
A Polymorphic Hardware Platform

Paul Beckett
RMIT University, Melbourne, Australia

pbeckett@rmit.edu.au

Abstract

In the domain of spatial computing, it appears that
platforms based on either reconfigurable datapath units
or on hybrid microprocessor/logic cell organizations are
in the ascendancy as they appear to offer the most
efficient means of providing resources across the greatest
range of hardware designs. This paper encompasses an
initial exploration of an alternative organization. It looks
at the effect of using a very fine-grained approach based
on a largely undifferentiated logic cell that can be
configured to operate as a state element, logic or
interconnect – or combinations of all three. A vertical
layout style hides the overheads imposed by
reconfigurability to an extent where very fine-grained
organizations become a viable option. It is demonstrated
that the technique can be used to develop building blocks
for both synchronous and asynchronous circuits,
supporting the development of hybrid architectures such
as globally asynchronous, locally synchronous.

1. Introduction

In many ways the discussion of “coarse-grained”
versus “fine-grained” architectures for reconfigurable
computing is reminiscent of the early CISC vs. RISC
debate. This latter debate was largely about how a
mapping from high-level language to machine code could
be best achieved - was it better to provide “solutions”, i.e.
complex features in the ISA that a compiler could use, or
would a better way be to provide “primitives” from which
more complex instructions could be built?

In the spatial domain, many of the same arguments are
re-emerging - this time focusing on the hardware mapping
process. Now the question is: will high configuration and
routing overheads [1] always favor coarse-grained
architectures that provide operator-level configurable
functional blocks and/or word-level datapaths [2] over
fine-grained organizations offering only logic primitives
and interconnect from which these blocks can be built?

If the debate was to be based only on current FPGA
organizations, then it might be said that the argument has

already been fought and won: by coarse-grain style
architectures [2]. A large number of platforms based on
reconfigurable datapath units of various granularities have
been proposed along with a range of synthesis tools (e.g.
[3], [4], [5], [6]) while increasingly, commercial FPGA
vendors are producing hybrid architectures incorporating
both standard microprocessors and reconfigurable logic
on the one chip (examples include the Virtex-II Pro
“platform FPGAs” from Xilinx [7] and the “Excalibur”
series from Altera[8]).

However, it appears likely that continued scaling into
the deep sub-micron (DSM) region and from there into
nano-scale dimensions may change this situation. New
circuit opportunities are becoming available as a result of
scaling and even CMOS devices will exhibit novel
behavior at these dimensions. Ideas such as chemically-
assembled molecular electronics [9], nanotube and
nanowire devices [10], [11], [12], quantum dot techniques
[13], [14] and magnetic spin-tunneling devices [15] have
all been proposed as the basis of future, nano-scale
reconfigurable systems. What these ideas have in
common is that they tend to be characterized by reduced
fanout (i.e. low drive), low gain and poor reliability [16].
Thus it is highly likely that future reconfigurable systems
will be characterized by arrays of simple cells with highly
localized interconnect. Just how these reconfigurable
platforms will influence future hardware designs is an area
of active research.

In a previous paper [17], a very fine-grained topology
was described in which thin-body, fully depleted (FD),
double gate (DG) MOSFETs and resonant tunneling
diodes (RTDs) were combined to form a compact cell that
could be said to exhibit “polymorphism” in that the cells
were easily configurable to operate as state elements,
logic, interconnect, or combinations of all three. A
vertical layout style was exploited to hide the overheads
imposed by reconfigurability to an extent where very fine-
grained organization becomes a viable option. In this
paper, the idea is extended to demonstrate how all of the
components of a reconfigurable computing system can be
formed from such array of locally connected cells. These

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/15611393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

components can encompass both synchronous and
asynchronous logic circuits as both exhibit simple logic
organizations with local feedback paths. This will form
the basis for an exploration of these types of fine-grained
architectures and their application to future reconfigurable
systems.

The remainder of the paper proceeds as follows.
Firstly in Section 2, the limitations of current FPGA
organizations are reviewed, in order to provide a
framework for this work. In Section 3, the operation of
the basic components - the double gate transistor and
resonant tunneling RAM - are briefly outlined and some
reconfigurable logic organizations illustrated. Section 4
demonstrates that a simple, locally connected array of
these cells can be configured into the various components
of a reconfigurable architecture and are applicable to both
synchronous and asynchronous systems. Finally, the
paper is briefly summarized and some directions for future
work outlined.

2. Reconfigurable architectures: the FPGA

To date, the “workhorse” of reconfigurable
architectures has been the FPGA. However, by their very
nature, FPGA organizations trade flexibility for sub-
optimal delay performance and low area-efficiency. In
this section the effects of interconnect delay and area
efficiency on FPGA performance are reviewed with a
view to setting the context for the development of the
proposed reconfigurable hardware platform.

2.1 FPGA interconnect delay

For FPGAs using DSM technology, interconnect and
wiring delays already account for as much as 80% of the
path delay [1]. As devices scale, the effect of distributed
resistance and capacitance of both programmable
interconnect switches and wiring will become worse.
Estimates by De Dinechin [18] indicate that if FPGA
organizations stay the same, their operating frequency will
only increase O(λ½) with reducing feature size (λ), further
widening the performance gap relative to custom
hardware.

This is essentially the same problem faced by ASIC
designers and as a result, future interconnect topologies
are likely to include “fat” (i.e. unscaled) global wires plus
careful repeater insertion [19]. Liu and Pai [20] have
shown that even at the 120nm node, with low-K
dielectrics and copper traces, transistors with extreme
width to length ratios (in the order of 100:1) would be
required to drive any significant length of interconnect
with acceptable performance (e.g. driving a 1mm line with
less than 100ps delay [20]). As a result, architectural
solutions such as the pipelining of interconnect as well as

logic [21], [22] may become increasingly important in the
future.

2.2 FPGA area efficiency

Low area efficiency in FPGAs may arise from a
number of sources. One obvious problem is that all logic
components must exist, and thus occupy space, whether
they are used in a particular mapping or not. This is
illustrated in Figure 1 for a typical logic cell in which a
particular mapping could result in any of the D-type
flip/flop, the 3-LUT or the carry-multiplexer structures
remaining unused. Numerous cell organizations have
been proposed in an attempt to minimize the effect of this
wasted space. Generally these have involved decoupling
the various parts of a logic cell in order to permit their
simultaneous use by the mapping process, hopefully
leading to an overall reduction in hardware area.
However, problems of logic allocation as well as routing
congestion ensure that this is not always possible so some
components must inevitably remain unused. Indeed, users
of standard FPGA devices have come to recognize that
leaving a percentage of the area unused is mandatory if a
routing solution is be found in reasonable time [23] and
Hutton [24] has observed that the underutilization of
resources such as wires, memory, etc. actually represents a
key “feature” that allows a variety of designs to be
implemented on the same generic device.

F1
D

CE

Q
F F2

F3
F4

D

QO

DO

CO

CI CE CK CLR

M1

M2
M3

DFF

Figure 1. A Typical FPGA Logic Cell (from the
XC5200 [7])

Inefficiencies in FPGA utilization may also occur at a
more basic level. For example, a configurable 4-LUT can
be seen to be an extremely poor implementation strategy if
a single gate is all that is required [24]. It becomes an
increasingly better strategy as logic complexity increases
until the limit on the number of inputs and the effect of
cascading starts to dominate [25]. Just what represents an
“optimum” LUT size appears to be still an open question
[26].

It could be argued that the area efficiency of the logic
cells is unimportant in an FPGA as its total area is very
much dominated by its routing structures. As a first order
approximation, FPGA area is proportional to the number
of configuration bits required to control the routing

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

switches [1], [24]. This is one of the primary reasons that
general-purpose FPGAs are poorly matched to standard
datapath elements such as integer multipliers and floating-
point operators – the regular structure of such operators
ensures that they can always be implemented more
compactly as purpose-built datapath units with optimal
routing. It is this observation that is driving the move
towards the inclusion of operational units into
reconfigurable fabrics- from fixed-point multiplier blocks
to entire CPUs. The tradeoff is that all of these units
suffer exactly the same problems as conventional
microprocessors: fixed word lengths [27] and worse-case
performance ensure that in many cases they will be sub-
optimally matched to the specific problem.

In summary, a “wish-list” of features for future
reconfigurable systems might include the following items:

• flexible organizations that allow an area tradeoff
to be made between the routing and logic

• an organization that reduces or hides the overhead
imposed by reconfigurability;

• a very small footprint for logic and interconnect
supporting a high density of components.

• structures that exhibits a simple timing model and
that do not rely heavily on global interconnect.

3. Reconfigurable Technology

In this section, a reconfigurable platform based on
double gate transistors is described that exhibits many of
desirable features outlined above. The ultimate objective
is to determine how homogeneous platforms such as this
might be applied to future problems in reconfigurable
systems – problems such as very large scale spatial
computing [28], for example.

The fully depleted (FD) double gate (DG) transistor
(Figure 2) is likely to be an important device technology
as geometries move into the nano-scale region. It appears
that that they will be ultimately scalable to gate lengths in
the order of 10nm, although achieving the required level
of dimensional control will be extremely difficult [29], as
will overcoming device parasitics to reach acceptable
performance targets.

One of the major advantages of DG technology is that
the undoped channel region eliminates performance
variations (in threshold voltage, conductance etc.) due to
random dopant dispersion. Further, double gate
transistors can be made very compact as they do not
require the additional structures such as body contacts and
wells that enlarge traditional CMOS layouts. The devices
also exhibit a number of interesting characteristics that
make them well suited to high-density reconfigurable
architectures. They can theoretically be built on top of
other structures in three-dimensional layouts and, most

importantly for the application proposed in this paper, the
second (back) gate offers a means of controlling the
operation of the logic device in a way that decouples the
configuration mechanism from the logic path.

Bottom Oxide TOX = 1.5nm

Top Oxide TOX = 1.5nm

Gate Length 10nm

N+ N+ Undoped

Silicon Film
TSi = 1.5nm
ND = 1020 cm-3

Figure 2. 10nm SOI-Si double gate NMOSFET
(after [30])

1 .2

V G 2 = -1 .5V

V
O

U
T

 (V
)

V IN V O U T

V G2

V D D

0 .8 0 .6 0 .4 0 .2 0 .0
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

V IN (V G1) V

V G 2 = 0V

V G 2 = +1 .5V

V G 2 = + 0 .5V

V G 2 = -0 .5V

1 .0

Figure 3. Configurable inverter example

Out VG1 VG2

A 0 2

B 2 0

A.B 0 0
1 -2 -2

VDD

A B

Out VG1 VG2

 0 2 2

Figure 4. A configurable 2-NAND gate

Out VG1 VG2

IN -2 0

IN 2 -2

O/C 0 -2

VDD

In

Out

VDD

Out
In

VG2

VG1

VG1 VG2

Figure 5. Configurable inverting/non-inverting
buffer structure

The basic idea for this reconfigurable system has been
outlined in a previous paper [17] but is restated here for
clarity. A simulation result for a simple double gate
inverter circuit based on FDSOI MOSFET models [31] is
illustrated in Figure 3. It can be seen that altering the bias
on the back gate (VG2) moves the voltage threshold of the
p and n-type transistors such that the switching point of
the inverter can be moved over the full logic range of the
gate. At the two extremes, the output stays high (for
VG2<-1.5V) or low (for VG2>1.5V) while for values of
VG2 around 0V, the output switches symmetrically.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

Figure 4 and Figure 5 illustrate how this basic
mechanism can be exploited to form more complex logic
circuits. The circuit of Figure 4 is essentially a 2-NAND
gate in which each complementary pair of transistors is
controlled by an individual back gate bias voltage (VA and
VB – shown as black squares on the diagram). The table
outlines the enhanced set of logic functions that can be
developed using this technique. In Figure 5, the same
group of transistors has been reorganized into a structure
that that can be configured to behave as either an inverting
or non-inverting 3-state driver. Note that, as
complementary operation is maintained in all cases, static
power consumption will be minimized. Previous
proposals for reconfigurable logic using carbon nanotube
devices [12] and chemically assembled technology [9]
have been based on nMOS-like structures, thereby relying
on their inherent high resistance to ensure scalability.

To be useful, any configuration mechanism used for
this system has to be able to develop the three bias
voltages without occupying significant space or
consuming excessive power. A plausible mechanism for
this purpose can be based on resonant tunneling (RT), a
mature technology that has been known and used for many
years. The negative differential resistance (NDR)
characteristics of RT devices directly support multi-valued
logic [32] of the sort required by the reconfiguration
system and a number of 3-state memory cells have already
been proposed [33], [34], [35].

Bit Line

Word Line
VDD

VSS
Figure 6. Leaf-Cell / RTD memory

Figure 6 shows a reconfigurable “leaf-cell” formed
from three FDSOI transistors, and a RTD RAM of the
type described in [34]. To merge the RAM and the logic
mesh will involve matching the VG values required to set
the double gate transistors into their three operating
regions with the RAM tunneling voltages which are, in
turn, set by adjusting the thickness of each of the RTD
layers [36]. While silicon interband tunnel diodes with
adequate room temperature peak-to-valley current ratios
have recently been reported [37], [38], it is possible that
III-V technology may be more appropriate to this
application as it may be easier to achieve the required
operating voltages. It has already been shown [39] that
uniform and reproducible III-V layers, that are also
compatible with conventional (CMOS) integrated circuit
processes, can be produced using molecular beam epitaxy.

The Nanotechnology Roadmap [40] predicts that by
2012, RTDs will scale to about 50nm and operate with
peak currents in the 10 to 50pA range. At the limits of
scaling for the FDSOI devices (~10nm), it is envisaged
that these could be integrated into a compact vertical
stack, such that the top of the lower RTD mesa forms the
back gate of the complementary pair. The basic cell could
then be replicated into a very large array – with potential
densities in excess of 109 logic cells/cm2. Even at this
scale, the configuration circuits would be likely to
consume less than 100mW of static power. Local
interconnect to adjacent cells would complete the logic
cell layout.

4. Polymorphic Hardware

Having created what is, in essence, an undifferentiated
leaf-cell, the question remains as to the best way to deploy
it. An example of a reconfigurable array constructed
using this technique is shown in Figure 7. In this case the
basic logic block is arranged as a 6-input, 6-output NAND
array with each (horizontal) output terminated in a
configurable inverter/3-state driver of the type described
in Figure 5 (only one set is shown). The latter circuit
serves a number of purposes. In its off-state, it decouples
adjacent cells and determines the direction of logic flow.
Configured as an inverting driver, it supports the creation
of more complex logic functions and, just as importantly,
provides a buffer that will allow any output line to be used
as a data feed-through from an adjacent cell. Finally it
can be set up as a simple pass-transistor connection to the
neighboring cell.

 D E F

V D D V D D

V D D V D D

V D D V D D

A B C

V D D

V D D

V D D

V D D V D D V D D

V D D V D D V D D

V D D V D D V D D

V D D

O 1

O 2

V D D

O 3

V D D

O 4

V D D

O 5

V D D

O 6

V D D

Figure 7. An example reconfigurable cell based
on a 6x6 NAND organization.

From the outside, the reconfiguration array appears as
a simple (albeit multi-valued) 8x8 RAM block and would

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

be controlled by set of (multi-valued) RAM drivers
surrounding the array and forming a link to a
reconfiguration bit stream. In this organization, each
block requires 128 bits reconfiguration data – in the same
order (on a function-for-function basis) as the several
hundred bits required by typical CLB structures and their
associated interconnects in FPGA devices.

lfb lfb lfb

lfb lfb lfb

lfb

lfb
Figure 8. Partial array layout showing the
orientation of adjacent logic cells

In Figure 8, the NAND cells are organized into an
array with adjacent connections in the vertical and
horizontal direction. The white circles represent the 3-
state drivers, while the black arrows indicate the potetial
I/O directions of each cell (although this will depend on
whether a particular connection is configured or not).
Note that adjacent cells are rotated by 90° such that the
outputs from each cell abut the inputs of the two adjacent
cells. Pairs of cells, configured together, represent the
equivalent of a small LUT with 6 inputs, 6 outputs and 6
product-terms. The two local connection lines (labeled lfb
in Figure 8) support the feedback necessary to develop
state functions such as flip-flops and latches as well as
allowing a small amount of logic cascading. Because of
the regularity of the structure and the adjacent
connectivity, the array has the potential to be very dense –
a pair of LUT cells could occupy less than 400λ2, for
example. This can be contrasted with estimates in which
the area of a “typical” 4-input LUT could be as high as
600Kλ2 if the programmable interconnect and
configuration memory are included [1].

In Figure 9, one functional pathway in a typical FPGA
has been implemented as a way of illustrating how the
logic mapping in the proposed scheme compares to that of
a conventional FPGA (the dots in this figure represent the
leaf-cells that have been enabled – the remainder are
configured off). Four of the NAND-cells form a 3-LUT (2
cells) plus an edge-triggered D-type flip-flop (2 cells). As
the right-most LUT cell uses only four NAND-term lines,
the remainder of that cell is used to bring in the reset line
connection and to develop the complementary clock
signals. Standard asynchronous state machine techniques

can be used to develop logic equations for the edge-
triggered flip-flop while an alternative, level-triggered
(transparent) latch circuit can be built using the same
number of cells. It is clear from the layout that the FPGA
components that are not needed for this particular logic
decomposition, are simply not instantiated – including, of
course, the static configuration multiplexers.

F1
D

CE

Q
F F2

F3

D

QO

DO

CO

CI CE CK CLR

M1

M2
M3

DFF

x x y y z z

R
CLK

Qo

3-LUT

D-Flip Flop

Interconnect
and clock logic

C C R

Inactive
cells

Figure 9. A Configured Logic Cell forming a 3-
LUT and Flip-Flop. The 3-LUT logic shown is
x + y + z

A partial view of an example datapath instantiation is
shown in Figure 10. The sharing of terms between the
sum and carry allows a full adder to be implemented in
just five terms and if the two horizontal connections
between adjacent cells are used to transfer the ripple carry
between bits of the adder, each bit will fit within one 6-
NAND cell pair. In a standard random logic environment
such as a standard cell based ASIC or even a commercial
FPGA, decomposition to the level of NAND gates would
make little sense as it would be likely to result in a very
inefficient (i.e. interconnect dominated) structure. The
scheme proposed here is reminiscent of the sort of layout
derived from a module generator targeting a “sea-of-
gates” style implementation [41] and takes advantage of
the regularity of these datapath structures. Of course,
specialized support hardware such as fast carry chains will
not be not available in this system. However, there is
already some evidence (e.g. [42]) that functionality of this
sort will be less effective when interconnection delay
dominates and alternative techniques such as bit-serial

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

arithmetic and asynchronous logic design may offer
equivalent or better performance at these dimensions.

A0 A0 A1 A1

+
a
c
c

An-0

CLK
carry in

ACn-0
Sn-0

ripple carry
adder

Accumulator block

Bits
2 to n

Figure 10. Datapath example (2 bits shown)

4.1 Asynchronous logic

The power consumed by global clock generation and
distribution is already a major issue with current high
performance (synchronous) processors [43] and is already
impacting larger reconfigurable systems. Numerous
asynchronous design techniques (e.g. [44]) have been
proposed to eliminate the need for such global clocks.
While it is still unclear as to whether totally asynchronous
design styles offer actual improvements in overall
performance, they are at least as good as conventional
synchronous approaches and the removal of the global
clock will, on its own, result in significant power savings.

An interesting concept that is likely to be important in
the future is globally asynchronous, locally synchronous
(GALS) where a system is partitioned into many clock
domains and “asynchronous wrappers” [45] are provided
for modules (probably in the range of 50-100K gates [19])
across which the synchronous clock delay is considered to
be acceptable. The partitioning of a hardware platform
into such modules immediately raises a problem that is
somewhat analogous to the choice of page size in a
hierarchical memory system in which fixed page sizes can
lead to inefficient memory allocation and fragmentation
problems. Ideally, the selection of module sizes would be
entirely unconstrained - especially in dynamically
reconfigurable systems [46]. Overall, this argues for a
fine-grained configurable platform that exhibits the
flexibility to be arranged into variable sized computational
modules based on both asynchronous and synchronous
logic elements.

Current programmable systems tend not support
hazard-free logic implementations [47]. Nor do they

include special functions such as arbiters and
synchronizers. In the archetypal asynchronous
organization described by Sutherland [48] (Figure 11), a
series of Muller C-elements control the data flow between
pipeline registers (called “event controlled storage
elements” by Sutherland). A C-element exhibits the logic
form: c = a.b + a.c’ + b.c’ [44] where a and b are the
inputs (the Req and Ack signals derived from adjacent
control cells in this case) and c’ is its current output. In
common with most asynchronous logic building blocks,
both the C-element and the pipeline registers can be
described in terms of small asynchronous state machines
of a form that is directly supported by the array
organization outlined in Figure 8. This is illustrated in
Figure 12 for a single bit of a pipeline register and
indicates that applying fine-grained organizations of this
sort will provide a workable approach to the design of
asynchronous and GALS style microarchitectures.

R1

RIN

C C

C C

C

Cd P

Pd

C

Cd P

Pd C

Cd P

Pd

DELAY

DIN

AIN

A1 R2

A2

A3

R3

DOUT

AOUT

ROUT
DELAY DELAY

DELAY

C

Cd P

Pd

Figure 11. Micropipeline organization (from [48]).

DIN

0

1

0

1

1

0 Z

Req Ack

DIN R R A A

Z R R A A

Figure 12. Event-controlled storage element
(from [48]) and its implementation using
reconfigurable blocks

5. Conclusions

In the domain of spatial computing, it seems that the
high configuration and routing overheads associated with
current FPGA architectures are favoring coarse-grained
organizations that provide operator-level configurable
functional blocks and/or word-level datapaths. In the
context of current FPGA technology, this is an entirely
reasonable approach – it would make little sense to spend
six transistors to configure a four-transistor 2-NAND gate,
for example.

However, it is possible that the low current drive, low
gain and poor reliability of future DSM and nano-scale

AC0 AC1

S0 S1

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

devices may reverse this trend. As a first step in an
investigation into the way that future nano-scale device
characteristics may affect reconfigurable systems, a very
fine-grained reconfigurable platform, based on
complementary, fully depleted dual-gate thin-film
transistors has been described. While the technology
challenges are manifold, such devices offer a number of
tangible benefits, not the least of which is a plausible
migration path from conventional CMOS.

It has been demonstrated that this reconfigurable
technique can be used to develop simple combinational
logic and asynchronous state machines thereby supporting
a wide range of digital logic circuits. It is a fairly
straightforward matter to generate layouts that are more-
or-less equivalent to current FPGA components (LUTs,
registers, multiplexers etc.). Further, as components that
are not needed for a particular logic decomposition are not
instantiated, the configuration mechanism is “hidden” by a
vertical layout style, and the same components can be
used interchangeably for logic and interconnection, the
technique can lead to substantial reduction in the overall
implementation size – possibly as large as three orders of
magnitude over current FPGA devices.

Interconnection performance will be an important issue
determining the operation of architectures at nano-scale
dimensions – especially with device technologies such as
single-electron and molecular electronics. Locally
connected, highly pipelined organizations appear to be a
good match to these characteristics but further work on
the development of better models for the expected
characteristics of the devices will be necessary before this
is verified one way or the other. However, it already
appears that interesting designs can be constructed from
entirely locally connected building blocks. Future work
will look at effect of these local interconnect constraints
on system architecture as well as higher-level issues such
as the performance of serial vs. parallel design styles and
the comparative performance of synchronous,
asynchronous and hybrid organizations.

6. References

[1] A. DeHon, "Reconfigurable Architectures for General-
Purpose Computing," MIT, Massachusetts, A.I. Technical
Report 1586, October, 1996.

[2] R. Hartenstein, "The Microprocessor is No Longer
General Purpose: Why Future Reconfigurable Platforms
Will Win," presented at Second Annual IEEE
International Conference on Innovative Systems in
Silicon, IEEE, pp 2 -12, 1996.

[3] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger,
"Mapping Applications onto Reconfigurable
KressArrays," presented at 9th International Workshop on
Field Programmable Logic and Applications, FPL '99,
Glasgow, UK, 1999.

[4] T. J. Callahan, Wawrzynek, J., "Adapting Software
Pipelining for Reconfigurable Computing," presented at
International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, CASES, 2000.

[5] C. Ebeling, Cronquist, D. C. Franklin, P., "RaPiD
Reconfigurable Pipelined Datapath," presented at Field-
Programmable Logic: Smart Applications, New
Paradigms, and Compilers. 6th International Workshop on
Field-Programmable Logic and Applications, 1996.

[6] H. Singh, G. Lu, E. Filho, R. Maestre, Ming-Hau Lee, F.
Kurdahi, N. Bagherzadeh, "MorphoSys: Case Study of a
Reconfigurable Computing System Targeting Multimedia
Applications," presented at Proceedings of the 37th
Conference on Design Automation, Los Angeles, CA
USA, pp 573 - 578, 2000.

[7] Xilinx, www.xilinx.com.
[8] Altera, www.altera.com.
[9] S. C. Goldstein, M. Budiu, "NanoFabrics: Spatial

Computing Using Molecular Electronics," presented at
28th International Symposium on Computer Architecture,
Goteborg, Sweden, pp 178 - 189, 2001.

[10] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C-L.
Cheung, C. M. Lieber, "Carbon Nanotube-Based
Nonvolatile Random Access Memory for Molecular
Computing," Science, vol. 289, pp. 94 - 97, 2000.

[11] A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, "Logic
Circuits with Carbon Nanotube Transistors," Science, vol.
294, pp. 1317-1320, 2001.

[12] A. DeHon, "Array-Based Architecture for Molecular
Electronics," presented at First Workshop on Non-Silicon
Computation (NSC-1), Cambridge, Massachusetts, 2002.

[13] C. S. Lent, Tougaw, P. D., Porod, W., Bernstein, G. H.,
"Quantum Cellular Automata," Nanotechnology, vol. 4,
pp. 49-57, 1993.

[14] M. T. Niemier, Arun F. Rodrigues, Peter M. Kogge, "A
Potentially Implementable FPGA for Quantum Dot
Cellular Automata," presented at First Workshop on Non-
Silicon Computation, NSC-1, Cambridge, Massachusetts,
2002.

[15] R. Richter, H. Boeve, L. Bär, J. Bangert, G. Rupp, G.
Reiss, J. Wecker, "Field Programmable Spin-Logic
Realized with Tunnelling-Magnetoresistance Devices,"
Solid-State Electronics, vol. 46, pp. 639-643, 2002.

[16] R. Ronen, A. Mendelson, K. Lai, Shih-Lien Lu, F.
Pollack, J. P. Shen, "Coming Challenges in
Microarchitecture and Architecture," Proceedings of the
IEEE, vol. 98, pp. 325 - 340, 2001.

[17] P. Beckett, "A Fine-Grained Reconfigurable Logic Array
Based on Double Gate Transistors," presented at IEEE
International Conference on Field-Programmable
Technology, FPT2002, Hong Kong, 2002.

[18] F. de Dinechin, The Price of Routing in FPGAs,
http://citeseer.nj.nec.com/dedinechin99price.html, 1999.

[19] D. Sylvester, Keutzer, K., "Impact of Small Process
Geometries on Microarchitectures in Systems on a Chip,"
Proceedings of the IEEE, vol. 89, pp. 467 - 489, 2001.

[20] R. Liu, C-S. Pai, "Interconnect Technology for Giga-Scale
Integration," presented at 5th International Conference on
Solid-State and Integrated Circuit Technology, Beijing,
China, pp 17 - 20, 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

[21] A. Singh, A. Mukherjee, M. Marek-Sadowska,
"Interconnect Pipelining in a Throughput-Intensive FPGA
Architecture," presented at Ninth International
Symposium on Field programmable Gate Arrays,
Monterey, CA, pp 153 - 160, 2001.

[22] P. D. Singh, Stephen D. Brown, "The Case for Registered
Routing Switches in Field Programmable Gate Arrays,"
presented at Ninth International Symposium on Field
Programmable Gate Arrays, Monterey, CA, pp 161 - 169,
2001.

[23] A. DeHon, "Balancing Interconnect and Computation in a
Reconfigurable Computing Array (or, Why You Don't
Really Want 100% LUT Utilization)," presented at
ACM/SIGDA Seventh International Symposium on Field
Programmable Gate Arrays, Monterey, California, United
States, pp 69 - 78, 1999.

[24] M. Hutton, "Interconnect Prediction for Programmable
Logic Devices," presented at International Workshop on
System-Level Interconnect Prediction, SLIP’01, Sonoma,
California, United States, pp 125 - 131, 2001.

[25] J. Rose, R. J. Francis, D. Lewis, P. Chow, "Architectures
of Field-Programmable Gate Arrays: The Effect of Logic
Functionality on Area Efficiency," IEEE Journal of Solid-
State Circuits, vol. 25, pp. 1217 - 25, 1990.

[26] A. Yan, Rebecca Cheng, Steven J.E. Wilton, "On the
Sensitivity of FPGA Architectural Conclusions to
Experimental Assumptions, Tools, and Techniques,"
presented at ACM/SIGDA International Symposium of
Field-Programmable Gate Arrays, FPGA’02, Monterey,
California, USA., pp 147-156, 2002.

[27] M. Budiu, Sakr, M., Walker, K., Goldstein, S. C.,
"BitValue Inference: Detecting and Exploiting Narrow
Bitwidth Computations," presented at 2000 Europar
Conference, 2000.

[28] A. DeHon, "Very Large Scale Spatial Computing,"
presented at Third International Conference on
Unconventional Models of Computation, UMC'02, 2002.

[29] Z. Ren, Ramesh Venugopal, Supriyo Datta, Mark
Lundstrom, "Examination of Design and Manufacturing
Issues in a 10 nm Double Gate MOSFET using
Nonequilibrium Green’s Function Simulation," 2001.

[30] Z. Ren, R. Venugopal, S. Datta, M. Lundstrom, D.
Jovanovic, J. Fossum, Idealized SOI-Si Double Gate
NMOSFET Device, Rev. 12-8-00, falcon.ecn.purdue.edu:
8080/mosfet/10nmstructure.pdf, 2000.

[31] J. G. Fossum, Chong, Y., "Simulation-Based Assessment
of 50 nm Double-Gate SOI CMOS Performance,"
presented at IEEE International SOI Conference, Stuart,
FL, USA, pp 107 -108, 1998.

[32] T. Waho, Chen, K.J., Yamamoto, M., "A Novel Multiple-
Valued Logic Gate Using Resonant Tunneling Devices,"
IEEE Electron Device Letters, vol. 17, pp. 223-225, 1996.

[33] S.-J. Wei, Lin, H.C., "Multivalued SRAM Cell Using
Resonant Tunneling Diodes," IEEE Journal of Solid-State
Circuits, vol. 27, pp. 212-216, 1992.

[34] J. P. A. van der Wagt, "Tunnelling-Based SRAM,"
Nanotechnology, vol. 10, pp. 174-186, 1999.

[35] R. H. Mathews, Sage, J.P., Sollner, T.C.L.G., Calawa,
S.D., Chang-Lee Chen, Mahoney, L.J., Maki, P.A.,
Molvar, K.M., "A New RTD-FET Logic Family,"
Proceedings of the IEEE, vol. 87, pp. 596 - 605, 1999.

[36] A. C. Seabaugh, Y.-C. Kao, H.-T. Yuan, "Nine-state
Resonant Tunneling Diode Memory," IEEE Electron
Device Letters, vol. 13, pp. 479 -481, 1992.

[37] K. D. Hobart, P. E. Thompson, S. L. Rommel, T. E.
Dillon, P. R. Berger, D. S. Simons, P. H. Chi, ""P-on-N"
Si Interband Tunnel Diode Grown by Molecular Beam
Epitaxy," Journal of Vacuum Science and Technology B,
vol. 19, pp. 290-293, 2001.

[38] N. Jin, Paul R. Berger, Sean L. Rommel, Phillip E.
Thompson, Karl D. Hobart, "A PNP Si Resonant
Interband Tunnel Diode with Symmetrical NDR,"
Electronics Letters, vol. 37, pp. 1412-1414, 2001.

[39] A. Seabaugh, X. Deng, T. Blake, B. Brar, T. Broekaert, R.
Lake, F. Morris, G. Frazier, "Transistors and Tunnel
Diodes For Analog/Mixed-Signal Circuits and Embedded
Memory," presented at International Electron Devices
Meeting, San Francisco, 1998.

[40] R. Compano (ed.), Technology Roadmap for
Nanoelectronics, 2nd ed., European Commission IST
Programme - Future and Emerging Technologies, 2000.

[41] E. Goetting, D. Schultz, D. Parlour, S. Frake, R.
Carpenter, C. Abellera, B. Leone, D. Marquez, M.
Palczewski, E. Wolsheimer, M. Hart, K. Look, M. Voogel,
G. West, V. Tong, A. Chang, D. Chung, W. Hsieh, L.
Farrell, W. Carter, "A Sea-of-Gates FPGA," IEEE
International Solid-State Circuits Conference, vol.
XXXVIII, pp. 110 - 111, 1995.

[42] V. Agarwal, Stephen W. Keckler, Doug Burger, "The
Effect of Technology Scaling on Microarchitectural
Structures," University of Texas at Austin, Austin,
Technical Report TR2000-02, 2000.

[43] P. E. Gronowski, Bowhill, W.J., Preston, R.P., Gowan,
M.K., Allmon, R.L., "High-Performance Microprocessor
Design," IEEE Journal of Solid-State Circuits, vol. 33, pp.
676 - 686, 1998.

[44] S. Hauck, "Asynchronous Design Methodologies: An
Overview," Proceedings of the IEEE, vol. 83, pp. 69 - 93,
1995.

[45] J. Muttersbach, T. Villiger, W. Fichtner, "Practical Design
of Globally-Asynchronous Locally-Synchronous
Systems," presented at Sixth International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, ASYNC 2000, pp 52 - 59, 2000.

[46] A. DeHon, "DPGA-Coupled Microprocessors:
Commodity ICs for the Early 21st Century," presented at
FCCM '94 -IEEE Workshop on FPGAs for Custom
Computing Machines, 1994.

[47] S. B. Hauck, S.; Borriello, G.; Ebeling, C.. "An FPGA for
Implementing Asynchronous Circuits," IEEE Design &
Test of Computers, vol. 11, pp. 60, 1994.

[48] I. E. Sutherland, "Micropipelines," Communications of the
ACM, vol. 32, pp. 720 - 738, 1989.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03) Authorized licensed use limited to: RMIT University. Downloaded on January 12, 2010 at 22:31 from IEEE Xplore. Restrictions apply.

