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collected in [2, 3] was used in Chapter 3. The convolutional neural network developed

by Yajie Bao was used for heat release rate classification in Section 3.2 and k-means

developed by Aditya Basina was used in Section 3.4. Dr. Mahdi Shahbakhti provided

guidance on the aspects of the thesis includign engine data analysis, heat release rate

classification model based on machine learning approach, identification of scheduling

parameter and building control architecture with scheduling variable. Dr. Jeffrey

Naber provided guidance for proper analysis of the engine heat release data. Dr.

Hoseinali Borhan and Dr. Javad Mohammadpour Velni provided technical advise on

optimization tools for building data driven modelling for engine data and machine

learning approach for classification of heat release rate traces. The LS-SVM code

from the reference [6] was used in Chapter 4 to perform data driven modelling. RCCI

engine plant developed in references [1, 2, 3, 4] is used to assess the performance of

controller.
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Abstract

Low Temperature Combustion (LTC) regimes have gained attention in internal com-

bustion engines since they deliver low nitrogen oxides (NOx) and soot emissions with

higher thermal efficiency and better combustion efficiency, compared to conventional

combustion regimes. However, the operating region of these high-efficiency combus-

tion regimes is limited as it is prone to knocking and high in-cylinder pressure rise

rate outside the engine safe zone. By allowing multi-regime operation, high-efficiency

region of the engine is extended. To control these complex engines, understanding

and identification of heat release rate shapes is essential. Experimental data col-

lected from a 2 liter 4 cylinder LTC engine with in-cylinder pressure measurements,

is used in this study to calculate Heat Release Rate (HRR). Fractions of early and

late heat release are calculated from HRR as a ratio of cumulative heat release in

the early or late window to the total energy of the fuel injected into the cylinder.

Three specific HRR patterns and two transition zones are identified. A rule based

algorithm is developed to classify these patterns as a function of fraction of early

and late heat release percentages. Combustion parameters evaluated also showed

evidence on characteristics of classification. Supervised and unsupervised machine

learning approaches are also evaluated to classify the HRR shapes. Supervised learn-

ing method ( Decision Tree)is studied to develop an automatic classifier based on the

control inputs to the engine. In addition, supervised learning method (Convolutional

xxxi



Neural Network (CNN)) and unsupervised learning method (k-means clustering) are

studied to develop an automatic classifier based on HRR trace obtained from the

engine. The unsupervised learning approach wasn’t successful in classification as the

arrived k-means centroids didn’t clearly represent a particular combustion regime.

Supervised learning techniques, CNN method is found with a classifier accuracy of

70% for identifying heat release shapes and Decision Tree with the accuracy of 74.5%

as a function of control inputs.

On rule based classified traces with the use of principle component analysis (PCA)

and linear regression, heat release rate classifiers are built as a function of engine

input parameters including, Engine speed, Start of injection (SOI), Fuel quantity

(FQ) and Premixed ratio (PR). The results are then used to build a linear parameter

varying (LPV) model as a function of the modelled combustion classifiers by using the

least square support vector machine (LS-SVM) approach. LPV model could predict

CA50(Combustion phasing), IMEP (indicated mean effective pressure) and MPRR

(maximum pressure rise rate) with a RMSE of 0.4 CAD, 16.6 kPa and 0.4 bar/CAD

respectively. The designed LPV model is then incorporated in a model predictive

control (MPC) platform to adjust CA50, IMEP and MPRR. The results show the

designed LTC engine controller could track CA50 and IMEP with average error of

1.2 CAD and 6.2 kPa while limiting MPRR to 6 bar/CAD. The controller uses three

engine inputs including, SOI, PR and FQ as manipulated variables, that are optimally

changed to control the LTC engine.

xxxii



Chapter 1

Introduction

Greenhouse gas emissions in atmosphere have increased world wide. In the latest

report by the United States Environmental Protection Agency (EPA), it is evident

that transportation sector is one of the major contributors of greenhouse gas emissions

in the United States [7]. EPA and other emission regulating agencies across the world

have taken measures to curb the pollutants. They have imposed stringent emission

norms and higher fuel economy targets. Automotive manufacturers and researchers

have continuously worked to innovate new techniques in order to achieve emission

and fuel economy targets. Many concepts have been developed to eliminate the

drawback observed on a conventional injection technique. In the conceptual model of

conventional direct injection (DI) combustion in [8] the process involved in creation

of NOx and soot is described. NOx gets created at the contact of diffusion flame front
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with premixed charge. Soot gets generated at the fuel rich zones of the fuel plume.

Based on this understanding a recent technique of low temperature combustion(LTC)

was developed. It results in ultra low NOx and soot as significant amount of fuel is

pre-mixed with air before the actual combustion begins. Soot is eliminated by having

a premixed mixture of fuel and air. NOx is reduced by having a premixed volumetric

combustion [9].Multiple concepts of LTC demonstrated by researchers [2, 9, 10, 11],

either used single fuel or combination of two fuels.

Some of the prominent techniques of LTC are shown in the Figure 1.1, in local equiv-

alence ratio and temperature space.

Figure 1.1: Soot and NOx in equivalence ratio to Temperature space ref-
erence [12] Adapted from reference [13]
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Interestingly, conventional diesel operates in a zone which is prone for higher NOx

and soot. Advanced combustion techniques depicted, predominantly operate on a

lower NOx and soot zone. Various Combustion regimes of interest and research work

is described below.

† Homogeneous charge compression ignition (HCCI) is a concept in which fuel

is injected into intake manifold to achieve a homogeneous premixed charge.

Charge is compressed in the compression stroke. It results in controlled auto

ignition (CAI). So, a volumetric combustion with a small burn duration is

achieved [14, 15]. It results in high in cylinder pressure rise rate.

† Premixed charge compression ignition (PCCI) was developed from HCCI con-

cept to reduce its drawbacks of higher pressure rise rate. In PCCI, fuel is in-

jected partially in the manifold and in-cylinder in order to reduce homogeneity

of fuel and air, [16, 17, 18]. Secondary fuel injection timing adds more control

on combustion phasing.

† Reactivity controlled compression ignition (RCCI) works on the principle of

difference in reactivity rates of two different fuels being used for combustion.

The low reactivity fuel is injected into the intake ports. In the homogeneous

mixture of low reactivity fuel and air, the high reactivity fuel is injected inside

the cylinder. Studies in references, [19, 20, 21] discuss additional control levers

for governing combustion phasing such as difference in reactivity of both fuels,
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start of injection timing of the higher reactivity fuel and the ratio of both low

reactivity and high reactivity fuel on the engine.

Understanding of these low temperature combustion techniques play critical role in

order to study the heat release traces of the engine and incorporate the dynamics

involved while developing engine models.

1.1 Engine modelling for controls

Internal combustion (IC) engine modelling techniques have gained attention as it

could improve engine performance. It could predict engine performance parameter

without physically running the engine and also estimate parameters which are difficult

to be measured [22]. Automotive manufacturers are keen to improve accuracy of

engine model as it saves money and product development time. Control oriented

models are advanced mathematical models suitable for control system design. It is

built based on two fundamental methods

† First principle based approach

† Data driven approach

In first principle based approach, model is primarily based on physical principles.
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Additionally engine experimental data is used to parameterize engine models. This

helps to closely represent the engine. Input-output models and first principle based

models are inter dependent on each other to ensure accuracy of the engine model. In

[23] reviewed advancement in engine modelling. Improved engine model has resulted

in better control of engine. The model was developed for performance optimisation

of steady state calibration and dynamic corrections to calibration.

First principle based approach is time consuming to build. As an alternative, data

driven approach has gained significance. In [24] data driven approach, the relation-

ship between inputs and outputs of the system is modelled, without complex physics

based modelling of the system. Data driven modelling represent the significant con-

tribution made by the fields, artificial intelligence (AI), Computational intelligence

(CI), soft computing (SC), machine learning (ML), data mining (DM) and intelligent

data analysis (IDA). Data driven modelling approach focused in this research work

is based on machine learning based techniques. Machine learning theory is about

building a model capable of learning to improve its own performance based on its

previous experience. It uses pattern recognition and statistical inference to come up

with a conclusion. The study in [25] discussed approaches using machine learning to

make engine modelling process faster. The results showed that data driven models

demonstrated better performance than physical models by its ability to capture non-

linear trends and pattern in the data. It is recommended in a scenarios where data

is incomplete to build a physical model. Machine learning approach has been widely
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used in the literature for modelling engine by utilizing engine experimental data.

Next sections discuss on the current research work on identification of combustion

events, system identification of the engine through machine learning approach and

control of the engine.

1.2 Machine learning based approach for combus-

tion classification

Combustion identification in ICEs can be studied by analyzing in-cylinder pressure

data. In-cylinder pressure measurement with a piezoelectric sensor mounted on the

engines, is a conventional approach for off-line analysis of combustion process.

Various combustion metrics listed in Figure 1.2 can be analysed with machine learning

techniques. With machine learning algorithm, misfire event identification was done

by analysing the vibration pattern associated with particular cylinder in [26]. Iden-

tification of misfire events is closely tied to identification of patterns in combustion

trace, which corresponds to misfire. Linear model tree algorithm was suggested to

have better classification accuracy compared to other algorithms considered in [26].

Similarly, with the vibration measurement data from the engine, classifier accuracy

was compared in [27], between convention feature extraction approach with support

6



Figure 1.2: Combustion metrics

vector machine (SVM) and deep learning convolutional neural network (CNN) with-

out feature extraction. Deep learning approach was observed to perform better better

compared to CNN with feature extraction and SVM for multi-class misfire detection.

In [28] have listed deep learning techniques with 2-D convolutional neural network,

which could extract features to identify combustion instability. This could help in

identifying and preventing the occurrence of poor combustion. Discussed in [29] is

a novel method of building adopted artificial neural network(ANN) model from the

empirical model. The developed model showed an accuracy of 85% as mean prediction

accuracy. In [30], developed a misfire detection technique for an HCCI engine. Misfire

was created by cutting the fuel supply, varying air to fuel ratio (AFR) and low air

intake temperature. Engine powered with ethanol by using experimental data to
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model ANN for misfire detection. ANN is modelled using the in-cylinder pressure

value modeled using regression equation using maximum heat release rate (MHRR)

at crank angles, 0, 5, 10, 15 and 20 aTDC. The ANN model developed with four

hidden layers using in-cylinder pressure was able to detect the misfire with 100%

accuracy.

In [31], a misfire identification technique for HCCI engine fueled with ethanol was

carried out. Skewness and kurtosis of in cylinder pressure and crankshaft rotational

speed were analysed. Result showed that on all misfire cycles, engine speed showed

negative skew values. In [32], to improve the operating range of the HCCI engine,

the authors studied cyclic variation of CA50 near misfire region to extend the range

of operation. Return map and symbol sequence approach was used to statistically

model the system and a joint prediction of CA50 one cycle ahead was conducted.

The residual between predicted and actual data was in the 95% confidence interval

and hence model prediction is acceptable.

In [33], the authors discussed about limited operating range of HCCI due to higher

pressure rise rate and ringing. Ringing intensity (RI) increased with lower burn

duration and advanced CA50. ANN model was built with in-cylinder pressure values

at 5,10 and 15 CAD aTDC and Pmax to predict RI with prediction error of 4.2%.

In [34], intense ringing in an HCCI engine, which limits the range of operation was

studied. To this end a ANN based approach was designed to predict the combustion
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noise level to identify ringing regions. The model was able to predict with an error

of less than 0.5% from the actual combustion noise level.

Extreme learning machine (ELM) are feed forward neural networks for classification

[35] with extremely fast learning speed. So, was named as ”Extreme learning ma-

chine”. ELM is single hidden layer feedforward neural networks which randomly

chooses hidden nodes and analytically determines the output weight. In theory [35],

algorithm provides good generalization performance at extremely fast learning speed.

ELM was used to model a bio-diesel engine performance. In [36], optimisation of

engine was carried out using logarithmic transformation to reduce the impact of data

scarcity in real time. The result was concluded based on the comparison of engine

model between two optimization techniques, simulated annealing (SA) and particle

swam optimisation (PSO).

Engine ignition pattern analysis is one of the diagnostic method for gasoline engines.

In [37], wavelet packet transform was used to extract features from the ignition pat-

tern. Based on identified features, then a multi-class least square support vector

machine (MCLS-SVM) was used to identify fault related to malfunctioning parts of

engine. Diagnosis accuracy of MCLS-SVM was higher than the typical MLP (multi

layer perceptron) approach in the experimental results.

In [38], studied about fault diagnosis for process monitoring in industrial environ-

ment. In process monitoring, unsupervised learning approach on multi dimensional
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data for clustering result was slow due to the curse of dimensionality and result in un-

related features existence. Dimensionality reduction was carried out using Principal

Component Analysis (PCA). PCA is an approach for feature extraction by creation

of new independent variable which is a combination of the old variables. Engine

output parameters are dependent on many input variables. PCA can help reduce

dimensionality of the data by generating new independent variables,also known as

principal axes. Multi-linear extensions of PCA was observed to be effective in reduc-

ing the dimensionality to result in better separation of clusters. Also, the study in the

reference article[39] show that vibration measurement from the engine was used to

identify fault on engine related to defective lash adjuster and chain tensioner. Based

on the severity of measured vibration, it could identify and classify fault into specific

fault domain. The smooth variable structure filter (SVSF) algorithm outperformed in

comparison with other approaches and showed a success rate of 97% in the detecting

the faults.

With the study on reference articles, its evident that a lot of research has been done in

order to identify misfire and fault diagnostics on engine, but significant study hasn’t

happened in terms of characterizing the combustion traces to identify heat release

patterns. This in turn opens up a large scope of work in terms of classification of

combustion traces on a multi-mode engine. Once classification of combustion traces

is done, an effective method of integration of this information into real-time system

identification is done and the combustion control for the engine will be required.
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Thus, in the subsequent section prior studies in terms of system identification and

control of engine combustion are reviewed.

1.3 Machine learning approaches for ICE combus-

tion modeling and control

Multiple machine learning techniques have been explored to build engine models

that are compatible for ICE controls. In [40], HCCI engine powered with butanol

and ethanol was studied. Engine powered with butanol, n-heptane and ethanol was

modelled with feed forward neural network (FFNN) and radial basis function neu-

ral network (RBFNN). Multiple-input and multiple-output (MIMO) neural network

developed showed that both approaches were able to predict the engine performance

metrics including indicated mean effective pressure (IMEP), thermal efficiency, in-

cylinder pressure, net total heat released, nitrogen oxides (NOx), carbon monoxide

(CO), and total hydrocarbon (THC) concentrations with error less than 4%. With

the fact that FFNN involved less complex equation in comparison to RBFNN, which

involved complex equations but needed less training time.

In [41], a high accuracy models with low computational effort for HCCI engine was

built. The authors in reference [41] developed a gray box modelling technique that
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used a combination of physical model with artificial neural network (ANN) feed for-

ward model for the prediction of CA50, IMEP and exhaust gas temperature (Texh).

Developed model predicted CA50, IMEP and Texh with an accuracy of less than 1

crank angle degree, 0.2 bar and 6◦C, respectively. In [42], prediction of engine rota-

tional dynamics was done using a gray box model that consisted of a physical mode

and a black box ANN. The authors studied 2 gray box architectures: series and paral-

lel. Gray box model with series structure was identified and found to perform better

than the parallel approach. In [43], discussed that HCCI engines could be brought to

practical use if the drawbacks on high THC and CO is reduced by controlling CA50

for lower emissions and higher thermal efficiency. Gray box modeling as a combina-

tion of both physical and feed forward artificial neural network (FFANN). Model was

build for two different HCCI engines. The model could predict combustion phasing,

load, exhaust gas temperature and emissions (THC, CO, NOx) with the validation

on steady state and transient test prediction error resulted in less than 10%.

In [44], optimisation of bio diesel engine engine model was built using kernel based

ELM technique. By use of cuckoo search (CS), optimal bio-diesel ratio with mini-

mization cost function for both fuel cost and emissions. The results were compared

with LS-SVM. It was concluded that K-ELM achieves comparable result and optimi-

sation with CS results in reliable prediction and optimisation. In [36], optimisation of

bio-diesel engine with less emissions was evaluated with ELM, least-squares support
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vector machine (LS-SVM) and RBFNN approach to model the engine. It was evalu-

ated with two optimization methods, namely simulated annealing (SA) and particle

swarm optimization (PSO) as optimisation function to result in optimal bio-diesel

ratio. ELM with logarithmic transformation model was observed to perform faster

and better. PSO as an optimisation algorithm performed better with cost function

on fuel cost and lower emissions.

In [45], evaluated the prediction capability of the ANN model built for an engine

operated with exhaust gas re-circulation (EGR) strategies. It was built with 70%

experimental data, 15% for cross validation to avoid overfitting and other 15% for

testing the model accuracy in prediction. With the inputs- load, rail pressure, EGR%

and fuel, model could predict the performance and emission parameters with high cor-

relation, it was also able to map the trade off between PM-NOx-brake specific fuel

consumption (BSFC) under operation with EGR. In [46], authors studied that engine

operating on transient condition based on steady state tuned tables may not result in

optimal performance. To mitigate this issue, authors built a real time system capa-

ble of perceiving driver, driving pattern and optimize performance by using Markov

decision process. It resulted resulted in overall 9.3% improvement in fuel economy

compared to baseline calibration by the use of decentralised learning to optimize fuel

economy and emission by varying variable geometry turbocharger (VGT) position

and injection timing, .
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In [47], a control oriented model was built to control combustion timing, engine load

and combustion efficiency for an HCCI engine. Detailed physics based model was

developed including effect of residual gases and rate of fueling on model out put pa-

rameters (combustion timing, engine load and combustion efficiency). Model could

perform with acceptable accuracy in both steady state and transient validation. [48]

is based on combustion timing and load control of HCCI engine. Nonlinear control

oriented model (NCOM) developed was linearized and integral discrete time slid-

ing mode controller (IDSMC) was built to control load and combustion timing. Its

performance was compared to manually tuned proportional- integral (PI) controller.

IDSMC showed better tracking efficiency and also responded well to the introduction

of disturbance in equivalence ratio and intake temperature. In [49], combustion analy-

sis comparison of performance between DI engine and bio-diesel with waste vegetable

oil was compared on similar operating conditions. ANN model was built to model

the engine characteristics operated with waste vegetable oil from the experimental

results and IDSMC performed better in tracking efficiency.

RCCI promising for its high thermal efficiency but comes with a need of high accu-

racy control oriented model and control technique. Approach of data driven linear

parameter varying model, built based on support vector machine was developed in

[50]. The model could be built fast and model could track CA50 for change in load

with less than 1 CAD when built with a model predictive controller (MPC). The

linear parameter varying (LPV) model is built as a function of fuel quantity. In [51],
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model based control was developed and trajectory optimised for lower emissions was

fed as reference. The computational requirement of the gray box model was 1 ms in

a 2.67GHz processor. Controller ability to track optimum trajectory for IMEP and

CA50 was tested and verified. In [52], automated the proportional–integral–derivative

(PID) system tuning by using simulator CARLA, an open source simulator . Model

was evaluated for performance on the governing the engine idle speed. The method

performed better than typical tuning process of the PID parameters and better results

both in simulation and in practice.

LPV modelling approximates the non linear system with a state space structure suit-

able to build linear controller on it. In [6, 50], method of developing LPV model based

on support vector machine is proposed. The study in [50] demonstrated system iden-

tification capability using the above technique for control of combustion phasing of

the RCCI engine. In addition to [50], capability of this technique for modelling maxi-

mum pressure rise rate (MPRR) is discussed in [5]. The limitation of this approach is

only 2 manipulated variables start of injection (SOI) and fuel quantity were available

to achieve control on combustion phasing and IMEP.
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1.4 Shortcomings of literature

The review in Section 1.2 and 1.3, showed prior studies into extracting features of

combustion parameters from the in-cylinder pressure traces, vibration measurements

or identifying engine combustion related fault, but the area of identifying the heat

release rate patterns from engine data for the control of a multi-mode LTC engine

remains under explored. Identifying pattern of heat release rate in combustion events

will be critical to optimally control operation of multi-mode LTC engines.

The review in Section 1.3, discussed various machine learning and deep learning

approaches in practice for ICE modelling and control. However there is no integrated

machine learning and control method based on engine heat release shapes for LTC

engines. In particular one promising area is the application of machine learning based

LPV models for MPC control of LTC engines based in identifying varying heat release

shapes.

1.5 Scope of Research

Based on the shortcomings listed in Section 1.4, the scope of the thesis is defined

as: Machine learning approach is suggested for building accurate model of IC engine.
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Numerical simulation capability of the technique will help to improve modelling capa-

bility. A real time predictive control on a cycle to cycle basis, to optimize combustion

mixture formation and improve stability of combustion.

Scope of the research is listed as :-

† Study machine learning algorithm and develop an algorithm to classify the heat

release rate patterns in an LTC engine. This would form the basis in identi-

fication of heat release rate patterns which can be used for engine combustion

control. Model classification with machine learning technique would also help

assess if the classification problem could be solved with higher prediction accu-

racy.

† Analyze experimental data from an LTC engine to determine between heat

release pattern and engine control variables. The results from this study will

be used to determine optimum scheduling parameters for engine controls.

† Create a machine learning based control oriented model to predict CA50, IMEP

and MPRR for an LTC engine

† Design and verify optimal predictive combustion controller for a LTC engine to

adjust engine load and combustion phasing, while meeting MPRR and actuators

constraints.
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1.6 Organization of Thesis

Experimental setup of engine is discussed in Chapter 2. Machine learning approach

used for classification, results and its accuracy are discussed in Chapter 3. Identi-

fication of combustion classifier, discussed in Chapter 4 and building of LPV- SVM

model as a function of it as scheduling parameter is discussed in Chapter 5. Building

a MPC control structure to control combustion phasing, IMEP with MPRR limita-

tion is covered in Chapter 6. Conclusion and future work are listed in Chapter 7,

followed by sections of appendix including data files and other relevant details of the

thesis.
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Figure 1.3: Thesis Organization
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Chapter 2

Experimental Setup

Engine experimental data is required in order to study and classify LTC heat release

shapes and identify appropriate schedulign parameters for LTC engine control. Spec-

ifications of the engine, test cell layout and data acquisition are explained in this

chapter.

2.1 Engine Specification

This thesis uses a 2 Liter GM Ecotec engine with the specification listed in Table

2.1. The engine is located at Michigan tech’s Advanced Propulsion Systems Research

Center (APSRC).
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Table 2.1
Engine Specifications

Make General Motors
Model Ecotec 2.0L Turbocharged
Engine Type 4 stroke,Gasoline
Fuel System Direct Injection
Number of Cylinders 4 Cylinders
Displaced Volume 1998 [cc]
Bore 86 [mm]
Stroke 86 [mm]
Compression Ratio 9.2:1
Max Engine Power 164 @ 5300 [kW @rpm]
Max Engine Torque 353 @ 2400 [Nm @rpm]
Firing Order 1-3-4-2
IVO 25.5/-24.5 [°CAD bTDC]
IVC 2/-48 [°CAD bBDC]
EVO 36/-14 [°CAD bBDC]
EVC 22/-28 [°CAD bTDC]
Valve lift 10.3[mm]

2.1.1 Engine Modifications

The engine is modified to demonstrate low temperature combustion concepts Figure

2.1. To this end, a dual fuel injection system is added to the engine as part of

the modifications. Engine is modified to have both iso-octane port fuel injection

(PFI) system and a n-heptane direct injection (DI) system. In the data used for

this research work, both fuels are used to vary the reactivity of the charge inside

the cylinder. Injection system calibration was carried out and documented in [2, 3].
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The engine setup also has a heater upstream of air intake, in order to vary intake air

temperature.

Figure 2.1: LTC engine setup in this work [4]

Iso-octane is the low reactivity fuel and n-heptane is the high reactivity fuel. Prop-

erties of these two fuels are summarized in Table 2.2.

Table 2.2
Fuel Specifications

Property Iso-Octane N-Heptane
Higher Heating Value [MJ/kg] 47.77 48.07
Lower Heating Value [MJ/kg] 44.30 44.56
Density [kg/m3] 693.8 686.6
Octane Number [-] 100 0
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2.2 Data Acquisition

Data from the engine is captured using 3 subsystems including, National Instruments

Labview, dSPACE and ACAP combustion analyser. The NI Labview gathered tem-

perature data from the engine. It also sends control commands to dynamometer

and the air intake temperature. dSPACE helped in sending control signals to var-

ious actuators on the engine. Injectors, spark plug and EGR valve control signals

are also provided by dSPACE. Calculations are preformed in Field Programmable

Gate Array(FPGA) as shown in [3] and communicated to RapidPro through a CAN.

dSpace also has a slave controller named micro auto box (MABX). Both RapidPro

and MABX together assist to control the engine.

Figure 2.2: LTC Engine Data Acquisition from reference [5]
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ACAP is used to collect in-cylinder pressure traces from the piezo electric transducers-

115A04 transducers. The crank angle reference is gathered by encoder mounted on

the crankshaft of the engine.

2.3 Test data and Analysis

Engine data analysed in this research work was collected by varying independent

parameters like engine speed, fuel quantity, pre-mixed ratio, start of injection of n-

heptane, intake manifold temperature and intake manifold pressure. Pre-mixed ratio

(PR) is defined as the ratio of the energy of the low reactivity fuel to the energy of

the total fuel. The low reactivity fuel in current experiment is iso-octane and the

high reactivity fuel is n-heptane.

Table 2.3 summarizes independent parameters varied in the test. Parameter of inter-

est is in-cylinder pressure trace as a function of engine crank angle. At every steady

state operating point 100 cycles of data is collected.
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Table 2.3
Test conditions of engine data

Engine Speed
(rpm)

Fuel Quantity
(mg/st)

Pre- mixed ratio
(%)

SOI
(bTDC)

Intake manifold
temperature

(◦C)

800 10- 30
20
40
60

15-40 40-110

1000 10 - 40
20
40
60

20-100 40-110

1100 30 60 60-80 70-80

1200 10-40
20
40
60

28-80 40-110

1400 10-40
20
40
60

33-60 40-110

1600 20-40
20
40
60

40-60 40-110

1800 20-40
20
40
60

47-70 60-110

1900 20
20
40

53-60 80-90

2000 20-30
20
40
60

53-80 80-100

2100 20-30
20
40

53-70 80-100

2300 20 20 65 80

2.3.1 Uncertainty Analysis

Level of confidence in the results comes based on the amount of uncertainty associated

with the measurement of data. Uncertainty arises in measured data due to numerous
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factors like instrumentation and operating conditions. Uncertainty associated with

various engine parameters are documented in Table 2.4 from [2]. The uncertainties

Table 2.4
Table of measured parameters and associated uncertainties

Parameter[Units] Value Uncertainty(+/-)
Bore [m] 0.086 0.001
Stroke [m] 0.086 0.001
Cylinder Pressure [kPa] 95-4000 1%
Crank Angle [CAD] 0-720 1
Tin[◦ C] 4-100 2%
Pin[kPa] 95-105 0.5%
mfuel[mg/st] 11.0-40.0 0.1%
N [rpm] 800-2300 10

of the derived parameters are tabulated in Table 2.5 from [2]

Table 2.5
Derived parameters and associated uncertainties

Parameter[Units] Value +/- Uncertainty
CA 5 0 [CAD aTDC] -1 +/- 1
IMEP [kPa] 540.7 +/- 28.1
MPRR [bar/CAD] 12 +/- 0.6

2.4 Heat release rate calculation

In-cylinder pressure trace is collected on engine. The pressure transducers are capable

of measuring in range of 0-35000 psi and have sensitivity of 1.442 pC/psi. The pressure
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transducers measure relative pressure and process of referencing it to intake manifold

pressure is called pegging. Pressure signal is obtained as a function of crank angle

at an interval of 1 crank angle degree (CAD). In pressure trace, the noise associated

with it, has to be cleared off [53] before analysis for heat release rate. Based on the

work carried out by [3], a Butterworth low pass filter with a cut off frequency of 0.5

and order 1 was identified to filter pressure trace.

Further calculation of heat release rate is carried out by using first law of thermody-

namics and is given by Eq. (2.1).

dQ

dθ
=

γ

γ − 1
.P
dV

dθ
+

1

γ − 1
V
dP

dθ
+
dQht

dθ
+
dQcrevice

dθ
(2.1)

Where γ is a polytropic compression coefficient calculated from the compression re-

gion. Instantaneous volume ( V ) at each crank angle is calculated by Eq. (2.2). dQht

refers to heat loss to the walls. dQcrevice refers to crevice loss and is neglected.

V (θ) = Vc +
π.B2

4
.P (l + a− acosθ −

√
l2 − (asinθ2) (2.2)

Where B is the diameter of the bore, l is length of the connecting rod, Vc is the

clearance volume and a is the crank radius.

The phenomenon for the heat loss to the surrounding is attributed to the convective
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heat transfer, represented by Eq. (2.3).

dQht

dθ
= hc(T (θ)− Tw) (2.3)

Where T is the instantaneous temperature of charge inside the cylinder and Tw is the

temperature of the cylinder wall. T is calculated by using the the ideal gas equation.

hc, heat transfer coefficient is calculated by using the Woshini model which was later

modified by Chang [54] has been used in LTC combustion regimes.

With heat release rate calculated for each combustion trace, in Chapter 3, classifi-

cation of heat release type is carried out. Classification of heat release rate traces,

helps interpret and optimise combustion efficiency. Rule based and machine learning

based approaches are evaluated to identify the best approach to effectively classify

heat release trace.
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Chapter 3

Classification of heat release rate

traces

Machine learning provides a wide range of algorithms for classification. With refer-

ence to classification, a multi-class classification problem is being addressed here as

the heat release rate traces are intended to be grouped in three predominant com-

bustion phases and the fourth and fifth bins are accounted for the transition. On a

classification problem the main goal addressed is that the model should be capable

of predicting appropriate class for the given heat release trace. Classification model,

is trained to identify heat release rate traces by using either supervised or unsuper-

vised learning techniques of machine learning. Clusters of heat release types of a

multi-dimensional engine data is reduced to two dimensional space to identify critical
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parameter for classification. To start with classification algorithm problem, below are

the terminologies used in machine learning for defining the classification model:

† Feature, refer to measurable/ identifiable parameter of input.

† Classifier is the learning algorithm that assigns the class to the data based on

its learning of the model from the training data. Classifier and Classification

model are used interchangeably in most of the cases.

Below is the procedure followed, for building a classification model:

† Algorithm for classification is identified

† Training of the classifier for the given input (X) against the label (Y)

† Predict label (Y) for the input (X), from test data using trained model

† Evaluate prediction accuracy

The data has to be labelled for classification using supervised learning approach,

where X refers to the heat release rate trace and Y refers to the labels of classification.

To avoid the impact of bias introduced by the use of threshold, unsupervised learning

approach is also evaluated by using k-means approach, in the later sections of this

chapter.
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3.1 Rule based Classification

Rule based classification of heat release rate trace is carried out based on the subject

knowledge. The classified data form basis for developing a supervised machine learn-

ing model subsequently. In order to classify the data, the crank angle at the start

and end of main heat release are identified for each of the HRR traces manually and

then logged into the data files.

Figure 3.1: Heat release rate trace with Start and End of Main HR depicted

From the crank angle associated with start and end of main heat release by using

below relation, the percentage of heat release which happens before main is calculated
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using Eq. (3.1)) termed as Fraction of Early Heat Release.

Fraction of Early Heat Release =
Cumulative HR from the SOI to Start of main

Energy in the fuel quantity injected

(3.1)

The percentage of heat release that happens after the main heat release until CA90

is termed as Fraction of Late Heat Release and, is calculated by :

Fraction of Late Heat release =
Cumulative HR from the end of main HR to CA90

Energy in the fuel quantity injected

(3.2)

The HRR traces are classified based on the fraction of early and late heat release

value. Based on the decision tree in Figure 3.2 , the complete classification is arrived.

The threshold value for classification to denote different types of heat release rate is

obtained by analysis of the engine experimental data.
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Figure 3.2: Flowchart of Classification Algorithm

Summarized are few traces from each of the classification type in Figure 3.3, depict-

ing 3 classification bins. Between Type 1, Type 2 and Type 3, separate classification

Type-4 and Type-5 are identified, to represent the combustion phase transition be-

tween the types. Filtered and normalised traces grouped in specific bins are depicted

in Figure 3.3.
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Figure 3.3: Sample heat release rate traces for three main HRR patterns

Each classified type of HRR, group traces which show a unique pattern of combustion.

† Type 1 : Refers to a type of combustion observed in the HRR where it neither

has a significant premixed combustion nor a diffusion combustion. It is similar

to the combustion pattern observed in HCCI.

† Type 2 : Refers to a type of combustion with HRR where it has a significant

premixed combustion. It is similar to PCCI type of combustion pattern.

† Type 3 : Refers to a type of combustion with HRR where it has a significant

diffusion combustion. It is similar to combustion HRR pattern observed in

RCCI.
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Summary of the count of HRR traces identified into each type is listed in Table 3.1

Table 3.1
Summary of the classified HRR traces

Type of HRR traces Count of traces
Type 1 131
Type 2 71
Type 3 373

Distribution of COVIMEP across the data points in Figure 3.4 is analyzed before

evaluating other combustion characteristics.

Figure 3.4: Distribution of COVIMEP

Majority of the traces are below the limit of 5% as shown in Table 3.2 and Figure

3.4.
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Table 3.2
Table of COVIMEP distribution

Median Mean Standard deviation Skewness Kurtosis
% % % (-) (-)

Type 1 2.24 2.71 1.74 1.75 6.10
Type 2 4.19 5.36 3.09 1.8 7.13
Type 3 3.94 4.63 2.50 1.42 6.48

3.1.1 Characteristics of combustion type

Characteristics of classified combustion HRR traces are evaluated by looking into mul-

tiple combustion parameters and its statistical distribution across the traces grouped

into each type.

3.1.1.1 Peak Cylinder Pressure

In Figure 3.5, the spread of peak cylinder pressure across 3 types of heat release is

plotted and in Table 3.3 statistical parameters of the each of the distribution are

summarized.

Table 3.3
Table of peak cylinder pressure distribution

Median Mean Standard deviation Skewness Kurtosis
kPa kPa kPa (-) (-)

Type 1 4329 4204 714.2 -0.72 2.73
Type 2 3924 3998 618.2 0.22 2.12
Type 3 3530 3561 417.7 0.31 2.73

Peak cylinder pressure is observed the highest in Type 1, followed by Type 2 and least
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Figure 3.5: Peak cylinder pressure distribution

in Type 3. It is the highest in Type 1, as the most of the fuel heat release happens in

the main heat release and least in Type 3 as significant amount of fuel burns after the

end of main heat release. Higher peak cylinder pressure is predominantly caused by

early combustion which can result in excessive noise and damage to the engine. Type

1 depicts traces with rapid heat release rate which is due to the rapid pressure rise

of the combustion mixture. A HRR trace of Type 1 at higher loads can potentially

lead to higher peak cylinder pressure. Since, Type2 and Type 3 depict controlled

heat release spread over a wider crank angle window, it results in lower peak cylinder

pressures.
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3.1.1.2 Maximum pressure rise rate

In Figure 3.6, the spread of maximum pressure rise rate across 3 types of heat release

is plotted and in Table 3.4 statistical parameters of the each of the distribution are

summarized.

Table 3.4
Table of maximum pressure rise rate distribution

Median Mean Standard deviation Skewness Kurtosis
bar/CAD bar/CAD bar/CAD (-) (-)

Type 1 5.77 5.65 2.47 27 2.44
Type 2 4.34 5.23 2.70 0.72 2.42
Type 3 3.93 4.05 1.14 0.53 3.11

Figure 3.6: Maximum pressure rise rate distribution

Maximum pressure rise rate is observed the highest in Type 1, followed by Type 2 and

least in Type 3. Pressure rise rate is significantly governed by mixture reactivity at

the start of combustion. It is the highest in Type 1 as it depicts combustion kinetics

on a homogeneous mixture resulting in rapid heat release rate and pressure rise rate.
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In Type 2 and Type 3, as the flame front propagates, due to in-homogeneity of the

mixture a combustion pattern resulting in significant early and late heat release is

observed.

3.1.1.3 CA10

In Figure 3.7, the spread of crank angle at 10 percentage of total heat released in

an engine cycle across 3 types of heat release is plotted and in Table 3.5 statistical

parameters of the each of the distribution are summarized.

Table 3.5
Table of CA10 distribution

Median Mean Standard deviation Skewness Kurtosis
CAD CAD CAD (-) (-)

Type 1 5 4.58 5.58 -0.07 2.60
Type 2 -1 -1.88 5.66 -0.50 2.68
Type 3 4 4.03 2.00 -1.27 8.39

Figure 3.7: CA10 distribution
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CA10 is observed earliest in Type 2, followed by Type 1 and Type 3. It can be

justified from the HRR trace of Type 2 from Figure 3.3 due to the significant heat

release before the main heat release, it has the earliest CA10. CA10 is significantly

affected by the ignition delay of the in-cylinder fuel and charge. All these three types

of HRR data points had iso-octane injected in the intake port and n- heptane direct

injected in cylinder. Based on the homogeneity of the mixture, the ignition delay

varied. HRR with least ignition delay resulted in Type 2, followed by Type 1 and

Type 3.

3.1.1.4 CA90

In Figure 3.8, the spread of crank angle at 90 percentage of total heat released in

an engine cycle across 3 types of heat release is plotted and Table 3.6 statistical

parameters of the each of the distribution are summarized.

Table 3.6
Table of CA90 distribution

Median Mean Standard deviation Skewness Kurtosis
CAD CAD CAD (-) (-)

Type 1 34 32.41 11.53 -0.76 3.28
Type 2 29 22.4 17.86 -0.18 1.38
Type 3 48 46.59 6.07 -0.42 3.11

CA90 is the earliest with Type 2, followed by Type 1 and the last with Type 3. It

is directly connected to the the pattern of heat release type and since type 3 has
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Figure 3.8: CA90 distribution

significant late heat release, hence the value of CA90 is significantly higher than other

types. Homogeneity and ignition delay of the in-cylinder mixture plays a critical role

in CA90. Combination of these two parameters result in Type 2 having the least CA90

and with Type 3 which predominantly showed diffusion heat release pattern having

the highest CA90.

3.1.1.5 Maximum in-cylinder temperature

In Figure 3.9, the spread of maximum in-cylinder temperature across 3 types of heat

release is plotted and Table 3.7 statistical parameters of the each of the distribution

are summarized.

Higher in-cylinder temperature is observed in Type 1 as the rate of fuel burnt through

the main heat release is highest. It is followed by Type 2 and Type 3. Rapid pressure
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Table 3.7
Table of Maximum in-cylinder temperature distribution

Median Mean Standard deviation Skewness Kurtosis
K K K (-) (-)

Type 1 1812 1780 334 -0.35 2.60
Type 2 1494 1508 225 0.09 2.78
Type 3 1508 1536 241 0.36 2.95

Figure 3.9: Maximum in-cylinder temperature distribution

rise observed in the Type 1 HRR pattern resulted in higher in-cylinder temperature

observed. In case of Type 2 and Type 3, they depict similar range of in-cylinder

temperature as both of these HRR patterns have comparatively slower heat release

rates and wider burn duration.

3.1.1.6 In-cylinder temperature at Start of main heat release

In Figure 3.10, the spread of in-cylinder temperature at the start of main heat release

across 3 types of heat release is plotted and Table 3.8 statistical parameters of the of
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the distribution are summarized.

Table 3.8
Table of in-cylinder temperature distribution at start of main heat release

Median Mean Standard deviation Skewness Kurtosis
K K K (-) (-)

Type 1 703 702 62.8 -0.07 2.74
Type 2 741 725 59.7 -0.06 2.39
Type 3 698 712 91.5 2.67 21.99

Figure 3.10: In-cylinder temperature at Start of Main distribution

With Type 2 having early heat release, it is the highest while comparing in-cylinder

temperatures across start of main, followed by Type 1 and Type 3 together, as both of

them don’t depict any significant early heat release. In case of Type 1, the in-cylinder

temperature arrived at start of main is due to the impact of compression process on

the mixture. Similar, is the case with Type 3 pattern as well. Hence both of them

show lower in-cylinder temperature at start of main. But, in case of Type 2, some of

portion of the combustible mixture is already burnt, resulting in higher in-cylinder

temperature at the start of main heat release.
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3.1.1.7 In-cylinder temperature at End of main heat release

In Figure 3.11, the spread of in-cylinder temperature at the end of main heat release

across 3 types of heat release is plotted and Table 3.9 statistical parameters of the of

the distribution are summarized.

Table 3.9
Table of in-cylinder temperature distribution at end of main heat release

Median Mean Standard deviation Skewness Kurtosis
K K K (-) (-)

Type 1 1781 1758 323 -0.32 2.62
Type 2 1478 1495 220 0.04 2.55
Type 3 1447 1448 189 0.33 3.30

Figure 3.11: In-cylinder temperature at end of Main distribution

With Type 1, most of the fuel is burnt in the main heat release, which results in it

being the highest of all 3 types while comparing in-cylinder temperatures across end

of main. It is followed by Type 2 and Type 3 in close range.At the end of main heat
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release, the complete mixture has undergone a constant volume heat release over a

smaller burn duration in Type 1. It has resulted in higher in-cylinder temperature at

the end of main heat release. Even in case of Type 2, most of the fuel is burnt by end

of main heat release, but since the burn duration is wide the heat losses associated

resulted in lower in-cylinder temperature. In Type 3, CA90 values also indicate that

comparatively less percentage of fuel is burnt by end of main heat release. Hence, it

also resulted in lower in-cylinder temperature.

3.1.1.8 Exhaust gas temperature

As Type 3 traces have significant late heat release and lower heat loss to coolant, the

exhaust gas temperature of these traces will be the highest in comparison with the

other two types. It is followed by Type 1 and Type 2 as neither of them have higher

late heat release percentage.

3.1.1.9 Engine out emissions

Engine exhaust emission data was not available to compare the three combustion

types in this thesis. Here, the expected emission trend is explained by looking at the

data available from the literature. In [55] it is clearly documented that change in

heat release shapes critically impact the engine out emissions. Inferences from the
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articles are discussed below, where comparison is being made between HCCI, PCCI

and RCCI combustion type.

Figure 3.12: Heat release types comparison [55]

The fuel type used for comparison is diesel and gasoline. The classified heat release

rates in the article, HCCI, PCCI and RCCI are similar in nature to the heat release

types being targeted in the major classification HRR types 1, 2 and 3.

Figure 3.13: HC emission [55] Figure 3.14: CO emission [55]

The data in Figure 3.13 and 3.14, shows that unburned HC and CO emissions are
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significantly higher in RCCI owing to crevice flow of low reactive gasoline fuel and

lower combustion temperatures resulting in lower rate of oxidation of HC and CO.

Figure 3.15: NOx emission [55] Figure 3.16: Smoke (FSN) [55]

The data in Figure 3.15, NOx emissions depend strongly upon in-cylinder gas temper-

atures, oxygen availability and residence time available for high temperature gases.

Lower NOx is achieved due to low combustion temperature. In Figure 3.16, HCCI

combustion results in near zero smoke due to higher degree of homogeneity of fuel-air

mixture. The smoke emissions are higher in PCCI. This could be due to fuel wall

wetting because of early direct injection.

Based on the analysis of various combustion parameters in Section 3.1.1, it was evident

that the classification of heat release traces is helpful since it allows for identifying

combustion types that have distinct Pmax, MPRR, CA10, CA90, maximum in-cylinder

temperature, in-cylinder temperature at start and end of main heat release Texh and

emission characteristics. This information can be used for properly controlling engine

combustion. Next, it is desired if the classification can be done automatically. To this
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end, different machine learning methods were applied and investigated by evaluating

their accuracy in classifications. On the classified traces, machine learning technique

of supervised learning approach (Convolutional neural network and decision tree) was

evaluated and the classifier prediction accuracy was compared. Unsupervised learning

was also evaluated on the raw data to evaluate the classification.

3.2 Supervised learning - Convolutional Neural

Network

In Supervised learning approach, convolutional neural network is a subset of artificial

neural networks. Convolutional neural network has been proved effective for image

recognition. In [56] the authors designed CNN, for identifying hand written numbers

and it revolutionised application of CNN for image recognition. 1D CNN is used for

identifying heat release rate traces is also built as a combination of series of layers

to extract the prominent feature of the input and assign it to corresponding output

label.
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3.2.1 CNN Theory

The CNN takes the 1D vector of HRR trace and passes it across a multiple layers of

convolutional, pooling and a fully connected layer to obtain output. Output here is

the probability of five different classification bins which could best represent the HRR

trace. First layer of 1D CNN is a convolutional layer with an activation function, in

which elements from the data, as per kernel dimension is taken and multiplied with

the filter weights. Its summed up as a single element in the feature vector. The kernel

slides all through the input data and elements of the the feature vector are arrived.

Number of filters depicts multiple combinations of weights of the filter, to extract

features from input data. Each of theses combination results in a feature vector. All

the feature vectors together constitute the convolutional layer. An activation function

introduces non linearity in the output and helps in making decisions as depicted in

the Figure 3.17. The change in dimension of input data is depicted in Figure 3.18.

Pooling is used to reduce the spatial dimension of the feature vector, in order to

reduce the computation involved. Since, pooling operates individually on each of

the feature vectors, though maps dimension reduce, the number of maps still remain

same. In the final layer global average pooling is used, where it reduces the complete

dimension of the feature vector in to a single value. A dense layer is a fully connected

neural network layer where in each node on the input is connected to a node on the
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Figure 3.17: Representation of CNN structure

output. A dropout layer is very similar to dense layer except that when the layer is

used, the activation is set to zero for some random nodes, by using this approach over

fitting is being avoided.

Training of neural network is achieved by adjusting the filter values through back

propagation process. During the training process, initially the weights of the filter

are randomly assigned and so the output probabilities also end up as random values

in the forward pass. The error of the output layer is calculated based on Eq. (3.3),

referred to as loss or total error (L). In order to have the predicted and actual label

to be same, the loss has to minimum.

Total error (L) =
∑ 1

2
(T −O)2 (3.3)

Where T refers to target probability and O refers to output probability. By using
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back propagation method, the gradients of the error to weights in the network are

adjusted to minimize error. By using gradient descent, the filter weights are adjusted

in order to minimize. Weight update is carried out based on Eq. (3.4).

W = W i − η
dL

dW
(3.4)

Where, W is the weight, Wi is the initial weight and η is the learning rate of the

network. If the learning rate is set too high it results in large jumps and makes

it difficult to reach the optimised point. The process of forward pass, followed by

loss calculation and backward pass is carried out for 500 iterations predefined in the

coding to get a trained model.

When the same image is fed as input into the trained model, the probability results of

the predicted label would more align with the actual label. Thus, the model has learnt

to process the particular heat release trace to the corresponding label. Through the

process of training only the weights of the filter and connection weights get updated.

The structure of the network in terms of number of filters and filter size, remains

the same. The heat release rate traces are classified into bins with the rule based

algorithm. For supervised learning approach part of the data is fed for training the

model and rest is used to evaluate. Thus, 65% of the data is used for training and

the rest 35% of the data is used for testing the model.
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3.2.2 Application of CNN in HRR shaping

1D CNN model was built and tested using keras.It is a python package. In CNN

approach for classifying the heat release rate traces, filter of length 9 with 32 features

is used and the activation function used is exponential linear unit (ELU). Max pooling

is used in the CNN structure built for heat release trace identification. It helps to

reduce dimension of feature map in patches. The layer at end is connected completely

to its earlier activation layers. Depiction of CNN with convolution and pooling layers,

followed by vectored fully interconnected layer resulting in final classification is shown

in Figure 3.17. The dimensions of data as it is processed through multiple layers of

CNN is detailed in Figure 3.18

Layers on convolution and max pooling extract information from the image with the

final dense and dropout layer leading to the classification bins by avoiding overfitting

of model to training data.

3.2.2.1 Prediction Accuracy of CNN model

By evaluating with the testing data, model prediction accuracy is observed to be

70%. The prediction accuracy of the model is documented by using a confusion

matrix, which compares between the actual and prediction. Diagonal elements of the
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Figure 3.18: Data dimensions through layers of CNN

matrix depict The traces, in which true label from data and predicted label by model

are the same. The higher the diagonal elements, the better is the prediction accuracy

of the model.

3.3 Supervised learning - Decision tree

Decision tree is used as a powerful supervised learning model for classification prob-

lem. It is capable of achieving higher accuracy and is highly interpretable. Decision

tree involves sequential hierarchical decisions which lead to final classification. The

model is created by 2 steps including, induction and pruning. Induction is a process
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Figure 3.19: Prediction summary of CNN

in which a decision tree is built, but the nature of training process results in overfit-

ting issue. Through the process of pruning, unnecessary structures from the decision

tree are removed to prevent overfitting.

3.3.1 Decision tree theory

Decision tree consists of node, an evaluation condition of a certain feature.

Edges/Branch, refers to the outcome of a node, which connects with another node.

And, finally leaf nodes, refer to the final outcome resulting in the class labels. Mov-

ing into details of the decision tree used for classification of heat release rate traces,

recursive binary splitting is used at every node. It splits into two at decision making

node. To calculate accuracy of the split at each node, cost of split is evaluated. For a
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classification problem, cost function (Gini Index Function) gives a perspective of the

the goodness of split by the Eq. (3.7).

G = 1− Σk(pk
2) (3.5)

Where pk is the proportion of class inputs belonging to a particular group. High level

of purity i.e higher value of pk is achieved when the the value of G is lower. The

concept of having a single class segregated out is measured by another parameter,

information gain. So at every split decision tree algorithm evaluates all the features

for the highest value of information gain. Then, it is chosen as a condition for node.

It is depicted by the equation (3.8) below.

Gain(S,A) = Entropy(S)− ΣveV alues(A)
|Sv|
|S|

.Entropy(Sv) (3.6)

Where S refers to set of occurrence, A refers to the feature, Sv is the subset of S when

A equals to a particular classification value and Values(A) refer to all the possible

values of A in the training data. Entropy refers to measure of uncertainty in the

random variable, it also depicts the impurity of the collection. At each node the same

step step is evaluated till all the classes are achieved as leaf node. But, the issue

associated would be overfitting of the model on the training data.
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3.3.2 Application of decision tree in HRR shaping

To apply the decision tree method on HRR data, MATLAB predefined function fitc-

tree with binary recursive approach is used. The function takes 2 major inputs,

with one being the features and other being labels of classification. So in HRR clas-

sification, the features considered are the engine control input parameters (engine

speed,start of injection of DI fuel, total fuel quantity, pre-mixed ratio and intake

manifold temperature. The output is the true labels for traces identified initially for

training the model. The Figure 3.20 shows the binary recursive classification arrived

at by the decision tree algorithm based on the features of the data. The decision tree

approach is prone to overfitting issue, hence the number of leaf nodes were restricted

to a maximum of 12, to avoid overfitting issue.

3.3.2.1 Prediction Accuracy of decision tree model

Once the decision tree model is determined, testing data is evaluated. The summary

of the true label and predicted is shown in Figure 3.21. The prediction accuracy of

the model is 74.5%, with diagonal elements signifying the predictions tallying with

the true label.
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Figure 3.20: Decision tree for the engine HRR classification
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Figure 3.21: Prediction summary of Decision tree

3.4 Unsupervised learning - k-means clustering

In unsupervised learning approach, k-means clustering is used to solve a classification

problem. The parent algorithm used for classification of HRR traces is discussed in

Section 3.2. It is based on multiple thresholds. In order to eliminate bias introduced

by thresholds in training data, an unsupervised approach is being evaluated.

3.4.1 k-means theory

k-means clustering is a popular technique for clustering problem, where centroid

would represent data point in a 2-dimensional data frame. In order to classify the
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centroid would represent a complete HRR trace. k-means clustering starts with ran-

dom initialisation of centroids, c1,c2,...ck, of heat release rate data. Since, traces are

intended to be segregated into five bins, k is initialised to 5. Iteration of following

two steps is done, till the centroids converge.

1. In this step each data point based on them minimum euclidean distance is

assigned to the nearest center.

argminciεC dist(x− ci)2 (3.7)

ci is the centroid belonging to the the collection of Centroids C and each data

point x is being assigned to the cluster based on euclidean distance calculated

by dist().

2. In the second step of the sequence, centroid is recalculated as the mean of data

points assigned to its cluster. The set of data points assigned to ith cluster is

Si.

ci =
1

|Si|
∗ ΣxiεSi

xi (3.8)

Algorithm is iterated until the sum of euclidean distance has become minimum and

no data points switch between clusters. A similar approach is carried out through the

complete length of the heat release rate vector to identify the centroid for the cluster
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of traces.

3.4.2 Application of k-means in HRR shaping

k-means clustering approach was used to classify data into 5 bins. Since, each trace is

observed to have different magnitude peak heat release rate it affected the clustering

pattern. The traces were normalised individually to range from 0 to 1, so that traces

could be clustered on its pattern of heat release rate rather than magnitude of peak.

Centroids are chosen randomly at the beginning of the classification and the euclidean

distance of each trace from the centroid is calculated. Traces with the least distance

from the centroid are clustered in a bin. From the clustered traces, centroid is recal-

culated. The process is repeated until the centroid and clustered traces remain same

after consecutive iterations.

Figure 3.22 depicts the clustered traces, arrived by K-means in 4 different bins.

3.4.2.1 Drawbacks of k-means classification

With k-means clustering approach, two major drawbacks were observed. With mul-

tiple iterations of the clustering, alignment of clustered traces and the centroid of
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Figure 3.22: k-means classification of traces

the bins changed. Due to this, it became difficult to assign a bin to a specific pat-

tern of heat release rate. Second drawback was that, between the clustered traces in

bins, it was difficult to identify distinct differences in heat release rate pattern. This

apparently made the classification difficult to justify unique characteristics of each

bin.

Due to these drawbacks of k-means, supervised learning approach is preferred. First

preference is Decision tree approach leads to a prediction accuracy of 74.5%. Decision

tree is built as a function of key operating conditions of engine and its control inputs.
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The CNN model leads to an prediction accuracy of 70%. CNN model is built as a

function of heat release rate traces from the engine. Use of Machine learning based

approach also facilitates in means to learn from the engine in actual operation scenario

as well. It is discussed further in the future work section on an idea for implementation

of control structure of the above discussed machine learning based models.

Rule based technique, was used to classify HRR traces and classified traces were

used in supervised learning approach to train and evaluate the model. With rule

based classification, distinct characteristics of grouped traces are also observed in

Section 3.1.1. Rule based classified traces are used for identification of scheduling

parameters Chapter 4.
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Chapter 4

Identification of combustion

classifiers

LTC engines heat release rate pattern changes with change in the operating condi-

tions i.e engine speed, intake manifold pressure and temperature) and manipulated

variables (fuel quantity, SOI and PR). Hence, it is evident that heat release pattern

variation is in a multi dimensional data frame. To control complex combustion heat

release in LTC engines, one can use linear parameter varying (LPV) representation

to capture non-linear LTC engine behavior in LPV state space model that can be

used for combustion control. Building up the result in Chapter 3, an LPV model is

developed for LTC engine control. Thus, we need to identify a scheduling parameters

of LPV matrices that can represent the non-linearity of the LTC engine as a function
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of engine conditions and manipulated variables. With proper selection of a scheduling

variables details of change in HRR pattern of the engine can be decoded.

4.1 Scheduling parameter identification

The multi dimensional heat release data frame has to be reduced to a one or two

dimensional space so that identified parameter can be used as a scheduling variable

in the LS-SVM code for building LPV matrices. To this end, principal component

analysis (PCA) and multi variable linear regression approach are evaluated to re-

duce higher dimensions of the data and parameterize the equation with identified

dimensions .

4.1.1 Principal Component Analysis (PCA)

Principal component analysis is the procedure of dimension reduction of the large

data set into a small one which still holds most of the information from the original

data. It is achieved by translating the information from correlated input variables to

principal components.

The first principle component is identified such that it accounts for the maximum

variability contained in the data; thus the subsequent principle components are chosen
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such that it could account for rest of the variability in the data set. The principal

components are arrived as a linear combination of observed variables weighted by the

corresponding eigen values. Values are represented in rotational matrix, which can be

interpreted as the rotation of data in order to achieve projection with greatest variance

along the axis of first principal component. Subsequent principal axes are chosen

such that its geometrically orthogonal.Principal axis identification could be confused

with linear regression. The difference is, PCA works to minimize the perpendicular

distance between the principal component axis and the data point. But, in linear

regression the distance between the predicted and actual value of the data point is

minimized.

Looking into the mathematics behind PCA, data is centered by calculating the mean.

The covariance matrix of the data is calculated as the sum of the product of the co-

ordinate based on the Equation 4.1, with n as the number of observations and X and

Y are set of 2 data columns.

cov(X, Y ) =
1

n− 1
xΣn

i=1(Xi − x̄)(Yi − ȳ) (4.1)

Where X refers to data representing operating conditions i.e engine speed, intake

manifold pressure and temperature) and manipulated variables (fuel quantity, SOI

and PR) and Y refers to the classified HRR traces. PCA is evaluated in R Studio, a

statistical software using prcomp function and the rotational matrix with eigen values
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and the variability associated with each of the principle axes is shown in Table 4.1

Table 4.1
Output of PCA on HRR classifier identification

Principal axis Parameter name
Proportion of
variance (%)

PC1 Start of Injection 26.4
PC2 Premixed ratio 23.5
PC3 Fuel quantity 20.3
PC4 Engine speed 16.5
PC5 Intake manifold temperature 9.4
PC6 Intake manifold pressure 3.9

Even though PCA is a powerful tool, it comes with the limitation of missing on non-

linear data patterns. Since, engine data is widely known for its non linear behaviour,

the tool is applied on an evaluation basis to look at the outcome and understand the

variability explained by the technique across different principal axis.

Based on the results of PCA, its evident that start of injection, premixed ratio, fuel

quantity and engine speed have a significant impact in the change of heat release

pattern in data. The variability is potentially spread across, more than 2 axis pa-

rameters. Hence, a method of multivariable linear regression is also looked into as a

potential option for grouping the significant engine inputs arrived through PCA into

regression equation.
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4.1.2 Multivariable linear regression

Multivariable linear regression is a technique to build a model as a function of two

or more explanatory variables and a response variable, by fitting a linear equation

on test data. For a model with p explanatory variables, x1, x2, x3, ...,xp and y as

response variable, the model equation could be represented as

yi = β0 + β1.xi1 + β2.xi2 + ...+ βp.xip + εi

for i=1,2,3,..n

(4.2)

Where n is the number of observations in data. The fit of the model is governed

by the coefficients (β0, β1, β2,.., βp) of the explanatory variables and ε depicts the

residual term. The residual term accounts for the deviation of the fitted value to the

actual observed value of the response variable.

Most of the occasions the coefficients are computed by statistical software. In theory,

the best line fitting data is evaluated by using a cost function. Cost function is a

sum of squares of vertical distance from each data point to the predicted value by the

fitted line divided by number of observations. These deviations are squared, so that

the positive and negative differences don’t cancel out each other. The cost function
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is described in Equation 4.3.

Mean Square Error (MSE) =
1

n
Σ
n

i=1
(y − yi)2 (4.3)

Where y is observed value and yi is the predicted value. With the minimisation of

cost function, the coefficients of the best fit line are arrived. With this approach,

significant engine input parameters could be formulated into a single equation.

4.1.2.1 Application of multi variable linear regression

The classification of heat release traces is based on fraction of early HR and fraction

of late HR. With PCA, the parameters with greater influence on the heat release

classification is identified as start of injection, premixed ratio,fuel quantity and en-

gine speed. As a combination of these parameters, by using regression approach the

fraction of early HR and fraction of late HR are modelled using the identified engine

parameters.

Multiple combinations were evaluated to model fraction of early HR and fraction of

late HR. By using the R- square value the quality of the model is evaluated. In the

Table 4.2, different combinations evaluated are listed.
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For all the combinations after modelling, the modelled fraction of early HR and frac-

tion of late HR are compared with the experimental data and classification. The

accuracy of classification is also evaluated by calculating the prediction accuracy.

Upon evaluating all the above mentioned combinations, it was observed that the fifth

combination with start of injection, premixed ratio, engine speed and fuel quantity

was observed to have significant R2 value and also resulted in better prediction accu-

racy in the LPV - Support Vector Machine based system identification discussed in

Chapter 5.

Fraction of early HR is formulated as

-13.2 +0.012 x SOI -0.47 x PR +0.03 x Speed +0.2 x FQ +0.0026 x SOI2 +

0.013 x PR2 -2.2 x 10−5 x Speed2 -7.2 x 10−3 x FQ2 -2.4 x 10−3 x SOI x PR +

1.8 x 10−4 x SOI x Speed -3.8 x 10−3 x SOI x FQ -1.2 x 10−4 x Speed x FQ

-1.1 x 10−5 x Speed x PR +4.5 x 10−3 x FQ x PR -1.9 x 10−5 x SOI3

-1.2 x 10−4 x PR3 +3.6 x 10−9 x Speed3 +1.0 x 10−4 x FQ3

Fraction of late HR is formulated as

-16.5 +0.04 x SOI +0.08 x PR -0.04 x Speed +4.5 x FQ -0.025 x SOI2

-3.2 x 10−03 x PR2 +4.9 x 10−05 x Speed2 -1.6 x 10−01 x FQ2 +

1.0 x 10−05 x SOI x PR +5.0 x 10−04 x SOI x Speed -1.5 x 10−02 x SOI x FQ +

2.7 x 10−04 x Speed x FQ -3.6 x 10−04 x Speed x PR -7.3 x 10−03 x FQ x PR +
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1.6 x 10−04 x SOI3 +4.5 x 10−05 x PR3 -1.6 x 10−08 x Speed3 +1.7 x 10−03 x FQ3

The classification of heat release types with experimental values of fraction of early

HR and fraction of late HR is shown in Figure 4.1.

Figure 4.1: Plot of experimental data

With modelled fraction of early HR and fraction of late HR as the scheduling pa-

rameter, the identification of LPV matrices for LTC engine is covered in Chapter

5.
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Chapter 5

LPV model Identification with

combustion classifiers

Combustion classifiers identified in Chapter 4 is used as scheduling parameter to

build a LPV model of the LTC engine. By using combustion classifiers as scheduling

variable of LPV model, the information of combustion type is inbuilt into LTC engine

model. Support Vector Machine is used for identification of LPV matrices and is

discussed in Section 5.1
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5.1 Support Vector Machine (SVM)

Support vector machine(SVM) is a supervised machine learning approach. It is used

both as a classification and regression algorithm. SVM for classification, identify

parameters of a hyper plane (line on a 2-dimensional frame) that result in classification

of data. In case of regression, it retains all the features in the data and comes up with

a system equation from training data with maximum margin and minimum error.

Approach of support vector machine is used to build LPV state space matrix as a

function of combustion classifier as scheduling parameter to model the RCCI engine.

5.1.1 LS-SVM system identification

SVM regression approach is used to identify the state space matrices of the engine

model. LS SVM state space matrix at discrete instant of time k, can be represented

as [50]

Xk+1 = A(pk)Xk +B(pk)Uk +K(pk)ek

Yk = C(pk)Xk +D(pk)Uk + ek

(5.1)
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where X represents states of the system, Y is measurable output of the system

and U refers to the manipulated variable for controlling the system. p repre-

sents the scheduling parameter and e represents stochastic white noise associated.

A(pk),B(pk),C(pk),D(pk) and K(pk) represent the the state space matrices of the

system and vary as a function of the parameter pk. Equation 5.1 is restructured as

ek = Yk − C(pk)Xk −D(pk)Uk (5.2)

Substituting back into Equation 5.1

Xk+1 = A(pk)Xk +B(pk)Uk +K(pk)Yk −K(pk)C(pk)Xk −K(pk)D(pk)Uk

Xk+1 = (A(pk)−K(pk)C(pk))Xk + (B(pk)−K(pk)D(pk))Uk +K(pk)Yk

(5.3)

Ā = A(pk)−K(pk)C(pk)

B̄ = B(pk)−K(pk)D(pk)

(5.4)

So, Equation 5.1 can be rewritten as

Xk+1 = Ā(pk)Xk + B̄(pk)Uk +K(pk)Yk

Yk = C(pk)Xk +D(pk)Uk + ek

(5.5)

The plant matrices Ā(pk),B̄(pk),C(pk),D(pk) and K(pk) are computed using support

vector machine approach. By taking the training data into SVM framework, the plant

matrices are transformed using weighing matrices(W ), regression vectors or features
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of the data (φ) as shown in Equation 5.6

Xk+1 = W1φ1(pk) +W2φ2(pk) +W3φ3(pk) + εk

Yk = W4φ4(pk) +W5φ5(pk) + ζk

(5.6)

where ε and ζ represent the residual error at the instant k. Equation 5.6 is deduced

further by representing the regression vector(φ) as a function of basis function (Φ)

Xk+1 = W1Φ1(pk)Xk +W2Φ2(pk)Uk +W3Φ3(pk)Yk + εk

Yk = W4Φ4(pk)Xk +W5Φ5(pk)Uk + ζk

(5.7)

In order to identify the state space matrices the weighting matrices have to be deter-

mined. To optimise the estimation,least square optimisation method is chosen and

the cost function(J) in shown in Equation (5.8)

J =
1

2
Σ5
i=1||Wi||2F +

1

2
ΣN
k=1(εTk Γεk + ζTk ψζk) (5.8)

where Γ and ζ represent the diagonal regularisation parameters used on the the

residual errors to avoid overfitting of the training data. ||x||F is the Forbenius norm.

Cost function is optimised by using Lagrange optima identification. The equation
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with Lagrangian multipliers are shown

L(W1,W2,W3,W4,W5, ε, ζ, α, β) = J − (ΣN
j=1α

T
j (W1Φ1(pj)Xj +W2Φ2(pj)Uj+

W3Φ3(pj)Yj) + εj −Xj+1)− ΣN
j=1β

T
j (W4Φ4(pj)Xj+

W5Φ5(pj)Uj + ζj − Yj)

(5.9)

αj and βj are Lagrange multipliers at the instant j. Optimum solution is arrived by

taking partial derivative of the Equation 5.9

∂L

∂W1

= 0, =⇒ W1 = ΣN
j=1αjΦ

T
1 (pj)X

T
j

∂L

∂W2

= 0, =⇒ W2 = ΣN
j=1αjΦ

T
2 (pj)U

T
j

∂L

∂W3

= 0, =⇒ W3 = ΣN
j=1αjΦ

T
3 (pj)Y

T
j

∂L

∂W4

= 0, =⇒ W4 = ΣN
j=1βjΦ

T
4 (pj)X

T
j

∂L

∂W5

= 0, =⇒ W5 = ΣN
j=1βjΦ

T
5 (pj)U

T
j

∂L

∂αj
= 0, =⇒ εj = Xj+1 −W1ΦT

1 (pj)X
T
j −W2ΦT

2 (pj)U
T
j −W3ΦT

3 (pj)Y
T
j

∂L

∂βj
= 0, =⇒ ζj = Yj −W4ΦT

4 (pj)X
T
j −W5ΦT

5 (pj)U
T
j

∂L

∂εj
= 0, =⇒ αj = Γεj

∂L

∂ζj
= 0, =⇒ βj = ψζj

(5.10)
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Substituting back in Equation 5.7

Xk+1 = ΣN
j=1αjX

T
j (Φ1(pj)

T )(Φ1(pk))Xk + ΣN
j=1αjX

T
j (Φ2(pj)

T )(Φ2(pk))Uk+

ΣN
j=1αjX

T
j (Φ3(pj)

T )Yk(Φ3(pk)) + Γ−1αk

Yk = ΣN
j=1βjX

T
j (Φ4(pj)

T )Xk(Φ4(pk)) + ΣN
j=1βjX

T
j (Φ5(pj)

T )Uk(Φ5(pk)) + ψ−1βk

(5.11)

By applying the kernel trick to reduce (Φ1(pj)
T ).(Φ1(pk)) with K−1(pj, pk). By sub-

stituting results from Equation 5.10 in Equation 5.11, it can be rewritten as

Xk+1 = αΩ + Γ−1α

Yk = βΞ + +ψ−1β

(5.12)

Ω and Ξ represent an array of kernel or grammian matrices. Deriving from the

Equation 5.12

vec(α) = (IN ⊗ Γ−1 + ΩT Inx)
−1vec(Xk+1)

vec(β) = (IN ⊗Ψ−1 + ΞT Iny)
−1vec(Yk)

(5.13)

where ⊗ represent the Kronecker product, Inx,Iny,IN all represent the identity matri-

ces and vec refers to vectorization function.
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By applying kernel trick and α and β identified, Equation 5.11 is restructured as

Xk+1 = ΣN
j=1αjX

T
j k

−1(pj, pk)Xk + ΣN
j=1αjU

T
j k

−2(pj, pk)Uk+

ΣN
j=1αjY

T
j ()k−3(pj, pk)Yk + Γ−1αk

Yk = ΣN
j=1βjX

T
j (k−4(pj, pk))Xk + ΣN

j=1βjU
T
j k

−5(pj, pk)Uk + ψ−1βk

(5.14)

From the Equation 5.15, the state space matrices could be deduced

Ā(pk) = ΣN
k=1αkX

T
k k

−1(pk, .)

B̄(pk) = ΣN
k=1αkU

T
k k

−2(pk, .)

K(pk) = ΣN
k=1αkY

T
k k

−3(pk, .)

C(pk) = ΣN
k=1βkX

T
k k

−3(pk, .)

D(pk) = ΣN
k=1βkU

T
k k

−3(pk, .)

(5.15)

5.1.2 Test data

To identify LPV state space model for the lTC engine, transient engine data is re-

quired. Transient engine data was collected from the experimentally validated LTC

engine model [4, 5] by varying operating conditions and the control inputs to the

engine. Start of injection (SOI) of the DI fuel, fuel quantity (FQ) and premixed fuel

ratio (PR) are the engine manipulated variables changed during the test. Engine
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speed was kept to constant 1000rpm.

5.1.3 LTC engine modelling

Using the LS-SVM approach mentioned in Section 5.1.1, Combustion parameters

prediction by coming up with linear parametric varying system matrices is discussed

in this subsection.

States of the system (X) are
[
CA50 MPRR Tsoc Psoc IMEP

]
T

Manipulated Variables of the system (U) are
[
SOI FQ PR

]
T

Scheduling parameter of the system (p) is
[
p1 p2

]
T ,

where p1 is fraction of early HR and p2 is fraction of late HR

Output of the system (Y) is
[
CA50 MPRR IMEP

]
T

Hyper parameters to be optimized by the LS-SVM algorithm are

† Kernel functions associated with each of the system matrix A, B and C

† Sigma functions associated with each of the system matrix A, B and C

† Multiplier associated with each of the system matrix A, B and C
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† Regularisation parameters associated with each of the 5 states of the system

† Regularisation parameter associated with each of the 3 outputs of the system.

5.1.3.1 Model identification results

Identification of hyper parameters associated with LTC engine model with LPV-SVM

approach was accomplished by using the Mode Frontier Optimisation Tool. Details

on the tool are discussed on Appendix C.

Figure 5.1: Manipulated variables of the LTC engine

In Figure 5.1 the manipulated variables of the LTC engine are shown. The range of

manipulated variables also define the training range of manipulated variables of the

LTC engine model. Other operating parameters like engine speed at 1000 rpm, intake

temperature at 60◦C and intake pressure at 96.5 kPa are maintained at a constant

value.

80



Figure 5.2: States of the LTC engine

In Figure 5.2 the states of the LTC engine are shown. The states are estimated by

the experimentally validated LTC engine model.

Figure 5.3: Scheduling parameters of the LTC engine

In Figure 5.3 the scheduling parameters of the LTC engine are shown. The range of

both the scheduling parameters cover all three combustion types of interest.
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Figure 5.4: Comparison of measured and modelled output of LTC engine

In Figure 5.4 the comparison of prediction and measured values of the LTC engine

are shown. 35% of the data used for testing is shown in the plot. The LPV model

is able to predict CA50, MPRR and IMEP with a RMSE of 0.4 CAD, 0.5 bar/CAD

and 9.6 kPa. Error observed could be associated to the measurement uncertainty

associated with experimental data used to build the model and prediction errors of

the experimentally validated LTC engine. Additionally, the states Psoc and Tsoc are

internally calculated since these parameters are very difficult to be measured in the

engine, which can also introduce error int he output.
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5.1.3.2 System matrices

With Mode Frontier, the hyper parameters of the state space model are identified.

The identified hyper parameters summary is listed in Appendix D. Variation in the

coefficients of the the system matrices for the change in the scheduling parameter

are depicted in the figures below 5.5, 5.6 and 5.7. The variation in the elements of

the matrices depict the non-linearity of the LTC engine captured into the state space

model.

Figure 5.5: Ā(p1k,p2k) matrix elements as a function of scheduling param-
eters
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Figure 5.6: B̄(p1k,p2k) matrix elements as a function of scheduling param-
eters

Figure 5.7: C(p1k,p2k) matrix elements as a function of scheduling param-
eters
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Chapter 6

Control of combustion phasing and

IMEP with MPRR limitation

This chapter centers on system, identification of a multi- input multi- output (MIMO)

state space model for the LTC engine and design of an adaptive MPC for control of

CA50 and IMEP while limiting maximum pressure rise rate.

6.1 LPV identification

System identification by using LPV- SVM approach was discussed in Chapter 5.
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6.1.1 Evaluation of model accuracy

To evaluate the validity of model prediction across all combinations of manipulated

variables, a comparison is carried out with the parent LTC engine physics based model

from the research work [4]. This helped to identify specific zones where the predicted

model accuracy is acceptable for the LTC engine control.

All three manipulated variables, SOI is varied from 0 to 80 bTDC, injected fuel

quantity is varied from 5 to 55 mg/cycle and PR is varied from 0 to 60 to evaluate

prediction accuracy of the LPV-SVM model of LTC engine. The predicted values of

LPV-SVM model is compared with the physics based plant model. Since, LPV-SVM

model is a data-driven model it is observed to be valid only across the trained region

and it is listed in Table 6.2

Table 6.1
Valid operating region of LPV-SVM model of LTC engine

Manipulated Variable Range
Start of Injection (32 - 45) CAD bTDC

Fuel quantity (18- 27) mg/cycle
Premixed ratio (0-40) %

The Figures 6.1 to 6.3 show the comparison between LPV -SVM model of the LTC

engine and the physics based plant of the engine as a function of scheduling parameters

(modelled values of fraction of early HR and fraction of late HR).
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Figure 6.1: Predicted CA50 from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter p1 and p2

Comparison between figures 6.1(a) and 6.1(b) shows that the same trend is followed

though prediction variability is observed in CA50 prediction.

Figure 6.2: Predicted MPRR from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter p1 and p2

Comparison between figures 6.2(a) and 6.2(b) shows that the MPRR prediction is in
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the similar range as that of the RCCI physical model.

Figure 6.3: Predicted IMEP from (a) LPV-SVM model and (b) physics
based plant model as function of scheduling parameter p1 and p2

Comparison between Figures 6.3(a) and 6.3(b) shows that the IMEP prediction is

very close between the LPV-SVM model and RCCI physical model as the prediction

accuracy of LPV-SVM model was observed high for IMEP.

6.2 Model Predictive Control

An MPC controller is designed for combustion control of the LTC engine. The MPC

uses the LPV model from Section 6.2 to predict future outputs of the LTC engine and

optimise the manipulated variables based on the optimisation of cost function. MPC

Toolbox of Matlab is used as part of the design. In LPV-SVM model of the the LTC
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engine, at any instant of operation the system matrices are derived as a function of

p1 (fraction of early HR) and p2 (fraction of late HR).

6.2.1 Design

Prediction of states and solution to optimisation problem is only arrived for certain

future time steps. The number of future steps in which the output of the system is

predicted is called prediction horizon and the manipulated variables of the system

are optimised for a certain number of steps called control horizon. It is a quadratic

optimisation at each of the control step. Hence, control horizon and prediction horizon

are selected as 20 and 10 engine cycles, respectively.

The solution of quadratic problem (QP) optimisation results in the identification

of manipulated variables of the system. It includes a cost function, whose value is

minimised by the controller. Optimisation is constrained by constraints, which are the

bounds on the manipulated variables, their rate of change, states and outputs of the

system. This results in a realistic and optimal solution. A solution for manipulated

variables minimises the cost function and also fulfil the requirements of constraints.

Cost function is built as a sum of three terms in the current design.

J(zk) = Jy(zk) + J∆u(zk) + Jε(zk) (6.1)
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where zk is the QP decision over the control interval

k is current control interval

Jy refers to output reference tracking

J∆u refers to manipulated variable tracking

Jε refers to constraint violation

Output reference tracking is achieved by the controller cost function.

Jy(zk) =

ny∑
j=1

p∑
i=1

{
wyi,j
syj

[rj(k + i|k)− yj(k + i|k)]

}2

(6.2)

In the equation, p represents the prediction horizon,ny refers to number of plant

outputs, zk is the decision of the QP.

zTk =
[
u(k|k)T u(k + 1|k)T u(k + p− 1|k)T εk

]
(6.3)

rj(k + i|k) and yj(k + i|k) refers to the reference and predicted value of the jth plant

output at the ith step of the prediction horizon. syj refers to the scale factor for the

jth plant output and wy
i,j is the tuning weight for the jth plant output at the ith step

of the prediction horizon.

The second scalar parameter used by the controller in the cost function to keep the
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rate of change of manipulated variables of the system is

J∆u(zk) =
nu∑
j=1

p−1∑
i=0

{
w∆u

i,j

suj
[uj(k + i|k)− ujtarget(k + i|k))]

}2

(6.4)

Where, nu refers to the number of manipulated variables. suj refers to the scale factor

for the jth plant output and w∆u
i,j is the tuning weight for the jth plant manipulated

variable rate of change at the ith step of the prediction horizon.

The designed controller employs the parameter Jε to measure the violation of con-

straints.

Jε(zk) = ρεε
2
k (6.5)

Where, εk is the slack variable at control interval k and ρ represents the penalty

weight associated to it. The maximum and minimum limit set on the plant outputs,

manipulated variables and the rate of change of manipulated variables, predominantly

constitute the explicit constraints associated with the MPC,

yj,min(i)

syj
− εkV y

j,min(i) ≤ yj(k + i|k)

syj
≤ yj,max(i))

syj
+ εkV

y
j,max(i),

i = 1 : p, j = 1 : nyz

(6.6)
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uj,min(i)

suj
− εkV u

j,min(i) ≤ uj(k + i− I|k)

suj
≤ uj,max(i))

suj
+ εkV

u
j,max(i),

i = 1 : p, j = 1 : nu

(6.7)

∆uj,min(i)

suj
− εkV ∆u

j,min(i) ≤ ∆uj(k + i− I|k)

suj
≤ ∆uj,max(i))

suj
+ εkV

∆u
j,max(i),

i = 1 : p, j = 1 : nu

(6.8)

Where, yj,min(i) and yj,max(i) refer to the min and max bounds set on the jih outputs of

the system at the ith step of the prediction horizon. Similarly, uj,min(i) and uj,max(i)

refer to themin and max bounds set on the manipulated variables and ∆uj,min(i)

and ∆uj,max(i) refer to the min and max bounds set on the rate of change of the

manipulated variable.

6.2.2 Application

Adaptive MPC is used to track the output, CA50 and IMEP of the system and limit

MPRR by using SOI, fuel quantity and PR as manipulated variables. The control

time step is set to 1 engine cycle. The prediction horizon and control horizon are set

to 20 and 10 engine cycles.
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Figure 6.4: Schematic of the designed LPV-MPC controller for the LTC
engine
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6.2.2.1 Control structure

Control structure of the desired adaptive MPC controller is shown in Figure-6.4.

Scheduling parameters (p1, p2) are calculated from engine speed, start of injection,

fuel quantity injected and premixed ratio. Based on the scheduling parameters, LPV

matrices of the LTC engine can be identified. These matrices are used by MPC

to predict performance of the LTC engine. CA50, IMEP and MPRR constraint are

fed to the MPC controller. The LTC physics based plant is fed with manipulated

variables (start of injection, fuel quantity injected and premixed ratio) at each engine

cycle. Kalman filter is used in the schematic to predict the unmeasured states of the

physics based plant. The CA50 and IMEP reference on implementation in an engine,

is derived from the engine speed and torque request to the electronic control module

based on driver operation. The connection of engine speed and torque request are

depicted in dotted line as its not set up in the current model, but are depicted in the

control structure to show model’s relevance to real life operation of engine.

The weights of the allowed rate of change of manipulated variables and output are

tuned to achieve required tracking performance. The weights of the rate of change of

SOI is 0.3, fueling quantity is 0.5 and PR is 0.05. With the setting, PR is the quickest

lever to be changed followed by SOI and fueling quantity.
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Table 6.2
Summary of constraints applied on manipulated variables and outputs of

the adaptive MPC

Variable Minimum constraint Maximum constraint
Start of Injection 32 CAD bTDC 45 CAD bTDC

Fuel quantity 18 mg/cycle 27 mg/cycle
Premixed ratio 0% 40%

CA50 -10 CAD aTDC% 30 CAD aTDC%
IMEP 500 kPa% 1000 kPa%
MPRR 0% 6%

6.2.2.2 Tracking Performance

The tracking performance of the designed controller to follow the desired change of

CA50 from 5 to 12 CAD aTDC and IMEP from 525 kPa to 650 kPa. As the system

tracks the change in output by holding MPRR less than 6bar/CAD. The change in

manipulated variables and scheduling parameter of the LPV system is also evaluated

in the various cases depicted in Figures from 6.5 to 6.9.

In Figure 6.5, the tracking ability of designed controller to follow the desired change

in both CA50 and IMEP is evaluated. Tracking with RMSE of 1.2 CAD for CA50,

IMEP with a RMSE of 6.2 kPa and MPRR is limited to 6.1 bar/CAD.

In Figure 6.6, the tracking ability of designed controller of a LTC engine for a change in

both IMEP and CA50 while the restrictions on MPRR being relaxed to 8bar/CAD.

Tracking with RMSE of 1 CAD for CA50, IMEP with RMSE of 10.3 kPa and the

95



maximum pressure rise rate is limited to 6.3 bar/CAD. Also, with relaxed MPRR,

CA50 tracking performance improved significantly but the error associated with IMEP

tracking increased.

In Figure 6.7, the tracking ability of the designed controller to follow a change in

outputs of LTC engine with measurement uncertainty is evaluated. The measurement

uncertainty from Table 2.5 are added to the outputs of the LTC engine physics based

plant, to simulate measurement uncertainty. Tracking with RMSE of 2.2 CAD for

CA50, RMSE of 17.3 kPa for IMEP and the maximum pressure rise rate is observed to

be 6.5 bar/CAD. Error in tracking had gone up due to uncertainty in the outputs. In

83rd engine cycle, as all the manipulated variables saturate a violation in the MPRR

is observed. The controller comes into action to bring the MPRR within limit in

subsequent cycles.

To compare the effect of selecting proper scheduling variables, the results from this

thesis are compared with those in [5]. To this end, Figure 6.8 is added in which

LTC engine tracking capability achieved is achieved by using only PR as scheduling

parameter. Tracking was achieved only by using SOI and fueling quantity as the

manipulated variables of the LTC engine. It is evident that the maximum tracking

capability for IMEP was limited due to CA50 tracking errors when IMEP ≥ 650kPa.

In Figure 6.9, the tracking ability of LTC engine to follow the change in IMEP set to

690 kPa with constraints on MPRR set at 6bar/CAD using new scheduling variables
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and also, using PR as the additional manipulated variable. Tracking with RMSE of

1.1 deg for CA50, IMEP with RMSE of 8.6 kPa and MPRR limited to 6 bar/CAD

was achieved. SOI and PR have almost saturated to its maximum in order to achieve

the target. Reduction in RMSE of CA50 and IMEP is seen on comparison of Figure

6.8 and Figure 6.9.

In Figure 6.10, the tracking ability of the designed controller of LTC engine with

CA50 target raised to 14 CAD aTDC while constraints on MPRR set to 6bar/CAD

is shown. Tracking is achieved with RMSE of 1.7 CAD for CA50, IMEP with RMSE

of 5.8 kPa and the maximum pressure rise rate is limited to 6.2 bar/CAD. PR has

saturated to 40 in order to achieve the target. The motivation for evaluating controller

ability in tracking delayed CA50, comes from the result of work carried out in [57].

It shows that retarded combustion phasing shows benefit of smooth heat release rate

and reduced MPRR.
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Figure 6.5: Tracking capability of designed controller to follow desired
CA50 and IMEP with MPRR limit is 6 bar/CAD
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Figure 6.6: Tracking capability of designed controller to follow desired
CA50 and IMEP. The MPRR limit is 8 bar/CAD
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Figure 6.7: Tracking capability of designed controller to follow desired
CA50 and IMEP along with measurement uncertainty added in measured
outputs of LTC engine. The MPRR limit is 6 bar/CAD
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Figure 6.8: Tracking capability achieved for CA50 and IMEP with PR as
scheduling parameter [49]. MPRR limit is 5.8 bar/CAD
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Figure 6.9: Maximum tracking capability achieved for IMEP, when in-
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Figure 6.10: Maximum tracking capability achieved for CA50,when in-
creased to 14 CAD aTDC and MPRR limit is 6 bar/CAD
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this research work, classification of heat release rate traces of LTC engine was

developed. Significant engine inputs leading to different HR shapes were identified.

The parameters fraction of early HR and fraction of late HR used for classification

were modelled using significant engine inputs. The modelled fraction of early HR and

fraction of late HR were used as scheduling variables into the LPV-SVM matrices of

the LTC engine model. This model was used to build MPC to control LTC engine.

Major contributions/ findings from this research work are presented below.
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† Heat release rate data from the experimental study conducted on the LTC

engine were analysed. A rule based classification was developed to classify

HRR traces into three significant combustion pattern similar to HCCI, PCCI

and RCCI. Two transition bins were also identified to create accommodate

traces transitioning between the significant combustion pattern.

† Characteristics of the distribution of classified traces were studied. Distribu-

tion of combustion parameters like, peak cylinder pressure, maximum pressure

rise rate, CA10, CA90, maximum in-cylinder temperature at start and end of

main heat release were analysed. It was observed that combustion parameters

had a distinct characteristics across three significant classification bins and the

information from these parameters could be further used for controlling the

engine.

† As a next step to classify the HRR traces automatically, supervised and un-

supervised techniques of machine techniques were applied. With unsupervised

approach, it was evident that the classified clusters didn’t clearly represent dif-

ferent combustion patterns. On comparison between CNN and decision tree, it

was observed that decision tree prediction with higher accuracy of 74.5%.

† In order to model a LPV matrices of the LTC engine, scheduling parameter of

LPV matrices were identified. PCA was used to identify the significant LTC

engine inputs. SOI, PR ,fuel quantity and engine speed are the significant inputs

of engine combustion. Linear regression was used to model, fraction of early
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HR and fraction of late HR as a function of these significant engine inputs. The

combination of modelled fraction of early HR and fraction of late HR which

resulted in highest R2 value was selected as scheduling parameters.

† Using Support Vector Machine(SVM) approach, a data driven LPV control

model of the LTC engine was developed. The LPV model used modelled fraction

of early HR and fraction of late HR as the scheduling parameters. The model

was validated with the data generated by the detailed LTC engine dynamic

model. It was able to predict CA50, IMEP and MPRR with RMSE of 0.4 CAD,

16.6 kPa and 0.4 bar/CAD.

† MPC was built to control the LPV model of the LTC engine. It was developed

with the prediction horizon of 20 engine cycles and control horizon of 10 engine

cycles. The controller was able to track CA50 and IMEP with MPRR constraint

of 6bar/CAD with SOI, PR and Fuel quantity as manipulated variables. It was

able to track CA50 and IMEP with RMSE of 1.2 CAD and 6.2 kPa. MPC

performance on CA50 tracking improved with MPRR constraint of 8 bar/CAD.

But, the tracking error of IMEP increased.It was able to track CA50 and IMEP

with RMSE of 1 CAD and 10.3 kPa.

† Disturbance rejection capability of the MPC was also evaluated by addition of

measurement uncertainty into the outputs of the detailed LTC physics based

dynamic plant. The MPC controller was able to track CA50 and IMEP of 690

kPa with RMSE of 1.1CAD and 8.6 kPa on MPRR constraint of 6 bar/CAD.
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The controller was also able to track IMEP and CA50 of 14CAD with RMSE of

5.6 kPa and 1.7CAD on MPRR constraint of 6 bar/CAD.

7.2 Future work

Based on the findings of this work, a few areas can be explored further. They are

listed below.

7.2.1 Control architecture for a multi-mode engine using

HRR classification

In order to control the heat release type of the engine real time, an idea of the control

architecture depicted in Figure (7.1) can be pursued. The proposed architecture may

consist of multiple blocks:

Architecture consists of multiple blocks.

† Prediction models including

1. model to predict as a function of control inputs of LTC engine

2. model to predict as a function of HRR trace
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Figure 7.1: Proposed control architecture for a multi-mode engine using
HRR classification

† Algorithm for desired HRR type input

† Learning algorithm

† MPC controller

In the following the main blocks in Figure 7.1 are briefly explained

7.2.1.1 Predictive models

Two predictive models are used in this control structure. One of the predictive model

works as a function of manipulated variables of the engine, like LPV-SVM model built

in Chapter 5. It is represented as LPV-SVM as a function of inputs in Figure 7.1 .The

model based on inputs, calculates the scheduling parameters. Based on scheduling
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parameters, can predict the HRR type. It can also calculate the output of the LTC

engine, as a function of LPV matrices identified with the scheduling parameters. The

second model, works as the function of HRR trace, like CNN model built in Section

3.2. It is represented as Prediction model 2 in Figure 7.1.

7.2.1.2 Algorithm for desired HRR type input

A map based logic is set to identify desired heat release rate type as a function of

engine speed and fuel quantity injected. Also, based on the HRR type is chosen cor-

responding cost function and constraints also are fed to the controller. Cost function

associated with heat release type 1 is to maximise main heat release, with type 2 is

to maximise fraction of early heat release and with type 3 is to maximise fraction of

late heat release. Constraints are rate of change of control inputs to engine and lim-

iting constraints combustion parameters. Limiting constraints are on MPRR, CA50,

co-efficient of variation of IMEP and emissions. Desired heat release rate type is fed

to the Adaptive model predictive controller(MPC).

7.2.1.3 MPC controller

Controller block interacts with the LPV-SVM model in order to optimise future con-

trol inputs to the engine plant. Its depicted in the control architecture with the
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nomenclature of (k+1). The finalised control input is fed to the engine plant. With

the help of in cylinder pressure transducer on the engine, the feedback cylinder pres-

sure trace is collected and converted to heat release rate as a function of engine crank

angle. By using Prediction model 2, the heat release rate type is identified.

7.2.1.4 Learning Algorithm

Learning algorithm is the final block in the architecture which will ensure that LPV-

SVM model is updated based on real time observations and prediction based on engine

in-cylinder pressure data. This block could consist of three elements.

† Operating conditions to learn

† Error calculation

† Learning summary table and update of LPV-SVM model

Engine operating with COVIMEP ≤ 3% to ensure stability of operation and with no

occurrence of engine combustion related error are some of the conditions to be con-

sidered for the learning algorithm to learn. An update summary table is setup inside

the learning algorithm, it has the count of region of fueling and engine speed updated

in real life operation. The prediction error(ek) shown in Figure 7.1 is calculated as
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a weighted sum of current prediction by LPV-SVM model and the difference in pre-

diction between LPV-SVM model and Model 2. Once ek is calculated, the learning

algorithm updates the value for future reference in both the summary table and pre-

diction LPV-SVM model. The learning process will help the model to update the

prediction as the function of control inputs to reflect real time operating condition of

the engine.Complete operational model with the architecture shown in 7.1 is still in

the concept phase, it is yet to be built and verified.

7.2.2 Other future works

Here is the list of other ideas to advance the outcomes from this thesis

† Experimental implementation and validation of the designed controllers from

Chapter 6.

† Design of LPV data driven models from Chapter 5 using the engine experimental

data, including COVIMEP , emissions and combustion noise constraints and on

board learning based on real time engine data
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Appendix A

LTC engine data used for

identification of scheduling

parameter

Data tabulated are collected from the LTC engine in APSRC lab for the research

work by references [3],LTC-04
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Appendix B

LTC engine model data used for

LPV-SVM system identification

In the below set of data engine speed was set constant to 1000 rpm, intake manifold

temperature was set to 60◦C and Intake manifold pressure was set to 96.5 kPa. The

data was generated by using a physics based LTC engine plant [5].
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Appendix C

Mode Frontier

C.0.0.1 Optimization of hyper parameters of LS-SVM

Optimization of hyper parameters used to build the LPV-SVM model in Section

5.1.3.1 and Section 6.2 are carried out by using an optimization tool named Mode

Frontier. Mode Frontier is a multi objective optimization tool. It is a multi-

disciplinary optimization software developed by an Italian software house ESTECO

SpA.

In simpler terms, design of experiments is generated by the tool based on the chosen

optimization algorithm. Each combination of design input parameters i.e. the hyper

parameters are fed to the design software and the outputs,i.e. the RMSE associated
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with prediction of CA50, IMEP and MPRR are received back by the tool. Based on

the optimization condition and objective set on the outputs, subsequent experiments

are redesigned. Optimization of hyper parameters for LPV-SVM model, is carried out

with Mode Frontier tool tied up with MATLAB LS-SVM code. Every combination

of hyper parameters are evaluated for minimization of RMSE of CA50, IMEP and

MPRR prediction. The process is iterated till the maximum number of iterations are

reached. Non-dominant sorting genetic algorithm (NSGA) is an extension of genetic

Figure C.1: Work flow of Mode Frontier tool

algorithm for optimization of multiple objective problem. Its is an adaptive algorithm,

keeps redefining the inputs based on current population of data to optimise for the

objectives. 4000 number of iterations are run for the model to optimise. If the result

needs further improvement, the best design from current iterations are chosen and

fed as initial combination for the next 4000 iterations.

192



Figure C.2: Hyper parameters tuned in Mode Frontier for LPV- SVM
model from Section 6.2

Figure C.2 is an example of the hyper parameters tuned for 6.2. Seven different kernel

functions are used and they are linear function, radial basis function, polynomial

function, sigmoid function, multi quadratic function, inverse multi quadratic function

and rational multi quadratic function. Mode Frontier could choose one of it. The

kernel functions are defined ”unordered” for arrangement with a step size of 1. This

helps the Mode Frontier tool to understand that each kernel function is independent

of another even though they are numbered in a sequence.Other parameters sigma,

multiplier, regularization parameter defined for the states and output are defined as

”ordered” for arrangement. Range of these parameters were arrived by trial and error

in order to provide a wide operating range for the Mode Frontier tool for optimization.

The range of parameters are defined in the Mode Frontier, to optimize are defined in
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Table C.1
Range of hyper parameters defined in Mode Frontier

Name Minimum Maximum
1 Kernel Function 1 7
2 Sigma 0 1000
3 Multiplier 0 1000
4 Regularization parameter on states 0 1000000
5 Regularization parameter on output 0 1000000

Table C.1. For optimization, objective function is defined on the output parameters.

For the LPV- SVM model minimization objective was set on the RMSE of CA50,

IMEP and MPRR prediction, shown in Figure C.3. The downward arrow attached

to RMSE of CA50, IMEP and MPRR represents minimization.

Figure C.3: Hyper parameters tuned in Mode Frontier for LPV- SVM
model from Section 6.2
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Appendix D

Hyper Parameters Used for

System Identification

The combination of hyper parameters used for system identification of A,B,C from

Chapter5, Section 5.1.3.2 is listed in Table D.1
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Table D.1
Table of hyper parameters for System Identification with A,B and C

matrices

Parameters Value
Kernel Function A Inverse multiquadratic function
Kernel function B Radial basis function
Kernel Function C Inverse multiquadratic function

Sigma A 915.2
Sigma B 445.2
Sigma C 151.9

Multiplier A 74.47
Multiplier B 445.9
Multiplier C 443.5

Regularisation parameter CA50 422210
Regularisation parameter MPRR 401080
Regularization parameter Tsoc 387890
Regularization parameter Psoc 424120

Regularization parameter IMEP 137420
Regularization Parameter output CA50 3.8
Regularization parameter output MPRR 5.5
Regularization parameter output IMEP 8.0
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Appendix E

Program and data files summary

E.1 Chapter 1

Table E.1
Figure Files

File Description

Equivalence ratio to temp.png File of Figure 1.1

Table E.2
Visio Files

File Description

Chapter1 intro flowchart.vsdx Visio file of Figure 1.2
Content thesis.vsdx Visio file of Figure 1.3
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E.2 Chapter 2

Table E.3
Figure Files

File Description

New LTC Engine Setup.png File of Figure 2.1
Data Setup.png File of Figure 2.2
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E.3 Chapter 3

Table E.4
Matlab Data File

Data File Description

Combined data RCCI Nitin
Kaushik data.mat Data used for classification

Table E.5
Matlab code Files

File Name Description

find peaks rev3.m Matlab code used to analyse and
perform rule- based classification

Classification plot.m Matlab code used to plot classified traces
Plot normal dist rev1.m Matlab code used to analyse combustion

parameters
characteristics of classified traces

Decision tree 5 bin.m Matlab code used to create Decision
tree model

Shifting HRR trace rev1.m Matlab code for shifting and normalising
heat release rate
to evaluate traces for k-means

HRR K Means 5 bin.m Matlab code to do k-means classification

Table E.6
Python code

File Description

regimeClass.py Python code used to build CNN model
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Table E.7
Visio Files

File Description

Classification flow chart.vsdx Visio file of the Figure 3.2

Table E.8
Figure Files

File Description

flow chart.png Figure 3.2
emission 01.png Figure 3.12
emission 02.png Figure 3.13
emission 03.png Figure 3.14
emission 04.png Figure 3.15
emission 05.png Figure 3.16
Presentation CNN.png Figure 3.17
CNN data size.png Figure 3.18
CNN Prediction summary.png Figure 3.19
Decision tree.png Figure 3.20
decision tree Prediction summary.png Figure 3.21

Table E.9
Matlab Figure Files

File Description

heat release C3.fig Figure 3.1
Combustion regime plot rev1.fig Figure 3.3
cov imep.fig Figure3.4
P max kPa.fig Figure 3.5
MPRR.fig Figure 3.6
CA 10 HR.fig Figure 3.7
CA 90 HR.fig Figure 3.8
IN cy Temp.fig Figure 3.9
T SOM K.fig Figure 3.10
T EOM K.fig Figure 3.11
kmeans 5bin.fig Figure 3.22
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E.4 Chapter 4

Table E.10
Matlab code

Data File Description

Plot scatter.m Matlab code for plotting Figure 4.1

Table E.11
Figures

Data File Description

3clusters exp 0.fig Figure 4.1

Table E.12
Rstudio data and Code

Data File Description

R data rev5 2804 type1 2 3.csv Data with 3 clusters for PCA
and Linear regression

project.R RStudio code for PCA and
Linear regression Table 4.1, 4.2

Plot scatter.m Matlab code for Figure 4.1
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E.5 Chapter 5

Table E.13
Matlab code

Data File Description

sch par model mF script ver5 ABC.m Matlab code for SVM- modelling of the
and its sub functions system with ABC matrices and to

generate Figure 5.1 to 5.4
contourplot matrix v2 2sch var.m Matlab code for generating contour plot

of figure 5.5 to 5.7

Table E.14
Data file

Data File Description

LPV data Aditya.mat Dataset used to train SVM- LPV model and test it.

Table E.15
Figure files

Data File Description

Input 1.fig Figure 5.1
States.fig Figure 5.2
scheduling parameter.fig Figure 5.3
normalised Output ABC.fig Figure 5.4
A matrix ABC.fig Figure 5.5
B matrix ABC.fig Figure 5.6
C matrix ABC.fig Figure 5.7
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E.6 Chapter 6

Table E.16
Figure files

Filename Description

Comparison P1 P2 set2range CA50.fig Figure 6.1
Comparison P1 P2 set2range IMEP.fig Figure 6.2
Comparison P1 P2 set2range MPRR.fig Figure 6.3
MPC Control Model Schematic 0108 rev1.png Figure 6.4
Case1.fig Figure 6.5
Case2.fig Figure 6.6
Case1 dist.fig Figure 6.7
Case4 comp.fig Figure 6.8
Case4.fig Figure 6.9
Case3.fig Figure 6.10

Table E.17
Visio files

Filename Description

MPC Control Model Schematic 0108 rev1.vsdx File for the Figure 6.4

Table E.18
Matlab code

File name Description

Simulate LPV model.m Simulink model to evaluate model accuracy
Surface plot prediction.m Matlab code to create surface plots

from Figure 6.1 to Figure 6.3
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Table E.19
Simulink files

File name Description

LPV SVM prediction.slx Simulink for evaluating model accuracy
LPV MPC rev6.slx Simulink with the designed MPC controller

Table E.20
Matlab Data

File name Description

model verification set to Range.mat Steady state data of model
and RCCI engine

MPC opt workspace rev9 thesis.mat Matlab parameters for running MPC
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E.7 Chapter 7

Table E.21
Figure file

File name Description

Future work.png Figure 7.1
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E.8 Appendix A

Table E.22
Data file

File name Description

Combined data RCCI Nitin
Kaushik data.mat Data used for classification of HRR

E.9 Appendix B

Table E.23
Data file

File name Description

LPV data Aditya.mat Data used for LPV-SVM
identification of LTC engine

E.10 Appendix C

Table E.24
Figure file

File name Description

Mode frontier.png Figure C.1
mode frontier 2.png Figure C.2
output constraints.png FigureC.3
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