developing a constructive solid geometry that visualized SLE as a triangle mesh of the tools.
Honeycutt and Schmitz [56] simulated and verified the variation trend about SLE and surface
roughness when the machining process was under the conditions of forced vibration and flip
bifurcation. Yuan et al. [57] proposed a motion model of arbitrary point on cutter edge by
employing harmonic balance method, and predicted the machined surface characteristics such

as surface topography, SLE and roughness.

Actual surface

Surface
location
error

Fig. 4 Illustration about SLE in down milling case [43]

In fact, the expression of SLE is a nonlinear equation that involves many factors, i.e., the
spindle speed, instantaneous angular position and so on. Due to the nonlinear characteristics
of the SLE, the instability caused by the cumulative effect would occur when the same radial
immersion was applied in the continuous milling process. Kiss et al. [58] studied the
cumulative effect in SLE firstly, and pointed out the possible instability mode and bistable
regions when the machining process experienced continuous radial immersion. Afterwards,
Kiss et al. [59] investigated the evaluation of the series of cumulative surface location error
(CSLE) in milling operations based on measured frequency response function (FRF) at tool
point and proposed an improved stability chart. Li et al. [60] established a prediction model
considering both tool stiffness and time-varying stiffness of workpiece with the viewpoint of
static deformation, and validated the surface form error of flank milling. Kiran et al. [43]

designed a flexure stage and established a two degree of freedoms SLE prediction model with
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considering dynamics from both milling tool and workpiece. It was worth mentioning that
Kiran et al. [43] viewed the dynamic response of the flexure stage in X and Y directions as the
dynamics of workpiece. In fact, most researchers put their focus on the dynamic
characteristics of tool point to formulate the model of SLE, while the dynamics of workpiece
was always ignored. For the workpiece with large stiffness, the dynamic response of tool
point would be the main source of SLE. With the material removal, the dynamics of the
workpiece cannot continue to be neglected [6], to the best of our knowledge, but few papers
studied the prediction of SLE with considering the dynamics of workpiece in continuous

material removal.

1.2.4 Dynamic analysis in micro-milling process

The micro-milling machining process is widely applied to the precision engineering
techniques and it is the most efficient machining method for forming ideal surface topography
[4]. However, the forced vibration and regenerative chatter appearing in the micro-milling
process will affect the final processing results, which can lead to larger error and obvious
chatter marks. The whole process is an interaction between micro-milling force and dynamic
behavior of machine tool, and the transformation between process and machine tool, i.e. the
micro-milling force and frequency response function (FRF), determines the final machining

quality of the workpiece.

1.2.4.1 Micro-milling force

v

LR

hsh M\

Type ll N\ "._
plouing-plastic b
deformation 4

Type Il
plastic shear
deformation

h: instantaneous uncut chip thickness
h.: minimum uncut chip thickness

" elastic
deformation

Fig. 5 Different types for chip thickness in micro-milling [61]
Due to the obvious differences from macro-milling, such as the minimum chip thickness

(See Fig. 5), flexible deformation of tool, size effect and effective rake angle, lots of scholars



and researchers have reported on how to develop the micro-milling model and predict the
force [62]. Bao and Tansel [63] first proposed a new mechanical cutting force model for
micro-end milling operations by taking tool path and the angular delay into account. Malekian
et al. [64] studied the mechanism modeling of micro-milling forces with different materials
removal types and established the expressions of micro-milling force in corresponding cutting
zones. Afazov et al. [65], [66] developed an uncut chip thickness algorithm from the
geometric relationship and analyzed the cutting force in micro-milling with finite element
method (FEM). Rezaei et al. [67] studied the determination of the minimum uncut chip
thickness of micro-end milling tool by experiments and concluded the influences of cutting
parameters on the machining process. Boswell et al. [68] concluded the different micro-
cutting methods, namely, micro-turning, micro-milling and micro-drilling, and summarized
the corresponding phenomena for these machining processes. Chen et al. [61] used time-
domain simulation to establish an improved model for micro-milling force including the
precise trochoidal trajectory, tool runout and dynamic modulation. However, to the best of our
knowledge, the accurate analytical solution to the micro-milling force cannot be obtained
because the actual calculation for the instantaneous uncut chip thickness varies with
trajectories of different cutting edges. Although the numerical iterative algorithm in time
domain may bring a relatively accurate solution to the micro-milling force, it needs many
iterations. In addition, it is very difficult to introduce the numerical iterative algorithm into the

dynamic equation.

1.2.4.2 Tool-point dynamics determination of micro-milling

j Tool shank Fluted portion
+ p+ sy

Fig. 6 Example for Receptance coupling assembly [70]

The knowledge of FRFs at the tool point is necessary for micro-milling process. However,
the fragile geometry of the micro-milling tool is definitely different from macro-milling tool
and it makes experimental modal analysis (EMA) nearly impossible. Receptance coupling
substructure analysis (RCSA) was first proposed by Schmitz [69] to overcome these obstacles
and predict the assembly FRFs with different coupling styles at the tool point. The basic
assembly model of RCSA can be seen in Fig. 6. Based on these work, Schmitz et al. [71], [72]

9



developed a three-dimensional stability surfaces with variations in macro tool free overhang
length and further presented the second generation RCSA for high-speed machining
applications. Afterwards Mascardelli and Simon [73] used receptance coupling (RC) method
to study the FRF at the micro-milling tool point for multiple substructures and verified that
the RC method performed well, even for the tools with a considerably smaller size. Lu et al.
[74] also used the RCSA method to obtain the FRFs of micro-milling tool with consideration
of rotational degree of freedom. As the individual receptance of substructure mainly depends
on the geometric and physical characteristics of tools and holders, the beam theories, such as
Euler-Bernoulli beam and Timoshenko beam, are applied to develop the receptance formula.
The change of restricted/free overhang length for micro-milling tool will make the FRFs at
tool point changed simultaneously. However, the influence of restricted/free overhang length
is always ignored and seldom studied in micro-milling when it comes to determine the

dynamics at the tool point.

1.2.4.3 SLD and SLE in micro-milling

The modal parameters of the macro-milling system mainly depend on the rigidity of the
milling tool or workpiece. For micro-milling tool with small diameter, it is very important to
determine the FRF at the tool point, because the stiffness of micro-milling tool is much
smaller than that of workpiece [75]. Therefore, the clamping state and the restricted/free
overhang length of the tool are very significant, which determines the dynamic machining
process.

The SLE of micro-milling process is seldom mentioned in literature. Compared with
macro-milling process, micro-milling has smaller machining scale, and the coordinate
measurement machine (CMM) used in macro-milling can hardly be applied to the
measurement of workpiece in micro-milling [76]. Therefore, the error of micro-milling can
only be measured by means of confocal microscope. The chips can be generated smoothly
when the instantaneous uncut thickness is greater than the minimum chip thickness. However,
when chips are detached from the workpiece, the burrs also cause inconvenience for
measurement. Even if the burrs are removed by ultrasonic vibration device, the notches left by
the burr roots on the surface of the workpiece will still affect the final measurement. Since the
diameter of the micro-milling tool is from 25 um to 1000 um, the radial depth of cut is small
[4]. Therefore, even under stable cutting condition, the machining error caused by the forced
vibration is small as well. In addition to the SLE, there are many factors affecting the

machining process, such as tool wear, tool runout, burrs, roughness and measurement errors,
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so it is difficult to separate the SLE from the above errors. Only in the case of ignoring part of

some factors, experimental exploration can be carried out for SLE.

1.2.5 Uncertainty--challenge in machining process

As shown in Figs. 7 and 8, the SLD of milling process is not accurate. Since different
modes correspond to different SLDs, the construction of the SLD depends on the excited
modes of the machining system. The first mode is always adopted to establish the SLD,
because it usually corresponds to a smaller critical limit depth of cut. In fact, it is
unpredictable which modes are excited during the machining process, so the selection of

modal parameters is uncertain.

—(.95—" Confidence level:
0.50  pProbability of
—(0.05— ) Unstable cut

Test series 1
Test series 2
Test series 3
Test series 4

) 13 14 E 16
Agpinate /(X 10° r-min™")

Fig. 7 Illustration for SLD with different confidence levels [12]
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15
14
13
12
"
10
9 F.

Djim (Mm)

1 11 12 13 14 15 16 1.7 18 19 2
Q(rpm) X104

Fig. 8 Upper and lower boundary of SLD due to uncertainties [77]

In addition, the unstable islands caused by helix angle and bifurcation, time-varying modal
parameters during machining process, process damping, direct and cross responses of milling

tool, the variation of cut-in and cut-out angles, tool runout and mode transfer of system will
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change the boundary of SLD as well [78], [79], [80], [81], [82], [83]. Therefore, it is nearly

impossible to obtain ideal SLDs during complex machine-workpiece interaction.

1.3 Current main problems

In both macro and micro milling, stable machining parameters are prerequisites for the
prediction of cutting forces and machining errors; once machining process is unstable, any
analysis will be meaningless. It is therefore essential to determine a realistic SLD. For milling
process, it consists of three main steps: a method for solving the dynamic equation,
determination of the modal parameters and extension of the system dynamics model for
different machining situations.

Milling stability analysis involves the solution to kinetic equations. Because the
interpolation methods of state term and delayed term in dynamic equation determine the
convergence and accuracy of the algorithm. Therefore, apart from the existing prediction
methods, new stability solution methods need to be further developed and upgraded.

The dynamic response of a macro-milling tool can be identified by dynamic tests, and the
dynamics of the workpiece can be obtained by experimental measurements or simulation as
well. However, as the material is removed, the dynamic response of the workpiece changes. It
is important to obtain a fast and accurate dynamics of IPW when the modes of the workpiece
dominate the whole machining process.

However, the existing methods have some disadvantages in mass and stiffness variation
matrix assembly, as well as node determination. For example, the material to be removed
cannot be easily obtained and the nearest node cannot be identified either, which brings
practical difficulties. Therefore, the models of IPW dynamics determination are still immature
and need to be further explored.

In macro milling process, there are two main situations where the dynamics of workpiece
changes significantly:

Case I. Thin-walled workpiece is machined with material removal;

Case II. General workpiece is continuously machined with relatively much material
removal (thickness from thick to thin).

These are by far the two most important and common difficult points during machining
process:

1. In the first case, there is still a lack of a rigorous analysis framework for how to integrate
process forces and dynamic response of workpiece-tool in a flexible machining system.
2. In the first case, it is also unclear how to establish a robust SLD that has application value.

3. In the second case, it is not clear how to determine the stable machining parameters for
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cumulative cutting process.
4. In the second case, there is a lack of method to develop the SLD of continuous cutting in
combination with accumulated SLE.

For the micro milling process, the micro-milling tool is less rigid than the workpiece due to
the small geometry of the tool and less amount of material removal. Accordingly, the dynamic
response of the system is focused on the determination of the dynamics of the micro-milling
tool point, which depends on the geometry of the tool, the cross-sectional shape and the
restricted/free overhang length. Therefore, there are mainly two machining difficulties in
micro-milling process:

5. How to determine a robust SLD and SLE in such a small machining scale is difficult for
technicians.

6. Whether the restricted/free overhang length has an effect on the determination of stability
and dynamic errors needs to be analyzed in conjunction with the forces of the machining

process, the dynamic tests and other phenomena in the experiment (burrs, vibrations).
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2 Methodology of the dissertation

As seen in the previous chapter, the process of predicting both SLD and SLE involves the
solution to the dynamic equations. The dynamic equations are time-delay differential
equations, which are more complex to obtain the solutions. This chapter introduces the
deductive process of the updated third-order full discretization method in detail. Besides, the
current popular data prediction method, machine learning prediction method based on SVM,

is introduced as well.

2.1 Method for stability prediction
2.1.1 Third-order updated full-discretization

Compared with the stability prediction in frequency domain, the time domain method,
especially the full-discretization method, has been widely used because of its high prediction
accuracy and clear calculation steps. The full-discretization method has definite stability
criteria, which can determine whether the eigenvalues corresponding to the spindle speed and
depth of cut are stable or not. Meanwhile, the full-discretization method can predict the SLD
and SLE synchronously. Since the full-discretization method can further improve the
computational efficiency, the follow-up improvements of this method are mainly focused on
the approximation of the state term and delayed term in the delay differential equation. Then
the updated third-order full discretization method is proposed, which has a high convergence
rate [9]. In Chapter 4 and 5, based on the mode shape extracted from workpiece, dynamic
solution and Matlab programming will be carried out by applying the updated third-order full
discretization method. Now, the updated third-order full-discretization method is introduced
in details.

In order to simplify the calculation process, the single degree of freedom milling model is
developed. The time periodic delay-differential equation with regenerative effect can be
written as [84]
¥(1) +240,3(1) + @] x(1) =—%(X(f)ﬂ(l—f)) 2.1)
where ¢ is the damping ratio, @, is the natural frequency, b is the axial depth of cut, m is

the modal mass, x(z) is the displacement in the current period, x(z —7) is the displacement

in the previous period, the time delay 7 is equal to the tooth passing period 7.

The instantaneous uncut chip thickness A(7) is defined as
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h) =3 [ 4,0 Jsin((g, (DIK, cos(9, (1) + K, sin(g, (1)) 2.2)

where K,, K, are the tangential and the normal cutting force coefficients respectively, N is

the number of cutter teeth.

The angular position for the j™ tooth is written as
¢,(1) = 272/ 60) +(j ~1)27/ N (2.3)
where €2 (rpm) is the spindle speed.

g(¢, (1)) is the unit step function which identifies whether the ]t tooth is in cut or not:

1 if 4,<¢,<¢,

)= 2.4
g2(4) {0 it g <porg >4 (2.4)
with
=arccos(2a,/D —1 o =0
4 (24, ),down milling, /. ,up milling
¢ =r ¢, =arccos(1—2a,/D)

where @, and @, are start angle and exit angle respectively, which describe the tool enters and

exits the workpiece; D is the diameter of the milling tool.

By using the transformation x(z) :[ {0) x(tZ; ( )} , Eq. (2.1) can be developed in the
mx(t) +mow, x(t

state space as

X(1) = A x() + B()x(¢) - B()x(t — 7) (2.5)
1
here A, = 6o, m | is a constant matrix B(t) = 0 is a periodic-
v 0 ’ _bh(t) 0

m(lw.) -mow’ —Co,

coefficient matrix with B(z) =Bz +7).

Here, the direct integration scheme is employed to solve Eq. (2.5). Firstly, the period T is
divided into n equal time intervals with the length of A, that is 7'=mnA, where n is an

integer. Eq. (2.5) is integrated on the i small time interval [i/, (i +1)/4] , and it becomes
. t
x(1) =™ x(ih) + [ e B(s)[x(s)~x(s ~T)lds 2.6)

Eq. (2.6) can be equivalently arranged as [85]
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x(ih+ h) = e*"x(ih) + J.Oh " [B(ih+h—s)[x(ih+h—s)—x(ih+h-s—T)]ds (2.7)
The state term x(iz+h—s) and delayed term x(jh+h-s-T)in Eq. (2.7) are interpolated by

third-order Newton interpolation polynomial. The node values x(ih—2h), x(ih—h), x(ih) and
x(ih+h) denoted as X,_,, X,_;, X; and X, respectively, are applied to interpolate X(ih+h-s).
The node values x(in—T), x(ih+h-T), x(ih+2h-T) and X(ih+3h-T) written as X,_,, X,

X,_..» and X,_, 5 respectively, are employed to interpolate x(iz+h-s-T). Compared with high-
order interpolation of x(ih+h—s) and x(ih+h-s-T), the high-order interpolation of periodic-
coefficient matrix B(iz+%—s) has no obvious effects on calculation efficiency according to the
research of Tang [86]. Therefore, B(ih+h—s) is interpolated by first-order Newton polynomial

B(i/) and B(ii+ /#) which denote as B, and B, respectively.

i+]

The state term x(ih+h-s) can be expressed by third-order Newton interpolation method:

X(th+h—-s)=ax, ,+bx.  +cX +dx,, (2.8)
where

a—i_i_}_i b—__3s+2_S2_i 0—3_S_ﬁ+i d—l_lﬁ+£_i

T Y Er T YA ER YEL I R VR VR e TR R (2.9)

The delayed term x(iz+h-s-T) is developed by third-order Newton interpolation method as

well

X(th+h-s-T)=a,x,_ +bXx, . +cX  ,+dX, . (2.10)
where

R S T S ST . UL SR AT I

T e T T e T T o T e e (2.11)

Then, the periodic-coefficient matrix B(ih+h-s) is interpolated by first-order Newton

interpolation [87]

B(ih+h-s)~B,,, +m (2.12)

Substituting Egs. (2.8-2.12) into Eq. (2.7) yields
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i i i
(FO + Mll)xi + MlZXi—l + M13Xi—2

X = Pl +Mi,(n+1)xi—n +Mi,nxi—n+1 + Mi,(n—l)xi—n+2 (2 13)
+Mll,(n72)xi7n+3
where
-1
P =[1-M,_ | (2.14)

- (3F, 11F, 3F, F 3F, 5F, F
M =2-——2+—2-— B +| —2-—2%+—|B
a (h 200K 2h4j ’” (hz 20 2h4j : (2.15)

i —(_3F2 +E_E+ F5 jB +(-3F3+2£_£j]3
i+l i

2\ on 2n 2n 2t 20 K 20 2.16)
. (F, 5F, 2F, F F, F, F
M,=| 2-"2+—21-—2 B +|—2-——+—|B
. [3h 6n* 3’ 6h4J ol (3h2 2K 6h4j ’ @.17)
(v 17F, 17F, 7F, F F, 1IF, F, F_
e _(F] on ont ow on )P\ e T et ) (2.18)
o (KK _K K B _K
Mg _(6h 6h*  6h° +6h4jB”'+(6h2 6h4jBi (2.19)
,. F, 3F, F F, F, F
i (g E_3% F K F F _E_FK
M., _(F‘ 2 2m om 2h4jB”' { R 2h4jB" (2.21)
o (E, K _F K E__F K
Ml,(n+1) _[3}1 + 6h2 3h3 6h4]Bf+1 +(3h2 + 2h3 + 6h4jB[ (222)
Fo - Fs can be expressed by the following relations
F, =" (2.23)
F=A,'(F,-1) (2.24)
F, = Aal(hFo -F) (2.25)
F,=A, (I’F,-2F,) (2.26)
F,=A, (W'F, -3F,) (2.27)
F, = A,'(h'F,-4F,) (2.28)
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In Eq. (2.13), X,_,, X, X; and X, are the dynamic responses in the current period, and

X._,, X._,., X_,., and X_, 5 are the dynamic responses in the previous period. It is noted that

the number of the node values used for interpolating x(ii+h-s) and x(ih+h-s-T) should be the
same so that the one-to-one discrete mapping relation between current period and the previous
period can be established. During the calculation process, all the variables ‘x’ should be in
two adjacent periods: current period and previous period. If some of the variables ‘x’ are
located out of the range of the current and immediate previous period, the corresponding
substitutions should be applied to convert them into required range.

Combining Eq. (2.13) and Egs. (2.14-2.28), the discrete mapping relation between current

period and the immediate previous period is developed as

Xin Mil Miz Mi3 0 Mll.,(an) Mi,(n—l) Mi,n Mi,(m) X;

X; I 0 0 0 0 0 0 0 X,

X, 0 I 0 0 0 0 0 0 X, ,

X, 0 0 I 0 0 0 0 0 X, 5

=0 0 0 I 0 0 0 0 : (2.29)

X n4 . : . : 0 0 0 0 X ni3
X, .5 0 0 0 0 I 0 0 0 |[Ix. .
X 2 0 0 I 0 0 X
X 41 L 0 0 | 0 |l x.

Then the state transition matrix @ for the dynamic system over one period T is written as

=M M, _,---M, (2.30)
M, M;, M, 0 M, ., M, M, M,
I 0 0 0 0 0 0 0
0O I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
where M, =| 0 0 0 I 0 0 0 0 |, (i=12,,n)
Pooor 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 I 0 |

Then, the Floquet theory can be implemented to determine the stability of the dynamic

system with the decision criterion:
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<1 stable
max(|A(®)|)4 =1 critical stable (2.31)

>1 unstable

2.1.2 Machine learning method

Machine learning, as a branch of computer science, is widely used in graphics, network
communication and even chip design, and it also provides technical supports for many
interdisciplinary disciplines [88]. The core of machine learning is to train the known samples
by using certain algorithms so that a stable learner, which will be used for judging the
unknown samples, can be constructed. For the workpiece with large stiffness, the flow chart

for stability determination is illustrated in Fig. 9.

Input of parameters and collected samples

Step 1&2
(Cutting force, sounds, displacement of tool, acceleration)
| Classification criteria
Step 3 Sample 1 Sample2| e¢ee [Samplen
Feature extraction
Step 4 Training Training | . | Training
sample 1 sample 2 sample n

l | |

Y

Learner

Step 5 —
P Decision M Dimension
free K reduction
Bayes classifiers| *** and metric
Support vector . .
machine learning
- New samples
Step 6 v

Prediction

Fig. 9 Procedure for SLD establishment with machine learning
The prediction of two-dimensional SLD can be summarized as follows
Step 1. Input some basic parameters of milling tool, such as tool overhang length, number of
teeth, helix angle and radial immersion.
Step 2. Collect the milling signals during the machining process, such as milling force, sound,

acceleration and displacement of tool point.
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Step 3. Divide the collected signals into sample 1 (unstable signal) and sample 2 (stable
signal) according to the criteria of chatter occurrence.

Step 4. Extract the key features from sample 1 and sample 2 as training sample 1 and training
sample 2.

Step 5. Select machine learning algorithm to build a relative robust learner.

Step 6. Predict new unknown samples with the learner

The second and third step mainly depend on multiple sensors to classify the collected
machining signals [89] [90], and the fourth step mainly uses time domain, frequency domain
or time-frequency domain methods to extract features [91] [92]. All the above three steps are
described by specific methods in the literature, which will not be repeated any more. Thus, the
third updated full-discretization method is applied to develop the SLD, and two kinds of
different machining parameters are obtained, namely, the stable samples and unstable
samples. Then the training samples can be selected from these samples.

Support Vector Machine (SVM) is widely used because of its strong generalization ability
and developed software package. Here, the ‘fitcsvm’ function from Matlab is employed to
establish the learner. As shown in Fig. 10, the distance between two different samples of
support vector and hyperplane is margin. The hyperplane is used to separate samples of
different categories, and the basis of hyperplane determination is to maximize the margin.
Therefore, the SVM defines as [88]:

min < |wf
wb D

(2.32)
s.t.y.(whx +b)>1,i=12,..

where (w, b,) is the normal vector and displacement of hyperplane respectively

xZA

>

o X

Fig. 10 Theory about Support Vector Machine [88]
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2.1.2.1 Case study for machine learning
Prior to applying the machine learning method, as shown in Tab. 1 and 2, the geometric and

modal parameters of the milling tool are needed.

Table 1 Parameters input of milling tool

Cutting force Cutting force
Number of tooth | Diameter of | Helix angle coefﬁc1egts mn coefficients in
tool tangential radial direction
direction
4 10 mm 30° 8.9x10% Pa 2.4x108% Pa
Table 2 Modal parameters of the machine-spindle-milling tool
Mode Natural frequency Modal stiffness Damping ratio (%)
First mode 3122 Hz 1.2601x107 N/m 2.5
Second mode 3873 Hz 2.7412x107 N/m 2.1

Based on the above parameters, the updated third-order full discretization method was used
to construct the SLD. Then the points in the SLD were divided into the stable parameters and
unstable parameters according to the judgement criteria, as shown in Fig. 11. In practical

machining process, this procedure corresponds to steps 2 and 3.

| - Instability Stability |

16

14

—
[\

—_
]

e o]

6
|

depth of cut (mm)

n
|
|

N .
2500 3000

\S]

3500 4000 4500
spindle speed (rpm)

5000 5500

Fig. 11 Discretization points of the SLD
As illustrated in Fig. 12, some stable parameters and unstable parameters are selected as

training samples.
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Fig. 12 Random points applied for the upcoming SLD prediction

Finally, the samples are trained and the decision boundary predicted by iterative data is

obtained with the algorithm of SVM, as shown in Fig. 13.

|+ Instability Stability |

D I i i i
2500 3000 3500 4000 4500 5000 5500
spindle speed (rpm)

Fig. 13 Prediction of SLD with machine learning method

Compared with the predicted results of the two methods, the results match well with each
other. As the machine learning method is mainly based on selected samples, this method is
more adaptable to specific machining schemes when there are enough training samples.
Besides, uncertain factors have been included in the sample collection process, so the machine

learning method has a higher practical application as well.
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2.2 Research questions and structures
The stability and dynamic error are significant questions for both macro-milling scale and

micro-milling scale. In order to answer the questions, the hypothesis is formulated. That is, in
a framework based on regenerative chatter, the realistic SLDs and SLEs for both macro-
milling and micro-milling process can be predicted and analyzed by using stability prediction
method in combination with different machining scenarios.

In terms of macro-milling process, the analysis is focused on the stability and variation of
dynamic errors due to the dynamics change of the workpiece. In terms of micro-milling
process, the main analysis is the frequency response of the micro-milling tool and the effect of
burrs. The above two questions will be further studied from the aspects of process force and
dynamic response.

For macro-milling process, how could the change in stiffness and mass matrix quickly be
determined and assembled during material removal? What other aspects need to be considered
for a reliable and practical prediction of the SLD/SLE with third-order updated full-
discretization method? (Case I and Case I1 )

For micro-milling process, how could the SLD/SLE be established in the small machining
scale? What are the main obstacles that are different from macro-milling situations? What is
the main factor affecting the SLD/SLE?

Therefore, the dissertation starts from these following aspects: algorithm for stability
prediction, establishment of IPW dynamics, characteristics of the instability behavior, and
prediction of dynamic SLE for macro-milling and micro-milling respectively. Then the
scientific problems about dynamic behaviors evolution and the mapping relationship between
milling process and machine tool are expounded in theory. Through the research of these
topics, the dynamic behavior of machining system will be deeply grasped, which will provide
theoretical guidance and experimental basis for machining stability, error compensation and
control of SLE for both macro-milling and micro-milling scale. As shown in Fig. 14, the
dissertation is organized as follows:

Chapter 1 presented the research background, scientific significance, the state of the art
associated with dynamic analysis for macro-milling and micro-milling, and the current main
problems.

Chapter 2 details two methods of stability prediction. One is the third-order updated full-
discretization method in which the delayed term and state term are both interpolated by third-

order polynomial. The other is the machine learning method based on function of support

23



vector machine. The structures of the dissertation and relations of the chapters are also shown
in this chapter.

Chapter 3 will deal with dynamics of IPW with the method of structural dynamic
modification (SDM) and finite element method (FEM). In this chapter, the proposed model
considering material removal can assemble the change in mass and stiffness quickly by using
geometric judgement conditions, and then the IPW dynamics will be extracted and verified.

Chapter 4 will introduce the dynamics of IPW along the tool path, multiple modes and
process damping into the flexible milling systems in which the modal parameters of milling
tool and workpiece were considered simultaneously. Afterwards, the third-order updated full-
discretization method will be employed to solve the dynamic equation in modal space. Then,
the three-dimensional SLD that varies with different modes and cutter location will be
presented. Finally, different kinds of frequencies under different dominant modes of milling
tool or workpiece will be identified and expounded through the experiments.

Chapter 5 will describe SLE prediction for continuous machining. In this chapter, the
discrete element will be applied to construct cutting force model and the dynamic response of
the IPW will be taken into account in the model of SLE. The stable machining parameters will
be selected from the conservative SLD and the instability induced by continuous cutting will
be eliminated. Then multiple radial immersions will be viewed as one-time material removal
equivalently. Finally, third updated full-discretization method will be applied again to solve
the dynamic equation for SLE, and the proposed model will be verified and illustrated by
measurement results and roughness.

Chapter 6 will present the SLD and SLE prediction for micro-milling. In this chapter, a
simplified analytical calculation model for micro-milling in shearing zone will be proposed by
considering trochoidal tool trajectory and regenerative effect with micro-milling coefficients
obtained through calibration experiments. The FRFs at micro-milling point will be determined
by using RCSA and EMA. Then two three-dimensional diagrams will be established by
combining SLE diagram with the depth of cut as a variation and SLD with the restricted/free
overhang length of micro-milling tool as a variation comprehensively. Besides, the dynamic
responses in cross and direct directions for both tool and workpiece will be taken into
consideration in the predicted model of SLE. Finally, flank micro-milling experiments will be
conducted to explain the predicted model of SLE and SLD.

Chapter 7 will draw the conclusion of whole dissertation and present the possible research

direction in the future.
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Fig. 14 Research questions and relations of the dissertation

25




3 Structural dynamic modification for in-process
workpiece

During the machining process, the dominant mode of system depends on the response of
machine-spindle or workpiece. For the specific machine-spindle, the dynamic change can be
neglected. While the dynamic modal parameters of the workpiece will change significantly
with continuous material removal, which has a significant impact on the vibration mode of the
whole machining process. Determining the initial response of the workpiece in the clamping
state and accurately predicting the dynamic response of the IPW can provide an important

theoretical basis for the subsequent cutting process.

3.1 Determination for IPW mode shapes

The milling force acting on the workpiece entity would excite the first few mode shapes of
workpiece, especially the first three modes, which makes the FRF of the workpiece
changeable. Besides, the modal parameters of workpiece would show dynamic changes with
the influence of material removal, so obtaining the modal parameters during IPW is the basis
for dynamic analysis of workpiece. Here, the SDM method was used to get the dynamics of

IPW [93].

The dynamic equation of the workpiece can be written as:
M,q,®O+C.q,0O+K,q,0)=F©) (3.1
where M, C, and K are the mass matrix, damping matrix, and stiffness matrix of the

x (f
workpiece respectively; F, (¢) is the force acting on the workpiece; q,(¢) :{ ”’8} .
Yw

For the initial workpiece, the undamped homogeneous equation is developed as:
quw+quw:0 (3-2)

The eigenvalues and eigenvectors are yielded from Eq. (3.2):

2

wl

A= 2 b =000, | (3.3)

where 77, is the number of excited modes of workpiece.

The eigenvectors satisty the following conditions:

’ =M,_=I, ¢ =K = 3.4
¢w Mw¢w - qu _I’ ¢w Kw¢w - qu - A ( )
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With the influence of material removal (AM and AK ), the parametric matrices of initial

workpiece would change and the Eq. (3.2) becomes:
(M, +AM, )i, +(K, +AK ), =0 (3.5)

By modal coordinate transformation of q,, = @,I', and premultiplying by ¢£ , the Eq. (3.5)

becomes:
A+AM I +HA+AK ), =0 (3.6)

where AM, =¢'AM, 4, AK,=¢'AK ¢,

The corresponding characteristic equation of Eq. (3.6) is developed as:

[(A+AK,)— 4, (I+AM,)]4,,, =0 (3.7)
NG — _—
K, M,,

Similarly to Eq. (3.5), a new transformation with I, =@, I, and premultiplying by ¢‘Zm is
applied to the Eq. (3.6), and the new eigenvectors meet the following conditions:
Therefore, the transformation in physical coordinates is obtained as:

qw = ¢wrw = ¢w¢wmrm = Uwrm (39)

The new mode shapes of the [IPW with material removal can be expressed as

U,=09 (3.10)

3.2 Obtaining the change in mass and stiffness

S: Start position
C: Current position

Fig. 15 Geometric condition judgement for material to be removed
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The change in mass and stiffness was mainly dealt with in Ansys and Matlab environment.
With the geometry of the workpiece modeled and analyzed in Ansys, the mapping data
extracted from Ansys should be saved. These mapping data included node number on each
element, coordinates of each node and equations of each node. In Ansys environment, the
workpiece was meshed and the range of axial depth of cut was scanned on the workpiece. In
order to get rid of the shear locking effect, the situation that two directions are larger than the
third should be avoided during fine-mesh formulation. After the element stiffness matrices
were extracted from Ansys, the number of nodes to be removed was judged at each
discretization cutter-contact point with axial depth of cut.

According to the initial coordinate of workpiece, the cutter-location and cutter-contact
points were determined, which included the discretization numbers along machining path, the
axial and radial depth of cut. The cutter-location points along the machining path and cutter-
contact points along the axial depth were defined as steps (i=1,2,...steps) and stz (k=1,2, ...5tz)
respectively. At the i™ step and k™ axial depth of cut of the cutter location, the elements of
material removal would be identified by geometric conditions. That is, the coordinates of

nodes were judged whether they were in the vertex coordinates of the hexahedron S1S2S3S4-
C1C2C3C4 (see Fig. 15). The corresponding coordinates ( X,,,,, V,. »Z,,) should satisfy the

following conditions:

< <
XS10r520r830r54 = Xy = XClorC20rC30rC4
<
Ystorclorssorcs = Yuw S Vsoorc2orsaorca (3.11)
< <
ZS3orS40rC3orC4 - an - ZSlorSZorClorCZ
. Mass matrix Matlab environment
(.inert)
Function: |
Ansys environment ReadHarwellBoeingFile
Mechanical APDL _ Stiffness matrix
7 (stiff) Matlab environment
Function: |
ReadAnsysMappingFile -
Finite element model of Mass matrix E q EE?CUOH‘M )
o Lo . xpandedElementMatrices
initial workpiece in Ansys ) (.mapping) L] Function: B
ReadNodesFromAnsysDSFile

Finite-Element N Function: L
7 (.dat) ReadeElementsFromAnsysDSFile
= Finite-Element N Function:
(.emat) ReadeAnsysEMATFile

Fig. 16 Procedure for obtaining the element mass and stiffness matrix of the workpiece
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In addition to the nodes that satisfied the geometric conditions at the boundary of the
hexahedron, eight elements around the node in the hexahedron need to be removed. Then

these nodes in hexahedron were saved, and the corresponding elements were assembled the
change in mass and stiffness (AM, and AK ) instead of softening the material to be removed,
which differs from the method described in Ref [31]. In this case, the change in mass and
stiffness (AM  and AK ) would be established easily according to the coordinates.

In the Fourier-domain, Eq. (3.1) becomes:

(i0)'M, g, (@) +(i0)C 4, (@) +K,q,(0) =F,(0) (3.12)
In order to decouple the modes in the subsystem of workpiece, the modal transformation is
applied as:
=¢ I
{ q,.()=¢,,©) (3.13)
q,(0)=¢,I (o)
Then Eq. (3.12) can be arranged as:
After mass normalization, the FRF of the workpiece can be written as:
T
W I' (o .
H(o)—9:(®) _ 4T, Z 4.5, }, (3.15)

F(w) F(w) {0’ -0’ +2i.0

The natural frequency could be extracted from Eq. (3.8), and the mode shapes of IPW could
be obtained from U, . In modal coordinate, mode shapes at different nodes would be used to
estimate the FRF for designated excitation point € and displacement point ¢ :
MI = UW’_T [UH7T (MW - AMW’)UW] U\/V— - (l//near) Ile

1

K'=U,"[U,"(K,-AK U U, " =W ) (A

near

Am

0, =vK /M, r=12,--- (3.16)
Wi v,

‘0 -’ +i2 o0

H, ()= Z

where v, is the nearest response node of the IPW to the tool point, U, is the mass

normalized mode shape, and @, is the natural frequency of the r" mode; M and K are the

updated mass and stiffness matrices of [IPW along the machining direction.
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The element mass and stiffness matrix to be removed were preserved with binary
conversion, and the change in mass and stiffness matrix, i.e., AMwand AKW, were obtained.

It should be noted that the mass and stiffness matrix take negative values in Eq. (3.16). In

order to further verify the consistency between the change in mass matrix and the actual

removal mass, the difference between the assembled mass matrix,ZAMw/ 3, and the actual

volume of material removal, pv (density and volume), should be calculated.

As illustrated in Fig. 16, the main Matlab code for the above process is as follows

for i=1:Step
for y=1:stz+1

b=(b_st+(y-1)*(b_fi-b_st)/stz);
InP{y}=[0,55¢-3,4¢-3; 0,55¢-3,(4e-3)-ae; 0,(55¢-3)-b,4e-3; 0,(55¢-3)-b,(4e-3)-ac];
CuP{i,y}=[i*INT,55¢e-3,4e-3; i*INT,55¢-3,(4e-3)-ac; i*INT,(55¢-3)-b,4e-3; i*INT,(55¢-3)-b,(4e-3)-ac];
SaveNodeMatlab {i,y}=[];
SaveNodeAnsys{i,y}=[];
SaveEquation{i,y}=[];
NumberofNodes= length(Nodes.NodeNumbers);
Distance {i,y}(1:NumberofNodes,1)= 0;
for No=1:NumberofNodes

if (Nodes.Coordinates(No,1)<=CuP {i,y}(3,1)&&Nodes.Coordinates(No,1)>=InP{y}(1,1))...

&&(Nodes.Coordinates(No,2)>=CuP {1,y }(3,2)&&Nodes.Coordinates(No,2)<=CuP {i,y}(1,2))...
&&(Nodes.Coordinates(No,3)<=CuP{i,y}(3,3)&&Nodes.Coordinates(No,3)>=CuP {i,y } (4,3)))
SaveNodeMatlab{i,y}= [SaveNodeMatlab{i,y};No];
SaveNodeAnsys{i,y}= [SaveNodeAnsys{i,y}; Nodes.NodeNumbers(No)];

end

Distance{i,y }(No)= norm(Nodes.Coordinates(No,:)-CuP {i,y}(4,));
end
SingleEle{i,y}=FindElemsToRemove( SaveNodeMatlab{i,y}, Body.NodeNumbers );
DeltaM{i,y}=sparse(Di,Di);
DeltaK {i,y }=sparse(Di,Di);
for q1=1:length(SingleEle{i,y})

DeltaM {i,y}=DeltaM {i,y } +ExpandedElements.ElemMass {SingleEle{i,y} (q1)};
end
for q2=1:length(SingleEle{i,y})
DeltaK {i,y}=DeltaK {i,y } +ExpandedElements.ElemStiff{SingleEle{i,y } (q2)};
end
[Value{i,y}, Index{i,y}]= min (Distance{i,y});
NearestNode {i,y}= Nodes.NodeNumbers(Index {i,y});
[~ , EquationIndex {i,y}] = ismember(NearestNode{i,y } ,Mapping.vNodeNum);
EquationNumberX {i,y }= Mapping.vEqnLoc(EquationIndex {i,y});
EquationNumberZ {i,y }= EquationNumberX {i,y } +2;
NewM {i,y}=AsEVec*AsFullM*AsEVec+AsEVec*(-DeltaM {i,y } )* AsEVec;
NewK {i,y}=AsEVec'*AsFullK*AsEVec+AsEVec"(-DeltaK {i,y})*AsEVec;
[NewEVec{i,y}, NewEVal{i,y} = eigs(NewK {i,y},NewM{i,y});
NewModalMass{i,y}=NewEVec{i,y}"*NewM{iy}*NewEVec{i,y};
NewModalStiff{i,y}=NewEVec{i,y}"*NewK {i,y} *NewEVec{i,y};
MassInitMod {i,y }= diag( NewModalMass{i,y});
StiffInitMod {i,y }= diag( NewModalStiff{i,y});
Psi{i,y}=AsEVec*NewEVec{i,y};
MassPos{i,y}= (1./Psi{i,y}(EquationNumberZ{i,y},:)."2)".* MassInitMod {i,y};
StiffPos{i,y}= (1./Psi{i,y}(EquationNumberZ{i,y},:)."2)". *StiffInitMod {i,y } ;
varfreq {1,y }=sqrt(StiffPos {i,y } ./MassPos{i,y} )/(2*pi);
end

end
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3.3 Verification for IPW at certain point

3.3.1 Dynamic tests

During the impact tests, the capacitive sensor was used as the main signal acquisition
apparatus so that no additional mass would be introduced on the measured targets. The
measurement tasks were completed by capacitive sensor and data processing system. The
gauge type of the capacitive sensor is: Type 5810 (ADE Technologies). The data acquisition
and analysis software system is: Type 3560 (Briiel & Kjar) with 6-chanel input module.

Fig. 17 Measurement plan for FRF of Fig. 18 Experimental setup for impact tests

workpiece at certain points.

Table 3 Identified damping ratios and simulated frequencies at N1

Number of Simulated Assembled Natural frequencies ~ Damping
modes frequencies (Hz) frequencies (Hz) (Hz) ratio (%)

1 951 940 973 0.39

2 1585 1640 1608 0.18

3 3334 3337 3317 0.09

The material of workpiece was Aluminum alloy 7075 with the valid geometry parameters
being 100 mmx60 mmx4 mm (see Fig. 17), density of 2770 kg/m?, Young’s modulus of 71
GPa and Poisson’s ratio of 0.33, and the height clamped by the fixture was 20 mm. Fig. 18
depicts the measurement setup of the workpiece. In terms of the impact tests for initial
workpiece, the purpose for that was to identify the damping ratio which was nearly

impossible to be extracted by prediction or simulation. As the damping ratio was small, it
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could be considered as a constant during the whole process. The identified damping ratios and

simulated parameters at N1 in Fig.17 were presented in Table 3.

In order to obtain a larger measurement area, the axial and radial depth of cut for the test

points in Fig. 17 were 15 mm and 1 mm respectively. As shown in Figs. 18 and 19, the

predicted, simulated and measured frequencies of the workpiece had the same trend of

change. The first and second order frequencies of the modified workpiece increased slightly,

while the third order decreased gradually. This showed that the simulated frequency of the

workpiece was in good agreement with the actual machining condition and the proposed

prediction method for IPW dynamics worked well.
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Fig. 19 Frequency change for different cutter location
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Fig. 20 Mode shapes comparison between simulation and experiment measurement

In order to reduce the measurement error, two capacitive sensors were applied to collect the
FRF of the workpiece. As shown in Fig. 18, one sensor was fixed and the other sensor moved
with the measurement point. The ratio of the two sensors was taken as the experimental
measurement value. As shown in Fig. 20, it could be seen that the modal deformation of the
workpiece with simulation and experiment cases tended to be the same. This means in the

actual clamping process, the base of the workpiece was in rigid contact with the fixture, and

the workpiece was completely limited at the bottom part. In fact, the damping ratios C: were

not constant but varied with different excitation points. As illustrated in Fig. 21, the damping
ratio decreased with the increase of order, but it increased first and then decreased in terms of

cutter location from N1 to N3.
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3.3.2 Analysis for the impact tests
As shown in Figs. 22-24, the FRFs at points N1, N2 and N3 in Fig. 17, i.c.H)', H) and

Hf , can be obtained with Eq. (3.16), and the maximum frequency error appeared at point N3

with the value of 7.5 %. The frequency error between prediction and experiment mainly
caused by the truncation effect of eigenmodes which cannot be determined a priori. Besides,
the error from the assembled element stiffness matrix would accumulate with the increase of
material removal. In terms of the predicted and measured magnitude, they nearly had the
same order of magnitude. The magnitude discrepancy between predicted and measured FRF
can be attributed to the damping ratio, and the slight change of damping ratio would have
influence on the predicted magnitude. In addition, uncertainty still existed in the actual
measured value, which was also an important reason for the inconsistency between the
predicted value and the measured value.

In fact, the IPW dynamics is mainly reflected by FRF at the corresponding machining
point. Eq. (3.16) shows that, without considering the damping ratio of the workpiece, the FRF
at a certain point of the workpiece depends not only on the natural frequency, but also on the
mode shapes. In terms of the thin-walled workpiece, the normalized mode shapes become
larger when the test points get close to the free end of the workpiece. After the mode shape is
squared in Eq. (3.16), its influence on FRF will further increase. Therefore, the natural
frequency, mode shapes and damping ratio work together to affect the IPW dynamics.
Compared with the experimental results, it can be seen that the method of assembling element

stiffness matrix would effectively predict the dynamics of I[PW.

3.4 Summary

The method proposed in this chapter mainly used node coordinates of elements to
determine material to be removed. The method considering material removal could assemble
the change in mass and stiffness quickly by using geometric judgement conditions, and then
the IPW dynamics would be extracted. Compared with the experimental results, the
assembled model had higher prediction accuracy. Although the fine mesh applied in Ansys
environment increased the number of elements and made the calculation time-consuming, the
elements refinement can predict the material of thin-walled workpiece to be removed much
better. When coarse mesh was employed, additional attention should be paid to whether the
elements exceeded the intended boundary or not. Otherwise, the theoretical removal volume

of material would be greater than the expected volume, which would cause larger prediction
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error. For sculptured surface machining, this method can also be employed to discretize the
surface and then determine the material to be removed.

In addition, many conditions in practical machining process were difficult to input or
describe in the simulation software, and the boundary conditions set in the simulation
environment were not completely consistent with the conditions in practical machining
process. Therefore, it was necessary to compare experimental results with simulation. The
reason why the experimental results deviated from the simulation was whether the workpiece
and fixture were in rigid contact. As the base of workpiece was clamped, the vibration of the
thin-walled workpiece above the base accorded with the simulation. The non-rigid contact

between workpiece and fixture will be dealt with in Chapter 5.
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4 Modelling and stability analysis for thin-walled
workpiece

4.1 Modelling of the milling force with process damping

Since the whole machining process mainly involves the dynamic behavior of workpiece
and machine tool, the single dynamics of machine tool or workpiece cannot reflect the actual
dynamic response of the flexible system completely. In order to analyze the modal
characteristics of the workpiece and the milling tool simultaneously, the milling tool is
sectioned into stz number of differential elements with the height of Ab [7] [34]. Fig. 25
depicts the interaction between milling tool and thin-walled workpiece schematically.

Unit: mm

e nodes on milling tool
e coresponding points on workpiece
e nearest nodes on workpiece

80

10

(a) (b)
Fig. 25 Dynamic model of flexible milling system: (a) down-milling, (b) up-milling.

As shown in Fig. 26, the relative instantaneous uncut chip thickness for j tooth is written

as:

hi(6) = £ sin(g,) +[((7,(6) =77, (t =) = (7, () =17, = 7))] 4.1)

e {77, @) cos@ a0 {x[ m}

n, =[sin(¢;),cos(¢,)]a,, (1)’ (1)
Then Eq. (4.1) becomes:
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h (1) = f.sin(g,) +[sin(4, ), cos($)]((a, ()~ q, (1)~ (@, (1) ~q, (1 ~7))) 4.2)
where f, is the feed per tooth, ¢j is the instantaneous angular position; and 7 is the time

delay between the current tooth j and previous tooth j-1. The subscripts of x(#) and y(¢): ¢ and
w, represent the displacement of milling tool and workpiece in X and Y direction respectively.
The vibration of workpiece and milling tool is described in the Cartesian coordinate system

(x—1y), and the possible multiple eigen modes of milling tool and workpiece are defined as:

{ qt(t) = [q:(t)’qf(t)’q:n, (t)]T mt:O’l’z"“ (43)

q,)=[q, 0.4 ).,--q" (O] m,=0,12,--

where 71, is the number of excited modes of milling tool.

The angular delay would appear with the helix angle considered, so the instantaneous
angular position of /" tooth and k" element is developed as:
¢, =¢j(t,k-Ab)=%t+(j—l)2§—(k—l)%Ab j=12,N; k=1,2,---,stz (4.4)
where N is the number of flutes, £ is the helix angle, and € (rpm) is the spindle speed.

During the milling process, most of energy from the spindle-tool is dissipated in the
shearing zone above the milling separation point [94], and the ploughing zone below the point
also consumes some energy to suppress the amplitude and chatter, which constrains the
vibration of workpiece and milling tool. These constraints formed from indentation volume in
ploughing zone are the origin of process damping, which adds nonlinear factors to the
dynamic equation. The process damping for the j™ tooth is proportional to indentation volume

and modelled as [37]:
dF;pd,j - Kpdde

dF,,, = udrf,,, .

tljd’j

(4.5)

where K ,a 18 the indentation coefficient, £z is the frictional coefficient; and dV; is the

incremental indentation volume for the /™ tooth of milling tool.
The indentation coefficient is determined by material properties of workpiece, and it

satisfies the following equation [95]:

K - E (4.6)
=
" 129p,(1-2v)
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where 0, is the distance across the elastic-plastic deformation zone, V is the Poisson's ratio;

and £ is the Young's modulus.

Cwy EK wy
Cux

workpiece

indentation
volume

Fig. 26 Simplified model of process damping (up-milling).

With assuming that the flank wear width fully immerses in the ploughing zone, the

indentation area in the model of the process damping is simplified as a triangular [40], i.e. the

effective orthogonal clearance angle of j tooth, ¥ ;» and the flank wear width, IW , Which are

used to calculate the indentation area 4; [96]. The indentation area directly affects the

interaction between flank face and workpiece when the vibration of milling tool and

workpiece in the contact directions is taken into account. The effective orthogonal clearance

angle of the /1 tooth, 7, 1s developed as:

= V.o —v .
7/jztan_1(nt’] nw,])z t,j w,j (47)
vC vC
CAdr=L1 ] sin(y ydz~ L2 e T g
dv, = jz—aw*wsm(yj) Z~EWV—C z (4.8)
wdQ

., V;.; and V,, ; are vibration speed of the j tooth of

where V. is the cutting speed v, = )

milling tool and workpiece respectively.
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According to the Eq. (4.2), the relative vibration velocity between the tool and workpiece is

expressed as:

Vt,j B Vw,j = [Sin(¢j )9 COS(¢j )] (qz (t) - qw(t)) (4.9)
The energy consumed below the separation point is assumed to be dissipated by the viscous

damping force of the whole machining process system according to the law of conservation of

energy. Then the equivalent process damping coefficients (C,, , C,,) in radial and tangential

directions are written as:

K I uK I’
C =t c v 4.10
T 2v o 2v, ( )

The tangential force (£, ;) and radial force (£, ;) acting on the j tooth of the milling tool

and £ ),

include the forces in shearing zone and ploughing zone, i.e., the shearing term (£ ;

ploughing term ( F,, ;and F,

.7 ;) and process damping term (£, and £, ;). Therefore, the

tangential and radial force can be written as:

dF; ,J dF;s, J dEp J dF;pd J K[ Kte Ceqt
{ dF”}: aF. + o, [, = 8(¢,)Ab X h(t)+ X + c. v, v,
K, K| . K,
= g(¢,)Ab K. +f. K sin(g,) + K T ((q,()-q,(t-1)—(q,()—q, (7)) (4.11)

+

Ceqr . . . .
+{ | }T,. ((@,()-q,( —f))—(qw(t)—qw(t—r)))}

eqr

where K, and K, are the edge force coefficients, K, and K, are the cutting force

coefficients. T, is the transformation matrix, and it defines: T, =[sin(¢,), cos(¢,)] .

The force on each tooth needs to be projected onto the fixed coordinate system (x—) of
the milling tool:

dF;r al dF; j

v z W, o (4.12)

L = Y

where W, is the coordinate transformation matrix of the milling tool, and it satisfies:
- COS(¢/‘ ) - Sin(¢j )

W. = .

/ sin(¢,)  —cos(¢,)

In order to study the effect of dynamic cutting, the static cutting term and ploughing term

are dropped from Eq. (4.11). Substituting Eq. (4.11) into Eq. (4.12) yields:
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dF,
dF, o = { aF }=AbC(t) ((a,0-q,(t-7)~(q,()~q,(-1)

ty

(4.13)
+AbEO)((@,(0) -4, (- 1)~ (@,() -4, (~1)) k=125t

C

r eqr

N K N Cor
where C(1)= ;g(¢;)wj {K[}Tf ,and E(t)= Z;g((/j,)wj{ ' }Tj.

For the milling tool, the resultant milling force acting on discrete differential elements can

be written as:

dF,

t,1,xy

F ()= dF' (4.14)

t,k,xy

t,stz,xy
The forces acting on the discrete nodes of tool and workpiece are action-reaction forces, so

they have opposite directions:

Fw,xy = _Ft,xy (4 15)

4.2 Developing the 3D stability lobe diagram (SLD) with multiple
modes

4.2.1 The comprehensive SLD enveloped during IPW

According to the above description, the dynamic equation of system is written as:
MQ(1)+CQ(t)+KQ(t) = F(2) (4.16)
M C K
where wm=| ' , c=| ' , K= , Q) =[q,(#),q,,()] , and
MW CW’ KW’

F()=[F ,F

oy W]T .M, C and K are the mass matrix, damping matrix and stiffness matrix
respectively.

Compared with physical space, the excited modes of tool-workpiece in modal coordinate
can be decoupled, so the calculation process would be simplified in modal space [7]. Since the
multiple modes of workpiece and tool may be excited simultaneously, Eq. (4.16) is solved in
modal coordinates to facilitate the introduction of multiple modes. The modal transformation

is defined as:
Q)15 =UT (@) =[U,,~U (@), s 1a (4.17)
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The mode shapes of milling tool and workpiece, U, and U, can be defined as:

uxl,l,t uxl,Z,t uxl,mt,t uxl,l,w uxl,2,w uxl,mu,w
uyl,l,t uyl,Z,t o Z’tyl,m,,t uyl,l,w uyl,2,w uyl,mw w
Ut _ uxk,l,t uxk,Z,t uxk,m,,t , Uw: uxk,l,w uxk,Z,w uxk,mw,w (4 1 8)
uyk,l,l uyk,Z,t uyk,m,,t uyk,l,w uyk,Z,w Z'tyk,m w
uxstz,l,t uxstz,2,t o uxstz,m, J uxstz,l,w uxstz,Z,w o uxstz,mw,w
uyszz,l,z uyszz,z,t T uystz,m,,t 25tz><m, uystz,l,w uystz,Z,w e uystz,mw,w 23tz><mw
Eq. (4.16) becomes:
I 27 2 e asd
I O)+20, T ()+oT,()=UF (1) (4.19)
i 290 2 _ T ’
I ®+2 0. ()+o,L (t)= -U,F (1)
By Cauchy transformation, the Eq. (4.19) is written as:
O()=RO()+R(1)O(t) +O(1)O(t —7) (4.20)
L)
0 I ,
where _| @ ., R = s w, = |
()= . ey 20 e
r;(t) rd rd /2(m;+m,,)x2(m;+m,,) w
Lo ® )am 4my
0 0 0 0

t
T
w

RO { U’TT}AbC(t) { (gT}AbE(t)

w

, and _ r
0= {U }AbC(r) 0

w 2(m,+m,,)x2(m,;+m,,) 2(m;+m,, )x2(m,+m,,)

(ra 1s the natural frequency matrix, @ is the natural frequency of milling tool and ww natural
frequency of workpiece.

As the process damping effect is considered, the state-space equation contains two periodic-
coefficient matrices R(z) and O(¢). Based on the updated full-discretization method proposed
in Chapter 2 and Ref [9], the method can be modified to solve the state space Eq. (4.20) with
multiple modes. First, the third order Newton interpolation polynomials were used to
approximate the state terms @(r) and delayed terms @(s-r), and then the periodic-coefficient
matrices R() and O() were obtained by adopting the first order Newton interpolation
polynomials, which matches well with the SDM method in the following section.

Based on the proposed dynamic model and calculation method of IPW, the three-

dimensional SLD was established and the whole process was summarized in Fig. 27.
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Step 1. Define the cutter-location points along the machining path as steps (i=1,2, ...steps) and
cutter-contact points along the axial depth as stz (k=1,2, ...stz);

Step 2. Analyze the initial workpiece with the finite element software and obtain the element
mass and stiffness matrices;

Step 3. Determine the elements to be removed at the i™ step and &™ depth of cut and then
assemble the variable matricesAM,, and AK ;

Step 4. Find the nearest node of the IPW from the tool point and extract the mode shapes and
natural frequency from tool-workpiece contact zone;
Step 5. Iterate over entries in cell array within for loops and establish SLD by using the

updated full-discretization method.

Initial input
save in cell array {i,stz,stx,m}

Stepl number of cutter-location (i), number of depth
of cut (stz),number of spindle speed (stx),
and number of discretization interval (m)

Matlab environment

Y

Sten? extract the element Ansys environment
P mass and stiffness matrix Mechanical APDL
\i
geometric condition judgement for
material to be removed
Matlab environment
th 1 t
Step3 — do ese nodes belong to
material to be removed? Y ]
assemble these elements
into AM and AK
save the nodes
T update mode shape
™
find the nearest node on
workpiece from the tool point )
Matlab environment
Step4 ’
natural frequency and natural frequency and
mode shapes of workpiece| |mode shapes of milling tool
[ |
¢ updated algorithm
iterate over the entries in
Step5 cell array {i,stz,stx,m}

Fig. 27 Procedure for developing three-dimensional SLD of IPW
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It could be seen that the nodes of the milling tool did not necessarily coincide with the
nodes of the workpiece from Fig. 25. Therefore, it was necessary to determine the nearest

node from the differential element of the tool point. In Step 4, the nearest node on the

workpiece from the tool point (%,,,,,,Z,) would be identified:

min(H(x"W’an’an)_(xtp=ytpﬂztp)H) (421)

The index of the nearest node could be found in the mapping coordinate, and then the mode
shape of this node was determined with considering material removal effect.

Since the dynamics of the machine tool and workpiece was required for the analysis of
flexible system, the hammer tests were performed for tool point and workpiece respectively
[7]. For the milling tool, the direct response of X and Y direction was regarded as the FRF of
the rotational tool system, and the cross response was ignored. The impulse hammer was
applied from feed and normal directions with the tool discretized equidistantly in Fig. 28.
When the tool point was excited at coordinate 1, the displacements were measured at the
following three points in two directions. The response in feed direction and normal direction
were presented in Figs. 29 and 30 respectively. The identification of modal parameters was
mainly based on oscillator model of machine tool and evolutionary algorithm from Ref [97],
[98], and the modal parameters identified in feed and normal directions were given in Tab. 4.
As the tool-spindle was approximated to a symmetric system, the measured response of tool
point along in X and Y directions were pretty close to each other. According to the test
results, the frequency around 3100Hz and 3800Hz were the most flexible modes, i.e., these
two modes of cutting tool, which were most likely to show the chatter and used for the

prediction of the dynamic equation.

Capacitive
sensor

Fig. 28 Measurement for FRF along the Z axis.
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Table 4 Modal parameters of milling tool in feed and normal directions
Directions ~ Number of Natural Damping Normalized mode shape
modes frequencies (Hz)  ratio (%) size(1/ \/@ )

Feed 1 3122 2.5 [2.56 1.70 0.98]
direction 2 3814 2.8 [1.24 1.15 0.95]
Normal 1 3165 2.1 [2.83 1.82 1.13]
direction 2 3873 2.6 [1.351.07 0.54]
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Fig. 31 Machining setup
In order to verify the proposed model, up milling tests were carried out on a five-axis
milling machine tool (DMU80 monoBLOCK by DMG MORI Co., Ltd.). The milling tool
was a four-fluted carbide end mill with diameter of 10 mm. The free tool overhang length for

machining is 40 mm, and the helix angle of the milling tool was 30°. As shown in Fig. 31,
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with the microphone set at the vertical position in the direction of the tool path, the workpiece
was mounted on the dynamometer (KISTLER 9257B) by the fixture, and the dynamometer
was fixed on the working table.

Before developing the SLD, the cutting coefficients should be calibrated by slotting. The
linear cutting force model was employed to calibrate the cutting force coefficients [34], and
the fitting line of cutting force was obtained by linear regression procedure. In order to
display the results in the first quadrant, the absolute value of mean force was used to calculate
the fitting results. The feed per tooth were set from 0.04 mm to 0.20 mm with the increment
0.04 mm (See Tab. 5). Then the cutting force coefficients would be determined from the slope
and intercept in Fig. 32: K~=8.9x10% Pa, K,=2.4x10® Pa, K=2.1x10* N/m, and K~=3.05x10°
N/m. The measured value of the flank wear width was 80 pum, and the indentation coefficient
is Kpa=1x10" N/m? [38]. The scanning range of axial depth of cut was from 0 mm to 6 mm,
and the spindle speed was set from 2500 rpm to 5500 rpm with the feed per tooth 0.04
mm/tooth. The discretization number for cutter-location, depth of cut, spindle speed and time
delay are: 20, 30, 40 and 40 respectively.

Table 5 Machining parameters for milling force coefficients identification

Spindle speed  Axial depth of Feed per tooth Mean force in x Mean force in y direction
(rpm) cut (mm) (mm) direction (N) N)
5000 1 0.04 46 59
5000 1 0.08 60 100
5000 1 0.12 69 135
5000 1 0.16 78 169
5000 1 0.20 85 202

250 \ T
@ Force collected in' Y direction
V¥ Force collected in X direction
= = Fitting line in Y direction
2 200 [ Fitting line in X direction _- -0
S i
<150 T .
= ="
© 100 - .- :
= T et
E -~ PR il ‘I."""‘.____............v- ............................ b R v
L5 |
O L I 1
0.04 0.08 0.12 0.16 0.2

Feed per tooth (mm/tooth)
Fig. 32 Fitting results of cutting force coefficients
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It should be noted that the calibration of cutting force coefficients needs to be carried out
under the condition of stable milling. Therefore, the workpiece with larger geometric
dimensions or small free overhang length was selected to improve the rigidity of workpiece
clamped in the fixture. Besides, the smaller axial depth of cut was employed to ensure the
smooth machining process.

Along the tool path, the mode shapes of workpiece were different from position to position,
which led to the different dynamic response. As the vibration modes of workpiece along tool
path were unknown, it was nearly impossible to identify which modes would be excited
before machining, which led us to consider the first three mode shapes simultaneously. Then
the modified third-order updated full discretization method was applied to scan all the
machining steps, spindle speeds and axial depth of cut to establish the three-dimensional
SLD. Figs. 33-35 illustrated three three-dimensional SLDs: with material removal and process

damping, without material removal and without process damping.
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Fig. 33 Comprehensive three-dimensional SLD with material removal and process damping
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Fig. 34 Three-dimensional SLD without material removal
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Fig. 35 Three-dimensional SLD without process damping

It should be noted that unstable islands would appear in the SLD with the helix angle
considered, which causes inconvenience for the construction of three-dimensional SLD.
Therefore, a new function was introduced in Matlab, and the larger critical value of depth of
cut was selected as the stability boundary to eliminate the influence of unstable islands.
Because the critical depth of cut dominated by the workpiece was smaller, the axial depth of
cut needs smaller discrete scanning value. Once the process damping was considered, the
critical depth of cut would become larger. Owing to the use of cell arrays, too many discrete
values would slow down the calculation time, while too few discrete values may miss the
critical value. The SLD developed with multiple modes of the machining system
simultaneously is equivalent to the SLD established with multiple single mode envelopment
of the machining system separately [18]. The mode shapes only expressed the relative
relations of coordinates, so the mode shapes of milling tool can be enlarged proportionally.
Nevertheless, the maximum mode shapes of the milling tool should not exceed the mode
shapes of the workpiece employed in the calculation. As a result, “holes” in the final 3D-SLD
can be avoided due to the lack of critical value. When the milling tool dominated the
machining process, the normalized mass mode shapes obtained by measurement must be

applied.
4.2.2 Frequencies during machining process
The stable frequencies of the machining process contained the damped natural frequency (

f,,in Hz) of system, the spindle frequency (fsp, in Hz) and the tooth passing frequency (ft,, ,

in Hz). These frequencies were associated with free vibration and forced vibration, and they

would always appear during the processing. They can be defined as:

49



. kO kNQ
f;i _ ;z- ’1_52 ﬂp :5’ k:1,2’3’... ‘f;p :W, k:1,2’3’--- (4.22)

2

where @, is the undamped natural frequency.

In the actual milling process, the runout of the milling tool was inevitable. According to the

research of Insperger [99], [100], the chatter frequencies can be divided into three kinds with

runout effect: quasi-periodic chatter (fh , in Hz), period one frequency ( f, »1 > 1n Hz) and period

doubling frequency ( f ,1> in Hz). The quasi-periodic chatter corresponded to Hopf bifurcation,

period one frequency corresponded to saddle-node bifurcation and period doubling frequency

corresponded to flip bifurcation. These frequencies can be written as:

kQ kQ Q kQ
s k20123, f = k=123, [ e k0,123, 423
fi=1. 60 S 60 I 120 " 60 ( )

where fc is the chatter frequency.

It is worth noting that the period one frequency is as equal as the spindle frequency.
Therefore, the frequency spectrum cannot completely reflect the occurrence of chatter when
only the spindle frequency appears. In this case, chatter needs to be comprehensively
determined with the assistance of experimental results. Otherwise, this kind of frequency

should be viewed as spindle frequency.

4.3 Cutting tests and discussion
As shown in Figs. 36 and 37, the two-dimensional SLDs along the tool path at 3500 rpm

and 5000 rpm were intercepted from the comprehensive three-dimensional SLDs (Fig. 33)

respectively.
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Fig. 36 SLD at the spindle speed of 3500 rpm Fig. 37 SLD at spindle speed of 5000 rpm
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As given in Fig. 36, it should be noted that the process was still stable when the axial depth
of cut was greater than the maximum critical value of 2 mm at the spindle speed of 3500 rpm.
At this spindle speed, the feed velocity was 9.33 mm/s, and the fundamental frequency was
58.33 Hz. During the machining process, it is uncertain which mode of the system would be
excited, so the process of signal acquisition was divided into two steps. The first step was to
observe the machining state of the workpiece when it was processed to the middle position,
i.e. from N1 to N2 along X direction (Fig. 17), and then the rest of the material was removed,
1.e. from N2 to N3 along X direction, which can not only determine whether the chatter
occurred but also check whether the machining signal was collected. Compared with the
spectrum of cutting force, the spectrum of sound signal contains more frequency components
and more possible chatter frequencies could be found. Therefore, the microphone was used to
collect the sound signal. However, there is still some other noise in the sound signal,
especially when the chatter is not severe, which brings a great challenge to chatter
identification. It is not suitable for all machining situation to determine whether the chatter
occurs only by depending on the frequency in the sound spectrum. If the chatter frequency
was identified strictly as defined in Eq. (4.23), the chatter frequency meeting the definition
could be found even during stable machining. When the adjacent frequencies were very close
to each other, the noise frequency and chatter frequency were more difficult to distinguish. If
the sound signal was filtered directly by using the function of ‘smooth’ in Matlab, it was
likely to remove some chatter frequencies as well; if the chatter frequencies were identified
directly, the workload was large and the uncertainty was high. Therefore, the spectrum cannot
be used as the only indicator of the chatter occurrence during the validation process for SLD,
and chatter occurrence needs to be further judged comprehensively with the assistance of
surface topography of workpiece.

Figs. 38 and 39 display the sound signal and the corresponding spectrum collected during
the machining process at the spindle speed of 3500 rpm and depth of cut of 16 mm. It can be
seen from the time domain that the sound signal was relatively stable and there was no
obvious fluctuation. The spectrums for the three stages in Fig. 39 were derived from partial
time-domain signal of three machining stages in Fig. 38 with the fast Fourier transform
respectively (same as Fig. 47, the interval of sampling time was 3.05x107s). In the spectrum,
the grid interval in X direction was set according to the fundamental frequency of the spindle
speed. Each grid represented twice the spindle speed. When the frequency value was located
on the grid line or in the middle of a single grid, the frequency was the harmonic frequency of

the spindle speed. There were no period doubling frequency and Hopf bifurcation frequency
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in the spectrum. Since the period one frequency was as same as that of the spindle speed, it
was necessary to use the experimental results to determine whether the chatter occurs or not.
As shown in Fig. 40, the surface topography of the machined workpiece (measured by
nanofocus®) was regular and no vibration marks appeared. Only some regular grooves linked
to the helix angle can be observed, but they did not belong to chatter marks. Therefore, there

was no chatter occurrence along the tool path, when the axial depth of cut was 16 mm.
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Fig. 38 Measured sounds for the machining parameter (3500 rpm, 16 mm)
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Fig. 40 Surface topography of workpiece for the machining parameter (3500 rpm, 16 mm)

The modal characteristics of the workpiece in this situation did not affect the stability of the
system. Therefore, the SLD only considering the modal characteristics of the tool was

established, as presented in Fig. 41.
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The SLD considering process damping at 3500 rpm was in good agreement with the
experimental results. Figs. 42 and 43 present the sound signal and spectrum from 60 mm to 80
mm at spindle speed of 3500 rpm and depth of cut of 20 mm. Compared with depth of cut of
16 mm, the sound signal in time domain showed irregular distribution, and the surface
topography of the machined workpiece was irregular with large chatter grooves appearing
(see Fig. 44). The frequency spectrum demonstrated that period doubling frequency and Hopf
bifurcation frequency appeared, and the Hopf bifurcation frequency was the dominant
frequency. The Hopf bifurcation frequency was very close to the first order frequency of the
milling tool instead of the third order of workpiece. Besides, the stability did not change along
the tool path, which indicated that the modes of the workpiece did not work and the mode of

milling tool was indeed stimulated.
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Fig. 44 Surface topography of workpiece for the machining parameter (3500 rpm, 20 mm)

When the milling tool dominated the machining process, the Euler integration can be
employed to analyze the displacement of the tool point in the direction of X and Y. The
distribution of the sampling point was obtained by the Poincare section [1], which could
simulate the bifurcation at a certain machining parameter from the SLD. To improve the
efficiency of calculation, only the ploughing force, static and dynamic cutting force were
involved to simulate the displacement of the tool point. The simulated result at spindle speed
of 3500 rpm and depth of cut of 20 mm was illustrated in Fig. 45. According to the
displacement simulation of the milling tool, the sampling points were elliptically distributed
in the X and Y directions among [-0.5 mm, 0.5 mm], which was a typical feature of Hopf
bifurcation, and the simulation result was in good agreement with the experimental results.
The axial depth of cut accorded with the SLD only considering the first two modes of the
milling tool, which further verified that the modes of the milling tool played a dominant role

in this situation.

— — Displacement of tool

Displacement in y direction (mm)
=
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Fig. 45 Poincare section for the machining parameter (3500 rpm, 20 mm)
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The experimental results were obviously inconsistent with the SLD only considering the
modal characteristics of milling tool at spindle speed of 5000 rpm, which indicated that the
modes of milling tool did not dominate the machining process any more. Figs. 46 and 47
display the sound signal and spectrum at spindle speed of 5000 rpm and axial depth of cut of
1 mm. At this spindle speed, the feed velocity was 13.33 mm/s, and the fundamental
frequency was 83.33 Hz. The sound signal fluctuated greatly when the milling tool cut in and
out of the workpiece in time domain, and the sound signal was relatively flat in the middle
part of the workpiece. From the spectrum, it can be seen that the period doubling frequency
appeared in the cut-in and cut-out parts, and the chatter frequencies were very close to the first
and second order frequency of workpiece. As given in Fig. 48, the corresponding surface
topographies of the machined workpiece were shown, and they matched well with the
machining spectrum. That demonstrated the modes of workpiece dominated the machining at
these two parts. There were no Hopf bifurcation frequency and period doubling frequency in
the middle part of the workpiece, which was consistent with the actual machining results as

well.
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Fig. 46 Measured sounds for the machining parameter (5000 rpm, 1 mm)

The amplitude of the spectrum in Fig. 47 was much lower than that in Fig. 42, which was
due to the smaller axial depth of cut. While the amplitude of the spectrum in Fig. 47 was
higher than that in Fig. 39 because of the occurrence of chatter. The comprehensive SLD in
Fig. 33 was generated by considering the five modes of milling tool and workpiece
simultaneously. The minimum value of the axial depth of cut at each discrete spindle speed
was used to envelope the SLD for every mode. Therefore, the comprehensive SLD was a
conservative diagram. Although the comprehensive SLD would limit the critical depth of cut,

it can ensure the processing quality.
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Fig. 48 Surface topography of workpiece for the machining parameter (5000 rpm, 1 mm)

As shown in Figs. 49-52, two-dimensional SLDs were intercepted from Figs. 33-35 at
cutter locations 20mm, 40mm, 60mm and 80mm, respectively. Although the specific values
of the three SLDs were different, they basically had the same upward and downward trend. It
can be seen that the depth of cut of SLDs considering process damping and material removal
was larger than that without considering process damping. The prediction of comprehensive
SLD with process damping and material removal was inaccurate at some points of cut-in and

cut-out position, but it was closer to the experimental results than the SLD without

considering material removal.
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As shown in Figs. 49-52, when the process damping was ignored, the critical depth limit of
SLD became smaller. While the process damping was considered, the critical depth limit of
SLD became larger. The behavior of process damping was similar to the limit cycle
oscillation [38]; that was, the process damping would increase with the axial depth of cut
synchronously to suppress the chatter. With the further increase of the axial depth of cut, the
critical value would be exceeded. The limit cycle would bifurcate from the original
equilibrium point and change the stability of the system. Compared with spindle speed of
5000 rpm, the input energy of cutting process at 3500 rpm was relatively small. Coupled with
the consumption of vibration energy by process damping, the vibration mode of thin-walled
workpiece was not stimulated, so the machining process at this stage was mainly dominated
by the milling tool. When the spindle speed increased, the input energy increased as well.
Once the multiple modes of thin-walled workpiece were excited, these modes would play a
leading role. As the first mode of thin-walled workpiece was relatively small, therefore, the
corresponding critical depth of cut was small as well, which would affect the final envelope
result. That was why the experimental results were in good agreement with the

comprehensive SLD in Fig. 37 at spindle speed of 5000 rpm.
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4.4 Summary

In this chapter, a multi-mode model in four spatial dimensions was developed with
considering the process damping between milling tool and workpiece, and SDM and FEM
were used together to determine the IPW dynamics. Then the mode shapes of in-process thin-
walled workpiece and milling tool were introduced to the dynamic equation. Finally, the
comprehensive three-dimensional SLD along the tool path was obtained and validated by
experimental tests. The proposed model was analyzed in a rigorous framework, and the
conclusions can be summarized as follows:

The process damping had the speed dependent property (especially at low spindle speed
region), which showed the limit cycle oscillation during the milling process and was further
confirmed from the experiment results. During the stability prediction, considering the
process damping could improve the critical depth of cut and prediction accuracy. Process
damping could consume part of the energy generated by cutting vibration, and it could
improve the machining efficiency for weak rigidity workpiece and difficult-to-machine
materials. Therefore, process damping is a favorable factor in milling process, and it should
be considered in the flexible dynamic model.

In the milling process, especially for the flexible system, the dominant modes of the thin-
walled workpiece and milling tool were uncertain. Although the first mode of the workpiece
was relatively lower, the modes of the thin-walled workpiece were not necessarily in the
dominant state. During the experiments, the modes of milling tool and workpiece as the
dominant modes appeared respectively with corresponding chatter frequencies. The SLDs
with the proposed model could predict the stability accurately. Especially when the workpiece
dominated the machining process, the comprehensive SLD considering material removal was
closer to the experimental results. That meant the continuous dynamic change caused by the
material removal and cutter position had important effects on the machining stability.

Considering the multiple modes effect would establish a more conservative and reliable
comprehensive three-dimensional SLD. Although the material removal efficiency may be
limited, stable parameters derived from the conservative SLD can guarantee the stability of

the whole machining process.
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5 Surface location error prediction for continuous radial
milling
5.1 The model of SLE under stable milling process
The dynamics of workpiece would become more and more obvious with material removal
during continuous milling. Since process damping effect is not significant in high-speed
cutting [34], it is neglected in the milling force model. As illustrated in Fig. 53b, there is no
material left along the feed direction, and the SLE in X direction is more difficult to determine

than that in Y direction. Therefore, only the SLE in Y direction is considered.

5.1.1 Milling force establishment under stable milling process

workpiece ///

[/ \tool
i

Down-milling
(d): Up-milling

[,
Intended | [Machined line

line

Bottom line /',
Reference line

[

©

Fig. 53 Schematic model of milling process

As shown in Fig. 54, the tangential force (£, ;) and radial force ( £, ;) for the j tooth are

composed of the shearing terms (£, ; and F,

S’.] ’57.]

) and ploughing terms (£, ;andF7, ;), and these

forces can be written as:

dE‘,j dF;s,j dF;P’j Ab K’ h K’e (5 1)
{dF} ar, | ok, ] EOM e MO g, |
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Fig. 54 Two degree of freedom model of milling force (up-milling)
After substituting Egs. (4.1) and (5.1) into Eq. (4.12), the force acting on each slice

becomes:

dF;,k,.xy = {j?kix}zbkA(t) + ka(t) +bkc(t)((qt (t) _qt(t - T)) _(qw(t) _qw(t - T)))a k= 1,2:stz (5.2)

tk.y

N K, v K
where A@t) = Z g(4,)W, {K e } , B(t) = Zg(¢,)Wj {Kt }sin((éj)fz ; and

re

N Kt .
0= 2¢(6)W, { p }[smw,), cos(g) )

5.1.2 SLE at the contact zone of milling tool
If multiple modes are coupled in Eq. (4.16), the modal coordinate transformation will be

employed to decouple these modes. By Cauchy transformation, the Eq. (4.16) is written as:

@(t) =R, 0O()+R(#)(O()-0O(t-7))+R, (5.3)
T,(1) 0 I @,

where T (t) ,» R, = ( s J L ( t j ’
OO=} ¢ 0" 2500 ) m, s, 2 4m,) D

rw (t) 2(m,+m,,)x1

0 0

0
and r
|, ; R =|[ U
R,=|[U
Z [{_&T}Ab(A(tHB(t))} {_U }Abc(’) 0
w 2(m,+m,,)x1 w

t
T
2(m;+m,, )x2(m;+m,,)

As the static force is included in force model of the dynamic equation, then Eq. (2.6)

becomes
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x(1) =™ x (i) + | h e VB(s)[x(s) - X(s = T)lds + | 1 e (5)ds (5.4)
Consequently, Eq. (5.4) can be rearranged equivalently as

x(ih+ ) :e*‘o”x(ih)+j: erf[B(ih+h—s)[x(ih+h—s)—x(ih+h—s—T)]ds+j’e*‘°ff(ih+h—s)ds (5.5)

j
0
By the method of first-order interpolation, the term of f (i4+A-s) can be written as

f(ih+h—s)~1,, +w (5.6)

Then the mapping relation between current period and immediate previous period can be

developed as

i i i
(F, + M )x;, + M x, |, + M;x,
_ i i i
x, =P |+M Xx. +M x + Ml,(H)XH+2 (5.7)

L(n+1)i—n L,ni—n+1

i
+M1,(n72)xi7n+3 +G,

(fz _fi+1)

where G,=Ff, +F, e

i+1

Based on the third-order updated full-discretization method [9], Eq. (5.3) could be
decoupled and solved. The stability and SLE of the system could be extracted from the fixed
point of the steady-state vector [32], [47]. Finally, the SLE becomes:

Jsr=A-®)"'G (58)
where G=M, G, + HZ_I“(MWMW1 M, M, ,G,), and I is the identity matrix.

The relative displacement between tool and workpiece at contact zone is the main cause of
SLE. As illustrated in Fig. 53(a), the relative displacement of the k™ slice for the down milling

can be expressed as:

QI‘ (bk ):qi‘,k ZQt,k +qw,k k = 17 23' * ':StZ (5'9)
where ¢, is the displacement of the milling tool for the k™ slice, 4, 1s the displacement of

the workpiece for the k" slice, and g, is the relative displacement for the kM slice.

From the perspective of FRF, the sum of displacement responses of tool and workpiece

constitutes the relative FRF, i.e. 7 (w). Then Eq. (5.9) becomes:

_ qr,k _ qt,k _qw,k _ — e
H, ,(0)= F _m-l__l:;v,k,xy =H, (0)+H, (o) k=12, stz (5.10)

where H, Lk (CU) is the FRF of the milling tool, and H Wk (CO) is the FRF of the workpiece.
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Eq. (5.9) is the expansion form of Eq. (4.17) in physical coordinates. Eq. (5.10) is the
expansion form of Egs. (4.17) and (5.9) in frequency domain, which considers the dynamics

of milling tool and workpiece comprehensively.

5.2 Exclusion of unstable machining parameters

5.2.1 Unstable parameters caused by regenerative effect

Considering multiple vibration modes of milling tool and workpiece can reflect the
practical state of the system. When chatter occurs, the system may be dominated either by
multiple modes of milling tool or workpiece. In order to obtain stable parameters, dynamic
characteristics of milling tool and workpiece need to be taken into account at the same time.
In fact, it is necessary to introduce the mode shapes of the IPW along the toolpath when the
modal vibration of the workpiece is considered. In order to obtain a more conservative SLD
and improve the computational efficiency, the maximum mode shapes of a certain mode are
extracted and regarded as the mode shapes of the whole workpiece. Meanwhile, the minimum
frequency at each cutter location from IPW is needed to construct the SLD as well. Without
loss of generality, the maximum mode shapes and minimum frequencies of the workpiece are

defined as follows:

lPi :max{wi,ﬂ l//i,2"“wi,mw}’ a)z :mln{a)i,l’ a)i,2’.“a)i,mw} (511)

where i is the discrete step of the workpiece along the tool path.

5.2.2 Unstable parameters caused by cumulative effect

With respect to continuous milling, each immersion would generate a SLE, which is
viewed as a small perturbation of equilibrium limit cycle. The small perturbation accumulates
continuously, and the cumulative value is the cumulative surface location error (CSLE). Due
to the non-linear characteristics of the SLE, the CSLE may converge to a specific value.
Otherwise, the CSLE diverges, which will destabilize the limit cycle. This depends on the
initial condition, i.e. radial depth of cut@.. According to the definition of CSLE [101], the

final value is the stable fixed point after iterations, and the CSLE can be written as

SLE,

T)

%) (5.12)
D

SLE = f(a, /D), SLE,,, = f(“—l;+

a
CSLE = f(—=+
f(D
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5.3 SLE analysis during stable machining stage

5.3.1 Effect of clamping system on frequency of workpiece

The mode shapes of the milling tool were obtained by means of experimental
measurements, and three measuring points were set equidistantly along the tool length.
Frequency responses of three points were measured in feed direction and normal direction
respectively with the cross response ignored, and then the relative size of mode shape were
obtained with the assistance of capacitive sensor. These mode shapes could be seen in Tab 4.
According to the axial depth of cut, the mode shapes at the corresponding discrete points were
interpolated within the range of these three measuring points, and the geometric dimensions
and physical properties of the workpiece were shown in Tab 6. Fig. 55 (a) depicts the
dynamic tests and removal of thickness for the workpiece. As the first mode of the workpiece
was the bending mode, the start edge of the workpiece was chosen as the dynamic test zone
where the frequencies of the first two modes could be identified. There were two tap zones in
the workpiece: T1 and T2. Then the impact tests were applied in the workpiece to obtain the
damping ratio of removal of 8 mm and 12 mm of thickness, and the damping ratio were 3%
and 2.5% respectively. The average value of the frequency in the two zones were regarded as

the experimental frequency in Table 7, and the FRF of T2 was showed in Fig. 55 (b).
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Fig. 55 (a) Tap zone for workpiece
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Table 6 Physical properties of workpiece

Material Geometry parameters Clamping height Density Young’s modulus  Poisson’s ratio

Aluminum alloy 2007 100x40%15 mm 5 mm 2850 kg/m?3 71 GPa 0.33

As shown in Tab 7, it can be seen that there was a large frequency difference between the
simulation and experimental measurement of the workpiece. Since the workpiece did not have
a base at the bottom, the clamping part was not rigid contact with the fixture, which was the
main reason for the large error. Flexible contact between workpiece and fixture would bring
in translational and rotational effects [102]. Therefore, a contact layer with thickness of 1 mm
was added at the bottom of the workpiece to modify the free vibration in the simulation
environment (see Fig. 56). The orthotropic parameters of the thin layer were applied to
simulate the natural frequency, so the Young’s modulus in X and Z directions for the layer
(E, and E,) were needed. The Young’s moduli, E,, and E,, were determined by the following

steps:

Step 1. The Young’s modulus in Y direction was a fixed value of 0.1 GPa, and the initial

Young’s modulus in X and Z directions (E, and E,) were given with different value.

Step 2. Construct frequency function determined by optiSLang in Ansys environment:
fa = f(Ex, Ep).

Step 3. When the frequency error between the experimental measurement, f;,, and the

result of function, f,,, satisfied fnf_ﬁ| < 5%, the iteration of Young’s modulus stopped.
m
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From the above iteration, Young’s Modulus in X and Z direction were E, = 0.34 GPa and
E, = 0.31 GPa respectively. Figs. 57 and 58 depict the results of modification and
experiment, and the modification matched well with the practical machining condition. As
illustrated in Fig. 55 (b), the difference between the first and second order frequency of the
milling tool was small, while the difference between the first and second order frequency of
the workpiece was large. The amplitude of the first mode was higher than that of the second
mode in terms of the workpiece. Therefore, a conservative SLD would be developed with
three frequencies considered: the first two modes of the milling tool and the first mode of the
workpiece. Although the dominant modes of the tool-workpiece system were not known, the
parameters selected from the conservative SLD could ensure the stability of the machining

process.

Table 7 Natural frequency of workpiece under different conditions

o . . The first order The second order
Mai:é?;llli i(ris:tggxcle m Axial depth of cut (Simulat.ion under rigid cgntact/ (Simulan:on under rigid cgntact/
Experiment/ Modification) Experiment/ Modification)
0 mm 5 mm 5874 Hz/1579 Hz/1617 Hz 7793 Hz/5023 Hz/4868 Hz
4 mm 5 mm 6178 Hz/1611 Hz/1686 Hz 8050 Hz/5156 Hz/4965 Hz
8 mm 5 mm 6522 Hz/1715 Hz/1762 Hz 8323 Hz/5281 Hz/5053 Hz
12 mm 5 mm 6929 Hz/1898 Hz/1851 Hz 8729 Hz/5494 Hz/5220 Hz
6000 — : : — ; : 2000
S d d T IModi :
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Fig. 57 Frequency comparison between experiment and  Fig. 58 Frequency change of first mode for different

modification removal of thickness
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5.3.2 Experiment verification and measurement

To validate the proposed model, cutting tests were conducted on the machine tool (DMUS0
monoBLOCK by DMG MORI Co., Ltd.). As shown in Fig. 59, a four-fluted carbide end mill
with diameter of 10 mm was used, and the free overhang length of milling tool was 40 mm.
Prior to establishing SLD, the full immersion was selected to calibrate the cutting force
coefficients. In the experiment, the linear model of mean cutting force, which takes the feed
per tooth as the independent variable, was applied to calibrate the cutting force coefficients
[34]. The spindle speed of 6600 rpm and the axial depth of cut of 1 mm were selected when
the work of calibration was conducted. The feed per tooth were from 0.01 mm to 0.09 mm
with the increment of 0.02 mm, and the cutting forces were collected by the dynamometer
(KISTLER 9257B). Finally, the four cutting force coefficients could be determined:
K=1.03x10° Pa, K=5.15x10% Pa, Ki=12.3x10° N/m, K=21.3x10° N/m. With respect to
down milling, the cutting tooth moves from unmachined surface to machined surface, i.e.,
from cut-in to cut-out, and the instantaneous uncut chip thickness decreases. From this point
of view, the machined quality with down milling is better than that of up milling. As the
distance between the machined surface and the reference surface needed to be measured in the

experiment, down milling was selected with the start and exit angle: {¢S =arcc;s(2ae /11)8;)}) <143 .
e ==

The radial immersion ratio should be less than 50%, which ensures that the response of the

workpiece was mainly in normal direction. Here, the radial immersion ratio of 10% was

employed, and th