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ABSTRACT 

This thesis is devoted to the study of intelligent optimization algorithm and 

advanced control methods for the air path in a light duty automotive diesel engine. 

The conventional manual engine calibration methods are reaching their limits due 

to the strong nonlinearity, coupling effects and delay in the diesel engine’s air 

path. There is a demand to simplify this process and reduce the time consumption. 

In this thesis, an intelligent transient calibration method is proposed, which is a 

model-based optimization approach using the chaos-enhanced accelerated 

particle swarm optimization (CAPSO) algorithm. The real-time model in the 

simulation platform developed in this study is validated and used as the virtual 

engine to conduct the co-simulation with the algorithm. The optimization variables 

are controller parameters of the PI-based controllers for the dual-loop EGR 

(DLEGR) and variable geometry turbocharger (VGT). The optimization objects 

are the tracking performance of the engine MAP, MAF and LPEGR fraction and 

the optimization results are sent to the engine test bench via ETAS INAC. The 

engine experiments show that the proposed method can successfully locate the 

global optimal results of the controller parameters during the engine transients 

under various working conditions. The engine dynamic response is improved and 

a measurable reduction of engine fuel consumption is achieved. 
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The model predictive control (MPC) is selected for the controllers of DLEGR and 

VGT in the air-path of the diesel engine. The control objects are the engine boost 

pressure and EGR mass flow which must be regulated during engine transients. 

Both the TMPC and the Neural Network MPC (NMPC) approach are investigated. 

Compared with the conventional PID controller, the MPC-based controllers show 

better reference trajectory tracking performance. The overshoot and settling time 

of the control objects are successfully reduced, which lead to reduced emissions 

in the engine transients. In addition, the fuel economy of the engine is improved. 

These two controllers both achieve the same level of reference trajectory tracking 

and fuel consumption reduction. The real-time capability of the proposed TMPC 

and NMPC controller are validated on the HIL test platform and the test results 

show that the response of the actual controller is close to the offline simulation 

results. The signal lag is negligible and acceptable, which means the proposed 

controllers could be implemented on the real engine.  
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CHAPTER 1  INTRODUCTION 

Internal combustion engines have been the most widely used power supplier for 

vehicles in the last century (Takashi Suzuki, 1997). The vehicles with alternative 

powertrain such as electricity, hybrid and fuel cell have been developed rapidly in 

the recent decades. But the drawbacks such as the limited power storage, high 

cost and system stability still inhibit their wide utilization on the market (Hannan 

et al., 2014). Meanwhile, numerous emerging technologies have been invented 

and applied to modern internal combustion engines. So it is forecasted that the 

internal combustion engines would still play an important role as the power 

supplier of vehicles even in the 21st century (Kalghatgi, 2018). 

1.1 Background 

1.1.1 Environmental Protection and Energy Scenario 

The environmental protection has drawn the public’s attention in recent years 

especially the greenhouse gas emissions as it affects the global environment 

dramatically. The figure below shows the proportion of the global greenhouse gas. 

The carbon dioxide (CO2) occupies 65% of it and the fossil fuel is the main 

contributor. The statistical analysis points out the transportation section accounts 
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for 28% of the whole CO2 generation. The majority of the greenhouse gas from 

transportation section is resulting from the combustion of petroleum-based 

products(“Sources of Greenhouse Gas Emissions US EPA,” n.d.). Focusing on 

the vehicles, the CO2 emissions of the internal combustion engines must be 

reduced.   

  

Figure 1-1 Proportion of Global Greenhouse Gas Emissions(“Global Greenhouse Gas 

Emissions Data | Greenhouse Gas (GHG) Emissions | US EPA,” n.d.) 

To meet the demand of CO2 reduction, the authorities have established CO2 

limits for internal combustion engines and launched policies to encourage the 

development of electric vehicles (Yang Zifei, 2014). The EU has declared the 

average CO2 generation of passenger cars would be limited to 95g/km by 2020. 

The percentage of internal combustion engines on vehicles would be shrunk to 
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59% in 2030 based on the projection from the EU parliament’s committee. But 

internal combustion engines are still adopted in the vast hybrid systems (Gurney 

et al., 2009). All these factors make it extremely essential for internal combustion 

engines to obtain more optimal fuel economy. Fortunately, compared with 

gasoline engines, diesel engines achieve higher thermal efficiency due to their 

higher compression ratio and lean fuel combustion(Bonilla et al., 2014). These 

characteristics make the diesel engine a competitive candidate to meet required 

CO2 demands with the help of emerging engine technologies. 

 

Figure 1-2  Global CO2 Regulation for Passenger Cars in NEDC Cycle, g/km (Enang and 

Bannister, 2017) 
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1.1.2 Challenges for Diesel Engine Emissions 

As the environmental protection is more and more important, the internal 

combustion engine is continuously required to reduce the engine out emissions. 

The pollution caused by the vehicles with diesel engines are concerned by the 

public and the authority since the Volkswagen scandal erupted in September 

2015 (“How VW tried to cover up the emissions scandal - BBC News,” n.d.). The 

NOx and PM emission are the major challenges for diesel engine. There is a risk 

that the diesel engines will be abandoned in light-duty vehicles. 

The emission legislation for light-duty diesel engines in European Union was 

firstly proposed in 1992, which involved gaseous emissions such as carbon 

dioxide (CO), nitrogen oxides (NOx) and total hydrocarbon (THC). The engine 

particulates are also included. The detailed information of the EU emission 

standard for light-duty diesel vehicles is shown in the table below.  

 

 

 

  

 



 

5 

 

Table 1-1 EU Emission Standard for Light Duty Diesel Vehicles (DELPHI, 2017) 

 

It could be observed that all engine emissions have shrunk massively. The engine 

NOx is limited in the EURO 3 emission standard. The latest EURO 6 standard is 

84% smaller when compares with EURO 3 standard. The particulate mass is 

reduced by 80% when compares the EURO 6b and EURO 4 standard. Apart from 

the mass-based limitation on particulates, the limitation of particulate number 

appears since the EURO 5b standard. All these changes bring extra challenges 

for diesel engines to survive in the market. 

The previous engine research on emissions mainly focuses on steady states 

conditions. However, the engine transient operations are the majority in real 

driving scenarios. The fuel economy and emission generation are deteriorated 

seriously when compared with the steady state calibrations (Heuwetter et al., 

2014). So the new European driving cycle (NEDC) is adopted as the standard 

driving cycle since EURO 4 standard to simulate the transient scenarios and 
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evaluate emissions (Rakopoulos and Giakoumis, 2009). To cover a wider engine 

operation range and get close to the real-world driving conditions, the worldwide 

harmonized light vehicles test procedure (WLTP) is proposed. This test cycle is 

already utilized for EURO 6d, which makes it more difficult for manufacturers to 

pass the emission test (DELPHI, 2017). In the future, the real-world driving 

emissions would be considered in the emission standard. So, it is necessary to 

further explore the potential of diesel engines on emission reduction, especially 

in transient conditions. The detailed review about engine transient studies, test 

cycles and real-world driving emissions would be shown in chapter 2 (literature 

review).   

1.1.3 Development of Diesel Engines 

To overcome the above-mentioned challenges, modern diesel engines become 

more efficient and cleaner with the help of advanced technologies invented in the 

past decades. As mentioned above, the major requirements on future diesel 

engines are better fuel economy and less emission generation. The figure below 

demonstrates a typical modern light-duty diesel engine with featured designs and 

equipment. 
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Figure 1-3   Technologies for Modern Diesel Engine (Nishio et al., 2013) 

The engine contains a high-pressure common-rail direct injection system and 

injector nozzles are designed into small-diameter to optimize the fuel spray so 

that the combustion efficiency is improved. A VGT (variable geometry 

turbocharger) is adopted to enhance the compressor performance. Other than 

conventional single loop EGR (exhaust gas recirculation), a dual-loop EGR 

(HPEGR and LPEGR) system is installed in the engine’s air path. The engine 

NOx and pumping loss can be reduced simultaneously. In terms of aftertreatment 

devices, the diesel oxidation catalyst (DOC) can convert HC and CO into 

harmless products effectively. The DPF (diesel particulate filter) could decrease 

more than 95% of particulates at the engine’s tailpipe (Johnson, 2008). Due to 

the strict emission legislation, the selective catalyst reactor (SCR) is also added 
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to the exhaust pipe to further reduce the NOx emission (Haga et al., 2015). 

Besides, improvements in engine material, mechanical design, engine 

manufacture etc. are beneficial for achieving ultra clean and high efficiency. To 

cope with more and more engine components, engine control units (ECU) with 

powerful computational ability are developed, which lead to an increasing 

demand for engine calibration methods and control methods.    

To obtain the optimal performance, engine variables and controller parameters 

should be calibrated. This process is defined as the engine calibration or 

optimization which is very important for the engine development. But the 

calibration process is also very time consuming and requires large costs. There 

is strong demand for fast and efficient engine optimization methods. Since the 

engine is a typical multi-input-multi-output (MIMO) system, the optimization 

method should also handle the multiple objects simultaneously, especially 

overcome the trade-off effects.    

With the increased complexity of diesel engines, the difficulty of optimal engine 

control during transient conditions has increased dramatically. It is found that the 

conventional PID control strategy based on look-up tables has met its limitation 

when dealing with high non-linearity and coupling effects such as the engine’s air 

path (Lu et al., 2016). But fortunately, the rapid development of the engine ECU 

provides the computational capability and allows the use of other control methods. 
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Many emerging control strategies including fuzzy logic control (R.S.Wijetunge et 

al., 2000), robust control (Langthaler and Re, 2008), neural network control 

(Hafner et al., 2000) and model predictive control (Borhan et al., 2015) have been 

proposed and implemented in diesel engine successfully. The future engine 

control strategy should shift from non-model-based control to model-based 

control. To further improve the diesel engine’s performance, the controllers of 

modern diesel engines should contain both feedback control (FB) and feed-

forward control (FF). As it is shown in figure 1-4, it is achieved by constrained  

 

Figure 1-4 Control for Optimal Engine Performance (Wang, 2018) 
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1.2 Thesis Objectives 

The main objectives of the thesis are the optimization and control of the diesel 

engine’s air path with dual-loop EGR. The purpose is to improve the diesel 

engine’s transient performance (accurate trajectory tracking of the engine 

parameters with less overshoot and shorter setting time) and reduce the engine 

‘s fuel consumption. It is to be achieved by developing intelligent transient 

calibration algorithm and investigating advanced model-based controllers. The 

specific targets of the study are listed: 

• To commission the transient engine test bench at the University of Birmingham 

for the research on engine control. 

• To develop the real-time control-oriented model of the diesel engine’s air path 

as the simulation platform for the research activities in the thesis. 

• To create the intelligent transient calibration method based on the natural-

inspired evolutionary algorithm and validate the calibration results via engine 

tests. 

• To build controllers based on model predictive control (MPC) methods for the 

air path of the diesel engine. The proposed controllers are also validated on 

the HIL test platform.    
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1.3 Thesis Outline 

This thesis consists of seven chapters, the detailed outline is shown below. 

Chapter 1- Introduction 

The basic background of modern light-duty diesel engines and motivations of the 

study are shown in this chapter. The research objects and approaches are also 

presented. 

Chapter 2- Literature Review 

This chapter reviews the publications that are relevant to the thesis. The first 

section discusses diesel engine’s air path. Afterwards, it demonstrates the 

previous research on diesel engine’s transient operations (including engine test 

cycles). The third section focuses on the review of engine modelling approaches. 

The last two sections summarize the trend of engine’s model-based optimization 

and control strategies.   

Chapter 3- Experimental Setup and Methodology 

The experimental setup is formed by the detailed introduction of the test facility, 

including both hardware and software. It firstly introduces the test engine, the 

engine test bench and the measurement devices for the engine performance. 

Then it presents the simulation platform and the HIL test platform. The 
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methodology of the thesis is followed in the second section, which contains the 

detailed introduction of the investigation approach and the engine test plans. 

Chapter 4- Intelligent Transient Calibration Algorithm 

This chapter introduces an intelligent transient calibration method for the engine 

controller based on chaotic-enhanced particle swarm optimization algorithm 

(CAPSO). The calibration objects in this case are the engine’s MAF, MAP and 

LPEGR fraction. The accuracy of the simulation platform is validated by the test 

data at the beginning. The proposed algorithm is compared with the original 

engine calibration through several case studies.  

Chapter 5- Tunable Model Predictive Control  

The development of an engine’s air-path controller based on tunable model 

predictive control approach (TMPC) is presented. The systematic design 

framework of the TMPC controller is also included. The controller performance is 

evaluated by the comparison between the TMPC controller and the conventional 

PID controller, which is conducted on the simulation platform. An additional HIL 

validation process is added to the end of this chapter. The agreement between 

the offline simulation and the actual ECU response is good.  

Chapter 6- Non-linear Model Predictive Control  
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This chapter proposes a control approach based on neural network model 

predictive control (NMPC) for the diesel engine’s air-path. A neural network model 

plays the role as the internal prediction model for the controller. To solve the 

optimization problem of the controller at each time interval, a real-time solver 

based on the evolutionary algorithm is also built. The controller performance is 

evaluated by the comparison between the NMPC controller and the conventional 

PID controller. The HIL tests show that the results of the pure simulation and the 

actual ECU response are close.  

Chapter 7- Conclusions and Future Work 

This chapter summarizes the achievements and finds in this thesis. A few ideas 

and suggestions for the next stage work are provided. 
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CHAPTER 2  LITERATURE REVIEW 

This chapter reviews the publications that are related to the work in this thesis. 

The components mainly cover the diesel engine’s air path, studies on engines’ 

transient behaviors, control-oriented modelling, engine optimization methods and 

engine control strategies. 

2.1 Air Path of the Diesel Engine 

The objectives of the thesis are the optimization and control of the diesel engine’s 

air-path. This section reviews the publications that are related to the engine’s gas 

exchange process (including the EGR) and the characteristics of diesel engine’s 

transient emissions.   

2.1.1 Exhaust Gas Recirculation 

To meet continuously strict emissions’ legislation, exhaust gas recirculation (EGR) 

is applied to modern diesel engines as an in-situ approach to NOx reduction 

(Agarwal et al., 2011; Zhang et al., 2013).  

To reduce NOx, the EGR system reduces the oxygen concentration in the engine 

inlet gas and lowers the in-cylinder flame temperature (Shi et al., 2017). It can be 
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categorized into thermal (Ladommatos et al., 1997), dilution (Ladommatos et al., 

1996) and chemical effects (Ladommatos et al., 1996b; Ladommatos, Abdelhalim 

and Zhao, 1997). The dilution effect is the main reason for the NOx reduction and 

the trade-off engine particulates. The EGR gas replaces the inlet fresh air with 

the CO2 and water vapour, which has higher heat capacity. Therefore, the heat 

capacity of the inlet gas is increased; but the lower flame temperature reduces 

the rate of soot oxidation/re-burning and the reduced oxygen lowers the air-fuel 

ratio. This will bring a negative impact to the engine’s HC, CO and soot emissions 

(Agarwal et al., 2011). Higher soot generated inside the engine also leads to 

engine deposits, degradation of lubrication oil and enhanced engine wear (Tan 

and Hu, 2016). The EGR effects on diesel combustion and pollutant formation 

can be summarized by the figure below: 
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Figure 2-1  EGR Effects on Diesel Engine Combustion and Emissions (Thangaraja and 

Kannan, 2016) 

When the EGR system is installed in diesel engines, the EGR rate should be 

investigated. The mass measurement defines the EGR rate as the percentage of 

the EGR mass flow in the total intake mixture. The gas concentration 

measurement is based on the CO2 or oxygen concentration in the intake and 

exhaust manifold (Keeler and Shayler, 2008;Maiboom et al., 2009; Desantes et 

al., 2010). Focusing on the research objectives in this thesis, a properly calibrated 

and controlled EGR rate is important. 

The EGR rate is closely related to the engine’s working conditions. At low engine 
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load conditions, the EGR rate is acceptable in a wider range (up to 50% or more); 

as the exhaust gas still contains sufficient oxygen and limited CO2 and water 

vapours. At high load conditions, the oxygen in the exhaust gas becomes 

insufficient and the inert constituent has a more significant influence, along with 

the increased exhaust temperature; this restricts the maximum EGR rate (Zheng 

et al., 2004). This principle should be reflected in the controller’s design process. 

The acceptable EGR rate should be limited by the boundary conditions. 

The three commonly used EGR configurations are high-pressure loop EGR 

(HPEGR), low-pressure loop EGR (LPEGR) and dual-loop EGR (DLEGR) 

(Zhang et al., 2017). The HPEGR redirects the exhaust gas from the exhaust 

manifold to the intake manifold with the help of the pressure difference. The 

LPEGR gas flows from downstream of the aftertreatment device to upstream of 

the compressor. Normally, the EGR gas in both HPEGR and LPEGR is cooled 

down by the EGR coolers. However, it should be noticed that even though the 

cooled EGR is more effective on the engine’s NOx reduction (Zheng et al., 2002), 

the hot EGR gas could achieve a shorter ignition delay and increase the thermal 

efficiency, due to the increased intake gas temperature (Dishy et al., 1995). The 

selection between cooled EGR gas and uncooled hot EGR gas should be 

considered based on the specific engine working conditions. The DLEGR 

contains both the HPEGR loop and the LPEGR loop. Figure 2-2 demonstrates 

the structure of a DLEGR system. The advantages of HPEGR are a quick 
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response in transient conditions and its simple structure. However, HPEGR also 

suffers coupling effects with the engine’s VGT and has difficulties in providing 

sufficient EGR gas in low-speed high-load conditions (Maiboom et al., 

2008;Zhang et al., 2017). When LPEGR is used, the coupling effect between the 

HPEGR and the VGT is relieved, so the VGT control has less burden during 

transient conditions (Zhang et al., 2017). The engine pumping loss is then 

reduced, which is beneficial for the BSFC reduction (Xin and Xin, 2013). Besides 

that, the engine’s DPF reduces the amount of soot and particulates in the EGR 

gas, which limits the excessive smoke (Shah and Maiboom, 2009). The lower 

temperature of the intake gas is beneficial for further reducing the engine’s NOx 

(Park and Bae, 2014). The mixture between the EGR gas and the fresh air is 

enhanced due to the long distance of the gas tube. More homogenous cylinder 

gas flow can be acquired, which is helpful to reduce engine PM (van Aken et al., 

2007). Due to the tiny pressure difference and the long pipeline, LPEGR has a 

slower dynamic response and more complex control to maintain the desired EGR 

mass flow, when compared to single HPEGR (Reifarth and Ångström, 2010). 

Compressor fouling is another problem for LPEGR which is caused by water and 

particulates in the exhaust gas. The advantages of both HPEGR and LPEGR 

could be found in DLEGR (Zamboni and Capobianco, 2012). Thus, diesel engine 

designers have started to adopt this EGR configuration to generate less 

emissions, achieve a quicker dynamic response and improve fuel economy in 
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recent years. It provides the flexibility of the EGR split strategy under the same 

total EGR rate (Park and Choi, 2016). Both HP and LP EGR could be operated 

efficiently under various working conditions due to their different dynamic 

responses (Nishio et al., 2013). 

 
Figure 2-2  Sketch of a Dual-loop EGR System for Light-duty Diesel Engine, Combining both 

HPEGR and LPEGR (Millo et al., 2012) 

 

2.1.2 Gas Exchange Process 

In four-stroke internal combustion engines, the gas exchange process involves 

both an induction process and an exhaust process. The main function of the 

engine’s air path is to remove the burned gas at the end of the power stroke and 

prepare the required inlet gas for the next cycle (Heywood, 1988). To promote the 

performance and efficiency of the air path, new technologies have emerged for 
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modern light-duty engines. The figure below shows the targets of a diesel 

engine’s air path design. This thesis mainly investigates a diesel engine’s air path 

(dual-loop EGR and VGT system).  

 
Figure 2-3  Diesel Engine Air Path Design (Xin and Xin, 2013) 

Turbocharger is a boosting device in the diesel engine’s air-path. It is formed by 

a compressor, a turbine and a connection shaft. The purpose of adopting this 

device in modern diesel engines is to increase the engine output by enlarging the 

mass air flow drawn into the engine (Stone, 1999). The work carried out by 

researchers at the University of Bath showed that the fuel consumption of diesel 

engines could be significantly reduced if the intake gas pressure is excessively 

boosted (Turner et al., 2014). Among the numerous types of turbocharger, the 

variable-geometry turbocharger (VGT) is now widely used; it regulates the 

exhaust gas received by the turbine freely via pivoted nozzle vanes (Zamboni 
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and Capobianco, 2013). Besides, other structures such as a multi-stage 

turbocharger, supercharger/turbocharger combination and variable geometry 

compressor (VGC) have also been developed to improve the performance of the 

boosting system (Dickinson et al., 2015)(Plianos and Stobart, 2008; Dickinson et 

al., 2015; Zhou et al., 2015). However, the conventional turbocharger powered 

by the exhaust gas suffers weak boosting capability at low engine loads and a 

slow transient response (Terdich and Martinez-Botas, 2013). To overcome these 

drawbacks, electrically assisted turbochargers (EAT) are created. The power 

assistance for the turbocharger could also contribute to enhance the engine’s 

peak power and lead to a lower pumping loss (Xue and Rutledge, 2017). Although 

the turbo efficiency is successfully improved, the EAT system requires a special 

bearing design, solid durability of electrical parts and a higher manufacturing cost, 

which are all big challenges.  

Similar to the variable valve actuation (VVA) on gasoline engines, studies of 

varying the valve timing or even valve lift have also been carried out on diesel 

engines (Gelso and Lindberg, 2013). Many of them focus on the timing of the IVC 

because it has a significant impact on the amount of gas in the cylinders. It is 

found that late IVC brings lower fuel consumption, as well as fewer emissions 

(Zhang et al., 2016). In addition, when the diesel VVT combines with LTC 

combustion mode, an extra reduction on engine is acquired (Murata Y., 2006; 

Murata et al., 2008). Another highlight of diesel VVA is the reopening of intake or 
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exhaust valves during the exhaust or intake stroke (defined as 2IVO and 2EVO 

respectfully). The test results show that the 2IVO strategy could effectively reduce 

HC emissions and shorten engine warm-up time in cold-start situations (Dittrich 

et al., 2010). However, this kind of valve actuation is limited due to the sharp 

increase of the smoke during transient conditions (Fessler and Genova, 2004). 

2.1.3 Characteristics of Diesel Engine Transient Emissions 

Diesel engines generate higher values of gaseous phase emissions (NOx, THC 

and CO) and particulate emissions during transient operations, when compared 

with steady state conditions (Rakopoulos and Giakoumis, 2006). Figure 2-4 

shows a typical characteristic of engine NOx and particulates during acceleration 

conditions.   

The research on diesel engines’ transient emission characteristics has been 

speeded up by the progress on real-time emission analysers. With the help of 

fast-response emission testing equipment, cycle by cycle results can be acquired 

(Davis and Peckham, 2007). In both speed transient and load transient conditions, 

the trajectory of EGR valves and the related changes of intake charge 

composition are the primary responsibility for the emission spikes (Glewen et al., 

2011). For the load increment cases, the EGR valves close rapidly to reduce the 

burden on the VGT system and meet the desired EGR rate; the in-cylinder 

temperature rises due to the larger amount of fuel injection. These two factors 
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dominate the overshoot of NOx. The system delay triggers the low air-fuel ratio 

and extends the duration of diffusion combustion, which enhances the 

particulates’ formation (Kang P. V. Farrell and Kang  P. V. Farrell, 2005). Under 

deceleration conditions, the engine will undergo very lean ignition or even partial 

burn. A large amount of THC and nucleation particles will still be generated during 

this period of time (Tian et al., 2014). Different VGT settings have also been tested 

in transient experiments; the opening of the VGT vane could decrease the engine 

back pressure effectively, but engine emissions were little improved (Black et al., 

2007). The engine-out emission is also affected by the length of the transient 

periods. When the load ramp time is shorter, the spikes of engine NOx and 

particulates will become more significant (Hagena et al., 2006).  

It should be noticed that the trade-off between NOx and PM still exists, even in 

transient scenarios. For the control point of view, a properly controlled air-fuel 

ratio is the key to obtain acceptable emissions during transient conditions 

(Yokomura et al., 2004). 
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Figure 2-4 Typical NOx and PM Trajectories Measured with Engine Tests during Step-

changed Loads (Tian, 2015) 

2.2 Diesel Engine Transient Operation 

Steady state conditions of diesel engines have been widely investigated and 

studied in the past decades. However, the major operation patterns of automotive 

engines in a real-driving condition occur under transient conditions. Engine test 

results from driving cycles have found that the emissions during transient periods, 

including acceleration, deceleration and cold start, are the primary source of 

pollution (Tian et al., 2014). Higher PM, NOx, THC and CO emissions are 

generated due to the deteriorated performance of engine gas exchange, fuel 

injection and combustion (Wijetunge et al., 1999). This issue has drawn 
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researchers’ attention in recent years, with the continuous existence of the strict 

emissions’ standards. In this section, the characteristics of diesel engines’ 

transient operations and emissions’ behaviours are briefly introduced and 

analyzed. 

2.2.1 System Delay in Transient Operations 

The most notable issue of turbocharged diesel engines during transient 

operations is the mismatch between the gas supply and the fuel injection. The 

engine fuel injection system could respond to the transaction of the engine’s 

working conditions instantly (Catania et al., 1996); but the diesel engine’s air path, 

including the complex EGR loops and boosting systems, adapts to the transient 

scenarios slower, which results in a torque deficit and peaks of engine-out 

emissions. 

This topic has been discussed extensively by many researchers and in many 

studies. There are three main aspects for the system delay in the engine’s air 

path: mechanical, thermal and fluid dynamic phenomena (Rakopoulos and 

Giakoumis, 2009). Mechanical effect mainly refers to the friction losses and turbo 

inertia; the thermal factor refers to the heat transfer to the cylinder walls and 

manifold surfaces. It is claimed by many researchers that the fluid inertia of the 

gas and the engine’s EGR effect account for the primary cause of the air path’s 

system delay (Hu et al., 2014). To minimize the system delay of the diesel 
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engine’s air path, numerous efforts have been made. The majority of the work 

focuses on the improvement of the fluid dynamics; only limited work mentions the 

upgrades on the mechanical and thermal aspects (Alberer et al., 2013). The VGT 

device optimizes the diesel engine’s transient response by controlling the vane 

freely, which accelerates or decelerates the compressor rapidly to overcome the 

rotation shaft inertia and the flow inertia of the exhaust gas (Filipi et al., 2001). 

With the help of advanced methodologies on EGR control, the coupling effect 

between the EGR and VGT could be effectively eliminated. The system delay 

caused by the EGR effects is minimized (van Nieuwstadt, 2003; Friedrich et al., 

2009; Wang et al., 2011; Hong et al., 2015). In summary, the factors that bring 

the system delay are shown in detail in Figure 2-5. 

 
Figure 2-5 Schematic Diagram of a Diesel Engine’s Turbo-lag in Transient Operations 

(Rakopoulos and Giakoumis, 2009) 
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2.2.2 Engine Test Cycles 

The transient performance of internal combustion engines plays an important role 

in the daily use of modern vehicles. Research has been conducted to investigate 

the factors that influences the emissions in test cycles since last century (Shayler 

et al., 1997). The engine test cycles are also continuously changed to get closer 

to real-world conditions. The evaluation of an engine’s fuel consumption and 

other emissions in Europe and other major markets is originally based on the 

New European Driving Cycle (NEDC) and its accompanying test protocol (Armas 

et al., 2013). This procedure is called type-approval (TA). The NEDC contains 

four equal urban driving segments (UDC), which represents the condition of low 

vehicle speed and low engine load; and one extra-urban driving segment (EUDC), 

which accounts for higher vehicle speed and engine load (Sileghem et al., 2014). 

However, the NEDC cycle has difficulties in reflecting the engine’s behaviours 

under real-driving conditions (Dimaratos et al., 2016). This phenomenon will lead 

to a mismatch between the real engine emissions and TA emissions (including 

fuel economy). Besides, the mismatch is reported to be increasing with time 

(Fontaras et al., 2017a). To control and reverse this increasing gap, the Europe 

Commission requires a new test procedure to be established to replace the 

conventional NEDC. 

In recent years, the concept of real-life driving conditions has been considered in 
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the vehicle test procedure and the tail pipe emissions should be measured by on-

board portable emission measurement systems (PEMS) (Bishop et al., 2016). 

From 2017, new vehicles in Europe must undergo the World-wide Harmonized 

Light Duty Test Cycle (WLTC) and its corresponding test procedure (WLTP) in a 

TA test. The WLTP cycle is composed of four speed phases: low, medium, high 

and extra high phases. Based on the present studies, moving from the NEDC to 

the WLTC has had a more significant impact on diesel engines than on gasoline 

engines (Pavlovic et al., 2016). The new WLTP brings several improvements to 

the testing and procedure compared to the current NEDC test. The new WLTP 

corrects the wrong provisions in the NEDC cycle. Several new provisions are also 

added to make the WLTP more robust and more representative of fuel 

consumption and emissions in real driving conditions (RDE) (Bianco-Rodriguez 

et al., 2016). Focusing on the engine, the WLTP involves more aggressive 

transient scenarios (more engine acceleration, deceleration and less steady state 

conditions) and lower engine temperature at the starting period. Besides, the 

engine needs to be operated in a wider range than the NEDC cycle. Research 

has been conducted to investigate the differences of engine fuel consumption 

and emissions under the NEDC cycle and the WLTP cycle (Lee et al., 2013). The 

results show that the NEDC is far from being a realistic driving cycle. It is reflected 

in the figure below. The speed of the test vehicle only covers a smaller range 

when compares the NEDC with the WLTP. The absolute values of vehicle 
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acceleration and deceleration of the NEDC cycle are also smaller. The numbers 

of vehicle acceleration and deceleration (vehicle transient conditions) are also 

increased massively in the WLTP.      

 

Figure 2-6 Acceleration versus Speed under NEDC, WLTP and RDE Cycles (Donateo and 

Giovinazzi, 2017) 

However, the gap between the laboratory results and the real-world driving results 

still exists due to the various driving behaviours, engine cold start, weather 

conditions, vehicle conditions, traffic conditions and the use of on-board devices 

etc. (Fontaras et al., 2017b). It is also observed that road driving occurs at lower 

average speeds with higher frequency and magnitudes of accelerations. The 

frequent acceleration required by road cycles was 100% higher than the WLTC 

and the relative positive acceleration (RPA) demanded by the road cycles was 

found to be 60% higher in real-world driving patterns and thereby contributes to 

higher emissions and fuel consumption (Kumar Pathak et al., 2016). The EU6d 
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Emission Regulation requires real driving emissions as an additional type 

approval requirement within the 2017-2020 timeframe, to consider the influence 

of the road profile, the ambient conditions and the traffic situation, as well as the 

behaviour of the driver. The new test uses a portable emissions monitoring 

system (PEMS) to measure on-board, as well as the behaviour of the driver 

(Donateo and Giovinazzi, 2017).  

The new engine test cycles and the consideration of real-world driving conditions 

make it essential for future diesel engines to be further upgraded and there is a 

real demand for an intelligent engine management system. Additional work such 

as mapping the driver’s pattern, geographic information, traffic information and 

advanced thermal management could be considered in engine controller 

development and calibration processes (Zacharof et al., 2016). 

2.3 Control-oriented Model of Modern Diesel Engines 

Engine modelling is an indispensable tool in engine optimization and the 

controller development process. Various modelling approaches have been 

proposed, but the trade-off between model detail and computational speed is 

quite significant, as shown in Figure 2-7; it limits their applications for different 

cases. In this section, the modelling approaches of modern diesel engines are 

reviewed. They are classified as physical modelling methods, semi-physical 
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modelling methods and non-physical modelling methods. The current trend of 

engine modelling is to integrate these techniques together (Millo et al., 2011).   

 

Figure 2-7 Comparison of Different Engine Modelling Methodologies on Model Detail and 

Computational Speed (Millo et al., 2011) 

2.3.1 Physical Modelling Methods 

The physical modelling methods are developed based on equations of energy 

and thermodynamic principles. Heywood classifies the thermodynamic models 

as the quasi-steady model, the filling and emptying model and multi-zone models 

(Heywood, 1988). The work in this thesis mainly focuses on engine control 

strategies, so the modelling approaches reviewed are related to control-oriented 
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models; the 3D-CFD method is not discussed in this section. Even though they 

present the most details and highest accuracy, the high computational costs 

become a burden for the purposes of engine control (Haiyan et al., 2006).  

Quasi-steady models are developed based on the assumptions that some engine 

transient responses are the same as a sequence of steady points. This method 

presents the engine thermodynamics through the dynamics of a turbocharger and 

crankshaft and empirical correlations (Grondin et al., 2004). Quasi-steady models 

are commonly selected to simulate the engine power generation, mass air flow 

rate and exhaust temperature (Filipi et al., 2001). It is also agreed that combustion 

signals in each engine cycle could be regarded as a quasi-static condition 

(Assanis et al., 2000). Besides, quasi-steady models could provide a rough 

guidance of trends of engine-out emissions according to current engine speed 

and load (Kirchen et al., 2009). In brief, the quasi-steady model has the 

advantage of rapid computational speed; but the accuracy and compatibility are 

unacceptable when a complex system needs to be modelled. A large amount of 

data is also required for empirical correlation, which makes it difficult to transform 

one quasi-steady model to another engine platform. 

Filling and emptying models, also known as zero-dimensional models, were 

originally invented to overcome the drawbacks of quasi-steady models (Watson 

and Marzouk, 1977). The engine components such as pipes, manifolds and 



 

33 

 

cylinders are regarded as a series of control volumes, which assume the gas 

mixtures are in uniform states. Some detailed processes (such as fuel spray 

vaporization) in the engine are then ignored (Kumar et al., 2013). A filling and 

emptying model successfully simulates the in-cylinder combustion process based 

on the first law of thermodynamics (Watson and Janota, 1982). Another case in 

which the filling and emptying methods are frequently seen is in manifolds’ 

modelling (Taraza et al., 2008; Wahlstrom et al., 2011). The manifold volume and 

surface heat loss are considered. Although the pressure waves inside the 

manifolds are neglected, an acceptable model fitting rate could still be obtained 

at common engine operating ranges from the publications mentioned above.   

Mean-value models based on the filling and emptying method are capable of 

capturing most of the characteristics of engine transient operations, especially for 

the engine’s air path (Cieslar et al., 2014). Therefore, this type of model is widely 

used as the simulation platform for engine controller designs (Nikzadfar and 

Shamekhi, 2015; Stürzebecher et al., 2015). The mean-value models are 

developed based on the conservation of mass and energy and the ideal gas law 

(Haiyan et al., 2006). One significant feature involves a minimum set of differential 

equations to reduce the computational costs. In mean-value models, the time is 

an independent variable. It neglects the discrete cycles of the engines (Guzzella 

and Onder, 2010). Figure 2-8 shows the architecture of a mean-value model of a 

turbocharged diesel engine with dual-loop EGR. It estimates nine engine states 
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for pressure, temperature and mass flow rate. The dynamic corrections 

concerning the temperature, time constant and the fluid transport delay are taken 

into consideration to improve the model accuracy. However, the number of states 

in mean-value models may vary among different cases (Tan, 2015). Thus, this 

technique has been widely used to design the controller of turbocharged diesel 

engines.   

 

Figure 2-8 The Architecture of a Mean Value Model of a Turbocharged Diesel Engine 

(Kyunghan et al., 2015) 

The multi-zone models are created to simulate the engine combustion process 

and pollution formation in detail. Compared with other modelling methods, the 

multi-zone models consider the spatial distribution of products and temperature 

inside the volume (Xue and Caton, 2012). As a result, it becomes possible to 

analyses the detailed in-cylinder air-fuel distribution and gas components. 
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Research work has proved that multi-zone models could simulate combustion 

signals such as heat release rate, IMEP and heat. They could also contribute to 

predict the particles and NOx from diesel engines (Midlam-Mohler and 

Guezennec, 2006). The detailed physical mechanisms behind the multi-zone 

models enhance the model accuracy, which is beneficial for simulating the engine 

combustion process or emissions’ formation; but rare cases are found for 

controller design due to the model complexity and defects in real-time 

performance. 

2.3.2 Semi-Physical Modelling Methods 

The characteristics of both physical models and non-physical models are 

contained in semi-physical models. The physical or chemical principles are still 

embedded inside (Grondin et al., 2004). It has been proved this modelling method 

is reliable over a wide range. The computational speed is quicker than the pure 

physical model and the accuracy is better than the pure empirical model 

(D’Ambrosio et al., 2014). However, the emerging research work has successfully 

proved that this method is reliable for online estimation of engine-out emissions 

(Grahn et al., 2012; D’Ambrosio et al., 2014; Karaky et al., 2015). The semi-

physical NOx model proposed in 2015 shows a good association between the 

physical fundamentals of NOx formation and empirical correlation, based on 

experimental data (Querel et al., 2015). In terms of the diesel particulates, a semi-
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physical model is operated as a function of several significant engine parameters 

(Finesso et al., 2014). Unfortunately, it is found to be difficult to capture the 

detailed combustion process with the semi-physical models, especially during 

transient conditions (Rakopoulos and Giakoumis, 2006). 

2.3.3 Non-Physical Modelling Methods 

Non-physical models, also known as ‘black-box’ models, are suitable for 

modelling complex systems with little understanding of the principles and fast 

computational speed. The relationship between model inputs and outputs are 

established purely based on massive experimental data. The non-physical-based 

models can be recognized as linear black-box models and non-linear black-box 

models. 

Due to the complexity of physical models, linear black-box models can be 

deployed as controller internal predictors. These models are identified based on 

massive experimental data and the model structure is pre-defined (Morari and 

Lee, 1999). The state space model is a typical type. The rapid computational 

speed is a major advantage due to the simple model structure. However, these 

linear black-box models have an acceptable accuracy within the range of the 

training data. Considering the strong non-linearity of the diesel engine’s air path, 

the application is limited.  
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Figure 2-9 Structure of Multilayer Feed-forward Artificial Neural Network (Maass et al., 

2011) 

In terms of non-linear ‘black-box’ modes, the artificial neural network (ANN) 

models are widely used modelling methods for internal combustion engines 

(Garg et al., 2012). With sufficient experimental data, ANN models are able to 

capture the selected parameters’ highly complex and non-linear characteristics 

(Atkinson and Mott, 2005; Boruah, 2016). Figure 2-9 shows a general schematic 

view of a multilayer feed-forward ANN model to predict the in-cylinder pressure. 

The main training parameters for this type of ANN model are the number of layers, 

weight values and bias values. The trained NOx model could provide an accurate 

prediction over the NEDC cycle (Zhang et al., 2015). Research work on the effect 

of the neurons’ number on the model fitting rate indicates that a larger neurons’ 

number is helpful to promote the outputs’ accuracy (Alonso et al., 2007). The 
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recurrent neural network (RNN) model is another type of ANN model commonly 

used in engine research. The main difference with RNN models is that they take 

the past input and output values into account for future prediction (Arsie et al., 

2010). It has been successfully applied in the case of engine virtue sensing, air 

path identification and engine air-fuel ratio control (Arsie et al., 2004; Kamat et 

al., 2006; Kushwaha et al., 2015). A comparison was conducted between RNN 

and ANN on diesel engine NOx prediction. The simulation and experiment results 

show that the neural network architecture with historical information is beneficial 

for the emission prediction during transient scenarios. An accurate prediction 

(correlation coefficient within the range of 0.987–0.999, mean absolute 

percentage error in the range of 1.1–4.57%) of the engine NOx is observed in 

most engine working conditions (De Cesare and Covassin, 2011). The typical 

structure of an RNN model is shown in Figure 2-10. 
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Figure 2-10 General Architecture of Recurrent Neural Network Model (Arsie et al., 2013) 

The non-physical models reviewed above, especially the ANN and RNN models, 

have shown high model accuracy and computational efficiency. However, the 

non-physical models are not the most optimal solution for control-oriented 

modelling because the compatibility of non-physical models is poor; which means 

the model should be rebuilt completely when applied to other cases. Furthermore, 

these types of models suffer from model over-fitting during the training process 

(Brahma and Chi, 2012). As a result, the model would show poor prediction ability 

outside the data range. Even if inside the range of training data, extra data is still 

needed for a full validation and correlation.   
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2.4 Engine Calibration Algorithms 

To further optimize the engine performance, reduce the engine-out emissions and 

improve the fuel economy, numerous optimization methods have been applied to 

internal combustion engines. In recent years, optimization algorithms are used 

for intelligent calibrations of engines. In this section, the engine calibration 

methods are reviewed based on commercial software and nature-inspired 

optimization algorithms. 

2.4.1 Engine Calibration Using Model-based Calibration Methods 

As the number of actuators associated with the new technologies applied on 

modern internal combustion engines has increased, it enlarges the time and cost 

for calibrating such a complex system. It becomes more difficult to achieve the 

optimum results for all calibration tasks (Turkson et al., 2016). One common way 

to deal with the engine’s degrees of freedom is to use the model-based calibration 

(MBC) approach, which involves the use of statistic modelling called the design 

of experiments (DOE) (Guerrier and Cawsey, 2004). Companies such as 

MATLAB, AVL and ETAS have developed commercial software for the market. 

However, the statistic modelling approach requires a huge amount of data from 

engine tests and it is difficult to guarantee the model’s accuracy over the whole 

engine operation range, with data noise during the acquisition process (Atkinson 

et al., 1998). It should be noticed that the statistical engine model is only suitable 



 

41 

 

for a specific engine. When the engine that requires calibration is upgraded or 

replaced, the statistic model needs to be rebuilt completely, even if the updates 

are not numerous (Ma et al., 2014). The data acquisition process should be 

repeated. At the current stage, these MBC methods are mainly designed for 

steady state optimization. They could not be implemented to the case of engine 

transient calibration, such as controller self-tuning. As introduced in the previous 

sections, transient calibration plays an increasingly important role for future diesel 

engines. Furthermore, internal combustion engines with unconventional 

combustion modes such as HCCI could not be used in the software. Thus, there 

is a demand for alternative solutions on engine optimization issues. 

Many algorithms have also been proposed for optimization purposes in recent 

decades, such as the frequency domain method and the Ziegler-Nichols (ZN) 

method (Sanathanan, 1988; Åström and Hägglund, 2001; Pano et al., 2014). 

However, the major limitation of these methods is the requirement for excessive 

knowledge of the system’s frequency response or controller’s transfer functions, 

which makes them difficult to apply to the case of optimizing internal combustion 

engines. 

2.4.2 Engine Calibration Using Natural-inspired Evolutionary Algorithm 

During the engine calibration process, the trade-off between optimization objects 

is hard to avoid. Therefore, the multiple objective optimization algorithm is 
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considered to solve this problem by providing a step-by-step procedure of 

calculations and instructions (Yang, 2014). The nature-inspired evolutionary 

algorithms have become a popular choice to deal with this problem in recent 

years. This type of algorithm involves trial-based meta-heuristic search processes, 

inspired by the evolutions of natural species (Ma, 2012; Tayarani et al., 2015).  

The genetic algorithm (GA) is a very popular solution among all nature-inspired 

evolutionary algorithms. It adopts the natural selection concept among species to 

locate the optimum on a given response surface (Yang et al., 2013). Each 

individual agent represents an input for the optimization case. The individuals in 

each generation are evaluated based on a defined fitness function. Only the fittest 

individuals can reproduce to form a new generation of citizens. Similar to natural 

creatures, the individuals also have random ‘mutations’ and ‘mating’ to locate the 

more optimum results (Thiel et al., 2002). To increase the computational speed 

of the conventional simple GA, a variation called micro GA (μ GA) was created. 

The most significant change is a more efficient selection process during the 

determination of the individuals for the next generation (Srinivasan and Tanner, 

2011). The GA-based algorithms have been successfully utilized to optimize 

engine performance, emissions, or fuel consumption (Finesso et al., 2015). With 

the development of the CPU capability, the GA algorithms have also been 

coupled with CFD modelling strategies in the engine design process to optimize 

the combustion chamber geometries or fuel spray behaviours (Wickman et al., 
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2001; Ge et al., 2009; Mattarelli et al., 2009).  

The strength Pareto evolutionary algorithm (SPEA) is a very important landmark 

in the developmental history of nature-inspired evolutionary algorithms. The 

optimization results are converged to the Pareto optimal fronts (Zitzler and Thiele, 

1998). However, the applications of SPEA on engine optimizations are limited by 

deleting non-dominated individuals accidently and fixed fitness values, which are 

two significant drawbacks of this algorithm (Abido, 2006). To compensate the 

shortages mentioned above, the SPEA was upgraded into SPEA2. Unlike SPEA, 

SPEA2 utilizes a fine-grained fitness assignment method and cooperates with 

individual density. Moreover, the size of the external archive is fixed. In addition, 

the clustering technology is replaced by an alternative truncation method, which 

will not lead to the missing of boundary points (Zitzler et al., 2001). The SPEA2 

method has been successfully applied to the optimization of a HCCI engine and 

GDI engine. Improvements on both fuel consumption and emissions were found 

by experimental and simulation results (Ma et al., 2014; Ma et al., 2017). Based 

on this methodology, other algorithms such as SPEA2+, NSGA2 and NSGA3 

were also created (Hiroyasu et al., 2005; Deb and Jain, 2013; Jain and Deb, 2014; 

Niu et al., 2018). 

Particle swarm optimization (PSO) is another new type of nature-inspired 

evolutionary algorithm which can be considered. Compared with other 
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metaheuristic algorithms, the PSO method has the advantages of easy 

implementation, less computational effort and fast convergence speed (Ye et al., 

2017).  Therefore, it is widely used in controller intelligent calibration cases 

(Rogers and Birge, 2004; Watson et al., 2006; Fang et al., 2011; Reynoso-Meza 

et al., 2014; Zhang, 2015; Bourouba and Ladaci, 2016). To further improve the 

convergence speed of the algorithm, the accelerated particle swam optimization 

(APSO) was created. The fast convergence speed makes the APSO-based 

controller be of use as the real-time solver for the optimal control issues (Hu et 

al., 2018). The evidence shows that the APSO algorithm outperforms the PSO 

algorithm on multiple objective optimization issues (Rahman et al., 2016). 

However, these APSO-based algorithms may occasionally trap the particles in 

the local optimal position instead of a global optimal position. Thus, recently an 

APSO algorithm with chaotic mapping strategies (CAPSO) has emerged to 

enhance the result’s repeatability and get rid of the ‘local optimal’ trap (Liu et al., 

2005; Tan, 2012; Yang et al., 2014; Shen et al., 2016). The chaotic map could 

create some occasional variety in the particles, which is similar to the mutation 

process in a GA algorithm and randomly accepts several worse results; but this 

‘chaos’ could help the particles to escape from the trap of local optima (Q. Zhou 

et al., 2017a). The comparison of the cost function values between CAPSO and 

APSO is shown in Figure 2-11, which illustrates the effectiveness of the chaos 

mapping strategy in CAPSO. In that publication, the performance of the CAPSO 
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algorithm and conventional APSO algorithm are reflected by the cost function 

values. A smaller cost function value indicates a more optimal result (the hybrid 

power-train could achieve better fuel economy with smaller powertrain size).  

(a)

(b) 

Figure 2-11  Comparison between APSO (a) and CAPSO (b) on Optimization Results (Q. Zhou 

et al., 2017a) 
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2.5 Control Strategies of Diesel Engines 

The new control strategies for diesel engines have been widely investigated by 

numerous researchers, to improve these engines’ transient performance. The 

author’s work focuses on a diesel engine’s air path and the appropriate control of 

the air path plays an important role in the transient performance. This literature 

review only discusses innovative control strategies applied on this topic; the 

publications are categorized into non-model-based control methods and model-

based control methods. 

2.5.1 Non-model-based Control Methods 

Fuzzy logic control is a non-model-based control method based on fuzzy set 

theory, fuzzy linguistic variables and fuzzy logic-based intelligent computer 

control ( Li, 2015). The fuzzy logic controller imitates mankind, making decisions 

under different circumstances. It has the advantages of a simple heuristic nature, 

tolerance to noise and it doesn’t require the mathematical deviation related to 

control theories (Wijetunge et al., 2000). The fuzzy logic control process is 

formulated through fuzzification, fuzzy inference and de-fuzzification (Montazeri-

Gh et al., 2010). The fuzzification transforms the input data into degrees of 

membership by the membership function. The fuzzy inference deduces the 

corresponding outputs. Then the resulting fuzzy set is reconverted into control 

signals that can be sent to the plant (Boiocchi et al., 2016). The design of the 
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membership function plays a major role in determining the performance of the 

fuzzy logic controller. With years of developments, fuzzy logic controllers have 

been successfully applied to the subject of engine control (Ines Abidi et al., 2013; 

Di et al., 2015). The fuzzy PID controller on a turbocharged gasoline engine is 

designed to modify the calibration values of a conventional PID controller online, 

based on the error signals (Li et al., 2015). Simulation results show that the fuzzy 

PID controller could provide better reference tracking performance on the 

manifold pressure than a pure PID controller. The structure of a typical fuzzy PID 

controller for VGT-EGR control is shown in Figure 2-12. The controller’s structure 

is quite simple and the computational requirement is similar to that for the 

conventional PID controllers. 

 
Figure 2-12  Typical Structure of a Fuzzy PID Controller for Engine Control (Arnold et al., 

2009) 
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The development of a fuzzy logic controller depends on the comprehensive 

understanding of the actuators’ behaviour so that the control strategy is pre-

determined. This character limits the application on a complex MIMO and 

coupling system such as the dual-loop EGR. Besides, much calibration work is 

still needed to obtain optimal control results. 

In control theory, robust control is an approach to controller design that could 

handle system uncertainty. A robust control strategy is static; the controller is 

designed to work assuming that certain variables will be unknown but bounded 

(Mercorelli et al., 2011). It should be noticed that the robust control or other classic 

control methods for internal combustion engines have been investigated 

extensively (Samokhin and Zenger, 2014). Therefore, the recent robust 

controllers are now integrated with other control theories.  

The sequential robust control is another common type of non-model-based 

control method that is applied to the air path of a diesel engine. It considers the 

system’s robustness, with both the influence of uncertainties and coupling to a 

MIMO control system. The advantages of the proposed controller are the easy 

tuning and simple implementation (Deng et al., 2012). Some robust controllers 

are associated with the control-Lyapunov function (CLF). A CLF-based robust 

controller for a turbocharged diesel engine is developed by considering the 

Jankovich model, which provides additional degrees of freedom and guarantees 
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to achieve improved controller performance on the EGR-VGT system (Jankovic 

et al., 1998; Wahlstr, 2008; Kuzmych et al., 2013). Another innovative robust 

controller is proposed as fuzzy robust tracking control. It also considers the pole 

placement in linear matrix inequality (LMI) regions and speed variation in the 

EGR-VGT system. The simulation results (Mercorelli et al., 2011) successfully 

certificate the effectiveness of the control strategy (I. Abidi et al., 2013). The slide 

mode control is also combined with the robust control theory for the engine’s 

variable valve control. The control problems such as non-linearities, hysteresis, 

saturations, and creep were considered. These difficulties were all successfully 

overcome from the engine tests (Barrero et al., 2011). In terms of the dual-loop 

EGR system, robust control has also been adopted (Haber, 2010). The robust 

multivariable feedback controller evaluates the system’s uncertainty and robust 

stability conditions. Coupled-simulation results indicate the controller’s ability to 

reject the disturbances caused by the changes of the engine’s working conditions 

and the optimal performance at the boundaries of the complex air path range. 

However, the robust control still suffers from drawbacks: such as the requirement 

of frequency analysis of the system; the large amount of mathematical processing 

to develop the controller; and complex offline tuning. Besides that, the controllers 

built based on this method have a lack of feed-forward control ability. 
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2.5.2 Model Predictive Control Methods 

In recent years, there has been a trend to adopt model-based control methods 

instead of non-model-based control methods (Ashok et al., 2016). Among these 

methods, model predictive control (MPC) has been widely adopted because of 

its capability in dealing with multiple objective control problems (Zheng et al., 

2011)(Barrero et al., 2011; Zheng et al., 2011). With the continuously increased 

complexity of diesel engines, MPC has also been used on this multi-input multi-

output (MIMO) platform. The basic idea of MPC is to formulate the control issue 

into a multiple objective optimization issue and the MPC controller solves the 

optimization issue at each time interval (Gelso and Dahl, 2016).  

The key points of the MPC controller are building internal prediction models and 

solving the multiple objective optimization issue. Linear MPC controllers have the 

advantages of simple structure and systematic design approach, but they could 

not handle the non-linear system directly. The system linearization must be 

proceeded before implementation on the diesel engine’s air path. Internal 

prediction models are then acquired from the linearization process. To cope with 

the wide working range of diesel engines, several state-space identified models 

are trained (Borhan et al., 2015). Each sub identified model would be allocated 

to an MPC controller. In this way, the single MPC is converted into multiple MPC. 

The switch between different sub MPC controllers is determined by the engine 
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working condition (Stewart and Borrelli, 2008). To solve the optimization issue at 

each time interval, a quadratic programming (QP) method is usually selected as 

the solver to calculate the optimal sequences of control variables (Bemporad et 

al., 2014). Experiment results show that the MPC controller achieves a better 

trajectory tracking performance, which contributes to a better fuel economy (Lu 

et al., 2016). However, the multiple MPC controller will show a disadvantage 

when allocating sub-MPC controllers for systems with sudden changes in the 

operating conditions and non-linearities (Lu et al., 2016).   

Recently, a new type of MPC was proposed to reduce the computational costs 

and adapt to fast-speed systems; it is called explicit MPC (EMPC) (A. Bemporad 

et al., 2002). In EMPC control, the optimal control laws of the QP problem are 

pre-computed offline and the piecewise affine results are stored in look-up tables 

(Dezong Zhao et al., 2013). The main steps to build an EMPC controller are 

similar to the conventional linear MPC controller; the differences lie in the 

controller implementation. Figure 2-13 shows the design procedure of an EMPC 

controller for a diesel engine’s air path. This method has also been applied to the 

air-fuel ratio control, two-stage turbocharger control and fuel path control on 

several types of engines (Hadef et al., 2013; Deng et al., 2014; Honek et al., 2015; 

Emekli and Güvenç, 2016). In summary, the EMPC controller can be easily 

adapted to the constrained multi-objective control issues with real-time capability. 

This control method provides enormous promise for real-time control in the 
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applications of internal combustion engines. But the main drawback is the large 

storage space of the offline look-up tables. 

 

Figure 2-13  Implementation of EMPC Control on a Diesel Engine (Zhao et al., 2014) 

Different from the linear MPC controllers, the idea of non-linear MPC was 

proposed (Garcia-Nieto et al., 2008). The non-linear MPC controllers have also 

shown a good reference trajectory tracking performance; the biggest challenge 

is the computational requirement which makes it more complex for engine control 

applications (Tan, 2015). The key point of non-linear MPC controllers is that they 

still solve the constrained multiple objective optimization issue. However, the 

main differences are that the control implementation is based on direct optimal 

control using an online sequential quadratic programming (SQP) type algorithm 

and the QP problem has to be condensed at each sampling time (P. et al., 2009; 
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Albin et al., 2015) The non-linear MPC controller has been successfully applied 

to the area of diesel engine control (Gorinevsky and Cook, 2003; Garciaa-Nieto 

et al., 2008). Improved transient behaviours are observed via simulation. Figure 

2-14 shows the basic structure of a non-linear MPC controller for a diesel engine 

with single loop EGR. 

 
Figure 2-14  Structure of a non-linear MPC Controller for a Diesel Engine (Herceg et al., 

2006) 

One of the innovations with the non-linear MPC controller is providing alternative 

solutions to solve the non-linear programming (NLP) issue. The particle swarm 

optimization (PSO) algorithm is utilized to solve the NLP issue at every time 

interval for the purpose of idle speed control (Xu et al., 2013). Other methods 

such as the genetic algorithm (Walker et al., 2016), the bat-inspired algorithm 

(Elsisi et al., 2016) and the continuation and generalized minimum residual 

method (C/GMRES) (Kang et al., 2014) have also been considered as the solver 

for non-linear MPC controllers. The methods mentioned above could calculate 
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the optimal sequence of control variables within 50 microseconds successfully, 

which is fast enough for engine control (Huang et al., 2015). Even though the idea 

of the explicit non-linear MPC controller is used for a turbocharged gasoline 

engine, the authors point out the explicit non-linear MPC controller has a lack of 

ability to adapt model changes and does not scale well with even the addition of 

integral action (Hadef et al., 2013).     

Another innovative idea with the non-linear MPC controller is to combine the 

techniques from an artificial neural network (ANN) with the workflow of model 

predictive control. Based on the introduction in the section of engine modelling, 

the neural network model can learn the complex and multi-dimensional 

relationship between selected variables. It could be used as the internal 

prediction model (Kittisupakorn et al., 2009). Thus, neural network model 

predictive control was proposed recently. The controllers using this method have 

been successfully applied to the air-fuel ratio control of an SI engine (Wang et al., 

2006;Sardarmehni et al., 2013)  and the combustion control of HCCI engines 

(Janakiraman et al., 2016). The non-linear MPC controllers were also applied to 

the air path control of internal combustion engines in recent years, due to the 

development of the ECU’s computational capability (El Hadef et al., 2013;Albin 

et al., 2015;Li et al., 2016;Albin et al., 2017). 
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2.6 Summary 

This chapter reviews the publications concerning the diesel engine’s air path, the 

characteristics of diesel engines’ transient operations, control-oriented modelling, 

intelligent engine optimization and controller design for diesel engines’ air paths. 

The main findings could be summarized as below: 

1. As the dual-loop EGR system is installed, the air path contains more 

actuators. The coupling effects and system’s non-linearity become more 

severe. This brings more parameters which need to be calibrated and the 

control strategy should also be able to achieve accurate control of the 

HPEGR loop and LPEGR loop. 

2. Engine transient operations play a major role in the engine-out emissions. 

In the diesel engine’s air path, the coupling effect and system delay of the 

EGR-VGT system are the main reasons. The future engine test cycle 

involves real-world driving conditions; the engine will be operated in a 

wider working range and with more transient scenarios. The conventional 

controllers based on PI-control strategy and look-up tables will have more 

and more limitations.  

3. Several control-oriented engine modelling approaches are introduced in 

this section. Each method has its advantages and limitations. To develop 



 

56 

 

a complete model for a modern diesel engine, a combined modelling 

approach should be adopted due to the complexity and various features 

of the sub-systems.  

4. To further improve the engine’s performance, an optimization process is 

necessary, especially for transient conditions. Compared with the 

conventional calibration methods, the evolutionary algorithm is a better 

solution for the constrained multiple optimization issue. But the 

optimization results that may trap in a local best result instead of the global 

best result. Besides, the structure of the algorithm could still be simplified. 

Among these evolutionary algorithms, the CAPSO algorithm is selected as 

the candidate for the automatic calibration of the diesel engine’s air path 

during transient conditions.      

5. Advanced control strategies for the air path of modern diesel engines are 

reviewed to obtain optimal transient engine performance. However, there 

is still a demand for model-based controller that can solve constrained 

multiple objective control issues and adapt to the real-world driving 

conditions. To satisfy this demand, the MPC-based controllers could be 

the solution.   

Therefore, after reviewing the above-mentioned publications, it can be concluded 

that an intelligent calibration method which can solve the constrained multiple 
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objective optimization issues and locate the global best result, and a controller 

which can overcome the system’s non-linearity, coupling effects and delay within 

the time interval of engine ECU, are needed for the air path of the diesel engines.  

 

 

 

 

 

 

 

 

 

 

 

 



 

58 

 

CHAPTER 3  EXPERIMENTAL SET-UP AND 

METHODOLOGY 

This chapter introduces the test facilities involved in the thesis and the 

methodology of the research activities. The engine specifications, engine test 

bench, engine performance measurement devices, hardware-in-the-loop (HIL) 

test platform and the development of a simulation platform are all presented. The 

methodology introduces the investigation approach of the research objectives 

and related engine test plans 

3.1 Experimental Setup 

3.1.1 Engine Specification 

 

Figure 3-1  Jaguar Turbocharged Diesel Engine 
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The experiments are conducted on a Jaguar diesel engine which is shown in 

Figure 3-1 above. It is a modern EURO 6 light-duty diesel engine with a variable 

geometry turbocharger, a common rail direct injection system and a dual 

camshaft. This engine also contains a dual-loop EGR system with water cooling 

system to provide low-temperature recirculated exhaust gas. Furthermore, the 

multiple injection strategy is included in the engine calibration; this is beneficial to 

achieve an optimal engine combustion process and high efficiency of the 

aftertreatment device. Detailed engine technical information is shown in Table 3-

1.  
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Table 3-1  Jaguar Engine Specifications 

Engine Type AJ20D4 Mid Spec  

Bore  83 mm 

Stroke  92 mm 

Displacement Volume  1993 cc 

Maximum Torque 430 Nm (1750-2500 rpm) 

Maximum Power 132 kW (4000 rpm) 

Maximum In-cylinder Pressure 180 bar 

Compression Ratio 15.5:1 

EGR Type Cooled EGR 

Air-path Actuator Electrical controlled valves with 

feedback 

Fuel Injection System Bosch Common Rail Direct 

Injection System 

Maximum Injection Pressure  1800 bar 

No. of Injector Holes 6-hole injector 

Supplier of VGT Mitsubishi  

In this thesis, the research work mainly focuses on the diesel engine’s air path. 

The architecture of it is shown in Figure 3-2.  
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Figure 3-2  Architecture of The Jaguar Diesel Engine’s Air Path 

The engine’s air path consists of a HPEGR loop, a LPEGR loop, a VGT and a 

charge air cooler (CAC). In this case, the EGR mass flow is controlled by the 

EGR valve positions. The HPEGR loop is between the intake manifold and the 

exhaust manifold. As the exhaust gas flows through the engine DOC and DPF, 

part of it will go into the LPEGR loop. The recirculated gas would then mix with 

the fresh air in the air inlet tube before reaching the engine compressor. The two 

EGR loops contain coolers to further reduce the EGR gas temperature. The 

engine boost pressure is adjusted by the VGT rack position. In this study, both 

the intake throttle and the exhaust throttle are constantly fully opened (Zhang et 

al., 2017). 
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3.1.2 Engine Test Bench 

The test bench, known as the cold cell, was originally designed to investigate the 

behaviours of an engine’s cold start. One unique feature of this facility is a 

complex conditioning system which can control the temperature of the engine 

coolant, lubrication oil, engine intake air and supplied fuel. The accurate 

temperature control contributes to the data accuracy and repeatability. The author 

took over the facility’s maintenance work and participated in the engine control 

project in 2015; which involved test bench reconfiguration for the new engine, 

open-ECU build-up, engine calibration and system debugging. 

The operating and control system of the engine test bench are important for 

studies of engine transient conditions in this thesis. The test bench could provide 

full transient engine duty cycles such as the NEDC, WLTC and customized test 

cycles designed by researchers. The complete schematic view of the cold cell 

test bench is illustrated in Figure 3-3. 
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Figure 3-3  Test Bench Subsystem Arrangement 

The whole engine test bench (the engine, dynamometer, conditioning system and 

measurement devices) is controlled by the AVL PUMA system. It takes the role of 

test bed control, monitoring and data acquisition. The author’s main work in the 

experimental set-up is to reconfigure the test bench to cope with the new engine 

and open-ECU. 

To monitor the test bench signals, the PUMA system contains a fast-front end 

module (FEM) control unit. So, the PUMA system could monitor the information 

in real-time during engine tests. 
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Figure 3-4 shows the data transfer between the test bench and the PUMA system. 

The PUMA computer calculates the demand values of speed and torque, then 

sends them to the output modules. The PC board PCI makes these signals 

communicate between the PUMA computer and the FEM control unit. The digital 

signals sent from the PUMA computer are converted into analogue signals, which 

could be used to control actuators. The conditioning system is also controlled 

through this method and calibrated via tuning the PID parameters (Liu, 2014).    

The engine calibration software ETAS INCA is installed on another desktop which 

connects to the engine’s ECU via a USB-CAN bus interface ES581.4. The 

interface is also a mature product developed by ETAS. The INCA software can 

obtain and store the required ECU signals; meanwhile, some engine calibration 

data such as the EGR rate, EGR proportion and boost pressure could be modified 

or controlled by the researcher. To synchronize the data in INCA and PUMA, an 

ASAP3 link is established through Ethernet. In this study, the PUMA system is 

the single source to record the experimental data from different devices.   

 

Figure 3-4  Data transfer between the PUMA operation system and the test bench (Tan, 

2015) 
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In terms of the conditioning system, it consists of several subsystems for the 

engine intake air, fuel, engine coolant and engine oil. In this study, the low 

temperature conditions are not necessary, but the conditioning system is still 

needed for the engine tests.  

The dynamometer used in the cold cell is shown in Figure 3-5. It is an AC machine 

with a squirrel cage rotor mounted with a torque flange (Tan, 2015), as shown in 

Figure 3-5.  

 

 

Figure 3-5  AVL Transient Dynamometer in the Cold Cell 

The demand torque and the speed of the dynamometer are controlled by a control 

unit which is connected to the AVL PUMA operation system. The dynamometer 

has two control modes: speed mode and torque mode. Under speed mode, the 
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engine speed is determined and maintained directly by the dynamometer, the 

engine adjusts the mass of fuel injection based on the paddle position to achieve 

the desired torque (Zhang, 2013). Under the torque mode, the torque is regulated 

by the dynamometer while the engine adapts to the required speed. In this thesis, 

the speed mode is selected due to its rapid dynamic performance and little 

fluctuation. The detailed technical information for the dynamometer is shown in 

Figure 3-6 (“AVL DynoSpirit - Dynamometers for Engine Testing - avl.com,” n.d.). 

 

Figure 3-6  Performance Curve of the Dynamometer in the Cold Cell 

 

3.1.3 Engine Performance Measurement 

To evaluate the engine performance, several measurement devices are involved in this 

study. Regular maintenance and calibration are conducted to ensure data accuracy. 



 

67 

 

 

Figure 3-7  Pi Innovo M670 Open ECU 

The engine parameters such as the MAP, MAF and EGR rate are measured by 

the engine’s ECU. Instead of using standard commercial ECUs such as products 

from Bosch, a Pi Innovo M670 open-ECU is selected in this case (shown in Figure 

3-7). It is a 154-pin high performance engine controller designed to support 

model-based control for gasoline PFI, GDI, diesel solenoid and alternative fuel 

application. Engine components including variable valve action, VGT and dual-

loop EGR are acceptable for this control platform. Due to the variation between 

the open-ECU harness and the Bosch ECU harness, a pin adapter is customized 

by Jaguar Land Rover. This special design is only for academic research activities. 

The engine control strategy and calibration are duplicated from the commercial 

ECUs on the same engine and are approved by Jaguar Land Rover for engine 

tests. The hardware specifications are listed in the table below. Detailed 

information is shown in reference (“M670 - Pi Innovo Product Overview,” n.d.). 
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Table 3-2 Hardware Specifications of M670 Open-ECU 

Processor MPC5674F Actuator Supplies 2 x Vbatt@ 10A 

Clock Rate 264 MHz Sensor Supplies 4 x 5 V@ 250 mA 

Code Space 3 MB Communications 4 x CAN 2.0 

RAM Space 128 KB Single-ended 32 x 12 bit 

Calibration Space 128 KB Digital 5 

Pin Number 54 (input), 49 

(output) 

Digital, Frequency, 

PWM 

3 

Injection Allowance 8 x software 

programmable 

wave form peak 

and hold 

Supply Voltage 12 or 24 v 

In this case, the in-cylinder pressure (model 6056A) is measured by a 

piezoelectric pressure sensor provided Kistler, which is fitted to all four cylinders. 

The calibration of the in-cylinder pressure transducer is validated by the engine 

supplier. The pressure transducers generate electric charges at 160 kHz via 

piezoelectric crystals. This type of material has high sensitivity of pressure 

variation in the operating temperature range. The measurable cylinder pressure 

falls between 0 and 300 bars. It is adequate for the engine in this thesis. The AVL 

shaft encoder is installed to provide accurate crank angle and top dead centre 

(TDC) measurement. The TDC determination and related calibration work are 

finished by the engine supplier when the engine is installed to the test bench in 

Birmingham. The resolution of the engine TDC should fall in the range of ± 0.2 

degrees.  

The Miracle2 combustion analyzer designed by Alma Automotive Ltd is used in 

this case. The pressure transducers, crank angle signal and injection signals can 
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link to the analyzers via BNC cables. The measured and calculated combustion 

parameters can also be sent into the engine’s ECU through a CAN interface in 

real time. The combustion parameters (such as IMEP, BMEP) are monitored and 

recorded instantaneously with other ECU data in the INCA software. Meanwhile, 

the Miracle2 provides an independent working interface through Ethernet 

communication which contains the analyzer configuration and data acquisition. 

In this case, only cycle-based combustion parameters such as IMEP, peak in-

cylinder pressure and crank angle of fuel mass fraction burnt (10%, 50%, and 

90%) are recorded in INCA due to the limitation of data frequency. The in-cylinder 

curves are recorded separately when needed. 

 

Figure 3-8  Alma Automotive Miracle2 Combustion Analyser(“Real-Time Combustion 

Analysis System,” no date) 

To measure the fuel consumption of the engine, the AVL 735S fuel meter is 

installed right above the fuel conditioning system (AVL 753C). The fuel meter is 

integrated with the fuel conditioning system for better temperature stability. It is a 



 

70 

 

Coriolis-flow type meter which guarantees an instantaneous fuel flow 

measurement. The gas bubbles in the fuel could be separated to further improve 

result accuracy. Before each test, the PUMA system checks the fuel meter status 

and calibrates it automatically. The user receives the diagnostic information 

during the tests and controls the fuel meter remotely. The detailed technical 

specification of the fuel measurement device is illustrated in the table below (“AVL 

Fuel Mass Flow Meter and Fuel Temperature Control - Consumption 

Measurement - avl.com,” n.d.). 

Table 3-3 Technical Specification of AVL 735S Fuel Meter 

Ambient Temperature Range: 
5-50 ℃ 

Fuels: Gasoline, diesel, winter diesel, up to 6% 

biodiesel and maximum 20% blending of 

alcohol 

Fuel Circulation Capacity: 240 L/h (standard), 450 L/h (maximum) 

Fuel Pressure Range: 0-6 bar (fuel feed in), 0-0.5 bar (turn pressure) 

Temperature Stability: < 0.02 °C 

Heating Power: 1.6 kW 

Cooling Power: 1.6 kW at 10 °C condition and 0.5 bar cooling 

water pressure difference 

Signal Transmission: RS232 

Energy Consumption: 0.4 kW 

3.1.4 HIL Validation 

The HIL (hardware-in-the-loop) validation process is a rapid, low-cost, highly 

flexible and highly repeatable prototyping test method for controllers (Zhang et 

al., 2017). It is necessary to validate the controller’s performance in a real-time 
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environment before the controller is applied to real engines. As the simulation 

platform is accurate enough to represent a real application, the controller could 

be further calibrated in a HIL environment directly. On the HIL test platform, the 

simulated controller is replaced by a real processor, which co-operates with the 

rest of the model on a real-time PC.  

 

 

Figure 3-9  Structure of the HIL Test Platform and Photo of the HIL Test Bench 
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In this thesis, the test equipment is provided by the ETAS Group. The 

configuration of the HIL test platform is shown in the two figures above. The 

controllers developed by the author will be compiled from the host-PC 1 in the 

ETAS ES910. The compiling is finished in the MATLAB environment. It formulates 

the controller into C codes. The C code is then transmitted into ES910 by the 

ETAS INTECRIO. This software also establishes the I/O ports of the controller 

and the model. The real-time model is operated in the ETAS DESK-LABCAR, 

which is a high-performance Linux-based simulation target. It contains 40 

channels multiple I/O, including analogue and digital signals. The communication 

between the controller and the real-time model is established via the CAN bus. 

The real-time model is compiled from host-PC 2 into the DESK-LABCAR via the 

ETAS Experiment Environment (EE), which is based on Ethernet protocol. The 

real-time model is firstly rebuilt into C code, then it is downloaded into the 

LABCAR. The outputs from the real-time model are monitored in host-PC 2. The 

detailed technical data of ETAS 910 are shown in the table below: 
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Table 3-4 Specification of the HIL Platform (“Technical Data ES910,” 2010) 

Make and Model ETAS ES910 

Temperature Range -40 °C to +70 °C (operation) 

Main Processor NXP PowerQUICC™ III MPC8548 with 800 MHz clock 

double precision floating point unit 

RAM 512 MByte DDR2-RAM (400 MHz clock) 

Flash 64 MByte Flash 

NVRAM 128 kByte NVRAM 

CAN Interface 2 channels, high speed (up to 1 MBaud) or low speed 

Ethernet Connection 10/100/1000 Base-T 

3.1.5 Data Accuracy and Measurement Uncertainty  

The data accuracy is vital for the results obtained from the engine test bench and 

the measurement uncertainty should be avoided to ensure the data quality.  

The measurement device in this study includes the transient dynamometer, fuel 

meter and in-cylinder pressure sensors. The accuracy of these devices is shown 

in the following paragraphs. 

The table below shows the specification of the dynamometer of the test bench. 

The torque deviation is less than 0.1%. The dynamometer is maintained by the 

supplier annually. 
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Table 3-5 Specification of the Dynamometer in the Cold Cell (“AVL DynoSpirit - 

Dynamometers for Engine Testing - avl.com,” n.d.) 

Model Dynodur 270 Characteristic 

Tolerance  
＜±0.10% 

Nominal Torque 1500 Nm Linearity Deviation 

 
＜±0.05% 

Nominal Power 700 Kw Temperature Effect 

per 10 K on the 

Output Signal 

＜±0.05% 

Maximum Speed 10000 rpm Temperature Effect 

per 10 K on the Zero 

Signal 

＜±0.05% 

Mass Inertia 0.31 kgm2 Relative Standard 

Deviation of the 

Reproducibility 

＜±0.05% 

For the AVL fuel meter, the uncertainty of the fuel flow rate is less than 0.12% and 

the temperature stability is better than 0.02 °C. The response time of the fuel 

consumption reading is less than 125 ms. The sample rate of the logged ECU 

signals is set to 100 ms. So the response of the fuel meter is sufficient to catch 

up with the engine ECU. Besides, the automatic diagnose and calibration of the 

fuel meter are conducted by the test bench operation system before the engine 

tests (“AVL Fuel Mass Flow Meter and Fuel Temperature Control - Consumption 

Measurement - avl.com,” n.d.). 
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Figure 3-10 The Technical Data of the In-cylinder Pressure Sensor (KISTLER, 2018)     

Figure 3-10 shows the technical data of the in-cylinder pressure sensor provided 

by KISTLER. The model is 6056A. The measuring range fits the maximum in-

cylinder pressure which is 180 bars. It has Low thermal shock error, long life and 

good temperature stability of the sensitivity. The resolution of the sensor is 

sufficient for the research in this case. Besides, this pressure sensor is designed 

specifically to integrate with the engine glow-plug system. which greatly simplifies 

the installation process. It is also suggested by the engine supplier.     

To minimize the measurement uncertainty and increase the data repeatability, the 
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temperature control of the engine test bench is vital. It involves the control of the 

intake air, fuel supply and the engine coolant system. 

The temperature of the engine intake air is controlled by an AVL CONSYSAIR 

1600 unit. In addition, the test bench contains a dehumidifier to regulate the 

relative humidity of the intake air based on the test requirements (Tian, 2015). 

The tests in this thesis are conducted under an ambient condition, the intake air 

temperature is maintained at 20 ℃. The dehumidifier is activated during these 

tests. The air humidity is maintained at a constant value for all the tests. The 

temperature control is necessary for repeatability of the engine test data. The 

intake temperature would increase along with the testing time if the air 

conditioning system is turned off, which may lead to mutative engine performance.  

The fuel supply to the test engine is monitored and controlled by the AVL 753C 

control unit. The fuel barrel is kept under ambient temperature and pressure. 

Before feeding into the fuel conditioning system, the fuel is filtered by a coarse 

filter and a fine filter. A fuel regulator is set to 2 bars to acquire a stable fuel flow. 

Then, the mass flow rate of the fuel is measured to ensure accurate fuel 

consumption readings to the PUMA system. Finally, the fuel enters the 

conditioning system to reach the desired temperature. The conditioning system 

could cool down or heat up the fuel within the range of -20 to 80℃. At ambient 

test mode, the fluctuation of the fuel temperature is ±1 K, which ensures accuracy 
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and repeatability of the test results.  

The engine coolant system is vital in engine tests. The properly controlled coolant 

makes sure the engine is fully warmed up and could avoid the engine becoming 

over-heated. The precise coolant temperature also contributes to data 

repeatability. The control strategy inside the control unit uses a PID controller and 

the coolant mass flow is verified by a flow control valve. In the ambient test mode, 

the setpoint of the engine’s coolant temperature is set to 90 ℃. To avoid the 

engine breaking down at an excessively high temperature, the safety alarm would 

be triggered if the coolant temperature is over 120 ℃ or the cylinder block 

temperature is over 110 ℃. The engine will be turned into an idling condition 

automatically. This procedure keeps the circulation of the engine coolant and 

forces the engine components to cool down, which is effective in protecting the 

engine. At the beginning, the engine coolant is not circulated in the test bench, 

only the engine oil absorbs the engine’s extra heat and speeds up the engine 

warm-up. When the engine oil temperature is over 75 ℃, the coolant conditioning 

system will become involved to cool down the engine with the engine oil 

synergistically. 
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3.2 Methodology 

3.2.1 Investigation Approach 

This section introduces the methodology of this thesis in more detail. The 

investigation approach for the optimization and control of a dual-loop EGR diesel 

engine is presented.  

 

Figure 3-11  Workflow of the Research 

As shown in the flowchart above, the research activities can be categorized into 

five stages. The details of the proposed engine optimization algorithm and 

advanced engine controllers will be introduced in the following chapters: 

• Literature review on the research topic - the compressed ignition engine is a 

typical engineering product that has existed for a long time. The literature review 
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on the research topic points out the future trends and the demand for engine 

optimization and control. It is helpful to inspire innovative ideas for academic 

research. More importantly, the literature review could provide possible solutions 

to solve these engineering or scientific problems. 

• Development of simulation platform and concept design - for engine control 

studies, a control-oriented real-time engine model should be developed as a 

simulation platform. It is used for the first-stage test of the controller or 

optimization algorithm. This model should capture the characteristics of the air 

path during transient operations. It should also reflect the engine’s torque 

trajectory with acceptable accuracy to evaluate the engine’s fuel economy. The 

concept design determines the basic structure of the algorithm, the control 

objects, optimization targets and the control variables. 

• Development of prototype controller/algorithm - this stage mainly focuses on 

building the prototype controller/optimization algorithm. It includes whole 

algorithm programming, system debugging, and calibration. After this stage, the 

research continues with testing and validation.  

• Offline simulation - the first step in testing and validation. Both the intelligent 

transient calibration algorithm and the advanced engine controller should be 

implemented on the simulation platform to show their potential and evaluate their 

performance. It is necessary to have several case studies to prove the 
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optimization algorithm, or that the controller could work under various conditions. 

If the results could not meet the demands, the researcher should go back to the 

previous stage and conduct modifications.  

• Online validation - the last step of the research. The results from the proposed 

optimization algorithm should be validated on the engine test bench. To reduce 

the cost and complexity, the proposed engine controller could be tested by the 

HIL test platform. The main reason is to affirm the controller’s real-time capability 

and robustness. Modification and improvements to the controller or algorithm are 

still needed if the online validation fails. 

3.2.2 Offline Simulation 

A control-oriented real-time model for the diesel engine's air path is developed. 

The engine modelling software ‘GT-Power’ is used in this study. It is used as the 

engine model for the research activities in the following chapters. The input and 

outputs ports are also added to the model so that it could work with the controller 

or optimization algorithm. The cooperated-simulation is operated in the MATLAB 

environment (MATLAB 2016a and 2016b). The desktop is equipped with a 

Windows operating system, Intel I5 2.8 GHz processor and 8 GB ram. The figure 

below shows the overview of the engine air-path model developed in GT-Power. 

The development of the model receives the support (providing engine test data 

and model development guidance) from the engine supplier, Jaguar Land Rover. 
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A report from JLR is also provided for the modelling of this engine (JLR and 

València, 2015).  

 

Figure 3-12 Overview of the Engine Air-path’s Model in GT-Power 

The modelling of the diesel engine’s air path combines the method of the mean-

value model, system identification and look-up tables. This control-oriented 

model can be operated in real time and captures the dynamic characters of the 

diesel air path’s behaviours under both steady state and transient conditions 

(Zhang et al., 2017). As GT-power is a mature engine modelling software, the 

equations below only show the governing equations for the air-path modelling. 
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For the research in this thesis, the real-time diesel engine model contains five 

required inputs (u) and five calculated outputs (y) (Zhang et al., 2017): 

 𝑢 = [𝑁𝑒𝑛𝑔, 𝑄𝑓𝑢𝑒𝑙, 𝐴𝑉𝐺𝑇 , 𝐴𝐻𝑃, 𝐴𝐿𝑃]  

 𝑦 = [𝑀𝐴𝑃,𝑀𝐴𝐹,𝑀𝐻𝑃𝐸𝐺𝑅 , 𝑀𝐿𝑃𝐸𝐺𝑅 , 𝑇𝑜𝑟𝑞𝑢𝑒]  

where 𝑁𝑒𝑛𝑔 is the engine speed (rpm);  𝑄𝑓𝑢𝑒𝑙 represents the mass of the fuel 

injection in each cylinder per hub (mg/stroke) ;  𝐴𝑣𝑔𝑡 , 𝐴ℎ𝑝  and 𝐴𝑙𝑝  are the 

actuator positions of the VGT, HPEGR valve and LPEGR valve in percentages; 

the MAP value shows the engine boost pressure in bar;   𝑀𝐴𝐹 is the engine’s 

mass air flow reading in g/s; and 𝑀𝐻𝑃𝐸𝐺𝑅  and M𝐿𝑃𝐸𝐺𝑅 are the EGR mass flow rate 

(g/s) in the HPEGR and LPEGR loop respectively. The total EGR rate (𝑅𝐸𝐺𝑅) is 

defined as the percentage of the total EGR mass flow in the accumulated gas 

pumped into the engine. In terms of the LPEGR fraction (𝑅𝐿𝑃), it is defined as the 

part of the LPEGR contribution in the combined EGR mass flow. The percentage 

is selected as the unit for this parameter. The equations for these two signals are 

listed below: (Zhang et al., 2017) 

𝑅𝐸𝐺𝑅 =
𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅

𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅 +𝑀𝐴𝐹
× 100%  
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𝑅𝐿𝑃 =
𝑀𝐿𝑃𝐸𝐺𝑅

𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅
× 100%  

The desired MAP value (𝑀𝐴𝑃_𝑟𝑒𝑓) and the feed-forward set point of the VGT rack 

position (𝑉𝐺𝑇_𝑠𝑝 ) are obtained from the engine calibration maps based on the 

current engine speed and the mass of the fuel injection. The desired values of 

the EGR mass flow (𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓, 𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓) are calculated based on the desired 

value of MAF (𝑀𝐴𝐹_𝑟𝑒𝑓), the total EGR rate set point (𝑅𝐸𝐺𝑅_𝑟𝑒𝑓) and the LPEGR 

portion set point ( 𝑅𝐿𝑃_𝑠𝑝 ). The equations to calculate the 𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓  and 

𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 are presented below: 

𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹_𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ (1 − 𝑅𝐿𝑃_𝑟𝑒𝑓)

(1 − 𝑅𝐸𝐺𝑅_𝑠𝑝)
 

 

𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹_𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ 𝑅𝐿𝑃_𝑟𝑒𝑓

(1 − 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓)
 

 

The modelling of the EGR mass flow is simplified as compressible flow moving 

through a valve with a variable cross-section area (Heywood, 1988). Furthermore, 

the temperature of the EGR gas after the EGR cooler is assumed as a constant 

value because of its minor effect on model accuracy (Guzzella and Onder, 2010). 

To reduce the complexity of the model, the upstream temperature and pressure 

of the HPEGR gas are assumed to be identical to those of the exhaust manifold. 



 

84 

 

The engine 𝑀𝐻𝑃𝐸𝐺𝑅 and 𝑀𝐿𝑃𝐸𝐺𝑅 are modelled by the equations below (Wahlstr 

and Eriksson, 2010): 

𝑀𝐻𝑃𝐸𝐺𝑅 = 𝐶𝐻𝑃 ∙ 𝐴𝐻𝑃𝐸𝐺𝑅 ∙
𝑃𝐻𝑃_𝑢𝑠

√𝑅 ∙ 𝑇𝐻𝑃𝑢𝑠
∙ 𝜓(

𝑃𝐻𝑃_𝑢𝑠
𝑃𝐻𝑃_𝑑𝑠

) 
 

𝑀𝐿𝑃𝐸𝐺𝑅 = 𝐶𝐿𝑃 ∙ 𝐴𝐿𝑃𝐸𝐺𝑅 ∙
𝑃𝐿𝑃_𝑢𝑠

√𝑅 ∙ 𝑇𝐿𝑃𝑢𝑠
∙ 𝜓(

𝑃𝐿𝑃_𝑑𝑠
𝑃𝐿𝑃_𝑢𝑠

)  

where 𝐶𝐻𝑃and 𝐶𝐿𝑃 are the discharge coefficient of the EGR valve, the diameters 

of HPEGR and LPEGR valve are the same, which are 24.3 mm. The EGR valve 

configuration is the same for both HPEGR and LPEGR. The discharge  

coefficient of the valve is shown below; 𝐴𝐻𝑃𝐸𝐺𝑅  and 𝐴𝐿𝑃𝐸𝐺𝑅  are the effective 

opening areas of the EGR valve which are the function of the EGR valve 

position 𝐴𝐻𝑃_𝑐𝑜𝑛 , 𝐴𝐿𝑃_𝑐𝑜𝑛 ; R is the ideal gas constant which is set to 8.314 J / 

mol·K in this case;  𝑃𝐻𝑃_𝑢𝑠  and 𝑃𝐻𝑃_𝑑𝑠  represent upstream and downstream of 

the HPEGR valve. In this case, 𝑃𝐻𝑃_𝑢𝑠 and 𝑃𝐻𝑃_𝑑𝑠 are assumed to be the same 

as the pressure of the exhaust and intake manifold; 𝑃𝐿𝑃_𝑢𝑠 and 𝑃𝐿𝑃_𝑑𝑠  are the 

upstream and downstream of the LPEGR valve;  𝑇𝐻𝑃_𝑢𝑠  and 𝑇𝐿𝑃𝑢𝑠  are the 

upstream temperature of the HPEGR and LPEGR. The flow function 𝜓 could be 

defined by the following equations; It is used for both the HPEGR and LPEGR 

loop (ReB et al., 2015). 



 

85 

 

𝜓(
𝑝𝐸𝐺𝑅_𝑑𝑠
𝑝𝐸𝐺𝑅_𝑢𝑠

)

=

{
 
 

 
 

√𝛾 ∙ (
2

𝛾
)
𝛾+1
𝛾−1

(
𝑃𝐸𝐺𝑅_𝑑𝑠
𝑃𝐸𝐺𝑅_𝑢𝑠

)
1
𝛾 ∙ √

2𝛾

𝛾 − 1
∙ [1 − (

𝑃𝐸𝐺𝑅_𝑑𝑠
𝑃𝐸𝐺𝑅_𝑢𝑠

)]
𝛾−1
𝛾

                    

 

𝑖𝑓 𝑃𝐸𝐺𝑅𝑑𝑠 < 𝑃𝑐𝑟 

    
𝑖𝑓 𝑃𝐸𝐺𝑅_𝑑𝑠 ≥ 𝑃𝑐𝑟 

𝑃𝑐𝑟 = (
2

𝛾 − 1
)
𝛾
𝛾−1 ∙ 𝑃𝐸𝐺𝑅_𝑢𝑠  

where 𝑝𝐸𝐺𝑅_𝑢𝑠and 𝑝𝐸𝐺𝑅_𝑑𝑠 represent the upstream and downstream pressure of 

the EGR gas; 𝛾 is the specific heat ratio which is set to 1.3 and 𝑃𝑐𝑟 is the critical 

pressure where the EGR flow achieves a sonic condition. The reverse flow of the 

EGR gas is neglected in this thesis. When the engine is operated under a low 

speed, high load and with the VGT fully opened, the 𝑝𝐸𝐺𝑅_𝑑𝑠 could possibly be 

larger than the 𝑝𝐸𝐺𝑅_𝑢𝑠 . This phenomenon only happens in a small operating 

range. Moreover, the reversed flow could also be avoided during engine 

operations by closing the EGR valves (Zhang et al., 2017). 
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Figure 3-13 Discharge Coefficient of the EGR Valve 

As for the engine MAP modelling, due to the strong coupling effect, the MAP 

model should consider both the engine’s VGT rack position and the effects 

caused by the DLEGR. The equations for the MAP model are listed in the 

following paragraphs (Wahlström and Eriksson, 2011).  

𝑑

𝑑𝑡
𝑝𝑖𝑚 =

𝑅 ∙ 𝑇𝑖𝑚
𝑉𝑖𝑚

(𝑊𝑐 +𝑀𝐻𝑃𝐸𝐺𝑅 −𝑊𝑒𝑖)  

𝑊𝑐 = 𝑀𝐿𝑃𝐸𝐺𝑅 +MAF  

[𝑊𝑐, 𝜂𝑐𝑜𝑚𝑝] = 𝑓(𝑁𝑡𝑢𝑟𝑏, 𝑇𝑐𝑜𝑚𝑝_𝑖𝑛, 𝑃𝑅𝑐𝑜𝑚𝑝)  

𝑊𝑒𝑖 =
𝑁𝑒𝑛𝑔 ∙ 𝑉𝑑𝑖𝑠 ∙ 𝜂𝑣𝑜𝑙

120𝑅𝑇𝑖𝑚
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𝜂𝑣𝑜𝑙 = 𝑓(𝑁𝑒𝑛𝑔, 𝑃𝑖𝑚, 𝑇𝑖𝑚)  

where 𝑝𝑖𝑚  is the intake manifold pressure; R is the ideal gas constant; 𝑇𝑖𝑚 

represents the intake manifold temperature; 𝑉𝑖𝑚  is the volume of the intake 

manifold, which is 3.338L; 𝑊𝑐 is the compressor mass flow rate; 𝑊𝑒𝑖 means the 

amount of gas pumped into the engine cylinders; 𝑁𝑡𝑢𝑟𝑏 is the shaft speed of the 

turbine shaft; 𝜂𝑐𝑜𝑚𝑝  is the efficiency of the compressor; 𝑇𝑐𝑜𝑚𝑝_𝑖𝑛  is the 

temperature of the gas sucked into the compressor; 𝜂𝑣𝑜𝑙  is the volumetric 

efficiency of the engine; 𝑉𝑑𝑖𝑠 represents the engine displacement volume, which 

is 1.996L ; and 𝑃𝑖𝑚 and 𝑃𝑒𝑚 are the pressure of the intake and exhaust manifold 

(Zhang et al., 2017). Even though the gas temperature after the engine’s CAC 

could be assumed to be a constant value, the involvement of the 𝑀𝐻𝑃𝐸𝐺𝑅 would 

significantly affect the 𝑇𝑖𝑚  value. In addition, the change of the 𝐴𝐻𝑃  and 𝐴𝐿𝑃 

would change the 𝜂𝑣𝑜𝑙 and 𝑊𝑒𝑖 results (Zhang et al., 2017). The engine MAF 

and LPEGR mass flow form the mass flow of the compressor. Under the same 

compressor mass flow, there would be a trade-off between them. As shown in 

Figure 3-2, the turbine shaft connects the engine compressor and the engine VGT. 

The kinetic energy received by the VGT results in different 𝑁𝑡𝑢𝑟𝑏 values, which 

determine various 𝑊𝑐  and 𝜂𝑐𝑜𝑚𝑝 .This process could be modelled by the 

following equations below (Kocher et al., 2011; Kyunghan et al., 2015;Zhang et 

al., 2017): 
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𝑑

𝑑𝑡
𝑝𝑒𝑚 =

𝑅 ∙ 𝑇𝑒𝑚
𝑉𝑒𝑚

(𝑊𝑒𝑖 + 𝑄𝑓𝑢𝑒𝑙 −𝑀𝐻𝑃𝐸𝐺𝑅 −𝑊𝑡𝑢𝑟𝑏)  

𝑇𝑒𝑚 = 𝑇𝑖𝑚 +
𝑄𝐿𝐻𝑉 ∙ 𝑓(𝑊𝑓𝑢𝑒𝑙 , 𝑁𝑒𝑛𝑔)

𝑐𝑝,𝑒𝑥ℎ ∙ 𝑊𝑒𝑖
 

 

[𝑊𝑡𝑢𝑟𝑏 , 𝜂𝑡𝑢𝑟𝑏] = 𝑓(𝑇𝑒𝑚, 𝑃𝑅𝑡𝑢𝑟𝑏 , 𝑁𝑡𝑢𝑟𝑏, 𝐴𝑣𝑔𝑡)  

𝑃𝑡 = 𝑊𝑡𝑟𝑢𝑏 ∙ 𝑐𝑝,𝑒𝑥ℎ ∙ 𝜂𝑡𝑢𝑟𝑏 ∙ 𝑇𝑒𝑚(1 −
𝑃𝑎𝑚𝑏
𝑃𝑒𝑚

)
𝛾𝑒𝑥ℎ−1
𝛾𝑒𝑥ℎ   

𝑃𝑐𝑜𝑚𝑝 =
𝑊𝑐 ∙ 𝑐𝑝,𝑎𝑚𝑏 ∙ 𝑇𝑐𝑜𝑚𝑝_𝑖𝑛

𝜂𝑐𝑜𝑚𝑝
[(
𝑃𝑐𝑎𝑐
𝑃𝑎𝑚𝑏

)

𝛾𝑎𝑚𝑏−1
𝛾𝑎𝑚𝑏

− 1] 
 

𝑑𝑁𝑡𝑢𝑟𝑏
𝑑𝑡

=
𝜂𝑚𝑃𝑡𝑢𝑟𝑏 − 𝑃𝑐𝑜𝑚𝑝

𝐼𝑡𝑢𝑟𝑏𝑁𝑡𝑢𝑟𝑏
  

where 𝑇𝑒𝑚 is the temperature of the exhaust manifold; 𝑉𝑒𝑚 equals the exhaust 

manifold volume, which is 1.5L; 𝑊𝑡𝑢𝑟𝑏 is the mass flow rate of the VGT;  𝑄𝐿𝐻𝑉 

means the low heating value of the diesel; 𝑃𝑡 and 𝑃𝑐𝑜𝑚𝑝 are the power of the 

VGT and the compressor; 𝜂𝑡𝑢𝑟𝑏  is the efficiency of the VGT; 𝑃𝑅𝑡𝑢𝑟𝑏  is the 

pressure ratio of the VGT; 𝑐𝑝,𝑒𝑥ℎ  and 𝑐𝑝,𝑎𝑚𝑏  are the specific heat ratio of the 

exhaust gas and ambient gas; 𝑃𝑎𝑚𝑏 , 𝑃𝑐𝑎𝑐  represent the gas pressure in the 

ambient atmosphere and compressed air cooler; 𝛾𝑎𝑚𝑏 and 𝛾𝑒𝑥ℎ are the specific 

heat ratio for ambient air and exhaust gas; 𝜂𝑚 is the mechanical efficiency of the 
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turbine shaft, which is a constant value; and 𝐼𝑡𝑢𝑟𝑏 is the momentum inertia of the 

turbocharger (including the compressor and the turbine), which is set to 

2.5 × 10−5 kg-m2 (Zhang et al., 2017). 𝑓(𝑊𝑓𝑢𝑒𝑙, 𝑁𝑒𝑛𝑔) is the correlation factor is 

determined from an empirical model which uses injected fuel mass and engine 

speed as model inputs (Kyunghan et al., 2015). 

The diesel engine’s VGT and compressor are complex devices. To simplify the 

model and reduce calibration work, the look-up table method is selected in GT-

power, the function of [𝑊𝑡𝑢𝑟𝑏, 𝜂𝑡𝑢𝑟𝑏]  and [𝑊𝑐, 𝜂𝑐𝑜𝑚𝑝] . The performance of the 

VGT and compressor (rotation speed, efficiency) are modelled into several look-

up tables. The VGT maps can be summarized as a series of performance data 

points, each map describes the operating condition by speed, pressure ratio, 

mass flow rate and thermodynamic efficiency. The VGT data used in this work is 

provided by the engine supplier. The figure below shows the maps of the engine 

compressor from the compressor supplier Mitsubishi. 
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Figure 3-14 Compressor Map from the Supplier 

The figure below shows the VGT mapping data in GT-Power. Due to the huge 

amount of the data, the figure only shows one set of the VGT mapping data as 

an example. 
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Figure 3-15 VGT Mapping Data in GT-Power 

The simulation platform is designed for developing real-time controllers, a 

detailed thermodynamic method is not considered in the engine combustion 

modelling process. The engine fuel injection strategies are simplified into one pilot 
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injection and one main injection. In GT-Power, the following equations are used 

to model the engine IMEP  

𝐼𝑀𝐸𝑃 = 𝜂𝑒 ∙
𝑄𝐿𝐻𝑉 ∙ 𝑄𝑓𝑢𝑒𝑙

𝑉𝑑
  

𝜂𝑒 = 𝑓(𝑁𝑒𝑛𝑔, 𝑄𝑓𝑢𝑒𝑙, 𝑅𝐸𝐺𝑅  )  

where 𝜂𝑒 is the correlation factor determined by a 3D look-up table (the three 

inputs are engine speed, mass of fuel injection and total EGR rate), the raw data 

to formulate the look-up table is supplied by the engine supplier; 𝑄𝐿𝐻𝑉 is the low 

heat value of diesel which is 42.6 MJ/kg. Several engine parameters such as air-

fuel ratio and injection timing etc. could affect the efficiency of the engine’s 

combustion process. Considering the available model parameters and the 

computational time, only the total EGR rate is selected to avoid increasing the 

model complexity unnecessarily (Zhang et al., 2017). The table blow shows the 

correlation map.   

In the FMEP model, the mechanical inertias of the engine crankcase integrate 

with other friction losses. It is an empirical model which considers the engine 

speed and maximum cylinder pressure (Zhang et al., 2017). The governing 

equation is defined as (JLR and València, 2015): 
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𝐹𝑀𝐸𝑃 = 𝑎1 + 𝑎2 ∙ 𝑁𝑒𝑛𝑔 + 𝑎3 ∙ 𝑃𝑐𝑦𝑙_𝑚𝑎𝑥 + 𝑎4 ∙ 𝑁𝑒𝑛𝑔
2 + 𝑎5 ∙ 𝑃𝑐𝑦𝑙_𝑚𝑎𝑥

2

+ 𝑎6 ∙ 𝑁𝑒𝑛𝑔 ∙ 𝑃𝑐𝑦𝑙_𝑚𝑎𝑥 

 

where 𝑃𝑐𝑦𝑙_𝑚𝑎𝑥  is the maximum cylinder pressure in bar; 𝑎1, ⋯ , 𝑎5 are constant 

numbers which are identified via curve fitting with experiment data. Based on the 

test data from the engine supplier, the values for 𝑎1,⋯ , 𝑎5 are determined as 

0.614, 7.16 × 10−5, 3.24 × 10−4, 0.93 × 10−7and 2.34 × 10−5.  

As for the pumping mean effective pressure (PMEP), the equations are defined 

as (Heywood, 1988): 

𝑃𝑀𝐸𝑃 =  𝑃𝑒𝑚 − 𝑃𝑖𝑚     𝑖𝑓 𝑃𝑒𝑚 > 𝑃𝑖𝑚   

𝑃𝑀𝐸𝑃 =  −(𝑃𝑒𝑚 − 𝑃𝑖𝑚)     𝑖𝑓 𝑃𝑖𝑚 > 𝑃𝑒𝑚  

Normally, the engine PMEP would be a positive value. But when the engine 

operated at low-speed full load with sudden-opened EGR valves, the PMEP value 

would be a negative value. But the full-load condition is not investigated in this 

thesis. Besides, the EGR values shouldn’t be opened in such conditions as the 

engine will no longer maintain the boost pressure and the engine EGR rate is 

also not achievable as the EGR flow couldn’t flow into the intake manifold. So the 
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equation above could be used in this case.     

So, the engine brake mean effective pressure (BMEP) is calculated based on 

IMEP, FMEP and PMEP. 

𝐵𝑀𝐸𝑃 = 𝐼𝑀𝐸𝑃 − 𝐹𝑀𝐸𝑃 − 𝑃𝑀𝐸𝑃  

The detailed validation of the simulation platform is shown in Chapter 4, in the 

section of results and discussions. 

3.2.3 Engine Test Plan 

To evaluate the performance of the proposed optimization algorithm and 

advanced engine controller, engine transient scenarios should be designed. The 

designed engine test sequences on the test bench are different from those on 

vehicles. As introduced in section 3.1, the dynamometer is operated in the speed 

mode. To cope with the operation mode and guarantee the results’ accuracy, the 

test sequences are designed as step-changed engine loads under constant 

engine speed. They are suitable for the engine transient study on the test bed. 

The dynamometer has the advantage of the maintaining stable engine speed. 

The engine is only in charge of the torque generation. This kind of test sequence 

is to avoid uncontrolled fluctuation of engine speed, which decreases the 

complexity of data processing and improves the repeatability of the results. The 
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engine speed is set as 1500 and 2000 rpm, which are the typical working range 

for modern light-duty diesel engines. The engine load is adjusted by the mass of 

fuel injection, which falls between 10 and 50 mg/stroke. It helps to get rid of the 

affection of the paddle fluctuation, which helps to improve the data quality. 

Besides, the engine torque could be used directly to evaluate the performance 

the fuel economy. Under the same fuel injection trajectory, a larger torque means 

higher engine efficiency and more optimal fuel economy. The study in this case 

mainly focuses on the light and medium load.  

To test the capability of the proposed CAPSO algorithm, several case studies are 

presented. The designed test sequences are shown below:  

Table 3-6 Design of Test Sequences  

Engine Speed Mass of Fuel Injection Transient Period 

1500 rpm 15-20 mg/stroke 0.1s 

 15-40 mg/stroke 0.1s 

 15-30 mg/stroke 0.1s 

2000 rpm 15-20 mg/stroke 0.1s 

 15-40 mg/stroke 0.1s 

In terms of the test sequence for advanced engine controllers, the engine’s speed 

is maintained at 2000 rpm and the mass of the fuel injection changes based on 

the trajectory shown in Figure 3-12. The mass of fuel injection remains stable for 
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50 s to stabilize the model’s outputs. This kind of sequence is used to cope with 

the speed operation mode introduced in section 3.1. The transient period is a 

setting of experiment design, which determines the time for the mass of fuel 

injection to change from one value to another. It is could be controlled by the test 

bed controller. Even though only the mass of fuel injection changes in this case, 

it is still capable of evaluating the controllers’ performance. The design of the 

proposed controllers has considered both engine speed change and mass of fuel 

injection change.  

 

Figure 3-16  Trajectory of Engine Speed and Mass of Fuel Injection 

As for the HIL test, the test sequence is still formed by a step-changed mass of 

fuel injection under a constant engine speed. The engine speed is still designed 

as 2000 rpm while the mass of the fuel injection increases from 15 mg/hub to 20 

mg/hub and then decreases back to 15 mg/hub (Zhang et al., 2017). 



 

97 

 

3.3 Summary 

This chapter introduces the experiment set-up and the methodology for the study. 

The experimental system consists of the engine specification, engine test bench, 

and HIL test platform. The test bench can conduct transient manoeuvres with the 

help of a powerful dynamometer; while the conditioning system maintains 

accurate temperature control during the experiments. The AVL PUMA system and 

the engine’s ECU play the role of monitoring and recording the test data. The HIL 

platform is used as a flexible, low-cost testing method to validate the real-time 

capability of the controller. 

The methodology involves the investigation approach, the real-time engine model 

and the engine test plans. The investigation approach can be categorized into the 

stages of prototype design, offline simulation and online validation. The real-time 

model provides the software environment to conduct the simulation.  The engine 

test plan provides the same evaluation standard for the results.  
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CHAPTER 4  INTELLIGENT TRANSIENT CALIBRATION  

The author has published the work presented in this chapter in the journal of 

‘Proceeding of IMechE, Part D: Journal of Automobile Engineering’ as the first 

author (Zhang et al., 2018). In this chapter, an CAPSO-based intelligent transient 

calibration method is presented for the air path controller of a light-duty diesel 

engine. The target of this method is reducing the fuel consumption of the engine 

during transient scenarios through the optimization of the controller parameters 

(Zhang et al., 2018). The optimization results of the proposed CAPSO-based 

method are compared with the results of using the baseline calibration. Finally, 

engine tests are conducted to validate the performance with the calibrated 

controller (Zhang et al., 2018). 

4.1 Introduction 

The air path of the diesel engine which includes the dual-loop EGR can be 

regarded as a multiple-input, multiple-output (MIMO) system, which has the 

characteristics of coupling effect, strong non-linearity and delay. As a result, the 

engine calibration, especially the transient calibration process, has been made 

more complex and will consume more time. To overcome these difficulties, 

commercial software, including the AVL CAMEO and Matlab Model-based 
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Calibration toolbox, have been developed for automotive industries. However, the 

above-mentioned software mainly focuses on the calibration of static conditions. 

Moreover, they require a large amount of data to build the empirical model (Ma 

et al., 2014;Zhang et al., 2018).  The swarm intelligence algorithms have the 

advantages of less computational effort and easy implementation, compared with 

other metaheuristic algorithms (Guzzella and Onder, 2010; Tayarani et al., 2015). 

Thus they are applied in the area of controller intelligent calibration (Rogers and 

Birge, 2004;Watson et al., 2006;Fang et al., 2011;Reynoso-Meza et al., 

2014;Bourouba and Ladaci, 2016;Zhang et al., 2018). Researchers have found 

that the accelerated particle swarm optimization (APSO) algorithm has a better 

performance than the conventional PSO algorithm in dealing with multiple 

objective optimization issues (Rahman et al., 2016;Zhang et al., 2018).  

However, the results of both PSO and APSO algorithm may occasionally trap in 

a local optimal position, rather than a global optimal position. To solve that 

problem, chaotic mapping strategies are combined with the APSO algorithm to 

develop a novel CAPSO algorithm. The CAPSO algorithm not only jumps out of 

the ‘local optimal’ trap, but also enhances the result’s repeatability (Liu et al., 

2005;Tan, 2012;Yang et al., 2014; Shen et al., 2016;Zhang et al., 2018).  

In this chapter, an intelligent transient calibration method is developed for the air 

path controller of a diesel engine. This work is organized as follows: in section 

4.2, the structure of the air path controller is introduced. Section 4.3 firstly 
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demonstrates and explains the proposed CAPSO-based calibration algorithm. 

Then follows the experimental apparatus and procedure. Section 4.4 validates 

the proposed transient calibration method via several case studies and proceeds 

a Monte Carlo analysis and a repeatability test to compare the CAPSO algorithm 

and conventional APSO algorithm. The simulation platform is also validated in 

this chapter. Eventually, the conclusions are summarised in section 4.5. 

4.2 Controller Structure 

 
Figure 4-1 Structure of the embedded engine model 

As shown in Figure 4-1, the embedded model consists of a diesel engine model 
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and an air path controller (Zhang et al., 2018). The detailed introduction of the 

engine model has been shown in the chapter 3, section 3.1.5. In terms of the air 

path controller, the conventional PI control strategy is adopted. The control 

strategy for the model is same with the one used in the engine ECU. The air path 

controller could be divided into two parts: the boost pressure control and the air 

mass flow control. For the boost pressure controller, the inputs are the VGT rack 

position set point, MAP error, mass of fuel injection and engine speed. In 

particular, the MAP error represents the difference between the actual MAP and 

MAP setpoint (Zhang et al., 2018): 

 𝑒𝑀𝐴𝑃 (𝑡) = 𝑀𝐴𝑃𝑠𝑝 −𝑀𝐴𝑃𝑎𝑐𝑡𝑢𝑎𝑙  

The MAP controller is applied to control the VGT rack position based on this error 

signal. The final outputs of the MAP controller include not only the feedback PI 

strategy, but also the feed-forward setpoint of the VGT rack position (Zhang et al., 

2018). 

 
𝑉𝐺𝑇(𝑡) = 𝐾𝑝 ∙ 𝑒𝑀𝐴𝑃 (𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑀𝐴𝑃 (𝑡) ∙ 𝑑𝑡

𝑡

0

+ 𝐴𝑉𝐺𝑇𝑠𝑝 (𝑡)   

The air mass flow control is achieved through the combination of two PI 

controllers. One PI controller focuses on the MAF trajectory tracking, the other 
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takes charge of the LPEGR fraction. The required inputs are the MAF error, 

LPEGR fraction error, HPEGR valve position set point, LPEGR valve position set 

point, engine speed and mass of fuel injection (Zhang et al., 2018), while the 

actual HPEGR and LPEGR valve positions are the outputs of the controller. The 

detailed structure, the LPEGR fraction error and the MAF error are introduced by 

the following equations (Zhang et al., 2018): 

 𝑒𝑀𝐴𝐹 (𝑡) = 𝑀𝐴𝐹𝑠𝑝 −𝑀𝐴𝐹𝑎𝑐𝑡𝑢𝑎𝑙  

 𝑒𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡) = 𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑝 − 𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑐𝑡𝑢𝑎𝑙  

Based on the report about the air path controller (JLR and València, 2015), the 

MAF value is monitored by the MAF controller via a ‘virtual EGR valve’ (𝐸𝐺𝑅(𝑡)) 

in this case. The virtual EGR valve signal is divided into two different signals for 

both HPEGR and LPEGR valves by a splitting factor (𝜅). Through actuating over 

the splitting factor (𝜅 ), the LPEGR fraction controller could keep the desired 

LPEGR fraction following the desired value. The equations are shown as 

following (Zhang et al., 2018): 

 
𝐸𝐺𝑅(𝑡) = 𝐾𝑝 ∙ 𝑒𝑀𝐴𝐹 (𝑡) + 𝐾𝑖 ∙ ∫ 𝑒𝑀𝐴𝐹 (𝑡) ∙ 𝑑𝑡

𝑡

0

+ 𝐸𝐺𝑅𝑠𝑝 (𝑡)  
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𝜅(𝑡) = 𝐾𝑝 ∙ 𝑒𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡) +𝐾𝑖 ∙ ∫ 𝑒𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 (𝑡) ∙ 𝑑𝑡

𝑡

0

+ 𝐿𝑃𝐸𝐺𝑅𝑠𝑝 (𝑡)  

 𝐸𝐺𝑅𝑠𝑝 (𝑡) = 𝐻𝑃𝐸𝐺𝑅𝑠𝑝 (𝑡) + 𝐿𝑃𝐸𝐺𝑅𝑠𝑝 (𝑡)  

 𝐻𝑃𝐸𝐺𝑅(𝑡) = 𝐸𝐺𝑅(𝑡) ∙ 𝜅(𝑡)  

 𝐿𝑃𝐸𝐺𝑅(𝑡) = 𝐸𝐺𝑅(𝑡) ∙ (1 − 𝜅(𝑡))  

The control strategy of the diesel engine’s air path is developed in an Open-ECU, 

it cannot be compared with strategy in the commercial ECU. But the feed-forward 

control still exists in the controller (Zhang et al., 2018). The feed-forward values 

of the actuator positions are included in the controller design. In this case, the 

feed-forward setpoints are acquired by the engine working conditions (engine 

speeds and mass of fuel consumptions). They are set to the same values of the 

actuator positions under steady state conditions to reduce the complexity of the 

controller (Zhang et al., 2018). To solve this specific problem, the proposed 

CAPSO-based calibration algorithm mainly focuses on the optimization of the PI 

values. 
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4.3 Methodology of Model Based Optimization 

4.3.1 Multiple-Objective Optimization Issue 

Three control objects: the engine MAP, MAF and LPEGR fraction, are contained 

in the controller. Therefore, the calibration process can be regarded as a multiple 

objective optimization problem with constraints, which can be processed by the 

proposed CAPSO algorithm.  

In this work, Kp and Ki values (𝐾𝑝_𝑀𝐴𝑃, 𝐾𝑖_𝑀𝐴𝑃, 𝐾𝑝_𝑀𝐴𝐹 , 𝐾𝑖_𝑀𝐴𝐹 , 𝐾𝑝_𝐿𝑃𝐹 𝑎𝑛𝑑 𝐾𝑖_𝐿𝑃𝐹 ) 

are selected as the calibration parameters. The boundaries of these calibration 

parameters are restricted by the search area. A wider search area could help to 

get more optimal results; however, it will also consume more computational time. 

The cost function is the criterion for the optimization algorithm. The integrals of 

square error (ISE) are selected as the cost function of the parameter tuning (Zhu 

Wang et al., 2016;Zhang et al., 2018). 

 
𝐼𝑆𝐸𝑖 = ∫ 𝑒𝑖

2(𝑡)
𝑡𝑠

0

𝑑𝑡  

where ei(t) = ri(t) - y(t), it is the error value of each controller object. The ISE 

values for each target are named as ISEMAP, ISEMAP and ISELPF respectively 

(Zhang et al., 2018). 
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Therefore, the overall ISE value of the three control targets using the weighted 

sum method (Fonseca and Fleming, 1993) is designed as the cost function of the 

controller behaviour, as shown in the following equations:: 

 𝐽1 = 𝑊1 ∙
𝐼𝑆𝐸𝑀𝐴𝑃
𝐶𝐹1

∗ +𝑊2 ∙
𝐼𝑆𝐸𝑀𝐴𝐹
𝐶𝐹2

∗ +𝑊3 ∙
𝐼𝑆𝐸𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐶𝐹3
∗   

 𝑊1 +𝑊2 +𝑊3 = 1    𝑊1,𝑊2,𝑊3 ∈ (0,1)  

where 𝑊1, 𝑊2 and 𝑊3 are the weighting factors allocated to the optimization 

objects. A lower weight value means it has a lower impact to the total cost function. 

Due to coupling effects, the MAP, MAF and LPEGR fraction will affect each other. 

Since the MAP value regulates the total amount of the gas pumped into cylinders, 

the MAP weight should be relatively higher. 𝐶𝐹1, 𝐶𝐹2 and 𝐶𝐹3 are correlation 

factors to assure the ISE value for each control object could be in the same scale 

(Zhang et al., 2018). 

The stability of the optimal controller is also considered when designing the 

optimization cost function. In this work, the cost function is designed in the format 

of integrals of square error (ISE) based on the literature review focusing on this 

problem. The ISE calculates the integral of the squared output error. Therefore, 

when the system outputs are unstable, the value of the cost-function could reflect 

the instability. Besides, different engine speeds and loads are involved in the test 
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sequences. In this way, the stability of the optimal controller under various 

working conditions can be tested. 

4.3.2 Structure of the Intelligent Transient Calibration Algorithm 

The chaos-enhanced accelerated particle swarm optimization (CAPSO) 

algorithm (Q. Zhou et al., 2017a;Zhang et al., 2018) is modified based on the 

conventional APSO algorithm. Figure 4-2 shows the calibration process of the 

CAPSO-based algorithm for a diesel engine’s air path controller (Zhang et al., 

2018). The CAPSO-based algorithm, as shown in Figure 4-2, is formed by three 

parts. The first part is the setting of the initial conditions, including the number of 

iterations, number of particles in each swarm and the boundaries of the search 

area. The initial particles are generated randomly from the information provided 

in this part (Zhang et al., 2018). Then the iteration process begins after the initial 

particles are generated. The cost function value of each particle will be obtained 

through the co-simulation with the engine model. They will be compared to find 

the current local optimum result. Next, in each iteration, the particles will be 

updated based on their current positions, the local best position in the swarm and 

a random factor. The process is repeated based on iterations. When the 

boundaries are achieved or the iteration stops, the solution of the last iteration is 

the final optimal result. 
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Figure 4-2 Workflow of the CAPSO Algorithm in the calibration of a Diesel Engine’s Air Path 

Controller 
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It is shown in section 4.3.1, the particles in the swarm are defined as (Zhang et 

al., 2018): 

𝑥(𝑖,𝑗)

= [𝐾𝑝𝑚𝑎𝑝
(𝑖,𝑗), 𝐾𝑖𝑚𝑎𝑝

(𝑖,𝑗), 𝐾𝑝𝑚𝑎𝑓
(𝑖,𝑗), 𝐾𝑖𝑚𝑎𝑓

(𝑖,𝑗), 𝐾𝑝𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
(𝑖,𝑗), 𝐾𝑖𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

(𝑖,𝑗)] 

 

where i (1, 2, 3…N) is the index of the interactions, for a CAPSO algorithm that 

has N iterations; j (1, 2, 3…P) is the index of the particles in each swarm (Zhang 

et al., 2018).  

 

The evolution of the particles is the key part in the CAPSO algorithm. The 

governing equations are shown below (Zhang et al., 2018): 

 𝑥(𝑖+1,𝑗) = 𝑥(𝑖,𝑗) + 𝛽(𝑔(𝑖,∗) − 𝑥(𝑖,𝑗)) + 𝛼(𝑖) ∙ 𝑟(𝑖,𝑗)  

 𝛼(𝑖) = 𝛼(0) ∙ 𝜌𝑖  

where 𝛽 is the attraction parameter of the CAPSO algorithm; 𝑟(𝑖,𝑗) is a random 

movement of the particle inside its searching area; 𝑔(𝑖,∗) is the best position at ith 

interaction; 𝛼 is the convergence parameter which will be updated during each 



 

109 

 

iteration. The setting range of 𝛼(0) is suggested to fall between 0.5 and 1, while 

the setting range of 𝜌 is suggested to fall between 0 and 1 by Bourouba and 

Ladaci (Bourouba and Ladaci, 2016). In this work, 𝛼(0) is determined as 0.9, and 

𝜌 is determined as 0.8. The value of 𝛽 normally falls between 0 and 1, and it 

has strong relation with the convergence speed of the CAPSO algorithm. In the 

conventional APSO algorithm, 𝛽 is a fixed value of 0.5 (Q. Zhou et al., 2017a). 

This setting could work effectively, however, the optimization results still change 

slightly. To overcome the problem, chaotic mapping strategies are adopted in 

CAPSO algorithm to form a variable setting of 𝛽 value. Through this way, the 

particles could escape from a local best result. In this work, logistic mapping 

strategy is used as the chaotic mapping strategy considering its high dispersion 

of the randomly generated number (Gandomi et al., 2013; Q. Zhou et al., 

2017a;Zhang et al., 2018) , which can be described by the following equation: 

 𝛽(𝑖+1) = 𝑎 ∙ 𝛽(𝑖) ∙ (1 − 𝛽(𝑖))  

where 𝑎 is set to 0.4 and the initial value of 𝛽 is set to 0.7 for this case. Both 

alpha and beta values are the parameters to update the particle’s position. It 

should be noticed that the value of alpha and beta will only affect the performance 

of the algorithm and they have no relation with the engine load conditions (Zhang 

et al., 2018). 
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4.3.3 Transient Calibration System 

 
Figure 4-3  Interface of the real-time model and the CAPSO calibration algorithm 

The structure of the transient calibration system is shown in Figure 4-3. This 

system is formed by the ECU interface, the embedded optimization module and 

the engine test bench. The embedded optimization module includes the transient 

calibration algorithm and the engine. After the model-based optimization process, 

the calculated results will be sent into the ECU interface, which could use the 

results from the embedded optimization module to replace the ECU calibration. 

The model-based optimization results could be validated through the real engine 

tests (which have been introduced in chapter 3), while the test bench data are 

beneficial for the further improvement of the engine model’s accuracy (Zhang et 

al., 2018).   



 

111 

 

4.4 Result and Discussion 

4.4.1 Validation of the Simulation Platform 

The simulation platform is validated by WLTP cycle. The trajectories of mass of 

fuel injection, the engine speed, VGT rack position and LPEGR valve position are 

recorded from the real engine, and then they are taken as the model inputs which 

will be sent into the simulation platform. The validation process mainly focuses 

on the trajectories engine MAF, MAP, LPEGR fraction and the engine torque, as 

shown in Figure 4-4 (Zhang et al., 2018). The model accuracy is evaluated by 

calculating the fitting rate and the dynamic error. Their equations are listed (Tan, 

2015;Zhang et al., 2018): 

 
𝑓𝑖𝑡(𝑖) = [1 −

‖𝑦𝑚𝑒𝑎𝑠 − 𝑦𝑚𝑜𝑑𝑒𝑙‖

‖𝑦𝑚𝑒𝑎𝑠 − 𝑦̅𝑚𝑒𝑎𝑠‖
] × 100%  

 
𝑦𝑒𝑟𝑟𝑜𝑟(𝑖) =

𝑦𝑚𝑒𝑎𝑠(𝑖) − 𝑦𝑚𝑜𝑑𝑒𝑙(𝑖)

1/𝑁∑ 𝑦𝑚𝑒𝑎𝑠(𝑖)
𝑖=𝑛
𝑖=1

× 100%  

where 𝑦𝑚𝑒𝑎𝑠  and 𝑦𝑚𝑜𝑑𝑒𝑙  are the measured output of the engine and the 

simulated output from the model, respectively; 𝑦̅𝑚𝑒𝑎𝑠 is the mean value of the 

data sequences of the engine; ‘|| ||’ means the Euclidean distance. 
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Figure 4-4  Comparison between the Simulation Results and Engine Test Results of WLTP 

(1070s-1200s); MAP; MAF; LPEGR Fraction and torque 

Even though the presented figure includes only part of the test cycle, the model 

fitting rate and the dynamic error are calculated based on the whole test cycle 

(Zhang et al., 2018). . The simulation results agree well with the experimental 

data. The engine MAP, MAF, LPEGR fraction and engine torque show a fitting 

rate of 83.74%, 85.41%, 80.86% and 82.53%, respectively (as listed in Table 3-

6). The dynamic errors of them are all less than 10%. Based on engine modelling 

work in the research team’s previous thesis (Ma, 2012; Tan, 2015), the dynamic 
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error and fitting rate of the engine model in this work are still within the acceptable 

range. Besides, during transient operations, most peaks and troughs of the 

engine parameters could be successfully captured by the simulation platform. 

The characteristics of the diesel engine’s air path are reflected properly. 

Therefore, it could be concluded that this platform is qualified of presenting the 

results for the research activities in the thesis.  

Table 4-1 Model Fitting Rate and Dynamic Error 

Specification Fitting Rate Dynamic Error 

MAP 83.74% 5.57% 

MAF 85.41% 9.49% 

LPEGR Fraction 80.86% 8.22% 

Torque 82.53% 7.84% 

4.4.2 Comparison between CAPSO and Conventional APSO Algorithm 

In this thesis, the proposed CAPSO calibration algorithm is modified from 

conventional APSO algorithm. The evaluation in this study should consider both 

the algorithm itself and case studies of the engine transient scenarios. Therefore, 

the comparison between the APSO and CAPSO, including the convergence 

speed, Monte Carlo analysis and the reputation evaluation, is conducted based 

on one case study in the following paragraphs.  
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Figure 4-5  Trajectory of the Total Cost Function Value (a); ISE of MAP (b); ISE of MAF (c); 

ISE of LPEGR Fraction (d); Using the CAPSO Algorithm and conventional APSO Algorithm 

Figure 4-5 presents the intelligent calibration results of APSO and CAPSO 

algorithm, respectively. From Figure 4-5, both the two algorithms could get 

converged within 25 iterations. Also, it can be found that the CAPSO algorithm 

could always achieve smaller values of the sub cost function and the total cost 

function. However, it should also be noticed that the trajectories of CAPSO show 

greater randomness compared with the standard APSO algorithm, which means 
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the CAPSO could achieve a wider search area and thus achieves the global 

optimal result, instead of a local optimal result. However, the performance of the 

APSO and the CAPSO algorithm could not be judged through single attempt, 

since both these two algorithms involve random number generation. To compare 

the results reliably, a repeatability test and a statistical analysis are conducted in 

this work. 

As mentioned above, to evaluate the APSO and CAPSO algorithms, a Monte 

Carlo analysis and a repeatability test are performed in this work. In the Monte 

Carlo analysis, with uniformly distributed random initial values, both APSO and 

CAPSO algorithms are operated 20 times. The mean value as well as the cost 

function’s standard deviation of the two algorithms are listed in Table 4-2 (Zhang 

et al., 2018). 
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Table 4-2 Mean Value and Standard Deviation of the Cost Function Values using 

CAPSO and Conventional APSO 

Mean Value CAPSO APSO 

Total Cost Function 5.163 5.387 

MAP 6.479 6.813 

MAF 5.753 5.748 

LPEGR Fraction 3.173 3.481 

 

Standard Deviation CAPSO APSO 

Total Cost Function 0.139 0.213 

MAP 0.128 0.241 

MAF 0.554 0.568 

LPEGR Fraction 0.296 0.341 

As it is evident from Table 4-2, for the cost function’s standard deviation, CAPSO 

algorithm could always get a smaller value than the APSO algorithm: in terms of 

the mean total cost function, the CAPSO algorithm gets a value which is 4.1% 

less than that of the APSO algorithm; focusing on the average cost function value 

of the engine MAP and LPEGR fraction, the CAPSO algorithm gets a value which 

is 4.9% and 8.8% less than that of APSO algorithm, respectively. Considering that 

both the two algorithms have random factors, it is necessary to take the deviation 

of the optimization results into account. A higher standard deviation value means 
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a lower possibility of achieving the global optimal result in one attempt. The value 

of standard deviation of the APSO algorithm is 0.213, while it is reduced to only 

0.139 when using CAPSO algorithm.  

4.4.3 Investigation of Weight Tuning on the Calibration Results 

 

Figure 4-6  Pareto Frontier for Different Weight Value Settings 

Figure 4-6 shows the Pareto front of the optimization results as the weighting is 

adjusted in a specific range. The red dots in the figure are the collected test data 

and the blue part shows the generated surface (Zhang et al., 2018). One 

phenomenon is that if one weight value is set to some extreme conditions 

(extremely large or extreme small values), the cost function values for the other 
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two optimization objects also get larger as they compare with other weight 

settings (Zhang et al., 2018). For example, when the MAP and MAF trajectories 

are deteriorated, the cost function value and trajectory tracking performance are 

worse. Another phenomenon is the coupling effect inside the diesel engine’s air 

path, there is a trade-off between three optimization objects. The characteristic of 

the slow dynamic response in the LPEGR loop is also reflected in the figure 

(Zhang et al., 2018). Regardless of the weight settings, the cost function value of 

the LPEGR fraction falls in a smaller range when compares with other 

optimization objects. The figure indicates the diesel engine’s air path is more 

sensitive to the MAF and MAP weight settings. In this case, when the MAF and 

MAP weights are set between 0.3 and 0.4, the total cost function value achieves 

its minimum level (Zhang et al., 2018). 

4.4.4 Test Bench Validation 

Using a transient sequence, the proposed CAPSO algorithm is verified on the 

test bench. The mass of fuel injection is set to follow stepped changes, while the 

engine speed is kept at constant value. This kind of scenario could also be seen 

in many other studies on the transient behaviours of engines. In this case, the 

engine working condition is 1500 rpm with a stepped change of fuel injection from 

15 to 30 mg/stroke. The baseline calibration of the engine is provided by the 

engine supplier. As it is introduced in section 4.2, the calibration is copied from 
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the Bosch commercial ECU used for the same type of engine (AJ20D4). 

Additional modifications are added to convert the vehicle ECU settings to the test 

bed ECU settings for Cold Cell.   

Before presenting the results, the definitions of the overshoot and the settling time 

are shown by the figure below. These definitions are used for the all work 

presented in this thesis. 

 

Figure 4-7 Diagram that Defines the System Overshoot and Settling Time (MathWorks, n.d.) 

The rise time is defined as the time the signal takes for the signal to rise from 10% to 

90% of the steady-state setpoint. The settling time is defined as the error of signal 

(|𝑦𝑡 − 𝑦𝑠𝑒𝑡|) falls within 2% of the setpoint value. The overshoot (%) is defined by the 

following equation: 
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𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 =
𝑦𝑝𝑒𝑎𝑘 − 𝑦𝑠𝑒𝑡

𝑦𝑠𝑒𝑡
∗ 100%  

Where 𝑦
𝑝𝑒𝑎𝑘

 is the peak absolute value of 𝑦𝑡 and 𝑦
𝑠𝑒𝑡

 is the steady-state setpoint of 

the signal. 
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Figure 4-8  Trajectories of Engine Parameters using CAPSO Calibration Algorithm by Engine 

Tests 

Figure 4-8 shows the test results of engine MAP, MAF, LPEGR fraction and the 

engine torque obtained through the test bench. From the first three figures, it can 

be seen that both the overshoot and settling time of the engine MAP, MAF, 

LPEGR fraction are significantly reduced. The high combustion temperature and 

the excessive amount of air are two key factors that affect the engine NOx 

generation (Tian et al., 2014;Zhang et al., 2018). The temperature inside the 

cylinder would be raised by the increased mass of fuel injection at 10s. At this 

time, the higher overshoot of the engine MAF, which is caused by the original 

calibration, provides an overdosed amount of air for NOx formation. In addition, 

through the validation of the test bench, the accumulated BSFC is also found to 

have a reduction of 0.78%. As it is verified in previous work of Lu et al and Zhang 

et al, HPEGR and proper controlled VGT act as a dominating role (Lu et al., 

2016;Zhang et al., 2018). Since the engine PMEP turns back to the steady state 
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value more rapidly by the refined tuning of the engine controller, the brake torque 

generation of the engine could thus be increased. 

Figure 4-9 shows the trajectories of the actuators. As it is evident from Figure 4-

8, by using the CAPSO calibration algorithm, the trajectories of the HPEGR valve, 

LPEGR valve and VGT are all stabilized(Zhang et al., 2018). 
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Figure 4-9  Trajectories of engine parameters using CAPSO calibration algorithm 

4.4.5 Case Study of Engine Transient Calibration 

In previous paragraphs, the capability of the CAPSO-based calibration algorithm 

has been verified. However, many other factors, i.e. the delay of the actuators, 

may also have an affection to the calibration results. Therefore, one single test 

sequence is not enough to evaluate the algorithm. To solve this problem, several 

other transient scenarios, which involve various mass of fuel injection and engine 

speed, are also demonstrated. The details of the designed test sequences have 

been introduced in chapter 3.2.2. 
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Figure 4-10  Trajectories of Engine Parameters under Various Transient Scenarios using 

CAPSO Calibration Algorithm and Original Calibration: (a) 1500rpm 15-20 mg/stroke; (b) 

1500rpm 15-40 mg/stroke; (c) 2000rpm 15-20 mg/stroke; (d) 2000rpm 15-40 mg/stroke 

Figure 4-10, it can be concluded that by using the CAPSO-based calibration 

algorithm, the refined tuning can reduce the overshoot, system response time 

and settling time. In terms of the system overshoot, a reduction of 59.9% has 

been observed, while for the settling time, a reduction of 35.4% is achieved. 

Therefore, the dynamic performance of the diesel air path has been improved in 

the control point of view. More optimal fuel economy is also achieved thanks to 

proper controlled engine’s air path. A reduction of 0.91% is achieved in terms of 

the fuel consumption.  
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4.5 Summary 

In this work, a novel CAPSO-based engine transient calibration method has been 

proposed. The unique part of the algorithm is the chaotic mapping strategy, which 

contributes to finding the global optimum controller parameters. Case studies 

have been performed to obtain the engine performance with different tuning 

results. To evaluate the CAPSO-based algorithm, a repeatability test and a Monte 

Carlo analysis are also performed. The conclusions are listed as follows: 

1. Under various working conditions, the transient behaviour of the air path of the 

engine could be optimized by the proposed CAPSO-based calibration algorithm. 

Compared with the baseline engine calibration, reduction of 41.5% and 22.3% 

have been achieved in terms of the overshoot and the settling time of the engine 

MAP. In terms of the engine MAF, the reduction of overshoot and settling time is 

60.3% and 12.9% respectively. The reduction on LPEGR fraction’s overshoot and 

settling time is 51.8% and 21.7%. 

2. An improved engine fuel economy is achieved with the help of the more optimal 

calibration. Through several case studies, it is proved that the accumulated fuel 

consumption can be reduced by 0.91% (on average) through the proposed 

transient calibration method. 

3. Through the Monte Carlo analysis, it can be found that the CAPSO-based 
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algorithm achieves a 4.1 % lower value of the optimization objects than the APSO 

algorithm. Through the repeatability test, it can also be found that the standard 

deviation of the optimization object using CAPSO-based algorithm is 65.2% less 

than that of APSO-based algorithm.  

Therefore, based on the above analysis, the proposed CAPSO-based algorithm 

is a good solution for the engine transient calibration as it has a simple structure 

and shows a strong capability for locating the global best result instead of a local 

best result. Besides, it could be applied to both offline and real-time optimization. 
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CHAPTER 5  TUNABLE MODEL PREDICTIVE 

CONTROL 

The author has published the work presented in this chapter in the journal of 

‘Proceeding of IMechE, Part D: Journal of Automobile Engineering’ as the first 

author (Zhang et al., 2017). This chapter presents a tunable model predictive 

control (TMPC) controller for the air path of a diesel engine. The objective is to 

control the variable geometry turbocharger (VGT) and EGR valves to meet the 

time-various set points of the intake manifold pressure and EGR mass flow in 

each loop. The design framework of the proposed controller is based on the 

multiple linear MPC controller, it also contains a map based switching scheme of 

the local controller and the controller’s weight (Zhang et al., 2017). The TMPC 

controller and the conventional PID controller are firstly compared. The HIL 

validation process is followed.  

5.1 Introduction 

At the current stage, most commercial ECUs use the separate SISO PID 

controller (Zhao et al., 2014). The major obstacles for the control of the air path 

of the diesel engine are the system nonlinearity and coupling effects (Haber, 
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2010). It is difficult to acquire accurate control of the EGR mass flow in a dual-

loop EGR system. The conventional PID controllers with look-up tables and logic 

switches may cause obvious delay or overshoot in the EGR mass flow, which 

eventually result in engine emissions (Maruyama et al., 2011;Dezong Zhao et al., 

2013;Kim et al., 2014;Zhang et al., 2017). When there is an overshoot of EGR 

mass flow, the concentration of the intake oxygen may get far below the desire 

valued. The incomplete combustion will occur, the combustion efficiency would 

be lower, which leads to lower engine efficiency and worse fuel economy. During 

transient scenarios, NOx and PM spikes will be induced by the turbo lag and the 

large overshoot of the engine boost pressure (Rakopoulos et al., 2010;Zhang et 

al., 2017). Besides, the engine drivability gets worse when the VGT rack position 

fluctuates with opened EGR valves, which is due to the unstable EGR mass flow 

(R.S.Wijetunge et al., 2000;Zhang et al., 2017). Recently, model predictive control 

(MPC) has been applied to the field of engine control due to its capability in 

dealing with above-mentioned obstacles (Zheng et al., 2011;Barrero et al., 

2011;Zhang et al., 2017). It formulates the control problem to an optimization 

problem, and achieves accurate reference trajectory tracking while complying 

with the constraints (Darby and Nikolaou, 2012;Zhang et al., 2017). MPC 

controllers for diesel engines with single loop EGR and VGT has been extensively 

explained (Stewart and Borrelli, 2008;Ortner and Re, 2007;Zhou et al., 

2014;Hrovat et al., 2012); a clear scale of MPC controllers’ design process and 
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its measurable improvements on an engine’s BSFC and emissions are provided 

in these studies. However, when designing local controllers for a system which 

has the characteristics of strong nonlinearities and sudden changes in operating 

conditions, the above-mentioned MPC controllers are challenged (Zhang et al., 

2017).  

This chapter presents a TMPC controller based on a 2-D map switching scheme 

of controller parameters for the air path of a diesel engine. The remaining sections 

of this chapter are organized as follows (Zhang et al., 2017): in section 5.2, the 

controller structure is introduced. Section 5.3 presents the algorithm and the 

design framework of the proposed controller. The performances of the PID 

controller and the TMPC controller are compared in section 5.4. The introduction 

of the PID controller is also added. The TMPC controller’ real-time capability is 

also evaluated on a HIL platform. Finally, conclusions are summarized and listed 

in section 5.5.  
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5.2 Controller Structure 

 
Figure 5-1  Tuneable Model Predictive Control System for a Diesel Engine’s Air path 

The HPEGR mass flow (𝑀𝐻𝑃𝐸𝐺𝑅 ), MAP and LPEGR mass flow (𝑀𝐿𝑃𝐸𝐺𝑅 ) are 

selected as the control objectives. The control variables are the offset on the VGT 

rack position (𝐴𝑉𝐺𝑇), LPEGR valve position (𝐴𝐿𝑃) and HPEGR valve position (𝐴𝐻𝑃) 

(Zhang et al., 2017). The proposed TMPC controller also requires the engine 

speed, mass of fuel injection, the desired values of the control objects, feedback 

values of the control objects and the setpoint of the actuators to calculate the 

optimal control sequence(Zhang et al., 2017).  

The engine calibration maps determine the desired value of MAP (𝑀𝐴𝑃_𝑟𝑒𝑓) and 

the feed-forward set point of the VGT rack position (𝑉𝐺𝑇_𝑠𝑝) based on current 

engine working conditions. The desired values of the EGR mass flow (𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓, 

𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 ) are calculated based on setpoints of the engine total EGR rate 
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(𝑅𝐸𝐺𝑅_𝑟𝑒𝑓), MAF (𝑀𝐴𝐹_𝑟𝑒𝑓) and the LPEGR fraction (𝑅𝐿𝑃_𝑠𝑝) (Zhang et al., 2017). 

The equations are presented below:  

𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹_𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ (1 − 𝑅𝐿𝑃_𝑟𝑒𝑓)

(1 − 𝑅𝐸𝐺𝑅_𝑠𝑝)
 

 

𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹_𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ 𝑅𝐿𝑃_𝑟𝑒𝑓

(1 − 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓)
 

 

In this work, the total EGR rate (𝑅𝐸𝐺𝑅) is determined by the percentage of total 

EGR mass flow in the total inducted gas. In terms of the LPEGR fraction (𝑅𝐿𝑃), it 

is defined as the part of the LPEGR contribution in the combined EGR mass flow. 

The percentage is selected as the unit for this parameter. The equations are 

shown below (Zhang et al., 2017):  

𝑅𝐸𝐺𝑅 =
𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅

𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅 +𝑀𝐴𝐹
× 100%  

𝑅𝐿𝑃 =
𝑀𝐿𝑃𝐸𝐺𝑅

𝑀𝐻𝑃𝐸𝐺𝑅 +𝑀𝐿𝑃𝐸𝐺𝑅
× 100%  

In terms of the diesel engine model, the detailed introduction has been shown in 

the chapter 3, section 3.1.5. 
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5.3 Controller Algorithm and Design Framework 

5.3.1 TMPC Controller Algorithm 

To achieve optimal air path control, the algorithm of the linear MPC and the 

function of multiple MPC are adopted in this work (Zhang et al., 2017). Figure 5-

2 shows the basic principle of model predictive control. The target is to calculate 

the optimal sequence of the control variables [𝑢|𝑘, 𝑢|𝑘 + 1,… , 𝑢|𝑘 + 𝑀 − 1]  at 

each time interval (k), which achieves the minimum error between the matrix of 

predicted control object [𝑦𝑚(𝑘+1|𝑘), 𝑦𝑚(𝑘+2|𝑘)… , 𝑦𝑚(𝑘+𝑝|𝑘)]  and the matrix of 

reference value [𝑦𝑟𝑒𝑓(𝑘+1), 𝑦𝑟𝑒𝑓(𝑘+2), … , 𝑦𝑟𝑒𝑓(𝑘+𝑃)] ; where M means the control 

horizon; and P represents the prediction horizon (Zhang et al., 2017). The 

algorithm should be operated within the boundaries of the control objects, control 

variables and the control variables’ rate of change (Zhang et al., 2017). However, 

only the first move of the optimal control sequence would be used. The calculation 

is repeated at the next time interval, and a new sequence of control signals will 

be generated. 
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Figure 5-2  Principle of Model Predictive Control (Tan, 2015) 

The calculation is carried out through the optimization of a cost function – 

specifically, a quadratic program (QP) while considering system dynamics and 

constraints (Rawlings, 1999;Tan, 2015;Emekli and Güvenç, 2016;Zhang et al., 

2017). The cost function is designed as following (Zhang et al., 2017):  

𝐽(𝑧𝑘) =  𝐽𝑦(𝑧𝑘) +  𝐽𝑢(𝑧𝑘) +  𝐽∆𝑢(𝑧𝑘)   

Where 𝑧𝑘 is the QP decision; 𝐽𝑦(𝑧𝑘)  is the tracking performance of control 

objects; 𝐽𝑢(𝑧𝑘) means the deviation of the control variables; 𝐽∆𝑢(𝑧𝑘) indicates 

the control variables’ rate of change (Zhang et al., 2017). For the control problem 

in this work, the above cost function could be presented by the following equation:  
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𝐽 = min {𝑊𝑦 ∙ [(𝑦(𝑘) − 𝑦𝑟𝑒𝑓(𝑘))
2 + (𝑦𝑚(𝑘+1|𝑘) − 𝑦𝑟𝑒𝑓(𝑘+1))

2

+ (𝑦𝑚(𝑘+2|𝑘) − 𝑦𝑟𝑒𝑓(𝑘+2))
2
+⋯+ (𝑦𝑚(𝑘+𝑝|𝑘) − 𝑦𝑟𝑒𝑓(𝑘+𝑝))

2
] 

+𝑊𝑢 ∙ [(𝑢(𝑘) − 𝑢𝑠𝑝(𝑘))
2 + (𝑢(𝑘+1|𝑘) − 𝑢𝑠𝑝(𝑘+1))

2
+ (𝑢(𝑘+2|𝑘) − 𝑦𝑠𝑝(𝑘+2))

2

+⋯+ (𝑢(𝑘+𝑚−1|𝑘) − 𝑢𝑠𝑝(𝑘+𝑚−1))
2
 

+𝑊∆𝑢 ∙ [(𝑢(𝑘+1) − 𝑢(𝑘))
2 + (𝑢(𝑘+2|𝑘) − 𝑢(𝑘+1|𝑘))

2
+ (𝑢(𝑘+3|𝑘) − 𝑢(𝑘+2|𝑘))

2

+⋯+ (𝑢(𝑘+𝑚−1|𝑘) − 𝑢(𝑘+𝑚−2|𝑘))
2
} 

 

𝑦(𝑛)𝑚𝑖𝑛 ≤ 𝑦(𝑛) ≤ 𝑦(𝑛)𝑚𝑎𝑥 𝑛 = 1,2, … , 𝑝 

𝑢(𝑛)𝑚𝑖𝑛 ≤ 𝑢(𝑛) ≤ 𝑢(𝑛)𝑚𝑎𝑥 𝑛 = 1,2, … ,𝑚 − 1 

∆𝑢(𝑛)𝑚𝑖𝑛 ≤ ∆𝑢(𝑛) ≤ ∆𝑢(𝑛)𝑚𝑎𝑥 𝑛 = 1,2, … ,𝑚 − 1 

 

Where𝑊𝑢 , 𝑊𝑦 and 𝑊∆𝑢  are the weight matrix of the input trajectory, output 

trajectory and input rate of change; 𝑦𝑟𝑒𝑓|𝑘  represents the desired values of the 

control objects at moment k; 𝑦𝑚(𝑘 + 𝑖|𝑘)  represents the predicted control 

objects in the span of the prediction horizon generated by the TMPC 

controller; 𝑦(𝑘) represents the output of the model plant at moment k; 𝑢𝑘+𝑙|𝑘 is 

the series of the control variables in the span of the control horizon calculated by 

controller;  𝑢𝑠𝑝|𝑘 is the feed forward set point of the control variables (Zhang et 

al., 2017). For the boundary conditions, 𝑦(𝑛)𝑚𝑖𝑛 and 𝑦(𝑛)𝑚𝑎𝑥 are the lower and 
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upper limit of the HPEGR mass flow, LPEGR mass flow and engine boost 

pressure. The 𝑢(𝑛)𝑚𝑖𝑛 and 𝑢(𝑛)𝑚𝑎𝑥 limit the range of the offset on the HPEGR 

valve position, LPEGR valve position and VGT rack position. The ∆𝑢(𝑛)𝑚𝑖𝑛 and 

∆𝑢(𝑛)𝑚𝑎𝑥 limit the minimum and maximum rate of the change on those actuators 

(Zhang et al., 2017).  

The output weight is capable in scaling the control objects and concentrating 

more efforts towards the selected targets. With a larger output weight, rapid 

trajectory tracking can be achieved. However, when the output weight is too large, 

fluctuation on the control objects and large overshoot of the system cannot be 

avoided (a. Bemporad et al., 2002;Zhang et al., 2017). When input weights are 

increased, the controller would be more conservative by suppressing the 

magnitudes of the input moves. Therefore, the inputs become smoother, but the 

output responses will suffer from slower response and longer settling times 

(Zhang et al., 2017). Penalizing the inputs’ rate of change causes a more robust 

controller, but the controller would be more sluggish as a result (Garriga and 

Soroush, 2010;Zhang et al., 2017). 

In this work, in the TMPC controller, the  𝑊𝑦, 𝑊𝑢 and 𝑊∆𝑢 are no longer one 

fixed value. In different working conditions of engine, the controller weights are 

set as different values. Eventually, these values form several look-up tables 

(Zhang et al., 2017). In addition, the weight values of these tables could also be 
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adjusted online during operations (Bemporad et al., 2014). For the 2-D switch 

scheme, the mass of fuel injection (𝑄𝑓𝑢𝑒𝑙) and engine speed (𝑁𝑒𝑛𝑔) are selected 

as the triggers. (Zhang et al., 2017).  

The control objects’ future behavior inside the TMPC controller is predicted by the 

local discrete-time identified state-space models (Bemporad et al., 2014;Zhang 

et al., 2017). The equations are presented below: 

𝑋(𝑘+1) = 𝐴 ∙ 𝑋(𝑘) + 𝐵 ∙ 𝑢(𝑘)  

𝑌(𝑘) = 𝐶 ∙ 𝑋(𝑘)  

where A, B and C are the state matrixes obtained during the identification process 

(Zhang et al., 2017). The input matrix 𝑢(𝑘) [∆𝑢𝐻𝑃𝐸𝐺𝑅    ∆𝑢𝐿𝑃𝐸𝐺𝑅 ∆𝑢𝑉𝐺𝑇 ] involves the 

adjustments of the LPEGR position, the VGT rack position and the HPEGR valve 

position; the output matrix 𝑌(𝑘)  [𝑚ℎ𝑝𝑒𝑔𝑟    𝑚𝑙𝑝𝑒𝑔𝑟 𝑀𝐴𝑃 ] involves the EGR mass 

flow in each loop and intake manifold pressure (Zhang et al., 2017).  

However, modern light-duty diesel engines are operated in wide working 

conditions, therefore, one MPC controller is inadequate to achieve the optimum 

control of the air path. To solve the problem, multiple model predictive control 

(MMPC) with gain scheduled switch logic is considered (Zhang et al., 2017). The 
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figure 5-3 shows the structure of the TMPC controller in this work (Zhang et al., 

2017). 

 

Figure 5-3  Map Based Switching Scheme of the TMPC Controller 

In Figure 5-3, the sub MPC controllers (MPC1, MPC2…MPC n) are stored in the 

controller bank, while the internal prediction models (internal model 1, internal 

model 2… internal model n) are contained in the internal model bank. All of them 

are arranged in parallel (Zhang et al., 2017). The whole assignments for the input 

weight, input rate weight and output weight are contained in controller weight 

bank ( 𝑤1, 𝑤2,⋯ ,𝑤𝑚 ). Different with the conventional offline-tuned MPC 

controllers, the number of the weight values is not necessarily identical to the 

number of the sub MPC controller (𝑚 ≠ 𝑛 ). Each sub MPC controller could 
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operate with different weight settings. The controller weight w is determined 

based on the current engine working condition  (Zhang et al., 2017). At each 

time interval k, only one sub MPC controller, one internal model and one set of 

the controller weights are activated to progress the optimization calculation based 

on the engine working condition (𝑁𝑒𝑛𝑔 & 𝑄𝑓𝑢𝑒𝑙) (Zhang et al., 2017). However, 

these sub MPC controllers will still update their state estimation. The switch 

scheme is presented below (Zhang et al., 2017):  

𝑖𝑓 𝑁𝑒𝑛𝑔 ∈ [𝐴𝑖, 𝐵𝑖] 𝑎𝑛𝑑 𝑄𝑓𝑢𝑒𝑙 ∈ [𝐶𝑖, 𝐷𝑖] 

𝑡ℎ𝑒𝑛 𝑊𝑦 = 𝑊𝑦𝑖;𝑊𝑢 = 𝑊𝑢𝑖;𝑊∆𝑢 = 𝑊∆𝑢𝑖
 
 

𝑡ℎ𝑒𝑛 𝑠𝑤𝑖 𝑖𝑠 𝑁 (𝑖. 𝑒 𝑀𝑃𝐶 𝑁 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑚𝑜𝑑𝑒𝑙 𝑁 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒) 

 

The engine calibration maps are used to obtain the desired values of the control 

objects  𝑦𝑟𝑒𝑓(𝑘)  (Zhang et al., 2017). The identified internal models in the 

internal model bank run with the model plant simultaneously. The plant model 

provides the feedback values of 𝑦(𝑘)  at each time interval, while the internal 

model forecasts the trajectory of the 𝑦𝑚(𝑘)in the span of the prediction horizon p  

(Zhang et al., 2017). The signal of 𝑒(𝑘)  have two functions. The first one is 

calculating the error between the desired value  𝑦𝑟𝑒𝑓(𝑘)  and the plant output 

𝑦(𝑘) to update the state of the current controller. The second one is calculating 

the error between 𝑦𝑚(𝑘)  and 𝑦(𝑘)  which would be used in the QP decision 

(Zhang et al., 2017). At each time interval, the switch between these two functions 
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will be accomplished automatically by the controller (Zhang et al., 2017). The final 

inputs of the simulation platform  𝐴𝑐𝑜𝑛(𝑘)  are equal to the product of the 

adjustment value and the set point 𝐴𝑟𝑒𝑓(𝑘): (Zhang et al., 2017) 

𝐴𝑐𝑜𝑛(𝑘) = 𝐴𝑟𝑒𝑓(𝑘) × (1 + 𝑢(𝑘))  

The selector between each controller and the internal model is triggered by the 

working condition of the engine which adopts the same parameters as the 

controller weight assignment (Zhang et al., 2017). Each sub controller and 

internal model covers a small area of the working conditions of the engine. Only 

one specific sub controller is activated by the selector and progresses the 

calculation at each moment. Other sub MPC controllers continue updating their 

internal state estimation (Zhang et al., 2017). Based on the boundaries of each 

region, the switch logic determines the sub MPC controller to continue the control 

of the HPEGR, VGT and LPEGR of the engine when the working condition of 

engine changed (Zhang et al., 2017).  

5.3.2 TMPC Controller Design Framework 

Based on the demand of MPC-based controllers, it is important to convert the 

complex air path of the engine into a simplified data-driven model which could 

accurately capture the nonlinear relationship between the control variables and 
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control objects (Henningsson et al., 2012;Zhang et al., 2017). This process is 

called system linearization. Figure 5-4 demonstrates the system linearization 

process on the simulation platform (Zhang et al., 2017).  

 

Figure 5-4  Structure of the System Identification Process on the Simulation Platform 

The internal prediction model is developed in the form of state-space model. The 

governing equations of this state-space model are listed in the previous section 

(Zhang et al., 2017). This model’s basic function is predicting the future behaviour 

of the control objects. The obtained prediction results could help the algorithm 

inside the controller to calculate the optimal sequences of the control, and thus 

the minimum cost function can be acquired. This prediction model contains the 

dynamic of the system. Therefore, this model is suitable in predicting both steady 

states and dynamic conditions (Zhang et al., 2017). The identification process is 
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to apply random deviation signals, which are limited under a certain range, onto 

the control variables and record the corresponding control objects (Zhang et al., 

2017). The White noise generator is used to achieve this function. In this case, 

rate limiters are also added to the actuators on the model to regulate the rate of 

change, which is closer to the physical characteristics of the actuators on real 

engines. Other engine parameters, including the mass of the engine fuel injection 

and engine speed, are remained constant (Zhang et al., 2017). The maximum 

prediction horizon, model order, past outputs and past inputs used in the predictor 

consisted the main tuning parameters. To take an example, one identification 

process is shown below (Zhang et al., 2017).  
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Figure 5-5  Validation of the Internal Prediction Model 

The sampling time of both the internal prediction models and the TMPC controller 

are 0.1s, which are identical to the real-time model. The order of each state-space 

model falls into the range between 1 and 20. The main tuning parameters, which 

consist of the past inputs, past outputs maximum and prediction horizon used in 

the predictor, are defined as ‘N4HORIZON’ (Zhang et al., 2017). From figure 5-5, 

it can be concluded that after stepped changes on the EGR valve position, the 

identified state-space model could reflect the trend of the EGR flow rate variation 

accurately. For HPEGR, LPEGR loop and MAP, the error reaches ±2.5%, ±4% 

and ±6.12% respectively. Therefore, it can be proved that the above identified 

model is as reliable as the predictor model for the MPC controller (Zhang et al., 
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2017). Even though the error always exists due to the nature of identified model, 

it could be minimized by the proper designed close-loop control strategy (Zhang 

et al., 2017).   

The next stage is the controller calibration process. In this work, the prediction 

horizon, control horizon, input weight, output weight, constraints and input rate 

weight are the main tuning parameters (Zhang et al., 2017). The selection of the 

control horizon is vital for the MPC-based controllers. It should be balanced 

between computational speed and control accuracy. A longer control horizon 

would lead to more accurate control of the control objects as it increases the span 

of the control variables that needs to calculate, but it will sacrifice the 

computational speed. Both the control horizon the prediction are parameters 

without units. The time span of the model prediction and the control variables are 

listed below: 

Time span of prediction model = time interval ∗ pridiction horizon  

Time span of calculated control variables = time interval ∗ pridiction horizon 

In this work, the control horizon is taken as 2, while the prediction horizon is taken 

as 10. For the controller and the engine model, the time interval are taken as 0.1s 

to deal with rapid transient conditions (Zhang et al., 2017). The optimum tuning 
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of the TMPC parameters could help to achieve a quick response with smaller 

overshoot and shorter settling time (Zhang et al., 2017)  

The system identification process is conducted under a constant fuel injection 

rate and engine speed (Ortner et al., 2006;Zhang et al., 2017). Since it is not only 

impractical but also inaccurate to cover the full engine working range with only 

one model, different regimes of the engine operating conditions are defined 

based on the mass of fuel injection and engine speed. Then, to select the 

corresponding sub-controller, a switch logic is established. The table below 

shows the representative engine working conditions to define the boundaries of 

sub-TMPC controllers (Zhang et al., 2017). 
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Table 5-1 Engine Working Conditions to Allocate the Sub-TMPC controller 

No. of Sub-TMPC 

Controller 

Range of Engine Speed 

(rpm) 

Mass of Fuel Injection 

(mg/hub) 

1 Engine Speed ≤1250 Mass of Fuel Injection ≤15 

2 Engine Speed ≤1250 Mass of Fuel Injection >15 

3 
1250＜Engine Speed≤1750 

Mass of Fuel Injection ≤20 

4 
1250＜Engine Speed≤1750 20＜Mass of Fuel Injection≤40 

5 
1250＜Engine Speed≤1750 

Mass of Fuel Injection >40 

6 
1750＜Engine Speed≤2250 

Mass of Fuel Injection ≤20 

7 
1750＜Engine Speed≤2250 20＜Mass of Fuel Injection≤40 

8 
1750＜Engine Speed≤2250 

Mass of Fuel Injection >40 

9 
2250＜Engine Speed 

Mass of Fuel Injection ≤20 

10 
2250＜Engine Speed 20＜Mass of Fuel Injection≤40 

11 
2250＜Engine Speed 

Mass of Fuel Injection >40 

5.4 Results and Discussion 

5.4.1 Comparison between TMPC Controller and Conventional PID Controller 

To evaluate the performance of the conventional PID controller and the TMPC 

controller, the results obtained from the simulation platform are listed below 

(Zhang et al., 2017). To achieve fair comparison with the proposed TMPC 
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controller, the PID controller is also calibrated by the author. The intelligent 

transient calibration method shown in chapter 4 is used to calibrate the PID 

controller. Similar to the control logic on production ECUs, each actuator of the 

air path is applied to a PID controller including the anti-windup section. (Zhang et 

al., 2017).  

The test sequence in this case is designed as a constant engine speed with step 

changes of fuel injection quantity. The profile is shown in the chapter 3, section 

of experiment design. So, it is not shown in this chapter. In this work, the 

evaluation of the TMPC and PID controller mainly focuses on the overshoot time, 

average response time and settling time. These parameters are mutually 

recognized aspects to evaluate the controllers’ performances (Zhang et al., 2017). 

Other parameters which are strongly related to the performance, fuel economy 

and emissions of the engine, including the engine MAF, MAP, LPEGR portion, 

total EGR rate, actuator positions and EGR mass flow, are also evaluated (Zhang 

et al., 2017). The designed test sequence has been shown in chapter 3, section 

of design of experiments. The detailed comparison will be introduced through the 

following figures(Zhang et al., 2017).  
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Figure 5-6  Trajectory of engine torque using TMPC controller and PID controller 

Figure 5-6 is the torque response of the engine in the test scenario. Under steady 

state conditions, the trajectories of the torque of the engine with the PID controller 

and the TMPC controller are identical; however, under transient scenarios, the 

torque curves differ slightly. The torque trajectories with both step decreased and 

step increased fuel injection are compared in the following figures (Zhang et al., 

2017).   
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Figure 5-7  Detailed Engine Torque Comparison under Step Increased and Step Decreased 

Fuel Injection 

When the mass of the fuel injection increases, from 50 s to 52.6 s, the TMPC 

controller could achieve a faster torque response than the PID controller. Even 

though from 152.3 s to 154.4 s, the PID controller could help the engine 

generating a higher torque of 1.9 Nm than that of the TMPC controller. The larger 

overshoot on engine MAF and MAP is the main reason for this. In terms of the 
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BSFC result, the TMPC controller could get a value which is 1.3% less than that 

of the PID controller due to the torque deviation (Zhang et al., 2017). Because of 

the strong non-linearity and coupling effect of the control objects, for the step 

decreased fuel injection, a 3% drop of the engine torque is appeared for the PID 

controller at 105.4 s. Moreover, between 100 s and 103.8 s, the torque rate of 

change under the TMPC controller is quicker than under the PID controller 

(Zhang et al., 2017).  
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Figure 5-8  Trajectories of Engine MAP (a), VGT Rack Position (b), HPEGR Mass flow (c), 

HPEGR Valve Position (d), LPEGR Mass Flow (e), LPEGR Valve Position (f) 

Figure 5-8 (a) and (b) compare the trajectories of the MAP and VGT’s rack 

position. For turbocharged diesel engines, the MAP value is the key parameter 

to regulate the accumulated amount of the gas pumped into the engine (Heywood, 

1988;Zhang et al., 2017). The average overshoot under the TMPC controller 

during this period drops to 1.7%; while the average overshoot of the PID controller 

reaches 9.1%. The average settling time of the TMPC controller is also shorter 

than that of the PID controller. The settling time for the TMPC controller is 5.7 s; 

while for the PID controller it is 7.3 s (Zhang et al., 2017). As shown in Figure 5-

8(b), when the mass of the fuel injection changes at 100 s and 150 s under the 

PID mode, either the extra-large or extra small VGT’s rack position would affect 

the kinetic energy of the exhaust gas received by the VGT; which eventually leads 

to a worse performance of the compressor and a larger overshoot on the MAP 
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(Zhang et al., 2017). However, when the TMPC controller is applied to the diesel 

air path, the VGT’s rack position constraint is helpful to avoid aggressive 

movements of the actuators (Zhang et al., 2017). The various trajectories of the 

VGT rack position using the PID controller and TMPC controller are caused by 

the differences between these two control methods. The PID controller can only 

adjust the control variables based on the feedback error of the control object. 

While the TMPC controller aims to calculate the optimal sequence of the control 

variable based on both feedback and prediction of the control object’s behaviour.    

In this work, the control objects include the engine MAP value, engine HPEGR 

mass flow and the LPEGR mass flow. As it is shown in Figure 5-8(c), under the 

same pace with both the PID and TMPC controllers, the HPEGR mass flow 

decreases quickly at 150 s. According to the calibration, during these periods, the 

HPEGR mass flow set point is less than 1 g/s. The differences between the 

settling time and overshoot have little impact on the air path (Zhang et al., 2017). 

Under the PID controller, the settling time and overshoot of the HPEGR mass 

flow are 7.9 s and 8.6% when the mass of fuel injection changes from 30 

mg/stroke to 20 mg/stroke at 100 s. The TMPC controller is capable to reduce 

these two parameters to 6.4 s and 0% (Zhang et al., 2017). Under the PID 

controller, the over flow of the HPEGR mass flow is caused by the large EGR 

valve opening shown in Figure 5-8(d), which will reduce the efficiency of the 

compressor. Also, as shown in Figure 5-8 (a) and Figure 5-9 (b), this coupling 
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effect would eventually results in a drop in terms of MAP and an increase in the 

total EGR rate (Zhang et al., 2017). Because of the high non-linearity and the 

large transport delay, the control on the LPEGR mass flow through the PID 

controller might have a longer settling time and a larger overshoot (Zhang et al., 

2017). From Figure 5-9(c), the PID controller could obtain a trajectory with a 

settling time of 6.9 s and average overshoot of -16.3%. In comparison, the TMPC 

controller shows a better performance by achieving a settling time of 6.1s and a 

smooth trajectory with zero overshoot (Zhang et al., 2017). 

The section of results and discussion also includes the trajectories of engine 

actuators (VGT and EGR valves). At steady state conditions, the baseline for the 

control variables is provided by the VGT rack position, the HPEGR and LPEGR 

valve position set points, and the optimal adjustment on the above three variables 

is determined by the TMPC controller to meet the control objectives during 

transient scenarios (Zhang et al., 2017). 

 



 

161 

 

 

 



 

162 

 

 

Figure 5-9  Trajectories of Engine MAF (a), total EGR rate (b) and LPEGR Fraction (c) 

Based on the equations shown in section 5.3, the EGR mass flow affects the 

engine MAF, the LPEGR fraction and total EGR rate significantly. Therefore, the 

precisely controlled EGR mass flow, which is shown in Figure 5-8, could 

contribute to these signals (Zhang et al., 2017). In terms of the MAF control, the 

PID controller contains an average overshoot of 10.09%. However, the TMPC 

controller could minimize it to as less as 4.2%. Besides, in terms of the settling 

time, it is also being reduced from 8.2 s to 7.4 s. The overdosed amount of air 

and the high combustion temperature are widely regarded as the key elements 

for NOx formation (Tian et al., 2014;Zhang et al., 2017). However, the 

temperature inside the cylinder would be obviously raised by the sudden 

increased fuel injection at 150 s. In addition, at this moment, an excessive amount 

of air for NOx formation is also be provided by the higher overshoot of the MAF 

trajectory under the PID controller. Therefore, it is foreseeable that at these 
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moments, the NOx spike would be larger than that using the TMPC controller 

(Zhang et al., 2017). The MAF also has strong relation with the particulate 

emissions of diesel engines (Johnson, 2001;Zhang et al., 2017). In Figure 5-9(a), 

a low level of MAF value is provided by the larger negative overshoot of the MAF 

trajectory at 100 s, which contributes to the PM increment (Zhang et al., 2017).  

In the in DLEGR control, the LPEGR portion and the total EGR rate are critical 

parameters. The trajectories of the LPGR portion and the total EGR rate are 

shown in Figure 5-9(b). Under the PID controller, the settling time and the 

overshoot of the total EGR rate are 7.5 s and -8.6% when the mass of the fuel 

injection is decreased from 30 mg/stroke to 20 mg/stroke at 100 s. As comparison, 

they have been reduced to 5.9s and 0% by the TMPS controller (Zhang et al., 

2017). The settling time and overshoot of the PID controller are 8.4 s and -11.59% 

under the condition of a step-increased mass of fuel injection from 20 to 50 

mg/stoke at 150 s. However, they can be reduced to 7.6 s and –6.15% by the 

TMPC controller (Zhang et al., 2017).  

The EGR flow allocation is the biggest difference between the DLEGR control  

and the traditional single loop EGR control (Zhang et al., 2017). It is mentioned 

in literature review that when the LPEGR portion value becomes too low, the 

smoke opacity would be increased (Gihun Lim, 2011). It can be seen from Figure 

5-9 (c) that under both the TMPC and PID controllers, the LPEGR portion could 
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reach the desired value with neglected overshoot at 150 s (Zhang et al., 2017). 

However, the overshoot of the PID controller is -11.8% when the mass of the fuel 

injection decreases at 100 s, while a smooth transaction of LPEGR proportion 

could be achieved by the TMPC controller. It can be concluded from previous 

discussions that at this moment, a larger overshoot means that more PM 

emissions would be produced. (Zhang et al., 2017) 

5.4.2 Validation on the HIL Test Platform 

Both the PID controller and the TMPC controller are validated on a HIL test 

platform. The structure of the HIL test platform and the designed test sequence 

have been introduced in chapter 3. The comparisons between the simulation and 

the actual ECU response are shown in figure 5-10 (Zhang et al., 2017).  
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Figure 5-10  Comparison Between the Simulation Results and HIL results; HPEGR mass flow 

(a); HPEGR Valve Position (b); LPEGR Mass Flow (c); LPEGR Valve Position (d); MAP (e); VGT 

Rack Position (f) 

Figure 5-10 shows that the overshoot and settling time of the control objects using 

the TMPC controller are still smaller than those using the PID controller; which 

follows the same trend as results from the simulation. However, for both the 

TMPC controller and the conventional PID controller, tiny lags of signals still exist. 
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This phenomenon could be explained from two aspects: firstly, it is the signal 

transmission between the processor and the real-time target PC, which makes 

the processor receive the signals from the real-time PC with a delay of one 

sample time. Although the sample time is set to 0.1 s in this case, the trajectories 

of control objects are still affected. The second aspect is the computational 

requirements of the TMPC controller. Because of the mechanism of MPC-based 

controller, the prediction of control objects and the calculation of the optimal 

control sequence must be finished online. The difference of computational 

capability between the processor and the desktop PC processor is non-negligible.  

5.5 Summary 

In this chapter, a TMPC controller for the air path of a diesel engine is presented. 

Case studies and HIL validation are conducted to evaluate the performance of 

the proposed controller. The obtained results are also compared with the results 

of conventional PID controller. The conclusions are listed as follows (Zhang et al., 

2017):  

1. The settling time and average overshoot of the engine MAP using PID 

controller are 7.3 s and 9.1%, respectively. The TMPC controller could reduce 

them to 5.7 s and 1.2%, respectively (Zhang et al., 2017).  

2. The PID controller could achieve a settling time of 7.1 s and an 8.6% 
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overshoot for the HPEGR mass flow, while the TMPC controller could reduce 

them to 6.4s and 0.5%. 

3. The settling time and the average overshoot of the LPEGR mass flow using 

the PID controller are 6.9 s and -26.3%, while the TMPC controller can reduce 

them to 4.3 s and-18.7% (Zhang et al., 2017).  

4. A 1.2% drop of the BSFC result is achieved during transient scenarios by 

adopting the TMPC controller.  

5. The HIL test validate the real-time capability of the proposed controller. The 

agreement between the actual ECU response and the simulation results is 

good (Zhang et al., 2017).  

Therefore, it can be concluded that the proposed TMPC controller achieves better 

performance than the conventional PID controller in reducing the overshoot and 

settling time of the engine’s air path during transient scenarios. An improved fuel 

economy is also achieved by the TMPC controller since it can overcome the 

nonlinearity, coupling effects and delay of the engine’s air path.  
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CHAPTER 6  NEURAL NETWORK MODEL PREDICTIVE 

CONTROL 

After introducing the TMPC controller in chapter 5, another control approach for 

the diesel engine’s air path is introduced in this chapter; in which a neural network 

MPC (NMPC) controller is developed. Due to the more complex control 

mechanism, a neural network model is built based on engine data and it acts as 

the internal predictor for the controller. To solve the optimization problem inside 

the controller at each time interval, a real-time solver based on an evolutionary 

algorithm is also built. The proposed NMPC controller is firstly compared with the 

conventional PID control. To test the capability of real-time processing, the 

controller is also validated on the HIL test platform. Then the comparison between 

the NMPC controller and the TMPC controller is conducted.  

6.1 Introduction 

In order to investigate the MPC control of the diesel engine’s air path more 

extensively, it is necessary to develop various types of MPC-based controllers. 

Compared with the proposed TMPC controller in chapter 5, the NMPC controller 

is a more recently created MPC-based control method, which expands the MPC 
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control theory. The NMPC is in the category of non-linear MPC control methods. 

It provides an alternative solution for the constraint multiple-objective control 

problems.  

The real-time applicability on standard ECU with sampling time in millisecond 

range is still a challenge due to complex algorithm of non-linear MPC controllers. 

Generally, the optimal control problem in the non-linear MPC controller is solved 

by gradient-descent Newton’s method. One commonly used method is to use 

sequential quadratic programming (SQP) (Zhu et al., 2017a). Previous work has 

proved the possibility of applying SQP to non-linear MPC (Study et al., 

2016;Harder et al., 2017). The advantage of SQP is transforming a complex non-

linear programming (NLP) problem into a sequence of sublevel QP problems (to 

compute the Hessian and Jacobi matrixes of the NLP problem) (Zhu et al., 2017b). 

The MATLAB function could also be used to solve this kind of optimization 

problem (Jain and Deb, 2014). However, the MATLAB function has a shortage of 

high computational requirements and thus, which is not suitable for engine control 

applications with the need for real-time calculation. Other methods such as the 

Laguerre function (El Hadef et al., 2013), NAG toolbox (X. Zhou et al., 2015; Li et 

al., 2016) and dynamic programming (Tan et al., 2015) have also been used as 

non-linear MPC solvers. As the neural network models have the advantage of 

capturing the characteristics of complex systems, they have attracted the 

attentions of the researchers in recent years. Techniques including a recurrent 
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neural network (RNN), or an extreme learning machine (ELM) have been 

successfully used for non-linear MPC controllers (Chen et al., 2017; Janakiraman 

et al., 2016).  

In recent years, it has been found that an evolutionary algorithm can be a 

potential candidate as a global NLP solver for non-linear MPC controllers. The 

genetic algorithm (Chen et al., 2009), NSGA-II (Wei et al., 2017), nested-partition 

algorithm (Chauhdry and Luh, 2012) and particle swarm optimization (PSO) 

algorithm (Xu et al., 2013) are all proposed to solve the non-linear optimization 

problem. Among these methods, the PSO-based algorithm is a population-based 

stochastic method with the advantages of not needing to calculate the gradient, 

a quick convergence speed, global search capability, simple structure and easy 

implementation (Thomas, 2014). Besides, the performance can be further 

improved by upgrading the conventional PSO algorithm into a chaos-enhanced 

accelerated particle swarm optimization (CAPSO) algorithm (Gandomi et al., 

2013). Publication that author participated has proved that the CAPSO algorithm 

is a feasible solution for energy management; the controller’s stability and 

tracking performance are fully presented (Q. Zhou et al., 2017b). Therefore, the 

idea of adopting a CAPSO algorithm to solve the NMPC problem in the diesel 

engine’s air path is promising. 

This chapter presents a NMPC controller for a diesel engine’s air path, which 
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adopts the recurrent neural network model as the internal predictor and the 

CAPSO algorithm as the real-time solver. The outline is organized as follows: 

section 6.2 introduces the controller’s structure (control objectives and control 

variables); section 6.3 presents the algorithm and the design workflow of the 

NMPC controller; section 6.4 firstly shows the comparison between the NMPC 

controller and the PID controller, which is conducted on the real-time engine 

model. The optimization performance of the NMPC controller is further discussed 

afterwards. The NMPC controller is also validated on a HIL platform. Finally, the 

conclusions of this work are summarized and listed. 

6.2 Controller Structure 

 
Figure 6-1  Structure of the NMPC Controller 

The structure of the NMPC controller is shown in Figure 6-1. In this case, the 
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control objects are the engine boost pressure (MAP), HPEGR mass flow (𝑀𝐻𝑃𝐸𝐺𝑅) 

and LPEGR mass flow (𝑀𝐿𝑃𝐸𝐺𝑅 ). The control variables are the HPEGR valve 

position, LPEGR valve position and VGT rack position (𝐴𝐻𝑃𝐸𝐺𝑅 , 𝐴𝐿𝑃𝐸𝐺𝑅  𝑎𝑛𝑑 𝐴𝑉𝐺𝑇). 

To achieve the function of the engine air path control, the NMPC controller also 

requires the engine speed, mass of fuel injection, setpoint of the control variables 

(𝐴𝐻𝑃𝐸𝐺𝑅_𝑠𝑒𝑡, 𝐴𝐿𝑃𝐸𝐺𝑅_𝑠𝑒𝑡 𝑎𝑛𝑑 𝐴𝑉𝐺𝑇_𝑠𝑒𝑡 ), the reference values of the control objects 

(𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓, 𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 𝑎𝑛𝑑 𝑀𝐴𝑃𝑟𝑒𝑓 ), feedback values of the control objects 

(𝑀𝐻𝑃𝐸𝐺𝑅_𝑓𝑒𝑑, 𝑀𝐿𝑃𝐸𝐺𝑅_𝑓𝑒𝑑 𝑎𝑛𝑑 𝑀𝐴𝑃𝑓𝑒𝑑) and controller weighting factors to calculate 

the optimal control sequence. The setpoint of control variables, the desired values 

of control objects, weighting factors and controller constraints are obtained from 

the pre-stored calibration maps. The desired values of the HPEGR and LPEGR 

mass flow are calculated by engine MAF, total EGR rate and LPEGR fraction. 

The equations to define the total EGR rate and LPEGR fraction are shown below:  

𝐸𝐺𝑅 𝑅𝑎𝑡𝑒𝑟𝑒𝑓 =
𝑀𝐻𝑃𝐸𝐺𝑅_𝑠𝑒𝑡 +𝑀𝐿𝑃𝐸𝐺𝑅_𝑠𝑒𝑡

𝑀𝐴𝐹𝑠𝑒𝑡 +𝑀𝐻𝑃𝐸𝐺𝑅_𝑠𝑒𝑡 +𝑀𝐿𝑃𝐸𝐺𝑅_𝑠𝑒𝑡
 

𝐿𝑃𝐸𝐺𝑅 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑡 =
𝑀𝐿𝑃𝐸𝐺𝑅_𝑠𝑒𝑡

𝑀𝐻𝑃𝐸𝐺𝑅_𝑠𝑒𝑡 +𝑀𝐿𝑃𝐸𝐺𝑅_𝑠𝑒𝑡
 

The equations to calculate the 𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 and 𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 are: 
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𝑀𝐻𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ (1 − 𝑅𝐿𝑃_𝑟𝑒𝑓)

(1 − 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓)
 

𝑀𝐿𝑃𝐸𝐺𝑅_𝑟𝑒𝑓 =
𝑀𝐴𝐹𝑟𝑒𝑓 ∙ 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓 ∙ 𝑅𝐿𝑃_𝑟𝑒𝑓

(1 − 𝑅𝐸𝐺𝑅_𝑟𝑒𝑓)
 

Inside the NMPC controller, it consists of three parts: the cost function, the real-

time optimizer and the internal prediction model. The detailed introduction of each 

part is shown in the next section. The real-time optimizer calculates the optimal 

sequence of the control variables. The internal prediction model predicts the 

future trajectory of the control objects. The cost function module formulates the 

control problem into an optimization problem and provides an evaluation standard 

for the results from the internal prediction model. Eventually, the optimal results 

of the control variables are generated by the NMPC controller and sent to the 

real-time engine model at each time interval. 

In terms of the real-time diesel engine model, it is the same model used for the 

simulation work in chapter 4 and 5. The detailed introduction has been shown in 

chapter 3, section 3.1.5. 
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6.3 Nonlinear Model Predictive Control Approach 

6.3.1 Cost Function Design 

In general, an MPC-based controller formulates the control problem into 

calculating the optimal sequence of the control variables. The goal of the NMPC 

controller is to assure that the control objects track the given reference while 

penalizing any large excursion in the control variables.  

The author adopts the cost-function design of conventional linear MPC controller 

in chapter 5 and formulates the cost function as: 

𝐽(𝑥(𝑘), 𝑢𝑘) =∑‖𝑦̅𝑐(𝑘 + 𝑖) − 𝑟(𝑘 + 𝑖)‖𝑄
2

𝑁𝑝

𝑖=1

+ ∑‖𝑢̅𝑐(𝑘 + 𝑖) − 𝑟𝑢(𝑘 + 𝑖)‖𝑅
2

𝑁𝑐−1

𝑖=0

 
 

𝑢𝑐(𝑛)𝑚𝑖𝑛 ≤ 𝑢𝑐(𝑛) ≤ 𝑢𝑐(𝑛)𝑚𝑎𝑥   𝑛 = 1,2,3…𝑁𝑐 − 1  

Δ𝑢𝑐(𝑛)𝑚𝑖𝑛 ≤ Δ𝑢𝑐(𝑛) ≤ Δ𝑢𝑐(𝑛)𝑚𝑎𝑥   𝑛 = 1,2,3…𝑁𝑐 − 1  

𝑦𝑐(𝑛)𝑚𝑖𝑛 ≤ 𝑦𝑐(𝑛) ≤ 𝑦𝑐(𝑛)𝑚𝑎𝑥   𝑛 = 1,2,3…𝑁𝑝 − 1  

where 𝑁𝑝 and 𝑁𝑐  are the prediction horizon and control horizon, with the 

condition 𝑁𝑐 ≤ 𝑁𝑝; Q and R are the weighting matrix of the control objects and 
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control variables respectively; 𝑦̅𝑐(𝑘 + 𝑖)  is the predicted control objects in the 

span of the prediction horizon from the internal prediction model; 𝑢̅𝑐(𝑘 + 𝑖) is the 

calculated sequence of the control variables in the span of the control horizon 

from the real-time solver; 𝑟(𝑘 + 𝑖) represents the desired values of the control 

objects and 𝑟𝑢(𝑘 + 𝑖)  means the setpoint of control variables. Meanwhile, the 

cost function is limited by the boundary conditions, which define the upper and 

lower limit of control objects and control variables. To limit the control variables’ 

rate of change, an extra limitation module is added to the proposed NMPC 

controller. The limitation of the rate of change reflects the physical characteristics 

of the HPEGR valve, LPEGR valve and VGT. 

As with the conventional linear MPC, only the first value of the optimal control 

sequence is applied to the engine plant at each time interval. The optimization 

process is conducted again for the next time instant. It is helpful to handle the 

model inaccuracies and external disturbances such as the change of engine 

working conditions (Janakiraman et al., 2015). 

6.3.2 CAPSO-based Solver for the Optimization Problem 

In this case, the optimization problem is solved using the chaos-enhanced 

accelerated particle swarm optimization (CAPSO) algorithm. Compared with 

other nature-inspired evolutionary algorithms, the CAPSO algorithm has the 

advantages of requiring fewer tuning parameters and computational resources to 
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solve the multiple-objective optimization issues (Q. Zhou et al., 2017a). It should 

be noticed that the choices of the parameters in the CAPSO-based solver are 

very important to balance the convergence speed and results accuracy.  
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Figure 6-2  Flowchart of the CAPSO-based Solver for the NMPC Controller at Each Time 

Interval 
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The figure above shows the flowchart of the CAPSO solver, which is formed by 

four modules: algorithm initialization, retrieving local best results, main iteration 

and external signals. To solve the optimization problem in the previous section 

online, the algorithm is modified in the following aspects.  

At the beginning of the algorithm, the initial particles in the swarm are generated 

inside the defined particle ranges. This module also formulates the reference 

values of the control objects and control variables into the format that could be 

used by the other functions such as the cost function calculation. Furthermore, 

the algorithm initialization module also determines the prediction horizon and 

control horizon. As discussed in the previous chapter, the control horizon is very 

important for the MPC-based controller. 

All the particles in each generation would be used to calculate the outputs 

(predicted values of control objects) based on the internal prediction model 

(shown in the module of retrieving the local best results). These outputs are 

needed for calculating the cost function value. This process also requires the 

controller’s weights (received from the module of external signals) and reference 

values of the control objects (received from the module of algorithm initialization). 

Then it retrieves the minimum cost function and the local best particle.  

The proposed real-time solver is developed based on an iterative algorithm. The 

main iteration module plays a dominating role in the whole algorithm as it involves 
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updating the local best result in each generation and particle positions in the 

swarm. As introduced in Chapter 4, the CAPSO algorithm brings the chaotic 

mapping strategy to the convergence process of the particles. The governing 

equations are shown in the following (Q. Zhou et al., 2017a): 

𝑃(𝑘,𝑗+1) = 𝑃(𝑘,𝑗) + 𝛽𝑗 ∙ (𝑃(𝑘,𝑗)
∗ − 𝑃(𝑘,𝑗)) + 𝛼𝑗 ∙ 𝑅𝑁𝐺(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑟𝑎𝑛𝑔𝑒)(𝑘) 

 

𝛼𝑗 = 𝛼𝑗−1 ∙ 𝜌
𝑗−1 

 

where 𝑃(𝑘+1,𝑗)  is the updated particle at the next iteration (j+1); 𝑃(𝑘,𝑗)  is the 

particle’s current position (k); 𝑃(𝑘,𝑗)
∗  is the local best particle position at the current 

iteration (j); j is the iteration number; and k is the specific particle index;  𝜌 is a 

reducing factor to make 𝛼𝑗 decrease gradually to ensure the convergence of the 

results. The RNG is the random-number generator, which is extremely necessary 

for PSO-based algorithm. The 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒_𝑟𝑎𝑛𝑔𝑒  is the searching area of the 

particles, which is defined by the boundary conditions. Both 𝛼0and 𝛾 are tuning 

parameters in this algorithm. After calibration, they are set to 0.7 and 0.7 

respectively in this case. 𝛽 is the unique part of the proposed CAPSO algorithm. 

It is called the attraction parameter and the detailed introduction of this part has 

been presented in the previous chapter (Chapter 4). Based on the publication 

that author contribute to (Q. Zhou et al., 2017b), the logistic map achieves better 
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performance on generating the array of the attraction parameter. The equation is 

shown below: 

𝛽𝑗 = 𝜌 ∙ 𝛽𝑗−1 ∙ (1 − 𝛽𝑗−1)  

According to the reference listed in the previous paragraph, the initial value (𝛽0) 

is set to 0.7 and the 𝜌 is chosen as 4. 

In this algorithm, the particle position updating is formed by the particle move 

towards the local best result with the chaotic mapping strategy and the random 

move inside the particle range. The equations of the random particle move are 

developed based on the linear congenital generator (LCG) (Xu et al., 2016). This 

method has the advantages of easy understanding and fast implementation. Due 

to the physical limitation of the actuators in the diesel engine’s air path, the 

random numbers need to have the resolution of 0.01. Because the operation 

range of the EGR valves and VGT rack position in this thesis is between 0 and 

100, the minimum resolution of the actuator is 0.1. The offset of the actuator 

position caused by the LCG should match with the minimum resolution of the 

actuators. So, the solution of the random number generator matches with the 

characteristic of the actuators. Based on the design of the controller, the randomly 

generated numbers should fall in the range between -0.5 and 0.5. 
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𝑅(𝑘) = (𝑎 ∙ 𝑅(𝑘−1) + 𝑐)(𝑚𝑜𝑑 𝑀)  

𝑅𝑁𝐺(𝑘) = 𝑟𝑜𝑢𝑛𝑑 (
𝑅(𝑘)

𝑀
, 3)  

𝑅𝑁𝐺(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑟𝑎𝑛𝑔𝑒)(𝑘)
= 𝑅𝑁𝐺(𝑘) − 0.5  

The equations above define the sequence of randomly generated numbers 

(𝑅𝑁𝐺(𝑘)) with the initial seed 𝑅0. These numbers are limited in the range between 

0 and 1; 𝑎, 𝑐,𝑀  are the multiplier, additive value and modulus, which are the 

calibrated variables. To meet the most optimal pseudo-random number 

performance, these parameters are selected as 𝑅0=9, a=27, c=0 and M=220. The 

effect of these calibrated variables on the LCG performance and more detailed 

principles of the LCG can be found in the work carried out by Tan and Hui (Tang, 

2007).  

The random numbers generated by the LCG are shown in the figure below 

(Figure 6-3). The random numbers achieve a uniform distribution and satisfy the 

boundary conditions required by the CAPSO-based solver after 2000 iterations.  

The main reason to use the RNG introduced in the previous paragraphs is to 

make sure the whole NMPC controller could be validated by the HIL test; as there 

is no direct substitute for this MATLAB function in the HIL platform. 
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Figure 6-3  Random Number Distribution by LCG 

At the end of the iteration process, the algorithm results are successfully 

converged. The optimal control sequence is generated. Then the first column of 

the matrix𝑢̅𝑐(𝑘) = [𝑢̅𝐻𝑃𝐸𝐺𝑅(𝑘); 𝑢̅𝐿𝑃𝐸𝐺𝑅(𝑘); 𝑢̅𝑉𝐺𝑇(𝑘)]  would be final output of the 

NMPC controller and sent into the real-time engine model. 

6.3.3 Internal Prediction Model 

To acquire the predicted trajectories of the control objects, the internal prediction 

model is compulsory for the proposed NMPC controller. The internal prediction 

model in this case is a non-linear ARX model (NARX) which has the advantage 

of anticipating time-series data. Moreover, it is also able to cope with the strong 

non-linearity and coupling effects of the diesel engine’s air path. The training of 
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the internal prediction model of the NMPC controller no longer needs the system 

linearization procedure. It is helpful to further increase the prediction accuracy 

(Bc. Ondrej Mikulas, 2016). The third reason to select this model is its easy 

implementation. The MATLAB code of the model can be directly generated, which 

makes it compatible in the Simulink environment. The details of this model are 

shown in the following paragraphs. 

The governing equations for the NARX model are shown below (F. Zhou et al., 

2017): 

𝑦(𝑘) = 𝑓(𝑦(𝑘−1), 𝑦(𝑘−2), … , 𝑦(𝑘−𝑛), 𝑢(𝑘), 𝑢(𝑘−1), 𝑢(𝑘−2), … , 𝑢(𝑘−𝑚))  

While the model inputs and outputs are constrained in the form of: 

𝑢(𝑘) ∈ 𝑈, ∀ 𝑘 ≥ 0  

𝑦(𝑘) ∈ 𝑌, ∀ 𝑘 ≥ 0  

𝑈 = {𝑢 ∈ ℝ𝑛𝑢丨𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘) ≤ 𝑢𝑚𝑎𝑥}  

𝑌 = {𝑦 ∈ ℝ𝑛𝑦丨𝑦𝑚𝑖𝑛 ≤ 𝑦(𝑘) ≤ 𝑦𝑚𝑎𝑥}  
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where 𝑓(∙) is a non-linear function which involves the current model’s inputs and 

the previous model’s inputs and outputs. The main tuning parameters are the 

number of hidden layers and the orders of the past input and output delays that 

will be fed into the network. They are determined by the training data acquired by 

the experiments. The training algorithm should also be chosen to balance the 

training speed and the results’ accuracy. The NARX model also requires the initial 

delay states of the inputs and outputs for simulation (TDL). The detailed structure 

of the NARX prediction model is shown in Figure 6-4.  
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Figure 6-4  Structure of the Internal Prediction Model Based on NARX (“Design Time Series 

NARX Feedback Neural Networks - MATLAB &amp; Simulink - MathWorks United Kingdom,” 

n.d.) 

The NARX model can be designed in the form of open-loop and closed-loop. 

Compared with the open-loop form, the closed-loop form is more suitable for 

multi-step prediction as it continues to work when the external feedback is 
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unavailable, by using the internal feedback values. This kind of structure is also 

known as a parallel structure.  

In this case, the inputs of the model are selected as: the engine speed, mass of 

fuel injection per stroke, HPEGR valve position, LPEGR valve position and VGT 

rack position. The model’s outputs are the control objects; which are the engine 

MAP, HPEGR mass flow and LPEGR mass flow. The training process is to apply 

randomly generated offset to the five parameters that would be used as the model 

inputs, then recording the trajectories of the control objects. Before sending all 

the data into the neural network training process, data processing is needed. A 

median and a low-pass filter are added to minimize the noise in the raw data. In 

addition, correlation factors are added to make sure the input data and output 

data are in the scale. Eventually, a multi-layer multi-step prediction neural network 

structure with one input and output delay is deployed after calibration. The 

Levenberg-Marquardt back propagation algorithm is selected as the training 

algorithm. The fluctuation and the noise of the air path are noticed. Filters (low-

pass filter and median filter) are added in the data acquisition process. To reflect 

the physical characteristics, the actuators’ transport delay is also considered 

(Kyunghan et al., 2015).  

The performance of the NMPC controller is significantly affected by the accuracy 

of the internal prediction model. The test data provided by the engine supplier 
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and the data acquired by internal prediction model are compared. The whole test 

sequence continues for over 1500 s. The figure below only shows a selected 

period of it as a demonstration. 

 

Figure 6-5  Validation of the Internal Prediction Model 

 

To analyse the statistical performance of the prediction model in quantity, different 

evaluation approaches are carried out. These statistical approaches are often selected 

for comparisons. The values are determined by the following equations (Boruah, 2016): 
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𝑀𝐸𝑃 =
∑ (

𝑇𝑖 − 𝑃𝑖
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𝑝
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2

𝑁
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where RSME denotes the standard deviation of the difference between the model 

outputs and the experimental data. The 𝑅2  indicates how well the data fit in a 

mathematical model; MEP is a measure of the dynamic error of the predicted outputs; 

SSE shows the discrepancy between predicted values and target values;  𝑖 is the sample 

index; N is the total sample number; 𝑃𝑖 is the predicted output from the model; 𝑇𝑖 is the 

actual value from the experiments. 

Table 6-1 Statistical Analysis of the Internal Prediction Model 

Model Outputs MAP 

(bar) 

HPEGR Mass Flow 

(g/s) 

LPEGR Mass Flow 

(g/s) 

RMSE 0.017 0.217 0.1299 

𝑅2 99.985 99.924 99.976 

MEP (%) 0.861 2.061 1.237 

SSE 0.012 0.144 0.094 

 

The results in Table 6-1 show that the outputs from the internal prediction model have a 

close trajectory tracking with the experiment data. Even though the error still exists due 
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to the nature of the data-driven model, the results indicate the NARX model is solid 

enough as the predictor for the NMPC controller. 

6.4 Results and Discussion 

6.4.1 Comparison between NMPC Controller and PID Controller 

To evaluate the performance of the NMPC controller, the results obtained from 

the simulation platform are shown below. It is compared with the conventional 

PID controller. The structure and calibration of the PID controller are identical to 

the controller used in Chapter 5. The comparison still mainly focuses on the air 

path’s overshoot, settling time and rise time, which are mutually recognized 

aspects to evaluate the performance of controllers. Other than the control objects 

(MAP, HPEGR mass flow and LPEGR mass flow), the engine MAF, LPEGR 

fraction and total EGR rate are also included in the comparison. The detailed 

performance of the controller is presented through the figures below. 



 

189 

 

 

Figure 6-6  Trajectory of Engine Torque; Detailed Engine Torque Comparison under Step 

Increased (a) and Step Decreased (b) Fuel Injection 

Figure 6-6 shows the engine torque trajectory. This sequence is identical to that 

shown in the previous chapter. The proposed NMPC controller achieves the same 

stability of engine torque as a conventional PID controller under steady states, as 

seen from the torque trajectory. However, the dynamic response is much quicker 

than that from PID controller. Based on the calculation, the accumulated torque 

using the NMPC controller’s method is 1.2% more powerful than that using the 

PID method. As the mass of fuel injection follows the same trajectory, it means 

an improvement of fuel economy is achieved. To demonstrate the details of the 

controller’s performance, a period (between 70s and 180s) is selected as an 

example, which is listed in the following figures. This period includes both a 

stepped increase and decrease of the engine load. 
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Figure 6-7  Trajectories of Engine MAP (a); VGT Rack Position (b); HPEGR Mass flow (c); 

HPEGR Valve Position (d); LPEGR Mass Flow (e); LPEGR Valve Position (f) 

The evaluation of a controller’s performance mainly focuses on the system 

overshoot, settling time, and rise time. As shown in Figure 6-7, the control objects’ 

overshoot, settling time and delay are all successfully reduced by the proposed 

NMPC controller. The main reason behind this is the less aggressive control of 

the control variables. With the help of an internal prediction model, the NMPC 
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controller could anticipate the behaviour of the control object. The PID controller 

only relies on the feedback signal to modify the controller’s decisions. Besides, 

unlike the SISO PID controller, the NMPC controller is a multiple-objective 

controller, which means it can overcome the coupling effect and delay inside the 

diesel engine’s air path. The three actuators are controlled simultaneously. The 

quantitative comparison between the two controllers is shown in the table below. 

The numbers in the table are the averaged values. 

Table 6-2 Quantitative Comparison between NMPC and PID Controllers 

Control Object 

(NMPC) 

MAP (bar) HPEGR Mass Flow 

(g/s) 

LPEGR Mass Flow 

(g/s) 

Overshoot (%) 1.9 2.4 15.8 

Settling Time (s) 3.4 4.2 4.7 

Delay (s) 1.4 2.7 2.1 

Control Object 

(PID) 

MAP (bar) HPEGR Mass Flow 

(g/s) 

LPEGR Mass Flow 

(g/s) 

Overshoot (%) 11.5 10.5 25.4 

Settling Time (s) 6.9 6.4 6.6 

Delay (s) 1.8 3.6 2.8 

The diesel engine’s air path also involves many other parameters. As shown in 

previous chapters, the control objects will also affect the engine’s MAF, total EGR 
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rate, LPEGR fraction and engine torque. The trajectories of these parameters are 

shown in Figure 6-8. 
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Figure 6-8  Trajectories of Engine MAF (a); Total EGR Rate (b); LPEGR Fraction (c); Engine 

Torque (d), Engine Pumping Loss (e) 

The MAF is another important parameter in the diesel engine’s air path as it 

regulates the amount of fresh air pumped into the cylinders. Figure 6-8(a) shows 

the trajectory of an engine’s MAF. Under both load decrease and increase 

conditions, the MAF’s trajectory using the NMPC controller achieves a smoother 

transition between the reference setpoints. Moreover, the MAF’s response is 

much quicker than the conventional PID controller. The MAF’s behaviour has a 

significant impact on the engine’s torque performance (Heywood, 1988). The 

more optimal controlled MAF contributes to the trajectories in Figure 6-8(d). The 

torque trajectory using the NMCP controller achieves a quicker dynamic response 

and less overshoot, when compared with the control result using the PID 

controller. As introduced in the previous chapter, another reason for this is the 

less aggressively controlled VGT rack position; the related engine pumping loss 
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is reduced. The trajectory of engine pumping loss is shown by the figure 6-8 (e). 

When the mass of fuel injection is increased at 150s, the PID controller causes a 

larger spike of the engine PMEP. The dual-loop EGR control should also evaluate 

the trajectories of the total EGR rate and LPEGR fraction. As introduced in this 

Chapter 5, the larger overshoot, longer settling time and slower dynamic 

response will increase the spikes of the engine’s emissions and the burden of the 

engine’s VGT system. Based on the results in Figure 6-8(b) and (c), the engine 

parameters’ overshoot, settling time and delay are all reduced by the NMPC 

controller. According to the references in the literature review, these 

improvements are beneficial to emissions’ reduction. The detailed quantitative 

comparison between the two controllers is shown in the table below. 

 

 

 

 

 

 

 



 

198 

 

 

Table 6-3 Quantitative Comparison between NMPC and PID Controllers 

Control Object 

(NMPC) 

MAF (g/s) Total EGR Rate (%) LPEGR fraction (%) 

Overshoot 4.4 3.5 1.6 

Settling Time 2.8 4.2 3.5 

Delay 3.1 3.1 1.5 

Control Object 

(PID) 

MAF (g/s) Total EGR Rate (%) LPEGR fraction (%) 

Overshoot 8.7 10.1 11.9 

Settling Time 6.6 7.4 6.7 

Delay 2.3 2.6 2.9 

6.4.2 Validation on the HIL Test Platform 

The diesel engine’s controller (NMPC and PID) is also validated on a HIL test 

platform.  
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Figure 6-9  Comparison between the Simulation Results and HIL results; HPEGR mass flow 

(a); HPEGR Valve Position (b); LPEGR Mass Flow (c); LPEGR Valve Position (d); MAP (e); VGT 

Rack Position (f)  

Figure 6-9 shows that the overshoot and settling time of the control objects using 

the NMPC controller are still smaller than those using the PID controller; which 

follows the same trend as results from the simulation platform. However, for both 

the NMPC controller and the conventional PID controller, tiny lags of HIL test 



 

202 

 

results still exist. This phenomenon could be explained from two aspects: firstly, 

it is the signal transmission between the ES910 and the real-time target PC, 

which makes the ES910 receive the signals from the real-time PC with a delay of 

one sample time. Even though the sample time is set to 0.1 s in this case, the 

trajectories of engine parameters are still affected. The second aspect is the 

computational requirements of the NMPC controller. Due to the mechanism of 

MPC-based controller, the prediction of control objects and the calculation of the 

optimal control sequence must be finished online. The difference of 

computational capability between the ES910 processor and the desktop PC 

processor is non-negligible. This is also reflected by the larger deviation between 

the simulation results and the HIL test results when using NMPC controller (Lu et 

al., 2016). 

6.4.3 Comparison between NMPC Controller and TMPC Controller 

The main advantage of the proposed NMPC controller is reducing the number of 

the internal prediction models by dealing with the nonlinear system directly 

without the system linearization process. It also provides more flexibility to 

develop the real-time solver and the internal prediction model. But the TMPC 

controller in chapter 5 has a more systematic design approach and the less 

controller parameters need to be calibrated. The implementation process is also 

less complex compared with the NMPC controller. The TMPC is a more mature 
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approach in the MPC control theory. The selection of TMPC and NMPC controller 

should be determined based on specific applications.  

Table 6-4 compares the performance between the proposed NMPC controller and 

the TMPC controller (introduced in Chapter 5, it is developed based on linear 

MPC). The comparison mainly focuses on the overshoot and settling time of the 

control objects. In addition, the improvement of the fuel consumption between the 

two controllers is also evaluated. In this case, the test sequences for the NMPC 

and TMPC controllers are identical. The trajectories of the engine parameters 

have been shown in the figures in section 6.4.1 and section 5.4.1. The 

comparison focuses on the summarized results of the control objects. 
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Table 6-4 Comparison between NMPC Controller and TMPC Controller 

NMPC Controller MAP (bar) HPEGR Mass 

Flow (g/s) 

LPEGR Mass 

Flow (g/s) 

Average Overshoot (%) 1.9 2.4 15.8 

Average Settling Time 

(s) 

3.4 4.2 4.7 

TMPC Controller MAP (bar) HPEGR Mass 

Flow (g/s) 

LPEGR Mass 

Flow (g/s) 

Average Overshoot (%) 1.2 0.5 18.7 

Average Settling Time 

(s) 

5.7 6.4 4.3 

It can be seen from the table, the NMPC and TMPC controllers achieve close 

results on averaged overshoot and settling time of the control objects. The NMPC 

controller has a larger overshoot value but shorter settling time. On the contrary, 

the TMPC controller has a longer settling time and smaller overshoot. These 

values are all in the same scale. In general, the NMPC controller could achieve 

the same controller performance as the linear TMPC controller.  

In terms of the fuel economy, the proposed NMPC controller achieves a 1.3% 

improvement in the designed test sequence; while the TMPC controller acquires 

a 1.2% improvement. For pure internal combustion engine research, the results 
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can be regarded as the same level. 

6.5 Summary 

A NMPC controller for a diesel engine with DLEGR and a VGT is introduced in 

this chapter. The unique parts of the NMPC controller are the CAPSO-based real-

time solver and NARX-based internal prediction model, which can solve the non-

linear multiple-objective optimization problem directly. The proposed NMPC 

controller also provides a modular design structure, which means the real-time 

solver and internal prediction model could be replaced for various control 

applications. The conclusions based on the results from the designed test 

sequences are summarized as follows: 

1. The average overshoot and settling time of the engine’s MAP using the 

original PID controller are 9.1% and 7.3 s respectively. The NMPC controller 

successfully reduces them to 1.9% and 4.4 s. 

2. The HPEGR mass flow controlled by a PID controller has an 8.6% overshoot 

and a settling time of 7.1 s; the NMPC controller could minimize them to 4.2% 

and 3.5 respectively. 

3. The average overshoot and settling time of the LPEGR mass flow are only 

15.8% and 4.7 s when controlled by the NMPC controller, but the PID control 
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results are 26.3% and 6.9 s respectively.  

4. Compared with the conventional PID controller, a 1.2% drop of the BSFC 

during transient scenarios is acquired by the proposed NMCP controller. Better 

fuel economy is achieved by the proposed control method.  

5. The comparison between the NMPC controller and TMPC controller shows 

that they could achieve the same level of improvements on the engine’s fuel 

economy and dynamic response. 

6. The validation results from the HIL platform present accurate reference 

trajectory tracking of the control objects. The results show that the actual ECU 

response is close to the offline simulation. The proposed controller could be 

applied to the real engine. 

Therefore, it can be concluded that the proposed NMPC controller shows a better 

tracking performance on the control objects when compared with the PID 

controller. It overcomes the coupling effect, delay and nonlinearity of the engine’s 

air path. These improvements are beneficial for the reduction of the engine’s 

emissions. 
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CHAPTER 7  CONCLUSIONS AND FUTURE WORK 

The research work in this thesis focuses on improving the transient performance 

of a diesel engine’s air-path. The improvements are achieved by developing 

intelligent transient calibration algorithm based on CAPSO and advanced air-path 

controllers based on the MPC control theory. The main conclusions are 

summarized below, followed by the planned future work.    

7.1 Conclusions 

The conclusions in this thesis are categorized into three parts as below, in the 

sequence of the thesis chapters. 

7.1.1 Intelligent Transient Calibration using CAPSO Algorithm 

A new engine transient calibration method based on the CAPSO algorithm has 

been developed. The unique part of the algorithm is the chaotic mapping strategy, 

which contributes to locating the global optimum controller parameters. The 

optimized engine performance has been validated. The repeatability test is also 

conducted to evaluate the proposed CAPSO algorithm. The proposed intelligent 

calibration algorithm could optimize the transient behaviour of the engine’s air-

path under various working conditions. Compared with the baseline engine 
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calibration, the overshoot and the settling time of the controller objects are 

massively reduced. An improved engine fuel economy is also obtained by the 

more optimal calibration. The proposed CAPSO algorithm outperforms the 

conventional APSO algorithm. The Monte Carlo analysis shows that the CAPSO 

algorithm achieves a lower value of the cost function than the conventional APSO 

algorithm. It is found in the repeatability test that the standard deviation of the 

optimization object using CAPSO algorithm is much smaller than that using 

conventional APSO algorithm. 

It should be noticed that the weighting factors in the algorithm need to be 

calibrated properly as it will affect the cost-function values of the control objects 

significantly. Besides, the intelligent transient calibration algorithm couldn’t modify 

the existing control strategy, it could only upgrade the calibration. 

7.1.2 Tuneable Model Predictive Control 

The conventional PID controller is difficult to handle the system nonlinearity, 

coupling effects and constraint multiple objective control. To deal with this 

problem, a TMPC controller is developed and implemented on the air-path of a 

modern diesel engine. The approach mainly includes the design of controller 

structure, acquiring the internal prediction model via system identification and 

controller calibration. In various transient scenarios, the proposed TMPC 

controller shows better reference trajectory tracking performance than the original 
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PID controller. The overshoot and settling time of the control objects (MAP, EGR 

mass flow) are significantly reduced. The dynamic performance of the diesel 

engine’s air-path is improved. The properly controlled engine parameters such as 

MAF, total EGR rate and LPEGR fraction contribute to emission abatement. 

Besides, a 1.3% drop of accumulated BSFC is observed from the test cycle 

because the VGT is under optimal control, which reduces the pumping loss of the 

engine.  

The proposed controller is validated on the HIL test platform to evaluate its real-

time capability. The results show identical tracking performance of the control 

objects. The delay between the pure simulation results and the actual control 

unit’s response is tiny and acceptable, which is caused by the signal transmission. 

It means the TMPC controller can be utilized on real engines.     

The TMPC controller has the advantages of systematic design approach and 

easy implementation. However, to achieve real-time control, the QP solver and 

linear state-space model inside the controller could not be replaced. Besides, the 

system linearization is still compulsory. 

7.1.3 Neural Network Model Predictive Control 

An NMPC controller is also presented, it provides an alternative solution for the 

multiple objective control issue instead of the TMPC method. The unique parts of 



 

210 

 

the NMPC controller are the CAPSO-based real-time solver and NARX-based 

internal prediction model, which can solve the nonlinear multiple-objective 

optimization problem directly. It also provides a design approach of NMPC 

controller. The real-time solver and the internal prediction model could be 

replaced or modified for different applications. Results from the simulation 

platform show that the proposed NMPC controller achieve better reference 

trajectory tracking performance than the original PID controller. The overshoot 

and settling time of the control objects are significantly reduced. Besides, a 1.2% 

drop of the accumulated BSFC is observed from the test sequence. Compared 

with the TMPC controller, the NMPC controller achieves close improvements of 

the engine’s transient performance and fuel economy.  

The NMPC controller also shows good trajectory tracking performance of the 

control objects on the HIL test platform. The results indicate that the agreement 

between the pure simulation and actual controller response is acceptable. 

7.2 Future Work 

Supported by JLR research project and the University of Birmingham, the engine 

test bench has been fully upgraded which provides the capability of proceeding 

engine calibration and developing real-time control strategies. According to the 

achievements in this thesis, several suggestions for the future work are provided. 
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7.2.1 Development of Constraint Many-objective Intelligent Optimization Algorithm 

The proposed CAPSO algorithm is a type of multiple objective optimization 

algorithms. As the future powertrain system getting complex, more control or 

optimization objects will be involved. Algorithms inside the controller need to be 

upgraded. Conventional multiple objective optimization algorithms are no longer 

capable of locating the global best result. The many-objective optimization 

algorithm is a possible solution to this issue. Besides, the future vehicle test 

procedure also includes the real-world driving conditions, which means the 

weather condition, vehicle status, geography information and driver’s behaviour 

etc. should be considered. The development of more advanced optimization 

algorithm is needed. 

7.2.2 Implementation of Engine On-board Calibration 

The Open-ECU has the powerful computational capability, it is possible to 

achieve on-board automatic calibration of the engine parameters. As a result, the 

proposed intelligent tuning algorithm can be utilized not only for offline model- 

based optimization but also online tuning of engine variables. In this way, the 

engine optimization environment would be close to real applications. The engine 

could be maintained at its optimum status among all engine conditions along with 

the lifetime of the engine.    
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7.2.3 Model Free Predictive Control 

The MPC-based controller is a typical model-based controller which requires 

internal models to solve the control problem. In recent year, the fast development 

of artificial intelligence brings new ideas to the area of engine control. The 

controller could be shift from model-based controllers to model-free controllers. 

The optimization function and the real-time control function are separate. Like the 

on-board optimization algorithm, the model-free controller could automatically 

upgrade the calibration of the controller by deep-learning or reinforcement 

learning method. The real-time control function is then simplified into a basic 

neural network controller. The inputs of controller are the current system states 

and the required system states, the outputs then are the sequences of control 

variables. 
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Figure A1    Block Diagram of HIL Test Platform Set-up 

Figure A1 shows the set-up of the HIL simulation platform for a diesel engine’s 

air path with an external hardware controller and the real-time diesel engine 

model. Firstly, the variables from the engine model, including desired values and 

measured values, are processed to serial signals through a PC parallel to serial 

convertor. Then, the serial signal is sent to the ECU serial to parallel convertor 

through a HIL serial transfer module. After the controller receives the parallel 

signal, the control algorithm is executed and the control variables such as the 
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EGR valve positions and the VGT rack position are converted to serial signals 

and sent back to the real-time model. A computer is used as the target PC to 

operate the engine model and real-time signal convertor. The TMPC and PID 

controller are compiled into the hardware controller ARM STM32F417lx. The 

detailed specification of the controller is shown in the table below (Zhang et al., 

2017): 

Table A1    Specification of the HIL Platform 

Make and Model ARM STM32F417lx 

Flash memory  512 kb 1024 kb 

SRAM  192 (112+16+64) kb 

FSMC memory controller Yes (1) 

GPIOs 140 

Channel 12-bit ADC 24 

Maximum PU frequency 168 MHz 

working temperature  -40 to +105℃ 

Package LQFP176 
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