87 research outputs found

    Reinforcement Learning Based Dual-Control Methodology for Complex Nonlinear Discrete-Time Systems with Application to Spark Engine EGR Operation

    Get PDF
    A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach

    ADAPTIVE MODEL BASED COMBUSTION PHASING CONTROL FOR MULTI FUEL SPARK IGNITION ENGINES

    Get PDF
    This research describes a physics-based control-oriented feed-forward model, combined with cylinder pressure feedback, to regulate combustion phasing in a spark-ignition engine operating on an unknown mix of fuels. This research may help enable internal combustion engines that are capable of on-the-fly adaptation to a wide range of fuels. These engines could; (1) facilitate a reduction in bio-fuel processing, (2) encourage locally-appropriate bio-fuels to reduce transportation, (3) allow new fuel formulations to enter the market with minimal infrastructure, and (4) enable engine adaptation to pump-to-pump fuel variations. These outcomes will help make bio-fuels cost-competitive with other transportation fuels, lessen dependence on traditional sources of energy, and reduce greenhouse gas emissions from automobiles; all of which are pivotal societal issues. Spark-ignition engines are equipped with a large number of control actuators to satisfy fuel economy targets and maintain regulated emissions compliance. The increased control flexibility also allows for adaptability to a wide range of fuel compositions, while maintaining efficient operation when input fuel is altered. Ignition timing control is of particular interest because it is the last control parameter prior to the combustion event, and significantly influences engine efficiency and emissions. Although Map-based ignition timing control and calibration routines are state of art, they become cumbersome when the number of control degrees of freedom increases are used in the engine. The increased system complexity motivates the use of model-based methods to minimize product development time and ensure calibration flexibility when the engine is altered during the design process. A closed loop model based ignition timing control algorithm is formulated with: 1) a feed forward fuel type sensitive combustion model to predict combustion duration from spark to 50% mass burned; 2) two virtual fuel property observers for octane number and laminar flame speed feedback; 3) an adaptive combustion phasing target model that is able to self-calibrate for wide range of fuel sources input. The proposed closed loop algorithm is experimentally validated in real time on the dynamometer. Satisfactory results are observed and conclusions are made that the closed loop approach is able to regulate combustion phasing for multi fuel adaptive SI engines

    THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants

    Full text link
    The THIESEL 2022. Conference on Thermo-and Fluid Dynamic Processes in Direct Injection Engines planned in Valencia (Spain) for 8th to 11th September 2020 has been successfully held in a virtual format, due to the COVID19 pandemic. In spite of the very tough environmental demands, combustion engines will probably remain the main propulsion system in transport for the next 20 to 50 years, at least for as long as alternative solutions cannot provide the flexibility expected by customers of the 21st century. But it needs to adapt to the new times, and so research in combustion engines is nowadays mostly focused on the new challenges posed by hybridization and downsizing. The topics presented in the papers of the conference include traditional ones, such as Injection & Sprays, Combustion, but also Alternative Fuels, as well as papers dedicated specifically to CO2 Reduction and Emissions Abatement.Papers stem from the Academic Research sector as well as from the IndustryXandra Marcelle, M.; Payri Marín, R.; Serrano Cruz, JR. (2022). THIESEL 2022. Conference on Thermo-and Fluid Dynamics of Clean Propulsion Powerplants. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thiesel.2022.632801EDITORIA

    Optimization and control of a dual-loop EGR system in a modern diesel engine

    Get PDF
    Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine

    Analysis and Control of Multimode Combustion Switching Sequence.

    Full text link
    Highly dilute, low temperature combustion technologies, such as homogeneous charge compression ignition (HCCI), show significant improvements in internal combustion engine fuel efficiency and engine-out NOx emissions. These improvements, however, occur at limited operating range and conventional spark ignition (SI) combustion is still required to fulfill the driver's high torque demands. In consequence, such multimode engines involve discrete switches between the two distinct combustion modes. Such switches unfortunately require a finite amount of time, during which they exhibit penalties in efficiency. Along with its challenges, the design of such a novel system offers new degrees of freedom in terms of engine and aftertreatment specifications. Prior assessments of this technology were based on optimistic assumptions and neglected switching dynamics. Furthermore, emissions and driveability were not fully addressed. To this end, a comprehensive simulation framework, which accounts for above-mentioned penalties and incorporates interactions between multimode engine, driveline, and three-way catalyst (TWC), has been developed. Experimental data was used to parameterize a novel mode switch model, formulated as finite-state machine. This model was combined with supervisory controller designs, which made the switching decision. The associated drive cycle results were analyzed and it was seen that mode switches have significant influence on overall fuel economy, and the issue of drivability needs to be addressed within the supervisory strategy. After expanding the analysis to address emissions assuming a TWC, it was shown that, in practice, HCCI operation requires the depletion of the TWC's oxygen storage capacity (OSC). For large OSCs the resulting lean-rich cycling nullifies HCCI's original efficiency benefits. In addition, future emissions standards are still unlikely to be fulfilled, deeming a system consisting of such a multimode engine and TWC with generous OSC unfavorable. In view of these difficulties, the modeling framework was extended to a mild hybrid electric vehicle (HEV) allowing a prolonged operation in HCCI mode with associated fuel economy benefits during city driving. Further analysis on how to reduce NOx while maintaining fuel economy resulted in a counterintuitive suggestion. It was deemed beneficial to constrain the HCCI operation to a small region, exhibiting lowest NOx, while reducing instead of increasing the OSC.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116660/1/snuesch_1.pd

    IDENTIFICATION OF HEAT RELEASE SHAPES AND COMBUSTION CONTROL OF AN LTC ENGINE

    Get PDF
    Low Temperature Combustion (LTC) regimes have gained attention in internal combustion engines since they deliver low nitrogen oxides (NOx) and soot emissions with higher thermal efficiency and better combustion efficiency, compared to conventional combustion regimes. However, the operating region of these high-efficiency combustion regimes is limited as it is prone to knocking and high in-cylinder pressure rise rate outside the engine safe zone. By allowing multi-regime operation, high-efficiency region of the engine is extended. To control these complex engines, understanding and identification of heat release rate shapes is essential. Experimental data collected from a 2 liter 4 cylinder LTC engine with in-cylinder pressure measurements, is used in this study to calculate Heat Release Rate (HRR). Fractions of early and late heat release are calculated from HRR as a ratio of cumulative heat release in the early or late window to the total energy of the fuel injected into the cylinder. Three specific HRR patterns and two transition zones are identified. A rule based algorithm is developed to classify these patterns as a function of fraction of early and late heat release percentages. Combustion parameters evaluated also showed evidence on characteristics of classification. Supervised and unsupervised machine learning approaches are also evaluated to classify the HRR shapes. Supervised learning method ( Decision Tree)is studied to develop an automatic classifier based on the control inputs to the engine. In addition, supervised learning method (Convolutional Neural Network (CNN)) and unsupervised learning method (k-means clustering) are studied to develop an automatic classifier based on HRR trace obtained from the engine. The unsupervised learning approach wasn\u27t successful in classification as the arrived k-means centroids didn\u27t clearly represent a particular combustion regime. Supervised learning techniques, CNN method is found with a classifier accuracy of 70% for identifying heat release shapes and Decision Tree with the accuracy of 74.5% as a function of control inputs. On rule based classified traces with the use of principle component analysis (PCA) and linear regression, heat release rate classifiers are built as a function of engine input parameters including, Engine speed, Start of injection (SOI), Fuel quantity (FQ) and Premixed ratio (PR). The results are then used to build a linear parameter varying (LPV) model as a function of the modelled combustion classifiers by using the least square support vector machine (LS-SVM) approach. LPV model could predict CA50(Combustion phasing), IMEP (indicated mean effective pressure) and MPRR (maximum pressure rise rate) with a RMSE of 0.4 CAD, 16.6 kPa and 0.4 bar/CAD respectively. The designed LPV model is then incorporated in a model predictive control (MPC) platform to adjust CA50, IMEP and MPRR. The results show the designed LTC engine controller could track CA50 and IMEP with average error of 1.2 CAD and 6.2 kPa while limiting MPRR to 6 bar/CAD. The controller uses three engine inputs including, SOI, PR and FQ as manipulated variables, that are optimally changed to control the LTC engine

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book
    • …
    corecore