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Gait is one of the important biological characteristics of the human body. Abnormal 

gait is mostly related to the lesion site and has been demonstrated to play a guiding role 

in clinical research such as medical diagnosis and disease prevention. In order to 

promote the research of automatic gait pattern recognition, this paper introduces the 

research status of abnormal gait recognition and systems analysis of the common gait 

recognition technologies. Based on this, two gait information extraction methods, 

sensor-based and vision-based, are studied, including wearable system design and deep 

neural network-based algorithm design. 

 

In the sensor-based study, we proposed a lower limb data acquisition system. The 

experiment was designed to collect acceleration signals and sEMG signals under 

normal and pathological gaits. Specifically, wearable hardware-based on MSP430 and 

upper computer software based on Labview is designed. The hardware system consists 

of EMG foot ring, high-precision IMU and pressure-sensitive intelligent insole.  

 

Data of 15 healthy persons and 15 hemiplegic patients during walking were collected. 

The classification of gait was carried out based on sEMG and the average accuracy rate 

can reach 92.8% for CNN. For IMU signals five kinds of abnormal gait are trained 

based on three models: BPNN, LSTM, and CNN. The experimental results show that 

the system combined with the neural network can classify different pathological gaits 

well, and the average accuracy rate of the six-classifications task can reach 93%. 

 

In vision-based research, by using human keypoint detection technology, we obtain the 

precise location of the key points through the fusion of thermal mapping and offset, 

thus extracts the space-time information of the key points. However, the results show 

that even the state-of-the-art is not good enough for replacing IMU in gait analysis and 

classification. The good news is the rhythm wave can be observed within 2 m, which 

proves that the temporal and spatial information of the key points extracted is highly 

correlated with the acceleration information collected by IMU, which paved the way 

for the visual-based abnormal gait classification algorithm. 

 

Keywords: deep neural network, abnormal gait analysis, IMU, sEMG 
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步态指人走路时表现出来的姿态，是人体重要生物特征之一。异常步态多与病变部位有关，作为

反映人体健康状况和行为能力的重要特征，其被论证在医疗诊断、疾病预防等临床研究中具有指

导作用。为了促进步态模式自动识别的研究，本文介绍了异常步态识别的研究现状，系统地分析

了常见步态识别技术以及算法，以此为基础研究了基于传感器与基于视觉两种步态信息提取方法，

内容包括可穿戴系统设计与基于深度神经网络的算法设计。 

在基于传感器的研究中，本工作开发了下肢步态信息采集系统，并利用该信息采集系统设计实验，

采集正常与不同病理步态下的加速度信号与肌电信号，搭建深度神经网络完成分类任务。具体的，

在系统搭建部分设计了基于 MSP430 的可穿戴硬件设备以及基于 Labview 的上位机软件，该硬件

系统由肌电脚环，高精度 IMU 以及压感智能鞋垫组成，该上位机软件接收、解包蓝牙数据并计算

出步频步长等常用步态参数。 

在基于运动信号与基于表面肌电的研究中，采集了 15 名健康人与 15 名偏瘫病人的步态数据，并

针对表面肌电信号训练卷积神经网络进行帕金森步态的识别与分类，平均准确率可达 92.8%。针

对运动信号训练了反向传播神经网络，LSTM 以及卷积神经网络三种模型进行五种异常步态的分

类任务。实验结果表明，本工作中步态信息采集系统结合神经网络模型，可以很好地对不同病理

步态进行分类，六分类平均正确率可达 93%。 

在基于视觉的研究中，本文利用人体关键点检测技术，首先检测出图片中的一个或多个人，接着

对边界框做图像分割，接着采用全卷积 resnet 对每一个边界框中的人物的主要关节点做热力图

并分析偏移量，最后通过热力图与偏移的融合得到关键点的精确定位。通过该算法提取了不同步

态下姿态关键点时空信息，为基于视觉的步态分析系统提供了基础条件。但实验结果表明目前最

高准确率的人体关键点检测算法不足以替代 IMU 实现步态分析与分类。但在 2m 之内可以观察到

节律信息，证明了所提取的关键点时空信息与 IMU 采集的加速度信息呈现较高相关度，为基于视

觉的异常步态分类算法铺平了道路。 

 

关键词：深度神经网络，异常步态分析，IMU，表面肌电，人体关键点检测 
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1  Introduction 

Gait, as the manner of walking, is an idiosyncratic and perceptible biological 

behavioral feature of a person. Normal gait has the following characteristics, including 

stability, periodicity, rhythm, and individual differences. Generally, gait can be 

classified into normal gait and pathological gait. The pathological gaits may mainly 

cause due to hemiplegia, Parkinson's disease, myopathy, and pain. It includes typically 

gaits, namely, hemiplegic gait, Parkinson gait, gluteus medius gait, steppage gait and so 

on[1]. By classifying the walking pattern of people, gait recognition can be used to 

detect people’s identities. Gait also has many other applications in fields like medical 

treatment and abnormal behavior detection. 

 

Musculoskeletal diseases are one of the main causes of abnormal gait, which have a 

significant impact on society, it may cause long-term disability. With the aging of the 

population in some countries, these problems will increase rapidly in the future[2]. In 

the field of medicine, researchers have studied gait as a unique feature of human 

beings[3]. Medical studies have shown that gait analysis can diagnose abnormal gait 

and pathological gait such as hemiplegia[4], [5]. Etiological analysis of human athletic 

system and nervous system diseases can provide a lot of important information for the 

reconstruction, prevention, and rehabilitation of walking ability of patients who are 

suffering from paralysis or other diseases. Compared with other biological 

characteristics, gait has the characteristics of long-distance, inviolability, difficult to 

hide and camouflage, and easy to collect. Such characteristics show great potentials in 

computer vision-based gait study. The relative position of the key points of human 

skeleton and the angle of joints are different. Therefore, we can use the key points of the 

human skeleton to describe the gait characteristics and apply them to the recognition 

and prediction of human motion[6]. 

 

Identification of normal and pathological gaits could provide deep insights to 
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understand various human movement patterns across different gait pathologies. 

However, traditional gait assessment is mainly based on clinical observations. It is a 

subjective and time-consuming decision-making process for clinicians. To address 

these issues, automatic methods to discriminate between normal and pathological gaits 

have been attracted widespread attention. 

 

Gait analysis[3] is a kind of biomechanical research method, which uses the concept 

and processing method of sports biomechanics to analyze human walking. Gait 

analysis is the acquisition of human motion information, such as ground reaction force, 

force path, gait stability, stride frequency and so on, without disturbing human natural 

activities. It can be applied to the following aspects: 

(1) To assess abnormal gait. 

(2) To assess the degree and nature of abnormal gait. 

(3) To provide necessary data for the analysis of the causes of abnormal gait and how to 

correct abnormal gait, thus formulate a treatment plan. 

(4) To evaluate the effect of rehabilitation treatment. 

 

By identifying the abnormal gait, we can find out whether the person under 

guardianship has an abnormal condition, so as to take timely measures.  

 

The remaining chapters are assigned as follows. We present technological background 

and related works in chapter 2 as well as a brief introduction to this work. In chapter 3, 

the structure of the experiment platform and the proposed system are introduced in 

detail. The design of the neural-network-based algorithm for pathological gait analysis 

is proposed in chapter 4 and 5, including the design of experiments and the discussion 

of results. The conclusion of the work is summarized in chapter 6. 
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2  Background & Related Works 

2.1  Human Motion Recognition and Gait Analysis   

Basically, research on abnormal gait recognition consists of two types, sensor based[7], 

[8] [9]and video based[10]. For sensor-based studies, they mainly contain two aspects, 

which are the study, design, build and development of hardware platform, and the 

improvement of exiting gait recognition algorithm[11], [12].  

 

For video-based studies, from feature extraction to feature fusion, and design of 

classifying machines, many relevant pieces of research have been done internationally. 

Ziba Gandomkar et al.[13] proposed a markless vision-based technique for extracting a 

set of features from the human walking sequence for differentiating normal and 

abnormal gait. The classification steps are as follows: firstly, the contour and its 

boundary box are extracted in each frame. Then, the contour is normalized according to 

the height of the contour. Finally, the gait Fritz pattern is adopted for feature extraction. 

Murase, H, and Sakai, R[14] describe a new method to calculate the spatial-temporal 

correlation of the feature space representation of the parameter effectively in moving 

target recognition. Parametric feature space compactly represents the time variation of 

image sequence through the tracks in feature space. This representation reduces the 

computational cost of correlation-based comparison between image sequences. In 

Élodie Desseré and Louis Legrand’s [15] study, a complete method of gait analysis 

using an unmarked system is proposed. The designed acquisition system consists of 

three CCD cameras calibrated synchronously. The legs of walkers are recognized in a 

gray image sequence, reconstructed in three-dimensional space, and the movement of 

the human body in gait activity is analyzed. This paper introduces a three-dimensional 

model of the human joint based on conic super conic. The image sequence is segmented 

based on a motion by a morphological operator, and the boundary of the moving leg is 

extracted. Next, the least square method (LMS) is used to reconstruct the human body 
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in order to determine the position of the human body in three-dimensional space. 

Finally, spatial coherence is applied to the reconstructed curve to better fit the 

anatomical structure of the leg and consider the joint model. Researchers also proposed 

a synthesis method to compose gait sequences to the canonical-viewed ones based on 

the planar homography, thus reduce the directional dependency[16], [17]. Based on the 

overall consideration of speed and effect, Han et al.[18] proposed a new spatiotemporal 

gait representation method, called gait energy image (GEI), which is proposed to 

represent the gait characteristics of human beings and realize the gait recognition of 

individuals. Based on this work, in Theekhanont et al.’s work [19] GEI was 

transformed into a trace transform image. The threshold value of the tracking 

transformed image is used to calculate the mode tracking transformed image to develop 

the mode tracking transformation. Finally, they use template matching for recognition. 

 

The research of abnormal gait based on non-video sensors can be divided into two 

aspects: one is the research and establishment of a hardware platform for abnormal gait 

recognition for elderly monitoring, the other is the improvement and optimization of 

abnormal gait recognition algorithm (classifier).  

 

Howell, Adam M., et al.[20] measured the ground support force by placing 12 pressure 

sensors on the insoles, and the gait was further analyzed. To determine the ground 

reaction force and the moments corresponding, subject-specific linear regression 

models were used. Which is corresponding to ankle dorsiflexion/plantarflexion, knee 

flexion/extension, and knee abduction/adduction? Other studies using force sensor 

includes[21], [22] use a hidden Markov model (HMM) to analyze the gait stage in gait 

movement. The ground contact force (GRF) obtained by intelligent shoes is used as the 

observation data in HMM, and the posterior probability in HMM is used to infer the 

gait stage.  

 

In [23], [24], a gait analysis system based on a single accelerometer is described to 
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evaluate the dynamic gait characteristics. The acceleration data of normal people and 

Parkinson's disease patients were recorded continuously, from which the peak value of 

gait was extracted, and the relationship between gait period and vertical gait 

acceleration was evaluated. By fitting the model equation, the quantitative index of 

walking behavior was obtained. The mean index of patients with gait disorders was 

statistically lower than that of normal people. [25] presents a wearable device based on 

IMU and its associated stride detection algorithm to analyze gait information for 

patients with Alzheimer's disease (AD). 

 

Abnormal gait recognition based on one kind of sensor (accelerometer or pressure 

sensor) is mainly introduced. The related research using multiple sensors is introduced 

below. For example: 

 

C. Senanayake et al.[26] proposed a system to obtain ground contact force and knee 

joint angles. The system consists of four force-sensitive resistors and two inertial 

sensors. They also build the software application to be used in a clinical environment 

that is user-friendly and allows users to perform gait analysis without knowledge in the 

area. 

 

A wireless wearable system was developed by Stacy J Morris Bamberg et al.[27] to 

provide gait analysis outside the motion laboratory. The sensor kit consists of three 

orthogonal accelerometers and gyroscopes as well as four force sensors. Two 

bidirectional bending sensors, two dynamic pressure sensors and an electric field height 

sensor were also used. "Gaithoe" can be designed to wear on any shoe without 

disturbing the gait, and can collect data in any environment for a long time without 

interference. 

 

Some other studies deal with gait analysis using one camera. For example, a clinical 

measurement system based on the elliptical hierarchical tree structure is proposed in 
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[28]. However, the system is limited to the front parallel (side view) gait and does not 

provide a complete three-dimensional measurement.  

2.2  Deep Learning and Human Skeleton Key Point Detection 

Meng Chen et al.[29] presents a method using a hidden Markov model for modeling 

human abnormal gait. The system modeling normal gait, toe-in and toe-out gait 

abnormalities patterns. An IMU is employed to measure angular velocities and 

accelerations of the human foot. One bend sensor and four force-sensing resistors 

(FSRs) are arranged on the insole for force and flexion information acquisition. For 

feature generation, principal component analysis (PCA) is mainly used and 

multi-pattern modeling hidden Markov model (HMM) is used. The experiment results 

show the proposed models are robust and efficient.  

 

Nguyen Trong-Nguyen et al.[2] proposed an approach for detecting abnormal gait. 

Their model is based on a human joint skeleton in time series instead of using the 

silhouette, color image or Spatio-temporal volume. They decompose the normal gait 

images sequence by gait cycles and each instant posture is represented by a feature 

vector. The vector describes relationships between pairs of the bone of the lower body. 

A clustering technique was used and those vectors are then converted into codewords. 

On  Kinect skeleton and marker-based data, the experimental results show that the 

method does well in distinguishing normal and abnormal gaits, and the overall accuracy 

can reach 90.12%. 

 

2.3  Analysis of Advantages and Disadvantages 

Researchers have conducted researches on recognition of abnormal gait for a long time, 

and many techniques, systems, and algorithms have been demonstrated. For 

sensor-based research, IMU is the most popular one since it is intuitive and detailed. 
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While multi-sensor gait analysis contains gyroscopes, accelerometers, surface EMG, 

planta pressure and so on. With the help of these multi-source heterogeneous sensors, 

more data can be gathered during walking and much data fusion algorithms can be 

explored. On the other hand, video-based research on recognition of abnormal gait is 

not so much a problem in the field of biomedical engineering as a problem in the field 

of computer vision. To analysis the information of gait, the skeleton needs to be 

extracted, while the precision of the key-points model may not good enough for 

abnormal gait analysis.  

To sum up, the sensor-based system has the advantages of cheap and precision, but it 

needs a system to wear or adorn, which is an inconvenience to users. It is also worth 

mentioning that traditional study usually forces on the methods of feature extraction 

or design of the system. The video-based study is easy to use but the accuracy still 

needs to be improved. 

 

2.4  Study Target and System Solution 

The purpose of this study is to explore the new gait recognition system and algorithm 

design. First, a heterogeneous sensor networks system was built as our experiment 

platform. Two wearable motion sensors were used to acquire the motion signals. 

Second, ANNs (BPNN, LSTM, and CNN) based pathological gait classifiers were used 

to identify different pathological gaits. At last, the key points of the human skeleton 

have extracted and analyzed the ability to replacing low-precision wearable devices.  
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3.  System & Platform Design 

In this part, we launch the design procedure from the requirement design and the 

architecture of the top-level system is presented. Then the hardware selection and 

design decision-making will be introduced and discussed. Finally, the hardware 

structure of the system is given and the basic functional unit testing, as well as joint 

testing, was demonstrated. Experiments were carried out to investigate the system 

performance, which demonstrated the potential of the proposed system in home-based 

scenarios and clinical practice. 

 

3.1  Top-level System Architecture 

In this work, a novel wearable multimode system for lower limb activity evaluation and 

gait recognition comprised of a multi-functional band, plantar pressure distribution 

sensor and a local terminal connected to an upper machine platform is presented. This 

proposed system can acquire the necessary data for lower limb activity evaluation and 

gait recognition based on clinical practice. By using the proposed system, we can gather 

necessary data for ANN (artificial neural network) based gait classification research, 

and the therapists can distribute the specific training plans based on the evaluation 

results through the system for the patients to rehabilitate more efficiently.  

 

Inertial Measurement Units (IMU) and physiological signal front end with carbonized 

foam electrode are embedded in the proposed system to obtain motion signals and 

electromyogram (EMG) signals.[30] Furthermore, a novel plantar pressure distribution 

sensor using flexible pressure sensors, flexible conductive lines, and fabric materials is 

proposed to get the plantar pressure distribution. The carbonized foam electrode and 

proposed plantar pressure distribution sensor enable a more convenient evaluation and 

rehabilitation process. Patients can switch between two different wearing modes with 
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EMG signals on and off.  

 

Figure 3.1 shows the top-level architecture of the hardware part, whose goal is to gather 

information about the physiological signals we needed. We designed three types of 

physiological signals acquisition unit, and all of them were connected to the MCU 

(Micro Controller Unit) through SPI (Serial Peripheral Interface) or I2C 

(Inter-Integrated Circuit) or ADC (Analog-to-Digital Converter). The data, after 

processed by the MCU, submitted to the upper machine through UART (Universal 

Asynchronous Receiver/Transmitter).  

 

Figure 3.1  Top-level system architecture of gait information acquisition system 

 

3.2  requirements for the system 

The remote rehabilitation system in this project needs highly interdisciplinary 

research, involving many different fields such as demand research, medical science, 

sensing technology, hardware design, software design, human interaction, etc. 

Therefore, before designing the system scheme, we had a group discussion and 

research with doctors, designers, and summarized the list of requirements for the 

system. 

 

We launched the design procedure from the requirement design based on the 

need-finding with rehabilitation patients and medical therapists. Based on the 

need-finding results, we proposed the following requirements: 

 Precise, continuous and multidimensional data collecting on the lower limbs with 

limited disturbance to subjects 



10 

 

 Data management for further use, like retrospective analysis and longitudinal study. 

 Some reserve ports for further expanding modules. 

 

Table3.1  List of requirements for remote rehabilitation system of lower extremities 

Lower extremity data comprehensive acquisition system 

Function 

Motion Inertia Signal Collection 

sEMG Signal Collection 

Signal collection of plantar pressure distribution 

Wireless transmission 

Easy-using 

• Non-Intrusive 

• Rechargeable 

• Comfort 

Disassembling 

The high degree of permanence to wear and washing 

Safety of data transfer and use 

Easy to produce and reproduce 

Stable sensor 

The upper machine 

Function 

Data storage 

Data presentation 

Data interaction and fusion 

Action and Data Visualization 

Data Security and Data Encryption 

Easy-using 
Easy to operate 

Easy to understand 
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3.3  hardware design decisions 

Based on the requirement list, we design the system framework. The system is 

roughly divided into three parts: data acquisition, data processing, and system 

software. 

 

For data acquisition, three kinds of sensors are needed. They are a sensor for motion 

inertia signal collection, sEMG signal collection, and plantar pressure distribution 

collection.  

 

MPU9250 integrates 3-axis gyroscope, 3-axis accelerometer, and 3-axis 

magnetometer, and the output is 16-bit digital. The data can be exchanged through the 

integrated circuit bus (IIC) interface to the microcontroller, and the transmission rate 

can reach 400 kHz/s. The angular velocity measurement range of the gyroscope is up 

to 2000 (degrees /s), and it has good dynamic response characteristics. The maximum 

measurement range of accelerometer is ±16g, g is gravitational acceleration, and the 

static measurement accuracy is high enough. Its magnetometer uses a high-sensitivity 

Hall-type sensor for data acquisition and the measurement range of magnetic 

induction intensity is 4800 UT, which can be used for auxiliary measurement of yaw 

angle. Fig 3.2 shows the chip’s internal block diagram. 



12 

 

 

Fig 3.2  Internal block diagram of MPU9250 

 

Besides, The hardware acceleration engine of MPU9250, named Digital Motion 

Processor (DMP) can integrate nine-axis sensor data and output complete nine-axis 

fusion calculus data to the application. With DMP, we can use the MPL (Motion 

Process Library) provided by the InvenSense company, which is very convenient to 

realize attitude calculation, reduces a load of motion processing operation on the 

operating system, and greatly reduces the difficulty of development. Based on this 

discussion, we choose MPU9250 as the sensor for motion inertia signal collection. 

 

AD8232 is an integrated front-end, which is suitable for signal conditioning and 

monitoring of bioelectric signals. AD8232 can amplify electrophysiological signals 

such as EMG and ECG, and suppress electrode half-cell potential. It has a smaller size 

and low power consumption. It can amplify bioelectrical signals as analog output. 

Because the bioelectric signal is very small and easy to be disturbed by the outside 

world, the AD8232 bioelectric monitor can help to obtain the obvious bioelectric 

signal after amplification through the amplifier. The typical output analog value of 

EMG signal after amplification is 1~2V order of magnitude, which facilitates the 
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analog-to-digital conversion of the latter stage. The typical structure of double-lead is 

shown in Fig 3.3 below. 

 

Fig 3.3  A typical double lead circuit of AD8232 

 

Therefore, EMG signals collected by flexible carbonized sponge electrodes are 

filtered by AD8232 combined with peripherals. Based on this discussion, we choose 

AD8232 as a sensor for sEMG Signal collection. 

 

The signal transmission module chip of this system adopts the FSC-BT822 Bluetooth 

module. The device has good compatibility and is easy to connect with computers, 

mobile phones, tablets, and other devices. The serial port of the Bluetooth module is 

connected with the serial port of MSP430F5529. Complies with Bluetooth 4.2 dual 

mode protocols (BR/EDR/BLE), FSC-BT822 is a fully integrated Bluetooth module. 

It supports SPP, HID, GATT, Beacon, profiles. It integrates the Baseband controller 

and MCU in a small package(Integrated chip antenna), so the designers can have 

better flexibilities for the product shapes. Fig 3.4 shows the BLE module we used. 
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Fig 3.4 FSC-BT822 

 

After selection among various pressure material, our system adopts Velostat pressure 

material from 3M company, this conductive material (also known as "Veloster" or 

"linqstat") is a good addition to the wearable/sensor hack kit. It is pressure-sensitive: 

squeezing it will reduce the resistance, so it is very convenient to make flexible 

sensors. It's much cheaper than off the shelf pressure or bend sensors, which is lower 

cost and better flexibility. The physical properties are opaque black with a thickness 

of about 100 um. Its electrical property is piezoresistive, that is, resistance decreases 

with the increase of pressure. This material was originally used for ESD 

(Electro-Static Discharge) bags, but at present, some researchers have used this 

material as a simple pressure sensing system. Based on these discussions, the plantar 

pressure array acquisition module is made of Velostat material and flexible plastic 

film conductive tape. Fig 3.5 shows this material named Velostat. 

 

 

Fig 3.5 the Velostat conductive material 
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MSP430F5529 MCU is chosen as the main processing module of the system. TI 

MSP430 series ultra-low-power microcontrollers are composed of a number of 

devices with peripheral devices for various applications. This architecture, combined 

with a wide range of low power consumption modes, can be optimized to extend 

battery life in portable measurement applications. What’s more, the microcontroller 

has a powerful 16 bit RISC CPU, 16-bit register and constant generator, which helps 

to improve code efficiency. The digital control oscillator (DCO) allows the device to 

wake up from a low power mode to an active mode in 3.5 mesh. 

 

Msp430f5529 microcontroller integrates USB and PHY supporting DMA, four 16 bit 

timers, USB 2.0, two USCIS, a hardware multiplier, an RTC module with alarm 

function, a high-performance 12-bit analog-to-digital converter (ADC) and 63 I / O 

pins. Its typical applications include analog and digital sensor systems, data recorders 

and other applications that need to be connected to various USB hosts. 

 

To sum up, MSP430 series MCU is a 16-bit mixed-signal processor with ultra-low 

power consumption and Reduced Instruction Set Computer (RISC). Compared with 

other microcontrollers, this series of microcontrollers have the advantages of 

ultra-low power consumption and abundant peripherals on-chip, which are very 

suitable for EMG signal processing. MSP430F5529 is selected as the control chip in 

this system. In MSP430 series chips, MSP430F5529 can not only meet the functional 

requirements but also has lower power consumption and cost overall. Figure 3.6 

shows the structure of the MSP430F5529. 
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Fig 3.6 The structure of MSP430F5529 

 

We begin to design three types of physiological signals acquisition units based on 

these decisions. And all of them were connected to the MCU (Micro Controller Unit) 

through SPI (Serial Peripheral Interface) or I2C (Inter-Integrated Circuit) or ADC 

(Analog-to-Digital Converter).  

 

3.4  System Implementation 

From clinical practice, there are various parameters for lower limb activity evaluation 

and rehabilitation status. There are three key points among them, which are the 

myodynamia, balance ability and lower limb range of motion (ROM). To make our 

system and clinical practice seamless, our proposed system should acquire these three 

parameters for evaluation.  

 

Based on the system architecture and clinical requirements, we design the data flow of 

our system. The completed data flow of the proposed system contains four parts, data 

collection, signal pre-processing, data transmission and data analysis and display. The 
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data flow sketch is shown in Fig 3.7. The wearable multimode system collects plantar 

pressure distribution, motion signals, and EMG signals. Then the microcontroller unit 

(MCU) fixed in the multifunctional band will process the signals and transmit them to 

the local mobile terminal via Bluetooth. Finally, the mobile terminal together with the 

cloud platform will analyze and store the data. 

 

MCU

Signal Processing

Bluetooth 

Transmission

Local Mobile Terminal 

Evaluation

Plantar 

Pressure

Motion Signals

EMG Signals

Smart Sneaker Upper Monitor

WLAN

Transmission

Cloud Platform

Storage

 

Fig 3.7 Data flow sketch 

 

In this section, the technical details about the whole system are presented. The overall 

wearable multimode system consists of two parts, a multifunctional band with a 

plantar pressure sensor as well as a mobile terminal with the application. For detail, 

the signal acquisition module includes an EMG module, two IMU modules, and a 

planter pressure acquisition module. As for the data acquisition, a new type of flexible 

plantar pressure distribution sensor is used to collect plantar pressure distribution, 

EMG signal is collected by physiological signal front-end, and motion signal is 

collected by IMU module. All the data are transmitted to the local mobile terminal 

through the Bluetooth module. Then the application will upload the evaluation data to 

the cloud platform for the therapists to check and modify the training plans. 

 

The hardware of the system is mainly divided into five modules: signal acquisition 

module, a signal processing module, signal transmission module, power management, 

and a charging module. The signal acquisition module consists of three parts: a 
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piezoresistive matrix composed of Veloster material, a plantar pressure signal 

acquisition unit with HC4051 analog multiplexer, an instrument amplifier to complete 

the acquisition of surface EMG signals and a motion sensor unit based on MPU9250. 

The signal processing and sending module are composed of MSP430 MCU and 

FSC-BT822 Bluetooth dual-mode module. The power supply module consists of 

lithium-ion battery, BQ24610 charging unit and voltage stabilizing unit. The working 

principle of the system is as follows: the MCU receives data from IMU through SPI 

communication protocol, collects sEMG and plantar pressure data and preprocesses 

them. Finally, the above sEMG signal, motion signal, and plantar pressure signal are 

transmitted through Bluetooth. The data collected from our hardware is then sent to 

the host computer. 

 

The multifunctional band is an unobtrusive and wearable front end of the wearable 

multimode system. It’s made up of the multifunctional band and a plantar pressure 

sensor. The main processing module, communication module, and rechargeable 

Li-battery power supply module were embedded in the multifunctional band with an 

inertial measurement unit (IMU, Invensense MPU9250) module and an sEMG 

module with carbonized foam electrode. The novel plantar signal module is connected 

to the multifunctional band through Flexible Printed Circuit (FPC) cable. The 

structure of this band and plantar pressure distribution sensor are illustrated in Fig 3.8. 
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Fig 3.8  (a)Structure of multifunctional band (b) Structure of plantar pressure distribution sensor 

 

The plantar signal module contains two parts, the IMU sensor for plantar motion 

detection, and a novel plantar pressure distribution insole. We use Velostat, a new 

pressure-resistance material, to develop a flexible pressure sensor with a novel 

structure.  Furthermore, flexible conductive lines and fabric materials were 

employed to develop the plantar pressure sensor. The novel structure of this sensor is 

shown in Fig. 3.8(b). 

 

3.4.1  Plantar pressure acquisition unit 

To be specific, a sensor array with 16 rows and 4 columns is used to acquire the 

high-resolution pressure distribution. The vertical and horizontal conductive lines 

together with the MCU and resistances put the flexible pressure sensor in a circuit. To 

minimize the number of ADC ports on-chip, a 16-channel analog multiplexer 

CD74HC4067 is used in the circuit. The schematic of the plantar pressure distribution 

insole circuit is displayed in Fig 3.9. Four flexible conductive lines in the upper layer 

are controlled by the General Purpose Input Output (GPIO) of MCU, and they are set 
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to Vcc successively to have four loops for the lower layer to acquire the pressure on 

each flexible pressure sensor. 

 

Fig 3.9  Schematic of plantar pressure distribution insole circuit 

 

During the time of choosing a row of electrode signals, the Vcc is connected by the 

upper analog switch in order. In this way, the 1-10 horizontal lines are selected 

sequentially. Each time, the 1-5 AD converter works in turn, thus completing the 

whole sampling process. The circuit diagram of each sample point scanned is shown 

in Fig 3.10. 

 

Fig 3.10 circuit diagram of a single sampling point 

 

Therefore, the voltage collected at each sampling point is (3-1)： 

 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑅0

𝑅𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑅0
× 𝑉𝑐𝑐 (3-1) 
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By this method, only 15 electrodes are needed to scan and can collect 10*5 matrix 

data. At the same time, only one analog switch chip is needed, which improves the 

efficiency of the IO port and takes into account the spatial layout. The structure 

diagram of the whole intelligent insole is shown in Fig 3.11. 

 

 

Fig 3.11  schematic diagram of intelligent insoles  

 

3.4.2  Signal processing module 

(1) Application architecture 

The program is composed of the main program occupying the kernel and the timer 

interrupt service program, which can realize many tasks such as timing sampling, 

timing sending, data communication, sensor array scanning and so on. Several tasks 

are performed sequentially in timer interruption by means of a supercycle. Under the 

normal working condition of hardware, the task of sampling, filtering, and sending 

can be executed separately under the design idea of the super-cycle. The sequential 

execution of each function has no influence on each other, that is to say, the real-time 

performance of the system is guaranteed. At the same time, the design method has 

strong program readability and improves the efficiency of modification and 

transplantation. 

Longitudinal conducting band 

Velostat 

Transverse conduction band 
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(2) Interrupt Service 

The timer interrupt service program completes the sampling and sending operations. 

Sampling is conducted every 100ms. Before sending, the main program checks 

whether the sending queue has been filled out. If the sending queue has been filled out, 

the DMA sending program will be started, and the data will be filled out 

automatically from the sending queue to the UART and sent to the register. 

 

The designated length data is sent to the serial port sending register by DMA_0 

channel once, and the rising edge of the interrupt flag bit is triggered by the serial port 

sending. Enter the DMA interrupt service function after a single transmission is 

completed. The task of this function is to change the DMA_Done flag bit to 1 in order 

to inform the main program that the transmission has been completed. 

 

3.4.3  Signal sending module 

Data is sent from serial port in the form of the data packet, and the transmission rate 

of the data packet is 10Hz. The set of data packages is shown in Table 3.2. 

 

Table3.2  packet format 

frame header frame size Data (n Byte) check bit 

HEAD_H HEAD_L LENGTH DATA0 DATA1 … DATA(n-2) DATA (n-1) CHECK 

 

 

Fixed-length packets are adopted, each packet is 110 bits. HEAD_H=0x88, 

HEAD_L=0x74，LENGTH =110（0x6E）CHECK used for odd-even check and come 

from the xor operation from former 109 bits. The data segment format is shown in the 

table below, in which table (a) is the acceleration along x, y and Z axes and angular 
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velocity along x, y and Z axes of two IMUs, and quaternion. Table (b) is the pressure 

value and EMG signal of the sampled plantar pressure acquisition unit. Among them, 

the first IMU is placed in the insole, and the second IMU is fixed on the leg. 

 

ACCEL_X, Y, Z are the acceleration values of each axis of the motion sensor, GYR_X, 

Y, Z are the angular velocity values of the motion sensor around each axis, and Q_0, 

Q_1, Q_2, Q_3 are quaternions. 

 

Table3.3(a)  The format of data segment 

Data 

bits 
0-1 2-3 4-5 6-7 8-9 10-11 

12-1

3 

14-1

5 

16-1

7 

18-

19 

Data 
ACCE

L0_X 

ACCEL

0_Y 

ACCEL

0_Z 

GYR0

_X 

GYR0

_Y 

GYR0

_Z 

Q0_

0 

Q0_

1 

Q0_

2 

Q0

_3 

20-21 22-23 24-25 26-27 28-29 30-31 
32-3

3 

34-3

5 

36-3

7 
38-39 

ACCEL

1_X 
ACCEL1_Y 

ACCEL

1_Z 

GYR1_

X 

GYR1

_Y 

GYR1

_Z 
Q1_0 

Q1_

1 

Q1_

2 
Q1_3 

 

Table 3.3(b)  The format of the data segment 

PRES_s the voltage value of the sampling point of the wheel 

Data 

bits 
40-41 42-43 44-45 … 98-99 100-101 102-103 104-105 

Data PRES_1 PRES_2 PRES_3 … PRES_30 PRES_31 PRES_32 EMG 

 

The data transmission rate of system: serial port baud rate is 115200 and thus 

transmission rate can reach 10 packages/s, which is 2200 byte/s. 
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3.5  System Prototype 

The prototype of the proposed wearable multimode system is shown in Fig 3.8(a), a 

plantar pressure distribution sensor can be seen in Fig 3.8(b), printed circuit 

board(PCB) inside the multifunctional band is shown in Fig 3.12. 

 

Fig 3.12  (a)Prototype of proposed wearable multimode system  (b) Prototype of plantar pressure 

distribution sensor  (c) PCB inside the multifunctional band 

 

We use the instrumentation amplifier to build a physiological signal front ends with a 

novel carbonized foam electrode to gather the signal of EMG. The analog output of 

the EMG module is converted to a digital signal by an on-chip 12-bit high accurate 

Analog-Digital Converter (ADC) in MCU. The use of a carbonized foam electrode 

will reduce the with less power line interference compared with Ag/AgCl. Fig 3.13 

shows the carbonized foam electrode and the EMG module of the proposed system. 
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Fig 3.12  (a) Carbonized foam  (b) Carbonized foam electrode 

 

Overall, there are two IMUs in this system. One is set under the plantar pressure 

sensor as presented above, and the other is in the multifunctional band, We collect 

tri-axis acceleration and tri-axis angular rate from them. The IMU  automatic 

calibrates the tri-axis angular rate by subtracting the offset calculated from the 

average value of the first 3 seconds when powered on, and the tri-axis acceleration 

doesn’t need to be calibrated under the proposed scenario. These motion signals from 

these two sensors are transferred to MCU MSP430 in the multifunctional band via 

Serial Peripheral Interface (SPI). 

 

All the signals from these three modules are collected and processed with the 

management of MCU. The signal processing procedure includes filtering and data 

packing. These algorithms will make the local mobile terminal have a better signal 

quality and to reduce the transmission bandwidth simultaneously. Then, the packaged 

data are sent to the local mobile terminal synchronously via Bluetooth module, we 

choose FSC-BT822, whose default UART Baud rate is 115.2Kbps and can support 

from 1200bps up to 921Kbps. In our system, each data package takes 174 bytes and 

we send 10 packages per second, which means we need 1740 bps. 
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Fig 3.13  The illustration of the system in using 

 

3.6  Software Application 

The collected data are transmitted to the local mobile terminal. For the evaluation 

mode, users and their therapists can view the collected foot signals through the 

software installed in the mobile terminal, which is shown in Fig 3.14. The software 

displays the waveforms of the EMG signal together with the real-time ankle angle and 

the plantar pressure distribution. The left part of the application is the training 

example video for a specific training movement. The right part of the application is 

the real-time movements capture the display of a patient. Patients should follow the 

instruction video for certain exercises. A rehabilitation score will be shown on the 

screen for the precision of rehabilitation.  

 

 

Fig 3.14  User interface of evaluation mode 
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The proposed multifunctional band together with the plantar pressure distribution 

sensor was worn to have a whole test of each module and verify their performance, 

including the signal quality and accuracy test of plantar pressure distribution, EMG 

signal and motion signal measurement.  

 

3.7  Key formula and algorithm design 

3.7.1  Coordinate correction algorithm 

The coordinate system of MPU9250 is called s system, and its three axes are Xs, Ys, 

and Zs respectively. In the course of movement, the S-system will continue to rotate. In 

order to use the 9-axis inertial sensor to calculate conveniently, it is necessary to rotate 

the S-system back to the n-system (natural coordinate system). The rotation matrix 

based on the Euler angle is adopted. Euler angle is a set of three independent angle 

parameters used to independently determine the position of the rigid body. It consists of 

pitch angle_, rolls angle_and yaw angle_. The rotation matrices obtained by using 

Euler angles from s to N systems are as follows (3-2): 

 

 𝑇𝑛
𝑠 = [

𝑐ψ𝑐φ 𝑠ψ𝑐φ −𝑠φ
𝑐ψ𝑠ψ𝑠θ − 𝑠ψ𝑐θ 𝑠ψ𝑠ψ𝑠θ + 𝑐ψ𝑐θ 𝑐ψ𝑠θ
𝑐ψ𝑠φ𝑐θ + 𝑠ψ𝑠θ 𝑠ψ𝑠φ𝑐θ − 𝑐ψ𝑠θ 𝑐φ𝑐θ

] (3-2) 

 

In the formula, 𝑐ψ, 𝑐φ and 𝑐θ are sinusoidal functions of pitch angle, roll angle yaw 

angle respectively. 

 

The acceleration of three axes in MPU9250 output s system is named ax_g, ay_g, and 

az_g respectively. The sensor outputs Euler angles at the same time to construct the 

selection matrix of the system. The pitch angle of the system is AngleYdeg, the roll 

angle of the system is AngleXdeg, and the yaw angle of the system is AngleZdeg. 
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Every moment has an angular velocity matrix and a systematic Euler angle matrix from 

which the acceleration information of three directions in n system can be extracted for 

subsequent processing. 

 

3.7.2  Range of motion algorithm 

For the measurement of dorsiflexion and metatarsal flexion of the human ankle joint, it 

is necessary to establish an appropriate ankle joint motion model without considering 

factors such as muscle contraction and deformation. In addition, the ankle rotation can 

also be neglected in the evaluation of the joint activity. Therefore, the human ankle 

joint is simplified as shown in Fig 3.15 below. Two-link model. When evaluating the 

range of motion of rehabilitation patients, the tibia and sole of the lower leg are 

abstracted in one plane. The reference range of dorsiflexion is 20 ~30 and the reference 

range of plantar flexion is 40 ~50. 

 

 

Fig 3.15. A two-link model of human ankle joints 

 

 

 𝑤𝑥 =
𝑞1

√1 − 𝑞0
2
𝑤𝑦 =

𝑞2

√1 − 𝑞0
2
𝑤𝑧 =

𝑞3

√1 − 𝑞0
2
 

(3-3) 
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Where 𝑞
0
,  𝑞

1
, 𝑞

2
, 𝑞

3
 is the quaternion calculated by MCU. X type, w, w a y, w z is the 

Angle of the three directions in fig 3.16. 

 

Fig 3.16  schematic diagram of rotation Angle 

 

3.7.3  Gait Period 

In normal gait, the time from one heel or toe landing to the other heel or toe landing is 

called a walking gait cycle. A complete gait cycle is divided into the first touching, 

supporting and swinging stages, each stage corresponds to different gait periods. The 

reciprocal of the gait cycle is the step frequency. In order to get the step frequency of 

rehabilitation patients, it is necessary to divide the acceleration signal into periods. 

 

3.7.4  walking distance 

In this system, the step distance is calculated by the kinematics principle. For horizontal 

acceleration a_x (t) and a_y (t), if the initial velocity of horizontal motion is 0, then 

there are two kinds of acceleration, one is acceleration a_x (t) and the other is 

acceleration a_y (t). 
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 𝑥(t) = ∑∑𝑎𝑥(𝑡𝑖)(𝑡𝑖+1) − 𝑡𝑖)

𝑛−1

𝑖=0

𝑛−1

𝑖=0

 (3-4) 

 

In the formula, a_x (t) is a function of the acceleration in the direction of X and Y 

changing with time, and X (T) is the moving distance in the direction of X. 

 

3.8  Evaluation and conclusion 

3.8.1  Plantar pressure distribution measurements 

Regarding the plantar pressure distribution, we ran the tests on the corridor, as is 

shown in Fig 3.17(a). We tested the normal walking periods, which mainly include 

three stages: initial contact, mid-stance and initial swing. So we recorded the data of 

the plantar pressure sensor and then visualized it in MATLAB using the CUBIC 

interpolation method. The results can be seen in Fig 3.17 (b) (c) (d) as below. It shows 

the corresponding pressure images which represent the system can capture the plantar 

pressure distribution data. 

 

  



31 

 

  

Fig 3.17  Illustration of plantar pressure distribution experiment (b) mid-stance (c) initial swing (d) 

initial contact 

 

3.8.2  EMG signal measurement 

Experiments on lower limb motion were designed to validate the EMG module of our 

system. We tested the motions of normal walking and stamping the ground, and 

carbonized foam electrodes were put on the calf muscle and the results are shown in 

Fig 3.18. The waveform of EMG signals shows this module can measure whether a 

certain muscle or a muscle group is active when a patient does a specific motion. 

 

  

Fig 3.18  EMG waveforms under: (a) normal walking (b) stamping ground 
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3.8.3 Motion signal measurements 

For the test of ankle mobility, we used video information to compare with the 

proposed system, as shown in Fig 3.19. We recorded the video of a subject doing 

ankle dorsiflexion and plantar flexion, then calculated the ankle mobility on the 

computer. From the video, the maximal angle for the subject’s ankle motion is 61.8°, 

while the result from our system is 65.2 °, then the error percentage is 5.5%. This 

error rate is acceptable because the IMU may have some fluctuation.  

 

  

Fig 3.19  Screenshots of the video for ankle mobility 

 

3.9 Discussion and Conclusion 

In this part, a novel wearable multimode system using soft sensors for lower limb 

activity evaluation and rehabilitation systems with flexibility and modularity is 

proposed. Patients can get lower limb activity evaluation in home-based scenarios and 

rehabilitate with the training plan given by therapists through the Internet using the 

proposed system’s software. Compared with the current clinical practice, this 

proposed system will reduce the cost of the rehabilitation process and bring 

convenience for the patients. Also, the therapists can get access to the rehabilitation 

status of different patients using the cloud platform in this system and give a more 

efficient training plan.  
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The novel soft carbonized foam electrodes are embedded in the proposed system to 

obtain an EMG signal and a novel flexible plantar pressure distribution sensor is also 

used in this system. All the sensors and electrodes are all unobtrusive for the patients’ 

daily life. The multimode design of this system can also make the system suitable for 

different patients. 

 

More clinical trials are needed to evaluate the performance of the algorithms, system 

endurance, and sensibility under different rehabilitation circumstances. Detailed 

analysis and optimized algorithms will be studied based on this system.  The system 

has some reserve ports for the further development of different sensors, such as 

galvanic skin response (GSR) signal. These additional sensors will provide modalities 

of monitoring parameters. And data fusion techniques will be explored with more 

clinical data. Also，Some self-adaption networks will be used in the algorithms as 

well.  
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4  Convolutional Neural Network for Parkinsonian Gait 

Recognition and Classification using Surface Electromyography 

Parkinson's disease (PD), as a common neurodegenerative disorder, has primary 

manifestations like movement poverty, muscle rigidity, gait disturbances, etc. 

Recognition of Parkinsonian gait patterns is helpful in the diagnosis of PD and 

establishing effective therapies. In this thesis, a Convolutional Neural Network (CNN) 

and surface Electromyography (sEMG) based Parkinsonian gait (PG) recognition 

system is proposed. Two-channel sEMG signals were obtained from gastrocnemius 

muscle and tibial anterior muscle at the shin. Then these signals were passed to CNN 

after filtering and time-series segmentation. The system omits the complex 

hand-crafted feature extraction process. Meanwhile, two CNN models, namely, 

generic model and subject-specific model were built and validated on a dataset that 

was collected from eleven volunteers. The accuracy of the proposed system for 

distinguishing the Parkinsonian gait from normal or other pathological gaits can reach 

90% for the generic model, and 97% for the subject-specific model. With the high 

accuracy in identifying the PG, the proposed system can be extended as a promising 

aid tool in discriminating PG from normal gait and pathological gaits.  

 

4.1  Introduction  

PD is a common neurodegenerative disorder of unknown cause that occurs in adults, 

whose clinical hallmarks are movement poverty and slowness, muscle rigidity, limb 

tremor or gait disturbances and as called, parkinsonian gait[31]. Although PD is 

common in the clinic, it’s still difficult to diagnose, mainly relies on the medical 

history, physical examination and signs after dopamine supplementation 

treatment[30]. These examinations heavily depend on the experience of doctors, and 
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can not reflect the development of PD and the neuromuscular function in dynamic 

activities. Acting as a portrayal of people's physical behavior, gait analysis has been 

widely used in rehabilitation treatment, disease prediction and clinical aspects[32]. 

 

sEMG is a comprehensive effect of superficial muscle EMG and nerve trunk 

electrification on the skin surface, at present, many scholars have begun to use sEMG 

to evaluate the neuromuscular status and motor function of PD patients. A.I.Meigal et 

al.[33] evaluate a variety of traditional and novel sEMG characteristics of biceps 

brachii muscle in patients with PD and compare the results with the healthy old and 

young control subjects to evaluate the potential of the parameters in the assessment of 

the severity of PD. On the other hand, PD patients always show abnormal gait, so it’s 

of great clinical value and social significance to explore the gait characteristics from 

sEMG in the dynamic activities of PD patients. Julien Stamatakis et al.[34] proposed 

a low-cost Gait feature extraction method for the application of PD, which could 

quantify the Gait asymmetry and FOG (Freezing of Gait) more deeply and improve 

the accuracy, such study may be beneficial to guide clinical treatment and improve the 

diagnostic accuracy of PD. 

 

Traditional gait analysis methods are mainly based on the video, pressure sensors or 

large gait simulation platform, while with the improvement of computer power, deep 

learning technology, especially CNN has dramatically improved the state of the art in 

medical applications. Esmaeilzadeh et al.[35] applied a deep learning framework for 

simultaneous classification and regression of Parkinson's disease diagnosis based on 

MR-Images and personal information. Wei Yuan et al.[36] proposed a CNN based 

gait classification method from mobile phone built-in accelerometer and overall 

classification accuracy can reach over 90%. While before training the raw data need 

to be transformed into image firstly, which increased the complexity of the method. 
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To our best knowledge, using neural networks without the complex feature extraction 

process for the sEMG of PD has seldom been explored.  

 

In this thesis, sEMG and deep learning-based framework for identification of the PD 

gait is proposed. Two-channel sEMG signals from gastrocnemius muscle and tibial 

anterior muscle were collected and passed to a six-layer CNN after filtering and 

time-series segmentation. As a preliminary study to distinguish normal gait, PG and 

other pathological gaits, both subject-specific models and generic models were 

established and validated. With the help of neural networks, the proposed system 

doesn’t require the complex hand-crafted feature extraction process and shows great 

potential in clinical assistant diagnosis, illness-early-warning and guardianship 

in-home.  

 

4.2  Method 

4.2.1  Data acquisition experiment setup 

Basic pathological gaits that can be attributed to neurological conditions include 

hemiplegic, sensory, neuropathic, spastic diplegic, choreiform, myopathic, ataxic 

(cerebellar) and Parkinsonian. In clinical research, besides parkinsonian certain 

pathological gait are more likely to encounter, some typical representatives are 

neuropathy-related pathological gait like hemiplegic gait, spastic diplegia gait and 

steppage gait,  and also some other pathological gait like gluteus medius gait and 

gluteus maximus gait. 

 

During free ambulation, patients with PD demonstrate shorter stride length and 

walking speed while double support duration and cadence rate are increased[37]. 

They have difficulty starting, but also has difficulty stopping and this is due to muscle 
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hypertonicity. In this study, we established an sEMG based dataset of simulated PG, 

in which more than 60 thousand segments sEMG data of natural gait and simulated 

pathological gait were collected from 11 subjects. The sEMG data of gaits were 

measured by the Shimmer3 EXG unit, which is a small and robust wearable wireless 

sensor created by Realtime Technologies Ltd and offers good data quality.  

 

Experiments were conducted on 11 subjects (eight males and three females). To test 

the recognition ability of the proposed neural network, besides PG we added 

hemiplegia gait, gluteus medius gait, and steppage gait as supplementary. Each 

subject was asked to imitate PG and another one kind of pathological gait among 

them in addition to normal gait. The height of subjects ranges from 163cm to 191cm 

with a mean value of 173.5cm, the weight of subjects ranges from 48kg to 93kg with 

a mean value of 65.8kg. Table 4.1 shows the detail information of subjects.  

 

Table 4.1  The Detailed Information of Subjects 

No. gender Height(cm) Weight(kg) pathological gait besides 

Parkinson 

1 male 191 93 hemiplegic gait 

2 male 170 70 gluteus medius gait 

3 male 168 60 steppage gait 

4 male 176 55 hemiplegic gait 

5 male 165 62 gluteus medius gait 

6 female 168 56 steppage gait 

7 male 185 62 gluteus medius gait 

8 male 180 82 hemiplegic gait 

9 male 174 77 steppage gait 

10 female 168 59 gluteus medius gait 

11 female 163 48 hemiplegic gait 
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(1) Learn and train to simulate pathological gaits 

For the learning of PG and the other three kinds of pathological gaits, every subject was 

instructed to watch and study the Stanford Medicine 25 video which was created in 

conjunction with Stanford's AIM lab to teach the examination of the gait[38]. 

 

(2) Collect the natural and pathological gait information 

The Shimmer3 EXG unit is fixed to the outer part of two shins by an elastic bandage, 

wherein the two channels of sEMG were placed on the abdomen of the gastrocnemius 

and tibialis anterior muscle respectively, ankle bone was chosen as the reference since 

reference electrode should be placed at an electrically neutral point of the body. The 

distance between the two electrodes of each channel was set as 4cm and the reference 

electrodes were attached to the skin of the lateral malleolus fibula. Set the sampling rate 

of the system to 512Hz, then the subjects were asked to walk normally on a straight 

horizontal cement alleyway and make sure the number of steps was bigger than 100 to 

get enough data. sEMG of left and right lower limbs under natural gait are obtained 

then. Figure 1 shows the placement of the Shimmer3 EXG unit and the sEMG 

electrodes. 

 

 

   Fig 4.1  Placement of EXG unit and sEMG electrodes. (a) Back View (b) Side View. 
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Fig 4.2 shows the sEMG’s linear envelope of PG and other selected three kinds of 

pathological gaits (20s per segment), where we can see a more disorderly pace.  

 

 

Fig 4.2  The sEMG’s linear envelope of (a) Parkinsonian gait (b) hemiplegic gait (c) gluteus medius 

gait (d) steppage gait  

 

4.2.2  Dataset preparation 

The ADS1292R chips on the EXG Unit provide a DC-coupled measurement. To 

detect when a muscle is active and to give an indication of the overall level of activity 

in a particular muscle the linear envelope of EMG signal was extracted. Meanwhile, 

since the sensor is very sensitive, many noises are introduced thus may cause the 

overfitting of neural network and in view of normal stride frequency of adult range 

from 0.5 Hz to 3 Hz roughly, a third-order low-pass Butterworth Filter is designed 

and used. The normalized cut-off frequency WN = 2 ∗ fcut−off/fsample was set as 

0.02, where 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓  is the raw cut-off frequency and 𝑓𝑠𝑎𝑚𝑝𝑙𝑒  stands for our 

sampling rate, 512Hz. 
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We use a sliding sequential segmentation window with 1024 points long (which is, 

2000ms in time series under a sampling rate of 512Hz) and 256 points stepping to 

segment the waveforms into fragments of 2000ms. Each segment contains 

2*1024=2048 points, wherein the 2 here are two channels of sEMG which collected 

from the gastrocnemius and tibialis anterior muscle respectively. And all the two 

adjacent fragments overlap each other by three quarters after this process. Fig 4.3 

shows 5 segments of data each, where (a) is a raw sEMG linear envelope and (b) shows 

the filtered signal. 

 

 

(a)                                             (b) 

Fig 4.3  (a) Raw SEMG linear envelope (b) Filtered SEMG linear envelope 

 

Meanwhile, all fragments are labeled according to the gait category to obtain the (data, 

label) pair. The labels are set as 0 for the subject’s simulated pathological gait, 1 for 

hemiplegic gait and 2 for Parkinson's gait. 

 

4.2.3  Neural network build-up and training 

Neural Networks can work as a kind of classification system. Inspired by biological 

neural networks of human brains, it’s a framework for many different machine learning 

methods rather than an algorithm, and has advantages in processing complex data 

inputs. CNNs are a category of Neural Networks that have proven very effective in 

areas such as image recognition and classification. CNN was built and trained in this 

section to explore its performance in this PG recognition and classification task. 
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(1) Structure 

CNNs are a category of Neural Networks that have been proved to be very effective in 

image recognition and classification. Lenet is one of the earliest convolutional neural 

networks, which promotes the development of deep learning. Yann Lecun's pioneering 

work was named lenet5 after many successful iterations. In image recognition tasks the 

nearby pixels typically have a strong relationship with each other, and similarly, for our 

study, the nearby acceleration readings are likely to be correlated in the given data 

fragments. Thus LeNet-like CNN is chosen as the third model to build in this study. 

 

In image recognition tasks the nearby pixels typically have a strong relationship with 

each other, and similarly, for our study, the nearby sEMG readings are likely to be 

correlated in the given data fragments. Thus LeNet-like CNN is chosen as the model to 

build in this study. 

 

A six-layer CNN was defined for PG recognition and classification. They are 

convolution layer one whose values are fixed by the input data, pooling layer 1, 

convolution layer 2, pooling layer 2, the hidden full connection layer and the softmax 

output layer whose values are derived from previous layers. Wherein, each layer is fully 

connected to the next layer.  

 

Figure 4.4 demonstrates the structure of CNN in this study. As mentioned before, the 

shape of input data is (1,2,1024), the shape of convolutional output1 is (16, 28, 28) with 

16 convolutional kernels of size 4 and the shape of max-pooling output 1 is (16, 14, 14) 

with pooling size of 2 and strides of 2. Similarly, the shape of convolutional output 2 is 

(16, 14, 14) and the shape of max-pooling output 1 is (16, 7, 7). The dimension of two 

fully connect layers is 300 and 3, respectively. The output layer is a Softmax classifier. 
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Fig 4.4  The structure of CNN for PG Recognition and Classification  

 

The activation function of the hidden layer is ReLU (Rectified Linear Unit) to introduce 

non-linearity in our net, and its formula is given by (4-1). 

 

 f(x) = 𝑚𝑎𝑥⁡(0, x) (4-1) 

 

Other nonlinear functions such as tanh or sigmoid can also be used instead of ReLU, 

but ReLU has been found to perform better in these situations. 

 

By using softmax as the activation function, the sum of output probabilities from the 

output layer is 1. The softmax function can take a vector of arbitrary real-valued scores 

and squashes it to a vector of values between zero and one that sums to one. Here it’s 

given by (4-2). 

 

 P(y = j|x) = 𝑒𝑥
𝑇𝑤𝑗/∑ 𝑒𝑥

𝑇𝑤𝑗

3

𝑘=1
 (4-2) 

 

Where 𝑤𝑗(j＝0,1,2) here represents the weight vector from the hidden layer to the 

output layer. 
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(2) Cost function and optimization algorithm 

A cost function is needed to optimize the weights of each node during training. In 

multi-classification tasks, mean square error (MSE) is usually used as the basic kind 

of cost function. While in the process of training the neural network, we update the 

node weights W and node output B by gradient descent algorithm, so we need to 

calculate the derivative of the cost function to W and B, but the update may be very 

slow in this process. To overcome this cross-entropy cost function is chosen as the 

cost function, it’s formula is given by (4-3): 

 

 C = −
1

𝑛
∑[𝑦𝑙𝑛⁡𝑎 + (1 − 𝑦) ln(1 − 𝑎)]

𝑥

 
(4-3) 

 

Where y is the expected output and a = ⁡σ(∑𝑊𝑗 ∗ 𝑋𝑗 + 𝑏) is the actual output of 

neurons.  

 

Meanwhile, to prevent overfitting and improve the generalization ability of our neural 

network, and L2 regularization was added into the cost function, thus the lost function 

becomes (4-4): 

 

 L = 𝐶0 +
λ⁡
2𝑛

∑𝑤𝑗
2

𝑤

 (4-4) 

 

Where 𝐶0 stands for the former cost function, n is the size of the training set and λ is 

the regularization parameter.  

 

The optimization algorithm is set as Adam optimizer that combines the advantages of 

both the AdaGrad and RMSProp optimization algorithms. The gradient update formula 

is (4-5): 
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 𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ∗ 𝑚𝑡̂/(√𝑣𝑡̂ + ε) (4-5) 

 

Where the default learning rate 𝛼 is set as 0.001, ε = 10−8 just in case the dividend is 

zero. 𝑚𝑡 stands for gradient mean:  

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (4-6) 

 

and 𝑣𝑡 stands for gradient variance (4-7). 

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (4-7) 

 

Where 𝛽1,⁡𝛽2 is exponential attenuation rate, 𝑔𝑡 is the gradient at time t. 

 

4.2.4  Training Process 

The training of neural networks we built in this study follows the typical process and 

weight updating rules. To take a general exposition the pseudo-code for the PG 

recognition CNN model is described in Algorithm 4.1 below.  

 

Algorithm 4.1: CNN for Parkinsonian Gait recognition and classification 

Input: Labeled train dataset D = {(( 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ), 𝐿𝑖  )}, an unlabeled dataset 

D(unlabeled) = {(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)} 

Output: gait type Labels 𝐿𝑝𝑟𝑒 of the unlabeled data 

Initialization 

random assignment weights and biases of the network 

Repeat 

Forward Propagation: 

For each Labeled train data of sEMG from D: 
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do  

• Calculate Output of Hidden Layer and Output Layer  

• Calculate the deviation between the output layer and the expected output  

end 

• Use softmax to do classification and update 

the weight of each edge in the network 

Backward Propagation: 

• Conduct backward propagation 

Until 𝑤𝑖 convergences or training epochs meet n; 

Use the trained network to predict the labels 

 

4.3  Results 

After preprocessing of the acquired sEMG, we get a labeled dataset 

D{
( )( )iii LSEMG ,2,SEMG1 }(Li =0,1,2) of 5 types of gait with more than 60 thousand 

segments. After the shuffle, the dataset was grouped into the training set and the test 

set with a ration of 0.7. The training set was used to train the model and the test set 

was used to verify the classification effect of the model when the train finished. 

 

4.3.1  Generic model 

In the generic model, CNN is established for a three-class classification task (normal 

gait, Parkinsonian gait, and other pathological gaits). The node counts of hidden fully 

connect layer were set as 300, the learning rate was 0.0001 and batch size, which is 

the number of training samples in each batch, was set as 128. Fig 4.5 shows the 

confusion matrix and ROC of PG recognition of the model after 24 epochs of training. 

Where the Precision P = TP/(TP+FP) is the proportion of real positive samples in the 



46 

 

positive samples judged by the classifier, the Recall  R = TP/(TP+FN) is the 

proportion of the true judged positive cases in all positive cases.  

 

Fig 4.5  The confusion matrix and ROC after 24 epochs of training 

 

ROC (receiver operating characteristic curve) and confusion matrix are used to 

evaluate the performance of the proposed system. ROC can identify the ability of PG 

recognition at any threshold value. Confusion matrix, also known as error matrix, is a 

standard format for accuracy evaluation. From the confusion matrix of the 24th epoch, 

we can observe that for the PG recognition task, the precision of recognizing different 

types of gait is 0.98, 0.74 and 0.88 respectively, where the precision is the proportion 

of real positive samples in the positive samples judged by the classifier. We can 

calculate the recall value from the matrix as well, which is 0.77, 0.98 and 0.85 

respectively, where the recall is the proportion of the true judged positive cases in all 

positive cases. For PG the recall value is 0.98, far bigger than its precision, this is 

promising because in practical use scenarios we hope the model can recognize the 

disease as much as possible, even if the false alarm occurs. 

 

By applying the generic model on the test set, the accuracy can achieve 0.9008. For a 

generalization model, the result is quite promising and exhibits the feasibility of the 

proposed system for the PG recognition. 
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4.3.2  Subject-specific model 

To take the individual variability into consideration and to obtain a personalized 

model for each subject, subject-specific models were obtained. The setting of all 

parameters remains unchanged. Fig 4.6 shows the confusion matrix and ROC of one 

of our subjects after 20 epochs of training. 

 

 

Fig 4.6  The confusion matrix and ROC of subject No.3 after training 

 

Where label 0 stands for NG and 1 stands for PG. We can observe a higher accuracy 

of 100% for NG and 0.98 for PG. Table 4.1 shows the accuracy score after the 

training for each subject after training. The accuracy score fluctuates between 0.8361 

and 0.9737 with an average value of 0.9282.  
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Table 4.1. Classification Precision of each subject 

No. Gender Classification Task Accuracy Score 

1 male {NGa,PGb,hemiplegic gait} 0.8786 

2 male {NG,PG,gluteus medius gait} 0.9732 

3 male {NG,PG,steppage gait} 0.9512 

4 male {NG,PG,hemiplegic gait} 0.8979 

5 male {NG,PG,gluteus medius gait} 0.9692 

6 female {NG,PG,steppage gait} 0.9398 

7 male {NG,PG,gluteus medius gait} 0.9712 

8 male {NG,PG,hemiplegic gait} 0.8361 

9 male {NG,PG,steppage gait} 0.9737 

10 female {NG,PG,gluteus medius gait} 0.9686 

11 female {NG,PG,hemiplegic gait} 0.8510 

AVG   0.9282±0.05 

a. Normal Gait  b. Parinson Gait 

 

From Table 4.1, for the three-class classification task {normal gait, PG, hemiplegic 

gait}, the average accuracy is only 86.59%. It is mainly because our dataset combines 

sEMG signals from two legs, while for hemiplegic patients, one side of the sEMG is 

affected and the other side may maintain normal. For other three-class classification 

tasks, the average accuracy can reach over 96%. 

 

4.4  Conclusion 

To provide an accurate and affordable measure of PD identification, an automatic PG 

recognition system based on the sEMG was proposed in this thesis. The signals were 

fed to CNN for classifying the normal gait, PG and some other pathological gaits. The 

proposed system omitted the complex hand-crafted feature extraction process. 
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Experimental results demonstrate the effectiveness of the proposed approach in 

automatic PG gait recognition. The accuracy of the proposed CNN can reach 90% for 

all the subjects' generic models and 97% for the subject-specific model. Meanwhile, 

the results showed that the network works better when trained for a specific subject, 

which is of great significance in tracking patients' disease stages. To our best 

knowledge, this is the first work that combines sEMG with CNN for recognition of 

PG. In the future, larger datasets will be collected in the cooperated hospital to further 

validate the robustness of the proposed system. Some data fusion technologies like 

camera + sEMG based PG analysis are also worth pursuing. 
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5  Neural Networks for Pathological Gait Classification Using 

Wearable Motion  

Gait, as an essential feature reflecting human health status, has attracted extensive 

attention in research. Automatic pathological gait identification can contribute to 

disease diagnosis and intervention. In this thesis, an unobtrusive sensing technology 

with deep learning methods to discriminate healthy and pathological gaits is proposed. 

Two accelerometers are mounted on the left and right lower limbs to acquire the 

motion signals. Based on these signals, three Neural Networks, namely, BPNN (Back 

Propagation Neural Network), LSTM (Long Short Term Memory) and CNN 

(Convolutional Neural Networks) are proposed for classifying the gaits. Experimental 

results exhibit that the accuracy of the proposed method can reach 86%, 81%, and 93% 

on a database of 15 participants while using BPNN, LSTM, CNN, respectively. With 

the strong ability of spatial-temporal signal analysis, CNN outperforms the other two 

neural networks and provides a favorable result. The proposed method can be 

extended to an automated gait classification tool, which can be used in the diagnosis 

and identification of pathological gaits. 

 

5.1  Introduction  

Gait, as the manner of walking, is an idiosyncratic feature of a person. In general, 

gaits can be classified into normal gait and pathological gaits. The pathological gaits 

may mainly cause due to hemiplegia, Parkinson's disease, myopathy, and pain. It 

includes typically gaits, namely, hemiplegic gait, Parkinson gait, gluteus medius gait, 

steppage gait and so on[39]. Identification of normal/pathological gaits could provide 

deep insights to understand various human movement patterns across different gait 

pathologies. It has been proven that gait analysis has a guiding role both in clinical 
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research and guardianship in-home[40]. However, traditional gait assessment is 

mainly based on clinical observations. It is a subjective and time-consuming 

decision-making process for clinicians. To address these issues, automatic methods to 

discriminate between normal and pathological gaits have been attracted widespread 

attention. 

 

With the benefits of precise, stable and affordable sensors, various motion 

sensor-based gait classification methods have been presented. Dolatabadi et al.[41] 

integrated machine learning methods to discriminate between healthy and 

pathological gait patterns using the Kinect motion sensor. Gait features are extracted 

and k-nearest neighbor and a dynamical generative classifier are used. Murad et al.[42] 

classified pathological gait patterns using 3D ground reaction force (GRFs) data, the 

GRFs parameters and the discrete wavelet transform (DWT) were used to extract the 

gait features and nearest neighbor classifier (NNC) and artificial neural networks 

(ANN) were investigated for the classification of gait features, the result shows the 

optimal feature set of six features enhanced the accuracy to 95%. In the existing 

works, by combining the sensor technology and traditional machine learning 

algorithms, gait classification can achieve high performance in pathological gait 

classification tasks. However, hand-crafted features are required to be extracted 

before the classification. 

 

Nowadays, deep neural networks have shown great potential in feature extraction and 

become a research hotspot. Neural networks have shown their ability in gait 

authentication[36] and activity recognition[43]. To our best knowledge, using neural 

networks without the complex feature extraction process for the pathological gait 

classification has never been explored. With the hypothesis that gait patterns could be 

captured and compartmentalized via combining motion sensors with neural networks, a 

novel method is proposed. In this thesis, two wearable motion sensors are used to 
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acquire the motion signals and ANNs (BPNN, LSTM, and CNN) based pathological 

gait classifiers are used to identify different gaits. The proposed method omits the 

complex sensor set-up process and hand-crafted feature extraction process. On the 

contrary, with the ability to act as feature extractors, the proposed method can learn 

multiple layers of feature hierarchies and realize the classification automatically. 

 

5.2  Method 

5.2.1  Data acquisition experiment setup 

In clinical research certain pathological gait are more likely to encounter, they are 

hemiplegic gait, steppage gait, parkinsonian gait, and gluteus medius gait. For this 

study, we established a dataset of pathological gait, in which more than 100 thousand 

segments motion data of natural gait and five simulated pathological gaits were 

collected. The gait data were measured by Shimmer 3 IMU unit which is a small 

wearable wireless sensor and can offers data with integrated 9DoF inertial sensing.  

 

Experiments were conducted on 15 subjects and among them 3 are female. The height 

of subjects ranges from 163cm to 191cm with a mean value of 172.47cm and the 

weight range from 48kg to 93kg with a mean value of 65.8kg. The steps of the 

experiment to obtain the needed data are presented below. 

 

(1) Collect motion data of natural gait 

The Shimmer 3 IMU unit is fixed to the outer part of two shins by an elastic bandage, 

wherein the Y-axis of IMU is set perpendicular to the horizontal plane, the X-axis is 

perpendicular to the human coronal plane, and the Z-axis is perpendicular to the sagittal 

plane of the human body. We set the sampling rate of the system to 512Hz and set the 

IMU’s accelerometer sensitivity to ±2g, then the subjects were asked to walk naturally 
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on a straight horizontal cement alleyway and make sure the number of steps was bigger 

than 100 to get enough data. The triaxial acceleration information of the left and right 

lower limbs under natural gait is obtained then. Fig 5.1(a) shows the placement of 

Shimmer 3 and Fig 5.1(b) shows the scene of the experiment during subject walking. 

 

(a)                 (b) 

Fig 5.1  (a) The placement of Shimmer 3 IMU unit; (b) The walking scene.  

 

(2) Learn to simulate five pathological gaits 

Since in this study we only use the motion sensor, it’s promising to just simulate those 

pathological gaits instead of collect clinical data to verify the model. For learning those 

pathological gaits, each subject was instructed to watch and study the Stanford 

Medicine 25 video which was created in conjunction with Stanford's AIM lab to teach 

the examination of the gait[38]. 

 

(3) Collect pathological gait information 

The placement of the IMU and data acquisition process is the same as step 1. Five 

typical pathological gaits were selected, they are hemiplegia gait, Parkinson gait, 

gluteus medius gait, steppage gait and diplegia gait (scissor gait).  

IMU2 

IMU1 



54 

 

 

Fig 5.2 (a) natural gait (b) hemiplegic gait (c) Parkinson gait (d) gluteus medius gait (e) steppage 

gait (f) diplegia gait. 

 

Fig 5.2 shows the original triaxial acceleration data of the natural gait and five 

pathological gaits (10s per segment), from which we can observe a lower stride 

frequency and disorderly pace. 

 

5.2.2  Data preprocessing and dataset preparation  

 

Since the IMU is very sensitive, the obtained motion signals are contaminated with 

noise that may cause the overfitting of neural networks. To reduce this side effect and 

since normal stride frequency of adults ranges from 0.5 Hz to 3 Hz roughly[44], a 

third-order low-pass Butterworth Filter is designed and used. The normalized cut-off 
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frequency 𝑊𝑁 = 2 ∗ 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓/𝑓𝑠𝑎𝑚𝑝𝑙𝑒 was set as 0.1, where 𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 is raw cut-off 

frequency and 𝑓𝑠𝑎𝑚𝑝𝑙𝑒 stands for our sampling rate, 512Hz. 

 

Then the filtered IMU data is normalized into [-1,1] with zero mean to reduce 

individual variability. We use a sliding sequential segmentation window with 1024 

points long (which is, 2000ms in time under a sampling rate of 512Hz) and 256 points 

stepping to segment the waveforms into fragments of 2000ms. Each segment contains 

3*1024=3072 points where 3 represents the x, y, and z-axis’ triaxial acceleration 

information. Meanwhile, all fragments are labeled according to the gait category to 

obtain the (data, label) pair. 

 

5.2.3  Neural network build-up and training 

Inspired by biological neural networks of human brains, Artificial Neural Network 

(ANN) is able to recognize patterns and learn features from input data without 

extensive data preprocessing, handcrafted rules or feature engineering[45], which 

makes them particularly well suitable for classifying our motion data of gait. To 

explore a suitable neural network for this Pathological Gait Classification task, we start 

from the most basic one – back propagation neural network. On the other hand in view 

of our input data is in time series and RNN is quite good at processing sequential data, 

we built an RNN to evaluate its classification performance. We also evaluate CNN 

cause lately, it has dramatically improved the state of the art in medical applications in 

recent years.  

 

(1) BPNN (backpropagation neural network) 

We build up a three-layer BPNN in this part. It’s the most basic neural network, whose 

output results are propagated forward and the error is propagated backward, simple and 

efficient. The layers are the input layer, hidden layer, and output layer. In our study, the 
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number of nodes in the input layer was set according to the points in each data 

fragments, which is 3072 (3 axes * 2000ms * 512Hz). The number of output layer 

nodes is 6 since we have 6 types of gaits in all. Fig 5.3 shows the structure of our 

BPNN.  

 

 

Fig 5.3  The structure of constructed three-layer BPNN 

 

The activation function of the hidden layer is ReLU (Rectified Linear Unit) to introduce 

non-linearity in our net, and its formula is given by (5-1). 

 

 f(x) = max⁡(0, x) (5-1)) 

 

Other non-linear functions such as tanh or sigmoid can also be used instead of ReLU, 

but ReLU has been found to perform better in this situation. 

 

The sum of output probabilities from the output layer is 1. This is ensured by using the 

softmax as the activation function in the output layer and the function is given by (5-2). 

 

 P(y = j|x) = 𝑒𝑥
𝑇𝑤𝑗/∑ 𝑒𝑥

𝑇𝑤𝑗

6

𝑘=1
 (5-2) 

 

Where 𝑤𝑗(j＝0:5) is the weight vector from the hidden layer to the output layer. 
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A cost function is needed to optimize the weights of each node during training. To 

overcome the slow update of node weights, a cross-entropy cost function is chosen as 

the cost function, it’s formula is given by (5-3). 

 

 C = −
1

𝑛
∑[𝑦𝑙𝑛⁡𝑎 + (1 − 𝑦)ln⁡(1 − 𝑎)]

𝑥

 
(5-3) 

 

Where y is the expected output, n is the number of samples, and (5-4) is the actual 

output of neurons.  

 a = ⁡σ(∑𝑊𝑗 ∗ 𝑋𝑗 + 𝑏) (5-4) 

 

Besides, to prevent overfitting and improve the generalization ability of our neural 

network, and L2 regularization was added into the cost function. Thus the lost function 

becomes (5-5): 

 L = C +
λ⁡

2𝑛
∑𝑤𝑗

2

𝑤

 
(5-5) 

 

Where C stands for the former cost function, n is the size of the training set and λ is the 

regularization parameter.  

 

(2) LSTM (Long Short Term Memory) 

LSTM is the enhanced version of RNN (recurrent neural network) that can alleviate the 

problem of vanishing gradient. Fig 5.4 shows a sketch map of RNN and LSTM cell, 

where x stands for input layer, o for output layer and s for the hidden layer. U, V, W is 

weights and S(t) = f(U*x(t)+W*s(t-1)). We can also see forget gate, input gate and 

output gate in LSTM that can control the flow of information. 
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Fig 5.4 The sketch map of RNN (left) and LSTM Cell 

 

In view of the original data of our system is time-series waveform, while the calculation 

results of each hidden layer in LSTM are related to the current input and the last hidden 

layer results, we built an LSTM based neural network to classify them. Tensorflow and 

Keras are used to build our model. The shape of the input array is (3,1024) and the set of 

the cost function is the same as BPNN. 

 

(3) CNN (Convolutional Neural Networks) 

CNNs are a category of Neural Networks that have proven very effective in areas such 

as classification and image recognition. In image recognition tasks, the nearby pixels 

typically have a strong relationship with each other, and our data is similar to this 

situation where the nearby acceleration readings are likely to be correlated in the given 

data fragments. Thus CNN is chosen as the third model to build in this study. A 

six-layer CNN was defined for pathological gait classification. The layers are 

convolution layer 1 whose values are fixed by the input data, pooling layer 1, 

convolution layer 2, pooling layer 2, the hidden full connection layer and the softmax 

output layer whose values are derived from previous layers. Wherein, each layer is fully 

connected to the next layer.  

 

Fig 5.5 demonstrates the structure of CNN in this study. As mentioned before, the shape 

of input data is (1,3,1024), the shape of convolutional output 1 is (32, 28, 28) with 32 
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convolutional kernels of size 5 and the shape of max-pooling output 1 is (32, 14, 14) 

with pooling size of 2 and strides of 2. Similarly, the shape of convolutional output 2 is 

(64, 14, 14) and the shape of max-pooling output 2 is (64, 7, 7). The dimension of two 

fully connect layers is 1024 and 6, respectively. The output layer is a softmax classifier. 

 

 

Fig 5.5  The structure of CNN for Pathological Gait Classification  

 

Besides the use of ReLU and softmax like BPNN, the optimization algorithm is set as 

Adam optimizer that combines the advantages of both the AdaGrad and RMSProp 

optimization algorithms. The gradient update formula is (5-6): 

 

 𝜃𝑡 = 𝜃𝑡−1 − 𝛼 ∗ 𝑚𝑡̂/(√𝑣𝑡̂ + ε) (5-6) 

 

Where the default learning rate 𝛼 is set as 0.001, ε = 10−8 just in case the dividend is 

zero. 𝑚𝑡 stands for gradient mean:  

 

 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (5-7) 

 

and 𝑣𝑡 stands for gradient variance (5-8): 

 

 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡 (5-8) 
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Where 𝛽1,⁡𝛽2 is exponential attenuation rate, 𝑔𝑡 is the gradient at time t. 

 

5.2.4  Training Process 

The training of all neural networks in this study follows the same process and weight 

updating rules. To take a general exposition the pseudo-code for our net is proposed. 

 

Algorithm5.1: ANN for pathological gait classification 

Input: Labeled train dataset D = {((𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝐿𝑖 )}, 

an unlabeled dataset D(unlabeled) = {(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖)} 

Output: gait type Labels 𝐿𝑝𝑟𝑒 of the unlabeled data 

Initialization 

random assignment weights and biases of network 

Repeat 

Forward Propagation: 

For each Labeled train data of tri-axises from D: 

do  

• Calculate the output of the hidden and output layer  

• Calculate the deviation between the output layer and the expected 

output  

end 

• Use softmax to do classification and update 

the weight of each edge in the network 

Backward Propagation: 

• Conduct backward propagation 

Until 𝑤𝑖 convergences or training epochs meet n; 

Use the trained network to predict the labels 
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5.3  Results 

After preprocessing of the acquired data, we get a labeled motion dataset D 

{((𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), 𝐿𝑖 )} of pathological gait with more than 100 thousand segments. After 

shuffling, the dataset was split into a training set and test set with a ratio of 0.64. The 

training set was used to train the model and the test set was used to verify the model 

when the train finished. 

 

Table 5.1 shows the accuracy of the test for each type of gait and neural network. For 

BPNN, the hidden layer node was set as 512, the learning rate was 0.003 and batch 

size, which is the number of training samples in each batch, was set as 200. For 

LSTM, the learning rate was 0.002 and batch size was set as 128, time steps were set 

as 5 and neurons in the hidden layer was 128. For CNN, the learning rate was 0.0001 

and batch size was set as 128.  

 

Table 5.1  Classification Accuracy of BPNN, LSTM, CNN 

Classifier type BPNN LSTM CNN 

Hemiplegic gait 96.52% 80.5% 97% 

Parkinson gait 70.01% 75.8% 90% 

Natural gait 93.51% 83.4% 90% 

Gluteus medius gait 98.56% 86.2% 93% 

Steppage gait 86.42% 83.3% 93% 

Diplegia gait 75.47% 79.2% 95% 

Overall Accuracy 86.75% 81.4% 93% 

 

From Table Ⅰ we can observe that for this pathological gait classification task, the 

precision of CNN are higher than other ANNs, and can reach 93% in four types of 

gait, which is quite a good performance and proved the great potential of neural 



62 

 

network in pathological gait recognition as well as classification. All neural networks 

show better in the classification gluteus medius gait and steppage gait, this probably 

because the two shows a significant difference from other gaits, and meanwhile have 

more samples in the data set.  

 

Among these three ANNs, BPNN shows more sensitivity to hyperparameters. To 

evaluate its effect on the accuracy of classification, we train the network with 

different hidden layer nodes and the results are plotted as Fig 5.6, where f1 value is 

the harmonic mean of precision (P) and recall (R) rate, that is f1 = 2P*R/(P+R), which 

is equivalent to the comprehensive evaluation index of accuracy and recall rate. The 

general trend shows that the accuracy of BPNN rapidly improves from 60 to 256, and 

shows a peak in 512, then fluctuate smoothly after it. It shows that the specific ration 

between input nodes and hidden nodes of BPNN was important for the model to learn 

for further optimizing the network.  

 

 

Fig 5.6  The influence of accuracy by hidden nodes in BPNN 

  

It worth to mention that CNN outperforms the other two neural networks on the 

ability of feature extraction and classification accuracy. A detailed confusion matrix 

of CNN is shown in Fig 5.7. The confusion matrix is the most basic, intuitive and 

simplest method to measure the accuracy of the classification model, where the labels 
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are set as 1 for hemiplegic gait, 2 for Parkinson gait, 3 for natural gait, 4 for gluteus 

medius gait and 5 for steppage gait. 

 

 

Fig 5.7  The confusion matrix of CNN 

  

In this thesis, an automatic gait identification system based on the motion while using 

neural networks is proposed. The feasibility of the proposed system is verified on a 

simulated database and the results are quite promising. However, this is a preliminary 

study to distinguish normal gait and five pathological gaits. To further validate the 

robustness of the proposed system, the clinical data will be collected in the future. 

 

5.4  Conclusion 

To provide an accurate and affordable measure of pathological gaits identification, an 

automatic gait recognition system based on the motion signals was proposed in this 

thesis. The motion signals were fed to three neural networks for classifying the 

normal gait and five pathological gaits. The proposed system omitted the complex 

hand-crafted feature extraction process. Experimental results demonstrate the 

effectiveness of the proposed approach in automatic gait classification. Meanwhile, 
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the results showed that CNN can achieve better performance in comparison with 

BPNN and LSTM, which mainly due to the excellent feature extraction capability 

with the help of convolution kernels. To our best knowledge, this is the first work that 

involves five pathological modalities and provides the comparison and verification of 

three neural networks. In the future, larger datasets will be collected in the cooperated 

hospital to further validate the robustness of the proposed system. Some data fusion 

technologies like IMU+sEMG based pathological gait classifiers are also worth 

pursuing.  
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6  Skeleton Keypoints detection for abnormal gait recognition 

Human Keypoint Detection, also known as human posture recognition, aims to locate 

the position of human joints in the image accurately. As one of the indispensable hot 

research fields of computer vision, human posture recognition has a large number of 

landing scenes and broad application prospects. The existing and promising scenarios 

can be widely used in human gait recognition, rehabilitation training, somatosensory 

games, augmented reality, etc. Enabled in games, mobile phones, medical care, 

education, and other fields. 

 

In this part, we exploring unmarked gait information extraction technology of lower 

limbs for gait analysis. A key point detection system based on the state of the art was 

used. Clinical data of a patient with abnormal gait was collected in Huashan Hospital, 

Shanghai. 18 key points of the patient while walking were calculated with a trained 

neural network. We plot the calculated points in a time domain and then the wave was 

compared with IMU data. The results show currently deep neural network-based key 

points detection model is not good enough for abnormal gait recognition. The proposed 

method omits the complex sensor set-up process and hand-crafted feature extraction 

process. And, with the ability to act as feature extractors, the proposed method can learn 

multiple layers of feature hierarchies and realize the classification automatically. 

 

6.1  Methods 

6.1.1  Data acquisition experiment setup 

In clinical research certain pathological gait are more likely to encounter like 

hemiplegic gait, parkinsonian gait, etc. For this study, 12 patients with abnormal gait 

were recruited. Detailed information can be seen in Table 6.1. 
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Table 6.1 Information of Subjects 

No. gendar age Heights(cm) Weights(kg) 

1 Male 44 175 104 

2 Male 61 181 80 

3 Male -- 165 78 

4 Male 24 165 70 

5 Male 60 170 58 

6 Male 30 180 95 

7 Female 18 153 37 

8 Male 24 185 60 

9 Male 43 176 80 

10 Male 42 172 73 

11 Female 64 159 55 

12 Male 60 165 50 

13 Male 48 169 60 

 

The Shimmer 3 IMU and EXG unit are fixed to the outer part of two shins by an elastic 

bandage, wherein the Y-axis of IMU is set perpendicular to the horizontal plane, the 

X-axis is perpendicular to the human coronal plane, and the Z-axis is perpendicular to 

the sagittal plane of the human body. We set the sampling rate of the system to 512Hz 

and set the IMU’s accelerometer sensitivity to ±2g. At the same time, a camera was put 

behind the subject and keep still. After all set up was done the subjects were asked to 

walk on standard trails. The triaxial acceleration information of the left and right lower 

limbs under natural gait is obtained as well as a normal RGB camera-based video. Fig 

6.1 shows the placement of Shimmer 3. 
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Fig 6.1  The placement of Shimmer 

 

Fig 6.2 shows the original triaxial acceleration data, from which we can observe a lower 

stride frequency and disorderly pace. 

 

 

(a) 

 

(b) 

Fig 6.2  The original triaxial acceleration data (a) x-axis; (b) y-axis 
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6.1.2   Human Keypoints detection 

For human keypoint detection, the champion algorithm of coco2018 was reproduced 

and used. There are two main ways of human gesture recognition: single-stage and 

multi-stage. Although the latter is more suitable for the task from rough to fine logic, it 

seems that the performance is not superior to the single-stage method.  

 

After the emergence of deep convolution network, human pose recognition has 

developed rapidly. At present, the network structure of the optimal method[46], [47] is 

relatively simple, mostly using single-stage network design, such as the 2007 COCO 

Keypoint Challenge Championship method[46] using ResNet-Inception-based network 

structure, and the latest Simple Baseline[47] using ResNet network structure. Another 

network structure is a multi-stage network design, that is, a lightweight network as a 

unified network, and then simply stack it into multi-stage. 

 

They believe that the poor performance of the multi-stage method is mainly due to a 

variety of unreasonable designs. Their work starts with 1) network design, 2) feature 

flow and 3) loss function, and proposes a series of improvement measures. The results 

of their work exceed the existing methods on the MSCOCO Keypoint data set to 

achieve the best results. The paper has been published in Arxiv. The Overview of 

Multi-Stage Pose Network(MSPN) can be seen in Fig 6.3. 
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Fig 6.3  Overview of Multi-Stage Pose Network(MSPN) 

 

The multi-stage attitude estimation network MSPN is shown in Figure 6.3. It uses a 

top-down framework, i.e. the human body detection algorithm is first used to give the 

human body frame, and then matting, and estimating the pose of a single human body. 

As mentioned above, there are three new breakthroughs in MSPN: firstly, the network 

with good image classification performance (such as ResNet) is used as the unit 

network of multi-stage network; secondly, the information aggregation model is 

proposed to reduce information loss by stages; thirdly, the coarse-to-fine supervision is 

introduced and multi-scale supervision is carried out. 

 

6.2  Results 

The key points of our clinical video data were recognition by MSPN, the method build 

before. The results can be seen in fig 6.4 below. 
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Fig 6.4 Key-points of Skeleton 

 

The raw video is 44Hz, to get time serious points in the space, the original video is 

converted into a picture set at 20 Hz sampling frequency. And all pictures were detected 

and a JSON file of 21 key-points of the body in time serious was saved. They are head, 

left ear, right ear, left eye, right eye, nose, left mouth corner, right mouth corner, neck, 

left shoulder, right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right 

hip, left knee, right knee, left ankle, and  right ankle. Each point contains two float 

number, they are coordinates on the X-Y plane of that point. 

 

Use head as an example, the point’s x-coordinate, and they-coordinate location were 

plotted in the time domain in fig 6.5.  
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Fig 6.5  The point’s x-coordinate(a) and y-coordinate(b) location in time serious 

 

IMU data can be seen in figure 2. Through the analysis and comparison of the data, we 

can see that when the subjects are within 2 meters of the camera, they can observe the 

periodic information, but when the subjects leave the camera 2 meters away, the error 

will increase sharply and lose the periodic information. It is easy to draw a conclusion 

that the accuracy of the current human keypoint detection technology is not enough to 

use directly. 

 

6.3  Future works 

For future study, a tracking test video acquisition is deserved to be used for a stable 

point error rate, and the same neural network like the last chapter can be used for the 

analysis of the gait info from keypoints, thus a video-based abnormal gait classifier 

system can be released. 
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Summary 

In this thesis, we proposed a lower limb data acquisition system and a neural 

network-based model for abnormal gait classification. The experiment was designed to 

collect acceleration signals and sEMG signals under normal and pathological gaits. 

Data of 15 healthy persons and 15 hemiplegic patients during walking were collected. 

The classification of gait was carried out based on sEMG and the average accuracy rate 

can reach 92.8% for CNN. For IMU signals five kinds of abnormal gait are trained 

based on three models: BPNN, LSTM, and CNN. The experimental results show that 

the system combined with the neural network can classify different pathological gaits 

well, and the average accuracy rate of the six-classifications task can reach 93%. 

 

In vision-based research, by using human keypoint detection technology, we obtain the 

precise location of the key points through the fusion of thermal mapping and offset, 

thus extracts the space-time information of the key points. However, the results show 

that even the state-of-the-art is not good enough for replacing IMU in gait analysis and 

classification. The good news is the rhythm wave can be observed within 2 m, which 

proves that the temporal and spatial information of the key points extracted is highly 

correlated with the acceleration information collected by IMU, which paved the way 

for show visual-based abnormal gait classification algorithm. 
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