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ABSTRACT 

This research describes a physics-based control-oriented feed-forward model, 

combined with cylinder pressure feedback, to regulate combustion phasing in a spark-

ignition engine operating on an unknown mix of fuels.  This research may help enable 

internal combustion engines that are capable of on-the-fly adaptation to a wide range of 

fuels.  These engines could; (1) facilitate a reduction in bio-fuel processing, (2) 

encourage locally-appropriate bio-fuels to reduce transportation, (3) allow new fuel 

formulations to enter the market with minimal infrastructure, and (4) enable engine 

adaptation to pump-to-pump fuel variations.  These outcomes will help make bio-fuels 

cost-competitive with other transportation fuels, lessen dependence on traditional sources 

of energy, and reduce greenhouse gas emissions from automobiles; all of which are 

pivotal societal issues. 

Spark-ignition engines are equipped with a large number of control actuators to 

satisfy fuel economy targets and maintain regulated emissions compliance. The increased 

control flexibility also allows for adaptability to a wide range of fuel compositions, while 

maintaining efficient operation when input fuel is altered.  Ignition timing control is of 

particular interest because it is the last control parameter prior to the combustion event, 

and significantly influences engine efficiency and emissions. Although Map-based 

ignition timing control and calibration routines are state of art, they become cumbersome 

when the number of control degrees of freedom increases are used in the engine.  The 

increased system complexity motivates the use of model-based methods to minimize 
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product development time and ensure calibration flexibility when the engine is altered 

during the design process.   

A closed loop model based ignition timing control algorithm is formulated with: 

1) a feed forward fuel type sensitive combustion model to predict combustion duration 

from spark to 50% mass burned; 2) two virtual fuel property observers for octane number 

and laminar flame speed feedback; 3) an adaptive combustion phasing target model that 

is able to self-calibrate for wide range of fuel sources input. The proposed closed loop 

algorithm is experimentally validated in real time on the dynamometer. Satisfactory 

results are observed and conclusions are made that the closed loop approach is able to 

regulate combustion phasing for multi fuel adaptive SI engines.  
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I INTRODUCTION 

I.1  PROBLEM STATEMENT 

I.1.1 THE COMBUSTION PHASING CONTROL CHALLENGE 

The combustion process is normally described by the percentage of mass burned 

as a function of crank angle, as shown in the Figure I.4. There are several critical 

combustion phasing locations that are of interest, but CA50 (the 50% mass burned 

location in crank angles) is of primary interest combustion phasing analysis and control. 

CA50 can be understood as the ‘center line’ of the combustion process. By controlling 

the spark timing, the combustion event can be phased to a given target.  

 

Figure I.1 Combustion phasing control description 

Combustion phasing directly influences engine efficiency as shown in the Figure 

I.2, which is an IMEP vs CA50 plot for a spark sweep under steady state operating 

conditions. There is one optimum location for CA50 that can generate the highest 
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efficiency, called maximum brake torque (MBT) timing. It can also be observed that 

efficiency lost around MBT timing is smaller than when combustion phasing is further 

away from MBT. This can be used as a cost function or performance requirement for 

spark timing control. Figure I.2 also shows the natural combustion variation. Each cloud 

of the data points in one color represents CA50 of 500 consecutive cycles at single spark 

timing. Large of variation can be observed, and this can limit the performance of spark 

timing control systems.  

 

Figure I.2 Combustion phasing control challenge 

Figure I.3 shows how different fuel sources may affect the combustion process. 

Figure I.3 (a) indicates that burn rates are different for gasoline and E85 under similar 

operating conditions. Figure I.3 (b) illustrates the knock intensity of gasoline and E85 

during a spark sweep for similar operating conditions. It is clear from the plot that these 
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fuels have vastly different knock behavior under certain conditions, and the best 

achievable CA50 will be limited by the fuel source.  An adaptive combustion phasing 

target algorithm should adapt to both of these differentiating aspects of fuel behavior. 

 

(a)      (b) 

Figure I.3  Fuel behaviors are different for gasoline and E85 

Ignition timing is the last control actuator setting selected at a given operating 

point because it is a strong function of all other actuator positions. Proper ignition timing 

is extremely critical for fuel economy and emissions it is important to develop fast 

prediction models that can be used in conjunction with algorithms developed for the 

remaining actuators. Figure I.4 shows the relative efficiency, defined as normalized 

Indicated Mean Effective Pressure (IMEP) value compared to the best available IMEP at 

Minimum spark advance for Best Torque (MBT), for one engine speed and load (2250 

RPM and 0.5 bar MAP). The spark timing to achieve best engine efficiency for gasoline 

and E85 (85% ethanol blend with 15% gasoline) requires a 9 Crank Angle (CA) degree 
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difference. If the spark timing were held unchanged for these two fuels, engine efficiency 

loss at this operating condition would have been 2%. Moreover, this efficiency margin 

will increase up to 15% under some knock limited operating conditions, because the 

octane number of the two fuels differs significantly. Having the ability to detect different 

fuel properties and optimize the control algorithm to maintain the highest engine 

efficiency is a necessity.  

 

Figure I.4: Engine efficiency decrease if spark timing unchanged with different fuel type 

input. 

I.1.2 MOTIVATION FOR MODEL-BASED CONTROL ALGORITHM RESEARCH 

This research hypothesizes that a closed loop model based spark timing control 

algorithm can be used to regulate combustion phasing in a Spark-Ignition (SI) engine that 
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is operating on an unknown blend of input fuels. Success of this research will help enable 

a new generation of internal combustion engines that are capable of on-the-fly adaptation 

to a wide range of fuels.  The introduction of multi-fuel-adaptive engines would; (1) 

facilitate a reduction in automotive bio-fuel processing prior to vehicle use, (2) allow the 

use of fuels containing varying levels of water content, (3) encourage locally-appropriate 

bio-fuel production to reduce fuel transportation, (4) allow new fuel formulations to enter 

the market with minimal infrastructure impediment, and (5) enable the engine to adapt to 

pump-to-pump fuel variations and maintain peak fuel efficiency.  These outcomes will 

make the production of bio-fuels cost-competitive with other transportation fuels, lessen 

dependence on foreign sources of energy, and reduce life-cycle greenhouse gas emissions 

from automotive transportation; all of which are pivotal societal issues. 

There are a number of technical challenges that require research prior to 

implementation of multi-fuel-adaptive engines.  Ultimately, highly flexible engines that 

contain a large number of control actuators will allow the greatest adaptation to new fuel 

types. Control actuators that influence fundamental engine operation will be most 

desirable in such engines.  The primary control areas pertain to gas exchange, mixture 

preparation, in-cylinder charge motion, and combustion, along with compression and 

expansion ratios.  Acceptable fuel properties for SI engines, material selection, fuel 

systems, and emissions control devices are a few of the other technical aspects of multi-

fuel-adaptive engines that must be addressed prior to realization.  Control algorithms that 

can sense and adapt to changing fuel conditions are the focus of the proposed research. 
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In the current market, the number of control actuators available (cam timings, 

charge motion control valves, turbo charging, load, etc.) on spark-ignition engines is 

rapidly increasing to meet demand for improved fuel economy and reduced exhaust 

emissions. These designs increase operational flexibility, but the added complexity 

greatly complicates control strategy development because there can be a wide range of 

potential actuator settings at each engine operating condition. Traditional map-based 

actuator calibration becomes challenging as the number of control degrees of freedom 

expand significantly, driving the need for model-based control approaches. Map based 

control requires minimum computational power; however intensive labor and advanced 

calibration methods are needed for high degree of freedom engines. Once the maps are 

generated, the control performance will be very stable and able to meet the expected 

accuracy when inside the map region.  

Figure I.5 shows the ignition timing map for the test engine determined by the 

conventional full factorial experimental populated method. The test engine was not 

equipped with extra control actuators (besides engine speed and load) that will require 

separate calibration for spark timing. Therefore, only around 200 data points are required 

to populate the entire ignition timing map. 
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Figure I.5 Conventional full factorial experimental populated maps for the test engine 

 The calibration time increases exponentially when extra degrees of freedom are 

introduced. For example, multi-fuel adaptive ability, the possible blends between 

available fuel sources will result in an ultra high degree of freedom mapping problem. 

Advanced and fully automated engine testing systems have allowed the automotive 

industry to successfully adopt model-based calibration and design of experiments (DoE) 

technology [8][9][10] to reduce the calibration time, as shown in Figure I.6. These 

methods represent the current ‘state-of-the-art’ in the industry, and offer a robust final 

calibration that utilizes a relatively simple control structure (relative to model-based 

control techniques) within the engine controller. 
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Figure I.6 Model based calibration (Design of experiments) method illustration 

In contrast map-based methods, model based control requires an upfront effort of 

model development that hinges upon the comprehensive knowledge about the underlying 

phenomenon. Model based controls do require increased computational power for real 

time actuation and provides higher adaptive ability and predictiveness, therefore  

enabling novel approaches to high degree of freedom engine controls. Consequently, a 

tradeoff between model accuracy and computation power requirements is very important. 
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Selection between factorial populated maps and physical models depends on the 

application as shown in Figure I.7. It is important to note that actual spark timing 

prediction accuracy is not as primary factor influencing the use of model-based methods.  

It is expected that model-based control systems may suffer from slightly lower prediction 

accuracy than a map-based, but model-based methods offer the potential to significantly 

simplify the calibration process, and add flexibility to the control system. 

 

Figure I.7 Comparison between map based control and physical model based control 

methods 

I.1.3 MOTIVATION FOR MULTI-FUEL ADAPTIVE ENGINES 

The International Energy Agency (IEA) world energy outlook projects by 2035 

there will be nearly a 50% energy gap with current available known fuel sources, 

meaning a large portion of unknown energy sources will need to be found or developed 

to sustain usage predictions, as shown in Figure I.8. The United States Energy Policy Act 

in 2005 [2] and the Energy Independence and Security Act in 2007 [3] mandated 

significant increases in the production and use of bio-fuels in 2012 and 2020 respectively.  

http://www.iea.org/
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This legislation requires a wide range of bio-fuel development and is spurring renewed 

interest and development of flexible fuel vehicles.   

 

Figure I.8: International Energy Agency (IEA) world energy outlook showing the 50% 

unknown energy need to be found or developed to sustain humanity development [1]. 

The U.S. Energy Information Administration (EIA) projects that number of 

transportation vehicles will continue increasing over next 30 years, as shown in Figure 

I.9. A large majority of these vehicles will use liquid fuels. 

 

http://www.iea.org/
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Figure I.9: U.S. Energy Information Administration (EIA) projects vehicle demand for 

transportation will increase over the next 30 years [2]. 

Different ways of addressing the energy crisis for transportation have been 

studied for years [4], as shown in Figure I.10. Non-conventional liquid fuel sources are 

still considered an important alternative energy over the near future to sustain the 

vehicles on the road. However, several limitations that constrain the development of this 

alternative energy are: 1) the vehicle fleet has a significant single-fuel legacy, 

discouraging the introduction of new fuel types; 2) current processing techniques for 

production of bio-fuel sources for  current engines reduces the ‘well-to-wheel’ efficiency 

of the system; 3) fuel feedstocks vary by geographic location; 4) future fuel sources are 

evolving and unknown; 5) engines are becoming more complex to meet fuel economy 

and emissions regulations, and are generally designed around a single fuel. 
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Figure I.10: Energy solutions for transportation [4]. 

Future engines should not be optimized for only one or two types of known fuels 

to allow flexibility for the introduction of new fuel to the marketplace. Blends of several 

fuels in the storage tank over time may result in decreased fuel efficiency if the engine 

does not have a flexible control structure. Therefore, a control algorithm able to not only 

optimize the modern high-degree of freedom engine efficiency, but also adapt to a 

reasonable range of unknown fuel sources is highly desirable. The main goal of this 

research is to develop such an algorithm. 
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I.2  RESEARCH BACKGROUND 

I.2.1 SI COMBUSTION MODELING 

Fuel properties such as stoichiometric air-to-fuel ratio, laminar flame speed, and 

octane number (among others) influence engine calibration, in particular injection 

duration and spark timing.  Air and fuel mixture preparation processes and the associated 

physics are better understood [6] than combustion for the purposes of engine control. 

Feed forward models combined with cost effective oxygen sensor feedback are already 

used in production engines for flex-fuel (E85 and gasoline) injection control [7]. On the 

other hand, ignition timing is the last control step that depends on set points for  all other 

engine actuators. The actuator set points translate into in-cylinder physical conditions, 

such as turbulence intensity, pressure, temperature, and recirculated exhaust gas content 

of the unburned gases.  Since different fuel sources might lead to different burn rates 

(through laminar flame speed), spark timing requires adjustment for individual fuel 

sources to achieve optimal fuel efficiency (i.e. MBT timing). 

Combustion models are used to represent the mixture reaction rates in the 

cylinder, predict the formation of emissions, and capture abnormal combustion 

phenomenon (i.e. knock). Different classes of combustion models have been 

implemented into engine simulations. They could be categorized as 0D, quasi-D, 1D and 

3D combustion models based on their computational power requirements and model 

predictiveness, as shown in Figure I.11. 
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Figure I.11 Combustion models background  

The Wiebe function [11][12] can be seen as a 0D combustion model. It uses 

specific parameters during the combustion process, like start of combustion, burning 

duration, etc., and experiment based fitting coefficients to set up an equation that 

represents the mass burn rate during engine combustion process.  It is the simplest 

combustion model and can be implemented into the 0-D engine simulation with time as 

the only independent variable, but predictiveness is extremely limited due to a semi-

empirical nature of the model.. To reduce the need for large set of calibration data, 

researchers proposed a method to predict parameters in Wiebe function based on the 

existing correlations of laminar burning velocity. The parameter changes in Wiebe 

function could be predicted by comparing with the relative change of the estimated 

laminar burning velocity at spark timing [13]. However, for a Wiebe function, it is totally 

empirical based combustion model and without physical meaning, so it cannot be used to 



 

 15 

predict engine combustion process. Another kind of fully empirical based combustion 

model is Neural Network (NN) or Black Box based combustion model.  NNs are trained 

on the experiment data to build the relationships between inputs and outputs. The 

predicted outputs of the NN combustion model could be combustion duration [14][15], 

emissions [16][17] and etc. The nature of NN to other methods using complex equation 

fitting do not allow flexibility to make adjustments to a single aspect without completely 

retraining the model. To improve this situation, semi-physical neural networks or grey 

box based combustion models have been proposed [18][19]. In these models, physical 

models and neural networks (or black box) are combined to try to increase the adaptive 

ability of the combustion models.  

For the quasi-dimensional combustion model, the well-known approach to SI 

combustion is the turbulent flame entrainment combustion model, which is firstly 

proposed by Keck [10][20].This model subsequently assumes that fresh gas eddies are 

entrained in a spherical flame front and burn in a characteristic time [21]-[24]. During the 

turbulent entrainment process, the mass entrainment rate is affected by unburned gas 

density, flame front area, turbulence intensity and laminar flame speed. The burn-up rate 

within the reaction zone is influenced by entrained and burned gas mass, Taylor micro-

scale and laminar flame speed. This quasi-dimensional combustion model incorporates 

mixture flow parameters and geometric aspects of the flame front interaction with the 

combustion chamber within the 0-D framework. It aims to fulfill the real-time calculation 

and the accuracy and adaptive ability of the model depends on the sub-models.  
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In [25], a simplified turbulence model for the prediction of the in-cylinder 

turbulence parameter during combustion for SI engines is proposed. It simplified from 

the K-ϵ model, ignores the squish and swirl influence, and assumes that the turbulence is 

in equilibrium. This sub-model is easy to code in thermodynamic models. For the 

stratified SI engine combustion modeling, a new quasi-dimensional calculation is 

developed [26]. It is based on the two-zone entrainment model. However, due to the 

insufficient of two-zone treatment to describe the inhomogeneous air/fuel composition, 

the four unburned zones are defined. There are a rich zone, a stoichiometric zone, a lean 

zone and a remaining air zone. Similar to the existing method, a burned zone is defined 

and these zones are connected to each other by the mixture model calculated mass flow 

rates. The mixture model puts the current geometry of the zones into consideration and 

the flame propagation was developed to fulfill the stratified combustion process. In [27], 

to predict the mass burning rates, a quasi-dimensional combustion model is proposed, 

which is based on flame stretch concepts and turbulent entrainment theory. The flame 

stretch sub-model assesses the flame response to combined effects of curvature, non-

unity Lewis number mixture and turbulent strain.  This model can simulate the 

development of early flame, flame propagation and flame termination periods. It neglects 

the spark ignition processes and does not consider flame kernel formation. In order to 

better capture the detailed flame front shape, a 1D coherent flame model (CFM) 

combustion model is proposed [28]. This is a 1D physical combustion model for gasoline 

engine transient application used to replace the traditional empirical models. This CFM-

1D model is simplified from the 3D extended coherent flame model (ECFM) for gasoline 

combustion [29]. For this model, there are two zones in the combustion chamber: burned 
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and unburned zones. Two zones are separated by a premixed turbulent flame modeled by 

using a 1D adaptation of the 3D flame surface density method. The chemical reactions of 

fuel oxidation happen in a very thin layer which is called the flamelet. For the 

simplification of the 1D CFM model from 3D model, there are some assumptions: 

mixture is homogenous, mixture is perfect gases (fresh air, fuel vapor and burned gases), 

stoichiometric combustion, no dependency on different variables space and the 

cylindrical combustion chamber.  

Some three-dimensional combustion modeling examples are shown below. In 

[27][37], an improved DPIK model and G-equation combustion model are proposed. The 

flame kernel position is tracked by particles and the turbulent flow effects on the 

turbulent flame during velocity are concerned. The G-equation combustion model was 

modified and implemented into KIVA-3V. Using the G-equations (level set method) can 

track the propagation of the mean turbulent flame. To model the chemical reaction within 

the cells which contains the mean turbulent flame, the flame surface density and the 

turbulent burning velocity are considered. The detailed turbulent flame brush is ignored 

and species in cells in the burnt gas behind the mean flame front location are assumed to 

be chemical equilibrium. In order to reducing the computing time, the fine numerical 

resolution is not needed and the narrow band concept of Chopp [38] was applied. In [39], 

a universal engine combustion model called the GAMUT (G-equation for All Mixtures. 

A Universal Turbulent) is developed here. The methodology can be applied to partially 

premixed, premixed and non-premixed combustion regimes. The level set method (G-

equation) is a very powerful numerical technology which can be applied to analyze and 
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compute interface motions. The application examples are the crystal growth calculation, 

shape recovery, two-phase flow, image processing and combustion [40]. In 1985, 

Williams introduced the method to describe the flame propagation for a premixed air-fuel 

mixture. In this model, G-equations are used to track the premixed turbulent flame 

propagation (e. g., for premixed and partially premixed combustion). The diffusion 

combustion that happens behind the premixed flame branched was modeled with a 

modified characteristic time scale model. When combined with the Shell auto-ignition 

model, this model can be used to simulate premixed and diffusion combustion processes 

in diesel combustion. A new three-zone combustion model was developed to provide 

better correspondence of the numerical calculated results to the experimental data in a 

wide range of operation parameters for engines with different geometry [41]. The 

additional third zone is used to simulate the processes in the flame kernel volume inside 

the spark plug gap. It captures detailed mechanism of chemical and thermal ionization 

chemical interaction, heat transfer between electrodes and combustion products and the 

mass exchange between in-cylinder combustion products and third zone. This three-zone 

model looks more adequate to simulate the real process of SI engine combustion. 

Chemical kinetics method to the simulation of combustion and behavior of combustion 

products in all zones gives a chance to carefully analyze the ionization process and 

confirm the two peaks of ion current. 

Among all the available SI combustion modeling options, quasi-dimensional 

turbulent flame entrainment model and 1D CFM are agreed to be most practical models 

for real time control purposes. They do not require intensive computing time but still able 
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to capture most of the physical fundamentals of SI combustion, as shown in Figure I.12. 

Fidelity and computational power requirements can be balanced based on the specific 

applications. Framework of this research will base on the quasi-dimensional turbulent 

flame entrainment model.  

 

Figure I.12 Quasi dimensional turbulent flame entrainment model is able to capture most 

of the physical fundamentals of SI combustion process 

I.2.2 ARTIFICIAL NEURAL NETWORK BACKGROUND 

Fidelity of physical combustion models strongly depends on sub input model 

development. There are several input models found to be problematic which will be 

explained in Chapter 3. Moreover, physical combustion models are generally crank angle 

resolution equations which contain more than necessary information for spark timing 

control. Therefore an approach that utilize a neural network to eliminate the problematic 

input models and covert the discrete time domain combustion model to mean value 

model will be implemented, as shown in Figure I.13.  
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Figure I.13 A semi physical neural network is used to eliminate problematic sub input 

models and convert combustion model to a mean value model 

Artificial Neural network (ANN) approach is based on the biological neural 

network to model the interconnection of the neuron in the nervous systems of the human 

brain and other organisms. ANN as a non-linear processing system can be applied to a 

wide range of areas, especially where the algorithms are too complex or unclear. 

However, a suitable manner for the organization of the processing units to accomplish a 

given pattern recognition task is critical for artificial neural network to be useful. 

Artificial neural network are organized into processing units layers where the connections 

can be interlayer or intralayer or both. Feedforward and feedback manners could be used 

to organize the connections across the layers and among the units within a layer. The 

basic structures of artificial neural networks includes: instar and outstar, which have fan-

in and fan-out geometries respectively [52]; group of instars/outstars, which is a 

heteroassociation network; bidirectional associative memory, where either of the layers 
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can be used as input/output; autoassociative memory, where each unit is connected to 

both itself and every other unit. 

In 1943, Warren McCulloch and Walter Pitts brought out McCulloch-Pitts 

neuron, a model of computing element, which performs the inputs’ weighted sum to the 

element followed by a threshold logic operation [42]. However, the weights for this 

model of computing are fixed and hence the model could not learn from examples. In 

1949, Donald Hebb proposed a learning scheme which based on pre- and post-synaptic 

values of the variables to adjust a connection weight [43]. In neural network literature, 

Hebb’s law has been seen as a fundamental learning rule. Marvin Minsky developed a 

learning machine in 1954 and it could automatically adapt the connection strengths [44]. 

In 1958, Rosenblatt proposed the perceptron model which applies perceptron learning 

law to adjust weights [45]. The learning law was converged for linearly separable pattern 

classification problem. A multilayer perceptron, other than a single layer of perceptrons, 

could be used to perform any pattern classification. But the lack of systematic learning 

algorithm to adjust the weights made the classification task difficult to realize. In 1969, 

Minsky and Papert used several illustrative examples to show the limitation of the 

perceptron model [46]. Until 1984, the development of neural network models for pattern 

recognition tasks had been severely hampered due to the lack of suitable learning law for 

a multilayer perceptron network for 15 years. In 1960s, Widrow and Hoff tried to adjust 

the weights of an Adaline model for a eomputing element by an LMS learning algorithm 

[47]. The convergence of the LMS algorithm was proven to be successful applied for 

adaptive signal processing situations. In early 1980s, two key developments brought back 
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the interest in artificial neural networks. They are energy analysis of feedback neural 

networks by John Hopfield [48][49] and the generalized delta rule (or error back-

propagation learning law) which applies a systematic way to adjust the weights of a 

multilayer feedforward neural network [50]. About the same time, Ackley, Hinton and 

Sejnowski brought out a feedback neural network called Boltzmann machine which has 

stochastic neuron units [51]. Boltzmann machine has additional hidden units to make a 

given pattern storage problem representable in a feedback network. 

Neuronal dynamics governs a neural network’s operation. Normally, the neuronal 

dynamics consists of two parts: they are corresponding to dynamics of the activation state 

and dynamics of the synaptic weights, respectively. Learning laws are implementation 

models of synaptic dynamics. The basic learning laws are: Hebb’s law, where the product 

of input data and the unit output signal have the proportional weight increment. This law 

has a representation of an unsupervised learning. Perceptron learning law, as a supervised 

law, it requires a desired output for each input. Delta learning law, it could be seen as a 

continuous perceptron law and can be generalized to the case of a feedforward network 

multilayers. For Wldrow and Hoff LMS learning law, also called the Least Mean Squared 

error learning law, the convergence of the weights for a given set of training data could 

be achieved by applying input-output pattern pairs data several times. Correlation 

learning law, which is a special case of the Hebbian learning law, it is a supervised 

learning. Instar (Winner-take-all) learning law, it is a case of unsupervised learning. 

Outstar learning, however is a supervised learning law, used with a network of instars to 

capture the characteristics of the input and output patterns for data compression.  
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There are two difference situations for the applications: one is where the known 

neural networks models and concepts could be used directly and the other is potential to 

use the neural networks ideas but still unclear how to evolve a suitable neural network 

architecture. For the direct application, there are: (1) pattern classification, which is the 

most direct among all neural networks applications. One example is the recognition of 

Olympic Games symbols [52]. (2) Associative memories, which is used to store a pattern 

or data for later recall or to store association between two patterns, has example 

applications like image pattern recall [53][54], content addressable memory [55], 

information retrieval [56][57][58]. (3) Optimization is one of the most successful 

applications of neural network [59]-[62]. There are examples such as Graph bipartition 

problem [63], Linear programming problem and Travelling salesman problem [64]. (4) 

Vector quantization: achieving a significant compression in the data representation by 

encoding a large sent of training data vectors into a small set of representative points 

[65][66]. (5) Control applications, includes robotic, process control, aerospace, industrial 

manufacturing and automotive engineering [67][68]. The main task of the neural 

networks in control is the generation of an appropriate input signal to the physical process 

(called plant) to get the desired feedback from the plant [69][70]. There are two types of 

plant control: open-loop control and close-loop feedback control. The controller includes 

cascade of a system and the inverse of the plant in an open-loop control system. The 

system aims to achieve a desired response for the input. This means the controller will 

generate a control signal to the actuators to get the desired response output. In the 

process, the plant’s inverse transfer function is needed and the characteristic of the plant 

should not change during the process. Multilayer feedforward networks have the ability 
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to capture characteristics of the plant transfer function and the plant’s inverse transfer 

function. Then, the controller could be designed by using the neural network [71][72]. 

From 1980s, Ford Motor Company, as one of the pioneers, started the research 

and development of Neural networks in automotive engineering [73][74]. The growth of 

the emphasis on model based development helps to push mature elements of neural 

network into the mainstream. Although neural network can be used for both on-board and 

outside of the vehicle applications, the available computational ability limits the on-board 

application.  Three main roles of neural network in automotive engineering are discussed 

below. They are models, virtual sensors and controllers. The neural networks have broad 

applications in modeling, like vehicle dynamics modeling [75][76][77], driver behavior 

[78][79][80], engine combustion [81][18] [82], emissions [83][84], hybrid vehicle energy 

storage system [16] and so on. Virtual sensors are often ' Black Box ' like neural network. 

They are especially suitable for the situation that the physical is complex or uncertain 

while there are plenty of data. Virtual sensors could be an air-fuel ratio estimator 

[86][87], an emission calculator [88][89] or an air flow mass/rate estimator [90][91]. 

Neural network used as controller has been known for a long time [92]-[96]. In the 

automotive applications, there are examples such as vehicle electric actuators and system 

controller [97][98][99], engine operation controller [100][101][102] and vehicle handling 

controller [103][104].    
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I.2.3 ENGINE SYSTEM CONTROL FRAMEWORK 

Feed forward model-based control requires a target combustion phasing for 

proper calibration that is generally based on the crank angle location where fifty percent 

of the air/fuel mixture is burned (CA50). The best CA50 location (MBT timing) will 

phase the combustion to a best efficiency range that is a balance between early 

combustion (heat transfer loss) and late combustion (expansion loss). For control 

strategies with variable octane fuels, the best CA50 location may be  limited by abnormal 

combustion (or knock), as shown in Figure I.14.  

 

Figure I.14 SI engine knock phenomenon  

Based on compression ratio or boost level, the desired combustion phasing will be 

determined by the calibrator for a particular engine with a known fuel source input. 

However, when fuel type is altered engine will be subjected to different characteristics of 
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knock and then require an update for the desired CA50 in the ‘knock region’ to avoid 

mechanical damaged or maintain high thermal efficiency.   

Traditionally, knock feedback control utilizes a structure-mounted accelerometer 

as an observer [105], spark plug ionization signal [106], or in-cylinder pressure sensor 

[107]. The sensor will accumulate several knock events and constantly adjust spark 

advance using an adaptive map until knock is eliminated.  The spark timing delivered to 

the engine is the sum of the base ignition map, spark advance adjustment and the adaptive 

map.  Drawbacks of such feedback approach are: 1) The engine will experience large 

amount of knock events until the adaptive map has been created; 2) The learning process 

is relatively slow because the algorithm requires input from all the possible operating 

conditions (speed/load points). In an example given by the Kiencke [105], the adaptation 

map required 50km of vehicle operation for 50:50 blending of 87 and 93 octane fuel 

sources. 

To speed up this process a feed-forward knock prediction algorithm is desired in 

the multi-fuel adaptive engines because of the possible wide range of fuel source inputs. 

Spark knock is the consequence of auto-ignition in the unburned end-gas ahead of the 

propagating spark ignited flame front. The auto-ignition characteristic therefore is greatly 

related to the octane rating of the fuel source and governed by kinetics chemical reactions 

under the time history of temperature and pressure of the unburned end gas. Auto-ignition 

models [108]-[111] are available with a wide variety of fidelity options. Two other fuel 

properties are also of particular interest to knock control; 1) laminar flame speed that 

describes the potential mass burn rate which can reduce the time scale of the end-gas 
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exposure prior to combustion, and 2) fuel heat of vaporization which alters charge 

cooling effects and unburned mixture temperatures.  

Existing flex-fuel engines have known boundaries of their input fuels (0% to 85% 

ethanol) so it is possible calibrate the engine prior to production with all possible blend 

ratios.  Fuel type/blend detection is a critical aspect of multi-fuel engines so that 

calibration can be adjusted to optimize fuel efficiency at all times.  Fuel blend ratio can 

be detected directly by measuring known chemical differences between liquid-phase 

gasoline and ethanol [112].  Less expensive ‘sensorless’ strategies have also been 

employed by inferring blend ratio from existing exhaust oxygen sensors and fuel 

injection parameters [113],[114]. Sensorless methods exploit differences in 

stoichiometric air-to-fuel ratios between fuels of different and known chemical 

compositions (i.e. carbon/hydrogen and carbon/oxygen ratios).  Cylinder pressure during 

compression has also been successfully used to determine blend ratios of gasoline and 

ethanol [115].  All of these fuel type sensing routines are based on known fuels, so their 

boundary conditions are well defined.  Ultimately, fuel behavior, not type, within the 

engine is the most important aspect influencing calibration and control of multi-fuel-

adaptive engines because it is assumed that future fuel compositions are not known at the 

time of initial calibration. A task within the proposed research is to develop a fuel 

‘behavior’ sensing routine based on cylinder pressure. 

Combustion phasing feedback have been studied for closed loop ignition control 

by linking various modeling approaches with either engine speed, torque [116][117], 

cylinder pressure [118][119][120], or ionization detectors [121]-[127]. While these 

http://www.nciku.cn/search/en/volatility


 

 28 

methods are well-suited for use on high degree of freedom engines they have seen 

somewhat limited use in production because of low accuracy, poor durability, and high 

cost.  Additionally, most control strategies based around these concepts do not properly 

account for the difference between normal cycle-to-cycle variability and actual 

combustion phasing differences that need to be corrected.  Large sample sets are required 

to have high confidence in decision making, limiting use in a highly transient engine.  

The proposed task of this research is to use cylinder pressure feedback combined with 

statistical data analysis to update fuel properties with small data sets.  
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I.3 RESEARCH OBJECTIVES 

A model based ignition control algorithm for multi-fuel adaptive engines is 

proposed in this research, including a feed forward spark timing prediction, utilizing a 

quasi-dimensional turbulent flame entrainment model as well as a reduced detailed mean 

value model using a semi-physical neural network for predicting the combustion 

duration. Two virtual fuel properties observers for sensing the laminar flame speed and 

octane number of fuel sources are used for the purpose of multi-fuel adaptation. The 

feed-forward spark timing prediction is then be determined based on the combustion 

duration prediction and a desired combustion phasing (CA50). This desired combustion 

phasing is first determined by the calibration engineer for a particular engine taking into 

consideration combustion stability, emissions, performance, etc. Then the “best 

achievable” combustion phasing in the knock region will be updated based on the current 

fuel source input. The illustration of the overall closed-loop algorithm is shown in Figure 

I.15. Six proposed tasks to achieve this objective are listed below and each of the 

technical details will be presented in the following chapters. 
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Figure I.15. Proposed multi-fuel adaptive model based spark timing control 

algorithm. 

Task 1. Setup a test engine including 1) installation and calibration of all the 

sensors for research grade combustion analysis and engine control 

purposes.  These sensors include in-cylinder and manifold pressure 

acquisition, temperature measurement from critical locations and 

boundary conditions (mass flow and oxygen measurement etc.); 2) access 

the control of the test cell and test engine environment including inlet air 

temperature, inlet fuel pressure and temperature, engine coolant 

temperature and oil temperature etc. for data consistency and results 

repeatability; 3) prepare a rapid-prototype engine controller with a 
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Graphic User Interface (GUI) that can quickly test the newly developed 

control algorithm and dial in the control parameters real time; 4) build and 

validate a 1D engine simulation model that will be used offline for 

combustion model development. 

Task 2. Record and document detailed experimental combustion data from the test 

engine using gasoline and E85 fuels over a wide range of normal engine 

operating conditions. Check the data quality and repeatability by doing 

several repeated tests. Each data point is constructed with 500 consecutive 

cycles for quality evaluation. Import the experimental data into the 

validated 1D engine simulation model for generating physical combustion 

related data, such as residual gas fraction, turbulence intensity etc.   

Task 3. Formulate preliminary physical input models for residual gas fraction, 

turbulence intensity and laminar flame speed, that are capable of 

accurately representing the influence of all engine control actuators on 

combustion and can run in real-time.  

Task 4. Derive a real-time combustion model that will provide a feed-forward 

prediction of ignition timing during transient conditions based on the 

desired combustion phasing. The predicted spark timing accuracy should 

be within 2-3 Crank Angle Degree (CAD) of the calibrated ideal spark 

timing. Executed time for the prediction model should be in the 0.01 

second range with a reasonable computing processor.  
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Task 5. Develop a virtual fuel behavior sensing feedback strategy using cylinder 

pressure that accounts for real cycle-to-cycle variations in combustion 

phasing. Observe only the fuel behavior, rather than actual fuel type, by 

understanding how the fuel affects combustion such as burn rate, knock 

etc. 

Task 6. Design a methodology to update the desired combustion phasing location 

based on fuel behavior throughout the engine operating range. This model 

will focus mainly on knock performance of each fuel, for example the 

knock limited low engine speed and high load operating conditions. By 

observing the fuel behavior and self-calibrating the closed loop engine 

spark timing control model. It will be possible to maintain highest 

available engine efficiency. 

Task 7. Experimentally validate the proposed real time closed loop control 

strategy using a rapid-prototype engine controller with Hardware In the 

Loop (HIL) testing including 1) steady-state performance for spark timing 

prediction accuracy assessment; 2) predictable transient engine operating 

condition testing (e.g. step or ramp change in engine RPM and load), and 

evaluation of the spark timing prediction performance. 

I.4 BOARDER IMPACTS 

The transportation accounts for 72% of petroleum usage in the United States, 

about half of which is imported [5]. In the near future (20 years) internal combustion (IC) 
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engines will continue to be a key element of the automobile powertrain due to their low 

cost, high power density, fast refueling, and allowable driving range. A critical aspect of 

reducing the US’s dependency on foreign oil is the use of alternative fuels in IC engines.  

The ability to efficiently utilize a variety of bio-fuel feedstocks without generating 

significant emissions must be enabled.  Of the roughly 250 million registered vehicles in 

use today in the United States [146], only around 8 million (3.2%) are flex-fuel capable 

[147].  With the median age of the fleet at roughly 9.4 years [146] and most vehicles 

having a service life of well over 10 years, there will continue to be a significant single-

fuel legacy in the United States for many years to come.  Fleet dependence on a single 

fuel generates a large barrier to market penetration for future bio-fuel formulations, and 

presents a large national security risk if fuel supply sources are interrupted.  Engines 

capable of on-the-fly adaptation to fuel types that may be non-existent when the vehicle 

is sold could address these issues, and such engine concepts have not been thoroughly 

studied. 

This research proposes focus on a new generation of multi-fuel-adaptable engines 

that can burn a wide range of fuels, including those that are not be available at the time 

the engine is produced.  This concept could shift the current direction of bio-fuel 

processing, where a common fuel (i.e. ethanol) is produced, to a strategy where feed 

stocks are minimally processed and left in a form closer to their initial composition.  If 

engines could adapt to a wide range of fuels, there would be potential to reduce fuel 

processing upstream of the vehicle and save energy from a well-to-tank perspective.  One 

could imagine different fuel types sold throughout the nation that are produced from 



 

 34 

locally-appropriate feedstocks, minimizing both processing and transportation energy 

losses.  Fuel processing and distribution accounts for approximately 22% of the total 

well-to-wheel energy usage for a gasoline vehicle with a conventional powertrain [148], 

so even small reductions in well-to-tank energy usage could provide massive energy 

savings. 
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I.5 DISTINCTIVENESS OF THIS RESEARCH 

The proposed approach is unique because it attempts to incorporate a significant 

amount of physics with the artificial neural network into the control model for adaptation 

to new fuel types that may not be available at the time of initial calibration. Additionally, 

the physics-based methodology allows universal application to a wide range of SI 

engines, allowing incorporation with new engine platforms with simple re-

parameterization. The virtual fuel behavior sensor strategy is also unique because it 

provides feedback of a physical parameter and allows for ignition timing control for fuels 

with unknown chemical composition.  All of these areas are important to the 

implementation of multi-fuel-adaptive engines, and have not been thoroughly researched 

previously. 
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II RESEARCH SETUP AND COMBUSTION BEHAVIOR 

II.1 TEST ENGINE DESCRIPTION 

A GM 5.3 liter 90° V8 was used to acquire experimental data for this project. 

Engine specifications are given in Table II.1, Table II.2and Table II.3. It is a push rod 

engine equips with hydraulic lifter which performs variable displacement function using 

cylinder deactivation technology. The aluminum cylinder head has a pent-roof 

combustion chamber with 2 valves (1 intake valve and 1 exhaust valve) per cylinder 

layout and a center mounted sparkplug. Flat top aluminum pistons have machined 

recesses for the intake and exhaust valves. Engine load is controlled by an electronic 

throttle plate. Fuel is injected into the intake port by a single fuel injector located at each 

intake runner.  

The engine has a cross-plane crankshaft design which means the first and fourth 

crank pins are 180° out of phase, and the inner two crank pins are 180° apart from each 

other, and 90° apart from the crank pins on each end. Therefore it has a cross-plane firing 

order: 1-8-7-2-6-5-4-3. The cross-plane V8 would have a first-order imbalance problem, 

but can be easier solve with the use of full-weight counterweights. An H type balance 

exhaust pipe is used to equalize the large pressure difference between each bank of the 

engine.  
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Table II.1 GM 5.3 Liter V8 Engine Specifications 

Configuration V-8 Gasoline  

Firing Order 1-8-7-2-6-5-4-3 

Total Displacement 325 CI (5300cm3) 

Compression Ratio 9.95:1 

Bore and Stroke 96mm x 92mm (3.78” x 3.63”) 

Bore/Stroke 1.04 (over-square) 

Connecting Rod Length 155.1 mm (6.1”) 

Valve Configuration 2 OHV per cylinder, 1 Cam-in-Block 

Injection System Port Fuel Injection (PFI) 

Aspiration Neutrally Aspirated  

Rated Power 216 kW (296 hp) at 5000 RPM  

Rated Torque  447 N-m (330 ft-lb) at 4200 RPM 

 

The test engine is equipped with variable displacement technology which 

deactivate cylinder though hydraulic lifter deactivation. Normally, the hydraulic lifters 

will have pressurized oil inside, and can be treated as a solid lifter when activated. Since 

there is no oil pressure inside the lifter when engine is not in operation condition, it is 

going to generate error in measurement of the valve lift profile due to the bleed down of 

the lifter. Hence, the accurate valve lift profile can be obtained by: 1) calculate from 

direct measurement from camshaft and known rocker arm ratio; 2) Make the lifter solid 

with special washer installed.  
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Table II.2 GM 5.3 Liter V8 Engine Intake Valve Parameters 

Number of Intake Valves 1 

Intake Valve Head Diameter 44.5mm 

Maximum Intake Valve Lift 12.15mm 

Intake Duration (@ 0.15mm lift) -10 CAD – 266 CAD  (276 CAD) 

Intake Opening (@0.15mm lift) -10 CAD – 115 CAD 

Intake Closing (@0.15mm lift) 115 CAD – 266 CAD 

Table II.3 GM 5.3 Liter V8 Engine Exhaust Valve Parameters 

Number of Exhaust Valves 1 

Exhaust Valve Head Diameter 50.7mm 

Maximum Exhaust Valve Lift 12.62mm 

Exhaust Duration (@ 0.15mm lift) -240 CAD – 35 CAD  (275 CAD) 

Exhaust Opening (@0.15mm lift) -240 CAD – -112 CAD 

Exhaust Closing (@0.15mm lift) -112 CAD – 35 CAD 

The test engine does not equip with any variable valve phasing mechanism, so the 

valve lift profile (Figure II.1) is set for all the operating condition as shown below: 
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Figure II.1: GM 5.3 Liter V8 Engine Valve Lift Profile 

II.2 TEST CELL SETUP 

The test engine is installed into a FEV Engine Test Cell located at the Clemson 

University – International Center for Automotive Research (Figure II.2). A low-inertia 

430KW (~580HP) AC dynamometer which is capable to simulate realistic transient 

engine operation is used to absorb power and regulate engine speed. Engine torque is 

measured from a torque flange on the dynamometer side driveshaft. Special driveshaft for 

V8 engine is used to ensure on oscillation arising from the engine-dynamometer coupling 

natural frequency. 

FEV Fuel-Con system is used for fuel conditioning. The Fuel-Con controls the 

fuel temperature and pressure supply to the test engine.  Fuel flow rate is measured with a 

SIEMENS Sitrans 2100 mass flow meter. Mass flow meter can compensate different fuel 
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density and output an accurate fuel flow measurement. Existing multi-fuel testing 

capabilities will also be used for this research. FEV Cool-Con system is used to control 

the engine coolant and oil temperature. Cool-Con set temperature can be programmed to 

any reasonable temperature. Target temperature control can be set to engine coolant inlet 

or outlet. Oil temperature is controlled through a heat exchanger using coolant from 

engine coolant outlet.   

 

Figure II.2: the engine dynamometer facility at the Clemson University - International 

Center for Automotive Research 
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II.3 DATA COLLECTION AND PROCESSING 

Each cylinder of one engine bank instrumented with passage-mounted AVL 

GH12D piezoelectric cylinder pressure sensors.  The sensors were located in the cylinder 

head to maximize accuracy according to Patterson and Davis [128], and were equipped 

with flame guards to nearly eliminate thermal shock errors. Piezoresistive Kulite sensors 

were used for both intake and exhaust pressure measurements.  The exhaust sensors were 

water cooled to minimize signal drift when exposed to high temperatures. Cylinder and 

manifold pressure measurements were recorded using an AVL-671 crank-angle resolved 

data acquisition system with a 0.5° CA resolution. AVL Concerto software is used to 

process the high volume of data that is acquired during each experiment. Bosch lambda 

sensors, driven by Fuel Air Spark Technology (FAST) wide-band modules, were used to 

record air-to-fuel ratio for each cylinder. 

II.4 GAS EXCHANGE AND COMBUSTION SIMULATION 

AVL Gas Exchange and Combustion Analysis (GCA) 1D engine simulation 

software is used to calculate several important gas exchange parameters that is non-

measureable in the test cell, for example residual gas fraction, and turbulent intensity. 

GCA uses the experimentally measured intake and exhaust pressures as boundary 

conditions for a gas dynamic model and experimentally measured cylinder pressure curve 

in order to determine the rate of heat release and other combustion characteristics such as 

unburned gas temperature and mass fraction burned curve etc. Various other operating-

point-dependent characteristic values are also required from the DAQ measurement 
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imported for simulation. Engine construction is built in the gas exchange and cycle 

simulation code BOOST and integrated together with GCA for complete engine 

simulation. The simulated engine mode has been validated against the experimental 

engine data to ensure the simulation results accuracy, including energy balance 

validation, gas exchange and most importantly the combustion curve validation which is 

shown in Figure II.3. Various speed and load points were also studied and the GCA 

simulation is confirmed to produce satisfactory results across a wide range of engine 

operating conditions.    

 

Figure II.3: GCA simulation results validation 
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II.5  VIRTUAL ENGINE SIMULATION  

The 1-D engine model was developed based on the test engine geometry and 

configuration as shown in Figure II.4, using the market leading engine simulation 

software GT-POWER. A predictive combustion model is implemented that utilizes a 

quasi-dimensional flame propagation process. A 3-D combustion chamber shape model is 

used to calculate flame propagation area. Predicted cylinder pressures from the GT-

POWER simulation were compared with experimental results under the similar operating 

conditions for validation. Areas of particular focus for model validation were cylinder 

pressure during gas exchange and combustion to evaluate both the performance of the 

intake and exhaust system as well as the predictive combustion model.  

 

Figure II.4. GT-POWER virtual engine model structure 
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The combustion process is modeled using a quasi-dimensional flame propagation 

model. Geometry of intake and exhaust system components are measured and convert in 

1D coordinate representation, measurements also include flow coefficients and operating 

environment. Combustion chamber shape was created with a 3D scanner and imported 

into GT-POWER for SI engine combustion flame propagation area calculations. 

Predicted cylinder pressure from the virtual engine simulation is compared with 

experimental results under similar operating conditions to evaluate the model accuracy. 

Examination of pressure traces during gas exchange and combustion processes were used 

evaluate the performance of the intake and exhaust system as well as the predictive 

combustion model.  The entire range of engine speed and load was examined to ensure 

the developed model was globally accurate. Validation processes were carried out for 

both gasoline and E85. Adjustments on the combustion model multiplier are 0.69 for 

turbulent flame speed, 0.55 for dilution exponents and 0.2 for kernel growth. Only 1 set 

of multipliers are used for all engine operating conditions.  

 

Figure II.5. Simulated cylinder pressure from GT-POWER compared to the experimental 

data. 
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II.6 PROTOTYPE REAL TIME ENGINE CONTROLLER 

The test engine was controlled using an A&D Technology, Inc. ADX rapid-

prototype ECU system (AD5435) that allows for complete adjustment of all actuators and 

fast user defined function, control algorithm implementation. The AD5435 is a high-

speed measurement and control system that can be customized for a wide variety of 

engine control applications. It addresses various systems requirements by combining 

multiple I/O boards and a CPU employing RTOS with excellent real-time performance 

through MATLAB/Simulink control models and A&D's GUI-generating and 

experimentation support tool, VirtualConsole, as shown in Figure II.6. ECU in the 

prototype engine controller has an Intel Celeron M 1.5 GHz processor and 512 RAM that 

is capable of executing a complete engine control code with a model based combustion 

model at a sampling time of 100Hz. 

 

Figure II.6. A&D AD5435 engine control system 

The structure of Simulink code for engine control is shown in Figure II.7. Standard 

engine sensors are used for engine control purposes. High speed cylinder pressure sensor 

data is also available for real time heat release analysis. Physical sub models take the 
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standard sensor signals and generate several combustion related parameters for model 

based spark timing control. Engine electronic throttle and injection are controlled using 

closed-loop PID based on the TPS and lambda feedback. Map based ignition control is 

also available utilizing a look up table which is pre-calibrated based on stock ECU. 

 

Figure II.7. Real time engine control Simulink program structure. 
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II.7 COMBUSTION BEHAVIOR 

II.7.1 ENGINE PERFORMANCE PARAMETERS 

Indicated mean effective pressure (IMEP) 

Mean effective pressure (MEP) is normalized parameters which represent the 

practical engine performance index such as power, torque, and specific fuel consumption. 

MEP was defined to eliminate the effects of engine size that allows for comparison 

between engines having different displacement. Indicated mean effective pressure 

represent only the thermodynamic work available to the engine. It is the work produced 

per cycle divided by the displaced volume which can be calculated by the numerical 

integration of the pressure versus volume data. 

Combustion phasing 

Combustion process can be described by a heat release process of the unburned 

mixture. The energy release rate which is a function of in-cylinder pressure and 

temperature can be converted to a normalized integral form which represents the fraction 

of heat release from the total energy, called mass fraction burned curve, as shown in 

Figure II.8. It is clocked with engine crank angle which eliminates the absolute cycle 

times changing for different RPMs.  
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Figure II.8. Mass Fraction burned curve for a steady state engine operating conditions. 

  Several important index/locations are commonly used to describe the 

combustion phasing which in the forms of CA (percentage of mass burned). It represents 

the location when certain amount of mass is burned. Typical index are:1) CA00, the start 

of the combustion after initial flame development introduced by the spark energy; 2) 

CA10, the start point of rapid combustion when pressure and temperature developed into 

optimum environments for combustion; 3) CA50, the centerline of combustion which is 

used to represent the combustion phasing; 3) CA90, the end of rapid combustion, 

followed by relatively slow reactions of hydrocarbon oxidation when pressure and 

temperature is decreasing.  
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Maximum Brake Torque (MBT) timing 

The optimum combustion phasing is defined as minimum spark advanced timing 

for best brake torque. For ideal thermodynamics cycle, the combustion happed at constant 

volume which will results in the maximum efficiency. However, combustion is a 

relatively slow event compared to the time period in the high speed SI engines. The 

excitation spark has to happen during the compression stroke to give time for 

combustion. This introduced the problem for proper phasing the combustion event. Early 

combustion will generate larger heat transfer losses and late combustion will results in 

expansion loss. Therefore, the optimum spark timing is a balanced between heat transfer 

loss and expansion loss. General rule of thumb for the MBT timing is 50% mass burned 

at around 8CA after top dead center if the engine is not knock limited. The optimum 

combustion phasing also will favorite more advanced during the high engine speed 

operation because of the reducing time for heat transfer. 

II.7.2 COMBUSTION PHASING CHARACTERISTIC  

Spark timing is the direct control parameters for combustion phasing. Retard and 

advance the spark timing will results in the same effects for combustion phasing as 

shown in Figure II.9. Spark and combustion phasing generally have a linear 1 to 1 

relationship especially around the MBT timing which means retard 1 degree of spark 

timing will results in 1 degree retarded combustion phasing. Notice the difference 

between gasoline and E85, spark timing need to be advanced around 3CA to be able to 

achieve the same combustion phasing. 
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Figure II.9. Combustion phasing (CA50) results at 2500RPM and 0.5 bar MAP during 

spark sweeps. 

Opposite trends can be observed for the flame development period. The duration 

from spark to CA5 is decreasing when retarding the spark timing, as can be seen from 

Figure II.10. This is because the in-cylinder pressure and temperature is higher when 

piston compressed the unburned mixture closer to the top dead center. E85 compared to 

gasoline is easier to evaporate and also the laminar flame speed is higher which in 

general will shorten the flame development period.  
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Figure II.10. Flame development period (SPK-CA5) results at 2500RPM and 0.5 

bar MAP during spark sweeps 

Generally speaking a shorter combustion event will results in better efficiency 

because it is closer to a constant volume ideal combustion. Less heat transfer and 

expansion loss will be generated when combustion duration is short. It can be also related 

to the MBT timing rule which is shown in Figure II.11. The MBT timing for the 

operating conditions is around 30 CA to 35 CA where the combustion durations are at the 

minimum locations. 
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Figure II.11. Combustion duration (CA10-CA90) results at 2500RPM and 0.5 bar MAP 

during spark sweeps 

II.8 TEST POINT SELECTION 

Data was acquired over a large range of operating condition to ensure that the 

developed models were accurate and robust. Engine data is divided into two sets; one set 

for operating with gasoline fuel, and another for operating with E85 fuel. Experimental 

data was obtained at controlled coolant temperature and oil temperature for data 

consistency. Data selection plot, as shown in Figure II.12, was based on engine normal 

operation range, spark sweeps, load sweeps and RPM sweeps consist the overall matrix 

of the possible engine operating condition.   
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Figure II.12. Steady state operation data points only cover partial engine operating range; 

spark sweeps (7-24° ATDC CA50), load sweeps (0.3-0.98 bar of MAP) and RPM sweeps 

(1000-3500 RPM) which contains total 440 data points for both gasoline and E85. Each 

data point is an average of 500 continuous cycles. 

II.9 COMBUSTION STABILITY 

The cyclic variability is usually attributed to the result of random fluctuations in 

equivalence ratio and flow field due to the turbulent nature of the flow in the cylinder 

Cycle-to-cycle variability is directly related to engine emission and drivability. For this 

reason, it is very important to quantify this cyclic variability for better engine control 

performance purpose.   

II.9.1 COEFFICIENT OF VARIANCE OF IMEP 
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One of a common measurement of cycle-to-cycle variability is the coefficient of 

variance of IMEP which is defined as the standard deviation of an IMEP sample set 

divided by the average value of the same IMEP sample set. COV levels below 10% are 

generally considered acceptable. Figure II.13 shows the COV of IMEP of the GM 5.3 

Liter V8 engine with each sampling data set contains 500 cycles. As can be observed, 

engine using gasoline fuel will have slight higher COV than using E85 especially in the 

knock limited and retard limited zone. 5% to 10% combustion cycle-to-cycle variability 

is observed as a nature of this test engine, therefore the spark timing prediction model 

will expect to have the same error tolerance.    

 

Figure II.13: GM 5.3 Liter V8 engine COV of IMEP 

II.9.2 LOWEST NORMALIZED VALUE OF IMEP 
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Lowest normalized value (LNV) is used to evaluate the misfire tendency of an 

engine which is defined as the lowest value of an IMEP sample set divided by the 

average value of the same sample set. LNV correlates well with engine emissions and 

engine harshness. Figure II.14 shows the LNV of IMEP of the GM 5.3 Liter V8 engine 

with each sampling data set contains 500 cycles. LNV for engine using gasoline is also 

higher than with E85 especially at the knock limited and retard limited zone as shown in 

Figure II.14. There is no random nature misfire tendency of the test engine can be 

concluded from the LNV plot.  

 

Figure II.14: GM 5.3 Liter V8 engine LNV of IMEP 

II.9.3 INDEX OF COMBUSTION PHASING CONTROL PERFORMANCE  
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Combustion variance in this research is quantified by the standard deviation of 

CA50. Standard deviation of CA50 will be increased specially at higher RPM, lower 

engine load, or late combustion phasing, as shown in Figure II.15. To evaluate the real 

time combustion phasing control performance at each engine operating points, an 

empirical model is fitted for standard deviation of CA50, as shown in Equation (II.1). 

Since the test engine is not equipped with advanced control actuators, such as variable 

valve actuation, charge motion control system, external residual gas control system etc., 

and standard deviation of the combustion variability is mainly a function of RPM, load 

and CA50.  

. .?  ( , , 50)50Std Dev f RPM LOAD CACA 
 (II.1)  

Standard deviation is commonly used to measure confidence in statistical 

conclusions. In this research, the target performance of controlled combustion phasing 

(floating mean) is regulated to be less than +/- 0.7 the standard deviation based on the 

standard error of the mean (SEM) theory, as shown in Equation (II.2).  

X
SE

n




 
(II.2) 

 

Because the combustion phasing (CA50) will randomly locate around the mean 

assuming normal distribution, if the SEM hold, the floating mean of CA50 results will 

share the same population mean of CA50 control target, in other word, the best the 

control system can do.    
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(a) 

 

(b) 

Figure II.15. (a) Standard deviation of CA50 (500 consecutive cycles sample) for 

different engine speed, load and combustion phasing, and (b) empirical model results of 

standard deviation of CA50 which are both used to evaluate the spark timing control 

performance.   
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III QUASI-DIMENSIONAL COMBUSTION MODEL DERIVATION 

A simplified version of a well-proven quasi-dimensional turbulent flame 

entrainment model is used as the foundation of this research. Quasi-dimensional turbulent 

flame entrainment models can accurately predict spark-ignition engine performance for a 

wide range of designs and operating conditions [149], without the need to setup a 

complex CFD simulation. They do not capture the flow structure and flame propagation 

detail of multi-dimensional models; however, they offer physics-based results with low 

computational complexity making them good candidates for model-based control strategy 

development. This combustion model was originally introduced by Blizard and Keck 

[150] and refined by Tabaczynski et al. [151][152]. The model consistently provides 

good agreement with experimental data, making it a good representation of combustion 

processes [24]. Combustion is modeled using two steps; (1) pockets of the fresh air and 

fuel mixture are entrained by an advancing turbulent flame front, and (2) entrained 

pockets burn-up on the Taylor microscale level at the laminar flame speed of the mixture. 

Equation (III.1) describes the rate which unburned mass is entrained by the flame 

front.  The flame is assumed to entrain the unburned charge along Kolmogorov-scale 

vortices entraining turbulent eddies.  Entrainment velocity is defined by the sum of a 

diffusive component, laminar flame speed (SL), and a convective component, turbulence 

intensity (u’).  Flame front area (Afl) is defined by the leading flame edge, not the total 

flame surface area enclosing the still unburned eddies.  After turbulent flame entrainment, 

'( )entrained
unburned flame L

dm
A u S

dt
 

 
(III.1) 

burned entrained burned

m L

dm m m

dt l S




 
(III.2) 
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mass burn-up rate can be described by Equation (III.2).  Burn-up rate is proportional to 

the total unburned mass entrained behind the flame front. Entrained turbulent eddies are 

then assumed to burn-up at the laminar flame speed since the length scale is small.  Eddy 

size is approximated as the Taylor microscale ( , which is the assumed length scale over 

which laminar diffusion occurs; justifying the use of laminar flame speed in this case 

[151]. The overall process can be illustrated by Figure III.1. 

 

Figure III.1. Mass entrained and burned process of quasi-dimensional turbulent 

flame entrainment modeling 
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III.1 INPUTS CALCULATION 

Inputs to the quasi-dimensional turbulent flame entrainment model can be 

described by Figure III.2. The model requires five inputs: (1) flame front area, (2) 

unburned charge density, (3) turbulence intensity, (4) Laminar flame speed, and (5) 

Taylor microscale of turbulence. Each of these inputs has specifically designed sub-

models to predict their levels throughout the engine operating range in real-time. These 

sub-models can be constructed using results from a 1-D combustion simulation code for 

accuracy demonstration. For the real-time control purpose, the sub-models can be 

simplified and only take standard engine sensors as primary inputs such as mean piston 

speed, air/fuel ration, and intake manifold absolute pressure. Comparison between the 

two calculation methods will be shown in the following chapter. 
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Figure III.2. Combustion model inputs structure with a comparison between high fidelity 

sub-models for accuracy demonstration and simplified sub-models for real-time control 

purpose. 
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III.1.1 RESIDUAL GAS FRACTION MODEL   

Residual gas fraction serves as diluents to the combustion that can lower the in-

cylinder temperature and decrease combustion burn rate by reducing the laminar flame 

speed of in-cylinder gas mixture. It is also used to calculate total in-cylinder mass 

together with the on-board mass air flow and lambda sensor. Since the test engine does 

not equip with any external EGR system, internal residual gas content can be calculated 

through pressure difference at the valve overlap period utilize the 1-D combustion 

simulation. A well-proven semi-empirical approach is used for real-time RGF prediction 

[28]. The model was rigorously validated against with the 1-D combustion simulation 

results. Empirical model constants were recalibrated for the test engine, as shown in 

Equation (III.3).  

III.1.2 UNBURNED CHARGE DENSITY 

Initial unburned charge density (@ IVC) is calculated using the ideal gas law and 

the approximately known value of temperature, pressure and gas constant at intake valve 

closing.  

Polytrophic compression is assumed and Equation (III.3) (III.4) can be used to 

calculate pressure and temperature. Temperature at intake valve closing (IVC) is 

estimated using the mass-weighted calculation assuming the specific heats of intake and 

exhaust gases are equal, as in Equation (7), residual gas temperature at IVC is assumed 

0.87 0.740.5484
( ) | | 0.3221 ( ) /I I

r E I c
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N P P
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equal exhaust temperature minus 100 degrees (K) to account for heat transfer during the 

gas exchange process. 

After ignition, unburned charge is compressed at a rate that the rapid distortion 

theory (RDT) is assumed valid (Wong [154]) which assuming that angular momentum 

within the turbulent field is conserved, and that there is no interaction between turbulent 

eddies. Rapid distortion theory defines the unburned charge density by Equation (III.8): 

III.1.3  FLAME FRONT AREA  

Flame front area at each crank angle can be interpreted from a geometrically 

calculated table [24]. The flame area table is generated using engine-specific combustion 

chamber geometry. Alternative way of predicting the flame front area is used in this 

research which assuming a spherical flame pattern and used experimental data to generate 

the approximated results. The flame is assumed to start from the spark and propagate as a 

sphere-shaped front before it interfaces with the cylinder walls [155], for example the 

cylinder head, liner, and piston. Previous researchers [134]have shown this to be a 

reasonable assumption for the purpose of engine control during early combustion (before 

CA10). It is also assumed that flame thickness can be ignored which means the flame 
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volume is equal to burned volume. Flame area for early combustion is calculated using 

Equation (III.9).  

A relationship between Burned Mass Fraction (BMF) and Burned Volume 

Fraction (BVF), derived from the ideal gas law by Heywood [22], is used to approximate 

burned and unburned volume using Equation (III.10). 

The density ratio in Equation (III.10) depends on the equivalence ratio, burned 

gas fraction, along with unburned mixture temperature and pressure. Heywood simplifies 

the calculation by observing that the density ratio is close to 4 for most spark-ignition 

engine operating conditions. Another method to calculate the burned volume fraction was 

reported by Patterson [128], as shown in Equation (III.11). 

Approximated relationships between burned mass fraction and burned volume 

fraction from Patterson and Heywood show relatively close results, and therefore, 

Heywood model is selected because of the simplicity.  

III.1.4 TURBULENT INTENSITY MODEL   

Turbulence intensity of each operating conditions over a 100 CAD range is 

extracted from 1-D combustion simulation, which evaluates turbulence using a two 

equation K-k approach described by Poulos and Heywood [129]. Turbulence intensity is 

a strong function of mean piston speed for the test engine considered. Similar to previous 
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researchers Heywood [22] and Prucka [130], a linear relationship between mean piston 

speed and turbulence intensity was observed. To reduce the computation time, a linear 

equation of turbulent intensity is fitted based on mean piston speed and validated with the 

simulation results, and can be expressed in Equation (III.12): 

The test engine is not equipped with flow varying actuators, such as charge 

motion control valves or variable valve timing. For more a more complex engine 

configuration, a control-oriented turbulence intensity model was developed by Prucka et 

al. [130]. The model generates a prediction based on engine speed, torque, ignition 

timing, charge motion control valve position, and variable valve phasing. 

III.1.5 LAMINAR FLAME SPEED MODEL 

The chemical kinetics and diffusion rates of an air, fuel, and residual gas in a non-

moving mixture are commonly lumped into a single parameter called the laminar flame 

speed.  Within turbulent flows there are small length-scales over which convective 

mixing does not dominate and the flame is assumed to travel at the laminar flame speed.  

Equation (III.2) captures this concept in the selected quasi-dimensional combustion 

model as a diffusive burn-up process.  Laminar flame speed is a function of residual gas 

fraction, fuel type, pressure, temperature, and relative fuel-to-air ratio. A semi-empirical 

model for the prediction of laminar flame speed based on the above criteria was reported 

by Heywood [22], as shown in the Equation (III.13). The laminar flame speed model will 

be used as an input to the feed forward combustion duration prediction model in the 

closed-loop control algorithm for multi-fuel adaptive SI engines. This model is widely 

1'( ) mpsu i cV i
 (III.12) 
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accepted and well-proven for gasoline. Empirical constants for different fuel types are 

experimental studied, for example, the constants for E85 of this study is taking from Syed 

et al. [131].  

III.1.6  TAYLOR MICROSCALE OF TURBULENCE   

Taylor microscale is an assumed length scale over which laminar diffusion 

occurs; justifying the use of laminar flame speed in the calculation of the mass burn up 

period Tabaczynski et al. [151]. Taylor microscale of the burn-up eddy is calculated 

using the below Equation (III.14): 
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III.2 MODEL RESULTS 

Combustion model results are obtained from two set of sub models that (i) utilize 

inputs from 1D combustion simulation results, and (ii) standard engine sensors. It is 

assumed that the combustion model with inputs from 1D combustion simulation results 

will provide the best accuracy. A simplified model which only uses standard engine 

sensors is developed for real-time control purpose and compared to 1D simulation results 

for validation. Results from simplified real-time model will compare to the high fidelity 

model. 

For high-fidelity combustion model, turbulent intensity results are from 1D 

combustion simulation; flame front area is calculated using unburned volume fraction 

from heat release analysis using experimental cylinder pressure data; laminar flame speed 

and unburned density are calculated through out the combustion with experimental 

cylinder pressure and unburned gas temperature from two zone heat release analysis. The 

simplified combustion model uses a linear equation for turbulence intensity from 

regression fit. Laminar flame speed and unburned density are calculated based on the 

cylinder pressure and unburned gas temperature determined from intake manifold 

pressure and temperature assuming polytrophic compression. Flame front area is using a 

table calibrated with experimental data. 

Sub models are also calculated with gasoline and E85 experimental data to 

investigate the sensitivity of  combustion behavior to fuel properties. Comparison of 

results obtained with high fidelity and simplified sub model with multi fuel sources 

results are shown in Figure III.3. 
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Figure III.3. Results of high-fidelity and simplified sub-models for the turbulent 

flame entrainment combustion model with gasoline and E85 fuel source, at 2500RPM, 

50kpa MAP, 16 CA50, and 11.5% EGR. 

The level of in-cylinder turbulence is defined by the root-mean squared velocity 

fluctuation, called turbulence intensity. Turbulent intensity are mainly related to the gas 

exchange dynamics of the specific engine, for example, intake runner and port design, 

combustion chamber design, valve lift and timing strategy etc. Different fuels are likely 

to have minor effect on the gas exchange dynamics. For example better charge cooling by 

E85 and results in slightly higher volumetric efficiency.  Same results for residual gas 

fraction can be observed (not shown in the plot) because it is also closely related to gas 

exchange dynamics. 
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Unburned density and flame front area are calculated from unburned volume 

(entrained volume), as shown in Equation (III.4) and (III.9). During mass entrain period 

described by Equation (III.2), turbulent intensity dominates mass entrain rate because it is 

an order of magnitude higher than the laminar flame speed. Therefore, unburned density 

and flame front area have minimal sensitivity todifferent fuel type. 

Simplified unburned density model uses Equation (III.8) assuming the rapid 

distortion theory therefore does not capture the piston motion in the exhaust stroke, nor 

after the flame front reaches the cylinder wall, piston top or combustion chamber etc.  

Flame front area was found to be the most difficult to model, but very important 

for the combustion model accuracy. It directly reflects the start and the rate of rapid 

combustion (CA10-CA90), after initial flame preparation (SPK – CA10). In this research, 

it is calculated inversely from experimental mass fraction burned profile, using physical 

definition and geometrical assumption of the flame front area to make sure its results as 

close to the real value as possible. However, this engine specific and operating condition 

sensitive data table for flame front area prediction scarified the intention of using physics 

based feed forward model.  

Results shown in Figure III.4 demonstrate the prediction of mass entrained and 

burned profile from simplified turbulent flame entrainment model compared with 

experimental data. The results are calculated for the combustion events with gasoline and 

E85 with same combustion phasing (CA50 @ 16). Deviation of the results above CA50 

location might be because of the assumptions invalid with simplified unburned density 

model and spherical flame area.   
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Figure III.4. Mass entrained profiles for same CA50 location from a high-fidelity 

combustion model, experimental data and simplified real-time model indicate the 

reasonable accuracy for the simplified model at 2500RPM, 50kpa MAP, 16 CA50, and 

11.5% EGR. 

As discussed above, the fuel sensitive nature of the turbulent flame entrainment 

model makes it ideal for multi fuel engine model based spark timing control. Prediction 

for combustion duration results over a wide range of engine operating points with two 

fuel inputs are shown in Figure III.5. 
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Figure III.5. The combustion duration prediction from simplified real-time model 

is able to match the experiments results 

Root-Mean-Square-Deviation (RMSD) is used to quantify the performance of the 

turbulent flame entrainment model accuracy, results as shown in Table III.1. A good 

agreement of the model results with experimental data is observed. 

Table III.1. RMSD of the simplified turbulent flame entrainment model results 

compared with experimental data 

RMSD Time basis (ms) CAD basis (CA) 

Gasoline 0. 274 1.32 

E85 0. 199 1.19 
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III.3 CONCLUSION 

Quasi-dimensional turbulent flame entrainment combustion duration models have 

been studied for real-time feed forward spark timing control of multi-fuel adaptive SI 

engines. The turbulent flame entrainment model shows an excellent accuracy for 

reconstructing the mass fraction burned during combustion. RMSD analysis of the model 

results showing the physics based approach realized around 1.3 CAD deviations in 

combustion duration prediction from spark to CA50 of both gasoline and E85. However 

the quasi-dimensional combustion model will be limited by:  

 In-cylinder conditions are too computational intensive to predict after the 

start of combustion.  

 Accuracy of sub-models such as flame front area and unburned density 

will need good understanding of in-cylinder flow pattern, 3D geometry 

shape of the combustion chamber and crank angle resolution heat release 

analysis. 

 Crank angle resolution of the burn rate will be unnecessary for just the 

spark timing prediction. 
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IV VIRTUAL SENSING OF FUEL PROPERTIES  

This virtual fuel property sensor aims to assist the development of model-based 

adaptive combustion phasing control strategies for multi-fuels engines through feedback 

of fuel property information. The selection of an optimal ignition timing to satisfy a 

desired combustion phasing can only be determined if an accurate estimate of combustion 

duration can be calculated prior to ignition. Burn duration for a given set of in-cylinder 

conditions is a function of many factors (e.g. air-to-fuel ratio, residual gas fraction, 

charge motion, pressure, temperature, fuel type, coolant temperature, etc.), and accurate 

predictions or measurements of each are required for robust combustion phasing control. 

The focus of this research is fuel property sensing because it has been shown to have a 

significant influence on spark-ignition engine combustion. 

The fuel property that primarily influences combustion rate can be described by 

laminar flame speed. Laminar flame speed is a function of residual gas fraction, fuel type, 

pressure, temperature, and relative fuel-to-air ratio.  A semi-empirical model for the 

prediction of laminar flame speed based on the above criteria was reported by Heywood 

(1988, p. 403). This model is widely accepted and well-proven for gasoline, but the 

empirical constants for most new fuel types are not available.  Experimental data of 

different fuel sources will be used to generate estimates of these empirical constants.  

The fuel property sensing routine does not assume that fuel types are known. 

Rather, it considers the possibility that unknown fuel blends (bio-fuel, or others) could be 

introduced to the market after initial development and calibration of the engine control 

system. The multiple fuel sources can be blended together based on the availability, 
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regulation or market drivers. In this case, it would not be possible for calibrators to test 

all the available combinations of fuels prior to release of the engine in the marketplace.  

The proposed virtual sensing method determines laminar flame speed based on the fuel 

behavior instead of the actual fuel type; therefore simplifying the calibration process of 

the multi-fuel adaptive engines.  

IV.1  ASSUMPTIONS AND MODEL DERIVATION  

Several assumptions are required to extract a laminar flame speed estimate from 

cylinder pressure data using an inverse-combustion model when fuel type is changed.  

The key consideration is that spark-ignition engine combustion rate is primarily dictated 

by chamber geometry, turbulent flame entrainment rate, and the laminar flame speed of 

the mixture during burn-up and the quasi-dimensional turbulent flame entrainment model 

characterizes each of these phenomena.  The influence of a fuel change on combustion 

must be isolated from other possible changes (e.g. residual gas fraction, charge motion, 

etc.) to avoid attributing changes in burn-rate caused by non fuel-related factors to the 

fuel itself. To do this, it is assumed that both residual gas fraction and turbulence 

intensity remain largely unchanged when fuel type is altered.  

Internal residual gas content is mainly affected by intake and exhaust pressure and 

dynamics, engine speed, compression ratio and valve timing. When the intake valve 

opens there is some backflow of combustion products into the intake port, this part of the 

burned mass will be brought back into the cylinder by fresh mixture. This exhaust 
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residual together with the left over combustion products at the end of the exhaust valve 

closing, comprise  the total residual gas mass. 

Generally speaking, residual gas dynamic is related primarily to gas exchange 

process, which has very weak relationship with fuel type. On the other hand, fuel type 

might have different charge cooling effect on the volumetric efficiency that will alter the 

gas exchange dynamics. Mixture density might be different because of different 

stoichiometric ratio, and this can result in different residual gas mass. However it can be 

normalized in the residual gas fraction (ratio of residual gas mass to total mass of charge) 

representation. Residual gas fraction results obtained from GCA, as shown in Figure 

IV.1, suggested fuel type has minimally influence on the residual gas level. 

 

Figure IV.1: Experiments suggest residual gas fraction levels are not significantly 

influenced by fuel type. 
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The level of in-cylinder turbulence is defined by the root-mean squared velocity 

fluctuation, called turbulence intensity. Previous researchers have demonstrated that 

turbulence intensity scales linearly with mean piston speed (MPS) [130] for fix valve 

actuation system. Turbulence intensity is the quantification of in-cylinder charge motion. 

Therefore no correlation with fuel type will be expected. Turbulence intensity results, as 

shown in Figure IV.2, are calculated using a two equation K-k approach [129] which will 

be explained in the following chapter. 

 

Figure IV.2: Experiments suggest turbulent intensity levels are not significantly 

influenced by fuel type. 
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turbulent intensity, and (2) the flame front thickness is low and can be ignored. The ratio 

of flame thickness to flame radius is close to 0.1 during early combustion, as documented 

by several studies of initial flame kernel development [134][135][136][137][138]. 

Therefore the flame front area can be simplified to burned volume front area. Flame 

thickness is calculated by knowing the difference between the burned volume radius and 

entrained volume radius assuming spherical pattern. Model detail will be explained in the 

following chapter. The inverted and simplified flame entrainment model for virtual 

laminar flame speed calculation is shown as Equation (IV.1). 

The fuel property sensing method works by comparing the burn rates between two 

different fuels (a baseline and a test fuel) operating with similar boundary conditions (i.e. 

engine speed, load, relative air-to-fuel ratio, and ignition timing). When burn-rate is 

observed to be different from a baseline value (e.g. gasoline), as shown in Figure IV.3. 

The measured burn rate will be analyzed with the inverse-combustion model, as 

described in Equation (IV.1), and a new laminar flame speed estimate will be calculated 

using the methods described in the following sections.   

'

burned

L

unburned burned burned

dm
lm

dtS
A u m


  

(IV.1) 
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Figure IV.3: With similar boundary conditions two fuels demonstrate different 

combustion characteristics. 

IV.2 VIRTUAL FUEL PROPERTY MODEL INPUTS CALCULATION 

 Virtual fuel property model structure can be described in Figure IV.4. Model requires 

four primary inputs; (1) unburned charge density, (2) flame front area, (3) turbulence 

intensity, and (4) Taylor microscale of turbulence.  Each of these inputs has specifically 

designed sub-models to predict their values throughout the engine operating range in real-

time. Description of each model is provided in the quasi-dimensional model basic 

chapter. 
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Figure IV.4: Structure of virtual fuel property sensor. 

IV.3 LAMINAR FLAME SPEED MODEL 

Chemical kinetics and diffusion rates of air, fuel, and residual gas in a non-

moving mixture are commonly lumped into a single parameter called the laminar flame 

speed.  Within turbulent flows there are small length-scales over which convective 

mixing does not dominate and the flame is assumed to travel at the laminar flame speed.  

Laminar flame speed is a function of residual gas fraction, fuel type, pressure, 
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temperature, and relative fuel-to-air ratio. A semi-empirical model for the prediction of 

laminar flame speed based on the above criteria was reported by Heywood [22], as shown 

in the Equation (IV.2). The laminar flame speed model will be used as an input to the 

feed forward combustion duration prediction model in the closed-loop control algorithm 

for multi-fuel adaptive SI engines. This model is widely accepted and well-proven for 

gasoline. Empirical constants for other fuel types are experimentally determined, and the 

constants for E85 in this study were reported by [131]. 

IV.4 LAMINAR FLAME SPEED OBSERVER VALIDATION  

Observer results are validated using Equation (IV.1) with two sets of empirical 

constants for gasoline (Heywood [22]) and E85 (Syed et al.[131]). Inputs to the 

prediction model (e.g. pressure, unburned gas temperature and residual gas fraction) are 

calculated from experimental data to ensure the results are able to accurately represent 

the laminar flame speeds of the fuel source. The observer model calculates the laminar 

flame speed based on the proposed method and cylinder pressure data from engine 

experiments. Estimates are made assuming a known fuel (gasoline or E85) as baseline 

and laminar flame speed is calculated for the other fuel. Therefore, validation of the 

observer can be carried out for feedback of laminar flame speed for both gasoline and 

E85, as shown in Figure IV.5. Overall 440 data points (see engine test point description) 

are selected for observer validation. Each of the data points represents an average of 500 

consecutive cycles, which minimizes the influence of combustion variability. The process 
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demonstrates accuracy, based on Root-Mean-Square-Deviation (RMSD), for all gasoline 

data points of 1.27 (cm/s) and 2.17 (cm/s) for E85. Validation results also show that 

observer accuracy is not influenced by operating conditions.  

 

Figure IV.5: The laminar flame speed model predicts the experiment calculation with an 

RMSE of less than 2.2 (cm/s) 
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refuelling event). Additionally, the best time for sensing laminar flame speed is when 

engine is at idle or low engine speed conditions. Recall in Equation (III.1) that turbulent 

intensity normally is one order of magnitude greater than laminar flame speed especially 

at high engine speed range. The dominate influence of turbulence intensity on 

combustion may reduce observer sensitivity to laminar flame speed as engine speeds 

increase. 

The power law model for laminar flame speed (Equation (IV.2)) contains five 

empirical constants for each fuel type. Current research [131] suggests that variation of 

certain constants between gasoline and ethanol is insignificant, especially for the residual 

gas dilution terms (C4, C5). However, the proposed research aims to develop a method 

that is valid for other fuel types (beyond gasoline and E85) as well as any blend ratio of 

these available fuel sources. Further simplification was avoided in this research because 

the coefficients of new fuel types may vary significantly from those of gasoline or E85. 

Re-calibration of laminar flame speed model empirical constants (Equation 

(IV.2)) is important for physics-based feed-forward control purposes.  This process is 

performed by using several distinct operating points (i.e. several different load and speed 

points) and inverse-fitting the unknown constants based on the laminar flame speed 

observer feedback. The re-calibration method is based on an unconstrained nonlinear 

minimum small scale search of a multivariable function using a derivative-free method.  

The number of optimization iterations is set to 1000 (200*number of variables), which 

roughly takes one second to process on a desktop with a Quad core 2.66 GHz CPU.  
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A study of the number of distinct feedback data points versus accuracy of the re-

calibration method is discussed below. Each of the distinctive data points is randomly 

picked within the entire test point map. A comparison of the re-calibrated constants and 

number of available feedback data points is provided in Table IV.1, assuming fuel type 

switching from gasoline to E85.  Initial guesses are constants for gasoline and the 

recalibrated results are compared with the original constants for E85. Re-calibration 

accuracy also depends on the data point selection, so laminar flame speeds are first 

generated using the re-calibrated constants for all engine test points. Then, new results 

are compared to the original model.  An error bar map of RMSD is shown in Figure IV.6 

with different selections of data points. It is shown that accumulation of approximately 40 

data points is sufficient. Results from the re-calibrated model have an average deviation 

of 2.73 cm/s (less than 5% error) compared to its original model. Finally the re-calibrated 

laminar flame speed model results are plotted against the original model, as shown in 

Figure IV.7.  

Table IV.1: Five empirical constants comparison between the available numbers of cycle 

feedback 

Coefficient C1 C2 C3 C4 C5 

Initial guess 30.5 2.129 0.217 2.06 0.77 

Original model 48.2 1.9 -0.38 1.5 0.66 

5 data points  49.8 1.6 -0.36 5.3 1.38 

20 data points  48.2 1.9 -0.32 1.5 0.58 

40 data points 52.6 1.6 -0.32 1.8 0.80 
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80 data points 50.0 1.58 -0.32 2.79 1.066 

220 data points 50.2 1.74 -0.35 2.08 0.846 

 

 

Figure IV.6: Root-Mean-Square-Deviation of the re-calibrated model comparison 

between the available numbers of data point feedback 
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Figure IV.7: Validated results of laminar flame speed re-calibrated model 

compared to the original prediction model 

IV.6  SUMMARY AND CONCLUSIONS 

In this chapter, a simplified modeling approach is carried out to investigate a new 

concept of fuel property sensing for multi-fuel adaptive SI engines. The sensorless virtual 

fuel property sensing routine utilizes a simplified quasi-dimensional flame entrainment 

combustion model, and calculates laminar flame speed based on the derivation of the 

burn rates from baseline. A method for re-calibrating a feed-forward laminar flame speed 

prediction model is also investigated. Results and findings are summarized as follows:  
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The virtual fuel property sensor (observer) is able to calculate laminar flame 

speed for a wide range of operating conditions with RMSD of 1.27 (cm/s) for gasoline 

and 2.17 (cm/s) for E85.   

Re-calibration of the feed forward laminar flame speed prediction model with 5 

constants has been investigated for accuracy and response time. Using 40 distinct engine 

operating points as feedback for re-calibrating the 5 unknown constants is able to 

reproduce  laminar flame speed for wide range of operating conditions with RMSD of 

2.73 (m/s).  This represents less than 5% error to well-known values. 
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V  COMBUSTION PHASING TARGET ADJUSTMENT MODEL 

Feed-forward model-based ignition timing control requires a target combustion 

phasing for proper calibration, generally based on CA50. The optimal CA50 location 

(MBT timing) is a balance between early combustion (high heat losses) and late 

combustion (high expansion losses). For combustion with low octane number fuel 

sources, the best CA50 location may also be limited by abnormal combustion (spark 

knock). Based on compression ratio or boost level, the desired combustion phasing will 

be determined by the calibrator for a particular engine with a known fuel source. When 

fuel type is altered (e.g. gasoline to E85) the engine can be subjected to a different octane 

number, requiring an updated CA50 target in the ‘knock region’ to avoid mechanical 

damage and still maintain high thermal efficiency.   

To speed up this process a feed-forward knock prediction algorithm is desired in 

the multi-fuel adaptive engines because of the possible wide range of fuel property 

variations. Spark knock is the consequence of auto-ignition in the unburned end-gas 

ahead of the propagating spark ignited flame front. The auto-ignition characteristic 

therefore is greatly related to the octane rating of the fuel source and governed by 

composite chemical reactions under the time history of temperature and pressure of the 

unburned end gas. Auto-ignition models [108]-[111] are available with a wide variety of 

fidelity options. Two other fuel properties of particular interest for knock control are; 1) 

laminar flame speed that describes the potential mass burn rate which can reduce the time 

scale of the end-gas exposure prior to combustion, and 2) fuel heat of vaporization which 

alters charge cooling effects and unburned mixture temperatures.  

http://www.nciku.cn/search/en/volatility
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This chapter aims to eliminate the drawbacks of knock feedback control by 

developing a feed-forward prediction model for multi-fuel adaptive SI engines, and to 

generate a combustion phasing adjustment map in the knock region for model based 

ignition control. A semi-physical virtual octane sensor and laminar flame speed observer 

are used for fuel property feedback. A knock prediction model, based on an Arrhenius 

function combined with a quasi-dimensional turbulent flame entrainment combustion 

model, is described that identifies the limits of the knock region for a given fuel. The 

combustion duration model is used to calculate in-cylinder thermal conditions for a range 

of operating points in the knock region. Calculated in-cylinder thermal conditions are 

analyzed with a knock correlation that accounts for the negative temperature coefficient 

and air/fuel ratio.  The model then calculates the “best achievable” combustion phasing at 

discrete points in the knock limited region and updates the target CA50 map accordingly. 

The routine operates off-line once the fuel octane number/fuel properties are observed to 

have changed and re-calculates desired combustion phasing targets.  The method is 

shown to be capable of predicting desired combustion phasing for the entire knock region 

based on feedback from a single operating point.  Experimental measurements are used to 

correlate and validate the routine using both gasoline and E85.  

In order to calculate the “best achievable” combustion phasing target, knock 

limits must be determined for a particular engine with current fuel source. A wide range 

of bio-fuel sources might be blended together in future multi-fuel adaptive engines. 

Therefore, two virtual fuel behavior sensors are placed in the control algorithm to 

feedback octane number and laminar flame speed of the mixed fuel source. Octane 

number describes the ability of the fuel source to withstand compression before 
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detonating. Laminar flame speed represents the fuel property that affects combustion 

burn rates. The quasi-dimensional turbulent flame entrainment model generates mass 

burned rates off-line for different combustion phasings at each engine operating condition 

(e.g. RPM, MAP). The first Law of Thermodynamics and heat release analysis is used to 

reconstruct cylinder pressure and unburned gas temperature profiles for each predicted 

combustion phasing. Then, the predicted in-cylinder thermodynamic conditions are used 

in the Livengood & Wu integral [109] to analyze if knock will occur at each particular 

combustion phasing. Finally the algorithm identifies the achievable combustion phasing 

closest to MBT timing and generates the updated CA50 target for model based spark 

timing control. The off-line “what if” algorithm for determining the “best achievable” 

combustion phasing is shown in Figure V.1. Each component of the described algorithm 

will be explained in the following sections.  

 

Figure V.1. Off-line “what if” algorithm for determine the “Best achievable” combustion 

phasing in the knock region when the fuel source is altered. 
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V.1 AUTO-IGNITION MODELING AND PREDICTION 

Various levels of sophistication for auto-ignition characteristic modeling are 

available, from comprehensive chemical kinetic simulations [108], to a global single step 

Arrhenius function that describes all hydrocarbon oxidation reactions [109]. Reduced 

chemical kinetics descriptions are also available [110]. In the above methods, the single 

step Arrhenius function is recognized as the most practical way of predicting the ignition 

delay for control purposes because of its simplicity and relatively good physical 

representation [111]. It is widely studied based on experimental data for auto-ignition 

prediction in constant volume bombs, steady flow reactors, rapid compression machines 

and IC engines [139]-[140]. 

Phenomena for ignition delay are observed both experimentally, in rapid 

compression machines (RCM) [141] and in detailed chemical kinetics simulations [142].  

Typical results for gasoline are shown in Figure V.2.  This figure demonstrates 

monotonic behaviors in the cool flame ignition delay region on the upper right, the 

intermediate region of negative temperature coefficient (NTC) behavior and the high 

temperature ignition region in the lower left hand corner [143]. Auto-ignition generally 

occurs when the unburned gas reaches around 900K to 1000K, where the NTC behavior 

is observed. Therefore, it is important for the knock prediction/auto-ignition delay model 

to capture this phenomenon. 
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Figure V.2. Yates et al. 2008 developed coefficients for ignition delay correlation which 

take into consideration different octane numbers of current gasoline fuel. 

A typical commercial automotive gasoline contains approximately seven hundred 

types of molecules [143]. For highly detailed chemical kinetic modeling ignition 

characteristics of each individual molecule in the temperature and pressure domain is 

required. This information is rarely available and time consuming to calculate, so a global 

reaction that describes all the hydrocarbon oxidation processes in a single-step Arrhenius 

function is favored in this research. The equation relates the rate of reaction of an auto-

ignition product as a function of pressure and temperature, assuming single-step chemical 

kinetics: 
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The ignition delay, in milliseconds, can be expressed as the inverse of the reaction 

rate of the global single-step mechanism: 

Equation (V.2) is developed to represent the ignition delay in a RCM with 

coefficients extracted from experimental data. In a RCM, the pressure is assumed 

approximately constant until combustion occurs. However, for a spark-ignited engine, the 

end gas is compressed by the propagating flame and the temperature rises following a 

polytropic process. Livengood and Wu [109] proposed that the end gas auto-ignition 

chemistry is cumulative and can be predicted by integrating the reaction rate of the end 

gas at discretized pressure and temperature time steps until the critical time when the 

integral value is equal to one, as shown in Figure V.3. 
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Figure V.3. Illustration of the Livengood-Wu Integral for predicting auto-ignition in a 

changing pressure and temperature environment 

Several researchers have fit coefficients of the L-W integral by polynomial 

regression to a chemical kinetic model for ignition delay prediction [144][143][145]. 

These techniques are empirical, but have proven capable of adapting to changing octane 

number.  Their model results, shown in Figure V.2, provide a good correlation to the 

experimental/physical system and are chosen for this research. 

V.2 RECONSTRUCTION OF IN-CYLINDER THERMODYNAMIC CONDITIONS  

Off-line knock event prediction is done by a “what if” analysis using the 

predictive turbulent flame entrainment combustion model which can generate mass 

burned profiles for each combustion phasing at each operating condition. 
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Thermodynamic conditions such as cylinder pressure and unburned gas temperature are 

calculated based on the ideal gas law and heat release approach. Then, the re-constructed 

pressure and temperature are analyzed through the Arrhenius function to predict if the 

engine will knock at the assumed operating conditions. 

In-cylinder pressure is first calculated assuming polytropic compression from the 

intake manifold pressure at IVC to the time of spark, using Equation (V.3). Polytropic 

coefficients are determined based on the experiment value and stored in a Look-Up table. 

Then the heat release differential Equation (V.4) is solved with the cylinder 

pressure initial conditions from Equation (V.3).  

Knowing the mass burned fraction xb from the prediction combustion model, 

gross heat released at each crank angle is calculated using Equation (V.5), assuming 

perfect mixing (indicated fuel conversion coefficient = 1).    

Convection heat transfer, shown in Equation (V.6), is considered the main loss 

during combustion.   

Heat transfer coefficient h obtained from Woschni [156] correlation:  
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Dual-zone cylinder mixture unburned and burned temperatures are calculated 

assuming isentropic compression, and known values of p, V, mf and heat release rates: 

V.3 VIRTUAL OCTANE SENSING 

Octane number of the currently used fuel source is needed for off-line knock 

event prediction. Depending on the available sensor setup, different approaches can be 

selected to sense the octane number virtually. Important information for the octane 

sensing routine is the “time” from start of combustion (spark) until the unburned end gas 

auto-ignites. The end gas “ignition delay” can be obtained from an in-cylinder pressure 

sensor, if equipped, or an advanced knock sensor that can sense the first start of knock 

and calculate the ignition delay from the known value of spark timing.  

An inverse Livengood-Wu [109] integral is formulated using Douaud & Eyzat 

[140] coefficients, assuming the integral of in-cylinder pressure and unburned 

temperature over the “ignition delay” period is equal to one when knock occurs. The 

pressure trace can be obtained from the combustion model (or a real-time in-cylinder 

pressure sensor based on availability) and unburned temperature is calculated using 

Equation (V.10).    
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The Douaud & Eyzat coefficients do not capture the NTC behavior, therefore the 

results from Equation (V.10) are aimed to represent the “anti-knock” behavior of the 

currently used fuel instead of the actual octane number of the fuel source.  

V.4  KNOCK PREDICTION VALIDATION  

Mild and heavily knocking cases, as shown in Table V.1, from experimental 

engine data are selected to validate the in-cylinder thermodynamic reconstruction 

algorithm and knock event prediction.   

Table V.1. Mild and heavily knocking cases for validation of off-line knock 

prediction at 900 RPM, WOT, stoichiometric air/fuel ratio and 87 octane gasoline.  

 Cas

e 1(Mild) 

Case 

2 (Heavy) 

CA50 

(CA ATDC) 

17 30 
Knock 

Intensity (bar) 

4 20 
 

Reconstructed cylinder pressure and unburned gas temperature for case 1 and case 

2 are shown in Figure V.4.  Results indicated reasonable accuracy for both combustion 

phasing. 
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(a) 

 

(b) 

Figure V.4. Comparison of measured and reconstructed in-cylinder conditions for (a) 

cylinder pressure and (b) unburned temperature show reasonable accuracy. 



 

 97 

Pressure and temperature data from case 1 is analyzed with Livengood-Wu 

integral using both Yates and Viljoen [144] and Douaud & Eyzat [140] coefficients, as 

shown in Figure V.5. Half crank angle resolution cylinder pressure data is processed with 

an 11kHz cutoff frequency high pass filter to indicate the start of knock. L-W integral 

results using Yates and Douaud & Eyzat coefficients are observed to have 10 CAD 

difference in predicting the start of auto-ignition. Douaud & Eyzat coefficients predict 

shorter ignition delays in the low temperature region compared to the Yates and Viljoen 

coefficients. Douaud & Eyzat coefficients correlate the start of knock event to the first 

moderate peak of the high passed cylinder pressure data and Yates coefficients capture 

the second severe rise. For the purpose of this research, the accuracy of both approaches 

is acceptable, and Douad & Eyzat method is selected for its simplicity.  L-W integral 

results for case 2 show a tendency of the final value to approach one. A “confidence 

level” of the integral results can be implemented into the algorithm that lowers the 

criteria for the knock event correlation.  For example, instead of the integral being equal 

to one indicating auto-ignition; the criteria can be adjusted to 0.9 or lower for 

conservative purposes.  
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Figure V.5. Comparison of Livengood-Wu integral using multiple coefficient models for 

engine combustion with knock intensity at 20 (bar) and 4(bar). 

V.5 ACHIEVABLE COMBUSTION PHASING MAP  

In this research, the desired combustion phasing in the knock limited region is of 

particular interest because it will be significantly different if the fuel source input is 

altered. The proposed algorithm was used to perform a CA50 sweep at each engine 

operating point using an assigned MBT timing. Combustion phasing will be retarded on a 

2CA interval if a knock event is predicted. The achievable CA50 map generated with 87 

octane gasoline fuels for the test engine is shown in Figure V.6. Calculation routines were 

also carried out for E85 and results show the test engine is not knock-limited for the 

experiment points chosen; this is in agreement with experimental observations. 
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Figure V.6. Achievable CA50 calculated from the proposed method for test engine with 

87 octane gasoline 

V.6 CONCLUSIONS 

In this study, an off-line combustion phasing adjustment algorithm for the SI 

engine knock limited region was developed for multi-fuel spark timing control and 

calibration. The algorithm utilizes a global reaction rate theory (Arrhenius function) and 

chemistry accumulative integral for knock event prediction. Comparisons between 

multiple fuel model coefficients for the integral were made to investigate effect of 

negative temperature coefficient (NTC) on SI engine knock prediction. It is concluded 

that both the methods are able to observe mild and heavy knock situations and only have 

slight differences in sensing the start of auto-ignition.  
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In the knock prediction routine, cylinder pressure and unburned gas temperature 

are reconstructed from a quasi-dimensional turbulent flame entrainment combustion 

model together with ideal gas law and heat release analysis. Two virtual fuel properties 

observers are derived, aimed at capturing two fundamental factors related to the fuel 

source that cause different SI engine knock characteristics.  

Achievable combustion phasing maps are generated for 87 octane gasoline and 

E85 fuel sources with the proposed “what if” analysis. Significant differences in the 

knock limited region for the two different fuel sources are observed. The proposed feed 

forward map generation compared to the traditional knock feedback control has the 

benefit of faster and safer adjustment map generation, especially for multi-fuel adaptive 

engines where fuel properties might change over a large range. 

The proposed combustion phasing adjustment map generation algorithm relies on 

the accuracy of the predicted cylinder pressure and unburned gas temperature. Therefore, 

a combustion model that is able to represent the actual physical phenomenon is critical, 

especially for advanced high degree of freedom engine applications.  

  



 

 101 

VI SEMI-PHYSICAL ARTIFICIAL NEURAL NETWORK 

COMBUSTION MODELING 

As discussed in the previous chapter, the turbulent flame entrainment combustion 

model offers a great insight to predict the combustion duration. However, using pure 

physics based model for real time control purpose may not be possible. For example the 

unburned density and flame front area which are highly coupled with 3D combustion 

chamber geometry with piston motion; In-cylinder turbulent during combustion is a 

typical example for chaos theory which its model involves three differential equations. 

Because of the current computation power limits, one of the solutions for model based 

control is utilizing empirical mapping techniques coupled with physics models. Empirical 

mapping tools such as Artificial Neural Network (ANN) is well-known for non-linear 

dynamic modeling. However, its accuracy is guaranteed only exist within the training 

data range and NN cannot extrapolate outside of that range. Therefore, large amounts of 

training data are required to cover every possible operating condition. Moreover, the 

mathematical network can be very computational intensive and have the risk of 

overfitting the training data.   

To reduce computation load, combined physical models and ANN technique is 

introduced. Physical models will be used to preprocess the engine sensor output such as 

RPM, MAP, A/F ratio etc. and calculate in-cylinder pressure and temperature until 

combustion starts using polytrophic compression assumption. Simplified models will 

evaluate residual gas fraction, total in-cylinder mass, turbulent intensity and laminar 

flame speed which can represent gas preparation dynamics and mass burn rate. ANN will 
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subsequently replace the crank angle resolution discrete event mass burn rate model, and 

turns the system into a mean value model that outputs combustion duration. The semi-

physical neural networks will be placed in a closed loop spark timing control algorithm as 

shown in Figure VI.1. Feed forward path will take fuel properties into consideration for 

multi-fuel adaption.    

 

Figure VI.1. Semi-physical artificial neural networks modeling for feed forward 

spark timing control will be placed in a closed loop multi-fuel engine spark timing 

control algorithm for transient performance. 
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VI.1 ANN STRUCTURE ANALYSIS 

Artificial neural network shared some unique advantages, such as the non-

parametric structure, arbitrary decision boundary selection, and easy adaptation of 

different types of data. In order to produce satisfactory performance, external inputs, 

outputs and internal structure need to be carefully selected and optimized. Internal 

structure of the neural network including the number of hidden layers and number of 

neurons within each layer could be different for a single set of data. There is no clear 

answer on the size of the network besides trial and error for each particular problem. 

However, the performance of the network is strongly influenced by the size of the 

network through mathematical complexity, and training time, but most importantly, it 

affects the generalization capabilities of the network (Taskin 1999 [157]). Generalisation 

is the ability of the neural network to represent unseen data (Atkinson and Tatnall 1997 

[158]). Evaluation of a neural network not only depends on how well it can interpolate 

between the training data, but also whether the network can still perform outside the 

boundary. Neural network learning process is very similar to polynomial curve fitting. 

When the network size (like the order of the polynomial function) is smaller than 

necessary, the results cannot even recognize the pattern within the training data set. On 

the contrast, if the network structure is more complicated than necessary, ‘over fitting’ 

problem occurres. That is the model will trying to capture all the detailed pattern of the 

training data set but performs very poorly outside the training region (Bebis and 

Georgiopoulos 1994 [159]).   
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Figure VI.2. General structure of linear associative feed forward neural network 

In this research, a feed forward neural network will be discussed. The network is 

constructed by several layers of processing unit (neurons), each layer feeding input to the 

next layer by multiplying of individual weight in a feed forward manner. Typical multi-

layer feed forward neural network is shown in Figure VI.2, and can be represented by 

Equation (VI.1).   

While N is the number of outputs, M is the number of inputs, l is the number of 

hidden layers, and w is the weighting matrixes. The final out y is the summation of the 

product at each neuron. Error function for training the neural network is defined by 

Equation (VI.2) which is the total mean square error between the actual output values and 

desired output values. Individual weight can be calculated based on several learning laws 

as introduced in the previous chapter.   
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A typical learning law for training a multilayer feed forward neural network, 

called back propagation is derived based on Equation (VI.3) which describes a gradient 

decent along the error surface to arrive at the optimum set of weights. The optimum set of 

weights then is obtained when the gradient descent is made along the total error surface.  

Equation (VI.4) is derived from substitute the error function Equation (VI.2), into 

Equation (VI.3), where the ‘f’ function represents the error propagated back to the output 

of the hidden units from the next layer, therefore the algorithm named back propagation.   

Based on the Equation (VI.3) & (VI.4) from back propagation learning laws, a 

large network (e.g. large number of neurons) will separate the gradient decent into many 

finer grids therefore takes a long time to learn the characteristic of the input data, while a 

small network may be trapped into a local error minimum surface and not able to learn 

from the training data.    

From the neural network structure, see Equation (VI.1), it is observed that the size 

of hidden layer (neurons) is directly related to the number of inputs. Increasing number of 

inputs will generally require more neurons and hidden layers. There is also a strong 

correlation between the number of neuron, hidden layer and the number of training 

sample required. Large network demand more training samples to ensure good 
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generalization performance. In other word, the network will produce unsatisfactory 

results if limited numbers of training sample are available. Although adding inputs can 

provide more information to the network for calculating outputs, this will increase the 

computation time to train the network by the order of 2, as can be seen from the Equation 

(VI.2). Adding outputs will also increase the network complexity because more 

boundaries are set. Therefore, it is very important to select optimum number of inputs and 

outputs. The input will be only added if it contributes to classify the output relationships.       

VI.2 TRAINING DATA SELECTION 

Neural network will be trained with different type of inputs for multi-fuel engine 

spark timing control application. Input candidates for the neural network are choosing 

from: 1) standard engine sensor signals such as RPM, MAP, Lambda, fuel flow, and 2) 

physical model calculations such as turbulent intensity, laminar flame speed, Taylor 

microscale, and residual gas fraction. Two types of input data are available including: 1) 

steady-state operation data with 500 cycle average which aims to minimize the natual 

combustion variation. Data set cover partial engine operating range; spark sweeps (7-24° 

ATDC CA50), load sweeps (0.3-0.98 bar of MAP) and RPM sweeps (1000-3500 RPM) 

which contains total 440 data points for both gasoline and E85. 2) Transient operation 

data with unfiltered cycle to cycle variation which aims to capture combustion transient 

responses and variance patterns. Data set cover almost entire engine operating range, as 

shown in Figure VI.3, which contents around 22,000 data points from transient 

operations.  
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Figure VI.3. Data density plot of transient operation training samples shows most 

of the engine operating range has been covered. 

Once the input of the neural network is decided, there are two approaches to 

determine the number of neurons within the hidden layer. The first method is called 

constructive technique (Hirose et al. 1991 [160]) which iteratively increase the neurons 

from a small number until satisfactory output results are obtained. However, the small 

network is very sensitive to initial conditions and learning process which might results in 

network output trapped in a local minimum as the error surface of a smaller network is 

more complicated and includes more local minima compared to the error surface of a 

larger network (Bebis and Georgiopoulos 1994 [159]). As a consequence, large number 

of networks with different number of neurons must be trained to avoid the local minimum 

trap and find the optimum network structure (Taskin Kavzoglu 1999 [157]]. The second 

approach utilizes an opposite method that is to begin with a large network and iteratively 
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eliminate neurons in the hidden layer or interconnections between neurons. After a 

network is trained to produce a desired solution, neurons or interconnections are analyzed 

to find out which ones are not participating in the solution, and then they can be 

eliminated (Kavzoglu and Mather 1998 [161]).  

VI.3 ANN MODEL CONSTRUCTION 

A sensitivity analysis is used to indicate which parameters are considered most 

important for the particular neural network. Sensitivity analysis gives important insights 

into the usefulness of individual variables, helps identify variables that can be safely 

ignored in subsequent analyses, and key variables that must always be retained which 

will reduce the overall complexity of the networks. The output used to evaluate accuracy 

is the combustion duration from spark to CA50 on time basis as compared to 

experimental results. The sensitivity analysis is done by first training a network with all 

the available inputs, which gives the best correlation with the experimental data.  Each 

input is then removed, the network is re-trained, and correlation to experimental results is 

evaluated [132]. Since some information has been removed, some deterioration in 

accuracy is expected to occur; the correlation coefficient of the output is used to quantify 

this error.  

The result of sensitivity analysis is shown in Figure VI.4. The Taylor microscale 

was found to be the least important to this particular network; likely because the Taylor 

microscale is coupled with turbulence intensity in the closed combustion environment. 

Residual gas fraction does not have a major impact on accuracy for two possible reasons: 

(1) the test engine is not equipped with an external EGR or VVT system that can vary the 
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in-cylinder residual gas over a large range, and (2) RGF is also taken into account in the 

laminar flame speed model.  Factors that had a major influence on accuracy were 

turbulence intensity, laminar flame speed and total in-cylinder mass.  These inputs were 

selected for the semi-physical neural network derived in this research. 

 

Figure VI.4. Sensitivity analysis for neural networks with different physical inputs 

suggests turbulent intensity, laminar flame speed and total in-cylinder mass are the most 

significant factors for accurate spark timing prediction. 

One of the most important characteristics of an ANN is the number of neurons in 

the hidden layer. If an inadequate number of neurons are used, the network will be unable 

to model complex data and the resulting fit will be poor. If too many neurons are used, 

the network may over fit the data. When over fitting occurs, the network will begin to 

model random noise in the data. The result is that the model fits the training data 
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extremely well, but it generalizes poorly to new unseen data. An optimization of the 

number of neurons in the hidden layer has been performed as shown in the Figure VI.5.  

 

Figure VI.5. Optimization of number of neurons for the neural network with 

turbulent intensity, laminar flame speed and total in-cylinder mass as inputs suggest the 

minimum of 5 neurons can be used and still maintain a 0.96 correlation coefficient. 

A two-layer, feed-forward network with sigmoid hidden neurons and linear output 

neurons with Levenberg-Marquardt back propagation algorithm training is used to 

construct the ANN model. Consistent training data and sufficient neurons in its hidden 

layer contribute to the final model accuracy. Based on the optimization results, 5 neurons 

in 1 hidden layer were used in the ANN model. Finally, an optimized semi-physical ANN 

model is constructed, as shown in Figure VI.6. 
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Figure VI.6. Semi-physical neural network structure for combustion duration 

prediction with 3 selected physical sub-models and 5 neurons in one hidden layer. 

VI.4 SEMI-PHYSICAL ANN MODEL RESULTS 

The semi-physical ANN spark timing prediction model is evaluated based on the 

performance of combustion phasing control under both steady-state conditions and 

transient conditions with gasoline and E85 as fuel source inputs. Validation for steady-

state condition predicted performance is based on the experimental data from engine 

dynamometer tests. Preliminary transient combustion phasing control validation is carried 

out by vehicle driving cycle simulation with virtual engine in the loop. Then, the control 

algorithm is implemented into the engine controller for real-time engine dynamometer 

testing  

VI.4.1 STEADY-STATE SPARK TIMING PREDICTION EVALUATION 

Combustion duration calculated from the semi-physical ANN model for each data 

point under steady-state operating conditions is compared with the experimental data as 

shown in Figure VI.7. Each of the data points represents an average of 500 consecutive 
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cycles, which minimizes the influence of combustion variability. Data points are 

randomly selected engine operating points which are used for network training. However, 

the overall validation data are still within the training region of the neural network which 

is between 1000 to 3500 RPM, 0.3 to 0.98 bar MAP and 7 to 24° ATDC CA50.  

 

Figure VI.7. Combustion duration prediction from the semi-physical ANN model 

is able to closely match experiments results.  Data points on this plot are different from 

those used for model training. 

Results are calculated and compared with gasoline and E85 fuel source inputs 

which both show agreement with experimental data. This is probably due to the input of 

laminar flame speed to the ANN model which captures the effect of fuel properties on 

combustion reaction rates. It has been proven that laminar flame speed is the only major 

fuel property in fuel sources that will have impact on combustion duration [133]. 

Therefore, if a wide range of laminar flame speed data is available as training data, the 
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trained network will most likely be fuel type sensitive and still perform well when a 

different fuel source is used or blended (with laminar flame speed observer feedback).    

Root mean square deviation (RMSD) results are shown in Table VI.1. A good 

agreement of the semi-physical ANN model with experimental data is observed. The 

RMSD results will also be used in the next section to compare with spark timing 

predictions from transient conditions and quantify the difference in feed forward control 

performance.  

Table VI.1. Steady-state combustion phasing RMSD from the semi-physical ANN 

model, compared to experimental data  

RMSD Time basis (ms) CAD basis (CA) 

Gasoline 0. 128 1.64 

E85 0. 133 1.77 

To ensure the spark timing predictions are accurate across different load and RPM 

closer observations of prediction results are provided in Figure VI.8. Individual spark 

timing prediction from RPM and load sweeps are able to match experimental data, and 

the agreement remains strong over a range of engine speed or load. Therefore, it is 

concluded the trained network should be able to perform relatively well for all engine 

speeds and loads within the training zone.   
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(a) 

 

(b) 

Figure VI.8. The semi-physical ANN combustion model is able to predict the 

spark timing based on desired CA50 across different engine speeds (a) and loads (b) 

under steady-state conditions. 
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VI.4.2 TRANSIENT SPARK TIMING PREDICTION EVALUATION 

Transient engine operation is a major control challenge which motivates this 

proposed research of feed forward spark timing control algorithm.  A GT-POWER virtual 

engine is used to demonstrate transient spark timing prediction performance results. The 

virtual engine is placed in Simulink for driving cycle simulation. A full vehicle dynamics, 

powertrain and driver models are utilized to best simulate realistic operating conditions. 

The semi-physical neural network combustion duration model is implemented to control 

the spark timing. Gasoline and E85 are used as two different fuel source inputs.    

Development of The Virtual Engine 

The 1-D engine model was developed based on test engine geometry and a 

predictive combustion model that utilizes a quasi-dimensional flame propagation process. 

A 3-D combustion chamber shape model is used to calculate flame propagation area. 

Predicted cylinder pressures from the GT-POWER simulation were compared with 

experimental results under the similar operating conditions for validation. Areas of 

particular focus for model validation were cylinder pressure during gas exchange and 

combustion to evaluate both the performance of the intake and exhaust system as well as 

the predictive combustion model. Proper knowledge and technique was used to analyze 

the system error and reasonable corrections were made to tune the simulation model in 

order to represent the real engine operation. Validation of the cylinder pressure was 

carried out for gasoline and E85 fuels.  
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Transient Algorithm Validation 

The virtual engine was controlled by spark timing predicted from the semi-

physical neural network combustion duration model to assess predictive ability under 

transient conditions. The combustion phasing results from the GT-POWER virtual engine 

were evaluated based on the deviation from the desired combustion phasing which was 

assumed to be 8 CA ATDC for simplicity. The Urban Dynamometer Driving Schedule 

(UDDS) is used to evaluate the transient performance of control algorithm. Results with 

gasoline fuel source are shown in Figure VI.9, with two zoom-in periods of entire cycle 

representing city (a) and highway (b) driving. Both scenarios observed overall acceptable 

results compared to the constant target of 8CA. Engine load control and the clutch model 

of manual transmission are not fully developed which causes the oscillations of MAP and 

engine speeds (170 seconds). In the first few seconds of plot (a), when the engine 

accelerates with 100% throttle from idle speed, the spark timing is over predicted because 

the engine operates out of the training region of the neural network that results in early 

combustion phasing. This condition could be solved with retraining the neural network 

with a wider operating range of data.  Over prediction also exists when engine speeds are 

between 2000-2500 RPM and 0.3-0.4 bar MAP, which is caused by low fidelity of the 

control model. This can be solved by artificially retarding the desired combustion phasing 

target or retraining the neural network with more data samples to improve fidelity. 
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(a) 

 

(b) 

Figure VI.9. Combustion phasing (CA50) results from the virtual engine 

simulation with gasoline in a transient driving cycle (UDDS) (a) 150-200 sec, and (b) 

200-250 sec. 
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Combustion phasing results shown in Figure VI.10 are obtained from the same 

driving cycle simulation routine and neural network, but with an altered laminar flame 

speed sub model to reflect E85. The predictive combustion model in GT-POWER virtual 

engine is also calibrated to E85 accordingly. Results observed to have similar accuracy 

compared to simulation with gasoline fuel. A similar error region can be also recognized 

when engine speeds are between 2000-2500 RPM and load is between 0.3-0.4 bar MAP.  

The UDDS simulation is driven for a total of 500 seconds, although only 100 

seconds are shown in the previous figures for simplicity. The full drive-cycle RMSD of 

the difference between target and actual CA50 for each fuel is shown in Table VI.2.  An 

average of 2 CA deviation from the constant desired combustion phasing target is 

observed. The transient results have slightly larger deviation, about 0.4 CA more, than 

the steady state conditions. The model was calibrated with steady-state data, so these 

results are promising and suggest that this approach is able to control the combustion 

phasing for multi fuel adaptive SI engines under both steady state and transient 

conditions. 

Table VI.2. RMSD for the combustion phasing control results in a transient 

driving cycle with a constant desired combustion phasing (CA50 @ 8)  

RMSD CAD basis (CA) 

Gasoline 1.96 

E85 2.1 
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(a) 

 

(b) 

Figure VI.10. Combustion phasing (CA50) results from the virtual engine 

simulation using E85 in a transient driving cycle (UDDS) (a) 150-200 sec, and (b) 200-

250 sec.  
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VI.5 REAL TIME ENGINE DYNAMOMETER TESTING RESULTS 

After satisfied results observed from the virtual engine co-simulation, the semi-

physical neural network model is implemented into the A&D prototype engine control 

unit. Standard production sensors are used as inputs, such as crankshaft position sensor, 

intake manifold sensor and lambda sensor etc. Spark timing is then calculated from the 

model and directly send to the coil for ignition signal. The test engine is highly 

instrumented as described in the experimental setup chapter. Test cell and test engine are 

both environmental controlled to ensure the experimental data consistency and 

repeatability, such as intake air temperature, humidity, oil temperature, coolant 

temperature, and exhaust back pressure etc. Experimental data presented below are all 

thoroughly examined to be highest quality for further discussion. 

Transient tests are done by manually vary the engine speed from 1000RPM to 

5000RPM and load between 0.3 bar to WOT. Combustion is controlled by the ignition 

signal calculated based on the combustion duration (SPK-CA50) from semi-physical 

neural network model with user given combustion phasing target (CA50). Steady state 

and transient CA50 target are tested to investigate system response on both scenarios. 

Gasoline and E85 will be used as fuel source input to demonstrate the fuel adaptation 

ability. Error allowance is targeted to be +/- 0.7*standard deviation.     

To investigate if the semi-physical neural network model is only locally valid, 

multiple constant CA50 target is set in the transient engine tests, range from CA50 at 4 

CA ATDC to 28 CA ATDC with a increment of 3 CA. Three cases are selected to 

illustrate the results of ignition control with gasoline fuel as shown in Figure VI.11. The 

CA50 results are acquired from real-time cylinder pressure signal with a 3 samples 
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floating average (+/- 1 data sample). Because limited capability of the dynamometer 

control system, the engine speed and load profile is not 100% repeatable. Therefore, 

standard deviation for each operating conditions (RPM and Load point) is generated with 

the empirical model and plotted on the figure to evaluate the performance of the ignition 

control. As can be seen, the CA50 is almost regulated within +/- 0.7* standard deviation 

through the entire 2600 cycles engine test for each CA50 target.      

 

 

(a) 
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(b) 

 

(c) 

Figure VI.11. Real-time combustion phasing (CA50 after floating average) 

control experimental results in transient operating conditions with Gasoline fuel input. 

CA50 target is set at constant (a) 8 CA ATDC, (b) 15 CA ATDC and (c) 21CA ATDC. 
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Same method discussed above is carried out to investigate if the semi-physical 

neural network model can adapt to another fuel sources (E85), as shown in Figure VI.12. 

Satisfied accuracy is observed for most of the CA50 targets. However, the system seems 

to over-predict the spark timing using E85 fuel at higher RPM with the combustion target 

around 15 AC ATDC. Theoretically, this section is outside of the training data region that 

the system dynamic is extrapolate by the neural network which might results in the extra 

error margin. Detailed discussion about the robustness of the neural network will be 

placed at the conclusion chapter. 

 

(a) 
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(b) 

 

(c) 

Figure VI.12. Real-time combustion phasing (CA50 after floating average) 

control experimental results in transient operating conditions with E85 fuel input. CA50 

target is set at constant (a) 8 CA ATDC, (b) 15 CA ATDC and (c) 21CA ATDC. 
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RMSD, shown in Table VI.3, is used to quantify the error margin of each test 

above. Compared to Table VI.1 of steady state operation, transient operation is generated 

roughly 1 CA more RMSD in combustion duration (SPK-CA50).  

Table VI.3. Transient combustion phasing RMSD from the semi-physical ANN 

model, compared to the set control target 

RMSD CA50 @ 8 CA50 @ 15 CA50 @ 21 

Gasoline 1.98 2.74 2.31 

E85 2.09 2.74 2.42 

Engine calibration often requires different combustion phasing targets at each 

operating “map” point for the purpose of reducing spark knock or NOx emissions etc. 

Therefore, stable performance of the semi-physical neural network model of tracing the 

moving CA50 target is also needed. To be able to repeat the operating conditions, engine 

is fixed at full load with a constant RPM ramp rate (200RPM/sec) from 1000RPM to 

5000RPM. Control target is based on the experimental results of CA50 using original 

manufacturer calibrated spark Look Up Table (LUT) obtained with the same testing 

schedule. Figure VI.13 indicate the CA50 experimental results from semi-physical neural 

network is able to trace the given moving targets with either gasoline (a) or E85 (b) fuel 

source as input. Since the engine is fixed at constant load that greatly increase the ignition 

control performance compared to the previous changing engine speed and load cases. The 

control algorithm is able to predict roughly the same spark timing and regulates the 

combustion phasing close to the required targets.         
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(a) 

 

(b) 

Figure VI.13. Real-time combustion phasing (CA50 after floating average) 

control experimental results in transient operating conditions with (a) Gasoline and (b) 

E85 fuel inputs. CA50 target is set to trace engine experimental CA50 when using 

original look up table from calibrated ECU.  
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VI.6 EXPERIMENTAL RESULTS DISCUSSION  

VI.6.1 INPUT SELECTION 

In many applications, there is always limited number of training samples that are 

available to populate the entire network. In order to still train a neural network with high 

fidelity and robustness, one of the techniques is to utilize physical models to process the 

available training samples that can linearly extrapolates both for inputs and outputs, 

hence represent wide range of operating conditions (generalization capability). The 

statement holds when the neural network is linear associative network with all the inputs 

linearly independent. Recall equation (1) which shows the output of the network is a 

simply weighted summation of the component values of the input vectors.  

For model based engine spark timing control, combustion duration is strong 

functions of the unburned mixture preparation which can be alter by several engine 

actuators such as charge motion control valve (CMCV), variable valve timing (VVT) 

system, and residual gas recirculation (EGR) system etc. In a flex-fuel engine, the 

combustion burn rates are also directly related to the fuel property which is described as 

laminar flame speed. Great calibration efforts will be needed to populate entire training 

samples for all the different combination of available ‘freedom’ of the engine settings 

which scarify the meaning of using model based control algorithm. However, physical 

models are available to capture the above parameters and their relationships with 

combustion duration, which is turbulent intensity, residual gas fraction and laminar flame 

speed models and described by the turbulent flame entrainment combustion model. 

Linearization of each physical model can be made at the time of ignition. The linearized 
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models are still able to represent mixture properties and dynamics before combustion for 

a wide range of operating conditions, actuator settings and fuel source input. The neural 

network is trained based on the physical models at the linear equilibrium origin. 

Therefore, the semi-physical approach is able to ensure the generalization feature of the 

neural network without large diversity of training samples.         

Benefit of the semi-physical approach can be demonstrated by the multi-fuel 

adaptive engine spark timing control. The previously described models utilize a 

combination of turbulence intensity, laminar flame speed and total in-cylinder mass as 

inputs for the neural network and successfully proved the fuel adaptation ability as shown 

in Figure VI.14 (a). Noticed laminar flame speed is emphasized because it is a primary 

physical parameter related to ignition timing prediction, and it will change if a different 

fuel source is used [133]. By accurately predicting the laminar flame speed, the trained 

network theoretically can represent the combustion duration with wide range of fuel 

sources input. Alternative neural network is trained for comparison with only standard 

engine sensor inputs which are engine speed, intake manifold pressure and fuel flow 

rates. It can be observed from Figure VI.14 (b) that the neural network can predict 

accurate combustion duration for using gasoline fuel, however, over predict the burn rates 

for short combustion duration cases. It is not fully clear that why the network will behave 

like this because of the multi-layer structure with non-linear processing units. One 

possible reason might be the linear separation of the inputs introducing limitation of the 

generalization capability which means the pattern of mass fuel flow cannot be fully 

decoupled from other inputs such as intake manifold pressure.   
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(a)       (b) 

Figure VI.14. Combustion duration from experiments plotted versus the results 

from neural network trained with (a) turbulent intensity, laminar flame speed, and total 

in-cylinder mass. Correlation coefficient is 0.977 for E85 and 0.973 for gasoline. (b) 

RPM, MAP, and Mass fuel flow. Correlation coefficient is 0.923 for E85 and 0.971 for 

gasoline. 

VI.7 TRAINING DATA SELECTION 

Another objective of model based feed forward control is improving transient 

response time and control performance. It is a difficult problem because each dynamic 

system or actuator has its own response delay. The model should not only capture the 

steady state system dynamics but also the transient response behavior. However, the 

transient behavior of the semi-physical neural network model was not clear even with the 

satisfied observation of real-time engine testing results under transient conditions. The 

neural network was trained based on the cycle average steady state data and all the 

physical sub-models are derived based on steady state dynamics. One possible reason for 

the satisfied performance of the transient condition may contribute by the 1 ms model 
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actuation rate. Therefore, question is asked if there is anything can be done internally of 

the model that can improve the transient performance. Before going to complicated detail 

physical sub-models, one suggestion is to utilize transient operation data as neural 

network training samples and hopefully the network is able to capture the transient 

patterns between inputs and output.           

Case study is carried out on the previous developed neural network (N1), as 

shown in Figure VI.14 (a). Instead of using the steady state 500 cycle average data to 

train the network, the new network (N2) will be trained with transient operation cycle to 

cycle data samples. Comparison of the two type data samples is described in 

experimental setup chapter. Inputs to the network have been kept the same (turbulent 

intensity, laminar flame speed, total in-cylinder mass). Number of neurons inside the 

hidden layer has been re-optimized based on Hirose constructive technique. Compared to 

N1 which only need 5 neurons to generate satisfactory performance, N2 required 70 

neurons. Possible reasons for large network needed are: 1) added transient response 

pattern; 2) cycle to cycle natural combustion variance. Validation on N2 is presented in 

Figure VI.15 which is done by taking another 2 sets of non-seen transient engine testing 

data (Gasoline and E85) and process through N2. As can be seen, N2 generally introduce 

more error band for combustion duration (SPK-CA50) than N1. Also noticed that the 

network generate larger error for gasoline fuel especially for certain operating conditions.  
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Figure VI.15. Combustion duration from experiments plotted versus the results 

from neural network trained with transient cycle to cycle calculated turbulent intensity, 

laminar flame speed, and total in-cylinder mass. Correlation coefficient is 0.967 for E85 

and 0.943 for gasoline. 

Further investigation on the performance differences between N1 & N2 is carried 

out on real time engine dynamometer testing. N1 is constructed with one hidden layer 

and minimum number of 5 neurons which aims to increase the generalization capability 

(robustness) of the network and reduce the computational burden. Laminar flame speed 

also plays an important role to network robustness in terms of the fuel adaptation ability. 

It is the only changing parameter that will affect combustion duration if fuel type is 

altered. Conclusions can be made based on Figure VI.11, Figure VI.12 and Figure VI.13, 

the semi-physical approach is able to keep the fuel type sensitive property by taking 

laminar flame speed as input. Robustness of the neural network is also tested when 

engine speed is over 3500 RPM which is outside the training region. The overall 
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performance of N1 is quantified by root-square mean deviation compared to the desired 

target (CA50 @ 8) is 1.98 CA for gasoline and 2.09 CA for E85. Extensive real-time 

validations are carried out for several constant combustion targets to ensure the model is 

not only locally stable, and also “moving” desired combustion target is tested which 

proved the network is able to perform with continuously changing control target. 

Similar method is used for testing N2, and results are shown in Figure VI.16. N2 

has same inputs as N1, but trained with 22000 transient data samples which cover almost 

entire engine operating range. Originally, network with transient training data is studied 

which aims to capture engine transient behavior and natural combustion variance. 

However, overall increasing error margin deviated from the desired target is observed for 

both gasoline and E85. Also notice for gasoline input, Combustion of N2 is very unstable 

especially when engine is operated at around 2000RPM.  Root-square mean deviation 

compared to the desired target (CA50 @ 8) is 3.58 CA for gasoline and 13.35 CA for 

E85. 
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(a) 

 

(b) 

Figure VI.16. Real-time combustion phasing experimental results in transient 

operating conditions with (a) gasoline fuel input and (b) E85, tested for N2. Constant 

combustion target set at 8 CA ATDC. 
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Investigation on actual ignition signal from N2 reveals the reason for the unstable 

combustion which is not because of any malfunction on other engine actuators but the 

spark timing prediction itself. This is probably because of the large network structure 

required by the N2. Transient training sample contains three patterns: 1) combustion 

duration dynamics; 2) natural stochastic combustion variation; 3) transient response of 

combustion to a changing operating condition. N2 requires minimum 70 neurons to be 

able to produce satisfactory performance compared to only 5 neurons needed in N1. The 

larger size of the network scarifies the generalization capability as explained in the 

previous chapter. Although the observed correlation coefficients are above 0.94 on the 

validation of N2, and experimental results also showing the network can operate at 

certain conditions, however N2 cannot generate stable predictions when large 

disturbances or un-seen operating conditions occurred. On the contrast, N1 which is an 

optimized minimum size network with steady state average training data can perform 

much stable across a wide range of different operating conditions.    
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VI.8 CONCLUSIONS 

In this chapter, a model based ignition control algorithm for multi-fuel adaptive 

engines is studied with an aim to provide an alternative method to reduce advanced 

engine calibration time. A semi-physical approach has been investigated which utilizes an 

artificial neural network to convert a well-proven discrete time domain quasi-dimensional 

turbulent flame propagation model into a mean value combustion duration model.  

Generalization capability is the main focus of the network formulation because it 

will greatly affects the stability of the feed forward control algorithm. Generalization is 

strongly influences by the network structure including the number of hidden layers, 

number of neurons in each hidden layer, inputs and outputs patterns. Conclusion from the 

theoretical study on the network structure indicates: 1) increasing number of inputs will 

generally require larger size network; 2) large networks need more training samples to 

produce satisfactory output results; 3) adding one extra input will increase the training 

time by the order of 2. Therefore, a proper optimized network structure contributes to the 

overall model performance. 

Inputs and sub-models were selected based on the physical model to represent 

mixture preparation, and combustion reaction rates were modeled with a neural network. 

The structure of the neural network has been optimized by selecting the most sensitive 

physical inputs and then minimizing the number of neurons in the hidden layer. The 

optimized neural network is proved to be able to represent the combustion duration with 

two types of fuels. The algorithm also successfully operated in a transient driving cycle in 

a computational vehicle simulation. 
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Validation of the ignition control algorithm was carried out under both steady 

state conditions with experimental data; transient driving cycle simulation with a virtual 

engine in the loop, and also the real time engine dynamometer testing. A comparison of 

the combustion phasing control performance between the transient and steady-state 

conditions is made which shows an average of 2 CA deviations from the control target 

for both transient and steady-state conditions with gasoline and E85. It is shown that the 

ignition control algorithm is able to regulate the combustion phasing with steady state 

and “moving” CA50 target for both gasoline and E85. Laminar flame speed plays an 

important role to the fuel adaptation ability. It is the only changing parameter that will 

affect combustion duration if fuel type is altered. The semi-physical approach is able to 

keep the fuel type sensitive property by taking laminar flame speed as input. Robustness 

of the neural network is also tested when engine speed is over 3500 RPM. The neural 

network is constructed with the minimum number of 3 inputs and 5 neurons which aims 

to decrease the chance of data over fitting and better control stability. It is concluded that 

the new semi-physical neural network combustion duration model is able to control the 

combustion phasing for two fuel sources under both steady-state and transient conditions.   
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VII SUMMARY AND CONCLUSIONS 

VII.1 THESIS SUMMARY 

The objective of this thesis is to develop a semi-physical artificial neural network 

combustion model for feed forward spark timing control of multi-fuel adaptive SI 

engines. The control algorithm closed loop by feeding back two fuel properties which are 

octane number and laminar flame speed. An adaptive desired combustion phasing target 

helps to self calibrate for the current fuel source. Laminar flame speed is emphasized 

because it is a primary physical parameter related to ignition timing prediction, and it will 

change if a different fuel source is used. The fuel property observer outputs an estimate of 

laminar flame speed for an arbitrary fuel based on the burn-rate difference to a baseline 

case, using an inverse quasi-dimensional turbulent flame entrainment model with in-

cylinder pressure feedback. A real-time model re-calibration method for laminar flame 

speed prediction is also proposed. Desired combustion phasing targets were calculated 

based on an Arrhenius function (auto-ignition correlation) with the virtual octane number 

sensing of the current fuel source. The two fuel properties sensors of laminar flame speed 

and octane number ensured the capability of fuel type adaptive closed loop ignition 

control algorithm.  

Inputs to the feed forward combustion model is loosely based on a well-

established turbulent flame entrainment model, artificial neural network is used to replace 

the crank angle resolution combustion process calculations. Optimization on inputs 

selection and neural network internal structure is focused because of the large influences 

on network generalization capability. Generalization is the ability of the neural network 
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to interpolate and extrapolate unseen data which directly reflected in the overall control 

stability. Evaluation on a neural network not only depends on how well it can interpolate 

between the training data, but also on if the network can still perform outside the 

boundary.  

The real time engine dynamometer experimental results are presented. It is shown 

that the semi-physical neural network control algorithm is able to regulate the combustion 

phasing with steady state and “moving” CA50 target for both gasoline and E85. Laminar 

flame speed plays an important role to the fuel adaptation ability. It is the only changing 

parameter that will affect combustion duration if fuel type is altered. The semi-physical 

approach is able to keep the fuel type sensitive property by taking laminar flame speed as 

input. Robustness of the neural network is also tested when engine speed is over 3500 

RPM. The neural network is constructed with the minimum number of 3 inputs and 5 

neurons which aims to decrease the chance of data over fitting and better control stability. 

Further investigation on the type of training data is also carried out which proved steady-

state average training samples produced a better network than the cycle to cycle transient 

training samples.  

VII.2 SIGNIFICANT CONCLUSIONS AND FINDINGS 

Contributions and improvements are realized in three distinct areas; (1) non-linear 

laminar flame speed observer, (2) desired combustion phasing target based on knock 

prediction with virtual octane sensing, and (3) the development of a semi-physical 

artificial neural network combustion model to predict combustion duration over the wide 



 

 139 

operating range that is intended for real-time engine control. Significant findings in each 

category are described separately in the following sections. 

VII.2.1 NON-LINEAR LAMINAR FLAME SPEED OBSERVER  

Multi fuel adaptive SI engines not only aim to take gasoline and E85 as inputs but 

also adapt to several other bio fuel sources that are capable of generating a large range of 

laminar flame speeds. It is very important to estimate the laminar flame speed for the 

current fuel blend because it is a critical input for combustion duration prediction. It is 

assumed that if a different fuel source is used laminar flame speed is the only fuel 

property that will alter combustion duration. Several laminar flame speed experimental 

measurement methods are available based on high speed combustion imaging. The semi-

empirical model will be re-fitted based on the experimental results. This method works 

for getting a research grade laminar flame speed for a specific type of fuel source, 

however, it is not practical if large numbers of fuel types are blended together. For real 

time control purpose, first, only the ‘fuel behavior’ is needed to observe instead of the 

actual fuel types; second, the allowable error margins can be larger than the research 

grade results. Therefore, an observer by comparing the burn rates difference to a base line 

data and output virtual fuel behavior (laminar flame speed) is successfully investigated. 

Then, a real time laminar flame speed model self re-calibration method is also proposed 

for feed forward ignition control. The study is carried out only with gasoline and E85 

because of the limitation of test cell capability, it is proved: 
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 The virtual fuel property sensor (observer) is able to calculate laminar 

flame speed for a wide range of operating conditions with RMSD of 1.27 

(cm/s) for gasoline and 2.17 (cm/s) for E85.   

 Re-calibration of the feed forward laminar flame speed prediction model 

with 5 constants has been investigated for accuracy and response time. 

Using 40 distinct engine operating points as feedback for re-calibrating the 

5 unknown constants is able to reproduce  laminar flame speed for wide 

range of operating conditions with RMSD of 2.73 (m/s).  This represents 

less than 5% error to well-known values. 

VII.2.2 DESIRED COMBUSTION PHASING TARGET 

Model-based ignition timing strategies require a target combustion phasing for 

proper calibration, generally defined by the crank angle location where fifty percent of 

the air/fuel mixture is burned (CA50).  When fuel type is altered the target CA50 must be 

updated in the ‘knock region’ to avoid engine damage while maintaining the highest 

possible efficiency. This process is particularly important when switching between 

gasoline and E85 because they have vastly different octane ratings. A semi-physical 

virtual octane sensor, based on an Arrhenius function combined with a quasi-dimensional 

turbulent flame entrainment combustion model, is described that identifies the size of the 

knock region for a given fuel.  The combustion model is used to calculate cylinder 

pressure and temperature which are analyzed with an Arrhenius knock prediction model 

that accounts for the negative temperature coefficient and air/fuel ratio. An algorithm is 

developed to identify the “best achievable” combustion phasing and update the target 
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desired combustion phasing accordingly. The algorithm operates off-line once the fuel 

octane number is observed to have changed, and then revised combustion phasing targets 

are calculated throughout the knock region. Experimental measurements and simulations 

are used to correlate and validate the algorithm with both gasoline and E85.  

Octane rating of different fuel sources is also critical to the closed loop ignition 

timing control algorithm. It will not affect the actual combustion burn rates but will 

significantly change the achievable combustion phasing target by changing the knock 

characteristic of the unburned mixture. Again, there can be many combination of 

different fuel sources blended together per customers’ usage. A virtual octane sensor is 

developed aiming to update the entire achievable combustion phasing target by several 

knocking events.  

Cylinder pressure is assumed to be able to accurately predict from a combustion 

model or available cylinder pressure sensor data. Unburned gas temperature found to be 

most difficult parameter but contribute significant amount of accuracy to the auto-

ignition prediction routine. It will be even more difficult especially in the advanced high 

degree of freedom engines when residual gas level can be altered in a wide range by 

external EGR or variable valve actuation. The hot or cold EGR will greatly affect the 

unburned mixture temperature hence the overall unburned mixture auto-ignition 

characteristics.    
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VII.2.3 COMBUSTION DURATION MODEL DEVELOPMENT 

Quasi dimensional turbulent flame entrainment combustion model is agreed to be 

the most practical solutions for physics model based ignition timing control. The model 

should be able to account for a wide range of engine technologies/fuel sources because it 

is based on fundamental spark ignition engine combustion principles. However, the 

model accuracy highly depends on each sub-input on crank angle basis, such as turbulent 

intensity, laminar flame speed, flame front area, residual gas fraction etc. Some of the 

inputs are possible to accurately calculate before combustion without intensive 

computational power, such as laminar flame speed, residual gas fraction etc. because the 

in-cylinder pressure and temperature are still able to predict with polytrophic 

compression and ideal gas law. Lots of thermal and fluid dynamics as well as chemical 

kinetics are introduced when combustion started, modeling of each of the inputs becomes 

even more complicated. For example the in-cylinder turbulence which is a typical chaos 

phenomenon, the simplified flame front area model is still highly depends on the 

combustion chamber geometry. Therefore, the tradeoff between the model accuracy and 

required computational power need to be carefully considered.   

However, the crank angle resolution equations described the detail heat release 

reactions is not fully needed for spark timing control, instead only few critical 

combustion phasing need to know before the control algorithm can make a right decision. 

Specifically the most important information is the duration from spark to CA50. This 

inspires the mean value modeling method and therefore neural network is introduced. 

Combined the gas preparation property inputs semi-physical neural network is 

formulated. Structure of the network is studied and optimized. Conclusion from the 
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theoretical analysis indicates: 1) increasing number of inputs will generally require larger 

size network; 2) large networks need more training samples to produce satisfactory 

output results; 3) adding one extra input will increase the training time by the order of 2. 

Study also carried out on the input selection of a linear associative network. Semi-

physical approach has been demonstrated to be able to increase the network 

generalization capability. Physical models also help to increase the correlation of inputs 

and output(s), hence reduce the required network size.      

  



 

 144 

VII.3 FUTURE WORK 

Future research on several key areas could improve the robustness and predictive 

capability of the combustion phasing control algorithm discussed in this thesis. A list of 

suggested areas of improvement is as follows: 

 Development of physical sub models for high degree of freedom engines 

including residual gas fraction, turbulence intensity, unburned gas 

temperature, flame front area etc. The newly developed models should be 

able to account for advanced engine technologies without tremendous of 

computational power. Ultimately, this could lead to utilization of pure 

physics based combustion models for real time feed forward ignition 

timing control.  

 Experimentally utilize several other types of bio fuel sources for further 

investigation on the fuel type sensitive combustion model, laminar flame 

speed and octane number observers.  

 Study fast combustion phasing feedback determination methods for  

cylinder pressure sensors which account for combustion cycle to cycle 

variation.    
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