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ABSTRACT

This thesis presents a new adaptive optimal control framework for continuous-
time nonlinear input-affine systems. The idea of combining adaptive control
and optimal control has emerged recently due to the advancement in one class

of machine learning: reinforcement learning. The topic is also known as the approx-
imate/adaptive dynamic programming (ADP) which is often formulated in discrete
time or as the Markov decision process (MDP). This work, for the first time, extends
the idea of linear discrete-time Q-learning to a nonlinear continuous-time adaptive
optimal control algorithm that runs without stepwise iterations. A particular focus of
the research is on the automotive engine application with the objective of developing
highly-integrated and complex propulsion technology of the future, accounting for
sustainability of future transport technology, i.e. emission reduction and optimised
energy and power use. Hence, the thesis comprises two parts:

The theoretical work is driven by the development of reinforcement learning and
ADP, where a novel online Q-learning algorithm is proposed to approximately solve
the optimal control problem in real time using a new adaptive critic neural network
without the requirement of complete system knowledge. The finite-time convergence
of the value function approximation is guaranteed by using a sliding-mode technique
while the persistent excitation (PE) condition of the state trajectories can be verified
directly in real time. Furthermore, the proposed Q-learning approach is extended to
solve a nonlinear optimal observer design problem, where an observer Hamilton-
Jacobi-Bellman (OHJB) equation is obtained. The closed-loop stability is rigorously
proved via the Lyapunov analysis and numerical simulations demonstrate the effec-
tiveness of the proposed methods.

The practical work investigates the control problems of a Wankel rotary engine, i.e.
air-fuel ratio (AFR) control and idle speed control with the aim of emission reduc-
tion and efficiency improvement. An adaptive optimal controller is designed for the
idle speed regulation. Two controllers: 1) nonlinear observer-based and 2) Q-learning-
based are developed for the AFR. The control system development covers dynamics
modelling, calibration, control design/simulation, implementation, and practical ex-
periments. The proposed controllers are successfully applied and validated through
a series of simulations and engine tests under different driving cycles.
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1
INTRODUCTION

This thesis presents the development of adaptive optimal control theory via

the reinforcement learning philosophy for general continuous-time nonlin-

ear problems. The subject can easily become a highly mathematical discipline

but its principles and tools are practically useful to solve real-world problems. In par-

ticular, a substantial amount of work was devoted to the application on automotive

engine systems. This chapter provides the scope and motivations of the research, fol-

lowed by the objectives, the methodology, and the thesis outline.

1.1 Research Scope and Motivations

In the field of systems and control, control engineering covers a wide range of sub-

jects and disciplines, and it is valuable not just in its own right, but also in terms of its

influence on other areas such as manufacturing, transportation, aerospace, commu-

nications, computers, biology, energy, and economics. The design of control systems

is the core subject in control engineering studies. A control system should be able to

regulate, manage or direct the behaviour of the objective system, i.e. the plant. To be
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specific, the control system usually senses the plant’s operation, computes the correc-

tive action, and actuates the plant to deliver the desired performance. This closed loop

of sensing, computation, and actuation forms the central concept of control: feedback.

For feedback control, we care about three major aspects:

• Stability

• Robustness

• Performance

Stability is considered to be the most important property. For a linear system, the out-

put should be bounded given a bounded input, which is known as bounded-input,

bounded-output (BIBO) stability. For a nonlinear system, we often use input-to-state

stability (ISS), which extends the notion of BIBO stability using Lyapunov stability.

Robustness refers to the ability of the control system to withstand the uncertainty

or the external disturbance (e.g. noise, model uncertainty or parameter variations),

where we often look at gain and phase margins, and sensitivity analysis. Robust con-

trol and adaptive control are approaches that explicitly deal with uncertainty. Per-

formance in this context means that the dynamics of the closed-loop system have

additional desired behaviours such as fast responsiveness to changes and good dis-

turbance attenuation. For example, a control engineer may specify the rise time, the

settling time, and the overshoot for transient responses and the error and the accuracy

for the steady-state responses.

In control engineering, these three properties are established via a variety of mod-

elling and analysis techniques. The subject relies on and shares tools from physics

(dynamics, modelling), computer science (information theory, algorithms, and soft-

ware), and operations research (optimisation, game theory).

The era of Artificial Intelligence (AI): Machine Learning

2
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Being in 2021, it is not possible to talk about the state of the art control engineer-

ing without mentioning artificial intelligence (AI). The name of AI was coined at the

Dartmouth conference on artificial intelligence in 1956. Since then, the AI industry

has experienced several booms to billions of dollars along with two difficult periods

of "AI winter" in 1974-1980 and 1987-1993, respectively [5]. Beginning about 2012, the

interest in AI and especially machine learning as its sub-field has led to a dramatic in-

crease in funding and investment from research and corporate communities in the last

decade. The success of machine learning comes with two major factors: 1) Data: Ma-

chine learning needs huge amount of data for training. Firms such as Google, Meta,

Microsoft, and Amazon can access a massive amount of data thanks to the Internet

and the cloud data storage. 2) Computing power: Rapid improvements in Central

Processing Unit (CPUs) and Graphics Processing Unit (GPUs) have allowed neural

networks to run at speeds which were not possible a decade ago. Control engineer-

ing tools and methods tend to have less computational complexity (low-capability

micro-controllers) than some AI applications. The deployment of new AI approaches

will contribute to the creation of more capable control systems and applications. This

motivates the development in "Intelligent Control" by integrating AI techniques and

control theory.

It would be convenient to summarise our research scope as "intelligent control". Nev-

ertheless, the definition of it is somewhat ambiguous, where there are several compet-

ing concepts for the terminology such as "adaptive" control and "learning" control [6].

To understand the interdisciplinary subject, we use Fig. 1.1 to explain our research

scope as the interaction of the fields of automatic control, operations research, and

artificial intelligence. Each field can be extremely broad and there are notable syner-

gies of the tools and techniques between these fields. For example, the AI techniques

such as machine learning and artificial neural networks can help the decision-making

process in operations research and the control system design in automatic control; the

operations research methods such as dynamic programming can be used to compute

the optimal policy for reinforcement learning in AI and the optimal controller in auto-

3
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FIGURE 1.1. The interdisciplinary research scope as the interaction of the
fields of automatic control, operations research, and artificial intelli-
gence.

matic control; the automatic control principles such as feedback, stability, and model-

based design can be particularly useful for scientific machine learning (SciML) and

reinforcement learning in AI and decision analysis in operations research.

From "breadth" to "depth":

In terms of theoretical research, we pose the two following questions:

• What is the underlying connection between control theory and machine learning?

• How does machine learning technology help control systems design?

4
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On the one hand, the use of control theory as a mathematical tool can help formulate

and solve machine learning problems such as optimal parameter tuning and neural

network training. On the other hand, the use of machine learning as a kernel method

or a data-driven approach can numerically solve complex control theory problems

that are intractable by analytical methods [7]. We look forward to a synthesis of data-

centred machine learning and model-centred control theory in the foreseeable future

as our research continues. In this thesis, we will show the elegant equivalence be-

tween adaptive optimal control, reinforcement learning, and approximate dynamic

programming. This is illustrated in Fig. 1.2 in the context of Fig. 1.1.

FIGURE 1.2. The equivalence between adaptive optimal control, reinforce-
ment learning, and approximate dynamic programming.

For the practical application, we are interested in the development and implementa-

tion of new control systems for automotive powertrain, where the control problems

5
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for internal combustion engines are especially addressed. Therefore, we can raise the

two motivating questions:

• What are the control problems and their general solutions in automotive engine sys-

tems?

• How do we improve the current engine control strategy?

1.2 Objectives

In the context of control theory and engineering, we aim to study adaptive optimal

control following the scope and motivations in Section 1.1. This subject is positioned

as a distinctive intersection that connects control theory, operations research, and

AI. We will further describe their underlying relationships in the literature review

in Chapter 2. This Ph.D. research is expected to cover both theoretical and practical

sides of the subject. We summarise the research objectives into three points:

1. To formulate a new adaptive optimal control scheme for continuous-time non-

linear systems in terms of novel control and observation techniques.

2. To develop new adaptive optimal control algorithms using reinforcement learn-

ing that bring benefits such as adaptation, optimality, model-free learning, etc.

3. To design and implement new control systems for automotive engines with the

aim of technology improvement.

1.3 Research Process

For the theoretical research (Objective 1 and 2) on adaptive optimal control, the re-

search process diagram is shown in Fig. 1.3. Beginning with literature review, we in-

vestigate not only the state of the art but also cover some of the development history

6
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of the related research topics such as adaptive control, optimal control, robust con-

trol, intelligent control, convex optimisation, and reinforcement learning. This can

help creating an inclusive framework and seeing a big picture as one can often ad-

vance a new theory by absorbing ideas from a seemingly different area, e.g. it has

been shown that the optimal control problem can be solved by a critic-actor structure

using adaptive control, which was originated in the reinforcement learning studies.

After we find the limitation of current methods and the core idea to improve them, a

hypothesis can be constructed using the idea, followed by detailed development and

analysis. The proposed theory can then be validated using numerical examples and

adjustment can be made to rectify the theory.

FIGURE 1.3. Theoretical research methodology diagram.

For control system development (Objective 3), we borrow the knowledge from sys-

tems engineering. The V-Model is one of the widely-used system development pro-
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cesses in the automotive industry. Fig. 1.4 presents the V-Model for engine control

systems development in the automotive industry. Our research develops the engine

control system via an electronic control unit (ECU) and the plan should follow the

industrial-standard development process that includes design, simulation, and im-

plementation.

The V-Model (where V stands for verification and validation) splits the development

process into two segments. The left arm of the V consists of the decomposition of

the control requirement, analysis and design, software simulation and rapid control

prototyping while the right arm concentrates on verification and validation activi-

ties such as code generation, calibration, hardware-in-the-loop (HiL) testing and in-

vehicle testing. This systematic process is easy to manage and works very well for

small projects such as the ECU development.

FIGURE 1.4. The V-Model for engine control systems development in the au-
tomotive industry.
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1.4. THESIS OUTLINE

1.4 Thesis Outline

The Ph.D. thesis presents both the theoretical (Chapter 3-4) and practical results (Chap-

ter 5-8) of the research on adaptive optimal control via reinforcement learning and

automotive engine control. Each chapter of 3-8 is supported by a (planned) journal or

conference publication.

Chapter 1 provides the introduction of the Ph.D. research, which includes the research

scope, motivations, objectives, the research process, and the thesis outline.

Chapter 2 describes the literature review on several important aspects throughout

the Ph.D. studies, which covers the fundamental subjects such as modern control

theory, reinforcement learning, and in-depth topics on adaptive optimal control and

automotive engine control.

Chapter 3 establishes the adaptive optimal control theory which forms the core contri-

bution of the theoretical research. Two online adaptive optimal control algorithms are

proposed based on reinforcement learning for continuous-time nonlinear input-affine

systems: 1) generalised policy iteration (GPI) and 2) Q-learning. The adaptive critic

and actor are continuously and simultaneously updating each other without itera-

tive steps or an initial stabilising policy. The two approaches can online approximate

the value functional/Q-functional and are partially/completely model-free. The new

adaptive design enables the online verification of the persistent excitation (PE) condi-

tion and guarantees the overall closed-loop stability and the finite-time convergence.

A detailed mathematical analysis and numerical simulations are provided to show

the effectiveness of the algorithms.

Chapter 4 extends the adaptive optimal control results to an optimal observer design

problem. An online continuous-time Q-learning algorithm is proposed to solve the

optimal observer design problem online while ensuring stability and optimality. We

show that the optimal solution can be obtained by approximately solving an observer
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Hamilton-Jacobi-Bellman (OHJB) equation. The Q-functional is approximated by an

adaptive critic neural network that solves the Q-learning Bellman equation online. A

case study on observer design for the Van der Pol oscillator is provided. Numerical

simulations demonstrate the effectiveness of the proposed algorithm compared with

the high-gain observer.

Chapter 5 investigates the engine dynamics modelling methodology that is partic-

ularly suitable for the theoretical studies and new control development for auto-

motive engine systems. As a result, a set of control-oriented models are developed

for a 225CS Wankel rotary engine produced by Advanced Innovative Engineering

(AIE) UK Ltd. Through a synthesis approach that involves State Space (SS) princi-

ples and the artificial Neural Networks (NN), the Wankel engine models are derived

by leveraging both first-principle knowledge and engine test data. By using either

(or both) physical knowledge or test data, the developed models are able to describe

the Wankel engine dynamics with acceptable accuracy. They are all control-oriented

models that have less computational demand and should be able to run faster than

the available CFD models due to their simplicity.

Chapter 6 develops an output feedback controller based on reinforcement learning

for the idle speed regulation problem. The proposed controller is completely model-

free and able to learn the optimal control solution online in finite time using only the

measurable outputs. The regulation of idle speed can be formulated as an optimal

control problem that minimises a pre-defined value function by actuating the throttle

angle. Then, we incorporate the extended Kalman filter (EKF) as an optimal reduced-

order state observer, which enables the online estimation of the unknown fuel puddle

dynamics, to achieve an output feedback idle speed controller. The overall Lyapunov

stability is proved and the simulation results of a benchmark engine demonstrate that

the proposed controller can effectively regulate the idle speed to a set point under

certain load disturbance.
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LITERATURE REVIEW

This chapter provides an extensive literature review on several important as-

pects throughout the Ph.D. studies. We intend to cover the fundamental top-

ics in control theory and reinforcement learning. We also look into the mod-

elling and control of automotive engines as per theoretical applications. Some topics

enclosed in this chapter are particularly useful to our theoretical development while

the others will contribute in-principle knowledge or as an informative guide, e.g.,

the extension of Q-learning from the discrete-time algorithm space to the continuous-

time control space will need the knowledge of both reinforcement learning and op-

timal control. One would readily understand the context and basic concepts of the

current research by going through this literature review.

2.1 Modern Control Theory

The subject of control theory deals with the analysis and control design of dynamical

systems. In an engineering context, classical control theory uses Laplace transform as

a basic tool to model systems as transfer functions and design control systems using
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tools such as the root locus method, Routh-Hurwitz stability analysis, frequency ap-

proaches including the Nyquist, the Bode, and Nichols methods, phase/gain margin

and bandwidth. Nearly all classical methods were developed for linear time-invariant

single-input single-output (SISO) systems. Modern control methods, however, use

state-space approaches to deal with multiple-input multiple-output (MIMO) systems,

because the availability of digital computers made it possible for time-domain analy-

sis and synthesis of complex systems. More history and main methods of control the-

ory can be found in many textbooks, e.g., [8–17]. The three important design philoso-

phies of modern control theory are: adaptive control, optimal control, and robust con-

trol. This section will cover a broad range of significant topics that appeared in mod-

ern control theory. We focus on the state-of-the-art methodologies and cutting-edge

techniques that are quickly advancing and have the potential for developing a robust,

optimal, adaptive, practically-feasible control system.

2.1.1 Adaptive Control

The history of adaptive control began in the early 1950s for the design of autopilots

for high-performance aircraft and has grown to be one of the richest in terms of algo-

rithms, design techniques, analytical tools, and modifications. It can be summarised

as a method using online parameter estimation for controlling linear/nonlinear sys-

tems with parametric uncertainty. Core material of analysis and design of nonlinear

systems and control can be found in [18, 19].

The basic idea of adaptive control can be explained as follows. Consider the control

error e with dynamics given by

(2.1) ė = f (x)−u

where u is the control input and f (x) is some unknown nonlinearity of structure

(2.2) f (x)=WTϕ(x)
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where W is the unknown parameter vector and ϕ(x) is a known basis set of regression

vectors.

We define the estimate of the nonlinear function f̂ (x) = ŴTϕ(x) with Ŵ being a time-

varying estimate of the unknown parameter W , which is, for example, updated by

(2.3) ˙̂W =Γϕ(x)eT

with an adaptive gain matrix Γ Â 0 to be tuned. This is often called the adaptation

(update) law. We can then design the control law as

(2.4) u = f̂ (x)+Kpe = ŴTϕ(x)+Kpe

with control gain Kp Â 0. The closed-loop system becomes

(2.5) ė =WTϕ(x)−u =WTϕ(x)−ŴTϕ(x)−Kpe = W̃Tϕ(x)−Kpe

with the estimation error W̃ = W − Ŵ . The closed-loop system can be proved to be

asymptotically stable via Lyapunov theory [18], i.e. the control error e goes to zero.

Moreover, the parameter estimates converge to the actual unknown parameters if an

additional persistence of excitation condition holds [19].

In general, the methods used for solving adaptive control problems can be broadly

classified as

• Direct adaptive control in which the estimated parameters are directly used

in the adaptive controller, e.g., model reference adaptive control (MRAC) that

incorporates a reference model defining desired performance.

• Indirect adaptive control in which the estimated parameters are used to cal-

culate the required controller parameters, e.g., model identification adaptive

control (MIAC) that performs system identification while running.

There are other adaptive control techniques that might not simply be grouped into

one of the above categories but are still practical and powerful, e.g.,
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• Adaptive pole placement control [20]: full state feedback control primarily for

linear time-invariant systems.

• Extremum-seeking control [21]: model-free real-time optimisation of some per-

formance function using perturbation signals.

• Iterative learning control [22]: control input updated at each repetitive or itera-

tive operation based on the observed error.

More material on the subject of adaptive control can be found in textbooks [23–29].

Many appealing concepts proposed in the notion of feedback systems were also la-

belled with the prefix of “self-tuning" or “self-adjusting" control [23]. Gain schedul-

ing and other rudimentary model reference schemes were introduced to overcome

the sensitivity of a fixed-gain controller to large variations of system parameters [24].

The early famous “MIT rule" of adaptive control that was based on online gradient

search can be found in [25]. The input-output stability and the Popov hyperstablity

theories were introduced in [26]. The later work on robust adaptive control with mod-

ifications was presented in [27]. The L1 adaptive control theory via the decoupling of

adaptation from robustness was given in [28]. A good tutorial of adaptive control

without sacrificing mathematical depth and rigour can be referred to [29] for a wide

audience.

2.1.2 Optimal Control

Optimal control [30–40] deals with the control design for a given system such that

a certain optimality criterion is achieved. In the main, the optimal control problem

includes a cost functional V (to be minimised/maximised) that is a function of time,

state, and control variables. The optimal control law can be derived by using Pon-

tryagin’s minimum/maximum principle (a necessary condition); or by solving the

Hamilton-Jacobi-Bellman (HJB) equation (a necessary and sufficient condition) if cer-

tain assumptions hold (e.g., the existence of second-order partial derivatives of V ).
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The name of the HJB equation was first used by Kalman in the 1960s based on the

Hamilton-Jacobi equation in calculus of variations and Bellman’s contribution on dy-

namic programming. It is noted that Pontryagin’s maximum principle was being de-

veloped in the Soviet Union independently around the same time as Bellman’s and

Kalman’s work on dynamic programming in the United States [38]. There are close

connections between the two methodologies. Table 2.1 provides a review of optimal

control theory textbooks.

The basic idea of optimal control can be explained by the example of a linear-quadratic

regulator (LQR). Consider the continuous-time, linear time-invariant system described

by

(2.6) ẋ = Ax+Bu

where x is the measurable system state, u is the control input, and A, B are the plant

and input matrices, respectively. Define the infinite horizon integral cost V (x) that has

the value associated with an admissible control policy u =µ(x) given by

(2.7) Vµ(x) :=
∫∞

t
r(x(τ),u(τ))dτ

where the r = xTQx+uTRu is the quadratic utility with the positive-definite matrices

Q = QT º 0, R = RT Â 0. Thus, the optimal control problem is to find a control policy

u =µ(x) that minimises the value function, i.e. V∗(x(t))⩽Vµ(x(t)), ∀µ and the optimal

control satisfies

(2.8) µ∗ = arg min
µ

Vµ(x0)

Then, the optimal value function can be determined as

(2.9) V∗(x(t))=min
µ

∫∞

t
r(x(τ),u(τ))dτ

If the value function Vµ is smooth, one can write an infinitesimal version of (2.7) using

Leibniz’s formula as

0= r(x,u)+ (∇Vµ
x )T(Ax+Bu);

Vµ(0)= 0
(2.10)
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Table 2.1: Review of optimal control theory textbooks.

Book Methodology Time measure Nonlinearity Summary of findings

Lewis et al.
2012 [30]

Calculus of
variations;
Dynamic pro-
gramming

Continuous;
Discrete

Linear;
Nonlinear

A comprehensive book that provides a
complete picture of optimal control the-
ory in both methods. Extensions include
output feedback, reinforcement learning,
and differential games.

Bryson and
Ho 2018 [31]

Calculus of
variations;
Dynamic pro-
gramming

Continuous;
Discrete
(Markov chain)

Linear;
Nonlinear

Optimal control theory in both methods
with emphasis on optimisation and vari-
ational methods. Important results about
the sweep method, random processes,
and optimal filtering.

Kirk 2012
[32]

Calculus of
variations;
Dynamic pro-
gramming

Continuous Linear;
Nonlinear

A self-contained introductory book that
covers both methods and their compar-
ison. Extensions include numerical tech-
niques for trajectory optimisation.

Kwakernaak
and Sivan
1972 [33]

Calculus of
variations

Continuous;
Discrete

Linear Optimal control methods in the context
of modern linear control theory (includ-
ing the stochastic aspects).

Bertsekas
2005 [34]

Dynamic pro-
gramming

Continuous;
Discrete

Linear;
Nonlinear

A leading textbook on the far-ranging
algorithmic methodology of dynamic
programming. Extensions include neuro-
dynamic programming/reinforcement
learning.

Athans and
Falb 2013
[35]

Calculus of
variations

Continuous Linear;
Nonlinear

An introductory textbook on optimal
control theory including Pontryagin’s
maximum principle.

Anderson
and Moore
2007 [36]

Dynamic pro-
gramming

Continuous Linear Linear optimal control theory from an
engineering point of view. Important re-
sults on infinite-horizon linear quadratic
regulation/tracking problems; the exis-
tence of matrix P; proof of optimality, etc.

Naidu 2002
[37]

Calculus of
variations;
Dynamic pro-
gramming

Continuous;
Discrete

Linear; Non-
linear

Concise results of optimal control theory
with comparison and historical remarks
of the two methods. Extensions include
constrained optimal control.

Liberzon
2011 [38]

Calculus of
variations;
Dynamic pro-
gramming

Continuous Linear; Non-
linear

Variational methods on a very detailed
mathematical level. Important proof for
Pontryagin’s maximum principle and its
relationship to the HJB equation are in-
cluded.

Vinter 2010
[39]

Calculus of
variations;
Dynamic pro-
gramming

Continuous Linear; Non-
linear

Heavy material on nonsmooth analysis
and viscosity methods for optimal con-
trol. Necessary conditions for nonconvex
problems.

Geering
2007 [40]

Calculus of
variations;
Dynamic pro-
gramming

Continuous Linear; Non-
linear

An introductory book on optimal con-
trol and differential games (H∞ control).
Extensions include non-scalar (matrix-
valued) cost functionals.
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where ∇Vµ
x denotes the gradient of the value function Vµ with respect to the state x.

Equation (2.10) is essentially the Lyapunov equation, which is found to be equivalent

to the continuous-time Bellman equation [41]. Define the Hamiltonian of the problem

following (2.10) as

(2.11) H(x,µ(x),∇Vµ
x ) := r(x,µ(x))+ (∇Vµ

x )T(Ax+Bµ(x))

Using Pontryagin’s minimum principle, the optimal value function V∗(x) satisfies the

continuous-time HJB equation

(2.12) 0=min
µ

H(x,µ(x),∇V∗
x )

and the optimal control satisfies

(2.13) µ∗ = arg min
µ

H(x,µ(x),∇V∗
x ); ∀ x

By letting ∂H(·)/∂µ= 0, the optimal control for system (2.6) can be obtained as

(2.14) µ∗ =−1
2

R−1BT∇V∗
x

Inserting the optimal control (2.14) into (2.12), the formulation of the HJB equation

can be written as

0= xTQx+ (∇V∗
x )TAx− 1

4
(∇V∗

x )TBR−1BT∇V∗
x ;

V∗(0)= 0
(2.15)

For the linear system (2.6), by definition (2.7) the optimal value function is quadratic

in the state [30] so that

(2.16) V∗(x) := xTPx; ∀ x

with a matrix P = PT Â 0 such that V∗(x) is a positive definite and radially unbounded

function. Substituting ∇V∗
x = 2Px into (2.14), the optimal control becomes

(2.17) µ∗ =−R−1BTPx = Kx; ∀ x
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Inserting (2.17) into the Lyapunov equation (2.10) using ∂V∗/∂t = ẋTPx+ xTPẋ gives

the algebraic Riccati equation:

(2.18) ATP +P A−PBR−1BTP +Q = 0

which is essentially the HJB equation, where a stabilising closed-loop controller (2.17)

can be determined by solving for the matrix P. In summary, the above optimal con-

trol problem can be formulated as: given the continuous-time linear time-invariant

system (2.6) associated with the infinite horizon integral cost (2.7) for a set of ad-

missible control policies u = µ(x), find a µ(x) such that Vµ (2.7) is minimised. This is

essentially solving the HJB equation (2.15) or, in this linear case, solving the algebraic

Riccati equation (2.18).

The LQR above combined with Kalman filter (linear-quadratic state estimator) [42] is

called linear-quadratic-Gaussian (LQG) control, which is one of the most fundamen-

tal optimal control problems. Another important variation of optimal control that has

been widely used in industrial applications is the model predictive control (MPC)

[43, 44]. MPC optimises in a receding time horizon (repeatedly optimising the cur-

rent time slot while considering the future time slot), which differs from the LQR

that optimises in a fixed time horizon (a single optimal solution for the whole time

horizon).

Various applications of optimal control in automotive systems are given in [45, 46].

Relevant references on optimal control for engine applications can be found in [47–

53] from a seminar attended at the IAAPS, University of Bath during PhD, which was

delivered by Dr Benjamin Pla from Universitat Politècnica de València (UPV).

2.1.3 Robust Control

Robust control [54–57] deals explicitly with uncertainty in controller design, where

the controller can effectively address the uncertain parameters or disturbances within

some compact set. The early classical methods of Bode and others were satisfactorily
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robust. The modern state-space methods, however, were sometimes found to lack ro-

bustness. Prime examples of modern robust control techniques include H∞ loop shap-

ing developed by McFarlane and Glover [54, 58] and sliding model control (SMC)

[59, 60]. In contrast with an adaptive control policy, a robust control policy is static,

i.e. the controller, instead of adapting to measurements of variations, is designed to

work assuming that certain disturbances (H∞ control) or variables (SMC) will be un-

known but bounded.

The basic idea of robust control can be explained in a similar manner as for adaptive

control with respect to the control error e. For error dynamics given as (2.1), we also

know a fixed nominal value or estimate f̂ (x) for unknown f (x) such that the estima-

tion error f̃ (x) = f (x)− f̂ (x) is bounded, i.e. || f̃ (x)|| ≤ F(x) with F(x) being a known

upper bound (possibly nonlinear) function. Unlike the adaptive control that needs

the linear structure f (x) = WTϕ(x), robust control tends to assume less information

(the bound of f (x)). A robust nonlinear sliding mode controller can be selected as

(2.19) u = f̂ (x)+Kpe−γ

where γ is a robust control term given by

(2.20) γ=


−e F(x)

||e|| , ||e|| ≥ ϵ

−e F(x)
ϵ

, ||e|| < ϵ

where ϵ> 0 is a small design parameter. The closed-loop system becomes

(2.21) ė = f (x)−u = f (x)− ( f̂ (x)+Kpe−γ)= F̃(x)−Kpe+γ

This robust controller is sometimes easier to implement than the adaptive controller

because it does not include any additional dynamics, the closed-loop system is bounded

stable with ||e|| bounded with a magnitude near ϵ. The error does not go to zero but

does stay small.
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2.1.4 Intelligent Control

Apart from the three building blocks of modern control techniques, i.e. adaptive con-

trol; optimal control; robust control, recent years have witnessed significant advance-

ment in intelligent control [61, 62] thanks to the increased computing power. Intelli-

gent control is a collection of control techniques that use various artificial intelligence

computing approaches such as neural networks [63], fuzzy logic [64], Bayesian prob-

ability, machine learning, evolutionary computation, etc. As the distinction begins to

become meaningless in terms of mathematics, artificial intelligence and control the-

ory tend to be more compatible with each other in this new era. We are particularly

interested in marrying reinforcement learning with adaptive optimal control, which

will be discussed in Section 3.1.1.

2.1.5 Robust Adaptive Control

The success of adaptive control in the 1970s was soon followed by controversies over

practicality, where the control schemes were criticised as being easily unstable in the

presence of a small disturbance [65]. This motivated many researchers to understand

the mechanisms of instabilities and find ways to counteract them. By the mid 1980s,

several new redesigns and modifications were proposed, which led to a more general

framework known as robust adaptive control [27, 66]. For example, the dead-zone

modification [67] was proposed to stop the adaptation process when the norm of the

tracking error becomes smaller than the prescribed value. The σ-modification adds

damping to the adaptive law, which does not require any prior information on the sys-

tem disturbance upper bounds [68]. A drawback when applying the σ-modification

is that adaptive parameters tend to return to the origin for small tracking errors,

even for the persistent excitation condition. The e-modification [69] was developed

to overcome this undesirable effect by replacing the constant damping gain with a

term proportional to a linear combination of tracking errors. The projection operator

[70] was introduced to enable the adaptive laws to achieve robustness with respect to
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both parametric and nonparametric uncertainties that might exist in system dynam-

ics, which can tolerate fast adaptation.

Different procedures for combining "adaptive" and "robust" techniques can be found

in the work by Yao et al. [71–73] and by Herrmann et al. [74–76].

2.1.6 Convex Optimisation

Mathematical optimisation is universally useful in solving quantitative problems in

almost all the disciplines. Optimisation problems are often referred to as programmes

in the context of operations research. In control theory, subjects such as optimal con-

trol, MPC, and extremum seeking control can be viewed as the generalisations of

mathematical optimisation. Here, we feel the need to include the discussion on con-

vex optimisation in this section as it plays a prominent role in the development of

modern control theory.

An important class of optimisation problems is convex optimisation [77], which stud-

ies the case when the objective function is convex (minimisation) or concave (max-

imisation) and the constraint set is convex. It includes well-known least-squares and

linear programming problems and can be viewed as a particular case of nonlinear pro-

gramming or as a generalisation of linear or convex quadratic programming. Convex

optimisation is genuinely useful for automatic control. There are great advantages

in recognising or formulating a control problem as a convex optimisation problem.

A control problem can then be solved, very reliably and efficiently, using interior-

point methods or other numerical methods. For example, our theoretical develop-

ment on adaptive control will largely extend the conventional methods used from

least-squares, gradient descent, to more sophisticated finite-time parameter estima-

tion techniques.

Another important benefit is that some control problems can be reduced to standard

convex or quasiconvex optimisation problems involving the linear matrix inequality
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(LMI) [78], where Lyapunov or Riccati equations can be solved efficiently.

2.2 Reinforcement Learning

Artificial intelligence has advanced significantly in recent decades, owing in great

part to breakthroughs in machine learning [79], particularly advances in reinforce-

ment learning [1]. Although part of these advancements are due to the increased

computer power available, new innovations in theory and algorithms have also been

driving forces. Reinforcement learning is a computational paradigm that helps us to

analyse, abstract, and automate goal-directed learning and decision making [80]. It

differs from other computational approaches in that it focuses on learning from the

agent’s direct interactions with its environment, and it is regarded as the third ma-

chine learning paradigm after supervised learning [79] and unsupervised learning

[81]. Reinforcement learning is the closest kind of machine learning to the kind of

learning that humans and other animals perform, and many of the key algorithms of

reinforcement learning were inspired by biological learning systems. It concerns the

agent that takes control actions in an environment to optimise a cumulative reward.

In contrast to supervised learning that replicates the decisions of human experts, re-

inforcement learning systems are trained from their own experience which may al-

low them to exceed human capabilities [82], e.g., AlphaGo (trained by reinforcement

learning from self-play) achieved a 99.8% winning rate against other Go programs

and became the first computer program that defeated the human European Go cham-

pion by 5 games to 0 [83].

We are interested in reinforcement learning because it substantively interacts with

many engineering and scientific disciplines toward greater integration with optimi-

sation, control theory, operations research, and other mathematical subjects. The rein-

forcement learning is also formulated as a set of approximate dynamic programming

(ADP) or adaptive dynamic programming methods by Werbos [84]. ADP was devel-

oped originally for feedback control of discrete-time systems, but the idea was soon
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naturally extended to continuous-time systems, which allows the design of adaptive

controllers using a "critic-actor" structure that learns the optimal control solution in

real time. ADP or reinforcement learning essentially bridges the gap in philosophy

between adaptive control and optimal control [85].

2.2.1 Markov Decision Process

The problem of reinforcement learning is often formalised as the optimal control of

incompletely-known Markov decision processes [1]. Markov decision processes [34]

are a mathematically idealised framework of reinforcement learning, which define

the interaction between a learning agent and its environment with respect to states,

actions, and rewards, as shown in Fig. 2.1.

Figure 2.1: The agent-environment interaction in a Markov decision process [1].

To be specific, the learning agent and environment interact at each of a sequence of

discrete time steps, t = 0, 2, 3, ... such that

• the actions At are taken by the agent;

• the states St are for taking the actions;

• the rewards Rt are for evaluating the actions;

• the internal dynamics is completely known by the agent;
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• the environment may not be completely known by the agent.

The objective of the agent is to maximise the amount of reward it receives over time.

In a finite Markov decision process, the sets of states, actions, and rewards all have

a finite number of elements, and the random variables Rt and St have well defined

probability distributions dependent only on the preceding state and action, i.e.

(2.22) p(s′, r | s,a)= Pr{St = s′, Rt = r | St−1 = s, At−1 = a}

where the probability p completely characterises the dynamics of the Markov deci-

sion process. That is, the probability of each possible value for St and Rt depends

only on the immediately preceding state and action, St−1 and Rt−1, and not at all on

earlier states and actions. Thus, the state is said to have the Markov property that

must include information about all aspects of the past agent-environment interaction

that make a difference for the future [86].

Almost all reinforcement learning algorithms involve estimating value functions (func-

tion of states or of state-action pairs) that estimate how good it is for the agent to be

in a given state or to perform a given action in a given state. Accordingly, value func-

tions are defined in terms of specific sets of acting, i.e. policies. A policy π(a, s) is a

mapping from states to probabilities of selecting each possible action. A (discounted)

return G t is a function of future rewards that the agent looks to maximise (in expected

value), i.e.

(2.23) G t = Rt+1 +γRt+2 +γ2Rt+3 +· · · =
∞∑

k=0
γkRt+k+1

where γ is the discount rate such that 0≤ γ≤ 1.

The value function of a state s under a policy π, denoted vπ(s), is the expected return

when starting in s and following π thereafter, which is defined as

(2.24) vπ(s)= Eπ{G t | St = s}
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where Eπ{·} denotes the expected value of a random variable provided that the agent

follows the policy π. It is a crucial characteristic of reinforcement learning and dy-

namic programming that value functions satisfy recursive relationships at successive

time steps as follows:

vπ = Eπ{G t | St = s}

= Eπ{Rt+1 +γG t+1 | St = s}

=∑
a
π(a | s)

∑
s′,r

p(s′, r | s,a)[r+γvπ(s′)]

(2.25)

This is the Bellman equation for vπ and it expresses the relationship between the value

of a state and the values of its successor states. The optimal value function is defined

as

(2.26) v∗(s)=max
π

vπ(s)

The Bellman equation for v∗, i.e. the Bellman optimality equation, expresses the fact

that the value of a state under an optimal policy must equal the expected return for

the best action from that state, which can be written as

(2.27) v∗(s)=max
a

∑
s′,r

p(s′, r | s,a)[r+γv∗(s′)]

In principle, an optimal policy can be determined by solving the Bellman optimality

equation for the optimal value functions.

Similarly, value functions can be treated with respect to state-action pairs. One can

define the value of taking action a in state s under a policy π, denoted qπ(s,a), as the

expected return starting from s, taking action a, and following policy π, i.e.

(2.28) qπ(s,a)= Eπ{G t | St = s, At = a}

Accordingly, the optimal action-dependent value function can be written as

(2.29) q∗(s,a)=max
π

qπ(s,a)
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The Bellman optimality equation for q∗ becomes

(2.30) q∗(s,a)= ∑
s′,r

p(s′, r | s,a)[r+γmax
a′ q∗(s′,a′)]

This action-dependent version of value functions is particularly useful to develop

model-free algorithms, which will be exploited later in Monte Carlo methods, Q-

learning, etc.

The following three sections go through three different types of approaches for solv-

ing finite Markov decision problems: dynamic programming, Monte Carlo methods,

and temporal-difference learning. Dynamic programming approaches have been the-

oretically well developed, but they demand a thorough and accurate representation

of the environment. Monte Carlo techniques are theoretically simple and do not re-

quire a model, but they are not well suited for step-by-step incremental computing.

Temporal-difference approaches, on the other hand, do not require a model and are

fully incremental, although they are more difficult to analyse.

2.2.2 Dynamic Programming

Dynamic programming was developed by Bellman [87] in the 1950s and has found

a wide range of applications from engineering to economics. Remarkable literature

of dynamic programming can be found such as Bertsekas [34, 88], Ross [89], and Put-

erman [90]. It covers a collection of algorithms that can be used to compute optimal

policies given a perfect model of the environment as a Markov decision process. Clas-

sical dynamic programming is of limited utility in reinforcement learning due to its

strict assumption of a perfect model and its great computational expense. However,

the algorithms theoretically provide an essential foundation for the understanding of

most reinforcement learning methods, which attempt to achieve the same effect but

with less computation and without assuming a perfect model.

The first connection between dynamic programming and reinforcement learning was

made by Minsky [91] where Samuel’s checkers players show the possibility of apply-
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ing dynamic programming to solve Samuel’s backing-up process analytically. The ad-

vancement was then made by Werbos [84, 92–95] who proposed an approximating ap-

proach named as heuristic dynamic programming that emphasises gradient-descent

methods. Watkins in his PhD thesis [86] explicitly connected the two by characterising

a class of reinforcement learning methods as incremental dynamic programming.

Algorithm 1 Policy iteration algorithm for estimating π≈π∗ [1]
1: Initialization
2: V (s) and π(s) arbitrarily for all nonterminal s
3: Policy Evaluation
4: Loop:
5: ∆← 0
6: Loop for each s:
7: v ←V (s)
8: V (s)←∑

s′,r p(s′, r | s,π(s))[r+γV (s′)]
9: ∆←max(∆, |v−V (s)|)

10: until ∆< θ (a small positive number determining the accuracy of estimation)
11: Policy Improvement
12: policy-stable←true
13: For each s:
14: old-action←π(s)
15: π(s)← argmaxa

∑
s′,r p(s′, r | s,a)[r+γV (s′)]

16: If old-action6=π(s), then policy-stable←false
17: If policy-stable, then stop and return V ≈ v∗ and π≈π∗; else go to Policy Evaluation

The key idea of both dynamic programming and reinforcement learning is the use of

value functions to organise and structure the search for good policies. The two most

popular dynamic programming methods, policy iteration and value iteration, can

be used to reliably compute optimal policies and value functions for finite Markov

decision processes given complete knowledge of the model.

2.2.2.1 Policy Iteration

Each policy iteration is guaranteed to represent a significant improvement over the

one before it (unless it is already optimal). Because there are only a finite number of

policies in a finite Markov decision process, it must converge to an optimal policy and

optimal value function in a finite number of iterations (see Algorithm 1).
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One disadvantage of policy iteration is that each iteration requires policy review,

which can be a lengthy repetitive process involving numerous sweeps across the

state set. One might shorten the policy evaluation step without sacrificing policy iter-

ation’s convergence guarantees, for example, by halting policy evaluation after only

one sweep (one state update), which is known as value iteration.

2.2.2.2 Value Iteration

Value iteration can be simply obtained by turning the Bellman optimality equation

(2.27) into an update rule. It successfully combines one sweep of policy assessment

and one sweep of policy reform in each of its sweeps (see Algorithm 2). Interposing

numerous policy assessment sweeps between each policy improvement sweep typi-

cally results in faster convergence.

Algorithm 2 Value iteration algorithm for estimating π≈π∗ [1]
1: Initialisation
2: V (s) arbitrarily for all nonterminal s except that V (terminal)= 0
3: Value Update
4: Loop:
5: ∆← 0
6: Loop for each s:
7: v ←V (s)
8: V (s)←maxa

∑
s′,r p(s′, r | s,π(s))[r+γV (s′)]

9: ∆←max(∆, |v−V (s)|)
10: until ∆< θ (a small positive number determining the accuracy of estimation)
11: Output a deterministic policy, π≈π∗, such that
12: π(s)= argmaxa

∑
s′,r p(s′, r | s,a)[r+γV (s′)]

2.2.2.3 Generalised Policy Iteration

Generalised policy iteration (GPI) is the basic concept of allowing policy-evaluation

and policy-improvement processes to interact, regardless of the granularity and other

features of the two processes. GPI can be used to define almost all reinforcement

learning approaches. As demonstrated in Fig. 2.2, all have distinct policies and value

functions, with the policy continually improving in relation to the value function and

the value function always being driven toward the policy’s value function.
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Only when the value function is compatible with the present policy, and only when

the policy is greedy with regard to the current value function, does it stabilise. As a

result, both processes stabilise only when a policy that is greedy in terms of its own

evaluation function is discovered. This means that the Bellman optimality equation

(2.27) holds true, implying that the policy and value function are both optimal.

Figure 2.2: The interaction between policy evaluation and improvement processes in
GPI [1].

"Bootstrapping" is a characteristic of dynamic programming approaches in which

estimations of the value of states are updated based on estimates of the values of

succeeding states. Many reinforcement learning approaches perform bootstrapping,

even those that do not require, as dynamic programming does, a complete and accu-

rate model of the environment.

2.2.3 Monte Carlo Methods

Monte Carlo methods are a broad class of algorithms that rely on repeated random

sampling, of which the principle can be found in textbooks, e.g. [96–99]. The essential

idea is to use randomness to solve problems that might be deterministic in general. In

reinforcement learning, the Monte Carlo methods learn value functions and optimal
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policies from experience in the form of sample episodes, which means the complete

knowledge of the environment is not needed.

Given a model, it is sufficient to estimate the state-dependent value function to de-

termine a policy. One simply looks ahead one step and chooses whichever action

leads to the best combination of reward and next state, as in dynamic programming

methods. Without a model, however, state-dependent value function alone is not suf-

ficient. One must explicitly estimate the value of each action in order for the values

to be useful in suggesting a policy, i.e. to estimate q∗.

Figure 2.3: The interaction between policy evaluation and improvement processes in
GPI (action-dependent version) [1].

The Monte Carlo approaches (see Algorithm 3), which follow the GPI framework,

also include interactive processes of policy review and policy improvement. The dis-

tinction is that the techniques simply average several returns that begin in the state,

rather than utilising a model to determine the value of each state. This average can

become a decent approximation to the value because a state’s value is the expected

return. We’re particularly interested in approximating action-dependent value func-

tions in control techniques since they may be utilised to enhance policies without re-

quiring an environment model. The GPI maintains an approximation policy as well

as an approximate value function in this case. As demonstrated in Fig. 2.3, the value

function is regularly changed to more closely match the value function for the present

policy, and the policy is continually improved in relation to the current value function.

34



2.2. REINFORCEMENT LEARNING

Algorithm 3 Monte Carlo algorithm for estimating π≈π∗ [1]
1: Initialisation
2: π(s), Q(s) arbitrarily for all nonterminal s
3: Returns(s,a)←empty list, for all s
4: Value and Policy Update
5: Loop forever (for each episode):
6: Choose S0, A0 randomly such that all pairs have probability > 0
7: Generate an episode from S0, A0, following π : S0, A0,R1, · · ·,ST−1, AT−1,RT
8: G ← 0
9: Loop for each step of episode, t = T −1,T −2, · · ·,0:

10: G ←ΓG+Rt+1
11: Unless the pair St, At appears in S0, A0,S1, A1, · · ·,ST−1, AT−1:
12: Append G to Returns(St, At)
13: Q(St, At)← average(Returns(St, At))
14: π(St)← argmaxa Q(St,a)

Compared to dynamic programming, Monte Carlo methods can learn the optimal

behaviour directly from the interaction with the environment and they require only

experience (sample sequences of states, actions, and rewards) without a model. An-

other advantage is that they are less likely to be impacted by breaches of the Markov

property since they do not bootstrap their value estimates using the value estimates

of future states.

2.2.4 Temporal Difference Learning

Temporal difference learning is one of the central and novel ideas in reinforcement

learning and can be regarded as a combination of dynamic programming and Monte

Carlo ideas. It can learn directly from raw experience without a model as with Monte

Carlo methods and it bootstraps as in dynamic programming. The idea has its early

roots in animal learning psychology and artificial intelligence, most notably the work

of Samuel [100] and Klopf [101] and then developed later, e.g., [86, 102–107].

One of the radical challenges in reinforcement learning is to balance exploitation and

exploration. The greedy method is an example of exploitation which exploits the cur-

rent knowledge of the values of actions. The exploration occurs when one selects
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one of the nongreedy actions, which may produce the greater total reward in the

long run. ε-greedy methods first used in Watkins [86] are often used to trade off ex-

ploitation and exploration by adjusting the small probability ε that all the actions are

randomly selected with equal probability. The temporal difference methods can be

classified into on-policy or off-policy approaches to address the sufficient exploration

problems. On-policy approaches aim to improve or assess the policy that is used to

make choices, whereas off-policy methods aim to enhance or evaluate a policy that is

not used to create the data. Sarsa is an on-policy approach, whereas Q-learning is an

off-policy method, as explained below.

2.2.4.1 Sarsa

As an on-policy method, Sarsa [105, 106] estimates qπ(s,a) for the current behaviour

policy π and for all states s and actions a. Every element of the quintuple of events,

(St, At,Rt+1,St+1, At+1), that make up a transition from one state-action pair to the

next is used by its update rule (see Algorithm 4).

Algorithm 4 Sarsa (on-policy) algorithm for estimating Q ≈ q∗ [1]
1: Initialisation
2: Q(s,a) arbitrarily for all s,a except that Q(terminal, ·)= 0
3: Value and Policy Update
4: Loop for each episode:
5: Choose A from S using policy derived from Q (e.g., ε-greedy)
6: Loop for each step of episode:
7: Take action A, observer R,S′

8: Choose A′ from S′ using policy derived from Q (e.g., ε-greedy)
9: Q(S, A)←Q(S, A)+α[R+γQ(S′, A′)−Q(S, A)] with step size α ∈ [0,1]

10: S ← S′; A ← A′

11: until S is terminal

2.2.4.2 Q-Learning

As an off-policy method, Q-learning [86, 108] directly approximates the optimal action-

dependent value function q∗, independent of the policy being followed (see Algo-

rithm 5).
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Algorithm 5 Q-learning (off-policy) algorithm for estimating π≈π∗ [1]
1: Initialisation
2: Q(s,a) arbitrarily for all s,a except that Q(terminal, ·)= 0; Step size α ∈ [0,1]
3: Value and Policy Update
4: Loop for each episode:
5: Initialise S
6: Loop for each step of episode:
7: Choose A from S using policy derived from Q (e.g., ε-greedy)
8: Take action A, observer R,S′

9: Q(S, A)←Q(S, A)+α[R+γmaxa Q(S′,a)−Q(S, A)]
10: S ← S′

11: until S is terminal

Figure 2.4: Reinforcement learning methods: the depth and width of the updates [1].
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Almost all reinforcement learning techniques share three fundamental concepts: 1)

they all try to estimate value functions; 2) they all work by backing up values along

actual or potential state trajectories; and 3) they all use the general strategy of gener-

alised policy iteration (GPI), which means they keep an approximate value function

and an approximate policy and try to improve one on the other. The three concepts of

value functions, storing up value updates, and GPI are strong organising principles

that might be applied to any artificial or natural intelligence model [1].

The aforesaid reinforcement learning techniques are connected and compared in Fig.

2.4 with regard to two dimensions [1]. The horizontal dimension determines whether

the updates are sample (based on a sample trajectory) or expected (based on a distri-

bution of possible trajectories). Expected updates need a distribution model, whereas

sample updates can be done with just a sample model or without any model at all (an-

other dimension of variation). The depth of updates, or the degree of bootstrapping,

is represented by the vertical dimension of Fig. 2.4. The three basic approaches for

estimating values are dynamic programming, temporal difference, and Monte Carlo,

which are located at three of the four corners of the space. The sample-update tech-

niques, which range from one-step temporal-difference updates to full-return Monte

Carlo updates, are located at the left edge of the space. A range of approaches based

on n-step updates exists between these two extremes [1].

2.3 Automotive Engine Control

We look into the opportunities to develop and implement novel control systems for

automotive powertrain as the practical application, where the control problems for

internal combustion engines are particularly of our interest to the Ph.D. research.
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2.3.1 Automotive Control Overview

Automotive control has become a driving factor in automotive innovation over the

past decades with the advancement of electronics. The control problems for modern

automotive systems can be grouped into two sides, i.e. powertrain control and ve-

hicle control, with respect to powering and driving [109–112]. The powertrain acts

as the core of a vehicle and comprises the main components that power the vehicle,

which typically includes the engine, clutch, transmission, drive shafts, and wheels or

other final drives such as propellers, continuous tracks, etc. The powertrain control

problems have become more complex and challenging since the emergence of elec-

tric vehicles along with hybrid electric vehicles and fuel cell vehicles. In our research,

we focus on powertrain control and particularly on internal combustion engines con-

trol. Although the invention of the combustion engine dates back to the 18th century,

engine technology continues to advance and it is predicted that by 2050, at least 60

percent of light-duty vehicles will still use combustion engines, but often work with

electric motors in hybrid systems and largely equipped with a turbocharger [113].

Many surveys provide comprehensive summaries of the control problems for power-

train systems [114–116] and engines [117, 118]. The control problems for the vehicle

itself are extensive yet with the same main purpose of helping the driver to perform

the task of keeping the vehicle on the road in a safe manner [109]. Vehicle control sys-

tems are often safety- or comfort-oriented, e.g. cruise and headway control, traction

control, anti-lock brake system (ABS), vehicle stability control, and active suspensions

[109, 110]. Moreover, it is necessary to mention that autonomous driving has been

springing up and will also remain a dynamic and exciting control topic [119, 120].

2.3.2 Engine Dynamics Modelling

Engine dynamics modelling has been playing an important role in the engine devel-

opment and optimisation process. The objective with engine dynamics modelling is

twofold: 1) to predict the engine performance without practical tests; 2) to deduce the
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performance of parameters that can be difficult to measure in tests . It is clearly advan-

tageous if engine performance can be anticipated without having to go through the

difficulty of first creating an engine, then instrumenting, testing, and finally analysing

the data. However, most of the events that occur in an internal combustion engine are

too complicated to be modelled from first principles only [121]. Engine modelling of-

ten relies heavily on experimental data and empirical correlations, e.g. lookup tables

along with proper interpolation methods. In this thesis, we focus on the thermody-

namics modelling for engine control design. The mechanical modelling of the engine

(e.g. a finite element model for the engine structure) is not in the scope of our research.

Yet we also include crankshaft dynamics considering its important interactions with

other engine subsystems.

There have been many different methodologies for engine modelling [122]. Some are

completely based on measurements of relevant engine outputs at varying ranges of

control inputs, i.e. black-box models. On the other hand, some are based primarily on

physics principles with a few relevant parameters that are experimentally calibrated,

i.e. white-box models. If a suitable engine model is provided, accurate and fast engine

simulations can allow for rapid incorporation of new control design. The control de-

velopment process can be significantly shortened when using efficient computational

tools. A high-fidelity model may reduce the hardware prototypes and development

cost. Commercial software such as GT POWER and AVL BOOST offers platforms for

modelling the engine dynamics as an one-dimensional computational fluid dynamics

(CFD) model. The CFD models usually have high fidelity and require a large amount

of computational time. In the case of real-time control development, a physics-based

mean value engine model (MVEM) developed by Hendricks [123–126] is widely used

with low-fidelity but fast running speed. Instead of cycle by cycle analysis, the MVEM

presents the average response of multiple ignition cycles in the time domain, which

contains nonlinear differential equations mixed with empirical static maps and often

has a cumbersome structure.
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One way to overcome the complexity and to provide a fast solution for control design

is linear state space modelling. The state space model plays a central role in modern

control theory [9] and has been commonly used as a framework for robust control,

optimal control, etc. It can effectively deal with a multi-input, multi-output (MIMO)

system such as engines. A linear state space model for engines was proposed in [127]

for the application of linear quadratic control. The model was then generalised to

control-oriented engine models in [128]. In the last decade, artificial neural networks

have been seen as an attractive approach for dynamic system modelling and control.

There are many studies on the application of neural networks on engine modelling,

e.g. [129–134] therein. Neural networks can be regarded as a black-box system iden-

tification approach that is conceptually simple, and easy to use, and has excellent

approximation properties.

2.3.3 Engine Management System

Control has always been a component of engine design, and it is one of the most diffi-

cult problems to solve [135]. For modern engines, engine control is generally achieved

by the engine management system (EMS). The main objective of the EMS is to regu-

late the engine torque as required by the demand (e.g., the driver), and, at the same

time, to meet the stringent requirements for emission, fuel consumption, power out-

put, and safety [110]. The power output from an internal combustion engine is de-

termined by the available torque (the clutch torque) and the engine speed. The clutch

torque is produced from the indicated torque generated from the combustion process,

reduced by the friction loss, and pumping loss, as well as the torque necessary to op-

erate the auxiliary systems. The indicated torque by combustion is determined by

three variables: 1) the air mass for combustion; 2) the fuel mass for combustion; and

3) the spark ignition timing [112]. The EMS usually consists of different sensors that

measure the real-time engine performance and actuators that control the fuel injector,

spark plug, throttle, etc [135].
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The fundamental torque control module is coordinated with a number of basic mod-

ules within the EMS:

• Air-fuel ratio (AFR) control

• Idle speed control

• Ignition timing and knock control

• Electronic throttle control (ETC)

Some engines also have variable valve timing control, and exhaust gas recirculation

(EGR) control.

Emission reduction and fuel economy improvement are two active areas in engine re-

search. Rather than taking a holistic approach to engine control system development,

the existing research endeavours focus on developing the specific control module.

Among the engine control problems, AFR control is the most crucial and demanding

topic and will be addressed primarily in this thesis. Fig. 2.5 shows the schematic of a

typical port fuel injection spark ignition engine with EGR.

2.3.4 Air-Fuel Ratio Control

The common treatment for engine emissions is to convert pollutant exhaust CO, NOx,

into innocuous ones: N2, H2O, and CO2, using three-way catalytic (TWC) converters.

However, as shown in Fig. 2.6, the conversion efficiency of TWC is fairly sensitive to

AFR, which is required to be regulated around the stoichiometric value (e.g. 14.7 for

petrol) [136]. Moreover, combustion with a stoichiometric AFR is essential to achiev-

ing the optimal thermal efficiency and dynamic performance. Therefore, it is of great

importance to design a well-performing AFR controller for engines so as to improve

emissions, thermal efficiency and fuel economy. For most spark ignition engines in

production, the widely-used control strategy is still PID control based on lookup ta-

bles, which could be difficult to meet the emission requirement in the presence of

42



2.3. AUTOMOTIVE ENGINE CONTROL

Figure 2.5: The schematic of a typical port fuel injection spark ignition engine with
EGR.

complex dynamics and rapid-change operation scenarios. Practically, the compilation

of the lookup tables also requires significant effort in engine calibration tests and is

usually time-consuming [137].

This motivates the research on advanced AFR control design such as optimal con-

trol [138], robust control [139][140], adaptive control [136][141], and, more recently,

observer-based control [137][142]. An optimal AFR controller was designed in [138]

considering the cyclic variations of residual gas. However, it requires the knowledge

of in-cylinder pressure, for which the sensor could often be expensive and not applica-

ble for commercial engines. Then, robust techniques such as H∞ control [139] and slid-

ing mode control [140] were proposed to regulate the AFR in the presence of external

disturbance. In order to deal with parameter uncertainties, adaptive approaches were
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Figure 2.6: Emission levels with respect to AFR.

presented to address air-filling dynamics in [136] and time delay dynamics in [141].

However, the complexity of the adaptive controller limits their practical implemen-

tation. This prompts further work on AFR control using simple, easily implemented

observers. In [142], a sliding mode AFR controller was proposed using observers to

reduce chattering. Later on, various popular observer techniques were investigated

in [137], which show great potential in application with design simplicity. However,

the effect of fuel puddle dynamics was not specifically studied in [137]. There the two

parameters: fuel puddle fraction and the time constant for the puddle evaporation,

are assumed to be known for AFR control, which are, however, not measurable in

practice. In this thesis, we will use novel nonlinear observer techniques to estimate

the unknown dynamics and account for disturbances. We will also investigate the im-

plementation of adaptive optimal control for the AFR regulation, where, to our best

knowledge, Q-learning-based control is applied to engine systems for the first time.
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2.4 Conclusions

The literature review addressed the fundamental topics in control theory: adaptive

control, optimal control, robust control, intelligent control, and robust adaptive con-

trol and in reinforcement learning: MDP, dynamic programming, Monte Carlo Meth-

ods, and temporal difference learning. We will show the in-depth knowledge of adap-

tive optimal control and its “identical twin" adaptive/approximate dynamic program-

ming (ADP) in the next chapter, where the generalised policy iteration and Q-learning

is used to develop new adaptive optimal control. We have also presented a literature

review of automotive engine control: dynamics modelling, engine management sys-

tem, and air-fuel ratio control. This will be useful to understand our work on control-

oriented modelling, idle speed control, and air-fuel ratio control in the later chapters.
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3
A NEW APPROACH TO ADAPTIVE OPTIMAL CONTROL∗

In this chapter, we propose two novel adaptive optimal control algorithms for

continuous-time nonlinear input-affine systems based on reinforcement learn-

ing: i) generalised policy iteration (GPI) and ii) Q-learning. As a result, the a

priori knowledge of the system drift f (x) is not needed via GPI, which gives us a

partially model-free and online solution. We then for the first time extend the idea of

Q-learning to the nonlinear continuous-time optimal control problem in a noniterative

manner. This leads to a completely model-free method where neither the system drift

f (x) nor the input gain g(x) is needed. For both methods, the adaptive critic and ac-

tor are continuously and simultaneously updating each other without iterative steps,

which effectively avoids the hybrid structure and the need for an initial stabilising

control policy. Moreover, finite-time convergence is guaranteed by using a sliding

mode technique in the new adaptive approach, where the persistent excitation (PE)

condition can be directly verified online. We also prove the overall Lyapunov stabil-

∗The content of this chapter is adapted from the author’s own work [143], where some materials
have been re-used.
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ity and demonstrate the effectiveness of the proposed algorithms using numerical

examples.

3.1 Introduction

In the context of control theory, the idea of combining adaptive control [29] and op-

timal control [30] has emerged recently due to the advancement in reinforcement

learning [1][41][144], which is also known as approximate/adaptive dynamic pro-

gramming (ADP) [84]. A common framework for studying reinforcement learning is

the Markov decision process (MDP), where the control process is often stochastic and

formulated in discrete time. That follows the increasing need to formalise the method

in a control perspective for deterministic continuous-time systems. Fig. 3.1 shows a

closed-loop control system based on reinforcement learning, which is equivalent to

the agent-environment interaction shown in Fig. 2.1 in a control perspective.

Figure 3.1: Control system based on reinforcement learning.
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3.1.1 Related Work

Many surveys are available [144][145][146] addressing the development of reinforce-

ment learning algorithms in both discrete and continuous time. The challenge now

becomes directing these learning techniques towards practically feasible continuous-

time adaptive optimal controllers. At the early stage of MDP studies, one class of

ADP methods known as policy iteration (PI) [1] was developed, i.e. a two-step iter-

ation: policy evaluation and policy improvement. This was equivalent to Newton’s

method proposed by Kleinman [147] by iteratively solving Lyapunov equations. The

proposed PI was known to be computationally intensive and could be only imple-

mented offline. Vrabie later developed an online PI algorithm for continuous-time

linear systems [148] and then for nonlinear control-affine systems [149]. The method

employed two neural networks in a critic/actor configuration and, more importantly,

allowed the online adaptation of the controller to the optimal state feedback control

without knowing the system drift dynamics. This forms the idea of integral reinforce-

ment learning (IRL) [150] which generates a large family of algorithms. However, the

controller was not in a standard form but was based on a hybrid structure with a

continuous-time controller and a discrete-time sampling data learning structure.

To overcome the sequential updates of the critic and actor, Vamvoudakis [151] pro-

posed an online synchronous PI algorithm by using an adaptive control approach,

where the two neural networks were simultaneously tuned online. The PE condition

was required to ensure the convergence of the adaptive algorithm. Unlike the IRL in

[148][149], the synchronous PI approximated the solution of the HJB equation and

required the complete knowledge of system dynamics. In order to deal with systems

that are only partially known, Na et al. [152] suggested an identifier-critic structure

for ADP that identifies the unknown nonlinear part of the system and, by using new

adaptive techniques [75], the actor neural network is avoided while the PE condition

can be easily verified in real time. Nevertheless, all the above ADP methods require

complete or at least partial a priori knowledge of the system dynamics.
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To lift the requirement of system knowledge, the idea of Q-learning is of particu-

lar interest since it is a model-free reinforcement learning algorithm. This leads to

a different approach to address the ADP for unknown systems. Q-learning has been

primarily developed for stochastic discrete-time systems, i.e., MDP. The very first Q-

learning algorithm was initiated in a finite MDP context by Watkins in his PhD thesis

[86] and has attracted much attention from the machine learning communities. Al-

Tamimi implemented Q-learning [153] for the first time for a discrete-time linear H∞

control problem of an F-16 aircraft autopilot in simulation. This work inspired many

advancements in Q-learning implementation for discrete-time systems, e.g. linear

quadratic-tracking (LQT) [154]) and output feedback control [155]. However, there

is still a lack of research regarding Q-learning studies in a deterministic continuous-

time case. In fact, Q-learning was first posed in continuous time as “advantage updat-

ing" [156]. It was specified in [157] that the Q-function can be seen as an extension of

the Hamiltonian, which connects Q-learning with continuous-time control. A proper

definition of a Q-function in continuous time is still disputed. It should be noted

that the “Q-function" in [157][158] has a different meaning from that in reinforcement

learning [159]. Researchers started to mimic the Q-learning from discrete-time sys-

tems to continuous-time systems, which resulted in stepwise iterative algorithms in

[158] [160][161]. The consequence is again a hybrid structure like Vrabie’s IRL where

the control signal is generated in discrete time while the system is in continuous time.

An integral Q-learning algorithm [158] was derived from the singular perturbation

of the control input; it solved the continuous-time linear-quadratic regulation (LQR)

problem but required a stabilising (admissible) initial policy. The above limitations

were later overcome by Vamvoudakis [162] via combining the idea of IRL [149] and

synchronous PI [151] into Q-learning, where the algorithm employed two neural net-

works in a critic/actor configuration and was restricted to the LQR case. Indeed, all

the solutions above [158]-[162] were limited to linear systems. In this chapter, we will

show one of our theoretical results [143] which for the first time extends Q-learning

to deterministic continuous-time nonlinear systems.
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3.1.2 Contributions

This chapter proposes two new adaptive optimal control algorithms for continuous-

time nonlinear input-affine systems. The main contributions are summarised as fol-

lows: i) To the best of our knowledge, for the first time, the idea of Q-learning is

extended to the nonlinear continuous-time optimal control problem as an adaptive

optimal controller in a noniterative manner, where an initial stabilising policy as

in [149][158][160][163] is not required. ii) The two proposed methods: GPI and Q-

learning, are partially and completely model-free, i.e., neither the a priori knowledge

of system dynamics in [151] nor the additional identifier in [152] is needed. iii) The

adaptive critic and actor are continuously and simultaneously updating each other

without iterative steps, which effectively avoids the hybrid structure in [149] with a

continuous-time actor and a discrete-time sampling-based critic. iv) The finite-time

convergence is guaranteed by using a sliding mode technique [75] in the new adap-

tive approach, where the PE condition can be directly verified online. Moreover, the

actor neural network in [151] is not necessary to prove the overall stability.

3.2 Preliminaries

This section presents a general formulation of the infinite-horizon nonlinear optimal

control problem for continuous-time systems. Given the continuous-time nonlinear

input-affine time-invariant system

(3.1) ẋ(t)= f (x(t))+ g(x(t))u(t), x(0)= x0

where x(t) ∈ Rn is the measurable state vector, u(t) ∈ Rm is the control policy or input

vector, and f (x(t)) ∈Rn, g(x(t)) ∈Rn×m are the system drift and the input gain functions,

respectively. We define the value function V u(x) ∈ C1 as the infinite-horizon integral

cost

(3.2) V u(x(t)) :=
∫∞

t
r(x(τ),u(τ))dτ
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where r = S(x(t))+ uT(t)Ru(t) is the utility (also known as reward in reinforcement

learning) with positive definite S(x(t)) ∈ R and R = RT ∈ Rm×m. For simplicity, we set

R to be diagonal in this chapter without loss of generality.

Assumption 3.1 It is assumed that f (x)+ g(x)u is Lipschitz continuous on a compact set

Ω ∈ Rn that contains the origin and the system (3.1) is stabilisable, i.e. the system state x is

bounded for a stabilising control u. ¦

The optimal control problem is to minimise the value function (3.2) by choosing the

optimal stabilising control (or admissible policy) u∗(t). The optimal value function

V∗(x) can be defined as

(3.3) V∗(x(t)) :=min
u

∫∞

t
r(x(τ),u(τ))dτ

A general solution to the nonlinear optimal control problem can be formulated as

a partial differential equation for the optimal value function V∗(x). We define the

Hamiltonian of the problem as

(3.4) H(x,u,∇V u
x ) := r(x,u)+ (∇V u

x )T( f (x)+ g(x)u)

with the gradient vector ∇V u
x = ∂V u/∂x ∈Rn. The optimal value function V∗(x) in (3.3)

satisfies the Hamilton-Jacobi-Bellman (HJB) equation

(3.5) 0=min
u

H(x,u,∇V∗
x )

For unconstrained control u, the optimal control u∗ can be found by setting ∂H(x,

u,∇V∗
x )/∂u = 0 so that

(3.6) u∗ =−1
2

R−1 g(x)T∇V∗
x

Inserting the optimal control (3.6) into (3.5) gives the HJB equation in terms of ∇V∗
x as

(3.7) 0= S(x)+ (∇V∗
x )T f (x)− 1

4
(∇V∗

x )Tg(x)R−1 g(x)T∇V∗
x

The HJB equation (3.4) is generally difficult to solve due to its nonlinearity and the req-

uisite for explicitly knowing the system drift dynamics f (x) and input gain dynamics

g(x).
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3.3 Generalised Policy Iteration

Policy iteration [1] is one of the reinforcement learning methods for finding the op-

timal value and optimal control. It iteratively performs policy evaluation and policy

improvement until the optimal policy is reached. The method generates a family of

algorithms (e.g. [149][151]) to solve the HJB equation online and forward in time. In

this section, these two processes are concurrent since the critic and the actor are con-

tinuously and simultaneously updating each other. This method can be interpreted

as an extreme version of the generalised policy iteration (GPI) [1]. It should be noted

that the proposed method, although called GPI, does not use iteration but solves the

HJB equation in a continuous manner.

For continuous-time systems, policy evaluation can be achieved by an adaptive critic

based on a nonlinear Lyapunov equation (e.g. [151][152]), which can be derived by

differentiating value function (3.2) via Leibniz’s formula. Another approach is via the

integral reinforcement learning (IRL) [150] Bellman equation

(3.8) V u(x(t−T))=
∫t

t−T
r(x(τ),u(τ))dτ+V u(x(t))

with a sample period T > 0. This is an analogue to the discrete-time Bellman equation

in the integral form. Note that the system drift f (x) and input gain g(x) appearing in

the Lyapunov equation are not involved here in the Bellman equation (3.8). For policy

improvement, it is shown in [164] by successively solving (3.8) for the value function

V u, that the following control

(3.9) u =−1
2

R−1 g(x)T∇V u
x

will uniformly converge to the optimal control u∗ (3.6).

3.3.1 Adaptive Critic for Value Function Approximation

This section presents a new design of the adaptive critic for policy evaluation. We ap-

proximate the value function using a critic neural network such that

(3.10) V u(x)= wTφ(x)+ε(x)
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where φ(x) : Rn → RN denotes the activation function vector with the number N of

neurons in the hidden layer, w ∈ RN is the weight vector and ε(x) ∈ R is the neural

network approximation error. The activation functions are selected to provide a com-

plete independent basis set so that V (x) is uniformly approximated. According to the

Weierstrass higher-order approximation theorem [164], within a compact set Ω, the

error ε(x) and its derivative ∇εx are bounded for a fixed N and ε(x)→ 0, ∇εx → 0 as the

number of neurons N →∞.

We use the Bellman approach to update the critic. Inserting the value function approx-

imation (3.10) into the Bellman equation (3.8) gives

(3.11)
∫t

t−T
r(x(τ),u(τ))dτ︸ ︷︷ ︸

ρ(x,u)

+wTφ(x(t))−wTφ(x(t−T))︸ ︷︷ ︸
wT∆φ(t)

=−εB

with the integral reinforcement ρ(x,u), the difference ∆φ(t) =φ(x(t))−φ(x(t−T)), and

the Bellman equation residual error εB = ε(x(t))−ε(x(t−T)) being bounded for bounded

ε(x) within the compact set Ω (In practical applications, one can almost always find

a compact set that is sufficiently large to analyse the problem). In order to construct

an adaptive law that can estimate the weight of the value function approximation

with guaranteed convergence, we introduce a set of auxiliary variables P1 ∈ RN×N

and Q1 ∈RN by low-pass filtering the variables in (3.11) as

(3.12)


Ṗ1 =−ℓP1 +∆φ(t)∆φ(t)T, P1(0)= 0

Q̇1 =−ℓQ1 +∆φ(t)ρ(x,u), Q1(0)= 0

with a filter parameter ℓ> 0. The forgetting factor ℓ providing an exponential leakage

effectively avoids the unbounded explosion of P1(t), Q1(t) and guarantees stability

[75]. Their solutions can be found by solving (3.12) as

(3.13)


P1(t)=∫t

0 e−ℓ(t−τ)∆φ(τ)∆φT(τ)dτ

Q1(t)=∫t
0 e−ℓ(t−τ)∆φ(τ)ρ(τ)dτ

Definition 3.1 (Persistent Excitation (PE) [19]) The signal ∆φ(t) is said to be persis-

tently excited over the time interval [t−T, t] if there exists a strictly positive constant
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σ1 > 0 such that ∫t

t−T
∆φ(τ)∆φ(τ)Tdτ≥σ1I, ∀t > 0(3.14)

The PE condition [19] is widely required in adaptive control to guarantee parameter

convergence. The adaptation will stop when either the weights converge or when

there is no excitation, whichever happens first. P1 and Q1 lose the information over

time due to the exponential leakage from ℓ. If ℓ is selected to be very big, there would

not be enough knowledge for the controller to learn the optimal solution, i.e. the

weights converge before reaching the true value. Therefore, persistent excitation con-

dition is needed to ensure good weight estimation.

Lemma 3.1 [75] If the signal ∆φ(t) is persistently excited for all t > 0, the auxiliary variable

P1 defined in (3.12) is positive definite, i.e. P1 Â 0 and the minimum eigenvalue λmin(P1) >
σ1 > 0, ∀t > 0 for some positive constant σ1. ¦

Proof. The detailed proof follows from [75]. □

The adaptive critic neural network can be written as

(3.15) V̂ (x)= ŵTφ(x)

where ŵ and V̂ (x) denote the current estimates of w and V u(x), respectively.

Now we design the adaptation law using a sliding mode technique to update ŵ such

that

(3.16) ˙̂w =−Γ1P1
M1

||M1||
where M1 ∈RN is defined as M1 = P1ŵ+Q1 and Γ1 Â 0 is a diagonal adaptive learning

gain to be tuned. The rate of convergence of the parameter estimation is proportional

to the adaptive gain Γ1. Increasing the value of Γ1 will speed up the convergence. A

large Γ1, however, may make the differential equation (the adaptive law) stiff and,

therefore, more difficult to solve numerically [27].
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Lemma 3.2 Given the adaptation law (3.16), if the system state x(t) is bounded for a sta-

bilising control and u(t), ∆φ(t) and the system states x(t) are persistently excited, one can

formulate for the estimation error of weight w̃ = w− ŵ that

a) If there is no neural network approximation error, i.e. ε(x)= 0, the error w̃ will converge to

zero in finite time t1 > 0.

b) If ε(x) 6= 0, the error w̃ will converge to a compact set in finite time t1 > 0. ¦

Proof. We first examine the boundedness in terms of M1. From (3.13), with states x(t),

x(t− T) being bounded, the matrix P1 is upper bounded for some positive δP1 > 0

such that λmax(P1) ≤ δP1 . Inserting ρ in (3.11) into (3.13) gives Q1 = −P1w+Λ1 with

Λ1(t) =∫t
0 e−ℓ(t−τ)∆φ(τ)εB(τ)dτ being bounded by some constant δ1 > 0 as the Bellman

equation residual error εB is bounded. Then, M1 can be written as

(3.17) M1 =−P1w̃+Λ1

Since ∆φ(t) is persistently excited, from Lemma 3.1 we know P1 is symmetric positive

definite so it is invertible. Then, we have P−1
1 M1 = −w̃+P−1

1 Λ1. Here P−1
1 M1 can be

used to design a proper Lyapunov function as it contains the estimation error w̃ and

Λ1. We differentiate P−1
1 M1 as

(3.18)
∂

∂t
(P−1

1 M1)=− ˙̃w+ ∂P−1
1

∂t
Λ1 +P−1

1 Λ̇1 = ˙̂w+ Λ̄1

with Λ̄1 =−P−1
1 Ṗ1P−1

1 Λ1+P−1
1 Λ̇1 being bounded for bounded Λ1, i.e., ||Λ̄1|| ≤ δ̄1 holds

for a constant δ̄1 > 0. Note that P−1
1 is bounded since λmin(P1) > σ1 and λmax(P1) <

δP1 , so the lower and upper bounds of P−1
1 can be found as λmin(P−1

1 ) > δP1 and

λmax(P−1
1 ) < 1/σ1. Thus, one can easily find two class K functions [165] of M1 that

serve as the lower and upper bounds of the following time-varying Lyapunov func-

tion

(3.19) L1 = L1

2
(P−1

1 M1)TΓ−1
1 P−1

1 M1
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with a positive constant L1 > 0. Its time derivative can be determined as

L̇1 = L1MT
1 P−1

1 Γ−1
1 ( ˙̂w+ Λ̄1)

= L1MT
1 P−1

1 Γ−1
1 (−Γ1P1

M1

||M1||
+ Λ̄1)

≤−α1
√
L1

(3.20)

where α1 = (σ1 − L1δ̄1λmax(Γ−1
1 ))

√
2/λmax(Γ−1

1 ) is a positive constant for a properly

chosen L1 with 0 < L1 < σ1/(λmax(Γ−1
1 )δ̄1). According to [166], it can be found that

L1 = 0 and M1 = 0 so that

a) In the case of ε(x) = 0, we can obtain εB = 0, and Λ1 = Λ̄1 = 0, which implies that

w̃ = 0 and M1 = 0 so that w̃ will converge to zero in finite time t1 = 2
√
L1(0) /α1 > 0

where α1 =σ1

√
2/λmax(Γ−1

1 ) .

b) In the case of ε(x) 6= 0, i.e., εB 6= 0, M1 = 0 in finite time implies that w̃ = P−1
1 Λ1, and

||w̃|| ≤ δ1/σ1 after finite time t1. □

Remark 3.1 From Lemma 3.1, the PE condition can be verified online by checking the mini-

mum eigenvalue of P1. For implementation, the PE condition can be retained by reinitiating

the state or adding sufficient exploration noise to the control as in [151][163]. ¦

Remark 3.2 The adaptation law (3.16) with the sliding mode term M1/||M1|| can lead to

finite-time convergence of the weight ŵ without causing a severe chattering phenomenon [75]

due to the integration action. ¦

3.3.2 Adaptive Optimal Control via GPI

Now we design an actor for policy improvement. By inspection of (3.9), one can de-

termine the optimal control directly using the adaptive critic (3.15) if the weight ŵ

converges to the actual unknown weight w which solves the Bellman equation (3.8).

The control law (actor) will be

(3.21) u =−1
2

R−1 g(x)T∇ΦTŵ
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Now we summarise the first result of this chapter as follows:

Theorem 3.1 Given the continuous-time nonlinear affine system (3.1) with the infinite-

horizon value function (3.2), the adaptive critic neural network (3.15) with the adaptation

law (3.16) and the actor (3.21) form an adaptive optimal control so that:

a) In the absence of a neural network approximation error, the adaptive critic weight estimation

error w̃ will converge to zero and the actor u will converge to its optimal control solution u∗

in finite time t1 > 0.

b) In the presence of a neural network approximation error, the adaptive critic weight estima-

tion error w̃ will converge to a compact set and the actor u will converge to a small bounded

set around its optimal control solution u∗ in finite time t1 > 0.

Proof. We design the Lyapunov function following a similar procedure as in [150][152]

(3.22) L2 =L1 +L2V∗+ L3

2
ΛT

1 Λ1

with positive constants L2 and L3. We investigate the Lyapunov function L2 in a

compact set Ω̃ ∈ RN ×Rn ×Rm ×RN in tuple (M1, x,u,Λ1) that contains the origin and

Ω̃⊂Ω. Ω in Assumption 3.1 and Ω̃ are chosen to be sufficiently large but of fixed size.

Any initial value of (M1, x,u,Λ1) is assumed to be within the interior Ω̃. Thus, for any

initial trajectory, the state x and the control u remain bounded for at least finite time

t ∈ [0,T1]. Within (3.22), differentiating the term L2V∗(x) will involve V̇∗ = (∇V∗
x )T ẋ.

Note that the HJB equation (3.5) can be written as

(3.23) 0= r(x,u)+ (∇V∗
x )T( f (x)+ g(x)u)

Considering a Young’s inequality ab ≤ η1
2 a2 + 1

2η1
b2 with constant η1 > 0, using (3.19)
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(3.22)(3.23), the derivative of L2 can be derived as

L̇2 = L̇1 +L2(∇V∗
x )T( f + gu)+L3Λ

T
1 Λ̇1

= L1MT
1 P−1

1 Γ−1
1 ( ˙̂w+ Λ̄1)+L2(−r(x,u))

+L3Λ
T
1 (−ℓΛ1 +∆φεB)

≤−α′
1||M1||−α2S(x)−α3||u||2 −α4||Λ1||2 +β1

(3.24)

where α′
1 = 1−L1δ̄1λmax(Γ−1

1 )/σ1, α2 = L2, α3 = L2λmin(R), α4 = L3ℓ−L3η1/2 are positive

constants for properly chosen L1, L2, L3, η1 with 0 < L1 < σ1/(λmax(Γ−1
1 )δ̄1), L2 > 0,

L3 > 0, 0< η1 < 2ℓ, respectively; β1 = L3||∆φεB||/(2η1) addresses the effect of the neural

network approximation error. Thus, the first four terms in the last inequality of (3.24)

form a negative definite function in Ω̃ so that the set of ultimate boundedness Ωu

exists and it depends on the size of β1, i.e. a smaller size of β1 will decrease the size of

Ωu. Assuming that N has been chosen large enough, this implies β1 to be sufficiently

small so that Ωu ⊂ Ω̃. Hence, it is impossible for any trajectory to leave Ω̃, i.e. it is an

invariant set, i.e. the states x(t) remain bounded and subsequently also the functions

of x(t): approximation error ε(x), φ(x) are bounded functions over a compact set. This

also implies that

a) In the case of no neural network approximation error, ε = 0 and εB = 0. Then we

have β1 = 0 and

(3.25) L̇2 ≤−α′
1||M1||−α2S(x)−α3||u||2 −α4||Λ1||2 ≤ 0

According to Lyapunov’s theorem and Lemma 3.2, L2 and w̃ will converge to zero,

and based on (3.9)(3.10)(3.21), the difference of the actor to the optimal control

||u∗−u|| ≤ 1
2
||R−1 g(x)T∇φ|| ||w̃||(3.26)

will also converge to zero in finite time t1, i.e. the actor û will converge to its optimal

solution u∗.

b) In the case of ε 6= 0, then εB 6= 0, β1 6= 0. From Lyapunov’s theorem and Lemma 3.2,

L2 and w̃ are uniformly ultimately bounded. The difference of the actor to the optimal
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control

||u∗−u|| ≤ 1
2
||R−1 g(x)T∇φ||||w̃||+ 1

2
||R−1 g(x)T||||∇ε||(3.27)

bounded after finite time t1. It depends on the weight error w̃ and the approximation

error ∇ε. It follows the actor u will converge to a small bounded set around its optimal

solution u∗. □

Remark 3.3 The proposed GPI (Theorem 3.1) is a partially model-free algorithm that can

approximately solve the continuous-time nonlinear optimal control problem online without

the a priori knowledge of system drift f (x). Hence, the identifier of the dual approximation

structure in [152] can be further removed. Moreover, since the finite-time convergence of the

critic weight is guaranteed, the actor neural network in [151] is not needed. The adaptive critic

and the actor are continuously and simultaneously updating each other, which effectively

avoids the hybrid structure as in [149] and does not require a stabilising initial control policy

as in [149][163]. ¦

3.4 Nonlinear Q-Learning

It is widely shown that policy iteration [150][151][152], including our proposed GPI

algorithm, still requires the a priori knowledge of the input gain g(x). In this section,

we extend the idea of Q-learning to continuous-time nonlinear systems in the form

of adaptive optimal control, which leads to a completely model-free algorithm, i.e.

neither the knowledge of f (x) nor g(x) is needed.

3.4.1 Parameterisation of Nonlinear Q-function

The core basis of Q-learning is to create an action-dependent value function Q(x,u) :

Rn+m → R such that Q∗(x,u∗) = V∗(x). For the continuous-time nonlinear input-affine

system (3.1), the Q-function can be explicitly defined by adding the Hamiltonian (3.4)
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onto the optimal value (3.3) as

Q(x,u) :=V∗(x)+H(x,u,∇V∗
x )

=V∗(x)+S(x)+ (∇V∗
x )T f (x)︸ ︷︷ ︸

Fxx(x)

+

(∇V∗
x )Tg(x)u︸ ︷︷ ︸

Fxu(x,u)

+uTRu︸ ︷︷ ︸
Fuu(u)

(3.28)

where Fxx(x), Fxu(x,u), and Fuu(u) are the lumped terms that can be approximated

respectively via neural networks.

Lemma 3.3 The Q-function defined in (3.28) is positive definite with the optimisation scheme

Q∗(x,u∗)=minu Q(x,u). The optimal Q-function Q∗(x,u∗) has the same optimal value V∗(x)

(3.3) as for the value function V u(x) (3.2), i.e. Q∗(x,u∗) = V∗(x) when applying the optimal

control u∗. ¦

Proof. From its definition (3.28), Q-function is the sum of the optimal value V∗(x) and

the Hamiltonian H(x,u,∇V∗
x ), where V∗(x) is positive definite. The HJB equation (3.5)

implies that the minimisation of the Hamiltonian with respect to u yields the optimal

solution. Hence, Q∗(x,u∗) = minu Q(x,u). Inserting the HJB equation (3.5) with the

optimal control u∗ gives H(x,u∗,∇V∗
x )= 0. Then we have Q∗(x,u∗)=V∗(x). □

3.4.2 Adaptive Critic for Q-function Approximation

For the nonlinear affine system (3.1) with the Q-function (3.28), we approximate the

Q-function using a critic neural network by

(3.29) Q(x,u)=WTΦ(x,u)+εQ(x,u)

where Φ(x,u) : Rn+m → RN ′
denotes the activation function vector with the number

N ′ of neurons in the hidden layer, W ∈ RN ′
is the weight vector, εQ(x,u) is the neural

network approximation error and WTΦ(x,u) can be explicitly expressed according to

the three components Fxx(x), Fxu(x,u), and Fuu(u) in (3.28) as
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WTΦ(x,u)=
[
WT

xx WT
xu WT

uu

]


Φxx(x)

vec(Φxu(x)⊗u)

Φuu(u)



=



Wxx

−−−
Wxu1

Wxu2
...

Wxum

−−−
Wuu1

Wuu2
...

Wuum



T

Φxx(x)

−−−−
Φxu(x)u1

Φxu(x)u2
...

Φxu(x)um

−−−−
u2

1

u2
2
...

u2
m



(3.30)

where ⊗ denotes the Kronecker product and vec(·) is the vectorisation function which

stacks the columns of a matrix together. For Φxx ∈ RNxx , Φxu ∈ RNxu and Φuu ∈ Rm, the

regressor Φ(x,u) is selected to provide a complete independent basis such that Q(x,u)

is uniformly bounded with N ′ = Nxx +m(Nxu +1). Recall from the Weierstrass higher-

order approximation theorem [164], the approximation error εQ(x,u) is bounded for a

fixed N ′ within a compact set Ω and as the number of neurons Nxx →∞ and Nxu →∞,

i.e., N ′ →∞, we have εQ(x,u)→ 0.

Remark 3.4 By the definition of the Q-function (3.28), the terms WT
xxΦxx(x), WT

xu vec(Φxu(x)⊗
u), WT

uuΦuu in (3.30) account for the lumped functions Fxx(x), Fxu(x,u), Fuu(u) in (3.28),

where Fxu(x,u) is a linear function of u and Fuu(u) is a quadratic function of u. Note that the

regressors used here are radial activation functions that are different to the ridge activation

functions in conventional neural networks. A polynomial regressor can easily represent each

lumped function due to its simplicity. ¦

One needs to derive the Bellman equation in terms of the Q-function to update the
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critic. By Bellman’s principle of optimality [41], we have the following optimality

equation

(3.31) V∗(x(t−T))=
∫t

t−T
r(x(τ),u(τ))dτ+V∗(x(t))

The result from Lemma 3.3 showed that Q∗(x,u∗)=V∗(x), which means we can rewrite

(3.31) in terms of Q∗(x,u∗) as

−ρ(x,u∗)︷ ︸︸ ︷
−

∫t

t−T
r(x,u∗)dτ=Q∗(x(t),u∗(t))−Q∗(x(t−T),u∗(t−T))

=WTΦ(x(t),u∗(t))−WTΦ(x(t−T),u∗(t−T))︸ ︷︷ ︸
WT∆Φ(x,u∗)

+εBQ(x,u∗)
(3.32)

with the integral reinforcement ρ(x,u), the difference ∆Φ(t) = Φ(x(t),u∗(t))−Φ(x(t −
T),u∗(t−T)), and the Bellman equation residual error εBQ = εQ(x(t),u∗(t))− εQ(x(t−
T),u∗(t−T)) being bounded for bounded εQ(x,u). Define two auxiliary variables P2 ∈
RN ′×N ′

and Q2 ∈RN ′
by low-pass filtering the variables in (3.32) as

(3.33)


Ṗ2 =−ℓP2 +∆Φ(t)∆Φ(t)T, P2(0)= 0

Q̇2 =−ℓQ2 +∆Φ(t)ρ(x,u), Q2(0)= 0

with a filter parameter ℓ> 0.

The adaptive critic neural network can be written as

(3.34) Q̂(x,u)= ŴTΦ(x,u)

where Ŵ and Q̂(x,u) denote the current estimates of W and Q(x,u), respectively.

Now we design the adaptation law using the sliding mode technique to update Ŵ

such that

(3.35) ˙̂W =−Γ2P2
M2

||M2||
where M2 ∈RN ′

is defined as M2 = P2Ŵ+Q2 and Γ2 Â 0 is a diagonal adaptive learning

gain to be tuned.
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Lemma 3.4 Given the adaptation law (3.35), if the system state x(t) is bounded for a sta-

bilising control and u(t), ∆Φ(t) and the system states x(t) are persistently excited, one can

formulate for the estimation error of weight W̃ =W −Ŵ that

a) if there is no neural network approximation error, i.e. εQ(x,u)= 0, the error W̃ will converge

to zero in finite time t2 > 0.

b) if εQ(x,u) 6= 0, the error W̃ will converge to a compact set in finite time t2 > 0. ¦

Proof. The proof follows similarly from Lemma 3.2. It can be obtained that M2 =
−P2W̃ +Λ2 with Λ2 defining the effect of approximation error εBQ and Λ̄2 = −P−1

2 Ṗ2

P−1
2 Λ1+P−1

2 Λ̇2 being bounded for bounded Λ1, i.e., ||Λ2|| ≤ δ2, ||Λ̄2|| ≤ δ̄2 for constants

δ2 > 0, δ̄2 > 0. We can design a time-varying Lyapunov function

(3.36) L3 = L4

2
(P−1

2 M2)TΓ−1
2 P−1

2 M2

with a postive constant L4 > 0 so that its time derivative L̇3 ≤ −α5
√
L3 holds for a

positve constant α5 if 0< L4 <σ2/(λmax(Γ−1
2 )δ̄2). The convergence time t2 is finite with

t2 = 2
√
L4(0) /α2. □

3.4.3 Adaptive Optimal Control via Q-learning

We reconstruct the optimal control u∗ from (3.6) based on the parameterisation of

Q(x,u) (3.28) such that

(3.37) u∗ =−1
2

R−1WT
xuΦxu(x)+εQu

where εQu is a bounded approximation error due to εQ , WT
xuΦxu(x) accounts for the

term g(x)T∇V∗
x . One can determine the optimal control directly using the adaptive

critic (3.34) if the weight Ŵ converges to the actual weight W . The control law (actor)

will be

(3.38) u =−1
2

R−1ŴT
xuΦxu(x)
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We summarise the main result as

Theorem 3.2 Given the continuous-time nonlinear affine system (3.1) with the infinite-

horizon value function (3.2) and Q-function defined in (3.28), the adaptive critic neural net-

work (3.34) with the adaptation law (3.35) and the actor (3.38) form an adaptive optimal

control so that:

a) in the absense of a neural network approximation error, the adaptive critic weight estimation

error W̃ will converge to zero and the actor u will converge to its optimal control solution u∗

in finite time t2 > 0.

b) in the presence of a neural network approximation error, the adaptive critic weight estima-

tion error W̃ will converge to a compact set and the actor u will converge to a small bounded

set around its optimal control solution u∗ in finite time t2 > 0.

Proof. We design the Lyapunov function following a similar procedure in [150] as

(3.39) L4 =L3 +L5Q∗(x,u)+ L6

2
ΛT

2 Λ2

with positive constants L5 and L6. We investigate the Lyapunov function L4 in a

compact set Ω̃Q ∈RN ′ ×Rn×Rm×RN ′
in tuple (M2, x,u,Λ2) that contains the origin and

Ω̃Q ⊂ Ω. Ω in Assumption 3.1 and Ω̃Q are chosen to be sufficiently large but of fixed

size. Any initial value of (M2, x,u,Λ2) is assumed to be within the interior Ω̃Q . Thus,

for any initial trajectory, the state x and the control u remain bounded for at least finite

time t ∈ [0,T2]. From (3.28), differentiating the term L5Q∗(x,u) in (3.39) will involve

Q̇∗(x,u)= V̇∗+Ḣ(x,u,∇V∗
x ). Since the Lagrange multiplier λ=∇V∗

x , differentiating the

Hamiltonian gives

(3.40) Ḣ(x,u,∇V∗
x )= ∂H/∂t+ (∇Hu)Tu̇+ (∇Hx + λ̇)T ẋ

According to Lagrange’s theory (pp. 114-115 [30]), from the costate equation and sta-

tionarity condition, the derivative of the Lagrange multiplier λ satisfies λ̇=−∇Hx and

∇Hu = 0. For a time-invariant system (3.1) and value function (3.2), the Hamiltonian
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H(x,u,∇V∗
x ) is not an explicit function of t, i.e. Ḣ = ∂H/∂t = 0. Considering a Young’s

inequality ab ≤ η2
2 a2 + 1

2η2
b2 with constant η2 > 0, using (3.23)(3.28)(3.36)(3.39)(3.40),

the derivative of L4 can be derived as

L̇4 = L̇3 +L5[(∇V∗
x )T( f + gu)+Ḣ]+L6Λ

T
2 Λ̇2

= L4MT
2 P−1

2 Γ−1
2 ( ˙̂w+ Λ̄2)+L5(−r(x,u))

+L6Λ
T
2 (−ℓΛ2 +∆ΦεBQ)

≤−(1−L4δ̄2λmax(Γ−1
2 )/σ2)||M2||−L5S(x)

−L5λmin(R)||u||2 − (L6ℓ− L6η2

2
)||Λ2||2

+ L6

2η2
||∆ΦεBQ ||

≤ −α′
5||M1||−α6S(x)−α7||u||2 −α8||Λ2||2 +β2

(3.41)

where α′
5 = 1−L4δ̄2λmax(Γ−1

2 )/σ2, α6 = L5, α7 = L5λmin(R), α8 = L6ℓ−L6η2/2 are positive

constants for properly chosen L4, L5, L6, η2 with 0 < L4 < σ2/(λmax(Γ−1
2 )δ̄2), L5 > 0,

L6 > 0, 0 < η2 < 2ℓ, respectively; β2 = L6||∆ΦεBQ ||/(2η2) is the lumped error. Thus, the

first four terms in the last inequality of (3.41) form a negative definite function in Ω̃Q

so that the set of ultimate boundedness Ω
Q
u exists and it depends on the size of β2, i.e.

a smaller value of β2 will decrease the size of ΩQ
u . Assuming that N ′ has been chosen

large enough, it is possible to obtain β2 to be sufficiently small so that ΩQ
u ⊂ Ω̃Q . Hence,

it is impossible for any trajectory to leave Ω̃Q , i.e. it is an invariant set, i.e. the states x(t)

remain bounded and subsequently also the functions of x(t) and u(t): approximation

error εQ(x,u), Φ(x,u) are bounded functions over a compact set. This also implies that

a) In the case of no neural network approximation error, εQ = 0, εBQ = 0, and εQu = 0.

Then we have β2 = 0 and

(3.42) L̇4 ≤−α′
5||M2||−α6S(x)−α7||u||2 −α8||Λ2||2 ≤ 0

According to Lyapunov’s theorem and Lemma 3.4, L4 and W̃ will converge to zero,

and based on (6.13)(6.22)(6.23), the difference of the actor to the optimal control

||u∗−u|| ≤ 1
2
||Φxu(x)|| ||diag(W̃uu)−1W̃xu||(3.43)
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will also converge to zero in finite time t2, i.e,. the actor û will converge to its optimal

solution u∗.

b) In the case of εQ 6= 0, then εBQ 6= 0, β2 6= 0. From Lyapunov’s theorem and Lemma

3.2, L4 and W̃ are uniformly ultimately bounded. The difference of the actor to the

optimal control

||u∗−u|| ≤ 1
2
||Φxu(x)|| ||diag(W̃uu)−1W̃xu||+ ||εQu||(3.44)

bounded after finite time t2 and it depends on the weight error W̃ and the approxima-

tion error εQu. It follows the actor u will converge to a small bounded set around its

optimal solution u∗. □

Remark 3.5 Compared to the GPI method (Theorem 3.1), the proposed Q-learning algorithm

(Theorem 3.2) further relaxes the requirement for the a priori knowledge of g(x), which is a

completely model-free approach solving the continuous-time nonlinear optimal control prob-

lem online. It does not restrict Q-learning to linear cases as in [158]-[162] and the actor neural

network in [162] is not needed due to the finite-time convergence of the adaptive critic. Un-

like other iterative model-free algorithms [160][163], the method does not require an initial

stabilising control policy. ¦

3.5 Numerical Examples

In order to demonstrate the effectiveness of our theoretical result, we consider a

numerical example [151] for a continuous-time nonlinear affine system (3.1) with

x = [x1 x2]T ∈R2, u ∈R, and

(3.45) f (x)=
 −x1 + x2

−0.5x1 −0.5x2(1− (cos(2x1)+2)2)



(3.46) g(x)=
 0

cos(2x1)+2
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We define the infinite horizon value function V u(x) to be minimized with Q(x)= x2
1+x2

2

and R = 1. Using the converse procedure [167], the optimal value function is V∗ =
1
2 x2

1 + x2
2 and the optimal control is u∗ =−(cos(2x1)+2)x2.

3.5.1 Adaptive Optimal Control via GPI (Theorem 3.1)

We implement the GPI algorithm as in Theorem 3.1. The activation function φ(x) of

the adaptive critic neural network (3.15) is selected as φ(x) = [x2
1 x1x2 x2

2]T with the

number of neurons N = 3. We initialize the state x(0) = [1 1]T and the weight ŵ(0) =
[0.1 0.1 0.1]T. The tuning parameters are properly chosen as follows. The sample

period T = 2s, the filter parameter ℓ= 1, the adaptive learning gain Γ1 = I. The system

state trajectory is presented in Fig. 3.2 with the exploration noise removed after 100s.

Fig. 3.3 presents the weight convergence of the adaptive critic (3.15). The PE condition

is ensured by adding onto the control input a small exploration noise that can satisfy

the state to remain PE until the weights converge. It is reasonable to add the noise

onto input instead of the states because the input can be adjusted by the controller

and the states are practically not capable of being manipulated. A typical type of

exploration noise is a set of sinusoidal signals with different frequencies. Empirically,

the number of different frequencies should be at least the number of weights to be

estimated in order to get good convergence. The result shows the neural network

weight ŵ converges to w = [0.49 0.01 1.02]T, which is close to the optimal value

w = [0.5 0 1]T.

3.5.2 Adaptive Optimal Control via Q-learning (Theorem 3.2)

We implement the Q-learning algorithm as in Theorem 3.2. The activation function

Φ(x,u) of the adaptive critic neural network (3.15) is selected as Φ(x,u) = [x2
1 x1x2

x2
2 x1u x2u x1x2u x2

1u x2
2u x2

1x2u x1x2
2u x4

1x2u x1x4
2u u2]T with the number of neu-

rons N ′ = 13. We initialise the state x(0) = [1 1]T and the weight Ŵ(0) = [0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1]T. The tuning parameters are chosen

as the sample period is T = 2s, the filter parameter is ℓ = 1, the adaptive learning
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Figure 3.2: System trajectory with exploration noise with GPI.
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Figure 3.3: The weight convergence of the adaptive critic (3.15) in GPI.

gain is Γ2 = I. Fig. 3.4 presents the system state trajectory with exploration noise re-

moved after 100s. Fig. 3.5 shows the neural network weight Ŵ converges around

80s before removing the noise. Using the Taylor series for cos(2x1), the optimal value

u∗ =−(cos(2x1)+2)x2 ≈−1
2 (6x2 −4x2

1x2) for small x1, i.e. W5 ≈ 6, and W9 ≈−4. One can

verify the optimal weight convergence by checking the value of Ŵ5, and Ŵ9. After 80s,

the critic weights converge to the values of Ŵ5 = 5.76, and Ŵ9 =−3.64, which are close

to the optimal values.
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Figure 3.4: System trajectory with exploration noise with Q-learning.

Figure 3.5: The weight convergence of the adaptive critic (3.30) in Q-learning.
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3.6 Conclusions

In this chapter, we have provided two novel adaptive optimal control algorithms for

continuous-time nonlinear input-affine systems using reinforcement learning ideas,

i.e. GPI and Q-learning. The adaptive critic and actor are continuously and simulta-

neously updating each other with neither iterative steps nor an initial stabilising pol-

icy. The two approaches can approximate the value function/Q-function online and

are partially/completely model-free. The new adaptive approach enables the online

verification of the PE condition and guarantees the overall stability and finite-time

convergence. The next chapter will extend this result to an observer design problem.
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4
A FIRST MODEL-FREE ADAPTIVE OPTIMAL OBSERVER:

AN OHJB APPROACH

This chapter presents an adaptive optimal observer design using reinforce-

ment learning/approximate dynamic programming (ADP) principles for de-

terministic nonlinear systems. A continuous-time Q-learning algorithm is

proposed to solve the problem online while ensuring stability and optimality. Op-

timal observer design has been rarely studied beyond the Kalman filter. We first for-

mulate the general optimal observer design problem for deterministic nonlinear sys-

tems, i.e., finding an admissible control that minimises a pre-defined cost functional.

We show that the optimal solution can be obtained by solving an observer Hamilton-

Jacobi-Bellman (OHJB) equation. Specifically, we justify the existence, stability, and

optimality of the solution when the problem is in infinite horizon. This allows us to

build general results in policy iteration that successively approximate the optimal

value functional. Then, we define the Q-functional in the continuous-time context as

a control-dependent value functional. The Q-functional is approximated by an adap-

tive critic neural network that online solves the Q-learning Bellman equation. The

convergence is rigorously proved via an overall Lyapunov stability analysis. The pro-
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posed algorithm is model-free in the sense that the Q-learning Bellman equation can

be approximately solved without knowing the system dynamics. A case study on

observer design for the Van der Pol oscillator is provided. Numerical simulations

demonstrate the effectiveness of the proposed algorithm compared with a high-gain

observer.

4.1 Introduction

Estimating the state of a dynamical system has always been an important issue in

general systems and control theory. Given that often not all the states are available

in practice, one can design an “observer" that reconstructs or approximates the state

using available input and output. For linear systems, the observer design problem

has been extensively studied and especially applied as observer-based control on ac-

count of the separation principle [168]. In a wide sense, an observer is termed as

the Luenberger observer [169][170] if it is in a deterministic setting, to distinguish

it from the Kalman filter [171] which is usually stochastic in noise. Since this early

seminal work in linear observers, many researchers have extended the theory to non-

linear problems so as to deal with a broader class of systems: deterministic/stochastic;

continuous/discrete-time; time-invariant/varying. Detailed surveys can be found in

[172][173][42][174][175] and references therein. Compared to the satisfactory results

for linear systems, nonlinear observer designs still suffer from a significant lack of

generality without a unified framework. The majority of literature on the subject con-

tains scattered solutions under specific assumptions using different nonlinear tech-

niques. The most celebrated results include the high-gain observer [176], the extended

Kalman filter (EKF) [42], adaptive observers [177][178], sliding-mode observers [179],

etc.

A common feature of observer designs is that certain compensation or correction (e.g.,

output error) is added to drive the observer states to track the actual dynamical sys-

tem state. However, observers are not usually designed to be optimal in the sense of
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minimising a user-prescribed performance index. A special case for an observer to be

“optimal" is the Kalman filter and its relatives, e.g., the EKF, the unscented Kalman fil-

ter, the particle filter, where the system and measurement are corrupted by noise with

certain stochastic properties such that the expected squared error is minimised. To be

more specific, the Kalman filter is only optimal when the errors (including noises) are

Gaussian and it also requires the specification of the covariance matrices of both the

system and measurement noise. A control designer can be hard-pressed when finding

reasonable values for covariance, let alone if the system itself is essentially determinis-

tic or noise-free. Therefore, we are looking for an alternative optimal observer design

procedure for essentially deterministic problems.

Optimal observer design has been rarely studied beyond the Kalman filter. The dual-

ity of Kalman filter and linear quadratic regulation (LQR) was well established in [33].

Recent work by Possieri and Sassano [180] provided a deterministic characterisation

of optimality of the Kalman filter for linear time-invariant systems. The most interest-

ing point of [180] is that a “linear quadratic optimal observer" was proposed which

was radically different from the results derived in the duality theory. The observer

design problem can be formulated as designing the correction term of a Luenberger

observer as if it is an LQR optimal control problem, which is distinguished from the

deterministic Kalman filter that solves a dual algebraic Riccati equation (ARE). Other

similar formulations are found in [181], [182], and [183], which mostly involve solving

an ARE to design a linear optimal observer. Following these new ideas, in this chap-

ter, we synthesise the design of a nonlinear observer in an optimal control theoretic

sense.

Optimal control [30][184][35] is primarily derived by offline solving the Hamilton-

Jacobi-Bellman (HJB) equation, or, in a linear quadratic case, the ARE. The nonlin-

ear HJB equation is often difficult or impossible to solve due to requirement of the

complete knowledge of the system. On the other hand, adaptive control [185][25][26]

learns online to control unknown systems using data measured in real time along
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the system trajectories. Recent ideas of incorporating reinforcement learning [85][159]

[41][144] into feedback control have prompted extensive research on adaptive opti-

mal control [41]. This is also referred to as approximate/adaptive dynamic program-

ming (ADP) [84][160][152]. Vrabie et al. [148] proposed an adaptive optimal controller

for the fundamental LQR problem which forms an integral reinforcement learning

(IRL) approach in continuous time. The IRL [150] then generates a large family of

algorithms but most of them require complete or at least partial knowledge of the

system dynamics.

As a model-free reinforcement learning technique, Q-learning has been developed

mainly for discrete-time systems under the Markov decision process (MDP) frame-

work [85]. Nonetheless, there is still a lack of research regarding Q-learning stud-

ies in a deterministic continuous-time case. A proper definition of a Q-function in

continuous time is still disputed. In fact, Q-learning was first posed in continuous

time as advantage updating [156]. It was mentioned in [157] that the Q-function

can be viewed as an extension of the Hamiltonian, which connects Q-learning with

continuous-time optimal control. Then researchers started to mimic the Q-learning

from discrete-time systems to continuous-time systems, which resulted in stepwise

iterative algorithms in [158][160][161]. The consequence is that the control signal fol-

lows inherently a discrete-time batch learning process while the system is in contin-

uous time. Furthermore, it should be noted that the “Q-function" in [157][158] has a

different meaning from that in reinforcement learning [159]. Later, the above issues

were overcome by Vamvoudakis [162] via a synchronous method for IRL, where the

algorithm employed two neural networks in a critic/actor configuration and was re-

stricted to the LQR case. Indeed, all the solutions above [158]-[162] were limited to

linear systems. Chen and Herrmann [143] for the first time extended Q-learning to

nonlinear input-affine systems in a non-iterative manner. Instead of the gradient al-

gorithm with normalisation in [162], the adaptive law in [143] used a sliding mode

technique which guarantees the convergence towards the optimal solution in finite

time.
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This chapter presents the formulation of an optimal observer design problem for a

class of deterministic continuous-time nonlinear systems and its observer Hamilton-

Jacobi-Bellman (OHJB) solution. The successive approximation theory used in IRL

policy iteration is reviewed which forms the basis for new Q-learning algorithm. We

provide the definition and parameterisation of the Q-functional and the Q-learning

Bellman equation. The online adaptive algorithm ensures the convergence of the critic

neural network. The overall stability is rigorously proved by Lyapunov analysis. We

also provide a case study of an observer design for the Van der Pol oscillator and

compare the results with benchmark high-gain observers.

4.2 Nonlinear Optimal Observer Design Problem

Formulation and Its OHJB Solution

4.2.1 Problem Formulation

Consider a nonlinear system

(4.1)


˙̄x(t)= Ax̄(t)+ f ( ȳ(t), ū(t)), x̄(t0)= x̄0

ȳ(t)= Cx̄(t)

where x̄(t) ∈ Rn is the system state, ȳ(t) ∈ Rq is the system output, ū(t) ∈ Rm is the

system control input, t is time, t0 is the initial time, and x0 is the initial state. Both x̄(t)

and u(t) are continuous functions of t. The additive output nonlinearity f :Rn ×Rm →
Rn is Lipschitz continuous on x̄(t) and ū(t). The pair (A,B) is controllable and (A,C) is

observable. The system (4.1) admits a Luenberger-like observer of the form

(4.2) ẋ(t)= Ax(t)+ f ( ȳ(t), ū(t))−K(Cx(t)− ȳ(t))

with appropriate choice of K such that A−KC is stable [172]. We show that the above

observer problem can be viewed as an optimal tracking control problem. The ob-

server state x(t) in (4.2) should be controlled to track the system state x̄(t). The term

−K(Cx− ȳ) in (4.2) can be seen as some correction term (control input) to be designed.
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Therefore, one can rewrite a new form of the state observer for the system (4.1) from

a Luenberger-like observer as

(4.3)


ẋ(t)= Ax(t)+ f ( ȳ(t), ū(t))+Bu(t), x(t0)= x0

y(t)= Cx(t)

where x(t) ∈ Rn, y(t) ∈ Rq, u ∈ U ⊂ Rm with U being a compact set of admissible [186]

controls (See Definition 4.1).

We use a low-pass filter for the output

(4.4) kẏf (t)+ yf (t)= ȳ(t)

with k > 0 being the filter’s time constant. The benefits of using the filtered output

yf (t) are twofold: 1) smoothing the output signal ȳ(t), if subject to high-frequency

noise; 2) constructing filtered output dynamics which later turn out to be essential for

learning. In practice, one may choose an arbitrarily small k so that yf (t)≈ ȳ(t).

Considering the system (4.1) with the initial condition x̄(t0) = x̄0, the nonlinear opti-

mal observer (4.3) shall generate an estimated state trajectory x(t) for x̄(t) from the

knowledge of ū(t), u(t), ȳ(t), and yf (t) for t0 ≤ t ≤ t f by minimising some performance

index or cost functional

J0(t0,x(t), yf (t),u(t))

:=
∫t f

t0

[(Cx− yf )TL(Cx− yf )+uTRu]dt

+ (Cx(t f )− yf (t f ))TP(Cx(t f )− yf (t f ))

(4.5)

where L and P are real symmetric positive semi-definite matrices, R is a real symmet-

ric positive definite matrix, i.e., L = LT º 0, P = PT º 0, R = RT Â 0; the initial point

{t0, x0.yf (t0)} is specified while the final point {t f , x(t f ), yf (t f )} ∈ S0 ⊂ [t0,∞)×Rn ×Rp

with S0 being some compact target set. The cost functional (4.5) associated with the

quadratic terms is reasonable: since all matrices L, R, and P are positive (semi-) def-

inite, it penalises the size of observer error, the correction (control) effort, and the
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terminal observer error, with L, R, and P determining their relative weights, respec-

tively.

In general, we can define an augmented state X (t) as

(4.6) X (t) :=
 x(t)

yf (t)

 ; X (t0)= X0

and a more generic cost functional J(t0, X (t),u(t)) such that

J(t0, X (t),u(t)) :=
∫t f

t0

L(t, X (t),u(t))dt

+M(t f , X (t f ))
(4.7)

where L(t, X (t),u(t))> 0, M(t f , X (t f ))≥ 0, and {t f , X (t f )} ∈ S ⊂ [t0,∞)×Ω with S being

some compact target set. To ensure the observer design problem is well posed, we

shall make the following assumptions

Assumption 4.1 There exists a compact set Ω ⊂ Rn+p containing the origin as an interior

point such that the augmented state trajectory X (t) ∈Ω is selected that the system (4.1) and

its observer (4.3) are stabilisable on Ω. To be precise, the reference trajectory x̄(t) so as ȳ(t),

yf (t) remain bounded for a stabilising control ū(t) ∈ Ū and there exists a continuous control

u = µ(X ) on Ω so that the observer (4.3) is asymptotically stable for all initial conditions

X0 ∈Ω and for ȳ= 0. ¦

Assumption 4.2 (A,B) is controllable and (A,C) is observable. ¦

Definition 4.1 (Admissible control) Given the system (4.1) and its observer (4.3), a feedback

control policy u =µ(X ) ∈U(Ω) is said to be admissible with respect to (4.7) on Ω if

• µ(X ) is a continuous function on Ω,

• µ(0)= 0,

• u =µ(X ) stabilises (4.3),
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• J(t0, X (t),µ(t) ∈L∞, ∀t, X (t).

¦

Now we formulate the optimal observer design problem as an optimal tracking con-

trol problem:

Problem 4.1 Considering a nonlinear uniformly observable system (4.1) and its state ob-

server given by (4.3), find an admissible correction (control) input u(t) ∈ U that minimises

the cost functional (4.7).

In the above discussion, the specification of the compact set Ω has been somewhat

arbitrary. To be specific, Ω can be made as large as the region of attraction of the

system under closed-loop stabilising controls ū and u.

4.2.2 OHJB Equation

Let us begin by supposing that the initial point {t0, X0} is specified and ū is a stabil-

ising control. The control u(t) is an admissible control which transfers {t0, X0} to the

target set S. The observer state trajectory X (t) originating at x0 is generated by u(t)

and t f is the first instant of time when X (t) meets S. Thus, for t ∈ [t0, t f ], the control

u(t) will transfer {t, X (t)} to S in view of the transition property of dynamical systems.

Then, we have the cost-to-go value functional defined as

V (t,X (t)) := J(t, X (t),u(t))

=
∫t f

t
L(τ, X (τ),u(τ))dτ+M(t f , X (t f ))

(4.8)

for t ∈ [t0, t f ] being the lower limit of the integral.

Define the Hamiltonian H(·) of our problem for some control u(t) and its associated
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V (t, X (t)):

H(t, X (t),
∂V (t, X (t))

∂X (t)
,u(t)) :=

L(t, X (t),u(t))+〈∂V (t, X (t))
∂X (t)

, Ẋ (t)〉
(4.9)

Lemma 4.1 If there exists an admissible feedback control u = µ(X ) ∈U , t ∈ [t0, t f ] such that

its associated value functional V (t, X (t)) ∈ L∞(Ω)∩C1(Ω), then the value function satisfies

the generalised Hamilton-Jacobi-Bellman equation, written GHJB(V ,u)= 0, as
∂V (t, X (t))

∂t
+H(t, X (t),

∂V (t, X (t))
∂X (t)

,u(t))= 0,

{t, X (t)} ∈ [t0, t f ]×Ω

(4.10)

with the boundary condition

(4.11) V (t f , X (t f ))=M(t f , X (t f )), {t f , X (t f )} ∈ S

Conversely, if there exists a positive definite solution V (t, X (t)) ∈L∞(Ω)∩C1(Ω) that satisfies

GHJB(V ,u) = 0 (4.10) along with the boundary condition (4.11), then it is the value func-

tional for the problem, i.e.

(4.12) V (t, X (t))≡ J(t, X (t),u(t)), {t, X (t)} ∈ [t0, t f ]×Ω

¦

Proof. First result: If there exists an admissible feedback control u = µ(X ) ∈ U , t ∈
[t0, t f ] and its associated value functional, using (4.8), V (t, X (t)) can be expanded for

a time interval T as

V (t, X (t))=
∫t+T

t
L(τ, X (τ),u(τ))dτ

+
∫t f

t+T
L(τ, X (τ),u(τ))dτ+M(t f , X (t f ))

=
∫t+T

t
L(τ, X (τ),u(τ))dτ+V (t+T, X (t+T))

(4.13)

Taking the limit as T → 0 yields

lim
T→0

V (t+T, X (t+T))−V (t, X (t))
T

=− lim
T→0

1
T

∫t+T

t
L(τ, X (τ),u(τ))dτ

(4.14)
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Since V (t, X (t)) ∈L∞(Ω)∩C1(Ω), we have

V̇ (t, X (t))= ∂V (t, X (t))
∂t

+ ∂V (t, X (t))
∂X (t)

∂X (t)
∂t

=−L(t, X (t),u(t))
(4.15)

Using the Hamiltonion (4.9), the above becomes (4.10). The boundary condition (4.11)

can be obtained by setting t = t f in (4.8).

Second result: If there exists a positive definite solution V (t, X (t)) ∈L∞(Ω)∩C1(Ω), then

V (t f , X (t f ))−V (t, X (t))

=
∫t f

t
[
∂V (τ, X (τ))

∂τ
+ ∂V (τ, X (τ))

∂X (τ)
∂X (τ)
∂τ

]dτ
(4.16)

Adding to the above both sides of

(4.17) J(t, X (t),u(t))=
∫t f

t
L(τ, X (τ),u(τ))dτ+M(t f , X (t f ))

and using the Hamiltonian (4.9), we have

J(t, X (t),u(t))−V (t, X (t))

=
∫t f

t
(
∂V
∂τ

+H)dτ+M(t f , X (t f ))−V (t f , X (t f ))
(4.18)

Since V (t, X (t)) satisfies GHJB(V ,u)= 0 (4.10) along with the boundary condition (4.11),

we have

(4.19) J(t, X (t),u(t))−V (t, X (t))≡ 0

This completes the proof. 2
Remark 4.1 The GHJB equation has also been referred as the (nonlinear) Lyapunov equation

in the literature [30][164]. In this chapter, we adopt the GHJB equation following the termi-

nology in [186]. In the linear time-invariant case, the GHJB equation reduces to the Lyapunov

equation, and the HJB equation reduces to the well-known algebraic Riccati equation. ¦

Lemma 4.2 If there exists a unique optimal control u∗(X ) and the associated optimal value

functional

(4.20) V∗(t, X (t))=min
u∈U

V (t, X (t))
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then they satisfy Lemma 4.1, i.e., V∗(t, X (t)) is the unique solution to the Hamilton-Jacobi-

Bellman (HJB) equation

∂V∗(t, X (t))
∂t

+min
u∈U

H(t, X (t),
∂V∗(t, X (t))

∂X (t)
,u(t))= 0,

{t, X (t)} ∈ [t0, t f ]×Ω

(4.21)

with the boundary condition

(4.22) V∗(t f , X (t f ))=M(t f , X (t f )), {t f , X (t f )} ∈ S

Then the optimal control is determined by

(4.23) u∗ = argmin
u∈U

H(t, X (t),
∂V∗(t, X (t))

∂X (t)
,u(t))

¦

Proof. The proof of this lemma is obvious from Lemma 4.1 and the optimal control

theory [30]. Equation (4.23) is from Pontryagin’s minimum principle (a necessary con-

dition for optimality), in which the optimal control shall minimise the Hamiltonian

for all admissible controls. 2

4.2.3 Infinite-Horizon Problem: Optimality and Stability

Note that the existence of a value functional is still questionable, let alone when the

problem horizon is infinite, i.e., when t f →∞. Even if the filtered output yf (t) is stable

in the sense of Lyapunov, the resulting control u(X ) containing a steady-state part in

general makes the cost functional J(t, X (t),u(t)) so as the value functional V (t, X (t))

unbounded, thus, the meaning of optimality (minimality) is lost. The existence of

such a finite value functional is established only when i) the system (4.1) and the ob-

server (4.3) are stabilisable (Assumption 4.1); and ii) the signal yf (t) is at least asymp-

totically stable [187]. This latter requirement is not favourable since we want the ob-

server to keep tracking the system trajectory which is usually nonzero. To ensure an

optimal value functional exists and is positive definite and finite even if the problem
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horizon is infinite, we define a discounted cost functional for (4.7) such that

L0(t0, t, X (t),u(t))= e−γ(t−t0)L(t, X (t),u(t))

= e−γ(t−t0)((Cx− yf )TL(Cx− yf )+uTRu)

= e−γ(t−t0)(X T(t)LaX (t)+u(t)TRu(t))

(4.24)

(4.25) M(t f , X (t f ))≡ 0

where γ > 0 is a properly selected discount factor so that the cost functional is finite,

i.e., V ∈L∞(Ω); the matrix La =
CTLC −CTL

−CTL L

 is chosen by a proper matrix L so that

the cost functional (4.7) satisfies the zero-state observability [188] with the following

definition.

Definition 4.2 (Zero-state observability) The discounted cost functional (4.7) defined from

(4.24)(4.25) satisfies the zero-state observability if for any trajectory such that
√

La X (t) ≡ 0,

ū(t)≡ 0, u(t)≡ 0 implies that X (t)≡ 0 for all t ≥ t0. ¦

To be more specific, the following assumption is required.

Assumption 4.3 The discount factor γ is sufficiently large so that the value functional in

terms of L0 is essentially bounded, i.e., V (t, X (t)) ∈ L∞; the matrix L is chosen properly so

that (A,
√

La ) is observable. ¦

Remark 4.2 Under Assumption 4.3, (A,
√

La ) being observable implies that the augmented

state X is "observable by the cost functional (4.7)" so that variations in any direction of the

state have an effect on J(t), i.e., J(t) satisfies the zero-state observability. This will guarantee

the closed-loop dynamics are stabilisible since all the potentially unstable states are weighted

in the cost functional. Moreover, the observability assumption ensures the uniqueness and

positive definiteness of the solution of the HJB equation (4.21). If (A,
√

La ) is assumed to

be detectable (all unobservable modes are convergent), only positive semi-definiteness can be

concluded. ¦
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Remark 4.3 The choice of the discount factor γ> 0 will depend on the dynamics of the filtered

output yf (driven by the control ū). If the filtered output yf is asymptotically stable, γ is not

essential, i.e., we can set γ= 0. If yf is subject to some linear dynamics such as ẏf = F yf , the

discount factor γ can be chosen such that 2F −γI is Hurwitz [189]. In a nutshell, given any

reasonable yf (t), we can always find a large enough γ to make the cost functional bounded. ¦

Theorem 4.1 With the discounted cost functional (4.7) defined from (4.24)(4.25), Lemma

4.2 holds for t f →∞, i.e., V (t, X (t)) ∈L∞(Ω)∩C1(Ω) (4.8) becomes an infinite-horizon value

functional written as

V (t, X (t))=∫∞

t
e−γ(τ−t)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

(4.26)

for all t ∈ [t0,∞) and τ ∈ [t,∞), which satisfies the following GHJB equation

−γV (t, X (t))+ X T(t)LaX (t)+u(t)TRu(t)+ ∂V (t, X (t))
∂t

+〈∂V (t, X (t))
∂X (t)

, Ẋ (t)〉 = 0, {t, X (t)} ∈ [t0,∞)×Ω

(4.27)

Moreover, suppose there exists a smooth positive definite solution V∗(t, X (t)) ∈L∞(Ω)∩C1(Ω)

of the HJB equation

∂V (t, X (t))
∂t

+min
u∈U

H(t, X ,
∂V∗(t, X )

∂X
,u(X ))= 0,

{t, X (t)} ∈ [t0,∞)×Ω

(4.28)

Define u∗(X ) as

(4.29) u∗(X )=−1
2

R−1BT ∂V∗(t, X (t))
∂X (t)

Then under a stabilising control ū(t) for (4.1) and u = u∗(X ),

• (Stability) The augmented state X (t) and the observer output error ϵ(t) = Cx(t)− yf (t)

are exponentially bounded. Moreover, in the limit as the discount factor γ goes to zero

(which can only be chosen when the observed plant l imt→∞ x̄(t) = 0), the observer out-

put error ϵ(t)= 0 is asymptotically stable.
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• (Optimality) The control u = u∗(X ) is the optimal control which minimises the cost

functional (4.7) over all admissible controls in U , and V∗(t, X (t)) is the optimal (mini-

mal) value functional.

Proof. Note t denotes the lower limit of the integration interval in the value functional

(4.8). Replacing the time variables t0 and t in (4.24) with t and τ yields

L0(t,τ, X (τ),u(τ))

= e−γ(τ−t)(X T(τ)LaX (τ)+u(τ)TRu(τ))
(4.30)

Combining (4.30) with (4.8)(4.25) gives the discounted infinite-horizon value func-

tional V (t, X (t)) (4.26).

Differentiating V (t, X (t)) (4.26) along the augmented state trajectories X (t) via the

Leibniz integral rule yields

V̇ (t, X (t))= γV (t, X (t))− X T(t)LaX (t)−u(t)TRu(t),

{t, X (t)} ∈ [t0,∞)×Ω
(4.31)

We know from (4.15) that the right hand side of (4.31) is actually −L(t, X (t),u(t)). The

Hamiltonian (4.9) becomes

H(t, X (t),
∂V (t, X (t))

∂X (t)
,u(t)) := X T(t)LaX (t)

+u(t)TRu(t)−γV (t, X (t))+〈∂V (t, X (t))
∂X (t)

, Ẋ (t)〉
(4.32)

Hence, the GHJB equation (4.27) and the HJB equation (4.28) follow on from (4.10) in

Lemma 4.1 and (4.21) in Lemma 4.2, respectively.

Stability: This stability proof follows [190]. The value functional V (t, X (t)) is a natural

Lyapunov function candidate for examining the boundedness of X (t) and ϵ(t). Rear-

range (4.31) as

V̇ (t, X (t))−γV (t, X (t))=−X T(t)LaX (t)−u(t)TRu(t),

{t, X (t)} ∈ [t0,∞)×Ω
(4.33)
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Multiplying e−γt its both sides gives

d
dt

(e−γtV (t, X (t)))=

− e−γt(X T(t)LaX (t)+u(t)TRu(t))≤ 0,

{t, X (t)} ∈ [t0,∞)×Ω

(4.34)

so the augmented state X (t) and the observer error ϵ(t) = Cx(t)− yf (t) are ultimately

bounded. Based on LaSalle’s extension, the augmented state X (t) goes to a region of

attraction where V̇ (t, X (t))= 0. In the limit as the discount factor γ goes to zero (which

can only be chosen when limt→∞ x̄(t)= 0), it can be concluded that the observer output

error ϵ(t) = 0 is asymptotically stable since limt→∞ x̄(t) = 0, it follows limt→∞Cx(t) = 0

and zero-state observability implies limt→∞ x(t)= 0.

Optimality: The solution V∗(t, X (t)) to the HJB equation (4.28) is the optimal value

functional as shown in Lemma 4.2. From (4.23), we know that the optimal control

shall minimise the Hamiltonian (Pontryagin’s minimum principle). Since u(t) is un-

constrained, letting ∂H/∂u = 0 by (4.9) yields

(4.35) u =−1
2

R−1BT ∂V (t, X (t))
∂X (t)

Hence, for the optimal value functional

(4.36) V∗(t, X (t))=min
u∈U

V (t, X (t))

We can conclude that (4.29) is the optimal control. 2
In order to find the optimal control solution for the problem one only needs to solve

the OHJB equation (4.28) for the value functional and then substitute the solution in

(4.29) to obtain the optimal control.

Remark 4.4 Optimal control problems do not necessarily have a smooth or even continuous

value functional, but may have the so-called viscosity solutions. Various assumptions guaran-

tee the existence of smooth solutions to the GHJB equation and the HJB equation, such as that
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there are no cross-terms of the state and control in the integrand L(t, X , (t),u(t)) and the dy-

namics is not bilinear [30]. In this chapter, all derivations are performed under the assumption

of a smooth solution, i.e., V ∈ C1(Ω). ¦

4.3 Policy Iteration: Successive Approximation Theory

The OHJB equation (4.28) is a nonlinear partial differential equation of V∗(t, X ) which

is difficult or impossible to solve. However, it is easy to see that the observer GHJB

equation (4.27) is linear in V (t, X ). The successive approximation theory was first de-

veloped in [191] where a sequence of GHJB equations is used to successively improve

a given initial admissible control. The theory resulted in a family of offline algorithms

in [164][186], the online version was proposed in [149] as a policy iteration algorithm.

Policy iteration is an iterative method of reinforcement learning [159] for solving op-

timal control problems, and consists of policy evaluation based on (4.27) and policy

improvement based on (4.29).

We present a policy iteration algorithm for the optimal observer design problem in

the following.

Algorithm 1 (Policy iteration via the GHJB equation)

1. (Policy Evaluation) Given the admissible policy (control) u(i), solve for V (i)(t, X ,u(i))

using the GHJB equation

−γV (i)(t, X (t))+ X T(t)LaX (t)+u(i)TRu(i)

∂V (i)(t, X (t))
∂t

+〈∂V (i)(t, X (t))
∂X (t)

, Ẋ (t)〉 = 0
(4.37)

2. (Policy Improvement) Update the policy (control) using

(4.38) u(i+1) =−1
2

R−1BT ∂V (i)(t, X (t))
∂X (t)

To ensure convergence of the policy iteration algorithm, an initial admissible policy

(control) is required. Proofs of convergence have been given in [191][164][186]. This
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method reduces to the well-known Kleinman iterative method [147] for solving the

algebraic Riccati equation using the Lyapunov equations.

Theorem 4.2 If u(0) ∈U(Ω), then u(i) ∈U(Ω), ∀i. Moreover, V (i) →V∗, u(i) → u∗ uniformly

on Ω.

Proof. It was shown in [164] that, conditioned by an initial admissible policy u(0) ∈
U(Ω), all the subsequent policies by iterating on (4.37) and (4.38) will be admissible

and will converge to the solution of the HJB equation, i.e., the optimal value func-

tional V∗. The uniform convergence is proved by Dini’s theorem [192] in view of Ω

being a compact set. See [164] and [186] for a more detailed proof. 2
Note that solving the GHJB equation (4.37) in policy iteration requires the complete

knowledge of the system dynamics as Ẋ appears in (4.37). In order to find an equiv-

alent formulation of the GHJB equation that does not involve the dynamics, we use

the IRL idea from [149] for the optimal observer design problem and propose the

following lemma.

Lemma 4.3 For any time interval [t−T, t] with T > 0, the value functional V (t, X ) satisfies

the IRL Bellman equation

V (t−T, X (t−T))=∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

+ e−γTV (t, X (t)),

{t, X (t)} ∈ [t0,∞)×Ω

(4.39)

which is equivalent to the GHJB equation (4.27) and has the same positive-definite solution.¦

Proof. We first derive the IRL Bellman equation by expanding V (t−T, X (t−T)) over
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a time interval [t−T, t] for t ∈ [t0,∞).

V (t−T, X (t−T))

=
∫∞

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=
∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

+
∫∞

t
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=
∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

+ e−γTV (t, X (t)), {t, X (t)} ∈ [t0,∞)×Ω

(4.40)

To demonstrate the equivalence of the IRL Bellman equation (4.39) and the GHJB

equation (4.27), we write the GHJB equation (4.27) as

X T(t)LaX (t)+u(t)TRu(t)−γV (t, X (t))

+ ∂V (t, X (t))
∂t

+〈∂V (t, X (t))
∂X (t)

, Ẋ (t)〉 = 0,

{t, X (t)} ∈ [t0,∞)×Ω

(4.41)

Integrating (4.41) over [t−T, t], we obtain

∫t

t−T
(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=−
∫t

t−T
(V̇ (τ, X (τ)−γV (t, X (t)))dτ

{t, X (t)} ∈ [t0,∞)×Ω

(4.42)

Equation (4.42) does not account for the discount factor γ. However, we show that it

is feasible to transform (4.42) into the IRL Bellman equation (4.39).

90



4.3. POLICY ITERATION: SUCCESSIVE APPROXIMATION THEORY

Multiplying −e−γt to the both sides of (4.42) yields

−
∫t

t−T
e−γt(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=
∫t

t−T
[e−γtV̇ (τ, X (τ)− e−γtγV (t, X (t))]dτ

=
∫t

t−T

d
dt

(e−γtV (t, X (t)))dτ

= e−γtV (t, X (t))
∣∣∣t

t−T

= e−γtV (t, X (t))− e−γ(t−T)V (t−T, X (t−T))

{t, X (t)} ∈ [t0,∞)×Ω

(4.43)

Then, multiplying eγ(t−T) to the both sides (4.43) of gives

− eγ(t−T)
∫t

t−T
e−γt(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=−
∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

= e−γTV (t, X (t))−V (t−T, X (t−T))

{t, X (t)} ∈ [t0,∞)×Ω

(4.44)

Rearrange (4.44) such that

∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=V (t−T, X (t−T))− e−γTV (t, X (t)),

{t, X (t)} ∈ [t0,∞)×Ω

(4.45)

This means that the solution of the GHJB equation (4.27) also satisfies the IRL Bellman

equation (4.39). This completes the proof. 2
Corollary 4.1 For any time interval [t−T, t] with T > 0, the optimal value functional V∗(t, X )
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satisfies the Bellman optimality equation

V∗(t−T, X (t−T))=∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u∗(τ)TRu∗(τ))dτ

+ e−γTV∗(t, X (t)),

{t, X (t)} ∈ [t0,∞)×Ω

(4.46)

which is equivalent to the solution to the HJB equation (4.28). ¦

Proof. The proof is by substituting the optimal control u = u∗ into (4.39) in Lemma 4.3.

Remark 4.5 Equation (4.42) is essentially the well-known integral reinforcement form in

[41]. The difference between (4.42) and the IRL Bellman equation (4.39) is that (4.39) takes

account of the forgetting factor γ. Hence, equation (4.39) is a more general form of (4.42) as it

also considers the case of the integral reinforcement being discounted throughout [t0,∞). The

IRL Bellman equation (4.39) reduces to (4.42) when the forgetting factor γ= 0. ¦

Lemma 4.3 enables the use of the IRL Bellman equation (4.39) for policy evaluation.

The major benefit of it is that the following policy iteration algorithm does not require

the knowledge of the system dynamics Ẋ .

Algorithm 2 (Policy iteration via the IRL Bellman equation)

1. (Policy Evaluation) Given the admissible policy (control) u(i), solve for V (i)(t, X )

using the IRL Bellman equation

V (i)(t−T, X (t−T))=∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(i)T(τ)Ru(i)(τ))dτ

+ e−γTV (i)(t, X (t))

(4.47)

2. (Policy Improvement) Update the policy (control) using

(4.48) u(i+1) =−1
2

R−1BT ∂V (i)(t, X (t))
∂X (t)
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4.4 Q-functional and Q-Learning Bellman Equation

We have the following Lemma [30] which is instrumental.

Lemma 4.4 For any admissible control u = µ(t) ∈ U with its associated value functional

V (t, X (t)), and the optimal control u∗(X ) given by (4.29), we have

H(t, X ,
∂V (t, X )
∂X (t)

,µ(t))=H(t, X ,
∂V (t, X )
∂X (t)

,u∗(X ))

+ (µ(t)−u∗(X ))TR(µ(t)−u∗(X ),

{t, X (t)} ∈ [t0,∞)×Ω

(4.49)

¦

Proof. Expand the Hamiltonian

H(t, X ,
∂V
∂X

,u)= X TLaX +uTRu+〈∂V
∂X

, Ẋ 〉

= (Cx− yf )TLa(Cx− yf )+ (
∂V
∂x

)T(Ax+ f ( ȳ, ū))

+ (
∂V
∂yf

)T(
ȳ− yf

k
)+ (

∂V
∂x

)TBu+uTRu

(4.50)

Completing the square for u yields

(
∂V
∂x

)TBu+uTRu =−1
4

(
∂V
∂x

)TBR−1BT ∂V
∂x

+ [
1
2

(
∂V
∂x

)TBR−1 +uT]R[
1
2

R−1BT ∂V
∂x

+u]
(4.51)

Inserting the optimal control u∗(X ) (4.29), then the difference of Hamiltonians be-

comes

H(t, X ,
∂V
∂X

,µ(t))−H(t, X ,
∂V
∂X

,u∗(X ))

= (µ(t)−u∗(X ))TR(µ(t)−u∗(X )
(4.52)

This completes the proof. 2
It shows that the Hamiltonian is quadratic in the control deviation from the optimal

control. This inpires us to create a Q-functional containing the Hamiltonian so as

to quantify how far it differs from the optimal value functional, which results in an
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action-dependent version for the value functional. This formulation will make use of

the information from the online policy or control that leads to a model-free reinforce-

ment learning framework.

Definition 4.3 (Q-functional) A Q-functional Q(t, X ,u) for the optimal control Problem

4.1 is defined by adding the left-hand side of the GHJB equation (4.10) to the optimal value

functional V∗(t, X ) (4.8) such that

Q(t, X ,u) :=V∗(t, X )+ ∂V∗(t, X )
∂t

+H(t, X ,
∂V∗(t, X )

∂X
,u)

(4.53)

Similar to the relation between J(t0, X (t,u(t))) and V (t, X (t)), if considering the discount

factor γ with respect to an initial time t0, a more sophisticated definition of the Q-functional

should be

Q(t0, X ,u) := e−γ(t−t0)V∗(t, X )+ ∂V∗(t, X )
∂t

+H(t, X ,
∂V∗(t, X )

∂X
,u)

(4.54)

Note that (4.54) reduces to (4.53) for every t0 = t, i.e., the Q-functional defined as (4.53) is

the free-initial-time version of (4.54). ¦

Lemma 4.5 Given the definition of the Q-functional (4.53), the minimisation Q∗(t, X ,u∗) =
minu∈U Q(t, X ,u) is equivalent to the optimisation scheme V∗(t, X ) = minu∈U V (t, X ). Fur-

thermore, for any time t ∈ [t0,∞), the optimal value Q∗(t, X ,u∗)=V∗(t, X ). ¦

Proof. Since V∗(t, X ) = minu∈U V (t, X ), considering the HJB equation (4.28), we can
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write

Q∗(t, X ,u∗)=min
u∈U

Q(t, X ,u)

=min
u∈U

{V∗(t, X )+ ∂V∗(t, X )
∂t

+H(t, X ,
∂V∗(t, X )

∂X
,u)}

=V∗(t, X )

+ ∂V∗(t, X )
∂t

+min
u∈U

H(t, X ,
∂V∗(t, X )

∂X
,u(X ))︸ ︷︷ ︸

=0 due to (4.28)

=V∗(t, X )

(4.55)

It is obvious from the above that the minimiser u∗ for the Q-functional is also the min-

imiser for the value functional, i.e., u∗ = minu∈U Q(t, X ,u) = minu∈U V (t, X ). In other

words, the Q-functional has the same value of the value functional under the optimal

trajectory. This completes the proof. 2
Remark 4.6 The definition of the Q-functional is different from the existing literature. Up to

now, there is no standard characterisation of a Q-functional in the context of adaptive optimal

control in continuous time. At an earlier time, Mehta and Meyn [157] for the first time related

“Q-function" to the Hamiltonian in the minimum principle, but the “Q-function" in [157] had

a different meaning from an action-dependent value function in reinforcement learning [159].

Vamvoudakis [162] later introduced a Q-function for a linear quadratic problem similar to

that of reinforcement learning by adding the Hamiltonian onto the optimal value function. In

this chapter, we justify a proper definition of Q-functional by adding the left-hand side of the

GHJB equation onto the value functional. ¦

The following lemma is extremely important throughout the chapter and will be used

to prove the convergence of the proposed Q-learning algorithm.

Lemma 4.6 For any time interval [t−T, t] with T > 0, the Q-functional Q(t, X (t),u(t)) (4.54)
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Figure 4.1: The relations between an Q functional and a value functional.

satisfies the Q-learning Bellman equation

Q(t−T, X (t−T),u(t−T))=∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

+ e−γTQ(t, X (t),u(t))+ψ,

{t, X (t)} ∈ [t0,∞)×Ω

(4.56)

with ψ being a residual error as

ψ=−
∫t

t−T
(u(τ)−u∗(τ))TR(u(τ)−u∗(τ))dτ

+ (u(t−T)−u∗(t−T))TR(u(t−T)−u∗(t−T))

− (u(t)−u∗(t))TR(u(t)−u∗(t))

(4.57)

Moreover, equation (4.56) reduces to the Bellman optimality equation (4.46) when u(t) is the

optimal control u∗(t), i.e., solving for Q∗ in (4.56) is equivalent to finding V∗ in (4.46). ¦

Proof. We write the Hamiltonian H(t, X , ∂V∗(t,X )
∂X ,u) using (4.9) as

(4.58) H(t, X ,
∂V∗

∂X
,u)= X TLaX +uTRu−γV +〈∂V∗

∂X
, Ẋ 〉

Integrating (4.58) with respect to t over [t−T, t] gives

−
∫t

t−T
(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=
∫t

t−T
[〈∂V∗

∂X
, Ẋ 〉−H(τ, X ,

∂V∗

∂X
,u)]dτ

(4.59)
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Using Lemma 4.4 and the HJB equation (4.21), equation (4.59) becomes

−
∫t

t−T
(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

=
∫t

t−T
[〈∂V∗

∂X
, Ẋ 〉−H(τ, X ,

∂V∗

∂X
,u∗)

− (u−u∗)TR(u−u∗)]dτ

=
∫t

t−T
[(
∂V∗

∂τ
+〈∂V∗

∂X
, Ẋ 〉)− (u−u∗)TR(u−u∗)]dτ

=
∫t

t−T
V̇∗dτ−

∫t

t−T
[(u−u∗)TR(u−u∗)dτ

=V∗(t)−V∗(t−T)−
∫t

t−T
[(u−u∗)TR(u−u∗)dτ,

{t, X (t)} ∈ [t0,∞)×Ω

(4.60)

Following a similar procedure in the proof for Lemma 4.3, we can transform (4.60) into

a discounted form

V∗(t−T, X (t−T))= e−γTV∗(t, X (t))

+
∫t

t−T
e−γ(τ−t+T)[(X T(τ)LaX (τ)+u(τ)TRu(τ))dτ

−
∫t

t−T
(u−u∗)TR(u−u∗)dτ

{t, X (t)} ∈ [t0,∞)×Ω

(4.61)

Using the definition (4.54) and Lemma 4.4, we evaluate Q(t0, X ,u) for the time interval

[t−T, t], hence, t0 = t−T and we can write

Q(t−T, X (t−T),u(t−T))=
e−γ[(t−T)−(t−T)]V∗(t−T, X (t−T))

+ ∂V∗(t−T, X (t−T))
∂t

+H(t−T, X (t−T),
∂V∗

∂X
,u(t−T))

=V∗(t−T, X (t−T))+ ∂V∗(t−T)
∂t

− ∂V∗(t−T)
∂t

+ (u(t−T)−u∗(t−T))TR(u(t−T)−u∗(t−T))

=V∗(t−T, X (t−T))

+ (u(t−T)−u∗(t−T))TR(u(t−T)−u∗(t−T))

(4.62)
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and

Q(t, X (t),u(t))= e−γ[t−(t−T)]V∗(t, X (t))

+ ∂V∗(t)
∂t

+H(t, X (t),
∂V∗

∂X
,u(t))

= e−γTV∗(t, X (t))+ (u(t)−u∗(t))TR(u(t)−u∗(t))

(4.63)

Then we can rewrite (4.61) as the Bellman equation (4.56) with a residual error ψ

(4.57). This proves the first part.

Substituting the optimal control u∗, we have ψ= 0 and the Q-learning Bellman equa-

tion becomes

Q∗(t−T, X (t−T),u∗(t−T))=∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+u∗(τ)TRu∗(τ))dτ

+ e−γTQ∗(t, X (t),u∗(t)),

{t, X (t)} ∈ [t0,∞)×Ω

(4.64)

Using Lemma 4.5, we can replace Q∗ with V∗ in (4.64). Thus, solving for Q∗ in (4.56) is

equivalent to finding V∗ in (4.46). This completes the proof. 2

4.5 On the Functional Continuity and Parameterisation

Although the Q-learning Bellman equation (4.56) is a linear differential equation, solv-

ing for Q∗(t, X ,u) is still difficult. Moreover, extracting ∂V∗(t, X )/∂X (t) from the solu-

tion Q∗(t, X ,u) for the optimal control law is also a demanding task. Inspired by the

neural network approximation for the value function in [164][149], it is reasonable to

use neural networks to approximate a Q-functional Q(t, X ,u) that is smooth on some

prescribed compact set, namely, Ω. This also provides possible ways to extract useful

information for control laws based on the networks.

First, the assumption on smoothness of the Q-functional Q(t, X ,u) is desired for its

approximation in the Sobolev norm, i.e., the approximation of the value function and
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its gradient. It is necessary to place the solution of the Q-learning Bellman equation

in a Hilbert space [186], or equivalently, in a certain Sobolev space [164][149][151]. We

use the Sobolev space to define functions that are L2(Ω) with their partial derivative.

Definition 4.5 (Sobolev space) Over the compact set Ω, the functional space

(4.65) Wm,p(Ω) := {V ∈Lp(Ω) : DαV ∈Lp(Ω),0≤ |α| ≤ m}

is called the Sobolev space, where m is a nonnegative integer, 1 ≤ p ≤∞, and DαV denotes

the α-order weak (or distributional) partial derivative of a function V . ¦

The Sobolev space Wm,p(Ω) consists of functions in Lp(Ω) that have weak partial

derivatives up to order m and they belong to Lp(Ω). For p = 2, the Sobolev space

is a Hilbert space [193].

Assumption 4.4 Given a state X (t) ∈Ω, a stabilising control ū ∈ Ū and an admissible control

u ∈ U(Ω), there exists a compact set ΩQ ⊂Ω×Rq ×Ū ×U(Ω) such that the associated tuple

(X , ȳ, ū,u) ∈ΩQ . Assume that the compact set ΩQ is sufficiently regular so that C∞
0 (Rn+2q+2m)

is dense in Wm,p(ΩQ). The value functional V (t, X ) and the Q-functional Q(t, X ,u) are con-

tinuous and differentiable. Therefore, V (t, X ) ∈W1,2(Ω) and Q(t, X ,u) ∈W1,2(ΩQ). ¦

In a certain sense, a function that belongs to the Sobolev space has a weaker notion

of smoothness compared to differentiability, which can be used in a wider practical

applications. We have essentially assumed that Q ∈ C1(ΩQ) for the sake of simplicity.

However, it should be noted that this can be relaxed to Q(t, X ,u) ∈W1,2(ΩQ) at best

when the optimal control problem does not have a smooth or continuous solution

V (t, X ).

These assumptions allow the use of neural network approximation for the Q-functional.

We consider a class of single hidden-layer feedforward neural network, of which the
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output functions belong to the set

Σ(Φ)={QL(X , ȳ, ū,u) :ΩQ →R | QL(X , ȳ, ū,u)=
N∑

j=1
w jφ j(X , ȳ, ū,u)=WTΦ(X , ȳ, ū,u)}

(4.66)

where QL(X , ȳ, ū,u) is the neural network output, w j is the neural network weights,

φ j(X , ȳ, ū,u) is the activation functions, N is the number of hidden-layer neurons,

W := [w1 w2 . . . wL]T is the weight vector, and Φ := [φ1 φ2 . . . φL]T is the activation

function vector.

The following lemma is an extension from [194, Corollary 3.8]:

Lemma 4.7 Given some nonnegative integer l ≥ m, if the activation function Φ(X , ȳ, ū,u)

is l-definite, i.e., φ(X , ȳ, ū,u) ∈ C l(ΩQ) and 0 < ∫
ΩQ

|D lφ|dλ < ∞ in which the integral is

defined in the sense of Lebesgue with a measure λ, then Σ(Φ) is dense in Wm,p(ΩQ). ¦

Proof. Refer to [194] for the detailed proof. 2
This shows that an element in Wm,p(ΩQ) can always be approximated by functions

smooth on ΩQ . To be specific, the activation functions {φ j : j = 1,2, . . . , N} are selected

such that the set {φ j : j = 1,2, . . . ,∞} is complete and linearly independent in order to

achieve uniform approximation [186][164].

Expanding (4.53) using the GHJB equation (4.27), the Q-functional can be parame-
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terised such that

Q(t, X ,u)= (1−γ)V∗+ ∂V∗

∂t
+ X TLaX +uTRu+〈∂V∗

∂X
, Ẋ 〉

= (Cx− yf )TLa(Cx− yf )+ (
∂V∗

∂x
)T(Ax+ f ( ȳ, ū))

+(
∂V∗

∂yf
)T(

ȳ− yf

k
)+ (1−γ)V∗+ ∂V∗

∂t︸ ︷︷ ︸
Qxx(t,X , ȳ,ū)

+ (
∂V∗

∂x
)TBu︸ ︷︷ ︸

Qxu(t,X ,u)

+uTRu︸ ︷︷ ︸
Quu(u)

=Qxx(t, X , ȳ, ū)+Qxu(t, X ,u)+Quu(u)

(4.67)

where Qxx(t, X , ȳ, ū), Qxu(t, X ,u), and Quu(u) are lumped functions. Such parameterisa-

tion allows the approximation via neural networks since X , ȳ, ū, and u are all known

signals.

Using the parameterisation (4.67), we write the neural network QL(t, X ,u) according

101



CHAPTER 4. A FIRST MODEL-FREE ADAPTIVE OPTIMAL OBSERVER: AN OHJB
APPROACH

to the three components Qxx(X , ȳ, ū), Qxu(t, X ,u), and Quu(u) as

QL(t, X ,u)=WTΦ(t, X , ȳ, ū,u)

=
[
WT

xx WT
xu WT

uu

]


Φxx(t, X , ȳ, ū)

−−−−−−−
vec(Φxu(t, X )⊗u)

−−−−−−−
Φuu(u)



=



Wxx

−−−
Wxu1

Wxu2
...

Wxum

−−−
Wuu1

Wuu2
...

Wuum



T

Φxx(t, X , ȳ, ū)

−−−−
Φxu(t, X )u1

Φxu(t, X )u2
...

Φxu(t, X )um

−−−−
u2

1

u2
2
...

u2
m



(4.68)

where ⊗ denotes the Kronecker product and vec(·) is the vectorisation function which

stacks the columns of a matrix together.

Denote the residual error ε(t) = Q(t, X ,u)−QL(t, X ,u) due to the neural network ap-

proximation. Then using the neural network description for the Q-functional, the Q-

learning Bellman equation (4.56) can be written as

WT[e−γTΦ(t)−Φ(t−T)]︸ ︷︷ ︸
WT∆Φ

+ e−γTε(t)−ε(t−T)+ψ︸ ︷︷ ︸
εB

=

−
∫t

t−T
e−γ(τ−t+T)(X T(τ)LaX (τ)+uT(τ)Ru(τ))dτ︸ ︷︷ ︸

−ρ(X ,u)

(4.69)
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where εB =∆ε+ψ with ∆ε= e−γTε(t)−ε(t−T) is equivalent to the temporal difference

(TD) error (sometimes called the Bellman error) in reinforcement learning [159][195]

and ρ(X ,u) is the integral reinforcement over the interval [t−T, t].

We reconstruct the optimal control u∗ from (4.29) based on the parameterisation of

Q(x,u) (4.68) such that

(4.70) u∗ = uL +εu

with the actor neural network

(4.71) uL =−1
2

diag(Wuu)−1WT
xuΦxu(X )

where εu is a bounded approximation error due to ε, W∗T
xu Φxu(x) accounts for the term

g(x)T∇V∗
x , and diag(W∗

uu) is essentially the pre-defined R. However, we keep the no-

tation diag(W∗
uu) for the sake of consistency.

Algorithm 3 (Policy iteration via the Q-learning Bellman equation)

1. (Policy Evaluation) Given the admissible policy (control) u(i), solve for W (i) using

the Q-learning Bellman equation

W (i)T∆Φ(t−T, X (t−T))+ψ=−ρ(X ,u(i))(4.72)

2. (Policy Improvement) Update the policy (control) using

(4.73) u(i+1) =−1
2

diag(W (i)
uu)−1W (i)T

xu Φxu(X )

The convergence is given by the following theorem.

Theorem 4.3 Over the compact set ΩQ , approximate solutions to the Q-learning Bellman

equation (4.69) using the method of least squares exist and are unique for each N. In addition,

∃i0, i ∈Z+, ∀i ≥ i0, we have

• supΩ |ε|→ 0 and supΩ |εu|→ 0 as N →∞,
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• supΩQ
|W (i)TΦ−Q∗|→ 0 as N →∞,

• supΩQ
||u(i+1) −u∗||→ 0 as N →∞,

• ∃N0 ∈Z+ such that u(i+1) ∈U(ΩQ) for N ≥ N0.

Proof. For proof by induction, see theorem 4.2 and 4.3 in [164]. If u(0) ∈ U(Ω), then

u(i) ∈U(Ω), ∀i. Moreover, Q(i) →V∗, u(i) → u∗ uniformly on ΩQ .

The proof follows from Theorem 2 and Lemma 4.6.

2
Remark 4.7 We address the approximation of functions in the Sobolev space. Hence, a Q-

functional Q(t, X ,u), as long as it is Wm,p(ΩQ), can be approximated by some smooth func-

tions on ΩQ . However, if we have a stronger condition on Q(t, X ,u) such as Q(t, X ,u) ∈
Cm(ΩQ), Lemma 24 reduces to the high-order Stone-Weierstrass appoximation theorem, i.e.,

there exists a polynomial P ∈Σ(Φ) such that it converges uniformly to Q(t, X ,u) and such that

all its partial derivatives up to order m converge uniformly. In this case, P is m-uniformly

dense and one can use neural networks based on power series (polynomials P) since they hold

the useful property that they are termwise differentiable. ¦

Remark 4.8 Solving the Q-learning Bellman equation (4.72) in policy iteration is not a trivial

task given that ψ is not available. We will design an adaptive critic that can online learn the

neural network weights and approximate the optimal Q-functional without knowing neither

the system dynamics Ẋ nor ψ by using a novel adaptive technique. ¦

4.6 Adaptive Critic: Online Tuning and Convergence

Denote the ideal neural network weights W∗ that provide the best approximate solu-

tion Q∗ =W∗TΦ(X , ȳ, ū,u)+ε for QL with ε being the residual error due to the approx-

imation. Since the ideal weights W∗ are unknown, we write the adaptive critic neural
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network as

(4.74) Q̂(t, X ,u)= ŴTΦ(t, X , ȳ, ū,u)

with Ŵ being the estimate of the ideal weights W∗.

The standard policy iteration algorithm proceeds by alternately updating the critic

Q-functional and the actor policy (control). However, as a continuous-time system

model is considered, one desires to update the policy in a continuous-time manner

instead of discrete-time iteration. For example, inspired by the adaptive control prin-

ciple, one can design the adaptation law using a differential expression ˙̂W instead of

a difference Ŵ (i+1). We propose the adaptation scheme that simultaneously updates

the critic and actor to guarantee the convergence as well as the stability.

We design an auxiliary vector M(t) being the adaptation driver as

(4.75) M(t)=P(t)Ŵ(t)+Q(t)

where the information matrix P(t) ∈ RN×N and the reinforcement vector Q(t) ∈ RN are

defined as

Ṗ(t)=−ℓP(t)+∆Φ∆ΦT, P(t0)= 0(4.76a)

Q̇(t)=−ℓQ(t)+∆Φρ, Q(t0)= 0(4.76b)

with ℓ being a positive constant. Note that the information matrix P(t) acts as a re-

gressor while the vector Q(t) is subject to the integral reinforcement ρ. We will show

that the adaptation driver M(t) contains the explicit information of the weight estima-

tion error W̃(t) which can be employed in the adaptation law to guarantee the weight

convergence.

Lemma 4.8 The adaptation driver M(t) satisfies

(4.77) M(t)=−P(t)W̃(t)+ψε(t)
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where W̃(t) = W∗−Ŵ(t) is the weight estimation error and ψε(t) is the residual error due to

εB, i.e.,

(4.78) ψε(t)=−
∫t

t0

e−ℓ(t−τ)∆Φ(τ)εB(τ)dτ, ψε(t0)= 0

Moreover, ψε(t) is a bounded variable for bounded state X (t) and control u(t). ¦

Proof. We compute the solution of (4.76) to obtain

P(t)=
∫t

t0

e−ℓ(t−τ)∆Φ∆ΦTdτ, P(t0)= 0(4.79a)

Q(t)=
∫t

t0

e−ℓ(t−τ)∆Φρdτ, Q(t0)= 0(4.79b)

Considering the weight estimation error

(4.80) W̃(t)=W∗−Ŵ(t)

for the Q-learning Bellman equation in (4.69), the approximate Q-learning Bellman

equation is

(4.81) W̃∗T∆Φ(X , ȳ, ū,u)+εB =−ρ(X ,u)

Combining (4.81) and (4.79) for M(t) (4.75) yields (4.77). ψε(t) is an integral error due

to εB =∆ε+ψ, where ε is the bounded neural network approximation error and ψ as

shown in (4.57) is also bounded for bounded X , ȳ, ū, and u. 2
Hence, an adaptation law driven by M(t) can be written as

(4.82) ˙̂W(t)=−ΓM(t)

with Γ> 0 being a positive learning gain.

The PE condition is widely required in adaptive control to guarantee parameter con-

vergence. Here we present its formal definition and use it for the analysis of the neural

network weight convergence.
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Definition 4.6 (PE condition) The signal ∆Φ(t) is said to be persistently excited (PE) if there

exist T > 0 and σ1 > 0 such that

(4.83)
∫t+T

t
∆Φ(τ)∆Φ(τ)Tdτ≥σ1I, ∀t ∈ [t0,∞)

¦

Lemma 4.9 If the signal ∆Φ(t) is persistently excited for ∀t > 0, the auxiliary variable P

subject to (4.76) is positive definite, i.e. P Â 0 and its minimum eigenvalue λmin(P) > σ1 >
0, ∀t > 0 for some positive constant σ1. ¦

Proof. The detailed proof follows from [75]. 2

4.7 Main Results

We have shown the convergence of the proposed adaptive critic by proving that the

neural network weight estimation error W̃ is uniformly ultimately bounded given

bounded state X and control u.

Following (4.70)(4.71), we leverage the parameterisation of the Q-function to deter-

mine the actor that generates the control or policy. The approximate optimal control

obtained through the adaptive critic neural network can be written as

(4.84) u =−1
2

diag(Ŵuu)−1ŴT
xuΦxu(X )

or, more simply,

(4.85) u =−1
2

R−1ŴT
xuΦxu(X )

since the ideal value of diag(Ŵuu) is a priori known as R. Now we present the main

results of this chapter that show the overall convergence by proving the overall stabil-

ity of the complete adaptive optimal observer. In summary, considering a nonlinear

system (4.1) and its optimal observer in the form of (4.3) associated with the value

functional (4.26), we have the following theorem:
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Theorem 4.4 Provided that ∆Φ(t) is PE for ∀t > 0, the adaptive critic (4.74), the actor (4.85),

and the adaptation law (4.82) along with (4.75)(4.76) form an adaptive optimal control so that

a) the state X (t) and the weight estimation error W̃(t) are uniformly ultimately bounded in a

semi-global sense;

b) the control u will ultimately enter and stay in a small bounded region around the optimal

control u∗;

c) if there is no neural network approximation error, i.e., ε = 0, the weight estimation error

W̃(t) will exponentially converge to zero and the control u will converge exponentially to the

optimal control u∗.

Proof. We construct an overall Lyapunov function that takes into account the weight

estimation error W̃ , the optimal value functional V∗ of X and u, and the effect of the

residual error ψε (4.78). Note that ψε(t) is the residual approximation error due to εB,

i.e., ψε(t) =−∫t
t0

e−ℓ(t−τ)∆Φ(τ)εB(τ)dτ, ψε(t0) = 0, where εB =∆ε+ψ. For simplicity, we

split the term into two parts written as

(4.86) ψε(t)=ψ1 +ψ2

with

(4.87) ψ1(t)=−
∫t

t0

e−ℓ(t−τ)∆Φ(τ)∆ε(τ)dτ, ψ1(t0)= 0

(4.88) ψ2(t)=−
∫t

t0

e−ℓ(t−τ)∆Φ(τ)ψ(τ)dτ, ψ2(t0)= 0

The first term ψ1 characterises the effect of the neural network appoximation error

ε. If there is no approximation error, i.e., ε = 0, then ∆ε = 0 and ψ1 = 0. The second

term ψ2 is due to the residual error ψ (4.57) that appeared in the Q-learning Bellman

equation (4.56). Because ψ is a function of u(t), u∗(t) and time-delayed variables u(t−
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T), u∗(t−T), we express it as

ψ=ψa +ψb +ψc(4.89a)

ψa =−
∫t

t−T
(u(τ)−u∗(τ))TR(u(τ)−u∗(τ))dτ(4.89b)

ψb =−(u(t)−u∗(t))TR(u(t)−u∗(t))(4.89c)

ψc = (u(t−T)−u∗(t−T))TR(u(t−T)−u∗(t−T))(4.89d)

Using the idea of delay dependent stability [196], we design a Lyapunov function

candidate L as

(4.90) L =L1 +k2L2 +k3L3 +k4L4 +k5L5 +k6L6

where sub-Lyapunov functions L1 = 1
2W̃TΓ−1W̃ , L2 = Q∗(t, X ,u∗), L3 = 1

2ψ
T
1 ψ1, L4 =

1
2ψ

T
2 ψ2, L5 = ∫0

−T W̃T(t+τ)W̃(t+τ)dτ; and L6 = ∫0
T

∫t
t+θ W̃T(τ)W̃(τ)dτdθ, and k2, k3, k4,

k5, and k6 are some positive constants. The stability analysis is carried out in a semi-

global sense, i.e., the overall Lyapunov function : L is calculated over a sufficiently

large but fixed compact set Ω̃⊂RN×Ω×RN×RN in the tuple (W̃ , X ,ψ1,ψ2) that contains

the origin.

We analyse the derivative of each term in L (4.90). Using (4.82) and Lemma 4.8 and

Lemma 4.9, we calculate for the first term L̇1 using Young’s inequality with η: ||a||||b|| ≤
1

2η ||a||2 +
η

2 ||b||2 (valid for every η> 0) as

L̇1 = W̃TΓ−1 ˙̃W = W̃TM =−W̃TPW̃ +W̃Tψε

≤−σ1||W̃ ||+ ||W̃ || ||ψ1 +ψ2||

≤ −(σ1 − 1
2η1

− 1
2η2

)||W̃ ||2 + η1

2
||ψ1||2 + η2

2
||ψ2||2

(4.91)

where η1 > 0, η2 > 0 are properly chosen constants such that σ1 − 1
2η1

− 1
2η2

> 0 holds.
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For the second term, using the inequality 2||a||||b|| ≤ ||a||2 +||b||2, we have

L̇2 = Q̇∗(t, X ,u∗)= V̇∗(t, X )= ∂V∗

∂t
+〈∂V∗

∂X
, Ẋ 〉

=−XTLaX −u∗TRu∗

≤−λmin(La)||X ||2 − (
1
4
λmin(R−1)−1)||Φxu||2||W∗

xu||2

− (λmin(R)−1)||εu||2

(4.92)

with εu is a bounded approximation error for a bounded ε. Note that ε = 0 implies

that εu = 0.

For the third term

L̇3 =ψT
1 ψ̇1 =ψT

1 (−ℓψ1 +∆Φ∆ε)

≤−(ℓ− 1
2η3

)||ψ1||2 + η3

2
||∆Φ∆ε||2

(4.93)

where η3 > 0 is a properly chosen constant such that η3 >− 1
2ℓ holds.

Similarly, for the fourth term

L̇4 =ψT
2 ψ̇2 =ψT

2 (−ℓψ2 +∆Φ(ψa +ψb +ψc))

≤−(ℓ− 3
2η4

)||ψ2||2 + η4

2
||∆Φψa||2

+ η4

2
||∆Φψb||2 +

η4

2
||∆Φψc||2

(4.94)

The fifth term L5 =
∫0
−T W̃T(t+τ)W̃(t+τ)dτ=∫t

t−T W̃T(τ)W̃(τ)dτ so its derivative

L̇5 = ||W̃(t)||2 −||W̃(t−T)||2(4.95)

For the sixth term

(4.96) L̇6 = T||W̃(t)||2 −
∫t

t−T
||W̃(τ)||2dτ

110



4.7. MAIN RESULTS

Combining the above, the derivative ˙: L can be written as

L̇ = L̇1 +k2L̇2 +k3L̇3 +k4L̇4 +k5L̇5 +k6L̇6 ≤

− (σ1 − 1
2η1

− 1
2η2

−k5 −k6T)||W̃ ||2

− (k3ℓ− k3

2η3
− η1

2
)||ψ1||2 − (k4ℓ− 3k4

2η4
− η2

2
)||ψ2||2

−k2λmin(La)||X ||2 −k2(
1
4
λmin(R−1)−1)||Φxu||2||W∗

xu||2

−k5||W̃(t−T)||2 −k6

∫t

t−T
||W̃(τ)||2dτ

−k2(λmin(R)−1)||εu||2 + k3η3

2
||∆Φ∆ε||2

+ k4η4

2
||∆Φψa||2 + k4η4

2
||∆Φψb||2 +

k4η4

2
||∆Φψc||2

(4.97)

As we analyse the semi-global stability over Ω̃, any initial value of the tuple (W̃ , X ,ψ1,ψ2)

is assumed to be within the interior of Ω̃. Thus, for any initial trajectory, the state ||X ||
remains bounded and subsequently ||Φxu|| and ||∆Φ|| remain bounded for at least fi-

nite time. This implies that there exist positive constants ξ1 > 0, ξ2 > 0 so that

||Φxu||2 ≤ ξ1, ||∆Φ||2 ≤ ξ2

for at least finite time.

By inspection of (4.89) and from (4.70)(4.85), we can derive the following results for

||ψa||, ||ψb||, and ||ψc|| using the inequality (||a||+ ||b||)2 ≤ 2||a||2 +2||b||2:

||ψa|| ≤
∫t

t−T
[
1
2
λmax(R−1)||W̃T

xuΦxuΦ
T
xuW̃xu||

+2λmax(R)||εu||2]dτ

≤ ξ1

2
λmax(R−1)

∫t

t−T
||W̃ ||2dτ+2λmax(R)

∫t

t−T
||εu||2dτ

(4.98)

||ψb|| ≤
1
2
λmax(R−1)||W̃T

xuΦxu(t)ΦT
xuW̃xu(t)||

+2λmax(R)||εu(t)||2

≤ ξ1

2
λmax(R−1)||W̃(t)||2 +2λmax(R)||εu(t)||2

(4.99)
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||ψc|| ≤ 1
2
λmax(R−1)||W̃T

xuΦxu(t−T)ΦT
xuW̃xu(t−T)||

+2λmax(R)||εu(t−T)||2

≤ ξ1

2
λmax(R−1)||W̃(t−T)||2 +2λmax(R)||εu(t−T)||2

(4.100)

where W̃xu = W∗
xu − Ŵxu. We use again the inequality (||a|| + ||b||)2 ≤ 2||a||2 +2||b||2 for

||ψa||2, ||ψb||2, and ||ψc||2 and then we have

L̇ ≤−(σ1 − 1
2η1

− 1
2η2

−k5 −k6T

− k4η4ξ
2
1ξ2λmax(R−1)2

4
||W̃(t)||2)||W̃(t)||2

− (k3ℓ− k3

2η3
− η1

2
)||ψ1||2 − (k4ℓ− 3k4

2η4
− η2

2
)||ψ2||2

−k2λmin(La)||X ||2 −k2(
1
4
λmin(R−1)−1)||Φxu||2||W∗

xu||2

− (k5 −
k4η4ξ

2
1ξ2λmax(R−1)2

4
||W̃(t−T)||2)||W̃(t−T)||2

− (k6 −
k4η4ξ

2
1ξ2λmax(R−1)2

4

∫t

t−T
||W̃(τ)||2dτ)∫t

t−T
||W̃(τ)||2dτ+ k3η3

2
||∆Φ∆ε||2

+ [4k4η4ξ2λmax(R)2 +k2(λmin(R)−1)]||εu(t)||2

+4k4η4ξ2λmax(R)2(||εu(t−T)||2 +
∫t

t−T
||εu||2dτ)

≤−α1||W̃(t)||2 −α2||ψ1||2 −α3||ψ2||2 −α4||X ||2

−α5||W̃(t−T)||2 −α6

∫t

t−T
||W̃(τ)||2dτ+β1 +β2

(4.101)

where αi > 0 (i ∈Z+) are the positive coefficents with properly chosen ki and ηi; β1 =
k3η3

2 ||∆Φ∆ε||2, β2 = [4k4η4ξ2λmax(R)2+k2(λmin(R)−1)]||εu(t)||2+4k4η4ξ2λmax(R)2(||εu(t−
T)||2 +∫t

t−T ||εu||2dτ) are bounded constants that characterise the effect of the neural

network approxiamtion error ε. The first four terms in the last inequality of (4.101)

form a negative definite function in Ω̃ so that a set of ultimate boundedness Ω̃′ exists

and it depends on the size of (β1 +β2), i.e. a smaller value of (β1 +β2) will decrease

the size of Ω̃. Assuming that N has been chosen large enough, it is possible to ob-

tain ε along with ∆ε, εu, (β1 +β2) to be sufficiently small so that Ω̃′ ⊂ Ω̃. Hence, it
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is impossible for any trajectory to leave Ω̃, i.e. it is an invariant set. The states X (t)

remain bounded and subsequently also u(t), ε, Φxu and ∆Φ are always bounded func-

tions over a compact set. According to Lyapunov theorem [165], X (t) and W̃(t) are

uniformly ultimately bounded. This proves a).

The difference of the actor to the optimal control

||u−u∗|| ≤ 1
2
λmax(R−1)||Φxu(x)|| ||W̃xu||+ ||εu||(4.102)

remains bounded. This implies that u will stay close to u∗. This proves b).

If ε= 0, we have ∆ε= 0, εu = 0 so that β1 +β2 = 0, then

L̇4 ≤−α1||W̃(t)||2 −α2||ψ1||2 −α3||ψ2||2 −α4||X ||2

−α5||W̃(t−T)||2 −α6

∫t

t−T
||W̃(τ)||2dτ≤ 0

(4.103)

According to Lyapunov theorem [165], X (t) and W̃(t) as well as ||u−u∗|| will exponen-

tially converge to zero. This proves c). □

Corollary 4.2 If state X (t) and control u(t) remain bounded, and ∆Φ(t) is PE for ∀t > 0, the

adaptive critic (4.74) and the adaptation law (4.82) along with (4.75)(4.76) guarantees for the

weight estimation error W̃(t) that ||W̃(t)|| is uniformly ultimately bounded and will converge

towards a small compact set around zero. ¦

Proof. From Lemma 4.8, we know that the residual error ψε(t) is a bounded variable

for bounded state X (t) and control u(t), e.g., there exists a positive constant ψ̄ε > 0 so

that ||ψε|| < cψ̄ε holds with 0< c < 1. Consider a Lyapunov function candidate

(4.104) L1 = 1
2

W̃TΓ−1W̃

From the proof of Theorem 4.4, its time derivative can be calculated as

L̇1 =−W̃TPW̃ +W̃Tψε

≤−σ1||W̃ ||2 +||ψε|| ||W̃ ||
≤ −(σ1 −η5/2)||W̃ ||2 + c2ψ̄2

ε /2η5

≤−α7L1 +β3

(4.105)
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with α7 = (2σ1 −η5)λmax(Γ−1) being a positive constant provided that η5 is properly

chosen such that 0 < η5 < 2σ1; β3 = c2ψ̄2
ε /2η5 denoting the upper bound of the resid-

ual error. Thus, the first term −α7L1 in the last inequality form a negative definite

function.

From the extended Lyapunov theorem, the Lyapunov function L1 is uniformly ulti-

mately bounded, i.e. L1(t)≤ e−α7tL(t0)+β3/α7. This implies that the weight estimation

error W̃(t) will ultimately enter the compact set

ΩW := {W̃(t)|‖W̃(t)‖ ≤
√

c2ψ̄2
ελmax(Γ−1)/η5λmin(Γ−1)(2σ1 −η5) }

of which the size depends on the bound of the residual error ψε and the excitation

level σ1. Clearly, higher excitation level σ1 or smaller residual error ψε, e.g. smaller

neural network approximation error ε, will reduce the size of ΩW . The convergence

rate can be also improved by increasing the learning gain Γ. 2

4.8 Adaptive Optimal Observer for the Van der Pol

Oscillator: A Case Study

Among different nonlinear systems, their equilibrium point appears more often as

the origin, i.e., when the state is zero. This creates difficulty for the learning process

of an adaptive optimal controller/observer as the PE condition is not satisfied after

the state goes to zero. Various works have tried to cope with it by injecting some small

exploratory noise (e.g., sinusoids of varying frequencies) to the control input to excite

the system. Alternatively, some nonlinear systems can display periodic oscillations

without external excitation, e.g., limit cycles. Hence, a typical system showing the

limit cycle phenomenon such as the Van der Pol oscillator becomes a great option to

maintain the PE condition without artificially injecting noise.
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4.8.1 Problem Formulation

In this section, we justify the effectiveness of the proposed adaptive optimal observer

for a Van der Pol oscillator given by

(4.106)



 ˙̄x1

˙̄x2

=

 0 1

−1 1


x̄1

x̄2

+

 0

−1

 x̄2
1 x̄2,

ȳ=
[
1 0

]x̄1

x̄2


The oscillator is self-excited without the need for an extra stablising control, i.e., ū = 0

in this case. This ensures that the state (x̄1, x̄2) belongs to a compact invariant set in

R2 which is the limit cycle of the oscillator. Fig. 4.2 presents the phase portrait (limit

cycle) of the Van der Pol oscillator (4.106). We write A =
 0 1

−1 1

, B = [0 −1]T, and

C = [1 0]; it is easy to find that the pair (A,B) is controllable and the pair (A,C) is

observable. Thus, a state observer for the oscillator can be written as

(4.107)


ẋ = Ax+Bx2

1x2 +Bu,

y= Cx

where x = [x1 x2]T is the observer state and u is the correction input to minimise the

following discounted infinite-horizon value function

(4.108) V =
∫∞

t
e−γ(τ−t)(L(Cx− yf )2 +Ru2)dτ

where we use the filtered output yf = 1
ks+1 ȳ as equivalent to (4.4).

Considering the nonlinear observable Van der Pol oscillator (4.106) and its state ob-

server given by (4.107), the optimal observer design problem is to find an admissible

correction (control) input u that minimises the value functional (4.108).
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4.8.2 Numerical Simulation

We implement the proposed adaptive optimal control, i.e. the adaptive critic (4.74),

the actor (4.85), and the adaptation law (4.82) along with (4.75)(4.76), for the above

Van der Pol oscillator observer design problem. The parameter setting for simulation

is as follows. The filter time constant is chosen to be small, k = 0.01. For the value func-

tional, the discount factor γ= 0.1, the output error weight L = 1, and the control input

weight R = 1. The initial oscillator state x̄(0)= [x̄1(0) x̄2(0)]T = [1 1]T. The reinforcement

interval T = 0.1s. The initial observer state x(0)= [x1(0) x2(0)]T = [0 2]T.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

FIGURE 4.2. Phase portrait of the Van der Pol oscillator limit cycle.

The design of an adaptive critic neural network is often not a trivial task. One needs to

be selective on choices of the activation function Φ, especially if any insight or pieces

of information on the system dynamics are given. For this example of the Van der

Pol oscillator, we know the plant system that we want to observe here is an oscillator.

Even though we do not hold any knowledge of the coefficients of the oscillator itself,
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we do know that the state response of such a system is periodic. The time-dependence

of the functional V worsens the problem as it increases the complexity by introducing

another dimension t. In fact, in our simulations we found that time-dependence of V

makes a comparably small impact on the convergence but adds complexity when ap-

proximating the Q-function via a Q-learning Bellman equation. We will first show a re-

sult for the observer without considering time-dependence in the adaptive critic and

then compare it with the results for a time-dependent critic. Hence, the critic neural

network activation function vector is designed as Φ= [x2
1, x1x2, x2

2, x1 yf , x2 yf , y2
f ,

x2
1 ȳ, x1x2 ȳ, x2

2 ȳ, x1 yf ȳ, x2 yf ȳ, y2
f ȳ, x2

1u, x1x2u, x2
2u, x1 yf u, x2 yf u, y2

f u, u2]T.

Accordingly, the critic weight vector without time-dependent elements can be writ-

ten as W = [W1,W2, ...,W19]T. For the adaptation law, ℓ = 1 and Γ = 0.7. Since it is

known that the actual value of W19 = R, we initialise all the weights to 0.5 except that

W19 = 1 and its learning rate is set to zero. Fig. 4.3 shows the observer states against

the desired oscillator state trajectories. Fig. 4.4 shows the convergence of the adaptive

critic weights. These figures indicate that the learning process takes place over a pe-

riod of roughly 90s. In fact, the adaptive critic weights finally converge towards W =
[0.7884,−0.0677,−0.0215,−1.1162, 0.07753, 0.3126, −0.0934, 0.2540,0.0045, 0.0244,

−0.2732, 0.0672,−0.1960,0.2550,−0.0781,0.5648,−0.0282,−0.3550,1]T.

We compare the final near-optimal control u that is found at the end of the learn-

ing process with a high-gain observer [197]. The high-gain observer has been imple-

mented as

(4.109) ẋh = Axh +Bx2
h1xh2 +BK(Cxh − ȳ)

with a positive constant gain K = [1/ϵ 1/ϵ2]T. Reducing ϵ, i.e., a higher gain, often

diminishes the steady state error but demands more control effort. Fig. 4.5 shows

the comparison results of the adaptively-learned optimal observer against the high-

gain observer with ϵ = 0.1 and 1. The one with ϵ = 0.1 tracks the state trajectories

after significant transients of high-frequency oscillation due to the control u. On the

other hand, the high-gain observer with ϵ= 1 improves the transient performance and
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greatly reduces the absolute value of control u. However, the tracking performance

is not as good especially when t = 5 ∼ 10 s. The optimal observer is optimal in the

sense of minimising a pre-defined cost functional set by L and R. The output error

weight L and control input weight R render a trade-off between the estimation error

and the control effort. It can be seen from the state responses x1, x2 that the optimal

observer tracks the Van der Pol oscillator better than the high-gain observer with ϵ= 1

with faster transients. Meanwhile, the control input u shows that the optimal observer

requires lower control effort than the one with ϵ= 0.1.

0 50 100 150

-3

-2

-1

0

1

2

3

0 50 100 150

-4

-2

0

2

4

6

Figure 4.3: Adaptive optimal observer state estimation against the system trajectories
(19 nodes).
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Figure 4.4: The convergence of the adaptive critic weights (19 nodes).

Now we investigate the effect of considering the time-dependence of functional V

in the adaptive critic design. Given the periodicity of the Van der Pol oscillator, an

intuitive way to compensate the polynomial-only activation function is by adding re-

gressor basis functions that mimic the Fourier series. We know from the simulation

that the period T0 of the oscillator is 6.7s so the angular frequency ω = 2π/T0 ≈ 0.94.

Not every node of the neural network can contribute significantly to the overall ap-

proximation. We can start adding new extra nodes W20x1 yf cos(ωt) and W21x1 yf sin(ωt)

based on the primary node W4x1 yf (i.e. the one of which the weight has the largest

absolute value as shown in Fig. 4.4). Then, more nodes have been be added such as

W22x2
1 cos(ωt) and W23x2

1 sin(ωt) as per W1x2
1; then W24x1x2 cos(ωt) and W25x1x2 sin(ωt)
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Figure 4.5: The comparison results of the adaptively-learned optimal observer (19
nodes) against the high-gain observer with ϵ= 0.1 and 1.
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Figure 4.6: The Bellman error of different number of nodes (NN) over time.

as per W2x1x2; and so forth.

Table 4.1: Results considering the time-dependence of value functional V with differ-
ent number of nodes in the adaptive critic neural network.

Number of nodes 19 21 23 25
MAE of Bellman error 0.9187 0.9389 0.6811 0.6311
ISE of Bellman error 37.74 34.82 25.44 17.17

Time-dependence No Yes Yes Yes

We run the simulation for different number of nodes to evaluate the impact of consid-

ering the time-dependence of V on the Bellman error in terms of maximum absolute

error (MAE) and integral squared error (ISE). Fig. 4.6 shows the Bellman error over

time due to different number of nodes. The MAE and ISE tend to be reduced when

increasing the number of nodes as shown in Table 4.1. However, the slight improve-

ment on the Bellman error does not bring considerable advantage for the convergence

but only increases the complexity of the neural network. One can see, in this case, the

adaptive critic without considering the time-dependence of V delivers as good track-
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ing performance. Therefore, it might be fair to neglect t in the critic design for our

example to trade off the complexity over accuracy, which is also a practical way for

implementation on real engineering problems.

4.9 Conclusions

In this chapter, we formulated for the first time a model-free, adaptive optimal ob-

server design problem for a class of nonlinear systems using a new representation,

i.e., finding an admissible control that minimises a pre-defined cost functional. Note

that this is preliminary work and the method can be extended to address a wider

class of nonlinear systems. An OHJB equation was established that gives the optimal

solution. Specifically, we ensured the existence, stability, and optimality of the opti-

mal solution of an infinite-horizon cost functional. This allowed us to build general

results in policy iteration that successively approximate the optimal value functional.

Incorporating the idea of Q-learning, a novel online adaptive solution was proposed.

We justified a proper definition of a Q-functional in a continuous-time context. The

Q-functional can be approximated by an adaptive critic neural network, of which

the convergence was rigorously proved by stability analysis in the Lyapunov sense.

The algorithm is model-free in the sense that the Q-learning Bellman equation is ap-

proximately solved without knowing the system dynamics. The effectiveness of the

proposed algorithm was addressed in a Van der Pol oscillator case study. Although it

was not the focus of this chapter, the proposed results can also be easily extended to

general stabilisation and tracking control problems.
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5
ENGINE DYNAMICS AND MODELLING∗

The use of Wankel rotary engines as a range extender has been recognised as

an appealing method to enhance the performance of hybrid electric vehicles

(HEV). They are effective alternatives to conventional reciprocating piston

engines due to their considerable merits such as lightness, compactness, and higher

power-to-weight ratio. However, further improvements on Wankel engines in terms

of fuel economy and emissions are still needed. The objective of this work is to investi-

gate the engine modelling methodology that is particularly suitable for the theoretical

studies on Wankel engine dynamics and new control development.

In this chapter, control-oriented models are developed for a 225CS Wankel rotary

engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through a syn-

thesis approach that involves state space (SS) principles and artificial neural networks

(NN), the Wankel engine models are derived by leveraging both first-principle knowl-

∗The content of this chapter is adapted from the author’s own work [2], where some materials
have been re-used. The experiments were carried out with the assistance from the University of Bath.
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edge and engine test data. We first re-investigate the classical physics-based mean

value engine model (MVEM). It consists of differential equations mixed with empir-

ical static maps, which are inherently nonlinear and coupled. Therefore, we derive a

SS formulation which introduces a compact control-oriented structure with low com-

putational demand. It avoids the cumbersome structure of the MVEM and can fur-

ther facilitate the advanced modern control design. On the other hand, via black-box

system identification techniques, we compare the different NN architectures that are

suitable for engine modelling using time-series test data: 1) the Multi-Layer Percep-

tron (MLP) feedforward network; 2) the Elman recurrent network; 3) the Nonlinear

AutoRegressive with eXogenous inputs (NARX) recurrent network. The NN models

overall tend to achieve higher accuracy than the MVEM and the SS model and do not

require a priori knowledge of the underlying physics of the engine.

5.1 Introduction

By far the most important reasons for the limited use of the Wankel rotary engine are

the fuel economy and emissions [198]. The high hydrocarbon emissions and poor fuel

economy are generally believed to be caused by the unburnt air-fuel mixture leaking

past the apex seals among chambers [4]. Moreover, the common port fuel injection

(PFI) configuration for the Wankel engine can result in the typical wall-wetting phe-

nomenon, where a considerable portion of fuel keeps condensing on and evaporating

at the intake manifold wall as fuel puddles [199]. When the fuel puddles heavily, it

contributes to the air-fuel ratio excursion. The air-fuel ratio control is a critical task in

order to assure a satisfactory efficiency of the three-way catalytic converters and to

meet the emission requirement. An intuitive way to overcome this issue is to apply

direct fuel injection (DFI), the feasibility of which was investigated in previous work

[200]. On the other hand, we show in the later Chapters 6 and 7 that novel nonlinear

observer-based controllers can be developed for the Wankel engine where the fuel

puddle dynamics are estimated in real time.
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The shortcomings of high emissions have severely limited the application of Wankel

engines in the automotive industry. The major Wankel engine producer Mazda ceased

the last production of the RX-8 car in 2012. The modern Wankel engine finds use out-

side the automotive industries, where its application prevails only in bespoke areas

such as unmanned aerial vehicles (UAVs), marine, auxiliary power units [201]. In

recent years, investigations have been made on the idea of incorporating a Wankel

engine as a range extender for hybrid electric vehicles (HEV) [202]. This motivates

the work on the Wankel engine modelling and control with the objectives of improv-

ing the fuel economy and reducing the emissions of the Wankel engine. At the present

time, control-oriented mathematical models that specifically describe the Wankel en-

gine dynamics are lacking.

Engine modelling has been playing an important role in the engine development and

optimisation process. Accurate and fast engine simulations could allow for rapid in-

corporation of new control design. The control development process can be signif-

icantly shortened when using efficient computational tools. A high-fidelity model

may reduce the number of hardware prototypes needed and development cost. Com-

mercial software such as AVL BOOST offers a dedicated platform for modelling the

Wankel engine dynamics as a one-dimensional computational fluid dynamics (CFD)

model [200]. The CFD models usually have high fidelity and require a large amount

of computational time. In the case of real-time control development, a physics-based

mean value engine model (MVEM) developed by Hendricks [126][125] is widely used

with low-fidelity but fast running speed. Instead of cycle by cycle analysis, the MVEM

presents the average response of multiple ignition cycles in the time domain. It was

originally derived mainly for reciprocating engines and may not be able to directly

apply to the Wankel rotary engine. Furthermore, the MVEM contains nonlinear dif-

ferential equations mixed with empirical static maps and often has a cumbersome

structure. One way to overcome the complexity and to provide fast solution for con-

trol design is linear state space (SS) modelling. The SS model plays a central role in

modern control theory [9] and has been commonly used as a framework for robust
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control, optimal control, etc. It can effectively deal with a multi-input, multi-output

(MIMO) system such as engines. A linear SS model for engines was proposed in [127]

for the application of linear quadratic control. The model was then generalised in

[128] for internal combustion engines for control analysis. In the last decade, the ar-

tificial Neural Networks (NN) have been seen as an attractive approach for dynamic

system modelling and control. There are many studies on the application of NN on

engine modelling, e.g., [129–134] therein. NN can be regarded as a black-box system

identification approach that is conceptually simple, easy to use, and has excellent ap-

proximation properties.

In this chapter, we first establish the MVEM for the Wankel engine. By properly se-

lecting the state variables, a SS formulation is realised and then linearised around a

nominal operating point. We then investigate different classes of NN for the Wankel

engine modelling: 1) the Multi-Layer Perceptron (MLP) network; 2) the Elman net-

work; 3) the Nonlinear AutoRegressive with eXogenous inputs (NARX) network. The

comparison and analysis for the performance and complexity of the proposed models

are presented in the end.

5.2 Experimental Setup and Data Collection

This section presents the experimental setup for the engine tests. The test data col-

lected are subsequently used for the Wankel engine modelling and validation proce-

dure.

The Wankel engine under investigation for dynamic modelling is a 225CS rotary en-

gine, produced by Advanced Innovative Engineering (AIE) UK Ltd. It is a single-

rotor, peripheral-port-injected, twin-spark engine and was previously configured to

have a nominal peak power output of 30kW for aerospace use on drones. Due to its

high specific power output, there is a recent interest in using it as a range extender

for HEV. Figure 5.1 shows an image of the computer-aided design (CAD) model of
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Figure 5.1: A CAD model of AIE (UK) Ltd 225CS Wankel rotary engine with the intake
and exhaust pipe installed [2].

the engine. Table 5.1 presents the fundamental engine properties of the AIE 225CS

Wankel rotary engine.

Table 5.1: The fundamental properties of the AIE 225CS Wankel rotary engine.

Definition Value
Generating Radius 69.5 mm

Eccentricity 11.6 mm
Offset/Equidistance 2 mm

Width of Rotor Housing 51.941 mm
Total Displacement 225 cc

Mass (excluding ancillaries) 10 kg
Compression Ratio 9.6:1

The engine experiments are carried out in an engine test cell at the Institute for Ad-

vanced Automotive Propulsion Systems (IAAPS) at the University of Bath. The test

cell is equipped with an AC dynamometer for the assessment of the engine perfor-

mance. The maximum nominal power and speed allowed from the AC motor is

around 50 kW and 8500 RPM, respectively. The test facilities include a Sierra CP

Test Automation System with the proprietary CADET software, which enables the

dynamometer control and data acquisition via the transducers installed on the en-

gine. The system can also collect data via the automotive standard Controller Area
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Network (CAN) bus, which can be compared online with the data from the Engine

Control Unit (ECU). The ECU employed by AIE is an EM80 model produced by the

project partner General Engine Management Systems (UK) Ltd (GEMS). It is online

configurable when connected to the GEMS GWv4 proprietary software so that the

user is able to control and monitor the engine parameters such as air-fuel ratio con-

trol, and fly-by-wire throttle control.

Data Collection

To be able to calibrate the engine model (or to train the NN) and validate its fidelity,

one needs to capture as much information as possible from the engine tests. The data

collected should cover a broad engine operation range. We run the engine from 3500

[RPM] to 6000 [RPM], the throttle angle is swept from 20 [o] to 90 [o] (i.e., fully

opening) for each fixed speed with the resolution of 500 [RPM]. Figure 5.2 shows the

operation trajectories covered in the engine tests. The collected data including the

throttle angle, the intake manifold pressure and temperature, the engine speed and

torque, and the air-fuel ratio are shown in Figure 5.3. The sampling period of the

signals is chosen as 0.02 [s].

5.3 Engine Dynamics and Modelling

The complexity of the internal combustion engines includes highly nonlinear charac-

teristics. It is often necessary to first model the engine dynamics for control design

and simulation before implementing a real controller. Unlike one power pulse per

two revolutions in four-stroke reciprocating engines, Wankel rotary engines generate

three power pulses per revolution, which delivers advantages of high revolutions per

minute and smoothness [203]. Following our work on engine modelling in [136] and

the M.Sc. thesis of the author [3] as Fig. 5.4, we extend the engine model to Wankel

rotary engines. There has been a large number of studies, e.g. the mean-value engine

model (MVEM) developed by Hendricks [126][125], on the dynamics of reciprocating
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FIGURE 5.2. Operating points collected during engine tests with the range:
Engine speed 3500 - 6000 [RPM]; Engine torque 5 - 35 [Nm].

engines whereas few on the modelling of Wankel engines, e.g. [4][203][204] around

the early 1980s. However, it is feasible to model the Wankel engine using an equiva-

lent reciprocating MVEM since it operates with the same Otto cycle, i.e. a single rotor

Wankel engine is equivalent to a two-cylinder four-stroke reciprocating engine [4].

Fig. 5.5 shows the correspondence of the intake, compression, expansion and exhaust

phases of the two types of engines. This section describes a zero-dimension model of

the port fuel injected Wankel engine dynamics.

5.3.1 Intake Air flow Model

The air mass flow rate ṁat passing the throttle can be described [126] as

(5.1) ṁat(α, pm)= mat1
pa√
Ta

TC(α)PRI(pm)+mat0
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FIGURE 5.3. Engine test data collected for modelling and validation. The data
traces start at the time 500 s after warming up the engine.

where mat1 = ct
π

4
D2p2κ/R(κ−1) is a physical constant related to the ratio of the spe-

cific heats κ, the gas constant R, the flow coefficient ct and the diameter D of throttle

body throat; mat0 is a fitting constant; pa and Ta are the ambient pressure and temper-

ature in Kelvin, respectively; TC(α)= 1−cos(α−α0) denotes the throttle characteristics

function of the throttle plate angle α and the leakage constant α0, which approxi-

mates the effective throttle area; PRI(pm) refers to the pressure ratio influence from
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Figure 5.4: The MVEM block diagram in MATLAB Simulink [3].

FIGURE 5.5. Comparison of Otto cycles between the Wankel rotary engine
(above) and reciprocating engine (below). The correspondence of the
four strokes (i.e., intake, compression, combustion, and exhaust) be-
tween both designs is presented (Modified from [205]).
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the choke/sonic compressible flow, which can be expressed as

(5.2) PRI(pm)=


√

1− (
pr − pc

1− pc
)2 if pr ≥ pc (choked)

1 if pr < pc (sonic)

where pc is the threshold point and pr = pm/pa is the ratio of the intake manifold

pressure pm to the ambient pressure pa.

Neglecting the heat transfer [125], an adiabatic model of the air-filling dynamics in

the intake manifold can be given as

(5.3) ṗm = κR
Vm

(ṁatTa − ṁaTm)

(5.4) Ṫm = RTm

pmVm
[ṁat(Taκ−Tm)− ṁa(Tmκ−Tm)]

where Tm is the manifold temperature and Vm is the manifold volume. Then the port

air mass rate ṁa can be given as a nonlinear function of the manifold pressure pm

and engine speed N such that

(5.5) ṁa(pm, N)=
√

Tm

Ta

Vd

120RTm
ηvol(pm, N)pmN

where Vd is the engine displacement and ηvol is the volumetric efficiency.

5.3.2 Fuel Puddle Model

Due to the “wall-wetting” phenomenon, the final fuel flow rate ṁ f is the sum of the

fuel puddle flow rate ṁ f pe and the fuel vapour flow rate ṁ f ve entering the combus-

tion chamber

(5.6) ṁ f = ṁ f pe + ṁ f ve = m f p/τp +m f v/τm

where τp and τm are the characteristic manifold time constants for the puddle m f p

and vapour m f v fuel mass, respectively [206]. Their dynamics can be taken as a set of

132



5.3. ENGINE DYNAMICS AND MODELLING

two first-order processes with time constant τ f as

(5.7)


ṁ f p = χṁ f i − (1/τ f )m f p − ṁ f pe

ṁ f v = (1−χ)ṁ f i + (1/τ f )m f p −m f v/τm

where ṁ f i is the injected fuel flow rate (i.e. the control command for the fuel injector)

and χ, 0≤ χ< 1, is a fraction of injected fuel that is deposited on the manifold wall as

fuel puddles. It should be noted that the fuel puddle model (5.6)(5.7) is perceived to

be more correct compared to our previous version in [136] since it considers the effect

of the fuel puddle flow ṁ f pe (Couette flow) entering the chamber. Fig. 5.6 illustrates

the fuel injection process for a PFI engine.

FIGURE 5.6. Fuel injection process for a Port Fuel-Injected (PFI) engine. The
effect from the fuel puddles on the final fuel flow are illustrated.

5.3.3 Combustion Model

The combustion characteristics can be modelled in terms of the engine indicated

torque τind using a heat release approach, where the total power created by heat re-
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lease during combustion is subject to the actual burnt fuel mass flow rate ṁ f b. A

significant feature in the combustion dynamics of Wankel engines is the leakage and

the crevice volume between chambers. The leakage past the apex and side seals must

be considered when evaluating the combustion performance [203]. The crevice vol-

ume and leakage flow is shown in Fig. 5.7. The actual burned fuel flow rate ṁ f b can

be written [4] as

(5.8) ṁ f b =
1
λ

[ṁa − ṁleakage −
ṗb

pb
mcrevice]

where ṁleakage and mcrevice denote the leakage rate and crevice mass of the air-fuel

mixture, pb is the chamber pressure, and λ = ṁa/ṁ f is the air-fuel ratio, which is

the control object to be regulated around the stoichiometric value, i.e. λd = 14.67 for

petrol. Hence, the indicated engine torque τind [126] can be determined as

(5.9) τind = Hu
ηth(N, pm,θSA,λ)ṁ f b

N

where Hu is the fuel energy constant and ηth is a complex nonlinear function of the

engine speed N, the manifold pressure pm, the spark advance angle θSA, and the

air-fuel ratio λ.

Figure 5.7: Crevice volume and leakage gas flow [4].
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5.3.4 Eccentric Shaft Model

The eccentric shaft dynamics can be expressed using Newton’s second law as

(5.10) JṄ = τind −τ f ric −τload

where J is the scaled engine moment of inertia, τ f ric and τload refer to the friction

and the load torque, respectively [126].

An MVEM simulator for the AIE 225CS Wankel engine is established in Matlab/Sim-

ulink. The model is verified with the experimental data sets and the fuel injection

model is integrated with a nonlinear observer-based air-fuel ratio controller (see our

previous work [207] for details). The load torque in the simulator is a user-defined

function of the engine speed. Fig. 5.8 outlines the block diagram of the MVEM simu-

lator. Fig. 5.9 shows the throttle profile and the other corresponding signals generated

by the MVEM simulator.

FIGURE 5.8. The block diagram of the MVEM simulator for the Wankel en-
gine. The simulator consists of seven major blocks for 1) throttle angle
profile; 2) throttle dynamics; 3) intake manifold dynamics; 4) fuel injec-
tion dynamics; 5) combustion dynamics; 6) eccentric shaft dynamics; and
7) load profile.
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FIGURE 5.9. Engine dynamic responses generated by the MVEM simulator
for a given throttle profile, which includes the intake manifold pressure,
the intake manifold temperature, the engine speed, the engine torque,
the air-fuel ratio.
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5.4 State Space Realisation

The MVEM consists of differential equations mixed with empirical static maps to

model the inherently nonlinear and coupled dynamics of the engine. In modern con-

trol engineering, it is common to develop a more compact model, compared to the

MVEM, that uses state variables to describe the system by a set of first-order differen-

tial equations. This is known as State-Space (SS) modelling. To leverage the previous

results, we can first convert the MVEM into a nonlinear SS representation, then derive

a linear SS model via linearisation techniques around a nominal operating point.

5.4.1 Nonlinear State Space Model

(5.11)


ẋ = f (x,u,w)

y= h(x,u)

where x ∈Rn, u ∈Rm, w ∈Rl , and y ∈Rr represent the state, control input, disturbance,

and output vectors, respectively; f (x,u,w), h(x,u) are the nonlinear functions that

lump the MVEM together. We define the state vector from the MVEM for the Wankel

engines as

(5.12) x =



pm

Tm

N

m f p

m f v



intake manifold pressure

intake manifold temperature

engine speed

fuel puddle mass

fuel vapour mass

n = 5

with the control input, disturbance, and output as

(5.13) u =


α

ṁ f i

θSA


throttle angle

injected fuel flow rate

spark advance angle

m = 3

(5.14) w = τloadload torque l = 1
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(5.15) y=


τind

ṁ f

ṁa


indicated torque

fuel flow rate entering the chamber

air flow rate entering the chamber

r = 3

5.4.2 Linearisation

We linearise the SS model (5.11) around the nominal operating point shown in Table

5.2. The operator δ denotes the new variable centred about the operating point, e.g.

δx(t)= x(t)−x0. For the throttle body model, we can write δṁat from (5.1) and (5.2) by

taking partial derivatives with respect to α and pm as

δṁat = mat1
pa√
Ta

[PRI(p0
m)

∂TC
∂α

δα+TC(α0)
∂PRI
∂pm

δpm]

= c11δα+ c12δpm

(5.16)

with constants c11 and c12.

In the intake manifold model, for (5.5), taking partial derivatives with respect to pm

and N for δṁa yields

δṁa =
√

Tm

Ta

Vd

120RTm
ηvol(p0

m, N0)(N0δpm + p0
mδN)

= c21δpm + c22δN

(5.17)

with constants c21 and c22. Similarly, we can write for δṪm and δṗm based on (5.4)

and (5.3) as

δṪm = ∂Ṫm

∂Tm
δTm + ∂Ṫm

∂pm
δpm + ∂Ṫm

∂N
δN

= c31δTm + c32δpm + c33δN
(5.18)

δṪm = κR
Vm

(c12Ta − ∂ṁaTm + ṁa∂Tm

∂pm
)δpm + c11κR

Vm
δα− κR

Vm

ṁaTm + ṁa∂Tm

∂N
δN

= c41δpm + c42δα+ c43δN + c44δTm

(5.19)

with constants c31, c32, c33, c41, c42, c43, and c44.
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For fuel puddle dynamics, substituting (5.6) into (5.7) gives

(5.20) δṁ f p = χδṁ f i − (1/τ f +1/τp)δm f p

(5.21) δṁ f p = (1−χ)δṁ f i + (1/τ f )δm f p −1/τm)δm f v

It is reasonable to assume the leakage and crevice volume is negligible for the lineari-

sation, i.e. ṁ f ≈ ṁ f b for complete combustion. Thus, we can write δṄ based on (5.9)

and (5.10) as

δṄ = 1
J
∂(τind −τ f riction)

∂N
δN + 1

J
∂(τind −τ f riction)

∂pm
δpm + 1

J
∂(τind)
∂θSA

δθSA

+ 1
J
∂(τind)

∂λ
δλ+ 1

J
∂(τind)
∂ṁ f

δṁ f −
1
J
δτload

= c51δN + c52δpm + c53δθSA + c54δλ+ c55δṁ f −
1
J
δτload

(5.22)

with constants c51, c52, c53, c54, and c55. It should be noted that the term c54δλ≈ 0 as

the air-fuel ratio is closely regulated around a desired constant, e.g. the stoichiometric

value.

Table 5.2: Nominal operating point chosen for engine SS model linearisation.

Engine Variable Symbol Nominal Operating Point
Throttle Angle α0 30 [o]
Engine Torque τ0

ind 30 [Nm]
Engine Speed N0 4000 [RPM]

Intake Manifold Temperature T0
m 25 [oC]

Intake Manifold Pressure p0
m 0.7 [bar]

Spark Advance Angle θ0
SA 18 [o]

Air-Fuel Ratio λ0 14.7:1

Thus, we can determine the linear SS model for a typical nominal operating point

shown in Table 5.2 based on the above derivation as

(5.23)


δẋ = Aδx+Bδu+Eδw

δy= Cδx+Dδu
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with the matrices A, B, C, D, and E as

A =



c41 c44 c43 0 0

c32 c31 c33 0 0

c52 0 c51 c55/τp −c55/τm

0 0 0 (τ f +τp)
τ f τp

0

0 0 0 1/τ f −1/τm



B =



c42 0 0

0 0 0

0 1 c53

0 χ 0

0 1−χ 0



C =


c52J 0 c51J c55J/τp −c55J/τm

0 0 0 1/τp −1/τm

c21 0 c22 0 0



D =


0 c53 0

0 1 0

0 0 0


E =

[
0 0 1/J 0 0

]T

5.5 Neural Networks

Engine dynamics are inherently nonlinear and highly coupled. The MVEM and the SS

models shown in the previous sections are essentially developed on the basis of physi-

cal principles. One can see them as grey-box models that combine a partial theoretical

structure and some unknown parameters derived from data. These models observe

the engine dynamics with a reasonable level of accuracy, where some physical effects

are, however, not directly described and still need hand-tuned correction maps due
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to nonlinearity. In contrast with grey-box models, we here investigate a powerful tool,

artificial Neural Networks (NN), which is one of the black-box modelling techniques

and has been widely used in various engineering branches. NN have been proven to

be useful for modelling nonlinear dynamic systems and can often achieve distinctly

high accuracy [208].

In this section, we study different classes of NN with different configurations:

• Multi-Layer Perceptron (MLP) feedforward network

• Elman recurrent network

• Nonlinear AutoRegressive with eXogenous inputs (NARX) recurrent network

and apply them to engine dynamics modelling using purely input and output data

without any a priori knowledge of its internal workings.

5.5.1 Multi-Layer Perceptron (MLP) Neural Network

We start with the classical type of NN known as Multi-Layer Perceptron (MLP). An

MLP is a class of feedforward NN that consists of at least three layers of neurons: an

input layer, one or more hidden layers, and an output layer. The input data U(t) ∈Rp

are propagated from the input layer to the output layer, through the hidden layers, to

generate the output signals Ŷ (t) ∈Rq that will track the reference output data Y (t) ∈Rq.

Each layer of the MLP network is composed of some nonlinearly-activating nodes

(neurons) that are fully connected and work in parallel in order to create a flow of

information. Each neuron can be seen as a Multi-Input, Single-Output (MISO) com-

puting unit where the output h is calculated by processing the weighted sum of the
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inputs U with bias terms using a transfer function (i.e., an activation function ϕ). For

MLP networks, especially in the machine learning community, the logistic sigmoid

function σ= 1/(1+e−x) and the hyperbolic tangent function tanh(x)= (ex−e−x)/(ex+e−x)

are commonly chosen as the activation function. Other popular choices such as the

Rectified Linear Unit (ReLU) are frequently used for deep learning problems. For the

engine dynamics modelling problem, we select the hyperbolic tangent sigmoid func-

tion

(5.24) transig(x)= 2/(1+ e−2x)−1

as the activation function. This is mathematically equivalent to tanh(x) but proved

to be faster when training the network [209]. Thus, the output h of a neuron can be

simply expressed as

(5.25) hl
k =ϕk(

NoP∑
j=1

wl
k ju j +bl

k)

where the subscript k and the superscript l denote the k-th neuron in the l-th hidden

layer; the subscript j denote the j-th neuron in the previous layer; ϕ(x) is the activa-

tion function; NoP is the number of the neurons in the previous layer; w and b are

the weight and bias of a neuron, respectively.

A computational structure such as an MLP network should be able to learn and gener-

alise an input-output mapping from a set of training examples (the input and output

data). The proper values of the network weights w and bias terms b can be found via a

learning procedure where a cost function is minimised. Fig. 5.10 shows the conceptual

architectural graph of a three-layer MLP. A detailed description of the NN approach

is beyond the scope of the work. Readers are referred to [208] for a comprehensive

analysis of artificial NN.

In this chapter, we assess the intake manifold pressure and engine torque as the main

outputs for MLP network design. In some literature [133], it is noted that emissions

such as NOx or CO are also chosen as the MLP network output. Here we focus on
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Figure 5.10: The feedforward architecture of a three-layer MLP network.

the pressure and torque as they are the primary variables in engine calibration and

control. As shown in the MVEM model (Section 5.3.3), the engine torque is a highly

nonlinear function of the engine speed, intake manifold pressure, spark advance, air-

fuel ratio, fuel flow rate, etc. In order to investigate the potential of the NN to simulate

the main features of the engine dynamics, we select the measurable input and output

vectors for the MLP network as follows

U =



α

N

λ

θSA

ṁ f i



throttle angle

engine speed

air-fuel ratio

spark advance angle

injected fuel rate

p = 5

Y =
 pm

τind

 intake manifold pressure

indicated torque
q = 2

(5.26)

Different number of neurons in the hidden layer (k) and number of hidden layers (l)

can be adjusted to fulfil the purpose. These are often referred to as hyperparameters in

the machine learning community. One needs to specify these values for faster training

and less overfitting. Fig. 5.11 shows an MLP network with 7 neurons in the hidden
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layer for the Wankel engine modelling.

Figure 5.11: The feedforward MLP network configuration for the Wankel engine (with
7 neurons in the hidden layer).

5.5.2 Recurrent Neural Networks

The MLP described in the previous section is an NN with traditional feedforward

architecture, where incoming data propagates in a single direction from the input

layer to the output layer. Here we introduce a different type of NN named Recurrent

Neural Networks (RNN) by considering feedback connections among neurons. The

feedback can induce a dynamical effect into the computing units (neurons) by a local

memory process. We investigate the RNN and its application on the engine modelling

in terms of different topology.
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5.5.3 Elman Recurrent Neural Network

One of the most basic architectures of RNN is the Elman network, also known as the

Simple RNN. Very similar to the MLP network, the Elman network can be divided

into an input layer, one or more hidden layers and an output layer. While the input

and output layers are characterised by feedforward connections, the hidden layer

contains recurrent connections embedded with time-delay elements. The current in-

put and past network state are combined and processed by the neurons in the hidden

layer. The output h of a neuron in the hidden layer can be written as

(5.27) hl
k(t)=ϕk(

NoP∑
j=1

[(wl
k0 ju j(t)+wl

k1 jh j(t−1)+·· ·+wl
kn jh j(t−nu)+bl

k])

where nuis the user-defined finite (often small) number of time delays. The other

notations are the same as (5.25) in the MLP network. Fig. 5.12 shows the recurrent

architecture of a three-layer Elman network.

FIGURE 5.12. The recurrent architecture of a three-layer Elman network. The
red arrow denotes the feedback connections among the neurons in the
hidden layer.
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5.5.4 Nonlinear AutoRegressive with eXogenous inputs (NARX)

Recurrent Neural Network

Originally, Nonlinear AutoRegressive with eXogenous inputs (NARX) was a com-

monly-used method in time series modelling and analysis. An NARX model can be

seen as an RNN with feedback connections enclosing several layers of the network.

Differently from the Elman network, the recurrence in the NARX network is given by

the feedback from the output as well. The defining equation for the NARX network

can be determined for the output h of a neuron in the hidden layer as

hl
k(t)=ϕk(

NoP∑
j=1

[(wl
k0 ju j(t)+wl

k1 jh j(t−1)+·· ·+wl
kn jh j(t−nu)+wl

k1 j yj(t−1)+

·· ·+wl
kn j yj(t−ny)+bl

k])

(5.28)

where nu and ny are the user-defined finite (often small) number of time delays. The

other notations are the same as (5.27) in the Elman network. Fig. 5.13 shows the recur-

rent architecture of a three-layer NARX network.

It is worth noting that the NARX network feeds back the delayed signals h and y

in parallel. In the engine modelling case, since the engine toque as the actual output

signal is measurable and available during the training of the network, one can lever-

age the actual output to create a series-parallel architecture [210], in which the actual

output Y (t) is used instead of feeding back the estimated output Ŷ (t). Fig. 5.14 shows

the use of the series-parallel architecture for the training of a NARX network.

5.6 Comparative Results

In this section, we present the model validation results for the SS model and the NN

models. The results are compared and analysed in terms of the fidelity, the applicabil-

ity, and the model calibration (or NN training) process.
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FIGURE 5.13. The recurrent architecture of a three-layer NARX network. The
red arrows denote the feedback connections among the neurons in the
hidden layer and from the output layer (compared with the Elman net-
work in Fig. 5.12).

5.6.1 Linear SS Model

In order to verify the fidelity of the linear SS model, we check the torque response

of the SS model against the same throttle angle profile for the MVEM. The throttle

sweeps around 30 [o] with small excursion ±10 [o]. The torque and the intake man-

ifold pressure responses from the two models are shown in Fig. 5.15. It is clear to

see the linear behaviour of the SS model against the nonlinearity of the MVEM while

both responses follow a similar trend.

It is evident that the linearised model is only valid in a neighbourhood of the nominal

operating point. To design a global dynamic control, one can merge together different

controls designed for a number of nominal operating points via simple gain schedul-

ing or more sophisticated control techniques such as adaptive control [136].
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FIGURE 5.14. The recurrent series-parallel architecture of a three-layer NARX
network (Training mode). The red arrows denote the feedback connec-
tions among the neurons in the hidden layer and from the actual outputs
(compared with the parallel architecture in Fig. 5.13).

5.6.2 NN Models

We use the Levenberg-Marquardt backpropagation algorithm [211] for training the

three NNs, namely the MLP network, the Elman network and the NARX network,

by the data collected shown in section 5.2. The performance of an NN can be eval-

uated by using the Mean Squared Error (MSE) and regression analysis. The MSE is

the average squared difference between the estimate and the target outputs and the

correlation coefficient R is used for the regression analysis. Through multiple train-

ings with different hyperparameter settings (only one hidden layer for all NNs, i.e.

l = 1), the MSE and the regression R are summarised in Table 5.3. There are many

rule-of-thumb methods for determining the appropriate number of hidden neurons.

Underfitting occurs when there are too few neurons in the hidden layer to adequately

detect the data. On the other hand, too many neurons in the hidden layer may result
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Figure 5.15: The intake manifold pressure and the torque responses of the linear SS
model and the MVEM around the nominal operating point.
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Figure 5.16: Regression analysis with respect to the intake manifold pressure and the
engine torque for the MLP network with 3 neurons in the hidden layer.
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Table 5.3: The MSE and the correlation coefficient R for the three types of NN.

NN Output # Hidden Neurons # Time Delays MSE R

MLP

Intake Pressure
3 0 1.45144 0.99541
7 0 0.21168 0.99930

10 0 0.13156 0.99957

Engine Torque
3 0 0.27029 0.99622
7 0 0.15540 0.99782

10 0 0.10385 0.99880

Elman

Intake Pressure
7 1 0.19126 0.99887
7 2 0.18478 0.99938

10 2 0.12929 0.99943

Engine Torque
7 1 0.15738 0.99722
7 2 0.11357 0.99850

10 2 0.10174 0.99888

NARX

Intake Pressure
7 1;1 0.09476 0.99968
7 2;2 0.08423 0.99978

10 2;2 0.09077 0.99970

Engine Torque
7 1;1 0.00440 0.99994
7 2;2 0.00376 0.99995

10 2;2 0.00369 0.99995

in overfitting and the increase of the training time. Some exemplar choices of the num-

ber of hidden neurons such as 3, 7, 10 are tested as shown in Table 5.3. Fig. 5.16 to 5.18

presents the regression analysis for the three NN with respect to the outputs, i.e. the

intake manifold pressure and the engine torque. The comparative responses for the

two outputs are shown in Fig. 5.19 and 5.20.

Overall, the three types of NN are all able to satisfactorily describe the engine dy-

namics, where the regression values R are all above 0.99. This result confirms the ca-

pability of the NN in nonlinear dynamic system modelling. In particular, the NARX

network demonstrates to be the most accurate architecture for modelling the Wankel

engine. The highest accuracy is achieved when the NARX network has 10 neurons in

the hidden layer and 2 recurrent time delays. The torque estimation fits exceptionally
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Figure 5.17: Regression analysis with respect to the intake manifold pressure and the
engine torque for the Elman network with 10 neurons in the hidden layer and 2 time
delays.
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Figure 5.18: Regression analysis with respect to the intake manifold pressure and the
engine torque for the NARX network with 7 neurons in the hidden layer and 2 time
delays.
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well with R = 0.99995. The Elman network can reach almost equal performance of

the NARX network, especially when predicting the intake pressure. Compared to the

two RNNs, the MLP network being a static mapping with only feedforward architec-

ture struggles to achieve the equivalent accuracy and may not guarantee trustworthy

dynamic response since no delays are used between the input and output. This is ev-

ident in Fig. 5.19, the intake manifold pressure response at around 3750s, where one

finds that the MLP output transient is leading the target output transient. Such devi-

ation from the realistic response can be ascribed to the lack of feedback mechanism

in the MLP. However, it is noted that the training process for the MLP is faster than

the other two RNNs with the same number of hidden neurons since there is no need

computing for the time delays. It is interesting to notice that, for this engine modelling

task, a network with a limited number of hidden neurons is less prone to overfit on

the training data. However, a very low number of hidden neurons may lead to in-

ferior modelling accuracy. Furthermore, increasing the number of hidden neurons

introduces more complexity and does not guarantee the improvement of accuracy,

especially for the RNN with more time delays. The performance is only marginally

improved or even dropped slightly when the number of hidden neurons grows from

7 to 10 for both Elman and NARX network. The trade-off between the computational

complexity and the model accuracy is needed when implementing the NN engine

model in the control development process.

5.7 Model Synthesis and Conclusions

The three types of mathematical models presented in this paper are 1) the MVEM; 2)

the SS model; and 3) the NN model. By using either (or both) physical knowledge

or test data, these models are able to describe the Wankel engine dynamics with ac-

ceptable accuracy. They are all control-oriented models that have less computational

demand and should be able to run faster than the available CFD models due to their

simplicity.
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Figure 5.19: The intake manifold pressure responses for the MLP, Elman, and NARX
networks compared with the measured engine test data.

For each model:

1) The MVEM model is the state-of-the-art approach for engine dynamics modelling

and allows an in-depth study of engine physics and mechanisms. It consists of in-

terconnected subsystems of the engine dynamics which are mostly in the form of

nonlinear differential equations or empirical maps, which result in low-level fidelity

but fast running speed.

2) The linear SS model characterises the engine dynamics as a set of first-order state
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Figure 5.20: The torque responses for the MLP, Elman, and NARX networks compared
with the measured engine test data.

equations. It has the simplest form yet the least accuracy since it is only valid in the

neighbourhood around a nominal operating point. However, one can always merge

together different controls designed for a number of nominal operating points via

simple gain scheduling to design a global dynamic control. As a prominent charac-

teristic of modern control theory, an SS model becomes very handy when designing

an advanced control system, e.g., via optimal control, robust control, and intelligent

control.

3) The NN models are essentially data-driven models via black-box system identifica-
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tion. They are able to predict the dynamic behaviour of the Wankel engine by using

the data collected from the engine tests and do not require a priori knowledge of the

engine configuration or an understanding of underlying physics. Different network

architecture can lead to different levels of performance, but the NN models overall

tend to achieve higher accuracy than the MVEM and the SS model in terms of the

regression analysis. In particular, the NARX network demonstrates the highest per-

formance with acceptable complexity.

In the procedure of control development for the Wankel engine, one can use the SS

model for the design phase of a control system for its simplicity and then use the

NN model for the validation phase for its accuracy. Another benefit of the NN model

can be derived by integrating it into the MVEM. The thermodynamic process of the

combustion model is difficult to characterise and it relies on the static maps for the

thermal efficiency in the MVEM (see (5.9)). Based on the results in this paper, one can

easily create a NN model that outputs the engine torque using the measured input

signals. This NN model could be used to replace the specific combustion model in

the MVEM due to its better predicting capability. The focus of the next chapters will

include idle speed control and air-fuel ratio control for the Wankel engine using the

control-oriented model, specifically, the MVEM model, developed in this chapter. A

novel adaptive optimal control strategy and its implementation on the ECU will be

investigated in Chapter 6 and 8.
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6
OUTPUT FEEDBACK IDLE SPEED CONTROL VIA

Q-LEARNING

B ased on the dynamics modelling results from the previous chapter, we in-

vestigate the idle speed control problem for the Wankel rotary engine. The

objective is develop an idle speed control system that is able to learn the opti-

mal solution in real time using our adaptive optimal control. Since not all the engine

variables are measurable using sensors, we integrate the controller with an extended

Kalman filter (EKF) for the estimation of unknown variables, which results in an out-

put feedback adaptive optimal idle speed control strategy.

6.1 Introduction

Idle speed control represents one of the most basic yet challenging automotive en-

gine control problems, where the improvements in robustness and performance can

directly result in better fuel economy, emissions, and drivability [212]. The idle speed

needs to be regulated close to the set point. In a vehicle, the load disturbance due to

the events such as power steering, transmission engagement, or low-speed manoeu-
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vring may cause idle speed excursion. Advanced techniques that have been consid-

ered in the literature for idle speed control include H∞ loop shaping [213], adaptive

control [214], sliding mode control [215], and model predictive control [216].

Applying the idea of Q-learning and novel adaptive control techniques, in Chapter 3,

a model-free adaptive optimal controller is derived in this thesis for unknown nonlin-

ear input-affine systems. The controller performs in continuous time in a noniterative

manner and online learns the optimal solution without a priori knowledge of system

dynamics. However, from Chapter 3, the control design requires full state feedback,

i.e., all the state variables need to be available or directly measurable. For practical

problems, it is often the case that not all the states are measurable for the controller,

where the output feedback control scheme becomes necessary. The options to solve

this issue are to employ an observer or develop and use adaptive optimal output feed-

back control schemes. For instance, the paper of [217] presented the output feedback

ADP for discrete-time linear systems and [218] developed one for continuous-time

nonlinear systems using a sampled-data approach. In Chapter 4, we developed an

optimal adaptive observer suitable to a nonlinear system. However, in this chapter,

we have chosen an alternative optimal observer, an extended Kalman filter (EKF) to

provide the optimal state observation needed for the adaptive optimal control scheme

of Chapter 3. We demonstrate this for the idle speed control of a simulated engine sys-

tem.

In this chapter, we design a novel adaptive optimal output feedback controller using

continuous-time Q-learning and EKF for the idle speed regulation problem. The main

contributions are summarised as follows.

1) Different from the existing approaches, the proposed reinforcement learning-based

idle speed controller is completely model-free and able to learn the optimal solution

(throttle profile) online in finite time using only the measurable outputs, namely, the

intake manifold pressure, temperature, and the engine speed.
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2) Reinforcement learning is applied to engine idle speed regulation, for the first time,

in a continuous-time framework (in contrast to common iterative ADP algorithms).

3) The state feedback Q-learning combined with the EKF yields an optimal observer-

based dynamic output feedback controller, of which the overall stability is guaranteed

in the sense of Lyapunov.

We first present the engine model used for control design and validation and for-

mulate the idle speed regulation into an infinite-horizon nonlinear optimal control

problem. Then, we proposes a full state feedback controller based on continuous-time

Q-learning and further extend the result to an output feedback controller using op-

timal observer techniques. Finally, we run the simulation of the proposed controller

for the MVEM developed in the previous chapter.

6.2 Recap: Engine Model for Idle Speed Control

This section reviews the throttle body model and the fuel puddle model from the

physics-based mean value engine model (MVEM) from Chapter 5 for the idle speed

control problem.

6.2.1 Throttle Body Model

Assuming one-dimensional, steady, isentropic compressible flow of an ideal gas, the

air mass flow rate ṁat passing the throttle can be described as a linear function of the

throttle angle α as

(6.1) ṁat = Kαα

with the linearised flow rate sensitivity Kα ([128]). The throttle angle α is one of the

major control inputs in the idle speed control system (while older engines often use

an air bypass valve).
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6.2.2 Fuel puddle model

The fuelling of the engine is controlled by a fuel injector fitted near the port on the

intake manifold. Due to the port fuel injection (PFI) configuration, a fraction of the

injected fuel is deposited on the manifold walls and becomes fuel puddles, which is

refered to as the “wall-wetting” phenomenon. The final fuel flow rate ṁ f entering the

housing is the sum of the fuel puddle flow rate ṁ f pe and the fuel vapour flow rate

ṁ f ve entering the combustion chamber

(6.2) ṁ f = ṁ f pe + ṁ f ve = m f p/τp +m f v/τm

where τp and τm are the characteristic manifold time constants for the puddle m f p

and vapour m f v fuel mass, respectively. Their dynamics can be taken as a set of two

first-order processes with a time constant τ f as

(6.3)


ṁ f p = χṁ f i − (1/τ f )m f p − ṁ f pe

ṁ f v = (1−χ)ṁ f i + (1/τ f )m f p −m f v/τm

where ṁ f i is the injected fuel flow rate (i.e., the control input in the air-fuel ratio

control system) and χ (0 ≤ χ < 1) is the fraction of injected fuel that deposits on the

manifold walls as fuel puddles (see [219] for more details).

6.3 State Feedback via Q-Learning

In this section, we propose an adaptive optimal state feedback controller for the idle

speed regulation problem. The adaptive optimal control algorithm is based on our

work ([143]) which extends the idea of Q-learning to completely unknown continuous-

time nonlinear systems. The controller can online solve the nonlinear optimal control

problems and is completely model-free.
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6.3.1 Optimal Control Problem Formulation

The state variables can be chosen from the MVEM as

(6.4) X (t)=



pm(t)

Tm(t)

m f p(t)

m f v(t)

N(t)



intake manifold pressure

intake manifold temperature

fuel puddle mass

fuel vapour mass

engine speed

For the idle speed control problem, the objective is to regulate the engine speed N(t)

around a certain low set point, namely, N0 = 3000 (RPM) for the Wankel rotary en-

gine. We can shift the coordinate of the equilibrium point to zero by translating the

engine speed as N (t)= N(t)−N0. Similarly, by translating the other states to a nominal

operating point, a new state vector x is defined such that

(6.5) x(t)=X (t)−X 0

where X 0 is the nominal operating point around which the engine idles as shown in

Table 6.1. By inspection of (6.1) and the MVEM, the throttle angle α is an affine input

of the whole system. We can represent the MVEM as a continuous-time nonlinear

time-invariant system in state space as

(6.6) ẋ(t)= f (x(t))+ g(x(t))α(t), x(0)= x0

where the state vector x(t) is defined as (6.4), the throttle angle α(t) is the control policy,

and f (x(t)), g(x(t)) are the system drift and the input gain functions, respectively. It is

reasonable to assume that the engine dynamics f (x)+ g(x)α is Lipschitz continuous

on a compact set Ω ∈R5 that contains the origin.

We define the infinite-horizon integral cost

(6.7) V (x(t)) :=
∫∞

t
r(x(τ),α(τ))dτ

with the utility r(t)= S(x(t))+Rα2(t). The utility r(t) is positive definite, i.e., S(x(t))> 0

and R > 0 for x 6= 0. One can simply choose a quadratic utility term S(x(t)) = xTS0x

with a positive definite matrix S0 > 0 for the idle speed regulation problem.
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Table 6.1: Nominal idle operating point.

Engine state Symbol Value Units
Intake manifold pressure p0

m 0.8 bar
Intake manifold temperature T0

m 25 oC
Fuel puddle mass m0

f p 0.11 g
Fuel vapour mass m0

f v 0.25 g
Engine speed N0 3000 RPM

The optimal control problem is to minimise the value function (6.7) by choosing the

optimal stabilising (admissible) control policy α∗(t). The optimal value function V∗(x)

can be determined as

(6.8) V∗(x(t)) :=min
α

∫∞

t
r(x(τ),α(τ))dτ

A general solution to the nonlinear optimal control problem can be formulated as

a partial differential equation for the optimal value function V∗(x). We define the

Hamiltonian of the problem as

(6.9) H(x,α,∇Vx) := r(x,α)+ (∇Vx)T( f (x)+ g(x)α)

with the gradient vector ∇Vx = ∂V /∂x. The optimal value function V∗(x) in (6.8) satis-

fies the Hamilton-Jacobi-Bellman (HJB) equation

(6.10) 0=min
α

H(x,α,∇V∗
x )

It is noted that the throttle angle α should be in the range of [0,90o]. However, the

idle speed control problem usually entails a local span of the operating condition

near the low speed where the throttle angle is small, e.g., α≈ 30o, when all the states

are around the nominal operating point in Table 6.1. The control action α is far below

the upper limit and is therefore locally unconstrained. Therefore, the optimal control

α∗ can be found by setting ∂H(x,u,∇V∗
x )/∂α= 0 so that

(6.11) α∗ =−1
2

R−1 g(x)T∇V∗
x
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Inserting the optimal control (6.11) into (6.10) gives the HJB equation in terms of ∇V∗
x

as

(6.12) 0= S(x)+ (∇V∗
x )T f (x)− 1

4
(∇V∗

x )Tg(x)R−1 g(x)T∇V∗
x

In general, the HJB equation (6.9) is difficult to solve due to its nonlinearity and the

requisite for a priori knowing the system drift dynamics f (x) and input gain dynamics

g(x).

6.3.2 Parameterisation of Nonlinear Q-function

Similar to Chapter 4, an action-dependent version of value function Q(x,α) is to be

created, such that Q∗(x,α∗) = V∗(x). For the continuous-time nonlinear input-affine

system (6.6), the Q-function can be explicitly defined by adding the Hamiltonian (6.9)

onto the optimal value (6.8) as

Q(x,α) :=V∗(x)+H(x,α,∇V∗
x )

=V∗(x)+S(x)+ (∇V∗
x )T f (x)︸ ︷︷ ︸

Fxx(x)

+

(∇V∗
x )Tg(x)α︸ ︷︷ ︸

Fxα(x,α)

+ Rα2︸︷︷︸
Fαα(α)

(6.13)

where Fxx(x), Fxα(x,α), and Fαα(α) are the lumped terms that can be approximated

respectively via neural networks. Similar to Chapter 4, the Q-function is of the same

value as the value function V() for the optimal control:

Lemma 6.1 The Q-function defined in (6.13) is positive definite with the optimisation scheme

Q∗(x,α∗)=minαQ(x,α). The optimal Q-function Q∗(x,α∗) has the same optimal value V∗(x)

(6.8) as for the value function Vα(x) (6.7), i.e. Q∗(x,α∗) = V∗(x) when applying the optimal

control α∗. ¦

Proof. See Lemma 3.3 in Chapter 3 for detailed proof. □
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6.3.3 Adaptive Critic for Q-function Approximation

We approximate the Q-function (6.13) using a critic neural network by

(6.14) Q(x,α)=WTΦ(x,α)+εQ(x,α)+εx(x, t)

where Φ(x,α) ∈ Rn denotes the activation function vector with the number n of neu-

rons in the hidden layer; W ∈ Rn is the weight vector, εx(x, t) is some bounded error

due to sensor noise or an observer; εQ(x,α) is the neural network approximation error;

and WTΦ(x,α) can be explicitly expressed according to the three components Fxx(x),

Fxα(x,α), and Fαα(α) in (6.13) as

(6.15) WTΦ(x,α)=
[
WT

xx WT
xα WT

αα

]


Φxx(x)

Φxα(x)α

Φαα(α)


where Φxx ∈ Rnxx , Φxα ∈ Rnxα and Φαα = α2. The regressor Φ(x,α) is selected to provide

a complete independent basis such that Q(x,α) is uniformly bounded with n = nxx +
nxα+1. Recall from the Weierstrass higher-order approximation theorem ([164]), the

approximation error εQ(x,α) is bounded for a fixed n within a compact set Ω and as

the number of neurons Nxx →∞ and Nxα →∞, i.e., n →∞, we have εQ(x,α) → 0. The

error term εx(x, t) considers the effect of introducing the optimal observer states in

Q(x,α) and in the control policy. The analysis of the output feedback control using an

optimal observer will be explained later in Section 6.4.

One needs to derive the Bellman equation in terms of the Q-function to update the

critic. By Bellman’s principle of optimality ([41]), we have the following optimality

equation

(6.16) V∗(x(t−T))=
∫t

t−T
r(x(τ),α(τ))dτ+V∗(x(t))

The result from Lemma 6.1 showed that Q∗(x,α∗)=V∗(x), which means we can rewrite

(6.16) in terms of Q∗(x,α∗) as
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−ρ(x,α)︷ ︸︸ ︷
−

∫t

t−T
r(x,α)dτ=Q∗(x(t),α∗(t))

−Q∗(x(t−T),α∗(t−T))

=WTΦ(x(t),α∗(t))−WTΦ(x(t−T),α∗(t−T))︸ ︷︷ ︸
WT∆Φ(x,α∗)

+εBQ +εBx

(6.17)

with the integral reinforcement ρ(x,α), the difference ∆Φ(t) = Φ(x(t),α∗(t))−Φ(x(t −
T),α∗(t−T)), and the Bellman equation residual errors εBQ = εQ(x(t),α∗(t))−εQ(x(t−
T),α∗(t− T)) and εBx = εx(x(t))− εx(x(t− T)) being bounded for bounded εQ and εx.

Define two auxiliary variables P ∈Rn×n and Q ∈Rn by low-pass filtering the variables

in (6.17) as

(6.18)


Ṗ =−ℓP +∆Φ(t)∆Φ(t)T, P(0)= 0

Q̇=−ℓQ+∆Φ(t)ρ(x,α), Q(0)= 0

with a filter parameter ℓ> 0.

The adaptive critic neural network can be written as

(6.19) Q̂(x,α)= ŴTΦ(x,α)

where Ŵ and Q̂(x,α) denote the current estimate of W and Q(x,α), respectively.

Now we design the adaptation law using the sliding mode technique to update Ŵ

such that

(6.20) ˙̂W =−ΓP M
||M||

where M ∈Rn is defined as M =PŴ+Q and ΓÂ 0 is a diagonal adaptive learning gain

to be tuned.
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Lemma 6.2 Given the adaptation law (6.20), if α(t), ∆Φ(t), and the system states x(t) are

persistently excited, the estimation error of weight W̃ =W −Ŵ will converge to a compact set

in finite time. ¦

Proof. The proof follows similarly from Lemma 3.4 in Chapter 3. It is shown that M

can be expressed in terms of the weight error W̃ as M = −PW̃ +Λ with the residual

error Λ= ∫t
0 e−ℓ(t−τ)∆Φ(τ)(εBQ(τ)+εBx(τ))dτ. The weight convergence is demonstrated

by choosing a proper Lyapunov function

(6.21) L1 = 1
2

(P−1M)TΓ−1P−1M

and its time derivative L̇1 ≤−a||M|| with a constant a > 0. □

6.3.4 Adaptive Optimal Control via Q-learning

We reconstruct the optimal control α∗ from (6.11) based on the parameterisation of

Q(x,α) (6.13) such that

(6.22) α∗ =−1
2

W−1
ααWT

xαΦxα(x)+εQα+εxα

where εQα and εxα are bounded approximation errors due to εQ and εx, WT
xαΦxα(x)

accounts for the term g(x)T∇V∗
x , and Wαα is essentially predefined R (see (6.13)). Al-

though the value of R is available through the value function (6.7), we shall write the

actor in the form of (6.23) for the sake of theoretical consistency. In practice, the initial

weights of Wαα can be chosen either randomly or as the same values in R. Therefore,

one can determine the optimal control directly using the adaptive critic (6.19) if the

weight Ŵ converges to the actual weight W . The control law (actor) will be

(6.23) α=−1
2

Ŵ−1
ααŴT

xαΦxα(x)

We summarise the result for this Q-learning algorithm as

Theorem 6.1 Given the engine system (6.6) with the value function (6.7) and Q-function

(6.13), the adaptive critic neural network (6.19) with the adaptation law (6.20) and the actor
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(6.23) form an adaptive optimal control so that the adaptive critic weight estimation error W̃

will converge to a compact set and the throttle angle (the actor) α will converge to a small

bounded set around its optimal control solution α∗ in finite time.

Proof. The proof follows similarly from Theorem 3.2 in Chapter 3. □

The proposed idle speed controller is a completely model-free algorithm that can ap-

proximately solve the optimal control problem online without the a priori knowledge

of the system drift f (x) and input gain g(x). The finite-time convergence of the critic

neural network weight is guaranteed. However, the control algorithm is data-driven

and requires the complete knowledge of all the state variables x(t).

6.4 Output Feedback Idle Speed Control

This section describes the design and analysis of the output feedback control for the

idle speed regulation problem, which combines a reduced-order optimal observer

with the previous Q-learning-based state feedback control.

6.4.1 Extended Kalman Filter

It is uncommon to directly use state feedback for a realistic system since not all the

states are measurable in practice. By inspection of the engine states (6.4), the intake

manifold pressure pm, temperature Tm, and the engine speed N are commonly mea-

surable through the manifold absolute pressure (MAP) sensor, the intake air temper-

ature (IAT) sensor, and the tachometer, respectively. The other two states: the fuel

puddle mass m f p and the fuel vapour mass m f v are not directly measurable in prac-

tice. If the system is observerable, one can design a reduced-order observer to online

estimate only the unknown states. Kalman filters have been widely used as a linear

quadratic estimation algorithm, which can be further extended to deal with the non-

linearities [220] and unknown parameters [221]. We design an extended Kalman filter

(EKF) to estimate the fuel puddle model using the mass air flow (MAF) sensor and the
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Lambda sensor (see also [207] for more details). This will be integrated as part of an

adaptive optimal idle speed controller. Since only the fuel puddle variables m f p and

m f v need to be estimated, we can use the EKF as a reduced-order optimal observer for

our Q-learning-based state feedback idle speed controller. The EKF is a common type

of estimator that is known for its robustness and stable performance. At the initial

stage of the research, the EKF is a natural choice that is sufficient for the fuel puddles

problem. One can also use the adaptive optimal control proposed in the later chapter

for the same problem.

By inspection of the nonlinear fuel puddle model (6.2)(6.3) with the unknown parame-

ters τ f and χ, the parameters can be taken as extra states to be estimated. Moreover, it

has been shown in [219][206] that the term ṁ f pe is negligible. Hence, the fuel puddle

process (6.2)(6.3) can be written as

(6.24)



τ̇ f = w1

χ̇= w2

ṁ f p = χṁ f i − (1/τ f )m f p +w3

ṁ f v = (1−χ)ṁ f i + (1/τ f )m f p −m f v/τm +w4

ṁ f = m f v/τm +v

or in the form of augmented state equations as

(6.25)


ẏ= f (y,u)+w

ṁ f = h(y)+v

where y = [τ f χ m f p m f v]T is the augmented state vector, u = ṁ f i is the system input

(injected fuelling command), z = ṁ f is the measurement of the system output, f (y,u)

and h(y) denotes the (non-)linear functions in (6.24). Practically, the measurement z

can be obtained through dividing the reading of a mass air flow (MAF) sensor by the

reading of a lambda sensor since ṁ f = ṁa/λ. Moreover, w = [w1 w2 w3 w4]T ∼N (0,W)

and v ∼N (0,Y) are the zero mean multivariate Gaussian noises that account for the

model inaccuracy and sensor noise with pre-defined covariance W and Y .
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Assumption 6.1 Assume that the process noise w and the measurement noise v are bounded,

i.e. ||w|| ≤ϖ and |v| ≤µ with ϖ> 0 and µ> 0.

It is not uncommon in practice that the noise is assumed to be truncated Gaussian

so not only the bound but the distribution inside the bound is available. Similar as-

sumptions can be found in [222][223][224] where the probabilistic and hard bound

approaches are combined for set-membership identification.

For the system (6.25), an extended Kalman filter can be designed accordingly with

the Kalman gain vector K as

(6.26) ˙̂y= f ( ŷ,u)+K(z−h( ŷ))

where ŷ is the estimate of the state vector y and K is the adaptive Kalman gain to be

designed later.

From (6.25) and (6.26), the estimation error is defined as ỹ = y− ŷ and its derivative

can be written as

˙̃y= ẏ− ˙̂y

= f (y,u)− f ( ŷ,u)−K(h(y)−h( ŷ))+w−Kv
(6.27)

Since f and h are differentiable, the error dynamics can then be linearised around x, x̂

such that

(6.28) ˙̃y= (F −KH) ỹ+ o(|| ỹ||)+w−Kv

where o(|| ỹ||) denotes the higher order terms of the approximation error, which have

an upper bound δ > 0. F and H are the Jacobian matrices of f (y,u) and h(y) with

respect to y as

(6.29) F = ∂ f
∂y

=


0 0 0 0

0 0 0 0

m f p/τ2
f u −1/τ f 0

−m f p/τ2
f −u 1/τ f −1/τm


171



CHAPTER 6. OUTPUT FEEDBACK IDLE SPEED CONTROL VIA Q-LEARNING

(6.30) H = ∂h
∂y

=
[
0 0 0 1/τm

]
The Kalman gain K can be online updated by solving the covariance prediction matrix

P in the algebraic Riccati equation

(6.31) Ṗ = FP +PFT −KHP +W

such that

(6.32) K = PHTY−1

It can be proved that the solution P is bounded and positive definite via Theorem 3.4

in Optimal Control [30].

Theorem 6.2 For the augmented system (6.25) with the extended Kalman filter (6.26),

the estimation error ỹ will exponentially converge towards a compact set around zero

and thus ŷ→ y holds provided that the noise/error bounds δ→ 0, ϖ→ 0, µ→ 0.

Proof: Defining the inverse of the positive definite matrix P as Y = P−1, the algebraic

Riccati equation (6.31) can be transformed into

(6.33) − Ẏ =Y F +FTY −Y KH+YWY

Then a Lyapunov function can be chosen as

(6.34) Vk(t)= 1
2

ỹTY ỹ

Its derivative can be calculated using (6.33) as

V̇k(t)= 1
2

˙̃yTY ỹ+ 1
2

ỹTẎ ỹ+ 1
2

ỹTY ˙̃y

=−1
2

ỹT(Ẏ +YWY +Y KH) ỹ+ 1
2

ỹTẎ ỹ

+ ỹTY o(|| ỹ||)+ ỹTY w− ỹTY Kv

≤−1
2
λmin(YWY +Y KH)|| ỹ||2

+ λ2
max(Y )
η

|| ỹ||2 + λ2
max(Y K)

2η
|| ỹ||2

+ η

2
δ2 + η

2
ϖ2 + η

2
µ2

≤−α1Vk(t)+β

(6.35)
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where λmin(•), λmax(•) denote the minimum, maximum eigenvalues of a matrix, α1 =
λmin(YWY +Y KH)/λmax(Y )−[2λ2

max(Y )+λ2
max(Y K)]/2ηλmax(Y ) and β= η(δ2+ϖ2+µ2)/2

are positive constants for a properly chosen constant η > [2λ2
max(Y ) + λ2

max(Y K)]/2

λmin(YWY +Y KH). This implies that Vk(t) ≤ V (0)e−α1t +β/α1 holds and the estima-

tion error x̃ will exponentially converge towards a compact set defined by Ω1 := {x̃ |
||x̃|| ≤

√
η(δ2 +ϖ2 +µ2)/α1λmin(Y ) }. Clearly, lim

t→∞ ỹ = 0 holds for β→ 0, i.e. δ→ 0, ϖ→ 0,

µ→ 0. ¦

Hence, the fuel puddle dynamics as well as the unknown parameters τ f and χ can

be online estimated via extended Kalman filter (6.26) using only MAF and lambda

sensors.

6.4.2 Output Feedback Synthesis

The proposed Q-learning-based state feedback idle speed controller (Theorem 6.1) re-

quires the complete knowledge of the system states. A reduced-order optimal state

observer (Theorem 6.2) is designed to estimate the unknown states. The combination

of the two naturally leads to an adaptive optimal output feedback idle speed con-

troller. Fig. 6.1 presents a schematic diagram of the proposed Q-learning-based idle

speed control system. We summarise the main result of this chapter in the following

theorem.

Theorem 6.3 Given the engine system (6.6) with the stochastic fuel puddle process (6.25) and

the prescribed value function (6.7) and Q-function (6.13), the adaptive critic neural network

(6.19) with the adaptation law (6.20) and the actor (6.23) and the EKF (6.26) form an adaptive

optimal output feedback control so that the throttle angle α will converge to a small bounded

set near its optimal control solution α∗ in finite time, i.e., the idle speed will be regulated near

the set point with minimum control effort subject to the prescribed value function (6.7).

Proof. Since the employed state x̂ for estimating the Q-function is partially observed

from the EKF (6.26), i.e., the states x3, x4 are obtained as ŷ3, ŷ4, the Q-functions Q(x,α(x)),
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FIGURE 6.1. A schematic diagram of the proposed output feedback Q-
learning-based idle speed control system.

Q(x̂,α(x̂)) are continuous in x, x̂ as they are physical states of the engine, we can ex-

plicitly write

Q(x̂,α(x̂))=Q(x,α(x))+ (Q(x̂,α(x̂))−Q(x,α(x)))

=Q(x,α(x))+εx(x, t)
(6.36)

Then we have Q∗(x̂,α(x̂)) = Q∗(x,α(x))+εx(x, t), where the bounded error εx(x, t) com-

prises the effect of introducing the optimal observer into the output feedback control.

One can use Q∗(x,α) in a Lyapunov function given the exponential convergence of

the EKF (6.26), i.e. εx(x, t)→ 0 as t →∞.
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We design the overall Lyapunov function with respect to the EKF estimation error ỹ,

the optimal integral cost Q∗, the adaptive critic weight estimation error L1 (6.21), and

the neural network residual error Λ (see the proof of Lemma 6.2) as

(6.37) L= k1

2
ỹTP−1 ỹ+k2Q∗(x,α)+k3L1 + k4

2
ΛTΛ

with positive constants k1, k2, k3, and k4.

We investigate the Lyapunov function L in a compact set Ω̃ ⊂ R4 ×Rn ×R5 ×R×Rn in

tuple ( ỹ, M, x,α,Λ) that contains the origin and Ω̃⊂Ω. Any initial value of ( ỹ, M, x,α,Λ)

is assumed to be within the interior Ω̃. Thus, for any initial trajectory, the state x

and the control α remain bounded for at least finite time t ∈ [0,T]. Based on (6.13),

differentiating the term k2Q∗(x,α) in (6.37) will involve Q̇∗(x,α) = V̇∗+ Ḣ(x,α,∇V∗
x ).

For the Lagrange multiplier λ=∇V∗
x , differentiating the Hamiltonian gives

(6.38) Ḣ(x,α,∇V∗
x )= ∂H/∂t+ (∇Hα)Tα̇+ (∇Hx + λ̇)T ẋ

According to Lagrange’s theory ([30]), from the costate equation and stationarity con-

dition, the derivative of the Lagrange multiplier λ satisfies λ̇=−∇Hx and ∇Hα = 0. For

a time-invariant system (6.6) and value function (6.7), the Hamiltonian H(x,α,∇V∗
x ) is

not an explicit function of t, i.e. Ḣ = ∂H/∂t = 0. We have proved exponential conver-

gence of the optimal observer in Theorem 6.2, the control action based on the partially-

estimated states x̂ (where x3, x4 are replaced by ŷ3, ŷ4) will result in an exponentially

bounded error of the optimal control, which is contained in εxα in (6.22), i.e., α∗ =
α+ εQα + εxα. Hence, inserting the Hamiltonian H (6.9), the derivative of the value

function is given as

V̇∗ = (∇V∗
x )T( f + gα∗+ gεQα+ gεBα)

=−r(x,α∗)+ (∇V∗
x )Tg(εQα+εBα)

(6.39)
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The time derivative of L can be derived as

L̇= k1 ỹTP−1 ˙̃y+ k1

2
ỹTP−1ṖP−1 ỹ+k2[V̇∗+Ḣ]+k3L̇1 +k4Λ

TΛ̇

=−k1 ỹT(P−1WP−1 +HTY−1H) ỹ

+k1 ỹTP−1o(|| ỹ||)+k1 ỹTP−1w−k1 ỹT HTY−1v

+k2(−r(x,α∗)+ (∇V∗
x )Tg(εQα+εxα))+k3L̇1 +k4Λ

T(−ℓΛ+∆ΦεBQ +∆ΦεBx)

≤−k1

2
λmin(P−1WP−1 +HTY−1H)|| ỹ||2

−k2S(x)−k2R||α||2 −k3a||M||− (k4ℓ− k4η2

2
)||Λ||2

+ k1λ
2
max(P−1)
η1

|| ỹ||2 + k1λ
2
max(HTY−1)

2η1
|| ỹ||2

+ k1η1

2
δ2 + k1η1

2
ϖ2 + k1η1

2
µ2 +k2||g∇V∗

x ||(||εQα||+ ||εxα||)

+ k4

2η2
||∆Φ||(||εBQ ||+ ||εBx||)

≤−a1|| ỹ||2 −a2S(x)−a2||α||2 −a3||M||−a4||Λ||2 +b

(6.40)

where λmin and λmax denote the minimum and maximum absolute eigenvalues of

a matrix; a1 = k1λmin(P−1WP−1 + HTY−1H)/2− k1λ
2
max(P−1)/η1 − k1λ

2
max(HTY−1)/2η1,

a2 = k2, a3 = k2R, a3 = k3a, a4 = k4ℓ−k4η2/2 are positive constants for the properly cho-

sen constants η1 and η2; η1 and η2 are constants in Young’s inequality, e.g., a constant

η in ab ≤ η

2 a2 + 1
2ηb2, with η1 > [2λ2

max(P−1)/η1 +λ2
max(HTY−1)/2η1]/λmin(P−1WP−1 +

HTY−1H) and η2 < 2ℓ; b = k1η1
2 δ2+ k1η1

2 ϖ2+ k1η1
2 µ2+k2||g∇V∗

x ||(||εQα||+||εxα||)+ k4
2η2

||∆Φ||
(||εBQ ||+ ||εBx||) is the lumped residue.

Thus, the first five terms in the last inequality of (6.40) form a negative definite func-

tion in Ω̃ so that the set of ultimate boundedness Ωα exists and it depends on the

size of b, i.e. a smaller value of b will decrease the size of Ωα. Assuming that n has

been chosen large enough, we have small ||εQα||, ||εBQ ||. Moreover, ||εxα||, ||εBx|| will

be small given the exponential convergence of εx caused by the EKF (6.26). Hence,

it is possible to obtain b to be sufficiently small so that Ωα ⊂ Ω̃. Hence, it is impossi-

ble for any trajectory to leave Ω̃, i.e. it is an invariant set, i.e. the states x(t) remain

bounded and subsequently also the functions of x(t) and α(t): approximation error
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εQ(x,α), Φ(x,α) are bounded functions over a compact set. From Lyapunov’s theorem

and Lemma 6.2, L is uniformly ultimately bounded. It follows the actor α will con-

verge to a small bounded set near its optimal solution α∗. □

6.5 Simulations

An MVEM of a Wankel rotary engine is created in Matlab/Simulink, where the model

parameters are calibrated based on the experimental data sets (see Chapter 5 and

[207], [2] for more detail). For the idle speed control problem, we choose the value

function as (6.7) with S0 = diag[1 1 1 1 4] and R = 1. The activation function Φ(x,α)

of the adaptive critic neural network (6.15) is selected as Φ(x,α) = [p2
m pmTm T2

m

m f p m f v pmN N2 pmα Tmα m f pα m f vα Nα α2]T with the number of neu-

rons n = 13. We initialise the state x(0) = [1 1 1 1 1]T and the weight ŵ(0) =
[0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1]T. The tuning parameters

are chosen as such: the sample period T = 2s, the filter parameter ℓ= 1, the adaptive

learning gain Γ= 7.

We first inject the exploration noise onto the throttle angle for the learning period to

ensure the persistent excitation of the signals. The engine load is set to be constant

when learning. Fig. 6.2 presents the engine trajectories with the exploration noise for

a period of 30 s. The state variables are normalised into the value range of [0,1]. It is

shown in Fig. 6.3 that the adaptive critic weights Ŵ converge before the exploration

noise is removed from 700s.

In order to validate the performance of the resulting controller after learning, we

simulate a load disturbance (caused for instance by power steering or transmission

engagement) at 900s and 1000s. The results are presented in Fig. 6.4, where the engine

speed response under the resulting controller is plotted against that when there is no

control action. The controller can effectively reject the disturbance in either case of an

increase or decrease in the engine load.
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Figure 6.2: Engine trajectories with the exploration noise.
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Figure 6.3: Adaptive critic weights convergence.

6.6 Conclusions

In this chapter, we have proposed an adaptive optimal output feedback controller for

the idle speed regulation problem using reinforcement learning principles, namely,

Q-learning. The Q-learning-based controller is data-driven and completely model-

free. Via an EKF, the feedback control requires only the measurable outputs (intake

manifold pressure and temperature, engine speed), i.e., not all the state variables are

needed. The convergence of the estimation errors and the value function is proved in

the sense of Lyapunov stability. The simulation on a Wankel engine model showed

the proposed controller, after learning, can effectively reject load disturbance and reg-
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Figure 6.4: Simulation results of the learning-based controller.
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ulate the engine idle speed around a desired point. Due to a hardware limitation that

the available AIE 225CS Wankel in the test-rig is not equipped with an electronic

throttle control unit, a practical engine test is not included in this work. Future work

will focus on the practical validation of the proposed controller via engine tests.
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7
AIR-FUEL RATIO CONTROL VIA NONLINEAR

OBSERVERS: THEORY AND EXPERIMENTAL

VALIDATION∗

Emission regulations has been more and more stringent around the world

since the 1970s. The shortcoming of high emissions has severely limited the

application of Wankel rotary engines in the automotive industry. The fuel

puddles due to port fuel injection (PFI) and the leakage between combustion cham-

bers are significant sources of efficiency loss and emissions. For most spark ignition

engines in production, the emission strongly depends on the air-fuel ratio (AFR) con-

troller in cooperation with a three-way catalytic (TWC) converter. In this chapter, we

focus on the AFR control problem for a Wankel rotary engine. Before jumping to the

proposed adaptive optimal control approach, this work will deal with the model un-

certainty and nonlinearity using a new observer-based AFR control framework.

∗The content of this chapter is adapted from the author’s own work [207], where some materials
have been re-used.
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CHAPTER 7. AIR-FUEL RATIO CONTROL VIA NONLINEAR OBSERVERS:
THEORY AND EXPERIMENTAL VALIDATION∗

7.1 Introduction

The main cause of the high emissions of Wankel rotary engines is given by its design.

On the one hand, the significantly different temperatures in each combustion cham-

ber often lead to imperfect sealing, which accounts for leakage and unburned fuel

mixture [4]. On the other hand, it is inevitable for port fuel injection (PFI) that a con-

siderable portion of fuel will be trapped at the intake manifold wall as fuel puddles,

which is also known as the "wall-wetting" phenomenon. One way to overcome this

is implementing direct fuel injection (DFI) into the combustion chambers, which has

proved successful for reciprocating compression ignition engines and then in recipro-

cating spark ignition engines [225]. However, the implementation of DFI is likely to

increase the cost and the complexity of engine configurations. Alternatively, one can

design an AFR controller using observers to compensate for the effect of fuel puddle

dynamics and for the rapid change of air-filling dynamics.

The common treatment for engine emissions is to convert pollutant exhaust CO, NOx,

into innocuous ones: N2, H2O, and CO2, using three-way catalytic (TWC) convert-

ers. However, as shown in Fig. 2.6, the conversion efficiency of TWC is fairly sensi-

tive to AFR, which is required to be regulated around the stoichiometric value (e.g.

14.7 for petrol) [136]. Moreover, combustion with a stoichiometric AFR is essential to

achieve the optimal thermal efficiency and dynamic performance. Therefore, it is of

great importance to design a well-performing AFR controller for Wankel engines so

as to improve emissions, thermal efficiency and fuel economy. For most spark igni-

tion engines in production, the widely-used control strategy is still PID control based

on lookup tables, with which it could be difficult to meet the emission requirements

in the presence of complex dynamics and rapidly-changing operational scenarios of

Wankel engines. Practically, the compilation of the lookup tables also requires signifi-

cant effort in engine calibration tests and is usually time-consuming [137].

This motivates the research on advanced AFR control design such as optimal con-
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trol [138], robust control [139][140], adaptive control [136][141], and more recently,

observer-based control [137][142]. An optimal AFR controller was designed in [138]

considering the cyclic variations of residual gas. However, it needs the knowledge

of in-cylinder pressure which requires expensive sensors that are not suited to com-

mercial applications. Then, robust techniques such as H∞ control [139] and sliding

mode control [140] were proposed to regulate the AFR in the presence of external dis-

turbance. In order to deal with parameter uncertainties, adaptive approaches were

presented to address air-filling dynamics in [136] and time delay dynamics in [141].

However, the complexity of the adaptive controller limits their practical implemen-

tation. This prompts further work on AFR control using simple, easily implemented

observers. In [142], a sliding mode AFR controller was proposed using observers to

reduce chattering. Later on, various popular observer techniques were investigated

in [137], which show great potential in application with design simplicity. However,

the effect of fuel puddle dynamics was not specifically studied in [137]. There are two

parameters, fuel puddle fraction and the time constant for the puddle evaporation,

which are assumed to be known for AFR control, but which are not measurable in

practice. We will use novel nonlinear observer techniques to estimate the unknown

dynamics and account for disturbances.

In this chapter, in order to design a simple yet robust AFR controller for Wankel en-

gines, a mean-value engine model is developed. Moreover, as in Chapter 6, this work

incorporates the idea of an extended Kalman filter (EKF) [219] to account for the ef-

fect of fuel puddle dynamics. By reformulating the AFR regulation into a fuel flow

tracking problem, various popular observer techniques [137] are investigated and

employed in the AFR control design, which leads to a new observer-based AFR con-

trol framework. Comparative simulations present the improved transient and steady-

state responses.
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7.2 Problem Formulation

It has been shown in our previous work [136] that the AFR regulation problem can

be reformulated into a fuel flow tracking problem for the design purpose. Then the

feedback control error e used in the AFR controller can be defined as

(7.1) e = ṁ f d − ṁ f =
1
λd

ṁa − ṁ f

where ṁ f d and λd are the desired fuel mass flow rate and AFR. Thus, its derivative

is calculated as

(7.2) ė = 1
λd

m̈a − m̈ f

Clearly, m̈a is the derivative of complex nonlinear air-filling dynamics (5.5) and m̈ f is

the derivative of (5.6) with fuel puddle dynamics (5.7) as in Chapter 5. The measure-

ment of m̈a and m̈ f is practically infeasible. However, it is conceivable to estimate

them using nonlinear observers.

In order to understand the dynamics of the control error, substituting the air-filling

dynamics (5.5) and the fuel puddle dynamics (5.6)(5.7) from Chapter 5 into (7.2) gives

(7.3) ė = M−ud

where M = Vd

120Rλd

d(ηvol pmn/Tm)
dt

− m f p

ττm
+ m f v

τ2
m

is lumped unknown dynamics to be

observed and ud = (1− χ)u/τm is a linear function of the control input u with the

unknown parameter χ.

7.3 Nonlinear Observers Design

This section investigates popular observer techniques from [137] to estimate the dy-

namics of m̈a and m̈ f , which will be used in the AFR control design. The extended

Kalman filter is used for the fuel puddle dynamics whereas the differentiation ob-

server and the unknown input observer are used for air-filling dynamics.
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7.3.1 Differentiation Observer

An intuitive way to observe the unknown lumped dynamics M is defined in terms

of the “the dirty derivative” of e using the low-pass filter operation (•) f = [•]/(ks+1),

which can be given as

(7.4)
s

ks+1
e = [

1
k
− 1

k(ks+1)
]e

where k > 0 is the design filter parameter. Then the differentiation observer is de-

signed as

(7.5) M̂ = ė f + ûd

with ûd = (1− χ̂)u/τm, where χ̂ is the estimate of χ using the extended Kalman filter

(6.26). From (7.3)(7.4)(7.5), the estimation error can be written as

(7.6) M̃ = M− M̂ = ks2

ks+1
e+ ũd

with ũd = ud − ûd.

Assumption 7.1 The second derivative of e and the first derivative of x̃ are assumed to be

bounded, i.e. supt≥0|ë(t)| ≤ψ and supt≥0|| ˙̃x(t)|| ≤ ζ with ψ> 0 and ζ> 0.

Proposition 7.1 Under Assumption 7.2, for the error dynamics (7.3) with the differentiation

observer (7.5) and the extended Kalman filter (6.26), the estimation errors M̃, x̃ will exponen-

tially converge to a compact set around zero. ¦

Proof: Presenting (7.6) in the time domain gives

(7.7) ˙̃M =−M̃/k+ ë+ ˙̃ud + ũd/k

By choosing a Lyapunov function V1(t)= M̃2/2+k1Vk with k1 > 0, it follows that

(7.8) V̇1(t)= M̃ ˙̃M+k1V̇k ≤−a1(σ1)V1 +β1(σ1)

where a1(σ1) = min {2/k−3/σ1, (a(σ1)k1 −σ1/k2)/λmax(Y )} and β1(σ1) = σ1(ψ2 + ζ2)/2+
k1β(σ1) are positive constants if the constants σ1 and k1 are properly selected as σ1 >
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3k/2 and k1 > σ1/a(σ1)k2. This implies V1(t) ≤ V1(0)e−a1(σ1)t +β1(σ1)/a1(σ1) holds and

thus M̃, x̃ will exponentially converge towards Ω2 := {M̃ | |M̃| ≤√
2β1(σ1)/a1(σ1) } and

Ω3 := {x̃ | ||x̃|| ≤√
2β1(σ1)/a1(σ1)λmin(Y ) }, respectively. □

7.3.2 Unknown Input Observer

The unknown input observer [137] is designed based on the idea of using the low-

pass filter operation (•) f = [•]/(ks+1) on both sides of (7.3) such that

(7.9) ė f = M f −ud f

Then the unknown input observer can be designed as

(7.10) M̂ = M f =
e− e f

k
+ ûd f

where e f , ûd f are the filtered version of e, ûd as

(7.11)


kė f + e f = e, e f (0)= 0

k ˙̂ud f + ûd f = ûd, ûd f (0)= 0

with the design filter parameter k > 0. From (8.3)(7.4)(7.9)(7.10), the estimation error

can be described as

(7.12) M̃ = M− M̂ = ks
ks+1

M+ 1
ks+1

ũd

Assumption 7.2 It is practically feasible to assume that the derivative of the lumped unknown

term M is bounded, i.e. supt≥0|Ṁ(t)| ≤ ξ with ξ> 0.

Proposition 7.2 Under Assumption 7.2, for the error dynamics (7.3) with the unknown

input observer (7.10) and the extended Kalman filter (6.26), the estimation errors M̃, x̃ will

exponentially converge to a compact set around zero. ¦

Proof: Presenting (7.12) in the time domain gives

(7.13) ˙̃M =−M̃/k+ Ṁ+ ũd/k
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By choosing a Lyapunov function V2(t)= M̃2/2+k2Vk with k2 > 0, it follows that

(7.14) V̇2(t)= M̃ ˙̃M+k2V̇k ≤−a2(σ2)V2 +β2(σ2)

where a2(σ2)=min {2/k−2/σ2, (a(σ2)k2−σ2/k2)/λmax(Y )} and β2(σ2)=σ2ξ
2/2+k2β(σ2)

are positive constants if σ2, k2 are properly selected as σ2 > k, k2 >σ2/a(σ2)k2. This im-

plies V2(t)≤V2(0)e−a2(σ2)t+β2(σ2)/a2(σ2) holds and M̃, x̃ will exponentially converge to-

wards Ω4 := {M̃ | |M̃| ≤ √
2β2(σ2)/a2(σ2) } and Ω5 := {x̃ | ||x̃|| ≤ √

2β2(σ2)/a2(σ2)λmin(Y ) },

respectively. ¦

Remark 7.1 The filter operation (•) f is applied to e for both observers (7.5) and (7.10). How-

ever, ûd is also filtered in (7.10) while in (7.5) ûd is directly coupled with M̂. Furthermore, by

inspection of (7.6) and (7.12), the estimation error M̃ can be minimised by setting the filter

parameter k sufficiently small. ¦

Remark 7.2 Assumption 7.2 for the unknown input observer (7.10) is weaker than Assump-

tion 7.1 for the differentiation observer (7.5). For both observers, the upper bound of the esti-

mation error M̃ depends on the convergence bound β(•) of the extended Kalman filter (6.26).

For (7.5), it also depends on the upper bound ψ of the second derivative of e and the upper

bound ζ of the first derivative of x̃. In contrast, for (7.10), it depends only on the upper bound

ξ of the first derivative of M apart from β(•), which is a weaker condition in practice. ¦

7.4 AFR Control Design

Based on the observers above, the injected fuel mass flow rate for AFR control can be

designed as

(7.15) u = ṁ f i = τm(kpe+ M̂)/(1− χ̂)

where kp > 0 is the feedback gain to be tuned, χ̂ and M̂ are the estimates of χ and M via

the extended Kalman filter (6.26) and the unknown input observer (7.10), respectively.

Fig. 7.1 presents a schematic diagram of the proposed observer-based AFR control

system.
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FIGURE 7.1. A schematic diagram of the proposed observer-based AFR con-
trol system. The observer represents the differentiation observer or the
unknown input observer.

Theorem 7.1: For the Wankel engine model given in Chapter 5 and the error dynamics (7.3),

the AFR control (7.15) based on the extended Kalman filter (6.26) and the unknown input

observer (7.10) will lead to the exponential convergence of the error e and the estimation

errors M̃, x̃ towards a small compact set around zero.

Proof: Substituting (7.15) into ud = (1−χ)u/τm gives

ud = (1−χ)(kpe+ M̂)/(1− χ̂)

= χ̃(kpe+ M̂)/(1− χ̂)+ (kpe+ M̂)
(7.16)

with χ̃= χ− χ̂. Then the closed-loop error dynamics can be calculated by substituting

(7.16) into (7.3) as

(7.17) ė =−kpe+ M̃− χ̃(kpe+ M̂)/(1− χ̂)

Selecting a Lyapunov function as

(7.18) W(t)= e2/2+k3M̃2/2+k4 x̃TY x̃/2
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with k3 > 0, k4 > 0 to be chosen, its first derivative can be determined using (??)(7.14)(7.17)

as

Ẇ(t)= eė+k3V̇2 +k4V̇k

≤−[kp −ϵ(k2
pe2 + M̂2)/2(1− χ̂)2 −ϵ/2]e2

− (k3/k−k3/ϵ−1/2ϵ)M̃2

− [(k2k3 +k4)a(ϵ)−ϵk3/2k2 −2/ϵ]||x̃||2/2

+k3β2(ϵ)+k4β(ϵ)

≤−bW(t)+∆

(7.19)

where b = min{2kp − ϵ(k2
pe2 + M̂2)/(1− χ̂)2 − ϵ, 2(k1/k− k3/ϵ−1/2ϵ), (k2k3a(ϵ)+ k4a(ϵ)−

ϵk3/2k2 −2/ϵ)/λmax(Y )} and ∆ = k3β2(ϵ)+ k2β(ϵ) are positive constants if kp, k3, k4 are

properly selected as kp > ϵ(k2
pe2 + M̂2)/2(1− χ̂)2 − ϵ/2, k3 > k/2(ϵ− k), k4 > ϵk3/2a(ϵ)k2 +

2/a(ϵ)ϵ− k2k3a(ϵ) with a constant ϵ > 0. This implies that W(t) ≤ W(0)e−bt +∆/b holds

and then e, M̃ will exponentially converge towards Ω6 := {Ψ | |Ψ| ≤p
2∆/b } and x̃ will

exponentially converge towards Ω7 := {x̃ | ||x̃|| ≤√
2∆/bλmin(Y ) }. □

Remark 7.3 Similar to Theorem 7.1, the control (7.15) with the differentiation observer (7.5)

can be addressed in the same manner via Proposition 7.1. ¦

In practice, the control error e in (7.15) can be obtained from (7.1), where ṁa is mea-

sured by a MAF sensor and ṁ f is calculated using MAF and lambda sensors as

ṁ f = ṁa/λ. By Theorem 7.1, the fuel mass flow rate ṁ f can track the desired refer-

ence ṁ f d and thus the AFR λ is regulated around the stoichiometric value λd.

7.5 Simulations

An MVEM of a Wankel rotary engine is created in Matlab/Simulink, where the model

parameters are calibrated based on the experimental data sets (see Chapter 5 and

[207], [2] for more detail). The throttle angle is controlled to operate the engine with

proper acceleration and deceleration.
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7.5.1 Fuel Puddle Estimation

The fuel puddle dynamics (??) are estimated using the extended Kalman filter (6.26).

Sufficient Gaussian noises are added into the measurement of AFR λ and air mass

flow rate ṁa to account for the effect of sensor noise. Fig. 7.2 presents the simulation

results of the estimated and measured AFR. The extended Kalman filter performs

satisfactory estimation for both transients and steady states. Moreover, the unknown

parameter τ f and χ can quickly converge to the true value τ f = 2.5s and χ= 0.6, which

is shown in Fig. 7.3.
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Figure 7.2: Comparison between the estimated and measured AFR.

7.5.2 Air-fuel Ratio Control

The proposed AFR control based on the two observers (7.5)(7.10) are compared with

a fixed-gain PID controller, of which the simulation results are provided in Fig. 7.4.

It is obvious that all the controllers are able to regulate the AFR at the stoichiomet-

ric value λd = 14.67 in steady states. For transients (e.g. t = 10, 20, 30s when engine
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accelerates/decelerates), both observer-based controllers (b)(c) to some extent reduce

the transient errors compared to the PID controller (a) in Fig. 7.4. However, the con-

troller based on the differentiation observer (7.5) appears to be slower at transients. It

is clear that the controller based on the unknown input observer (7.10) achieves better

robustness against disturbances.
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Figure 7.3: Convergence of the estimated fuel puddle parameters.

7.6 Engine Test Set-up

The Wankel engine under investigation for dynamic modelling is a 225CS rotary en-

gine, produced by Advanced Innovative Engineering (AIE) UK Ltd. It is a single-

rotor, peripheral-port-injected, twin-spark engine and was previously configured to

have a nominal peak power output of 30kW for aerospace use on drones. As men-

tioned already, due to its high specific power output, there is a recent interest in us-
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Figure 7.4: Comparison of the AFR responses based on (a) PID control, (b) differenti-
ation observer (7.5), and (c) unknown input observer (7.10).
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ing it as a range extender for HEV. Fig. 7.5 shows a picture of the AIE 225CS Wankel

rotary engine test set-up.

Figure 7.5: A picture of the AIE 225CS Wankel rotary engine test set-up.

The engine experiments are carried out in an engine test cell at the Institute for Ad-

vanced Automotive Propulsion Systems (IAAPS) at the University of Bath. The test

cell is equipped with an AC dynamometer for the assessment of the engine perfor-

mance. The maximum nominal power and speed allowed from the AC motor is

around 50 kW and 8500 RPM, respectively. The test facilities include a Sierra CP

Test Automation System with the proprietary CADET software, which enables the

dynamometer control and data acquisition via the transducers installed on the en-

gine. The system can also collect data via the automotive standard Controller Area

Network (CAN) bus, which can be compared online with the data from the engine
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control unit (ECU). The ECU used by AIE is an EM80 model produced by the project

partner General Engine Management Systems (GEMS UK) Ltd (GEMS). In order to

implement our new controller, we replace the EM80 model with a new model EM80M.

The EM80M allows custom code generated from a Matlab/Simulink model to be in-

corporated into the co-processor code. The co-processor then runs the model code and

interacts with the main processor. The ECU is online configurable when connected to

the GEMS GWv4 proprietary software so that the user is able to control and monitor

the engine parameters such as air-fuel ratio control, and fly-by-wire throttle control.

It is worth mentioning that the MAF sensor used in the engine tests is a Bosch HFM5.

As shown in Fig. 7.5, the MAF sensor is connected using a long straight cylinder pipe

after an air filter so that an accurate measurement can be achieved from steady air

flow.

The engine test-rig described above was used as the experimental platform to vali-

date the efficacy of the proposed AFR control, which is the extended Kalman filter

combined with the unknown input observer. The proposed AFR controller is coded

using Simulink, which is then compiled in C code and flashed onto the ECU. In the

test, a gain scheduling like PID control is pre-defined using look-up tables during

calibration of the engine, which regulates the AFR control system. The PID controller

was well tuned by the manufacturer and GEMS. Hence, we can take this PID con-

trol as the baseline control and carry out tests to show the effect of the proposed

observers-based control.

7.7 Experimental Results and Discussion

In our experiments, the filter constant of the estimator is set as k = 0.1 to trade-off the

robustness against noise and the control responses under different engine operating

regimes. The engine speed is controlled through an available speed control. Fig. 7.6

shows the Brake-specific fuel consumption (BSFC) map of the 225CS Wankel engine.
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The auxiliary power unit (APU) is run on the standard New European Drive Cycle

(NEDC) with the APU speed and power demand based on the requirement to main-

tain battery state of charge of a battery electric vehicle, which was provided by Tata

Motors European Technical Centre. The NEDC cycle along with the APU power and

speed demand over the full period of 1,200 [s] is shown in Fig. 7.7. It is seen that the

engine speed varies from 0 to 6,000 [RPM], where in some particular periods, the en-

gine is switched off (based on the APU power demand and battery state of charge).

In the test, the ideal AFR demand from the ECU is always λd = 1.

FIGURE 7.6. BSFC map of the 225CS Wankel engine.

Figs. 7.8 - 7.10 present the comparative responses of the engine variables: air mass

flow rate, fuel mass flow rate, and exhaust temperature with the proposed control

and the gain scheduling like baseline PID control for the full period 1,200 s. This im-

plies that the engine is operated safely and smoothly with both controls. However,

there are minor differences at the time instances when the engine changes its speed,

which indicates that PID control has more oscillations than the proposed control. This

validates the effectiveness of the observer. Fig. 7.11 shows the AFR lambda responses
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FIGURE 7.7. NEDC drive cycle profile with the Wankel engine speed, torque,
and power demand converted from the APU requirement provided by
Tata Motors European Technical Centre.
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FIGURE 7.8. MAF trajectories of the baseline and proposed control under
NEDC drive cycle.
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FIGURE 7.9. Fuel flow rate trajectories of the baseline and proposed control
under the NEDC drive cycle.
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FIGURE 7.10. Exhaust temperature trajectories of the baseline and proposed
control under the NEDC drive cycle.

of the two controllers. It should be noted that the lambda reading in the stop peri-

ods (when the lambda value is far from λd = 1) is meaningless as the controller is not

activated when engine stops running. The lambda trajectories in the valid periods

between the two controllers are difficult to distinguish in Fig. 7.11 as both are very

close to λd = 1, where the proposed controller seems to have a slightly better AFR

response. However, the difference of emission results is significant. Fig. 7.12 demon-

strates the emission responses of the baseline and proposed control under the NEDC

drive cycle. The real-time and cumulative emission responses of NOx, CO, and total

hydrocarbon emissions (THCs) measured by the Horiba Motor Exhaust Gas Analyser

(MEXA). One can find that significantly-reduced emissions can be achieved using the

proposed control. For example, the NOx is reduced considerably using the proposed

control before 200 s as shown in Fig. 7.12. This can be explained by Fig. 7.9 as higher

fuel flow rate is achieved in that period so less lean combustion results in less NOx

emission. In fact, emissions of CO, NOx, and THC vary with different engines, and

the AFR of the mixture in the combustion chamber has the greatest influence on the

untreated emissions. An engine that is operated at or very close to the ideal AFR en-

ables both NOx reduction and CO, THC oxidation in a single catalyst bed. Hence, for

a catalyst to be efficient, a very tight control of AFR is necessary, where high conver-
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sion efficiencies for all three pollutants can be achieved.
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FIGURE 7.11. AFR lambda trajectories of the baseline and proposed control
under the NEDC drive cycle.

Table 7.1: AFR error statistics.

AFR error Baseline PID control Proposed control
MSE 0.0020 0.0011
MAE 0.0376 0.0270

SD 0.0445 0.0333

To further show the effectiveness of the proposed control under fast varying engine

operation speed, we also carried out dynamic tests, where a manually created engine

speed chirp profile is used as the engine speed control command (with no engine

stops). Compared with the NEDC speed profile in Fig. 7.7, the engine speed in Fig.

7.13 has faster variations, i.e. the speed oscillates within the range of 3,000 to 4,000

rpm with increasing frequency. This manually created engine speed evolution aims

to test the AFR control transient response under fast engine dynamics variations and
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FIGURE 7.12. Emission responses of the baseline and proposed control under
the NEDC drive cycle: real time (left) and cumulative (right) responses.
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FIGURE 7.13. Engine speed chirp profile.
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FIGURE 7.14. Fuel puddle dynamics parameter estimation.
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FIGURE 7.15. AFR and its estimation trajectories under the chirp speed drive
cycle.

shows the ability of this proposed control to adapt to these fast variations. The fuel

puddle dynamics estimation from the EKF is presented in Fig. 7.14. The correspond-

ing AFR control responses of the baseline gain scheduling like PID control and the

proposed composite control are depicted in Fig. 7.15. Fig. 7.16 and Table 7.1 describe

the AFR error statistics (histograms and normal probability plots) of the two differ-

ent control methods with respect to mean squared error (MSE), mean absolute error

(MAE), and standard deviation (SD). Compared with the gain scheduling baseline

PID control, the proposed control can achieve better AFR control response, e.g. over

25% improvement of the proposed control compared to the baseline control has been

achieved in term of MAE. The proposed observers-based control leads to less fluc-

tuation and reduced peak values in the AFR response when the engine changes the

speed, showing the benefit of the use of nonlinear observers. Moreover, the proposed

control does not rely on look-up tables, which can potentially reduce the cost of the

engine calibration process.
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7.8 Conclusions

In this chapter, a dedicated model of Wankel engine dynamics was first developed for

the design of different nonlinear observers and AFR control. The regulation of AFR

was first reformulated into a fuel mass flow rate tracking problem. As a widespread

issue for PFI engines, the nonlinear fuel puddle dynamics were online estimated

using an extended Kalman filter by taking the unknown parameters as augmented

states. The complex air-filling dynamics were lumped and estimated using novel ob-

server techniques. Then a feedback control was designed combining the observers

to stabilise the AFR. Comparative numerical simulations and practical engine tests

validated that the proposed method can regulate the AFR around the stoichiometric

value at both transients and steady states, where the newly proposed unknown input

observer demonstrates better robustness against disturbances.
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AIR-FUEL RATIO CONTROL VIA Q-LEARNING: THEORY

AND EXPERIMENTAL VALIDATION

The ordinary method for AFR regulation in commercial internal combustion

engines is a PID controller, or more commonly, a PI controller. In the previous

chapter, we have addressed the AFR control problem and its significance to

the emissions, where we proposed a novel control method using nonlinear observers

to compensate the effect of the model uncertainty and nonlinearity. However, the

observer-based controller still is not optimal in the sense of minimising some objec-

tive function. This chapter will investigate the use of the proposed adaptive optimal

control based on reinforcement learning for the AFR control problem in the aim of

creating a learning-based controller that is model-free and learns the optimal control

solution in real time.

8.1 Introduction

For the control of vehicle engines, nearly every field of current and classical control

theory has been investigated. This chapter contributes to the already extensive liter-
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ature on engine control in automobiles. The originality of this work stems from the

following concept: Consider a control algorithm that is currently in use in a produc-

tion vehicle. The algorithm is tuned for vehicle operation across the whole operating

regime and is created according to particular requirements. In certain ways, the al-

gorithm has been optimised for the engine in terms of performance, fuel efficiency,

and tailpipe emissions, thanks to extensive research and development and calibration.

The typical calibration and control processes in place today can be used to increase en-

gine performance further through controller design. Use of the neural-network-based

learning control design technique introduced in this chapter is an alternative to the

standard approach.

The final result of our Q-learning process is a controller that has learned to provide op-

timal control signals under various operating conditions. We emphasise that such an

adaptive optimal controller will be obtained after a specially designed learning pro-

cess that performs approximate dynamic programming. Once a controller is learned

and obtained (offline or online), it will be applied to perform the task of engine con-

trol. The performance of the controller can be further refined and improved through

continuous learning in real-time vehicle operations. We note that continuous learn-

ing and adaptation to improve controller performance is one of the key promising

attributes of the present approach. Continuous learning and adaptation for optimal

individual engine performance over the entire operating regime and vehicle condi-

tions would be desirable for future engine controller designs. One can often use of-

fline engine data for initial simulation studies during the initial stage of the adaptive

critic neural network learning. For practical reasons, we run the proposed controller

in real time to test the learning ability in actual scenarios.

8.2 AFR Control Problem Formulation

It has been shown in Chapter 7 that the AFR regulation problem can be formulated

into a fuel flow tracking problem as the feedback control error e used in the AFR
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controller can be defined as

(8.1) e = ṁ f d − ṁ f =
1
λd

ṁa − ṁ f

where ṁ f d and λd are the desired fuel mass flow rate and AFR. Thus, its derivative

is calculated as

(8.2) ė = 1
λd

m̈a − m̈ f

Clearly, m̈a is the derivative of complex nonlinear air-filling dynamics (5.5) and m̈ f is

the derivative of (5.6) with fuel puddle dynamics (5.7). The dynamics of m̈a and m̈ f is

unknown in models and not measurable in practice. Chapter 7 employed nonlinear

observers to estimate the dynamics of m̈a and m̈ f for the AFR control design. The

error dynamics were formulated as

(8.3) ė = M−ud

Based on this formulation, we further extend the idea using the structure of a PI

controller, i.e. we let the control input ud be in the form

(8.4) ud =−k∗
pe−k∗

i e i

with k∗
p > 0 and k∗

i > 0 being the optimal proportional and integral gain.

By defining the integral error

(8.5) e i =
∫t

0
e(τ)dτ

we can define an augmented error state as

(8.6) E =
e i

e


Considering

(8.7) ė =−k∗
pe−k∗

i e i +M
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so that the error state equation is

(8.8) Ė =
0 1

0 0

E+
0

1

u∗+M

where u∗ is the optimal PI control

(8.9) u∗ = ud =
[
−k∗

i −k∗
p

]
E =−K∗E

Now we formulate the control problem in the following.

For the error state system

(8.10) Ė = AE+Bu+M

with A =
0 1

0 0

 and B =
0

1

, the objective is to find the optimal control u = u∗ such

that an infinite-horizon integral cost

(8.11) V (E)=
∫∞

t
r(E,u)dτ

is minimised, where the utility r(t)= ETSE+Ru2 with positive definite S and R.

Remark 8.1 Recall M is the lumped unknown nonlinear term defined in Chapter 7. This term

can be estimated via the unknown input observer so it will be treated as a known variable in

the following control development. ¦

8.3 Adaptive Optimal AFR Control Design

This section presents the design of the adaptive optimal controller for the AFR. Fig. 8.1

presents a schematic diagram of the proposed Q-learning-based AFR control system.

8.3.1 Parameterisation of Nonlinear Q-function

Recalling the idea of Q-learning in Chapter 3, we create an action-dependent version

of value function Q(E,u) : such that Q∗(E,u∗) = V∗(E). For the continuous-time non-
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FIGURE 8.1. A schematic diagram of the proposed Q-learning-based AFR
control system.

linear input-affine system (8.10), the Q-function can be explicitly defined by adding

the Hamiltonian onto the optimal value V∗ as

Q(E,u) :=V∗(E)+H(E,u,∇V∗)

=V∗(E)+S(E)+ (∇V∗)TAE+M︸ ︷︷ ︸
FEE(E)

+

(∇V∗)TBu︸ ︷︷ ︸
FEu(E,u)

+ Ru2︸︷︷︸
Fuu(u)

(8.12)

where FEE(E), FEu(E,u), and Fuu(u) are the lumped terms that can be approximated

respectively via neural networks.

Lemma 8.1 The Q-function defined in (8.12) is positive definite with the optimisation scheme

Q∗(E,u∗) = minu Q(E,u). The optimal Q-function Q∗(E,u∗) has the same optimal value

V∗(E) as for the value function V u(E) (8.11), i.e. Q∗(E,u∗) = V∗(E) when applying the
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optimal control u∗. ¦

Proof. See Lemma 3.1 in Chapter 3 □

8.3.2 Adaptive Critic for Q-function Approximation

We approximate the Q-function (8.12) using a critic neural network by

(8.13) Q(E,u)=WTΦ(E,u)+εQ(E,u)

where Φ(E,u) ∈ Rn denotes the activation function vector with the number n of neu-

rons in the hidden layer; W ∈ Rn is the weight vector; εQ(E,u) is the neural network

approximation error; and WTΦ(E,u) can be explicitly expressed according to the three

components FEE(E), FEu(E,u), and Fuu(u) in (8.12) as

(8.14) WTΦ(E,u)=
[
WT

EE WT
Eu R

]

ΦEE(E)

ΦEu(E)u

Φuu(u)


where ΦEE ∈RnEE , ΦEu ∈RnEu and Φuu = u2. The regressor Φ(E,u) is selected to provide

a complete independent basis such that Q(E,u) is uniformly bounded with n = (nEE+
nEu +1). Recalling from the Weierstrass higher-order approximation theorem ([164]),

the approximation error εQ(E,u) is bounded for a fixed n within a compact set Ω and

as the number of neurons NEE →∞ and NEu →∞, i.e., n →∞, we have εQ(E,u)→ 0.

One needs to derive the Bellman equation in terms of the Q-function to update the

critic. By Bellman’s principle of optimality ([41]), we have the following optimality

equation

(8.15) V∗(E(t−T))=
∫t

t−T
r(E(τ),u(τ))dτ+V∗(E(t))

The result from Lemma 8.1 showed that Q∗(E,u∗)=V∗(E), which means we can rewrite

(8.15) in terms of Q∗(E,u∗) as
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−ρ(E,u)︷ ︸︸ ︷
−

∫t

t−T
r(E,u)dτ=Q∗(E(t),u∗(t))

−Q∗(E(t−T),u∗(t−T))

=WTΦ(E(t),u∗(t))−WTΦ(E(t−T),u∗(t−T))︸ ︷︷ ︸
WT∆Φ(E,u∗)

+εBQ(E,u)

(8.16)

with the integral reinforcement ρ(E,u), the difference ∆Φ(t) = Φ(E(t),u∗(t))−Φ(E(t−
T),u∗(t−T)), and the Bellman equation residual errors εBQ = εQ(E(t),u∗(t))−εQ(E(t−
T),u∗(t−T)) being bounded for bounded εQ . Define two auxiliary variables P ∈Rn×n

and Q ∈Rn by low-pass filtering the variables in (8.16) as

(8.17)


Ṗ =−ℓP +∆Φ(t)∆Φ(t)T, P(0)= 0

Q̇=−ℓQ+∆Φ(t)ρ(E,u), Q(0)= 0

with a filter parameter ℓ> 0.

The adaptive critic neural network can be written as

(8.18) Q̂(E,u)= ŴTΦ(E,u)

where Ŵ and Q̂(E,u) denote the current estimate of W and Q(E,u), respectively.

Now we design the adaptation law using the sliding mode technique to update Ŵ

such that

(8.19) ˙̂W =−ΓP M′

||M′||
where M′ ∈ Rn is defined as M′ = PŴ +Q and Γ Â 0 is a diagonal adaptive learning

gain to be tuned.

Lemma 8.2 Given the adaptation law (8.19), if u(t), ∆Φ(t), and the system states E(t) are

persistently excited, the estimation error of weight W̃ =W −Ŵ will converge to a compact set

in finite time. ¦
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Proof. See Lemma 3.2 in Chapter 3. □

8.3.3 Adaptive Optimal Control via Q-learning

We reconstruct the optimal control u∗ from (6.11) based on the parameterisation of

Q(E,u) (8.12) such that

(8.20) u∗ =−1
2

R−1WT
EuΦEuE+εQu

where εQu and εEu are bounded approximation errors due to εQ and εE, WT
EuΦEuE

accounts for the term BET∇V∗
x , and Wuu is essentially predefined R (see (8.12)). There-

fore, one can determine the optimal control directly using the adaptive critic (8.18) if

the weight Ŵ converges to the actual weight W . The control law (actor) will be

(8.21) u =−1
2

R−1ŴT
EuΦEuE

We summarise the result for this Q-learning algorithm as

Theorem 8.1 Given the engine system (8.10) with the value function (8.11) and Q-function

(8.12), the adaptive critic neural network (8.18) with the adaptation law (8.19) and the actor

(8.21) form an adaptive optimal control so that the adaptive critic weight estimation error W̃

will converge to a compact set and the control input (the actor) u will converge to a small

bounded set around its optimal control solution u∗ in finite time.

Proof. See Theorem 3.1 in Chapter 3. □

8.4 Experimental Results and Discussion

The engine test-rig described in Chapter 7 is used as the experimental platform to

validate the efficacy of the proposed AFR control.

In the experiment, the engine speed was controlled through an available speed con-

trol. In order to satisfy the PE condition, the augmented error state E needs to be
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persistently excited. In this case, instead of regulating the AFR to a constant stoichio-

metric value, one needs to excite the AFR response to a certain level. Hence, a chirp

speed profile is designed between 3,000 to 4,000 [RPM] with increasing and decreas-

ing frequency to create a dynamic oscillating operating condition, while the throttle

is operated manually within the range of 0 - 15 [o] to achieve high-frequency varia-

tion. Fig. 8.2 presents the engine speed chirp profile and Fig. 8.3 shows the manually-

operated throttle angle while the air mass flow rate from the MAF sensor and the AFR

response from the lambda sensor are presented in Fig. 8.4 and 8.5, respectively. It can

be found that the air mass flow rate trajectory follows a similar trend to the throttle

angle. The AFR lambda oscillates around λd = 1. The high magnitude of the lambda

transient response in the initial 50 [s] could be explained by the learning process of

the adaptive critic.
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FIGURE 8.2. Engine speed chirp profile.

The aim is to implement the Q-learning algorithm for the adaptive optimal AFR con-

troller. However, the experimental result would be difficult to verify because the ideal

weight of the adaptive critic neural network is unknown in practice and the optimal

control is not available. One way to verify the effectiveness of the proposed adaptive

optimal AFR control (Q-learning) is by comparing the control signal with an optimal

control response. Since we already know the system dynamics A and B, it is feasible

to use the GPI algorithm (see chapter 3) first to get an optimal response and then
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FIGURE 8.3. Manually-operated throttle angle profile.
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FIGURE 8.4. Air mass flow rate MAF sensor response.

compare it with the response of the Q-learning controller. If the proposed Q-learning

controller is optimal, the responses should be close.

The adaptive optimal AFR controller based on GPI is implemented as follows. We

choose the value function as (6.7) with S =
2 0

0 2

 and R = 1. The activation function

Φ(E,u) of the adaptive critic neural network (8.14) is selected as Φ(E,u)= [e2
i e i e e2]T

with the number of neurons n = 3. The tuning parameters are chosen as such: the

sample period T = 1s, the filter parameter ℓ = 1, the adaptive learning gain Γ = 7.
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FIGURE 8.5. AFR lambda sensor response.

Fig. 8.6 and 8.7 present the augmented error state trajectories and the adaptive critic

weight convergence of the GPI controller.Using the "LQR" command in Matlab to

solve the ARE with the given A and B, the solution P is

(8.22) P =
1.7321 1.0000

1.0000 1.7321


This is close to the weight convergence result shown in Fig. 8.7, i.e. W1 ≈W2 ≈ P11 = P44

and W2 ≈ P12+P21. The small difference to the ideal value can be explained by the term

estimation error due to the unknown input observer for the lumped term M.

Then, we implement the adaptive optimal AFR controller based on Q-learning as fol-

lows. The activation function Φ(x,α) of the adaptive critic neural network is selected

as Φ(E,u)= [e2
i e i e e2 e iu eu e i eu e2

i u e2u e2
i eu e i e2u u2]T with the number of neu-

rons n = 11. The tuning parameters are chosen as such: the sample period T = 1s, the

filter parameter ℓ= 1, the adaptive learning gain Γ= 5. Fig. 8.8 presents the adaptive
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FIGURE 8.6. Error state trajectories.
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FIGURE 8.7. Convergence of the adaptive critic neural network of the GPI
controller.
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critic weight convergence of the Q-learning controller, where the weights converge

around 600 [s]. Fig. 8.9 compares the control signal of the two controllers. It can be

found that the control signal of the Q-learning controller starts to approach to that of

the GPI controller after 600 [s]. This can be explained by the weight convergence of

the Q-learning adaptive critic after 600 [s] in Fig. 8.8.

FIGURE 8.8. Convergence of the adaptive critic neural network of the Q-
learning controller.

8.5 Conclusions

In this chapter, we have proposed an adaptive optimal AFR controller using rein-

forcement learning principles, i.e. Q-learning. The controller was formulated using a

PI control structure and the optimal control can be obtained after a learning process

that performs reinforcement learning. The proposed controller was implemented on a

practical Wankel engine (the same experimental set-up in Chapter 7). The results were

verified by comparing the results to a GPI controller. Continuous learning and adapta-
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FIGURE 8.9. Comparison between the control signals of two adaptive opti-
mal controllers: GPI and Q-learning.

tion to improve controllers performance is one of the key promising attributes of the

proposed approach. The new controllers are in the form of online learning algorithms

that can solve the nonlinear optimal control/observer design problems without the

knowledge of the system dynamics. The performance of the controller can be further

refined and improved through continuous learning in real-time vehicle operations.
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CONCLUSION

In this thesis, we have developed new approaches of adaptive optimal control via

reinforcement learning, i.e. GPI and Q-learning. The new controllers are in the form

of online learning algorithms that can solve the nonlinear optimal control/observer

design problems without knowledge or with incomplete knowledge of the system dy-

namics. The thesis considered the application to automotive engine control problems,

i.e. idle speed control and AFR control. A 225CS Wankel rotary engine was targeted

for control system development, where the process included dynamics modelling, cal-

ibration, control design/simulation, implementation, and practical experiments. The

proposed control methods have been successfully applied to an engine system, which

can also be applied to other complex engineering systems with proper adjustment.

9.1 Summary of Achievements

1. In Chapter 3, a new approach of the adaptive optimal control theory is established

which forms the major contribution of the theoretical research. Two online adap-

tive optimal control algorithms are proposed based on reinforcement learning for
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continuous-time nonlinear input-affine systems: 1) generalised policy iteration (GPI)

and 2) Q-learning. The adaptive critic and actor are continuously and simultaneously

updating each other with neither iterative steps nor an initial stabilising policy. The

two approaches can online approximate the value functional/Q-functional and are

partially/completely model-free. The new adaptive design enables the online verifi-

cation of the persistent excitation (PE) condition and guarantees the overall closed-

loop stability and the finite-time convergence. A detailed mathematical analysis and

numerical simulations are provided to show the effectiveness of the algorithms.

2. In Chapter 4, the adaptive optimal control results are extended to an optimal ob-

server design problem. An online continuous-time Q-learning algorithm is proposed

to solve the optimal observer design problem online while ensuring stability and op-

timality. We show that the optimal solution can be obtained by approximately solving

an observer Hamilton-Jacobi-Bellman (OHJB) equation. The Q-functional is approxi-

mated by an adaptive critic neural network that solves the Q-learning Bellman equa-

tion online. A case study on observer design for the Van der Pol oscillator is provided.

Numerical simulations demonstrate the effectiveness of the proposed algorithm com-

pared with the high-gain observer. Beyond the observer design, it is noted that the

proposed results can be easily extended to general stabilisation and tracking control

problems.

3. In Chapter 5, a set of control-oriented models are developed for a 225CS Wankel ro-

tary engine produced by Advanced Innovative Engineering (AIE) UK Ltd. Through

a synthesis approach that involves State Space (SS) principles and the artificial Neu-

ral Networks (NN), the Wankel engine models are derived by leveraging both first-

principle knowledge and engine test data. By using either (or both) physical knowl-

edge or test data, the developed models are able to describe the Wankel engine dy-

namics with acceptable accuracy. They are all control-oriented models that have less

computational demand and should be able to run faster than the available CFD mod-

els due to their simplicity.
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4. In Chapter 6, an output feedback controller is developed based on reinforcement

learning for the idle speed regulation problem. The proposed controller is completely

model-free and able to learn the optimal control solution online in finite time using

only the measurable outputs. The regulation of idle speed can be formulated as an op-

timal control problem that minimises a pre-defined value function by actuating the

throttle angle. Then, we incorporate the extended Kalman filter (EKF) as an optimal

reduced-order state observer, which enables the online estimation of the unknown

fuel puddle dynamics, to achieve an output feedback idle speed controller. The over-

all Lyapunov stability is proved and the simulation results of a benchmark engine

demonstrate that the proposed controller can effectively regulate the idle speed to a

set point under certain load disturbance.

5. In Chapter 7, a generic observer-based air-fuel ratio (AFR) control framework for

automotive engine systems is presented. The complex nonlinear air-filling dynam-

ics are lumped together and estimated using novel observer techniques. A newly-

proposed unknown input observer is compared with a differentiation observer and

then employed in the feedback AFR control design. Comparative simulations and

practical experimental results compared to a benchmark PID controller show that the

proposed control can speed up the transient response and regulate the AFR around

the stoichiometric value. Moreover, the proposed controller no longer relies on look-

up tables, which can potentially avoid the cost of engine calibration process.

6. In Chapter 8, an adaptive optimal AFR controller is proposed based on Q-learning

which can learn to provide optimal control signals under various operating condi-

tions. We emphasise that such an adaptive optimal controller will be obtained after

a specially designed learning process that performs approximate dynamic program-

ming. Once a controller is learned and obtained (offline or online), it will be applied

to perform the task of engine control. The performance of the controller can be further

refined and improved through continuous learning in real-time vehicle operations.
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We note that continuous learning and adaptation to improve controllers performance

is one of the key promising attributes of the present approach. The new controllers

are in the form of online learning algorithms that can solve the nonlinear optimal

control/observer design problems without partial/complete knowledge of the sys-

tem dynamics. Although the application focus of the thesis is on a Wankel rotary

engine, the proposed control methods can also be applied to general internal combus-

tion engines and other complex engineering systems.

9.2 Key Conclusions

This Ph.D. research have covered both theoretical and practical sides of the subject.

We summarise the research conclusions into three points:

1. A new adaptive optimal control scheme was formulated for continuous-time

nonlinear systems to tackle 1) optimal control and 2) optimal observation prob-

lems.

2. New adaptive optimal control algorithms were developed using reinforcement

learning that bring benefits such as adaptation, optimality, model-free learning:

1) GPI and 2) Q-learning.

3. Three new control systems for automotive engines were designed, implemented,

and validated: 1) Q-learning-based idle speed control, 2) observer-based AFR

control, and 3) Q-learning-based AFR control.

9.3 Future Work

We have considered some of the directions for the continuation of this work.

1. The idea of online adaptive optimal control can be extended to solve zero and

non-zero sum games. For example, the two-player zero-sum game problem can be
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viewed as a robust adaptive optimal control problem, where the controller is the

minimising player and the disturbance is the maximising player. Similar to the ap-

proximate solution to the HJB equation, the Q-learning algorithm proposed in this

thesis can be extended for generating a local approximate optimal Nash solution of

the Hamilton-Jacobi-Issacs (HJI) equation. This idea has recently led to a paper "A

Q-learning approach for the two-player zero-sum game problem for completely un-

known continuous-time nonlinear systems" to be submitted to the 2022 IEEE Confer-

ence on Decision and Control (CDC).

2. Most existing literature on adaptive optimal control or ADP relies results on full-

state feedback framework, where all the system states are assumed to be available.

This is often not true in practice. Output feedback control eliminates the need for full

state feedback and makes the design more practical. In this thesis, we have shown

in Chapter 6 a version of adaptive optimal output feedback control by combining the

EKF with the Q-learning-based control. It is possible to synthesise an output feedback

adaptive optimal control framework by combining the adaptive optimal observer

(Chapter 4) and the adaptive optimal controller (Chapter 3), i.e. full-state feedback

with the reconstructed states estimated from an observer. Another different approach

to achieve adaptive optimal output feedback is the direct method that investigates

the online optimal solution of the output feedback gain K for the control input u and

the output y:

(9.1) u =−K y

For example, the optimal K is subject to a set of coupled matrix equations if the prob-

lem is linear quadratic (see Chapter 8.1 in [30]). This can be a starting point to apply

our Q-learning algorithm.

3. We have been looking at the potential application beyond the Wankel rotary engine.

The results can be extended to other automotive control problems. For example, the

proposed adaptive optimal controller can be applied to power management of hybrid
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electric vehicles (HEVs), i.e. the design of a higher-level control algorithm that deter-

mines the proper power level to be generated, and its split between the two power

sources (the engine and the battery). Commonly, a static optimisation or dynamic

programming scheme is used to figure out the proper split between the two power

sources using steady-state efficiency maps [226][227][228]. Our Q-learning method

has the potential to be used for real-time optimal control for power management with

the feature of continuous learning and adaptation.
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