438 research outputs found

    Regular Datapaths on Field-Programmable Gate Arrays

    Get PDF
    Field-Programmable Gate Arrays (FPGAs) are a recent kind of programmable logic device. They allow the implementation of integrated digital electronic circuits without requiring the complex optical, chemical and mechanical processes used in a conventional chip fabrication. FPGAs can be embedded in traditional system designflows to perform prototyping and emulation tasks. In addition, they also enable novel applications such as configurable computers with hardware dynamically adaptable to a specific problem. The growing chip capacity now allows even the implementation of CPUs and DSPs on single FPGAs. However, current design automation tools trace their roots to times of very limited FPGA sizes, and are primarily optimized for the implementation of random glue logic. The wide datapaths common to CPUs and DSPs are only processed with reduced performance. This thesis presents Structured Design Implementation (SDI), a suite of specialized tools coordinated by a common strategy, which aims to efficiently map even larger regular datapaths to FPGAs. In all steps, regularity is preserved whenever possible, or restored after disruptive operations were required. The circuits are composed from parametrizable modules providing a variety of logical, arithmetical and storage functions. For each module, multiple target FPGA-specific implementation alternatives may be generated in both gatelevel netlist and layout views. A floorplanner based on a genetic algorithm is then used to simultaneously choose an actual implementation from the set of alternatives for each module, and to arrange the selected module implementations in a linear placement. The floorplanning operation optimizes for short routing delays, high routability, and fit into the target FPGA.Field-Programmable Gate-Arrays (FPGAs) sind eine noch junge Art von programmierbaren Logikbausteinen. Sie erlauben die Implementierung von integrierten Digitalschaltungen ohne die komplizierten optischen, chemischen und mechanischen Prozesse, die normalerweise fĂŒr die Chipfertigung erforderlich sind. FPGAs können im Rahmen konventioneller Entwurfsmethoden zu Emulationszwecken und Prototyp-Aufbauten herangezogen werden. Sie erlauben aber auch völlig neue Anwendungen wie rekonfigurierbare Computer, deren Hardware dynamisch an ein spezielles Problem angepaßt werden kann. Die gewachsene Chip-KapazitĂ€t erlaubt nun sogar die Implementierung von CPUs und digitalen Signalprozessoren (DSPs) auf einem einzelnen FPGA. Die LeistungsfĂ€higkeit der entstandenen Schaltungen wird jedoch durch die zur Zeit erhĂ€ltlichen CAD-Werkzeuge limitiert, da diese noch auf stark beschrĂ€nkte FPGA-GrĂ¶ĂŸen ausgerichtet sind und primĂ€r der platzsparenden Verarbeitung unregelmĂ€ĂŸiger Logik dienen. Die breiten Datenpfade in Bit-Slice-Struktur, die den Kern vieler CPUs und DSPs darstellen, werden nur suboptimal behandelt. Diese Arbeit stellt Structured Design Implementation (SDI) vor, ein System von spezialisierten CAD-Werkzeugen, die auch grĂ¶ĂŸere regulĂ€re Datenpfade effizient auf FPGAs abbilden. In allen Verarbeitungsschritten wird dabei die bestehende RegularitĂ€t soweit wie möglich erhalten oder nach regularitĂ€tsvernichtenden Operationen wiederhergestellt. Zur Schaltungseingabe steht eine Bibliothek von allgemeinen Modulen aus den Bereichen Logik, Arithmetik und Speicherung bereit. Diese können durch Belegung verschiedener Parameter wie Bit-Breiten und Datentypen an aktuelle Anforderungen angepaßt werden

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    An FPGA architecture with enhanced datapath functionality

    Get PDF

    The Potential for a GPU-Like Overlay Architecture for FPGAs

    Get PDF
    We propose a soft processor programming model and architecture inspired by graphics processing units (GPUs) that are well-matched to the strengths of FPGAs, namely, highly parallel and pipelinable computation. In particular, our soft processor architecture exploits multithreading, vector operations, and predication to supply a floating-point pipeline of 64 stages via hardware support for up to 256 concurrent thread contexts. The key new contributions of our architecture are mechanisms for managing threads and register files that maximize data-level and instruction-level parallelism while overcoming the challenges of port limitations of FPGA block memories as well as memory and pipeline latency. Through simulation of a system that (i) is programmable via NVIDIA's high-level Cg language, (ii) supports AMD's CTM r5xx GPU ISA, and (iii) is realizable on an XtremeData XD1000 FPGA-based accelerator system, we demonstrate the potential for such a system to achieve 100% utilization of a deeply pipelined floating-point datapath

    Mapping for maximum performance on FPGA DSP blocks

    Get PDF
    The digital signal processing (DSP) blocks on modern field programmable gate arrays (FPGAs) are highly capable and support a variety of different datapath configurations. Unfortunately, inference in synthesis tools can fail to result in circuits that reach maximum DSP block throughput. We have developed a tool that maps graphs of add/sub/mult nodes to DSP blocks on Xilinx FPGAs, ensuring maximum throughput. This is done by delaying scheduling until after the graph has been partitioned onto DSP blocks and scheduled based on their pipeline structure, resulting in a throughput optimized implementation. Our tool prepares equivalent implementations in a variety of other methods, including high-level synthesis (HLS) for comparison. We show that the proposed approach offers an improvement in frequency of 100% over standard pipelined code, and 23% over Vivado HLS synthesis implementation, while retaining code portability, at the cost of a modest increase in logic resource usage

    A polymorphic hardware platform

    Get PDF
    In the domain of spatial computing, it appears that platforms based on either reconfigurable datapath units or on hybrid microprocessor/logic cell organizations are in the ascendancy as they appear to offer the most efficient means of providing resources across the greatest range of hardware designs. This paper encompasses an initial exploration of an alternative organization. It looks at the effect of using a very fine-grained approach based on a largely undifferentiated logic cell that can be configured to operate as a state element, logic or interconnect - or combinations of all three. A vertical layout style hides the overheads imposed by reconfigurability to an extent where very fine-grained organizations become a viable option. It is demonstrated that the technique can be used to develop building blocks for both synchronous and asynchronous circuits, supporting the development of hybrid architectures such as globally asynchronous, locally synchronous

    Toward Full-Stack Acceleration of Deep Convolutional Neural Networks on FPGAs

    Get PDF
    Due to the huge success and rapid development of convolutional neural networks (CNNs), there is a growing demand for hardware accelerators that accommodate a variety of CNNs to improve their inference latency and energy efficiency, in order to enable their deployment in real-time applications. Among popular platforms, field-programmable gate arrays (FPGAs) have been widely adopted for CNN acceleration because of their capability to provide superior energy efficiency and low-latency processing, while supporting high reconfigurability, making them favorable for accelerating rapidly evolving CNN algorithms. This article introduces a highly customized streaming hardware architecture that focuses on improving the compute efficiency for streaming applications by providing full-stack acceleration of CNNs on FPGAs. The proposed accelerator maps most computational functions, that is, convolutional and deconvolutional layers into a singular unified module, and implements the residual and concatenative connections between the functions with high efficiency, to support the inference of mainstream CNNs with different topologies. This architecture is further optimized through exploiting different levels of parallelism, layer fusion, and fully leveraging digital signal processing blocks (DSPs). The proposed accelerator has been implemented on Intel's Arria 10 GX1150 hardware and evaluated with a wide range of benchmark models. The results demonstrate a high performance of over 1.3 TOP/s of throughput, up to 97% of compute [multiply-accumulate (MAC)] efficiency, which outperforms the state-of-the-art FPGA accelerators

    An Efficient and Cost Effective FPGA Based Implementation of the Viola-Jones Face Detection Algorithm

    Get PDF
    We present an field programmable gate arrays (FPGA) based implementation of the popular Viola-Jones face detection algorithm, which is an essential building block in many applications such as video surveillance and tracking. Our implementation is a complete system level hardware design described in a hardware description language and validated on the affordable DE2-115 evaluation board. Our primary objective is to study the achievable performance with a low-end FPGA chip based implementation. In addition, we release to the public domain the entire project. We hope that this will enable other researchers to easily replicate and compare their results to ours and that it will encourage and facilitate further research and educational ideas in the areas of image processing, computer vision, and advanced digital design and FPGA prototyping

    Mapping the SISO module of the Turbo decoder to a FPFA

    Get PDF
    In the CHAMELEON project a reconfigurable systems-architecture, the Field Programmable Function Array (FPFA) is introduced. FPFAs are reminiscent to FPGAs, but have a matrix of ALUs and lookup tables instead of Configurable Logic Blocks (CLBs). The FPFA can be regarded as a low power reconfigurable accelerator for an application specific domain. In this paper we show how the SISO (Soft Input Soft Output) module of the Turbo decoding algorithm can be mapped on the reconfigurable FPFA
    • 

    corecore