
An FPGA Architecture with Enhanced Datapath
Functionality

Katarzyna Leijten-Nowak1 � 2

1Eindhoven University of Technology
Design Automation Section

Den Dolech 2
Eindhoven, The Netherlands

knowak@natlab.research.philips.com

Jef L. van Meerbergen2 � 1

2Philips Research Labs
Embedded System Architectures on Silicon

Prof. Holstlaan 4, WDC3
Eindhoven, The Netherlands

jef.van.meerbergen@philips.com

ABSTRACT
Although FPGAs are a cost-efficient alternative for both ASICs and
general purpose processors, they still result in designs which are
more than an order of magnitude more costly and slower than their
equivalents implemented in dedicated logic. This efficiency gap
makes FPGAs less suitable for high-volume cost-sensitive applica-
tions (e.g. embedded systems).

We show that the intrinsic cost of traditional general-purpose FP-
GAs can be reduced if they are designed to target an application
domain or a class of applications only. We propose a method of
the application-domain characterization and apply it to characterize
DSP. A novel FPGA logic block architecture derived based on such
an analysis, and which exploits properties of target applications, is
presented. Its key feature is the ’mixed-level granularity’ being a
trade-off between fine and coarse granularity required for the im-
plementation of datapath and random logic functions, respectively.
This leads to a factor of four improvement in the LUT memory
size compared to commercial FPGAs, and, assuming a standard-
cell implementation, a 1.6-2.8 lower datapath mapping cost. A
modified mixed-grain architecture with the ALU-like functional-
ity reduces the LUT memory size by a factor of 16 compared to
commercial FPGAs, and mapped onto standard cells has a 1.9-3.3
times higher datapath mapping efficiency. For these reasons, the
proposed FPGA architectures may be an interesting alternative to
the traditional general-purpose FPGA devices, especially if charac-
teristics of a target application domain are known a priori.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles–FPGAs; B.2.4 [Arithmetic
and Logic Structures]: High-Speed Arithmetic– Cost/performance;
C.3 [Special-Purpose and Application-Based Systems]–Signal Pro-
cessing Systems

General Terms
Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’03, February 23–25, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-651-X/03/0002 ...$5.00.

Keywords
FPGA, DSP, application-domain tuning, datapath optimization, logic
block architecture, full-adder, ALU, inverting property, symmetry,
routing architecture

1. INTRODUCTION
The aggressive scaling in process technologies and dramatically

increasing design and fabrication costs have made FPGAs a cost-
efficient alternative for both ASICs and general purpose processors.
At the same time, their application area has been expanded from an
original ’glue-logic’ niche to the system-central position. This has
been enabled by the introduction of the so-called platform-FPGAs
which integrate a traditional programmable logic fabric with spe-
cialized IP cores, and allow an implementation of complete systems
on one FPGA chip [24]. The shift towards system-like FPGAs is
strongly advocated by main FPGA vendors. They would like to see
FPGAs as an ASIC replacement technology in the near future.

In parallel to that, there is a growing interest in using FPGAs in
the context of traditional, CMOS-based, systems-on-a-chip. Em-
bedded reconfigurable logic may help there to reduce NRE costs,
extend the application life-time, and shorten time-to-market.

What makes FPGAs so attractive is the flexibility they offer.
However, the same flexibility, or precisely the way how it is ob-
tained (e.g. look-up table based logic, huge interconnect network),
results in a large cost-efficiency gap between FPGAs and ASICs.
Finding a good balance between flexibility and efficiency (in terms
of area, performance and power) in reconfigurable logic devices is
not trivial. This can be seen in the fact that reconfigurable logic
architectures have hardly changed over the years. The fabric of
today’s FPGAs, although enhanced with some extra features, still
very much resembles the one used in the first FPGAs; paradoxi-
cally, interconnect is made even richer. Therefore, in spite of ma-
ture ’know-how’ and technological advances which only decrease
the absolute cost of a single transistor, FPGA designs still suffer
from their high intrinsic cost. This cost, although accepted for some
applications, can be a crucial limiting factor for the others.

We address this issue by exploiting the idea of application-domain
tuning. This is based on the observation that most FPGAs, al-
though made general-purpose, are often used for specific classes
(domains) of applications only. The identification of characteristic
properties of designs from a given application class allows translat-
ing them into architectural improvements. A novel ’mixed-grain’
FPGA and its ALU-like modification are presented as examples of
such an approach. The architectures of both devices have been op-
timized for a single application domain only, i.e. DSP, and derived
by the analysis of a representative set of DSP benchmarks. We

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/209912661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

show that the proposed architectures are superior to any commer-
cial FPGA device if the DSP-type of functions are mapped.

The paper is organized as follows. Section 2 formulates the DSP-
tuning problem, while Section 3 surveys existing solutions. In Sec-
tion 4, the method of application domain characterization is de-
scribed and applied to DSP. Section 5 describes various properties
of arithmetic functions and proposes a structure of a basic logic ele-
ment which is meant for an efficient implementation of a 1-bit addi-
tion. A cost-efficient mixed-grain FPGA logic block which makes
use of such a logic element, and its slight modification enabling
a further cost reduction, are presented in Section 6 and Section 7,
respectively. The next section discusses some interconnect-related
aspects, while in Section 9 a comparison method and final results
are presented. The conclusions follow in Section 10.

2. PROBLEM DEFINITION
DSP applications are usually considered as being dominated by

arithmetic or datapath computations. However, a careful analysis
of various DSP benchmarks indicates the presence of other types
of computations too, e.g bit-level manipulations or small pieces of
random logic. Therefore, for an efficient implementation of DSP,
both datapath and random logic type of functionality must be sup-
ported.

In FPGAs, one of the problems which make this requirement dif-
ficult to realize is a different nature of these computations. For ex-
ample, from the functionality point of view, datapath functions op-
erate on coarser arguments than those which are usually processed
by random logic. At the same time, however, the implementation
of datapath functions, and in particular arithmetic functions, is usu-
ally realized by fine-grain elements, while the implementation of
random logic mostly benefits from coarser granularity.

The reason for this ’paradox’ is the underlying computing struc-
ture of FPGAs, i.e. a LUT (look-up table)-based processing ele-
ment. The LUT complexity (in terms of the number of its configu-
ration bits) grows much faster with the increase of the bit-width of
input arguments for arithmetic than for logic operations [9]. More-
over, the generation of consecutive output bits of arithmetic oper-
ations depends on the propagation of a carry signal. If this carry-
dependence is coded within the LUT, its size grows exponentially.
Since a configuration memory is very costly (especially for embed-
ded systems), the implementation of arithmetic operations in finer
LUTs, and a serial carry propagation between them, is preferred
[14]. On the other hand, because logic functions are usually imple-
mented as multi-level nets of gates, and have relatively few inputs
and outputs, such functions clearly benefit from the implementation
in coarser (larger) LUTs. The reason is that such LUTs usually re-
duce the total logic-depth, and thus the path delay.

In the DSP-optimized FPGAs, the logic block architecture should
reflect the conflicting granularity requirements of datapath and ran-
dom logic functions described above.

3. PREVIOUS WORK
Digital signal processing plays an essential role in many modern

applications, and there is a strong need for DSP-specific tuning to
meet requirements of such applications. This trend can be observed
in the number of publications describing different DSP-optimized
FPGA architectures. Based on the chosen optimization technique,
several classes of such architectures can be identified. These are:

� Architectures with dedicated DSP logic. The DSP-tuning is
achieved by the use of hard-wired logic which implements
datapath functions. Dependent on the amount of the dedi-
cated logic resources and their overall organization, FPGA

architectures of this kind have either a homogeneous struc-
ture (all logic blocks are DSP-optimized) [1] or are heteroge-
neous (an FPGA is divided into regions with DSP-optimized
and general-purpose cells) [6]. The third group includes hy-
brid FPGA architectures which are globally homogeneous
and locally heterogeneous (an FPGA has either a hierarchi-
cal structure with a heterogeneous lowest level [12], or each
FPGA cell has mixed-type components [18]).

� Architectures of coarse granularity. In contrast to the con-
ventional bit-level processing, some FPGAs have been made
to operate on wider (multi-bit) arguments. Because of the
cost-efficiency tradeoff it offers [23], a 4-bit processing has
been particularly popular [16][6][15]. Also, in many com-
mercial general-purpose FPGA devices very coarse logic blocks
have been used to allow the generation of multi-bit results in
one processing element, and, at the same time, the reduction
of the routing resource complexity [27][3].

� Architectures with DSP-specific improvements. In some FPGA
architectures, only small adjustments to the conventional struc-
ture have been made to efficiently support DSP functionality.
One of the most popular adjustments of this type is the use of
dedicated carry logic [25]. The carry logic is faster than the
carry signal generated in a LUT. Another technique is shar-
ing of the logic block inputs which allows a multi-bit output
to be produced from one set of inputs only (common in dat-
apaths). This technique has been applied both in traditional
LUTs [4] and in multi-bit output LUTs [15][13]. Another
adjustment technique exploits the fact that slices of datapaths
usually implement the same functionality. Thus, configura-
tion bit sharing can be applied to reduce unnecessary area
overhead. This technique has been proposed in [6].

4. APPLICATION-DOMAIN TUNING
In conventional general-purpose FPGAs performance is traded

for flexibility. This allows to postpone a decision on what precisely
is to be mapped, of what complexity, and in what way to the very
last moment of the design process. Moreover, it allows to reuse the
same piece of silicon for designs of completely different natures.

Though attractive, such flexibility is not always required, and
(because of the associated cost) sometimes even undesirable. There-
fore, if a given application domain offers optimization opportuni-
ties, they should be exploited.

The idea of the application-domain tuning we propose here al-
lows to trade back the ultimate flexibility of FPGA devices for
some reduction in their intrinsic cost. This is possible if there exists
some pre-knowledge on the type of functions which are to be im-
plemented. A general characterization of such functions and iden-
tification of characteristic properties of a given application domain
(class) allow to optimize FPGA fabrics. After such an optimization,
an FPGA fabric is no longer general-purpose but domain-specific.

In contrast to [7], architectures based on our application-domain
tuning concept offer much more flexibility than custom reconfig-
urable logic which is tailored to a limited set of functions only. On
the one hand, this increases the performance penalty, but, on the
other hand, it lowers the risk (the mapped functions can still be ex-
changed with new ones from the same application domain). The
implementation of functions with completely different characteris-
tics is possible too, but at a higher implementation cost.

4.1 DSP application-domain characterization
In this section, we present an application-domain analysis per-

formed for the DSP application domain. For this purpose, a rep-

Figure 1: Statistics for 19 industrial DSP designs showing the
type and amount of computations required in each design.

resentative set of DSP benchmarks is characterized in terms of the
type of used computations and the frequency of their occurrence.

We synthesized 19 industrial DSP designs of different complex-
ity: from small ASUs (Application Specific Units) to large fil-
ters. We used the Cadence BuildGates synthesis tool-set with Am-
bitWare datapath library. The latter allows extraction of various
macro-blocks, and their preservation (if required) during the map-
ping process. In our experiments, we set global synthesis parame-
ters such that all datapath components with operands equal or larger
than 4-bits and all multiplexers were treated as macro-blocks.

Because a technology independent gate-level netlist generated
in this way does not contain information on the area occupied by
different components, we mapped our designs onto standard cells
from a CMOS 0.13 µm library. For each design, we generated a
resource report with the area information.

We classified all design components in two main groups, i.e.
datapath logic (implemented by macro-blocks) and random logic
(implemented by simple gates). For an accurate analysis of datap-
ath functionality, we distinguished between arithmetic components,
multiplexers and wide boolean functions.

In Fig. 1, the information on the properties of the mapped de-
signs is presented in the form of a chart. The chart shows the per-
centage of area taken by random logic and datapath components.
Fig. 2 shows a random logic portion of the designs, and identifies
the amount of sequential logic (flip-flops) which is present there.
This is to make sure that the identified random logic is not con-
fused with flip-flops.

The obtained results allow to draw the following conclusions:
� As expected, the datapath functionality, and in particular arith-

metic, is dominant in DSP. The datapath functions have dif-
ferent bit-widths.

� DSP designs heavily use multiplexers of various size. Thus,
an efficient mapping of multiplexers should be supported.

� DSP functions do contain random logic. The amount of ran-
dom logic varies per design, but on average does not exceed
25% of the total design area. Random logic is predominantly
combinatorial.

� Some DSP designs use wide boolean functions. This fact
should be reflected in the logic block architecture.

5. COST-EFFICIENT LUT-BASED ARITH-
METIC

In this section, we use conclusions of the application-domain
analysis presented in Section 4.1 to derive the logic block architec-

Figure 2: Combinatorial (pure RL) versus sequential (FFs)
random logic in the mapped designs.

ture of a DSP-optimized FPGA device. After discussion on basic
assumptions on the logic block architecture, we look closer at dif-
ferent properties of arithmetic functions which can be exploited to
reduce the logic block implementation cost.

5.1 General observations
The DSP functionality is dominated by arithmetic. Thus, a cost-

efficient mapping requires that fundamental arithmetic operations,
such as a binary addition for example, are implemented well.

Though placing a dedicated (hard-wired) adder in an FPGA logic
block seems to be the most straightforward way of datapath-tuning,
we deliberately give up this scenario. The reason is that, as shown
in Section 4.1, in DSP designs a small amount of random logic
is also required. Since this amount differs per design, a proper
ratio between arithmetic and random logic components in an FPGA
architecture is difficult to determine a priori. This questions thus
the use of a heterogeneous type of FPGA structures. At the same
type, hybrid structures, such as [12], are less attractive since they
constrain the mapping tools.

For these reasons, we choose for our FPGA a homogeneous
structure and a LUT-based logic block. In this way, both datap-
ath and logic functions can be implemented equally well, and their
mapping (in particular placement) does not have to be constrained
by a physical location of hardware resources.

5.2 Adder inverting property
The output signals of a full adder, i.e. a sum S and a carry output

cout , can be defined as:

S � a
�

b
�

cin (1)

and

cout � c̄in �
�
ab ��� cin �

�
a � b ��� (2)

where a and b are primary adder inputs, and cin is a carry input.
Eqn. 1 and Eqn. 2 can be rewritten as follows.

S � c̄in �
�
a
�

b ��� cin �
�
a
�

b � (3)

� c̄in �
�
a
�

b ��� cin �
�
ā
�

b̄ � (4)

cout � c̄in �
�
ab ��� cin �

�
ā � b̄ � (5)

Eqn. 4 and Eqn. 5 represent what is known in the literature as adder
inverting property [20]. The property describes that the inversion
of adder inputs results in the inversion of its outputs.

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

cin cout

inverting property

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

a b S

symmetry property

symmetry axisFA
c inc out

a b

S

Figure 3: Properties of a binary adder identified in its truth
table.

The added inverting property has a nice application to the LUT-
based arithmetic as it allows to halve the total number of bits re-
quired to implement a LUT-based addition. This is possible be-
cause of the symmetry in the adder truth table: output bits are the
same but of an opposite polarization (see Fig. 3). Such applica-
tion of the adder inverting property has been proposed in [14], and
applied to the implementation of a cost-efficient multi-functional
logic block with 2-bit or 4-bit granularity [15]. The logic block of
this type uses a multi-bit output LUT implemented in a memory-
like way, and can be configured to work in a datapath-, logic- or
memory-mode [15].

5.3 Symmetry property
Next to the inverting property, the symmetry of the adder sum

function S, as described by Eqn. 3, is of an interest too. Sym-
metrical functions do not change by permuting their inputs [5]. In
practice, for the LUT-based arithmetic it means, for example, that
the adder sum function can be generated, dependent on the polar-
ization of a reference signal, either by a direct calling of the base
function F stored in a LUT, or by its inversion F̄ . If we choose
cin � 0 as the reference signal, and implement in the LUT the base
function F � a

�
b, then

S � cin � F � c̄in � F̄ (6)

5.4 Optimal LUT-based adder implementation
Though both the adder inverting property and the symmetry prop-

erty offer the same optimization gain: a factor of two reduction in
the number of LUT memory bits, the symmetry property is a supe-
rior technique. This is because the area and performance penalty
of implementing this technique by means of a conventional LUT is
lower than the same penalty for the inverting property.

A potential disadvantage of the symmetry property is its appli-
cability to the adder sum bit only. This can easily be overcome if
dedicated logic is used for the carry signal implementation. Such
an approach improves the overall timing (a carry signal is usually
on the critical path), and the logic utilization (no LUTs have to be
sacrificed to implement the carry).

Fig. 4 shows an optimal structure of a 1-bit LUT-based addi-
tion. The structure makes use of the symmetry property described
by Eqn. 6. This is realized by an XOR gate at the LUT output. The
gate implements a programmable inversion. The LUT is a 2-input
LUT and stores the adder sum output bits coded for one polariza-
tion of the carry input signal (e.g. cin � 0). The analogous outputs
for the carry signal of an opposite polarization (i.e. cin � 1) are
generated by the inversion of the LUT contents.

The carry signal is implemented in a way suggested in [28], this
is with an XOR gate and a 2:1 multiplexer. However, because in
the arithmetic mode each 2-LUT is configured as an XOR gate, it is
possible to reuse the LUT signal in the carry signal generation. This
is similar to the carry generation technique used in Xilinx Virtex

cout

cin

a

b

S

carry
logic

2−LUT

Figure 4: An optimal 1-bit LUT-based adder implementation.

devices [26]. In this way, not only few extra gates are saved, but the
carry chain can be break in an arbitrary place too. This is essential
for implementing arithmetic functions with less than four bits. The
chosen carry implementation method has no negative influence on
timing.

We call the above described structure optimal since it requires
the minimum number of configuration bits, i.e. four, to implement
a 1-bit LUT-based addition. This is a factor of four improvement
compared to any state-of-the-art FPGA device. In FPGA device
families such as Xilinx Virtex [26][27] and Altera FLEX [2], a 4-
LUT with 16 memory cells is used to implement a sum output bit
of a 1-bit addition; in ATMEL AT40K devices [4], Altera Stratix
family [3] or Low-Power FPGA from Berkeley University [9], 16
configuration bits in total are used to implement a 1-bit addition,
i.e. both sum and carry output signals.

Such an aggressive reduction in the number of configuration bits
decreases not only the cost of implementing arithmetic functions,
but also the total size of the configuration memory. The latter is
important especially for FPGA devices supporting partial or dy-
namic reconfiguration, or any embedded FPGA (due to an on-chip
memory).

6. MIXED-GRAIN FPGA LOGIC BLOCK
In this section, a novel FPGA logic block which allows an effi-

cient implementation of datapath functions, and having capabilities
of mapping random logic functions too, is presented. The logic
block uses a 2-LUT with symmetry property introduced in Section
5.4 as a basic logic element.

6.1 Basic concept
In Section 2, we have described the problem of tuning of an

FPGA logic block to the DSP application domain as being deter-
mined by a different nature of computations in datapath and random
logic functions. The key feature of the solution we propose here is
the preservation of this nature, and expressing it in the way how
these different computations are implemented, without sacrificing
the overall efficiency.

What we observe is that datapath functions produce a multi-bit
output, and require relatively simple logic elements1 for their im-
plementation. Also, datapaths are very regular and have a bit-sliced
structure. At the same time, random logic functions usually pro-
duce a single-bit output and benefit from more complex (coarser)
logic elements. With such a characteristic of datapath and random
logic functions, the problem of the DSP-specific optimization of an
FPGA logic block is how to properly make use of its LUT config-
uration bits.

1We assume here that the complexity of a logic element is a func-
tion of its configuration memory size.

Implementation of random logic functions

16
 c

on
fi

gu
ra

tio
n

bi
ts

Implementation of datapath functions implementation

Figure 5: Reuse of the LUT configuration bits to support im-
plementation of different type of computations.

Assuming that a 4-LUT is a good candidate for random logic
mapping [21], and exploiting the fact that a 2-LUT is sufficient
to implement basic arithmetic functions (see Section 5.4), we de-
termine the optimal complexity of our logic block as having 16
configuration bits. The basic idea we exploit here is that these 16
configuration bits can be treated as either one element (a 4-LUT)
if random logic functions are to be mapped, or they can be de-
composed into four groups of 4 configuration bits (four 2-LUTs) if
datapath functions are to be mapped. This is shown in Fig. 5. The
logic block implemented in this way allows to implement 4-bit dat-
apath functions (i.e. operating on 4-bit arguments and producing
a 4-bit result), and random logic functions (with up to four inputs
and a single-bit output). To reflect the granularity trade-off such a
processing element offers, we call it a mixed-grain logic block.

6.2 Bit-slice structure
A basic logic element of the proposed logic block implements a

bit-slice of datapath functions. The logic element is based on the
structure introduced in Section 5.4, and consists of a 2-LUT, an
XOR gate and a dedicated carry logic circuitry.

To allow an implementation of arithmetic functions other than
a 1-bit addition for which this structure has been optimized, two
extra gates, i.e. an XOR gate and AND gate, are placed at the LUT
inputs. The AND gate is used in a multiplier-mode and allows
an array multiplier cell to be implemented in a single bit-slice of
the logic block. The gate implements a logical AND of the data
input Ai and the global signal Y . The XOR gate at the second LUT
input is used for the implementation of the addition or subtraction
operations, which can be chosen dynamically by setting the global
signal Z (Z � ADD � SUB). The signal Z and the data input Bi are
inputs of the XOR gate.

The results of the application-domain characterization discussed
in Section 4 reveal the presence of a considerable number of multi-
plexers in DSP designs. The importance of having support for the
efficient implementation of multiplexers in an FPGA logic block
has also been confirmed by Agarwala in [1] and Cherepacha in [6].
Therefore, we assume that a bit-slice must allow mapping of a 2:1
multiplexer. However, the multiplexer function (F � a � c̄ � b � c,

in_i

LMUX

cout_i

Di

Programmable
inversion

L i

M

iA

iB Carry logic

0 1

2−LUT

M

M

M

c

M

Z

Y

X

Figure 6: Basic logic element of the novel logic block, which
implements a bit slice of datapath functions.

where a and b are multiplexer inputs and c is a selection signal) is
not symmetrical, and its mapping onto the proposed logic element
is not directly possible. Since placing of a dedicated 2:1 multiplexer
in our logic element is better from both area and performance point
of view, we choose this option2.

The 2:1 logic multiplexer (LMUX in Fig. 6) is placed in parallel
to the 2-LUT. Its inputs are two data inputs of the logic element
(i.e. Ai and Bi), and a selection signal is the global signal X .

The structure of the logic element is shown in Fig. 6. The el-
ement has two outputs: a datapath output Di and a random logic
output Li. The Di output is used when the logic element is config-
ured as a datapath bit-slice and a multi-bit result is generated, while
the Li output is used in the random logic mode when a single-bit
result is produced. The LMUX, 2-LUT and XOR gate outputs are
multiplexed to allow an implementation of wide boolean functions
or wide multiplexers (both generate multi-bit output).

6.3 Logic block structure
The novel logic block consists of four logic elements (slices),

with a structure as shown in Fig. 6. The choice of 4-bits as a granu-
larity of the logic block is dictated by the fact that such granularity
has been found the most optimal for the datapath mapping [6][23].

The logic outputs of each slice are merged together in global
multiplexers MUX1, MUX2 and MUX3, while datapath outputs
are fed to the output selection stage (see Fig. 7). Additionally, the
outputs of multiplexers MUX1 and MUX2 are fed to the output
selection stage, where they are multiplexed with datapath outputs
of the first and third bit-slice, respectively. These outputs are used
if a 2-bit 4:1 multiplexer is implemented.

The logic block has eight primary inputs IN0 ����� IN7, three control
inputs C0 � C1 � C2, four primary outputs OUT0 ����� OUT3, and a spe-
cial carry output COUT . The control signals are multiplexed with
the static signals ’0’ and ’1’ defined by the configuration bits, and
produce a set of signals X � Y � Z, respectively. The X � Y � Z signals
are global for all bit-slice. The sharing of these signals is possible
because of the datapath regularities. As a result, this allows to re-
duce the number of logic block pins, and consequently the routing
resource complexity. The carry input signal CIN on pin C0 is fed
to the first bit slice only. This slice produces an intermediate carry
output signal cout0 which is connected with the carry input of the

2There is a sort of ’partial’ symmetry in a multiplexer function, but
its realization is rather costly.

B3

3A

A2

B2

B1

A1

B0

A0

M M

cout0

cout2

MUX3

cout1

B2

B1

B0

M

M

/C

3A

B3

A2

A1

A0

COUT

carry
logic

carry
logic

carry
logic

In
pu

t s
el

ec
tio

n
st

ag
e

IN

IN

IN

IN

IN

IN

IN

IN

0

1

2

3

4

5

6

7

MUX2

MUX1

Bit−slice

LMUX

LMUX

LMUX

OUT

OUT

OUT

OUT

0

1

2

3

IN

LMUX

Z Y X

C0C1C2

2−LUT

2−LUT

2−LUT

carry
logic

2−LUT

Se
le

ct
io

n
Se

le
ct

io
n

Se
le

ct
io

n
Se

le
ct

io
n

FF

Fl
ip

−F
lo

ps

O
ut

pu
t s

el
ec

tio
n

st
ag

e

Figure 7: The mixed-grain logic block architecture.

next (second) bit-slice, and so on.
The task of the input selection stage is to define the connectivity

between inputs of the logic block and inputs of each logic element
(LUT) dependent on the required functional mode. A similar func-
tion the output selection stage has. Each of the logic block outputs
can be registered by means of dedicated flip-flops.

6.4 Functional modes
The mixed-grain logic block has two primary functional modes:

� Data-path mode in which a multi-bit output (max. 4-bit)
is produced using Di outputs of each logic element; all bit-
slices are configured to implement the same function.

� Random logic mode in which a single-bit output is produced
using Li outputs of each logic element; bit-slices usually im-
plement different logic functions.

We assume that only one of these modes is possible at the same
time. If the number of bit-slices required to implement a given
function is smaller than the total number of the logic block slices
(i.e. four), the remaining logic block resources are left unused. Al-
though this might slightly influence the total number of logic blocks
required to implement such functionality, it reduces the complexity
of the control structure in each logic block. Of course, a more flex-
ible implementation is possible too. Below, the logic block func-
tionality in each of the modes is discussed in detail. Fig. 8 shows
connectivity examples in each mode.

6.4.1 Datapath mode
Addition/Subtraction. The logic block can be configured to

implement up to 4-bit addition/subtraction operations. The type of
an operation can be determined statically or dynamically by con-
necting the signal Z � ADD � SUB to a local or global signal, re-
spectively. A 2-LUT in each bit-slice stores half (see discussion
in Section 5.4) a truth table of a 1-bit adder. If a binary addition
is implemented, the input XOR gate passes the input operand Bi
without changing its polarization, i.e. Z=’0’. If a subtraction is im-
plemented, Z=’1’ and the XOR gate negates one of the operands.
The input AND gates are unused, i.e. signal Y=’1’. The dedicated
carry logic implements the carry path. For operations with less

c

c

c

c

Multiplexers4−LUT
X Y Z X Y Z X Y Z X Y Z

Datapath mode Random logic mode

Arithmetic Wide multiplexers

Figure 8: The connectivity between inputs of the logic block
and inputs of the consecutive bit-slices.

than four bits, unused slices have their LUTs programmed to gen-
erate the value ’1’ such that the carry logic allows the carry signal
from the previous slices to be propagated to the output (COUT). The
outputs (sum/decrement bits) are available on the datapath outputs
of each logic element.

Multiplication. The logic block supports an implementation of
an array multiplier with a ripple carry adder [20]. Maximally, a 4-
bit section of such a multiplier (i.e. four cells) can be implemented
in one logic block. For this purpose, each bit-slice is configured as a
binary adder (inactive XOR gates, i.e. Z=’0’) with an AND gate on
one of its inputs. The signal Y carries the value of the multiplicand
bit. In this mode, four partial product signals are generated on the
datapath outputs, and the carry output signal is available on the
COUT pin.

Wide multiplexers. In the datapath mode, the multiplexers in
the logic block have multi-bit inputs and outputs. Maximally, a 4-
bit 2:1 multiplexer or a 2-bit 4:1 multiplexer can be implemented
in one logic block. In the first case, LMUXes of each bit-slice are
used, and the result is available on the datapath outputs. In the
second case, each slice produces output bits on the logic outputs
of each bit slice, and the global multiplexers MUX1 and MUX2
are used to generate two final signals. The result is available on the
first and third output pins of the logic block. A wide 2:1 multiplexer
uses global signal X as a control signal, and a wide 4:1 multiplexer
uses signals X and Y as control signals.

Wide boolean functions. The logic block allows the implemen-
tation of boolean functions of two multi-bit operands. Such func-
tions are implemented by storing the same truth table of a given
boolean function in each 2-LUT. In each bit-slice, the LUT output
is selected in an upper selection multiplexer, and connected to the
datapath output.

6.4.2 Random logic mode
Boolean functions. Logic (boolean) functions of up to four in-

puts can be implemented in the logic block. A 4-input function
is decomposed using Shannon expansion theory [17], and mapped
onto a set of four 2-LUTs and global multiplexers MUX1, MUX2
and MUX3, which merge the LUT outputs. Each bit-slice produces
a result available on the logic output. The 3-input/2-output logic
functions can also be realized in a single logic block.

Multiplexers. The mapping of multiplexers with a single output
and up to eight inputs is possible. If the largest multiplexer, i.e. a
1-bit 8:1 MUX, is to be implemented in the logic block, all global
multiplexers MUX1, MUX2 and MUX3 are used. In this case,

MMMM

2−LUT

out0out1out2out3

Figure 9: Configuration bit sharing in LUTs of the modified
ALU-like logic block.

LMUXes in each slice and multiplexers MUX1-MUX2 and MUX3
are controlled by global X � Y , and Z signals, respectively. The data
inputs of the multiplexers are inputs of the logic block, and the final
output is available on all logic block outputs.

7. MODIFIED LOGIC BLOCK WITH ALU-
LIKE FUNCTIONALITY

The key feature of the logic block structure proposed in Section
6 is its ability to implement efficiently both datapath and random
logic functions. However, in some applications the random logic
functionality is not required, and what is more it unnecessarily in-
creases the mapping cost. At the same time, bit-slices of datapath
functions implement usually the same function, thus LUTs with in-
dependent sets of configuration bits offer a redundant functionality.

These observations indicate that our logic block structure can be
simplified even further. To realize this, we utilize the concept of the
configuration bit sharing [6]. As a result, four independent 2-LUTs
can be replaced by one set of four configuration bits and four sets
of the decode logic (multiplexers). This is illustrated in Fig. 9.

Assuming that the rest of the logic block structure is left un-
changed, such an optimization technique reduces the LUT memory
size by a factor of four compared to the proposed mixed-grain logic
block architecture, and by a factor of 16 compared to any commer-
cial LUT-based logic block architecture.

An interesting observation is that the logic block structure ob-
tained in this way resembles a traditional 4-bit ALU with LUT
configuration bits as instruction bits. The main advantage of our
solution is, however, a higher flexibility since any logic function of
two inputs, various multiplexers, and array multiplier cells can also
be implemented.

8. INTERCONNECT ISSUES
Because the cost-efficiency of today’s FPGAs is strongly de-

termined by the architecture and implementation of their routing
resources, the discussion on new FPGA architectures cannot be
limited to the FPGA logic blocks only. Therefore, in this section
we discuss some interconnect-related issues. We show that the in-
creased functional capacity of the proposed logic blocks does not
have a negative impact on the overall complexity of its routing re-
sources. In our analysis, we assume that the routing resource com-
plexity is a function of the number of logic block pins [10].

8.1 Routing architecture improvements
As discussed in Section 2, the FPGA logic block structure is in-

fluenced by the different nature of datapath and random logic com-
putations. Similarly the interconnect structure is. In the implemen-
tation of datapath functions, many routing tracks are required to
route multi-bit arguments of datapath operations. But, because of
the datapath regularity, there is a strong correspondence between
the logic block pins and the track assignment: most of the datap-
ath signals are routed like buses, i.e. following a specific order. In

slice
Bit

slice
Bit

slice
Bit

slice
Bit

0

1

2

3In
pu

t c
on

ne
ct

io
n

bl
oc

k

O
ut

pu
t c

on
ne

ct
io

n
bl

oc
k

In
pu

t s
el

ec
tio

n
st

ag
e

O
ut

pu
t s

el
ec

tii
on

 s
ta

ge

FF
s

0
0

0
0

Inputs

O
ut

pu
ts

A

B

DP/RL mode (outputs)Datapath mode DP (inputs) Random logic mode RL (inputs)

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

Figure 10: Proposed implementation of the programmable in-
terconnect (example).

contrast to that, random logic functions require relatively few wires
because of the limited number of LUT pins. However, the overall
irregularity of such functions causes that a much higher degree of
flexibility is required in the routing resources. Thus, a very rich
interconnect structure is needed.

The fact that the proposed logic block offers a different func-
tional capacity for datapath and random logic functions can be well
exploited. Fig. 10 shows a basic structure of our logic block with an
example implementation of input and output connection blocks3.
In the input connection block, an extra layer of multiplexers en-
ables the selection of a routing track to which a LUT pin connects
to. We take advantage of a one-to-one correspondence between
pins and routing tracks which is typical for a datapath mode (the
control signals of multiplexers are set to ’0’). Furthermore, in the
random logic mode, the additional routing tracks are used to in-
crease the connection flexibility (the control signals of multiplex-
ers are at any value). The is possible because in the random logic
mode only four signals instead of eight (as in the datapath mode)
are used (a 4-LUT implementation). A similar idea is applied to
logic block outputs. In the random logic mode only one valid sig-
nal is produced. By placing an additional layer of 2:1 multiplexers,
it is possible to select to which of the four output pins the out-
put signal connects to. In this way, the total load on the routing
tracks can be decreased since smaller multiplexers are required to
implement the input and output connectivity. This influences both
performance and power consumption. Furthermore, the nibble dat-
apath operations are implemented locally (i.e. in one logic block),
instead of being distributed among different logic blocks (e.g. [4]).

8.2 Complete routing architecture
The definition of a routing structure is necessary to establish the

total cost of a given FPGA architecture (the so-called logic tile).
Therefore, we briefly describe here a routing structure chosen for
the two proposed FPGAs. Although this structure has been found
by an analysis of the requirements of both datapath (manual map-
ping of small DSP kernels) and random logic functions (automatic

3The connection blocks define the connectivity between the logic
block pins and the associated routing tracks.

Table 1: Area and performance comparison for different FPGA architectures (figures for the proposed architectures refer to their
standard-cell instead of a full-custom implementation).

FPGA CLB Atile T MCDP MCRL
architecture organization [λ2] [ns] [λ2 � bit] [λ2 � 4 � LUT]
Xilinx 5K 4 x 4-LUT 2.24M 6 1.12M 0.56M
ORCA 2C 4 x 4-LUT 4.25M 7 1.1M 1.1M
Xilinx 4K 2 x 4-LUT 1.25M 7 0.63M 0.63M

Altera FLEX8K 8 x 4-LUT 7.4M 7.5 0.93M 0.93M
LEGO 4 4-LUT 4.1M 4.1 2M 1.16M

LP-PGA II 5/2-LUT 3.38M 8 1.69M 2.25M
CFPA 4-bit logic 1M 4 0.25M 0.25M†

CHESS 4-bit ALU 1.4M 5 0.35M 0.35M†

Mixed-grain 4-LUT 1.6M 1.6 0.4M 1.6M
ALU-like 4 x 2-LUT+shared mem 1.3M 1.5 0.33M 0.33M†

mapping of MCNC benchmarks using SIS, FlowMap and VPR), it
has a preliminary character only, and a more careful routing analy-
sis will be require in the future.

We have assumed a uniform routing architecture with a chan-
nel width W=30. The channel comprises two 4-bit buses of the
length one, two 4-bit buses of the length four, and two 4-bit buses
of the length eight. Next to the general-purpose routing, each chan-
nel also includes six special tracks for routing of the logic block
control signals (C0, C1 and C2 on Fig.7). The number of tracks of a
given type and the locations of the connection boxes are established
taking into account differences in the nature of the data and control
flows. To support the mapping of datapath macro-blocks, which
heavily rely on the local connections (intra-block communication),
we provide a set of direct connections in each of the directions (i.e.
horizontal, vertical and diagonal). Each logic block produces one
4-bit direct output and accepts two 4-bit direct inputs.

The connection block is implemented in the way described in
Section 8.1. This results in two different connection block flexibil-
ities Fc [22] dependent on the operating mode of the architecture.
In the datapath mode, Fci=0.25 and Fco=0.25, while in the random
logic mode, Fci=0.5 and Fco=1 (Fci and Fco are connection block
flexibilities for input and output pins, respectively). In the mixed-
grain logic block, the logic pins connect to the routing tracks in-
dependently (i.e. connections are selected by the independent set
of configuration bits), while in the ALU-like architecture, the input
connection pattern is limited (i.e. configuration bits are shared).

We use a switch box type as in the Atmel AT40K architecture [4].
Such a switch box requires only three instead of six switches. Al-
though this limits the routing flexibility, our mapping experiments
using the modified VPR show that such flexibility is sufficient for
mapping datapath-dominated designs. In the mixed-grain archi-
tecture, switches of two tracks are controlled by the same set of
configuration bits (pin equivalence), while in the ALU-like archi-
tecture, switches of four tracks are controlled by one set of bits only
(bus routing).

A slightly different character of the two proposed architectures
influences their total implementation cost. Due to simplifications in
logic and routing, the ALU-like architecture requires only 71 con-
figuration bits, as opposed to 152 in the mixed-grain architecture.

9. COMPARISON
In this section, we present results of the comparison of our two

FPGA logic block architectures, i.e. the mixed-grain logic block ar-
chitecture and the modified logic block architecture with the ALU-
like functionality, with logic block architectures of different state-
of-the-art FPGA devices. Because architectural and implementa-
tion details of most of the commercial FPGAs are, to a large extent,
proprietary, a truly objective comparison is very difficult. To re-

solve this issue, we propose two comparison methods that allow to
reason about the cost of FPGA architectures in an objective way.

In the first method, we assume that silicon area and performance
are primary cost measures, and we use them to characterize state-
of-the-art and the two proposed architectures. In this comparison,
the state-of-the-art architectures are represented by four commer-
cial architectures and four FPGA architectures which have pro-
posed in the literature. The area and performance figures for com-
mercial architectures come from the similar comparison presented
in [8], while the latter are characterized by the figures from origi-
nal publications where these architecture have been introduced, i.e.
[19][9][12] and [16], respectively.

To obtain results of the comparable accuracy also for the pro-
posed architectures, we implement them together with the chosen
routing structure (see Section 8). To minimize a design effort, we
use a standard-cell implementation instead of a full-custom one.
Each architecture is designed in the Cadence design environment
(schematic entry), and functionally simulated using Pstar. Pstar is
also used to derive the timing information. The written-out Ver-
ilog netlists are used as inputs for the synthesis tool (Cadence Am-
bit), and are mapped onto the TSMC CMOS 0.13 µm standard cell
library. For the ease of the synthesis process, all programmable
switches are replaced by standard cells of a similar size. A rel-
atively large [8] configuration memory cell, i.e. 3kλ2/bit, is as-
sumed. The final area figures are obtained from Ambit area reports.

Table 1 shows the results. For each architecture, we provide in-
formation about its organization, and we list two parameters:

� Atile which is the total logic tile area (i.e. logic block and its
routing area) converted into the technology independent λ2

measure, and
� T which is a cycle time for a logic block and its associated

routing in ns.
Additionally, for each architecture we calculate two extra param-
eters which reflect their mapping capabilities. The first parameter,
MCDP, describes the mapping cost in silicon area of a 1-bit datapath
function (e.g. an adder), while the second, MCRL, is the mapping
cost of random logic expressed in silicon area per a 4-LUT equiva-
lent4. The positions marked with ’†’ mean that a given logic block
architecture does not implement a full 4-LUT, but (a set of) wide
boolean functions only. The values of MCDP and MCRL are shown
in λ2.

Because Table 1 gives information about the commercial FPGA
architectures which are slightly obsolete, we propose a second (com-
plementary) comparison method as well. In this method, we an-
alyze very recent and currently widely used commercial FPGAs,
4Logic block architectures such as [19] and [9] share some of the
LUT inputs. To reflect this fact, we use slightly smaller capacity
factors, i.e. 3.5 and 1.5, instead of 4 and 2, respectively.

such as Xilinx Virtex [26], Altera Stratix [3] and Atmel AT40K
[4], and compare them with our architectures. As mentioned be-
fore, for these architectures area figures are not available and we
use an area estimation technique based on the area model suggested
in [10]. This model estimates the complexity of an FPGA architec-
ture using two essential parameters: Nlmb - the number of the LUT
configuration bits, and Npins - the total pin number of a given ar-
chitecture. Nlmb reflects the complexity of the logic block, while
Npins the complexity of the routing resources. The latter is based
on the assumption that each architecture pin has a fixed routing
cost, which is a reasonable assumption. Because of its simplicity
and the sufficient level of accuracy, this model (especially for the
routing complexity estimation) has been quite popular in the past
[10][6][11][22].

Table 2 and Table 3 show the results of the mapping efficiency
comparison using the described above model. Eight simple yet rep-
resentative datapath and logic functions are chosen as benchmarks.
For each commercial architecture and our architectures, the tables
list three parameters: NCLB which is the number of logic blocks
of a given type required to map a benchmark function, and the
total mapping cost MC which is characterized by two numbers:
Bits � NCLB � Nlmb and Pins � NCLB � Npins, with Nlmb and Npins
defined as above. The Bits and Pins are the total number of LUT
bits and architecture pins required to map a benchmark.

For each compared architecture, we count only primary inputs
and output pins, including carry pins, but excluding registered out-
put pins. Thus, the commercial FPGAs are characterized in the
following way: Xilinx Virtex: Npins=28, Altera Stratix: Npins=53,
Atmel AT40K: Npins=6. In the two proposed FPGA architectures,
a large number of pins is a result of the mulit-bit datapath support.
However, since mapping of datapath functions require much less
routing flexibility, the routing cost associated with each ’datapath’
pin is much lower than with an equivalent ’random-logic’ pin. This
can also be seen in the fact that in the random logic mode our logic
blocks use only five pins, i.e. four inputs and one output (excluding
control pin count). To express this difference, we count each ’dat-
apath’ pin of our architectures as 0.5 of the ’random-logic’ one5.
With this assumption, our logic blocks have in total Npins=10. The
number of configuration bits per CLB for each architecture is as
follows: Xilinx Virtex: Nlmb=64, Altera Stratix: Nlmb=160, Atmel
AT40K: Nlmb=16, mixed-grain: Nlmb=16, ALU-like: Nlmb=4.

9.1 Analysis of results
The results from Table 1 show that the two presented FPGA ar-

chitectures are - regardless their standard-cell-based implementa-
tion and no optimizations - superior to the commercial LUT-based
FPGAs implemented in a full-custom way. The cost of mapping
datapath functions is for the mixed-grain and the ALU-like archi-
tectures a factor of 1.6-2.8 and a factor of 1.9-3.3, respectively,
lower than a similar cost calculated for the commercial FPGAs.
The main reasons for this is an efficient use of the LUT configu-
ration bits (based on the symmetry property described in Section
5.3), and an efficient routing architecture in which the connection
flexibility offered by extra ’datapath’ pins is fully exploited.

Although optimized primarily for datapaths, the mixed-grain logic
block architecture allows an efficient mapping of random logic cir-
cuits too. The mapping cost in this case shows that our architecture
is only 2.9 times worse than the best in this category Xilinx 5K.

If the random logic functionality is less important, the proposed
ALU-like logic block structure is a good alternative. This architec-
ture is 19% smaller, and requires less then 50% of the total number

5Similar method to estimate routing has been used in [6].

of configuration bits of the mixed-grain architecture. The area ad-
vantage comes mainly from the simplification of the routing struc-
ture, and not from the reduction of the LUT memory size.

Our architectures compare well also with arithmetic-optimized
FPGA architectures proposed in the literature. Because of the sim-
ilar functionality, especially the CFPA and CHESS architectures
are interesting. The mapping cost of the ALU-like architecture is
32% higher than for CFPA, and 6% lower than for CHESS. The
datapath mapping cost of the mixed-grain architecture is 60% and
14% higher, respectively. The random logic mapping cost is also
much higher. The reason of the area overhead in the novel architec-
tures is their higher flexibility (especially true for the mixed-grain
architecture), and their standard-cell implementation.

Tables 2 and Table 3 show the mapping efficiency comparison
between the novel architectures and recent commercial FPGA ar-
chitectures. Our architectures show a factor of 4 and 16, respec-
tively, reduction in the number of LUT configuration bits if datap-
ath functions are mapped. This is independent on which commer-
cial FPGA is compared. However, since the influence of routing
is much more severe, the overall benefit of the novel architectures
is lower. The comparison of the logic pins number (Pins) which
reflects the routing complexity shows only a factor of 2.2-3 im-
provement. This is in line with the improvement factors calculated
from Table 1.

10. CONCLUSIONS
Today’s FPGAs are a cost-efficient alternative for both ASICs

and programmable processors. Nevertheless, their general-purpose
nature makes them much more costly and much less efficient than
standard-cell-based or custom designs. To address this issue, we
proposed a way of the intrinsic cost reduction for FPGAs by tuning
their architectures to an application domain or a class of applica-
tions. We described a method of the application-domain character-
ization which allows to identify an essential type of functionality
that has to be mapped efficiently. We applied this method to charac-
terize DSP applications, and we found that arithmetic components,
multiplexers, wide boolean functions, but also a small amount of
random logic are required in DSP.

Based on these observations, we proposed a ’mixed-grain’ FPGA
logic block architecture which exploits characteristic properties of
arithmetic functions. The novel logic block offers a trade-off be-
tween coarse and fine granularity, and can be used to map effi-
ciently both multi-bit output datapaths and single-bit output ran-
dom logic functions. The logic block architecture is such that it can
directly be used in conventional FPGAs. The modified mixed-grain
logic block which reduces the implementation cost even further has
also been presented. The modified architecture has the ALU-like
functionality and very few configuration bits.

We implemented the novel architectures using standard cells,
and compared them with fully optimized commercial FPGAs. For
such a comparison, the area improvement factor calculated per bit
of the datapath functionality is between 1.6 and 3.3. The LUT
memory size is reduced by a factor of 4 and 16, respectively, com-
pared to the LUT-based FPGA devices. Both our architectures are
very well suited for datapath mapping, and the mixed-grain archi-
tecture shows only a small overhead when random logic functions
are mapped. The overall cost-efficiency of the described FPGA
architectures positions them between general-purpose LUT-based
FPGAs and traditional ASICs. The mixed-grain architecture, al-
though of a slightly higher cost than the datapath-optimized archi-
tectures known from the literature, offers much higher flexibility.
A full-custom implementation of new architectures would increase
their cost-efficiency even further.

Table 2: Mapping efficiency of the commercial LUT-based FPGA architectures.
Xilinx Altera Atmel

Benchmark Virtex Stratix AT40K
function NLB MC NLB MC NLB MC

– Bits Pins – Bits Pins – Bits Pins
8-bit ADD 2 128 56 0.8 128 43 8 128 48

16 � 16 MULT 68 4.25K 1.9k 73 11.4K 3.9k 256 4K 1.5k
2:1 MUX/4b 1 64 28 0.4 64 22 4 64 24
8:1 MUX/1b 1 64 28 0.5 80 27 7 112 42

16:1 MUX/1b 2.5 160 70 1 160 53 15 240 90
2-inp OR/4b 1 64 28 0.4 64 22 4 64 24
3-inp OR/1b 0.25 16 7 0.1 16 6 1 16 6
4:16 DECOD 4 256 112 1.6 256 85 16 256 96

Table 3: Mapping efficiency of the proposed FPGA architectures.
Benchmark Mixed-grain ALU-like

function NLB MC NLB MC
– Bits Pins – Bits Pins

8-bit ADD 2 32 20 2 8 20
16 � 16 MULT 64 1K 640 64 258 640
2:1 MUX/4b 1 16 10 1 4 10
8:1 MUX/1b 1 16 10 1 4 10

16:1 MUX/1b 3 48 30 3 12 30
2-inp OR/4b 1 16 10 1 4 10
3-inp OR/1b 1 16 10 2 8 20
4:16 DECOD 12 192 120 12 48 120

Because most of today’s applications use signal processing algo-
rithms which heavily rely on arithmetic computations, the proposed
here FPGA architectures can be interesting alternatives to commer-
cial FPGAs which are often used for this purpose. Furthermore,
a considerable reduction of the configuration memory size makes
them very attractive for embedded systems and for devices with
partial or dynamic reconfiguration.

11. REFERENCES
[1] M. Agarwala and P. Balsara. An architecture for a DSP

Field-Programmable Gate Array. IEEE Transactions on VLSI
Systems, 3(1):136–141, March 1995.

[2] Altera. FLEX 10KE Programmable Logic Device Family. Data sheet.
Altera, 2000.

[3] Altera. Stratix Programmable Logic Device Family. Data sheet.
Altera, 2002.

[4] Atmel. 5K-50K Gate FPGA with DSP Optimized Core Cell and
Distributed FreeRAM. Summary. Atmel, 1999.

[5] N. F. Benschop. Symmetric logic synthesis with phase assignment. In
Proc. of the 22nd Symposium on Information and Communication
Theory, pp. 115–122. WIC, March 2001.

[6] D. Cherepacha and D. Lewis. DP-FPGA: An FPGA architecture
optimized for datapaths. VLSI Design, 4(4):329–343, 1996.

[7] K. Compton and S. Hauck. Totem: Custom reconfigurable array
generation. In Proc. of IEEE Symposium on FPGAs for Custom
Computing Machines. IEEE, April 2001.

[8] A. DeHon. Reconfigurable Architectures for General-Purpose
Computing, AI Technical Report 1586, MIT Artificial Intelligence
Laboratory. MIT, 545 Technology Sq., Cambridge, MA 02139, 1996.

[9] V. George. Low Energy Field-Programmable Gate Array, Ph.D.
Thesis. University of California, Berkeley, 2000.

[10] J. He and J. Rose. Advantages of heterogeneous logic block
architectures for FPGAs. In Proc. of IEEE Custom Integrated
Circuits Conference. IEEE, May 1993.

[11] D. Hill and N.-S. Woo. The benefits of flexibility in look-up
table-based FPGAs. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 12(2):349–353, February 1993.

[12] A. Kaviani, D. Vranesic, and S. Brown. Computational Field
Programmable Architecture. In Proc. of IEEE Custom Integrated
Circuits Conference, pp. 261–264. IEEE, May 1999.

[13] K. Leijten-Nowak, A. Katoch. Architecture and implementation of an
embedded reconfigurable logic core in CMOS 0.13µm. In Proc. of
15th IEEE ASIC/SOC Conference. IEEE, September 2002.

[14] K. Leijten-Nowak and J. L. van Meerbergen. Applying the adder
inverting property in the design of cost-efficient reconfigurable logic.
In Proc. of 44th IEEE Midwest Symposium on Circuits and Systems.

IEEE, August 2001.
[15] K. Leijten-Nowak and J. L. van Meerbergen. Embedded

reconfigurable logic core for DSP applications. In Proc. of
Field-Programmable Logic and Applications Conference, pp.
89–101, September 2002.

[16] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, B. Hutchings.
A Reconfigurable Arithmetic Array for multimedia applications. In
Proc. of ACM Symposium on FPGAs, February 1999.

[17] G. D. Michelli. Synthesis and Optmization of Digital Circuits.
McGraw-Hill, Inc., 1994.

[18] N. Miller and S. Quigley. A novel Field Programmable Gate Array
architecture for high speed processing. In Proc. of
Field-Programmable Logic and Applications Conference, pp.
386–390, September 1997.

[19] J. R. K. C. G. P.-M. Paul Chow, Soon Ong Seo and I. Raharadja. The
design of an SRAM-based Field-Programmable Gate Array. Part II:
Circuit design and layout. IEEE Transactions on VLSI Systems,
7(3):101–110, September 1999.

[20] J. Rabaey. Digital Integrated Circuits. A Design Perspective. Prentice
Hall, 1996.

[21] J. Rose, R. Francis, P. Chow, and D. Lewis. The effect of logic block
complexity on area of programmable gate arrays. In Proc. of IEEE
Custom Integrated Circuits Conference, pp. 5.3.1–5.3.5, May 1989.

[22] J. R. Z. V. S.D. Brown, R.J. Francis. Field-Programmable Gate
Arrays. Kluwer Academic Publishers, 1992.

[23] T. Stansfield. Wordlength as an architectural parameter for
reconfigurable computing devices. In Proc. of Field-Programmable
Logic and Applications Conference, pp. 667–676, September 2002.

[24] A. Telikapalli. Virtex-II Pro FPGAs: The platform for programmable
systems has arrived. Xcell journal, 1(42):10–13, Spring 2002.

[25] Xilinx. XC4000E and XC4000X Series Field Programmable Gate
Arrays. Data sheet. Xilinx, 1999.

[26] Xilinx. Virtex 2.5V Field Programmable Gate Arrays. Data sheet.
Xilinx, 2000.

[27] Xilinx. Virtex-II Pro Platform FPGAs. Data sheet. Xilinx, 2002.
[28] R. Zimmermann. Lecture Notes on Computer Arithmetic: Principles,

Architectures, and VLSI Design. Swiss Federal Institute of
Technology. Integrated Systems Laboratory, Zurch, Switzerland,
1999.

	Main Page
	FPGA03
	Front Matter
	Table of Contents
	Author Index

