4,886 research outputs found

    Muscle Spasticity and Its Interaction with Myofascial System of Children with Central Paresis

    Get PDF
    Traditionally, the problem of muscle spasticity was considered by experts as a kind of local problem associated with the inhibition or traumatisation of the central motor neuron in a certain part of its path. According to this approach, only the first stage of the causal relationship of the two systems was reflected: the nervous and the muscular systems. In the following, intrasystem relations of the muscle and muscle complex appeared according to the type of harmonization or destructivization of the activity of this system. To resolve this problematic situation, the article examines the original theory of Thomas V. Myers about “anatomical trains” or “myofascial meridians” as an integral musculoskeletal system of the human body, which forms the basis of its anatomy and motor activity. Key ideas of tensegrity as a structure of balanced compression-tension of the musculoskeletal system are identified, and it is necessary to rush to the targets, carrying out the correction of motor disorders of the tender age children with paresis of central type by means of physical education. For deeper understanding of the activities of these mechanisms of children myofascial status harmonization, the main myofascial lines were briefly characterized: surface back line, surface frontal line, lateral line, spiral line, arm lines. On this basis, working hypothesis was formulated as for using the holistic myofascial system capabilities of the child's body to correct both the tonic state of individual spastic muscles and to improve the general children motor status. To check the formulated hypothesis, the directions of the implementation of correctively directed physical education of tender age children with central paresis of different localization levels were indicated. An attempt was made to use the basic knowledge of the myofascial meridians functioning to increase the efficiency of diagnosing the state of musculoskeletal formations of children with spastic paresis, developing strategies and tactics for correcting their tonic state, methods and techniques for adjusting the balance of compression and tension of these structures to improve children motor activity and to improve the efficiency of their basic motor regimes mastering. There was made a fundamental conclusion that the correctional work by means of physical education should be preceded by preparatory work aimed at normalization of the whole myofascial system of a child with a spastic type of movement disorders, which can be carried out using purely medical techniques and the techniques based on the means of children physical education. Prospects of the scientific and practical development of the problem indicated in this article are highlighted separately

    Real-Time Human Pose Estimation on a Smart Walker using Convolutional Neural Networks

    Full text link
    Rehabilitation is important to improve quality of life for mobility-impaired patients. Smart walkers are a commonly used solution that should embed automatic and objective tools for data-driven human-in-the-loop control and monitoring. However, present solutions focus on extracting few specific metrics from dedicated sensors with no unified full-body approach. We investigate a general, real-time, full-body pose estimation framework based on two RGB+D camera streams with non-overlapping views mounted on a smart walker equipment used in rehabilitation. Human keypoint estimation is performed using a two-stage neural network framework. The 2D-Stage implements a detection module that locates body keypoints in the 2D image frames. The 3D-Stage implements a regression module that lifts and relates the detected keypoints in both cameras to the 3D space relative to the walker. Model predictions are low-pass filtered to improve temporal consistency. A custom acquisition method was used to obtain a dataset, with 14 healthy subjects, used for training and evaluating the proposed framework offline, which was then deployed on the real walker equipment. An overall keypoint detection error of 3.73 pixels for the 2D-Stage and 44.05mm for the 3D-Stage were reported, with an inference time of 26.6ms when deployed on the constrained hardware of the walker. We present a novel approach to patient monitoring and data-driven human-in-the-loop control in the context of smart walkers. It is able to extract a complete and compact body representation in real-time and from inexpensive sensors, serving as a common base for downstream metrics extraction solutions, and Human-Robot interaction applications. Despite promising results, more data should be collected on users with impairments, to assess its performance as a rehabilitation tool in real-world scenarios.Comment: Accepted for publication in Expert Systems with Application

    Acute modulation of brain connectivity in Parkinson disease after automatic mechanical peripheral stimulation: A pilot study

    Get PDF
    The present study shows the results of a double-blind sham-controlled pilot trial to test whether measurable stimulus-specific functional connectivity changes exist after Automatic Mechanical Peripheral Stimulation (AMPS) in patients with idiopathic Parkinson Disease.Eleven patients (6 women and 5 men) with idiopathic Parkinson Disease underwent brain fMRI immediately before and after sham or effective AMPS. Resting state Functional Connectivity (RSFC) was assessed using the seed-ROI based analysis. Seed ROIs were positioned on basal ganglia, on primary sensory-motor cortices, on the supplementary motor areas and on the cerebellum. Individual differences for pre- and post-effective AMPS and pre- and post-sham condition were obtained and first entered in respective one-sample t-test analyses, to evaluate the mean effect of condition.Effective AMPS, but not sham stimulation, induced increase of RSFC of the sensory motor cortex, nucleus striatum and cerebellum. Secondly, individual differences for both conditions were entered into paired group t-test analysis to rule out sub-threshold effects of sham stimulation, which showed stronger connectivity of the striatum nucleus with the right lateral occipital cortex and the cuneal cortex (max Z score 3.12) and with the right anterior temporal lobe (max Z score 3.42) and of the cerebellum with the right lateral occipital cortex and the right cerebellar cortex (max Z score 3.79).Our results suggest that effective AMPS acutely increases RSFC of brain regions involved in visuo-spatial and sensory-motor integration.This study provides Class II evidence that automatic mechanical peripheral stimulation is effective in modulating brain functional connectivity of patients with Parkinson Disease at rest.Clinical Trials.gov NCT01815281

    Inertial Sensors for Human Motion Analysis: A Comprehensive Review

    Full text link
    Inertial motion analysis is having a growing interest during the last decades due to its advantages over classical optical systems. The technological solution based on inertial measurement units allows the measurement of movements in daily living environments, such as in everyday life, which is key for a realistic assessment and understanding of movements. This is why research in this field is still developing and different approaches are proposed. This presents a systematic review of the different proposals for inertial motion analysis found in the literature. The search strategy has been carried out on eight different platforms, including journal articles and conference proceedings, which are written in English and published until August 2022. The results are analyzed in terms of the publishers, the sensors used, the applications, the monitored units, the algorithms of use, the participants of the studies, and the validation systems employed. In addition, we delve deeply into the machine learning techniques proposed in recent years and in the approaches to reduce the estimation error. In this way, we show an overview of the research carried out in this field, going into more detail in recent years, and providing some research directions for future wor

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Deep Learning Based Abnormal Gait Classification System Study with Heterogeneous Sensor Network

    Get PDF
    Gait is one of the important biological characteristics of the human body. Abnormal gait is mostly related to the lesion site and has been demonstrated to play a guiding role in clinical research such as medical diagnosis and disease prevention. In order to promote the research of automatic gait pattern recognition, this paper introduces the research status of abnormal gait recognition and systems analysis of the common gait recognition technologies. Based on this, two gait information extraction methods, sensor-based and vision-based, are studied, including wearable system design and deep neural network-based algorithm design. In the sensor-based study, we proposed a lower limb data acquisition system. The experiment was designed to collect acceleration signals and sEMG signals under normal and pathological gaits. Specifically, wearable hardware-based on MSP430 and upper computer software based on Labview is designed. The hardware system consists of EMG foot ring, high-precision IMU and pressure-sensitive intelligent insole. Data of 15 healthy persons and 15 hemiplegic patients during walking were collected. The classification of gait was carried out based on sEMG and the average accuracy rate can reach 92.8% for CNN. For IMU signals five kinds of abnormal gait are trained based on three models: BPNN, LSTM, and CNN. The experimental results show that the system combined with the neural network can classify different pathological gaits well, and the average accuracy rate of the six-classifications task can reach 93%. In vision-based research, by using human keypoint detection technology, we obtain the precise location of the key points through the fusion of thermal mapping and offset, thus extracts the space-time information of the key points. However, the results show that even the state-of-the-art is not good enough for replacing IMU in gait analysis and classification. The good news is the rhythm wave can be observed within 2 m, which proves that the temporal and spatial information of the key points extracted is highly correlated with the acceleration information collected by IMU, which paved the way for the visual-based abnormal gait classification algorithm.步态指人走路时表现出来的姿态,是人体重要生物特征之一。异常步态多与病变部位有关,作为反映人体健康状况和行为能力的重要特征,其被论证在医疗诊断、疾病预防等临床研究中具有指导作用。为了促进步态模式自动识别的研究,本文介绍了异常步态识别的研究现状,系统地分析了常见步态识别技术以及算法,以此为基础研究了基于传感器与基于视觉两种步态信息提取方法,内容包括可穿戴系统设计与基于深度神经网络的算法设计。 在基于传感器的研究中,本工作开发了下肢步态信息采集系统,并利用该信息采集系统设计实验,采集正常与不同病理步态下的加速度信号与肌电信号,搭建深度神经网络完成分类任务。具体的,在系统搭建部分设计了基于MSP430的可穿戴硬件设备以及基于Labview的上位机软件,该硬件系统由肌电脚环,高精度IMU以及压感智能鞋垫组成,该上位机软件接收、解包蓝牙数据并计算出步频步长等常用步态参数。 在基于运动信号与基于表面肌电的研究中,采集了15名健康人与15名偏瘫病人的步态数据,并针对表面肌电信号训练卷积神经网络进行帕金森步态的识别与分类,平均准确率可达92.8%。针对运动信号训练了反向传播神经网络,LSTM以及卷积神经网络三种模型进行五种异常步态的分类任务。实验结果表明,本工作中步态信息采集系统结合神经网络模型,可以很好地对不同病理步态进行分类,六分类平均正确率可达93%。 在基于视觉的研究中,本文利用人体关键点检测技术,首先检测出图片中的一个或多个人,接着对边界框做图像分割,接着采用全卷积resnet对每一个边界框中的人物的主要关节点做热力图并分析偏移量,最后通过热力图与偏移的融合得到关键点的精确定位。通过该算法提取了不同步态下姿态关键点时空信息,为基于视觉的步态分析系统提供了基础条件。但实验结果表明目前最高准确率的人体关键点检测算法不足以替代IMU实现步态分析与分类。但在2m之内可以观察到节律信息,证明了所提取的关键点时空信息与IMU采集的加速度信息呈现较高相关度,为基于视觉的异常步态分类算法铺平了道路

    Machine-learning-based Prediction of Gait Events from EMG in Cerebral Palsy Children

    Get PDF
    Machine-learning techniques are suitably employed for gait-event prediction from only surface electromyographic (sEMG) signals in control subjects during walking. Nevertheless, a reference approach is not available in cerebral-palsy hemiplegic children, likely due to the large variability of foot-floor contacts. This study is designed to investigate a machine-learning-based approach, specifically developed to binary classify gait events and to predict heel-strike (HS) and toe-off (TO) timing from sEMG signals in hemiplegic-child walking. To this objective, sEMG signals are acquired from five hemiplegic-leg muscles in nearly 2500 strides from 20 hemiplegic children, acknowledged as Winters' group 1 and 2. sEMG signals, segmented in overlapping windows of 600 samples (pace = 5 samples), are used to train a multi-layer perceptron model. Intra-subject and inter-subject experimental settings are tested. The best-performing intra-subject approach is able to provide in the hemiplegic population a mean classification accuracy () of 0.97±0.01 and a suitable prediction of HS and TO events, in terms of average mean absolute error (MAE, 14.8±3.2 ms for HS and 17.6±4.2 ms for TO) and F1-score (0.95±0.03 for HS and 0.92±0.07 for TO). These results outperform previous sEMG-based attempts in cerebral-palsy populations and are comparable with outcomes achieved by reference approaches in control populations. In conclusion, the findings of the study prove the feasibility of neural networks in predicting the two main gait events using surface EMG signals, also in condition of high variability of the signal to predict as in hemiplegic cerebral palsy
    corecore