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Reinforcement-Learning-Based Dual-Control
Methodology for Complex Nonlinear Discrete-Time

Systems With Application to Spark Engine
EGR Operation

Peter Shih, Brian C. Kaul, S. Jagannathan, Senior Member, IEEE, and James A. Drallmeier

Abstract—A novel reinforcement-learning-based dual-control
methodology adaptive neural network (NN) controller is devel-
oped to deliver a desired tracking performance for a class of
complex feedback nonlinear discrete-time systems, which consists
of a second-order nonlinear discrete-time system in nonstrict
feedback form and an affine nonlinear discrete-time system, in the
presence of bounded and unknown disturbances. For example, the
exhaust gas recirculation (EGR) operation of a spark ignition (SI)
engine is modeled by using such a complex nonlinear discrete-time
system. A dual-controller approach is undertaken where primary
adaptive critic NN controller is designed for the nonstrict feedback
nonlinear discrete-time system whereas the secondary one for the
affine nonlinear discrete-time system but the controllers together
offer the desired performance. The primary adaptive critic NN
controller includes an NN observer for estimating the states and
output, an NN critic, and two action NNs for generating virtual
control and actual control inputs for the nonstrict feedback non-
linear discrete-time system, whereas an additional critic NN and
an action NN are included for the affine nonlinear discrete-time
system by assuming the state availability. All NN weights adapt
online towards minimization of a certain performance index,
utilizing gradient–descent-based rule. Using Lyapunov theory,
the uniformly ultimate boundedness (UUB) of the closed-loop
tracking error, weight estimates, and observer estimates are
shown. The adaptive critic NN controller performance is evalu-
ated on an SI engine operating with high EGR levels where the
controller objective is to reduce cyclic dispersion in heat release
while minimizing fuel intake. Simulation and experimental results
indicate that engine out emissions drop significantly at 20% EGR
due to reduction in dispersion in heat release thus verifying the
dual-control approach.

Index Terms—Adaptive critic design, near-optimal control, non-
strict feedback nonlinear discrete-time system, output feedback
control, separation principle.
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I. INTRODUCTION

A DAPTIVE control using neural network (NN) in general
is now well understood for affine nonlinear discrete-time

systems. Additionally, backstepping control of nonlinear dis-
crete-time systems in strict feedback form in particular has been
addressed in the literature [1]–[3]. The strict feedback nonlinear
discrete-time system is expressed as [1]

(1)

(2)

where is the state, is the control input,
, and .

For strict feedback nonlinear systems [1], the nonlinearities
and depend only upon ,

i.e., . However, for a nonstrict feedback nonlinear system,
where and depend on both and

, there were no control design schemes available until
recently [11]. Since available [1]–[3] methods when applied
to a second-order nonlinear nonstrict feedback discrete-time
systems will result in a noncausal controller (current control
input depends on the future system states), control design
for nonstrict feedback systems should be handled carefully
[11]. On the other hand, though stable NN controllers [1]–[3],
[10]–[13] are designed for nonlinear discrete-time systems,
these control designs fail to render optimality since tracking
error was utilized as the performance measure.

By contrast, the reinforcement-learning-based adaptive critic
NN approach [4] has emerged as a promising tool to develop
optimal (or suboptimal) NN controllers due to its potential to
find approximate solutions to dynamic programming, where a
strategic utility function, which is considered as the long-term
system performance measure, can be optimized. Optimal NN
controllers using reinforcement learning are considered as the
third generation NN controllers and they are currently being
pursued by many researchers [4]–[9], [15], [19], [21]. In super-
vised learning, an explicit signal is provided by the teacher to
guide the learning process whereas in the case of reinforcement
learning, the role of the teacher is more evaluative than instruc-
tional in nature. The critic NN monitors the system states and
approximates the strategic utility function, and provides a better
training signal to the action NN, which generates the near-op-
timal control action to the nonlinear system.

1045-9227/$25.00 © 2008 IEEE
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There are many variants of adaptive critic NN controller ar-
chitectures [4]–[9] using state feedback even though few re-
sults [6]–[9], [19] address the controller convergence. However,
adaptive critic NN controller results were not available for the
nonlinear discrete-time systems in nonstrict feedback form until
recently [22]. By contrast, in [18], a novel NN controller using
tracking error as the performance measure is introduced for
nonlinear discrete-time systems in nonstrict feedback form. To
the best of our knowledge, no known results are available for
near-optimal control of complex nonlinear discrete-time sys-
tems using reinforcement learning such as the ones introduced
in this paper.

In this paper, a novel adaptive critic NN-based feedback con-
troller is developed to control a class of complex nonlinear dis-
crete-time systems, which consists of a coupled nonstrict feed-
back plus an affine system, with bounded and unknown dis-
turbances. A dual-control approach is undertaken where a pri-
mary adaptive critic NN controller is designed for nonlinear dis-
crete-time systems in nonstrict feedback form and a secondary
controller for the affine nonlinear discrete-time systems so that
both controllers work together guaranteeing performance and
stability.

For the case of a nonlinear discrete-time system in nonstrict
feedback form, an adaptive NN backstepping is utilized for the
controller design with two action NNs being used to generate the
virtual and actual control inputs, respectively. The weights of
the two action NNs are tuned by the critic NN signal to minimize
the strategic utility function and their outputs. The critic NN
approximates certain strategic utility function a variant of stan-
dard Bellman equation. The NN observer estimates the system
states and output and the estimates are subsequently used in the
controller. The proposed controller is model-free since the dy-
namics of the nonlinear discrete-time systems are not known
beforehand. All the NN weights are tuned online. On the other
hand, for the affine nonlinear discrete-time system, a separate
critic and action NNs are utilized. The critic NN approximates
the standard Bellmann equation and tunes the action NN so that
the action NN generates a near-optimal signal to control the
affine nonlinear discrete-time system. Both controllers work to-
gether and render guaranteed performance and closed-loop sta-
bility.

The main contributions of this paper can be summarized as
follows.

1) The adaptive critic NN approach is extended to a complex
nonlinear discrete-time system where a dual-control ap-
proach is undertaken while guaranteeing stability and per-
formance.

2) Optimization of a long-term performance index is under-
taken in contrast with traditional adaptive NN schemes [1],
[2] where no optimization is performed.

3) Demonstration of the boundedness of the overall system
is shown even in the presence of NN approximation errors
and bounded unknown disturbances unlike in the existing
adaptive critic design (ACD) works [7]–[9] where the con-
vergence is presented under ideal circumstances. Stability
proof is inferred even with an NN observer by relaxing the
separation principle via novel weight-updating rules and by
selecting the Lyapunov function consisting of the system

estimation errors, tracking, and the NN weight estimation
errors. A single critic NN is utilized to tune two action
NNs.

4) A well-defined controller is presented by overcoming the
problem of certain nonlinear function estimates becoming
zero since a single NN is used to approximate both non-
linear functions and compared to [10].

5) The NN weights are tuned online instead of offline [5].
6) The assumption that is bounded away

from zero and its sign is known a priori is relaxed in con-
trast with [2].

The proposed primary controller is applied to control the
spark ignition (SI) engine dynamics operating with high exhaust
gas recirculation (EGR) levels, a practical complex nonlinear
discrete-time system. The primary controller allows the engine,
which is a nonstrict feedback nonlinear discrete-time system
to operate in high EGR mode with fuel intake as the control
input, where an inert gas displaces the stoichiometric ratio of
fuel to air. The inert gas system is modeled as an affine non-
linear discrete-time system, and therefore, a separate secondary
controller is designed. Both controllers enable the engine to
operate in higher EGR mode compared to the uncontrolled
case by reducing heat release dispersion while minimizing fuel
intake. Consequently, the engine exhibits improved emissions
and fuel efficiency compared to the uncontrolled case. Other
controller designs can run an SI engine in lean mode [11];
however, engine catalysts cannot function efficiently with the
lean exhaust chemistry.

EGR, on the other hand, allows for the efficient operation of
standard three-way catalysts. Not only does it reduce precatalyst
emissions, but it can improve fuel efficiency by reducing throt-
tling losses. Therefore, the applicability of high EGR usage in
the automotive engines is greater. Dilution with EGR also has
wide practical applicability in diesel engines and in SI engines
without three-way catalysts.

II. COMPLEX NONLINEAR DISCRETE-TIME SYSTEMS

Consider the complex nonlinear discrete-time system, given
in the following form:

(3)

(4)

(5)

(6)

where , , are states, and
are system inputs, and , , and

are unknown but bounded disturbances. Bounds on the dis-
turbances are given by , , and

where , , and are unknown pos-
itive scalars. It is important to note that the output is a non-
linear function of states in contrast with available literature [12],
[13] where the output is a linear function of the states. Finally,
the output is considered measurable whereas the first two states
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and are considered not available while is as-
sumed to be available for convenience. For the systems (3) and
(4), not only should the systems’ actual output converge to their
target value, but the states should also converge to their respec-
tive desired values for the proposed application of engine con-
trol.

The controller development is presented separately for the
two systems as the objectives are different even though the two
controllers are designed for the same complex system. The first
part uses (3), (4), and (6) to develop the primary controller. The
second part uses (5) to develop the secondary controller. Sta-
bility for both systems is demonstrated together. The SI engine
control with high levels is represented by (3)–(6), and there-
fore, the class of systems is of interest. One cannot directly
apply the controller design from nonstrict feedback nonlinear
discrete-time systems [11], [18] since the first system contains
the third state unlike a typical nonstrict feedback system. There-
fore, a dual approach is the best choice.

III. PRIMARY CONTROLLER

To overcome the immeasurable states and , an
observer is used. It utilizes the current heat release output, ,
to estimate the future output and states
and . The design of the observer, which follows steps
similar to [22] is discussed next.

A. Observer Design

For the observer design, the nominal values of the uncer-
tainties are required since the nonlinearities as well as the
input–output relationship is considered unknown. The nominal
values of the unknown uncertainties can be obtained by a
variety of ways. One of the ways is to apply Taylor series
expansion without ignoring the higher order terms. Consider
(3) and (4). We expand the individual nonlinear functions using
Taylor series expansion into linear and higher order terms

(7)

(8)

(9)

(10)

where the first term in (7)–(10) are known nominal values and
the second term are unknown higher order terms. The entire ex-
pansion for the terms in (7)–(10) is not necessary since it is not
required for the controller design. Moreover, the higher order
terms are not ignored. A two-layer feedforward NN with semire-
current architecture and novel weight tuning are utilized to con-
struct the output as

(11)

where is the
network input, and are the future and current
outputs, and denote the ideal output and
constant hidden layer weight matrices, respectively, is the

control input, represents the hidden layer activation
function, is the number of nodes in the hidden layer, and

is the approximation error. For simplicity, the
two equations can be represented as

(12)

and

(13)

Rewrite (11) using (12) and (13) to obtain

(14)

The states and are not measurable; therefore,
is not available either. Using the estimated and measured

states and the output, , and , respec-
tively, instead of , , and , the proposed observer
is given as

(15)

where is the
input vector using estimated states, and are the es-
timated future and the current output, is the actual weight
matrix, is the estimated control input, is the hidden
layer activation function, is the observer gain, and
is the heat release estimation error defined as

(16)

It is demonstrated in [14] that, if the hidden layer weights
are chosen initially at random and kept constant, and the number
of hidden layer nodes is sufficiently large, then the approxima-
tion error can be made arbitrarily small so that the
bound holds for all since the
activation function forms a basis to the nonlinear function that
the NN approximates. Now we choose, at our convenience, the
observer structure as a function of output estimation errors and
known quantities as

(17)

(18)

where and are design constants.
Define the state estimation and output errors as

(19)

(20)

Combining (17)–(20), to obtain the estimation and output error
dynamics as

(21)

(22)

Authorized licensed use limited to: University of Missouri. Downloaded on December 18, 2008 at 11:59 from IEEE Xplore.  Restrictions apply.



1372 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

and

(23)

choose the weight tuning of the observer as

(24)

where and are design constants. It will be shown
in Section III-D that by using the above weight tuning, the sep-
aration principle is relaxed and the closed-loop signals will be
bounded. Next, we present the theorem, where it is demon-
strated that the state estimation and output estimation errors
along with observer NN weight estimation errors are bounded.
The following mild assumptions are required.

Assumption 1: The unknown smooth functions
and are upper bounded within the compact set as

and .
Remark: This assumption is a direct consequence of func-

tions over the compact sets. This assumption is required for the
NN universal approximation result to hold.

Theorem 1 (Observer Stability): Consider the system given
by (3), (4), and (6), and the disturbance bounded by

and where and are known positive
scalars. Let the observer NN weight tuning be given by (24). The
state estimation errors and , output estimation errors

, and NN weight estimate of the observer are uni-
formly ultimate boundedness (UUB), with the bounds specifi-
cally given by (B.11), with the controller design parameters se-
lected as

(25)

(26)

(27)

(28)

(29)

where is the NN adaptation gain and , , , and are the
observer design parameters.

Proof: Follow steps similar to [22]. See Appendix B for
the proof.

Remark 1: In Theorem 1, state and output estimation errors
and the NN weights of the observer are shown to be bounded.
One can then design a controller by applying separation prin-
ciple if the system under consideration is linear. Unfortunately,
separation principle does not hold for nonlinear systems.
Therefore, in Section III-D, the boundedness of the closed-loop
system is demonstrated where the observer and controller
signals are proven to be bounded without using separation
principle. Next we discuss the design of the adaptive critic NN
controller for the primary system and demonstrate that if the
closed-loop system is bounded then the control inputs will be
bounded.

B. Reinforcement Learning and Optimization

The purpose of the critic NN is to approximate the long-term
performance index (or strategic utility function) of the nonlinear
system through online weight adaptation. The critic signal esti-
mates the future performance and tunes the two action NNs. The
tuning will ultimately minimize the strategic utility function it-
self and the action NN outputs or control inputs to the system
so that closed-loop stability is inferred.

The utility function is given by

if
otherwise

(30)

where is a user-defined threshold. The utility function
represents the current performance index. In other words,

and refer to good and unsatisfactory tracking
performance at the th time step, respectively. The long-term
strategic utility function is defined as

(31)
where , , is the discount factor and is the
horizon index. The term is viewed here as the long system
performance measure for the controller since it is the sum of
all future system performance indices. Equation (31) can also
be expressed as after

simple manipulation, which is similar to the standard Bellman
equation.

C. Critic NN Design

We utilize the universal approximation property of NN to de-
fine the critic NN output and rewrite as

(32)

where is the critic signal, is
the tunable weight matrix, represents the
constant input weight matrix selected initially at random,

is the activation function vector in the hidden
layer, is the number of the nodes in the hidden layer, and

is the input vector.
We define the prediction error as

(33)

where the subscript “ ” stands for the “critic.” We use a
quadratic objective function to minimize

(34)

The weight-update rule for the critic NN is based upon gradient
adaptation, which is given by the general formula

(35)

where

(36)
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or

(37)

where is the NN adaptation gain.

D. Action NN Design

In this section, the design of the virtual control input is dis-
cussed. Before we proceed, the following mild assumption is
needed. Then, the system of nonlinear equations is rewritten.

Assumption 2: The unknown smooth function is
bounded away from zero for all and within the
compact set . In other words, ,

, and , where and .
Without loss of generality, we will assume that is positive
in this paper.

First, we simplify by rewriting the state equations with the
following:

(38)

Systems (3) and (4) can be rewritten as

(39)

(40)

1) Virtual Control Input Design: Our goal is to stabilize the
system output around a specified target point by con-
trolling the input. The secondary objective is to make ap-
proach the desired trajectory . At the same time, all sig-
nals in systems (3) and (4) must be UUB, all weights must be
bounded, and a performance index must be minimized. Define
the tracking error as

(41)

where is the desired trajectory. Using (39), (41) can be
expressed as the following:

(42)

By viewing as a virtual control input, a desired virtual
control signal can be designed as

(43)

where is a gain constant. Since is an unknown function,
in (43) cannot be implemented in practice. We invoke

the universal approximation property of NN to estimate this un-
known function

(44)

where is the input vector,
and are the ideal and constant input

weight matrices, is the activation function
vector in the hidden layer, is the number of the nodes in the
hidden layer, and is the functional estimation error. It
is demonstrated in [14] that, if the hidden layer weights are

chosen initially at random and kept constant, and the number of
hidden layer nodes is sufficiently large, then the approximation
error can be made arbitrarily small so that the bound

holds for all in a compact set,
since the activation function vector forms a basis to the non-
linear function that the NN approximates.

Rewriting (43) using (44), the virtual control signal can be
rewritten as

(45)
Replacing actual with estimated states, (45) becomes

(46)

where is the input vector
using estimated states, and .

Define

(47)

Equation (42) can be rewritten using (47) as

(48)

Combine (46) into (48), then (44) to get

(49)

where

(50)

and

(51)

Let us define

(52)

where is defined in (32), and the subscript represents
the error for the first action NN, . The desired

Authorized licensed use limited to: University of Missouri. Downloaded on December 18, 2008 at 11:59 from IEEE Xplore.  Restrictions apply.



1374 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 8, AUGUST 2008

strategic utility function is “0” to indicate perfect
tracking at all steps. Thus, (52) becomes

(53)

The objective function to be minimized by the first action NN
is given by

(54)

The weight-update rule for the action NN is also a gradient-
based adaptation, which is defined as

(55)

where

(56)

(57)

with is the NN adaptation gain.
2) Actual Control Design: Choose the following desired con-

trol input:

(58)

Note that is noncausal since it depends upon future value
of . We solve this problem by using a semirecurrent
NN since it can be a one-step predictor. The term
depends on state , virtual control input , desired tra-
jectory , and system errors and . By taking
the independent variables as the input to an NN, can
be approximated during control input selection. Consequently,
in this paper, a feedforward NN with properly chosen weight
tuning law rendering a semirecurrent or dynamic NN can be
used to predict the future value. Alternatively, the value can
be obtained by employing a filter [15]. The first layer of the
second NN using the system errors, state estimates, and past
value as inputs generates , which in turn is
used by the second layer to generate a suitable control input.
The results in the simulation section show that the overall con-
troller performance is satisfactory. On the other hand, one can
use a single-layer dynamic NN to generate the future value of

, which can be utilized as an input to a third control NN
to generate a suitable control input. Here, these two single-layer
NNs are combined into a single-multilayer NN.

Define input as
, then can be approximated as

(59)
where and denote the constant ideal
output and hidden layer weight matrices, is the ac-
tivation function vector, is the number of hidden-layer nodes,
and is the estimation error. Again, we hold the input

weights constant and adapt the output weights only. We also re-
place actual with estimated states to design the control input as

(60)

where
, is the input vector. Rewriting (47) and

substituting (58)–(60), we get

(61)

where

(62)

and

(63)

Equations (49) and (61) represent the closed-loop error dy-
namics. Next we derive the weight-update law. Define

(64)

where is the error and the subscript stands for
the second action NN. Following the similar design, choose a
quadratic objective function to minimize

(65)

Define a gradient-based adaptation where the general form is
given by

(66)

(67)

or in other words

(68)

The proposed controller structure is shown in Fig. 1. Next,
in Theorem 2, it is demonstrated that the closed-loop system
is UUB. Before we proceed, the following assumptions are
needed.

Assumption 3 (Bounded Ideal Weights): Let , , , and
be the unknown output layer target weights for the observer,

Authorized licensed use limited to: University of Missouri. Downloaded on December 18, 2008 at 11:59 from IEEE Xplore.  Restrictions apply.
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Fig. 1. Combined primary and secondary controller structure.

critic, and two action NNs, and assume that they are bounded
above so that

(69)

where , , and represent the
bounds on the unknown target weights, and where the Frobenius
norm [15] is used.

Fact 1: The activation functions are bounded above by known
positive values so that

(70)

where , , ,
and are the upper bounds.

Theorem 2 (Output Feedback Controller Stability): Consider
the system given by (3) and (4) and the disturbance bounds
and to be known constants. Let the observer, critic, virtual
control, and control input NN weight tuning be given by (24),
(37), (57), and (68), respectively. Let the virtual control input
and control input be given by (46) and (60). The estimation er-
rors and tracking errors and and weight estimates

, , , and are UUB, with the controller
design parameters selected as

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

where , , , and are NN adaptation gains, , , , ,
, and are controller gains, and is employed to define the

strategic utility function.
Proof: Follow steps similar to [22]. Proof is presented in

Appendix B with Theorem 4.
Remark 2: A well-defined controller is developed in this

paper since a single NN is utilized to approximate two nonlinear
functions even though a second-order nonlinear nonstrict feed-
back discrete-time system is considered as the primary system.
The causal problem encountered in the proposed work is due to
the nonstrict feedback issue whereas the causal nature encoun-
tered in [23] is due to the th-order strict feedback system. In
[23], it was shown how a suitable coordinate transformation can
be utilized to overcome the causal problem. Similar approach
can be found for the proposed nonstrict feedback nonlinear dis-
crete-time system as well. However, extension to an th-order
system is outside the scope of this work.
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Remark 3: Generally, the separation principle used for linear
systems does not hold for nonlinear systems, and hence it is re-
laxed in this paper for the controller design since the Lyapunov
function is a quadratic function of system errors and weight es-
timation errors of the observer and controller NNs.

Remark 4: It is important to note that in this theorem persis-
tency of excitation condition (PE) condition for the NN observer
and NN controller and the linearity in the parameters assump-
tion are not needed, in contrast with standard work in the dis-
crete-time adaptive control, since the first difference does not re-
quire the PE condition to prove the boundedness of the weights.
Even though the input to the hidden-layer weight matrix is not
updated and only the hidden- to the output-layer weight ma-
trix is tuned, the NN method relaxes the linear in the unknown
parameter assumption. Additionally, the certainty equivalence
principle is not used.

Remark 5: The NN weight tuning proposed in (24), (37),
(57), and (68) renders a semirecurrent NN due to the proposed
weight tuning law even though a feedforward NN is utilized.
Here the NN outputs are not fed as delayed inputs to the network
whereas the outputs of each layer are fed as delayed inputs to
the same layer. This semirecurrent NN architecture renders a
dynamic NN, which is capable of predicting the state one step
ahead.

Remark 6: The need for an exact model of the nonlinear dis-
crete-time in many existing ACD approaches [5], [6] is relaxed
in our work. The action NNs will learn the unknown system dy-
namics through the feedback signals from the closed loop so
that it can generate a near-optimal control input. The proposed
actor–critic architecture will render a model-free approach.

Remark 7: It is important to note that the output-layer
weights of the action and critic NN can be initialized at zero
or random. This means that no explicit offline training phase is
necessary and the updating of the NNs is performed in an online
manner. This is in contrast with many ACD designs where
some a priori training is needed. Additionally, the proposed
methodology does not require stop/reset strategy utilized by
certain adaptive critic schemes [6].

Remark 8: Compared to other adaptive critic or reinforce-
ment learning schemes [5], [6], the proposed approach ensures
closed-loop stability using the Lyapunov approach even though
gradient-based adaptation is employed.

Remark 9: It is only possible to show the boundedness of
all the closed-loop signals by using an extension of Lyapunov
stability [15] due to the presence of approximation errors and
bounded disturbances consistent with the literature. Conse-
quently, a near-optimal solution can be demonstrated by using
the update laws of the critic and action NNs.

Remark 10: Equations (71)–(80) relate to the selection of
adaptation gains whereas (81) provides how the discount factor
can be chosen in order to ensure stability and convergence. Such
a relationship does not exist in the past adaptive critic literature
where the discount factor and adaptation gains are selected by
trail and error procedure.

Remark 11: With the proposed approach, the learning can be
performed simultaneously both in the critic and action NNs in
contrast with some of the available schemes where the learning
is first accomplished by the critic NN and then by the action NN.

Corollary 1: The proposed adaptive critic NN controller and
the weight-updating rules with parameter selection based on
(71)–(81) cause the state to approach the desired virtual
control input .

Proof: Combining (45) and (46), the difference between
and is given by

(82)
where is the first action NN weight estimation
error and is defined in (50). Since both

and are bounded, is bounded near . In
Theorem 1, we show that is bounded, i.e., the state
is bounded to the virtual control signal . Thus, the state

is bounded to the desired virtual control signal .

IV. SECONDARY CONTROLLER DESIGN

To simplify the controller development, the third equation can
be simplified as

(83)

where . This equation can be
represented as a standard affine nonlinear discrete-time system.
The controller design for this system is different than the non-
strict feedback nonlinear discrete-time system given by (1) and
(2). Therefore, the design of a novel reinforcement controller is
introduced here by assuming that the third state is measurable.
For maintaining dilution to a desired level, the third equation
will be employed with EGR as the control input and inert gas
as an additional state. It is important to notice that the residual
gas fraction is not known in advance though upper bounded is
known. The objective of the secondary controller is to force the
error between the actual state to approach its target value

.
Define

(84)

A. Critic NN Design

Let the long-term cost function be defined as

(85)

where

(86)

with and are positive definite matrices and is the discount
factor within the range of selected by the designer.
Invoke the universal approximation property of NN to estimate
(85) as

(87)

where is the estimation error. Replace the states with
estimated states

(88)

where and denote the ideal output and
constant hidden-layer weights, is the activation
function vector, and is the number of hidden-layer nodes.
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Again, we hold the input weights constant and adapt the output
weights only. Take as the
input vector.

Define the prediction error as

(89)

where

(90)

Using a quadratic minimizing function

(91)

Using a standard gradient-based adaptation method, the weight
update is given by

(92)

The control design is described next.

B. Action NN Design

The tracking error is defined as

(93)

where is the target bounded trajectory. Define the desired
control signal as

(94)

where is a design parameter. Using the universal approxima-
tion property of NN and the approximate states

(95)

where and denote the ideal output- and
constant hidden-layer weight matrices, is the acti-
vation function vector, is the number of hidden layer nodes,
and is the input vector.
Again, we hold the input weights constant and adapt the output
weights only. Rewrite (93) as

(96)

where

(97)

and

(98)

Define the control input cost function

(99)

where is the desired long-term cost function and is equal
to zero. Define a quadratic error to minimize

(100)

Utilizing a gradient–decent minimization strategy

The disturbance and the approximation errors are taken as zero
for the sake of weight tuning. Then, action NN weight tuning
for the secondary controller can be expressed as

(101)

The structure of the combined primary and secondary controller
is shown in Fig. 1. Next the stability of the closed-loop system
of the secondary controller is demonstrated. Before we proceed,
the following mild assumptions are stated.

Assumption 4: Let and be the unknown output-layer
target weights for the action and critic NNs, respectively, and
assume that they are bounded such that and

where and represent
the bounds on the ideal weights.

Fact 2: The activation functions for the action and critic
NNs of the secondary controller are bounded by known positive
values, such that and , where

denote the upper bound for the activation
functions.

Assumption 5: The unknown smooth function is
bounded away from zero for all within the
compact set . In other words, ,

, where and
. Without loss of generality, we will assume

that is positive in this paper. Additionally, the NN approx-
imation errors and are bounded above in
the compact set by and [15].

Remark 12: The tracking and weight estimation errors will
be expressed as a function of NN approximation errors and
bounded disturbances. Even if the Assumption 5 is assumed, un-
less the NN weight tuning is properly selected, the entire system
will not be stable.

Fact 2: With the Assumption 4, the term in (97) is
bounded over the compact set by

.
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Theorem 3 (Secondary Controller Stability): Consider the
secondary system given by (5) and the disturbance bound to
be known constants. Let the virtual and control input NN weight
tuning be given by (92) and (101), respectively. Let the control
input be given by (95); the tracking error and weight es-
timates and are UUB with the controller design
parameters selected as

(102)

(103)

(104)

where and are NN adaptation gains and is the controller
gain.

Proof: Proof is combined with Theorem 4.
Remark 13: Theorem 3 demonstrates the UUB of the sec-

ondary controller for the closed-loop system. The primary and
secondary controller designs introduced here are analogous to
dual-controller design approach in the literature [20].

Theorem 4 (Overall System Boundedness): Consider the
system given by (3)–(6) and the disturbance bounds ,

, and to be known constants. Let the observer,
critic, virtual control, and control input NN weight tuning
be given by (24), (37), (57), and (68), respectively, for the
primary adaptive controller whereas virtual and control input
NN weight tuning be given by (92) and (101), respectively.
Let the virtual control input and control input for the pri-
mary and secondary controllers be given by (46), (60), and
(95), respectively, then the estimation and tracking errors

and weight estimates
, , , , , and are UUB with

the bounds given in (B.35) provided the design parameters are
selected as (71)–(81) and (102)–(104).

Proof: See Appendix B.

V. RESULTS AND ANALYSIS

EGR operation of an SI engine allows lower emissions and
improved fuel efficiency. However, EGR operation destabilizes
the engine due to the cyclic dispersion of heat release. The adap-
tive critic NN controller is designed to stabilize the SI engine
operating at EGR conditions.

A. Daw Engine Model

SI engine dynamics can be expressed according to the Daw
model as a class of nonlinear systems in a nonstrict feedback
form [16]. At high EGR levels, the engine can be expressed
as a combination of nonstrict feedback nonlinear discrete-time
systems plus affine nonlinear discrete-time system given by [17]

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

where , , and represent total mass of air, fuel,
and inert gas, respectively, of the engine and is the heat
release at th time instant. The value of combustion efficiency
is denoted by , which is bounded by

with maximum combustion efficiency being
unity. Residual gas fraction is bounded by

, which is typically unknown. and
are unknown but bounded disturbances bounded by

and with and being unknown
positive scalars. The terms , , and are equivalence ratio
system parameters. The terms , , , and

are the mass of water, oxygen, nitrogen, and carbon
dioxide, respectively, whereas , , , , and are
design constants, and constants associated with their respective
chemicals.

Equations (105) and (106) represent the second-order non-
strict feedback nonlinear discrete-time systems whereas (107)
can be controlled by the secondary controller. In this paper, for
convenience, we assume that the secondary controller provides
a bounded value to the primary system by setting the EGR at
discrete levels. We set it to a constant that will simplify the
controller implementation, as the third state is considered to be
a fixed value. Note that this deterministic model accounts for
stochastic effects by randomly fluctuating parameters such as
injected air-fuel ratio or residual fraction. Other complex pro-
cesses like temperature variation, turbulence, and fuel vaporiza-
tion are not modeled but are assumed to add additional noise to
the engine output. To implement the observer, replace the fol-
lowing from the Daw model into the general case:

(116)

and

(117)

Note that we omitted the residuals in , because they are
not available. The error introduced by this is accounted for in
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Fig. 2. Uncontrolled and controlled heat release return map at 13% EGR. Heat release at k + 1 instance is plotted against heat release at k instance.

the air estimation error. To implement the controller, replace the
following in place of and :

(118)

To calculate the nominal values in (117), we run the engine at
different EGR levels in an uncontrolled manner at the stoichio-
metric fuel to air ratio. That will give us the nominal fuel, air,
and equivalence ratio— , , and . From those, com-
bustion efficiency is calculated.

B. Simulation Results

The controller is easily simulated in in conjunction
with the Daw model. The learning rates for the observer
(71), critic (72), virtual control input (73), and control
input (74) networks and for the secondary controller are
taken as , and , respec-
tively. The gains , , , , , , and are selected as

, and . The system constants
, , and are chosen as , and . The critic

constants and are and for both controllers for all
EGR levels. All NNs use 20 hidden neurons with hyperbolic
tangent sigmoid activation functions in the hidden layer.

The simulation parameters selected were as follows. An
equivalence ratio of one was maintained with stochastic vari-
ation of 1%, for iso-octane, residual gas fraction

, mass of nominal new air , mass of
nominal new fuel , the standard deviation of mass of
new fuel is , cylinder volume in moles to match
the experimental constraint, molecular weight of fuel ,
molecular weight of air , , , and
maximum combustion efficiency . EGR was assumed to be
an inert mixture with a molecular weight of .

The last two system variables, disturbances and stochastic ef-
fects, are modeled as follows. First, we assume a Gaussian dis-
tribution governs the two effects. We may inject disturbances to
the two states in (105) and (106) due to and , but a
simpler method is to perturb the equivalence ratio (109). This
simplification is sufficient because the states are not measur-
able; therefore, the disturbances are increasingly complex and

immeasurable. Stochastic effects alter the output, and through
the combustion efficiency (110) and finally the output (108),
this single perturbation effectively models the last two system
variables. The final model uses a Gaussian distribution noise
injected into (109) centered around the target equivalence ratio
and deviation of . The resulting simulation output matches
to the output observed from the Ricardo engine. All simulations
ran for uncontrolled 5000 cycles first, and then 5000 controlled
cycles.

Fig. 2 shows two heat release return maps, one controlled and
the other uncontrolled, for the set point at 13% EGR. Each figure
shows the next time step versus the current time step heat re-
lease. Points centered along the 45 line represent heat release
values that are equal to the next step heat release. Note the clus-
tering of the points around the mean heat release of 850 J. The
square represents the target heat release. At this set point, the
heat release dispersion starts to affect the engine performance,
indicated by the stray points away from the central cluster. There
are no complete misfires, but the heat release variation can be
clearly seen. Fig. 3 shows the time series of the heat release and
control input at the same EGR level. The controller activates
after several thousand cycles, indicated by the fluctuation of the
control output. The controller converges quickly and to a stable
operation point. The presence of spikes in the control output in-
dicates a decline in heat release such as a misfire, translating
into additional fuel control to counteract.

Figs. 4 and 5 depict another set point at 19% EGR. Similar
features appear compared to the previous EGR level, except
with higher frequency and amplitude of dispersion. Improve-
ments shown reflect the assertion of the control action.

In order to quantify the performance of the controller, we
compare the coefficient of variation (COV), which is the stan-
dard deviation normalized by dividing the mean of the heat re-
lease. As the COV decreases, the standard deviation decreases,
which indicates that the engine heat release is more stable com-
pared to higher COV. The controller performs better, and the re-
turn map consequently should approach the target value. Table I
tabulates all of the data from the simulation. The COV of each
set point decreased drastically (shown with a negative sign) as
the controller operated. The performance exceeded the improve-
ment due to the slight increase in the mean fuel input. Next, we
show that experimental data supports the simulation data.
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Fig. 3. Heat release versus iteration number at 13% EGR. Controller turns on at k = 4000. Note the almost instant learning convergence of the controller.

Fig. 4. Uncontrolled and controlled heat release return map at 19% EGR.

Fig. 5. Heat release and control input at 19% EGR.

C. Experimental Results Using Ricardo Engine

The experimental results are collected from a Ricardo hydra
engine with a modern four-valve Ford Zetek head. It contains
a single cylinder running at 1000 r/min with shaft encoders to
signal each crank angle degree and start of cycle. There are 720
per engine cycle.

In the cylinder, a piezoelectric pressure transducer records
pressure every crank angle degree. Combustion is considered

to take place between 345 and 490 , for a total of 145 pressure
measurements. The cylinder pressure is integrated along with
volume during the 17.7-ms calculation window. All communi-
cations are completed at this time. The output of our controller
controls the fuel input. This is controlled by a transistor–tran-
sistor logic (TTL) signal to a fuel injector driver circuit.

All signals communicate through a custom interface board
using a microcontroller. The board interfaces with the PC
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Fig. 6. Uncontrolled and controlled heat release return map at EGR = 18%. Heat release at k + 1 instance is plotted against heat release at k instance.

Fig. 7. Uncontrolled and controlled heat release return map at EGR = 18%. Heat release at k + 1 instance is plotted against heat release at k instance.

through a parallel port and with the engine hardware through
an analog signal.

All constants given in the simulation section are used in the
experiment. The first operation for an engine run is to measure
the air flow and nominal fuel. The desired EGR set point equa-
tion is given by

EGR (119)

where is the mass of inert gas introduced at each cycle,
which is nitrogen in the lab and exhaust gas in production ap-
plications and and are mass of fuel and mass of air, re-
spectively.

These values are loaded into the controller. Ambient pressure
is used to reference the in-cylinder pressures when the exhaust
valve is fully open and subtracted from the combustion pressure
measurements. Uncontrolled and controlled data were collected
at EGR percentages of 18, 20, and 23. The uncontrolled engine

ran for 5000 cycles and then the controller is turned on for an-
other 5000 cycles. Steady state was ensured prior to data collec-
tion by measuring stable exhaust temperatures.

Fig. 6 shows two heat release return maps, one controlled and
the other uncontrolled, for the 18% EGR set point. The target
heat release is at 870 J. At this EGR level, cyclic dispersion can
clearly be seen, indicated by deviation of the points away from
the main cluster on the 45 line. Fig. 7 shows the time series of
the heat release and control input for the same set point.

Define the state and output tracking errors as

(120)

where and are state 1 and state 2 tracking errors,
respectively. Fig. 8 shows the controller state tracking errors at
a set point of 18% EGR. The range represents tracking error in
percentage over and under the desired state trajectories. State 1
tracking error is considerably better than state 2 tracking. The
second state tracks within 0.5%; therefore, both are performing
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Fig. 8. State tracking errors.

TABLE I
COV AND FUEL DATA FOR EACH OF THE FOUR SET POINTS

well. The spikes indicate unsuccessful tracking. Consequently,
the observer and controller converged together to the desired
states and estimated states, generating a stable error system.

Fig. 9 shows the return map of the heat release for 20%
EGR. Note that as the equivalence ratio decreases, the return
map spreads out and dispersion increases. Fig. 10 is the corre-
sponding heat release and control time series. Misfires increase
in frequency, as shown by the negative heat release spikes due
to heat transfer from the cylinder to the environment without
internal generation of useful work by combustion. Fig. 11
shows the increasing difficulty of the observer and controller
to generate a low state tracking error compared to the previous
case. As the engine operates in higher EGR modes, overall
dispersion increases, thus degrading observer performance.
Although the performance is reduced, the tracking error is well
within satisfactory performance.

Fig. 12 illustrates a detailed view of 70 controlled cycles at
20% EGR. The controller generates decreasing control during
cycles when the heat release is steady, indicated by cycles be-
tween 4805 and 4818 and between 4822 and 4836. However,
during misfires or extreme dispersion in heat release, the con-
troller attempts to compensate for the drop in heat release by
pushing the control up, indicated by cycles 4819, 4847, etc. The
controller compensates after a one cycle delay in the positive di-
rection and attempts to recover the engine heat release towards

the target point. It is difficult to determine success on cycles
with no misfire, because no heat release plots are available for
uncontrolled case during the same cycles when the controller
is operating for comparison. Overall, the controller performs to
general expectation.

Table II shows the improved COV when the controller is in
operation compared to an uncontrolled engine along with the
corresponding change in nominal fuel. At all EGR set points ex-
cept 23%, the increase in fuel input is well within the tolerance
of the equipment. On average, the COV decreases significantly
by 25% compared to the uncontrolled case. For the 23% EGR,
the drop is around 12%.

The COV and fuel change data indicate an improved per-
formance compared to the previous controller where a simple
tracking error is utilized without any optimization criteria [18].
The average drop in COV was 17% between uncontrolled and
controlled cases, compared to 25% for the current controller.
Although this seems to indicate an increase in performance, we
must also consider the increase in average fuel input in con-
junction. The previous controller increased the average fuel to
2.4%, which is well beyond the detection error and significant in
the engine application. This controller, however, averages less
than 1%, safely below the detection error. The controller fuel
increases negligibly while performing better than the previous
controller due to the incorporation of the performance index.
Therefore, this controller outperforms other NN controller and
at the same time exerts less impact on the fuel.

VI. CONCLUSION

The controller presented successfully controlled an SI en-
gine to reduce cyclic dispersion under higher EGR conditions.
The system is modeled as a combination of nonstrict feedback
nonlinear discrete-time system and affine nonlinear discrete-
time system. It converged upon a near-optimal solution through
the use of a long-term strategic utility function even though
the exact dynamics are not known beforehand. It was shown
through simulation that the controller is stable under a variety
of set points. In experimental results, the COV was reduced
when the controller was turned on. At the same time, the av-
erage fuel input did not change significantly; therefore, the im-
provements are solely due to the effects of the controller. The
output is stable, as predicted by the Lyapunov proof. There was
also a significant reduction in unburned hydrocarbon between
controlled and uncontrolled cases.

APPENDIX A

Tables III and IV present the improvement in emissions for
several equivalence ratios. The improvement is better than what
we have seen before [18] using another controller. NO is re-
duced by around 2%–7.4% from uncontrolled scenario. How-
ever CO remains unchanged, whereas O decreases by about
20%, as well as unburned hydrocarbons (uHC) decreasing with
control nominally due to reduced cyclic dispersion.
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Fig. 9. Uncontrolled and controlled heat release return map at 20% EGR.

Fig. 10. Heat release and control input at 20% EGR.

APPENDIX B

Proof of Theorem 1: Define the Lyapunov function

(B.1)

where , , are auxiliary constants. Take the
first term, take the first difference, and substitute (24)

(B.2)
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Fig. 11. State tracking errors.

Fig. 12. Detailed view of 70 controlled cycles at 20% EGR.

TABLE II
COV AND FUEL DATA FOR EACH OF THE THREE SET POINTS

Invoke the Cauchy–Schwarz inequality, defined as

(B.3)
and simplify to get

(B.4)

Take the second term and substitute (21) to get

(B.5)

Take the third term in (B.1) and substitute (22), assuming
bounded input , to get

(B.6)

Take the fourth and final term in (B.1) and substitute (23) to
obtain

(B.7)

Combine (B.2)–(B.7) and simplify to get the first difference
of the Lyapunov function

(B.8)

where is defined as

(B.9)

Select

(B.10)

This implies as long as (25)–(29) and the fol-
lowing hold:

or

or

or

(B.11)

According to a standard Lyapunov extension theorem [15], this
demonstrates that the estimation errors, the output error, and the
NN observer weight estimation errors are .
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TABLE III
EMISSIONS DATA FOR SELECT EGR SET POINTS

TABLE IV
UNBURNED HYDROCARBON EMISSION DATA

Proof of Theorem 4: Define the Lyapunov function

(B.12)

where , , are auxiliary constants; the NN
weights estimation errors , , , and

are defined in (24), (37), (57), and (68), by subtracting
their respective ideal weights , , on both sides;
the observation errors and are defined in
(21) and (22), respectively; the system errors and

are defined in (49) and (61), respectively; and ,
, are NN adaptation gains

(B.13)

where , , are auxiliary constants; the
NN weights estimation errors and are
defined in (101) and (92), by subtracting their respective ideal
weights , , on both sides; the system error
is defined in (96); and , , are NN adaptation gains.

The Lyapunov function (B.13) obviates the need for the CE con-
dition. Take the first term from (B.12) and the first difference
using (49) to get

(B.14)

Invoke the Cauchy–Schwarz inequality defined as

(B.15)
Simplify to get

(B.16)
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Take the second term from (B.12), substitute (61), invoke the
Cauchy–Schwarz inequality, and simplify

(B.17)

Take the third term, substitute (B.12), invoke the
Cauchy–Schwarz inequality, and simplify

(B.18)

Take the fourth term from (B.12), substitute (37), invoke the
Cauchy–Schwarz inequality, and simplify

(B.19)

Take the fifth term from (B.12), substitute (57), invoke the
Cauchy–Schwarz inequality, and simplify

(B.20)

Take the sixth term from (B.12), substitute (68), invoke the
Cauchy–Schwarz inequality, and simplify

(B.21)

Take the seventh term from (B.12), set

(B.22)

Take the eighth term from (B.12), substitute (21), invoke the
Cauchy–Schwarz inequality, and simplify

(B.23)

Take the ninth term from (B.12), substitute (22), invoke the
Cauchy–Schwarz inequality, and simplify

(B.24)

Take the tenth term from (B.12), substitute (23), invoke the
Cauchy–Schwarz inequality, and simplify

(B.25)

Take the first term in the summation from (B.13) and replace
(96)

(B.26)

Take the second term in the summation from (B.13) and replace
(101)

(B.27)

Define the following:

(B.28)
Rewrite (B.27) using (B.28)

(B.29)
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Take the third term from (B.13) from the summation and replace
(92)

(B.30)

Take the fourth and final term from (B.13) from the summation
and replace

(B.31)

Combine (B.16)–(B.31) and simplify to get the first difference
of the Lyapunov function

(B.32)

where

(B.33)

Select

(B.34)

This implies as long as (71)–(81) and (102)–(104)
hold and any one of the following holds:

(B.35)
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