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We propose a soft processor programming model and architecture inspired by graphics processing units (GPUs) that are well-
matched to the strengths of FPGAs, namely, highly parallel and pipelinable computation. In particular, our soft processor
architecture exploits multithreading, vector operations, and predication to supply a floating-point pipeline of 64 stages via
hardware support for up to 256 concurrent thread contexts. The key new contributions of our architecture are mechanisms for
managing threads and register files that maximize data-level and instruction-level parallelism while overcoming the challenges
of port limitations of FPGA block memories as well as memory and pipeline latency. Through simulation of a system that (i)
is programmable via NVIDIA’s high-level �� language, (ii) supports AMD’s CTM r5xx GPU ISA, and (iii) is realizable on an
XtremeData XD1000 FPGA-based accelerator system, we demonstrate the potential for such a system to achieve 100% utilization
of a deeply pipelined floating-point datapath.

1. Introduction

As FPGAs become increasingly dense and powerful, with
high-speed I/Os, hard multipliers, and plentiful memory
blocks, they have consequently become more desirable
platforms for computing. Recently there is building interest
in using FPGAs as accelerators for high-performance com-
puting, leading to commercial products such as the SGI
RASC which integrates FPGAs into a blade server platform,
and XtremeData and Nallatech that offer FPGA accelerator
modules that can be installed alongside a conventional CPU
in a standard dual-socket motherboard.

The challenge for such systems is to provide a program-
ming model that is easily accessible for the programmers
in the scientific, financial, and other data-driven arenas
that will use them. Developing an accelerator design in a
hardware description language such as Verilog is difficult,
requiring an expert hardware designer to perform all of
the implementation, testing, and debugging required for
developing real hardware. Behavioral synthesis techniques—
that allow a programmer to write code in a high-level
language such as � that is then automatically translated into
custom hardware circuits—have long-term promise [1–3],
but currently have many limitations.

What is needed is a high-level programming model
specifically tailored to making the creation of custom FPGA-
based accelerators easy. In contrast with the approaches
of custom hardware and behavioral synthesis, a more
familiar model is to use a standard high-level language and
environment to program a processor, or in this case an
FPGA-based soft processor. In general, a soft-processor-
based system has the advantages of (i) supporting a familiar
programming model and environment and (ii) being
portable across different FPGA products and families, while
(iii) still allowing the flexibility to be customized to the
application. Although soft processors themselves can be
augmented with accelerators that are in turn created either
by hand or via behavioral synthesis, our long-term goal is to
develop a soft processor architecture that is more naturally
capable of fully utilizing the FPGA.

1.1. A GPU-Inspired System. Another recent trend is the
increasing interest in using the Graphics Processing Units
(GPUs) in standard PC graphics cards as general-purpose
accelerators, including NVIDIA’s CUDA, OpenCL, and
AMD (ATI)’s Close-to-the-Metal (CTM) [4] programming
environments. While the respective strengths of GPUs
and FPGAs are different—GPUs excel at floating-point
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computation, while FPGAs are better suited to fixed-
point and nonstandard bit width computations—they are
both very well-suited to highly parallel and pipelinable
computation. These programming models are gaining
traction which can potentially be leveraged if a similar
programming model can be developed for FPGAs.

In addition to the programming model, there are also
several main architectural features of GPUs that are very
desirable for a high-throughput soft processor. In partic-
ular, while some of these features have been implemented
previously in isolation and shown to be beneficial for soft
processors, our research highlights that when implemented
in concert, they are key for the design of a high-throughput
soft processor.

Multithreading. Through hardware support for multiple
threads, a soft processor can tolerate memory and pipeline
latency and avoid the area and potential clock frequency costs
of hazard detection logic—as demonstrated in previous work
for pipelines of up to seven stages and support for up to eight
threads [5–7]. In our high-throughput soft processor we
essentially avoid stalls of any kind for very deeply pipelined
functional units (64 stages) via hardware support for many
concurrent threads (currently up to 256 threads).

Vector Operations. A vector operation specifies an array
of memory or register elements on which to perform an
operation. Vector operations exploit data-level parallelism
as described by software, allowing fewer instructions to
command larger amounts of computation, and providing a
powerful axis along which to scale the size of a single soft
processor to improve performance [8, 9].

Predication. To allow program flexibility it is necessary to
support control flow within a thread, although any control
flow will make it more challenging to keep the datapath
fully utilized—hence we support predicated instructions that
execute unconditionally, but have no impact on machine
state for control paths that are not taken.

Multiple Processors. While multithreading can allow a single
datapath to be fully utilized, instantiating multiple proces-
sors can allow a design to be scaled up to use available
FPGA resources and memory bandwidth [10]. The GPU
programming model specifies an abundance of threads, and
is agnostic to whether those threads are executed in the mul-
tithreaded contexts of a single processor or across multiple
processors. Hence the programming model and architecture
are fully capable of supporting multiple processors, although
we do not evaluate such systems in this work.

1.2. Research Goals. Together, the above features provide the
latency tolerance, parallelism, and architectural simplicity
required for a high-throughput soft processor. Rather than
inventing a new programming model, ISA, and processor
architecture to support these features, as a starting point for
this research we have ported an existing GPU programming
model and architecture to an FPGA accelerator system.
Specifically, we have implemented a �������� simulation

of a GPU-inspired soft processor that (i) is programmable
via NVIDIA’s high-level �-based language called �� [11],
(ii) supports an application binary interface-(ABI-) based the
AMD CTM r5xx GPU ISA [4], and (iii) is realizable on an
XtremeData XD1000 development system composed of a
dual-socket motherboard with an AMD Opteron CPU and
the FPGA module which communicate via a HyperTransport
(HT) link.

Our long-term research goal is to use this system to
gain insight on how to best architect a soft processor and
programming model for FPGA-based acceleration. In this
work, through our implementation of the CTM ISA, we
demonstrate that our heavily multithreaded GPU-inspired
architecture can overcome several key challenges in the
design of a high-throughput soft processor for acceleration—
namely, (i) the port limitations of on-chip memories in the
design of the main register file, (ii) tolerating potentially long
latencies to memory, and (iii) tolerating the potentially long
latency of deeply pipelined functional units. Furthermore,
we envision that several aspects of this architecture can be
extended in future implementations to better capitalize on
the strengths of FPGAs: we can scale the soft processor in
the vector dimension as in previous work [8, 9]; rather
than focusing on floating-point computation, we can instead
focus on nonstandard bit width computation or other
custom functions; finally, we can scale the number of soft
processor accelerators via multiprocessor implementations
to fully utilize available memory bandwidth.

In this paper we (i) propose a new GPU-inspired
architecture and programming model for FPGA-based accel-
eration based on soft processors that exploit multithreading,
vector instructions, predication, and multiple processors; (ii)
describe mechanisms for managing threads and register files
that maximize parallelism while overcoming the challenge of
port limitations of FPGA block memories and long memory
and pipeline latencies; (iii) demonstrate that these features,
when implemented in concert, result in a soft processor
design that can fully utilize a deeply pipelined datapath.
This paper extends our previous workshop publication at
RAW 2010 [12] in several ways including a more detailed
description of support for predication and handling control
flow instructions, a more in-depth treatment of related work,
nine additional illustrations and figures, and more detailed
experimental results.

2. Related Work

2.1. Behavioral Synthesis-Based Compilers. The main chal-
lenge of behavioral synthesis algorithms is to identify
parallelism in high-level code and generate a hardware circuit
to provide concurrent execution of operations. There are
many academic and commercial compilers that are based on
synthesis to generate a customized circuit for a given task.
Examples of such compilers include Impulse Accelerated
Technologies Impulse C [13], Altera’s C2H [2], Trident
[3], Mitrionics Mitrion-C [1], SRC Computer’s SRC Carte,
ASC [14], and Celoxica’s Handel-C [15]. Typically, these
tools will compile C-like code to circuit descriptions in
HDL which can then be synthesized by standard FPGA
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CAD tools for deployment on accelerator systems such as
the Xtremedata XD1000. A synthesis-based compiler will
exploit data dependences in high-level code to build local,
point-to-point routing at the circuit level. Computations can
potentially be wired directly from producer to consumer,
bypassing a register store for intermediate computations,
a step which is required for general purpose processors.
This synthesis-based technique of customized circuits can be
especially practical for GPU-like computations, as programs
are typically short sequences of code. Where the computation
is data-flow dominated, it is also possible to exploit data-
level parallelism (DLP) by pipelining independent data
through the custom circuit. The downsides to a behavioral
synthesis approach are that (i) a small change to the
application requires complete/lengthy recompilation of the
FPGA design, and (ii) the resulting circuit is not easily
understood by the user, which can make debugging difficult.

2.2. Soft Uniprocessors. Soft processors are microprocessors
instantiated on an FPGA fabric. Two examples of industrial
soft processors are the Altera NIOS and the Xilinx Microb-
laze. As these processors are deployed on programmable
logic, they come in various standard configurations and also
provide customizable parameters for application-specific
processing. The ISA of NIOS soft processors is based on
a MIPS instruction set architecture (ISA), while that of
Microblaze is a proprietary reduced instruction set com-
puter (RISC) ISA. SPREE [16] is a development tool for
automatically generating custom soft processors from a
given specification. These soft processor architectures are
fairly simple single-threaded processors that do not exploit
parallelism other than pipelining.

2.3. Vector Soft Processors. Yu et al. [17] and Yiannacouras
et al. [8] have implemented soft vector processors where
the architecture is partitioned into independent vector lanes,
each with a local vector register file. This technique maps
naturally to the dual port nature of FPGA on-chip RAMs and
allows the architecture to scale to a large number of vector
lanes, where each lane is provided with its own dual port
memory. While the success of this architecture relies on the
ability to vectorize code, for largely data-parallel workloads,
such as those studied in our work, this is not a challenge. Soft
vector processors are interesting with respect to our work
because we also rely on the availability of data parallelism to
achieve performance improvements. However, while vector
processors scale to many independent lanes each with a small
local register file, our high throughput soft processors focus
on access to a single register file. Hence our techniques are
independent and therefore make it possible to use both in
combination.

2.4. Multithreaded Soft Processors. Fort et al. [5], Dimond
et al. [18], and Labrecque and Steffan [6] use multithreading
in soft processor designs, and show that it can improve
area efficiency dramatically. While these efforts focused
on augmenting an RISC-based processor architecture with
multithreading capabilities, we focus on supporting a GPU

stream processor ISA. As the GPU ISA is required to support
floating point-based multiply-add operations, the pipeline
depth is much longer. Therefore, we extend the technique
here to match the pipeline depth of our functional units.
Although we require many more simultaneous threads,
the data-parallel nature of the GPU programming model
provides an abundance of such threads.

2.5. SPMD Soft Processors. The GPU programming model
is only one instance in the general class of Single-Program
Multiple-Data (SPMD) programming models. There has
been previous work in soft processor systems supporting
SPMD. James-Roxby et al. [19] implement a SPMD soft
processor system using a collection of Microblaze soft
processors attached to a global shared bus. All soft processors
are connected to a unified instruction memory as each
are executing instructions from the same program. All
soft processors are free to execute independently. When
a processor finishes executing the program for one piece
of data, it will request more work from a soft processor
designated to dispatch workloads. While their work focuses
on a multi processor system, little attention is paid to the
optimization of a single core. This is primarily because the
work is focused on SPMD using soft processors as a rapid
prototyping environment. While the GPU programming
model is scalable to many processors, we focus on the
optimization of a single processor instance. The system-
level techniques used by James-Roxby et al. [19] such as
instruction memory sharing between processors could be
applied in a multiprocessor design of our high-throughput
soft processors.

2.6. Register File Access in Soft Processors. As instruction-
level parallelism increases in a soft processor design, more
read and write ports are required to sustain superscalar
instruction issue and commit rates. In trying to support the
AMD r5xx GPU ISA, we were confronted with the same
problem, as this ISA requires 4 read and 3 write accesses
from a single register file, each clock cycle, if we are to
fully pipeline the processor datapath. One possibility is to
implement a multiported register file using logic elements as
opposed to built-in SRAMs. For example, Jones et al. [20]
implement such a register file using logic elements. However,
they show that using this technique results in a register
file with very high area consumption, low clock frequency,
and poor scalability to a large number of registers. LaForest
and Steffan [21] summarize the conventional techniques for
building multiported memories out of FPGA block RAMs
(replication, banking, and multipumping) and also describe
a new technique called the live value table. The solution we
propose in this paper is a form of banking that exploits
the availability of independent threads. Saghir et al. [22]
have also used multiple dual-port memories to implement
a banked register file, allowing the write-back of two
instructions per cycle in cases where access conflicts do not
occur; however, they must rely on the compiler to schedule
register accesses within a program such that writes are
conflict free. We exploit the execution of multiple threads
in lock step, allowing us to build conflict-free accesses to a
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Figure 1: The interaction of a shader program with memories and
registers.

banked register file in hardware. While they bank the register
file across multiple on-chip memories, we provide banked
access both within a single register, through interleaving with
a wide memory port, in addition to accessing across multiple
memory blocks.

3. System Overview

In this section, we give an overview of our system as well
as for GPUs, in particular their shader processors. We also
briefly describe the two software interfaces that we use to
build our system: (i) NVIDIA’s �� language for high-level
programming and (ii) the AMD CTM SDK that defines the
application binary interface (ABI) that our soft processor
implements.

3.1. GPU Shader Processors. While GPUs are composed of
many fixed-function and programmable units, the shader
processors are the cores of interest for our work. For a
graphics workload, shader processors perform a certain
computation on every vertex or pixel in an input stream, as
described by a shader program. Since the computation across
vertices or pixels is normally independent, shader processors
are architected to exploit this parallelism: they are heavily
multithreaded and pipelined, with an ISA that supports both
vector parallelism as well as predication. Furthermore, there
are normally multiple shader processors to improve overall
throughput.

Figure 1 illustrates how a shader program can interact
with memory: input buffers can be randomly accessed
while output is limited to a fixed location for each shader
program instance, as specified by an input register. Hence
the execution of a shader program implies the invocation
of parallel instances across all elements of the output buffer.
This separation and limitation for writing memory simplifies
issues of data coherence and is more conducive to high-
bandwidth implementations.

3.2. The NVIDIA �� Language. In our system we exploit
NVIDIA’s �� [11], a high-level, �-based programming

language that targets GPUs. To give a taste of the ��
language, Figure 2(b) shows a sample program written in
�� for elementwise multiplication of two matrices, with the
addition of a unit offset. For comparison, ANSI � code is
provided for the same routine in Figure 2(a). In ��, the
�	
���� function defines a computation which is implicitly
executed across each element in the output domain, hence
there are no explicit 
�� loops for iterating over the output
buffer dimensions as there would be in regular �. The
dimensions of the buffers are configured prior to execution
of the shader program and hence do not appear in the ��
code either.

Looking at the �� code, there are three parameters
passed to the �	
���� function. First, 2D floating-point
coordinates (�����) directly give the position for output
in the output buffer and are also used to compute the
positions of values in input buffers (i.e., the (X0,Y0) input
pair shown in Figure 1)—note that a future implementation
could remove this limitation to allow many-dimensional
coordinates. The second and third parameters (� and �)
define the input buffers, associated with a buffer number
(�������� and ��������) and a memory addressing mode,
	��
��� ����
����, that in this case tells the compiler to
compute addresses same way � computes memory addresses
for 2D arrays. �� ��!" is an intrinsic function to read
data from an input buffer, and implements the addressing
mode specified by its first parameter on the coordinates
specified by its second parameter. For this program the
values manipulated including the output value are all of type


���#, a vector of four 32-bit floating-point values—hence
the buffer sizes and addressing modes must account for this.

While �� allows the programmer to abstract-away many
of the details of the underlying GPU ISA, it is evident that
an ideal high-level language for general-purpose acceleration
would eliminate the remaining graphics-centric artifacts
in ��.

3.3. AMD’s CTM SDK. The AMD CTM SDK is a program-
ming specification and tool set developed by AMD to
abstract the GPU’s shader processor core as a data-parallel
accelerator [4, 23], hiding many graphics-specific aspects of
the GPU. As illustrated in Figure 3, we use the ��� compiler
included in NVIDIA’s �� toolkit to compile and optimize
shader programs written in ��. ��� targets Microsoft pixel
shader virtual assembly language (��$), which we then
translate via CTM’s amucomp compiler into the AMD CTM
application binary interface (ABI) based on the r5xx ISA.
The resulting CTM shader program binary is then folded
into a host program that runs on the regular CPU. The host
program interfaces with a low-level CTM driver that replaces
a standard graphics driver, providing a computer interface
(as opposed to graphics-based interface) for controlling the
GPU. Through driver API calls, the host program running on
the main CPU configures several parameters prior to shader
program execution, including the base address and sizes of
input and output buffers as well as constant register data
(all illustrated in Figure 1). The host program also uses the
CTM driver to load shader program binaries onto the GPU
for execution.
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float A[WIDTH][HEIGHT]; // input buffer A

float B[WIDTH][HEIGHT]; // input buffer B

float C[WIDTH][HEIGHT]; // output buffer

void multadd(void){

for(int j=0;j<HEIGHT;j++)

for(int i=0;i<WIDTH;i++)

C[i][j] = A[i][j]*B[i][j] + 1.0f;

}

(a) � code

struct data_out {

float4 sum : COLOR;

};

data_out

multadd(float2 coord : TEXCOORD0,

uniform sampler2D A: TEXUNIT0,

uniform sampler2D B: TEXUNIT1){

data_out r;

float4 offset = {1.0f, 1.0f, 1.0f, 1.0f};

r.sum = tex2D(A,coord)*tex2D(B,coord)+offset;

return r;

}

(b) �� code

multadd:

TEX r1 r0.rg s1

// r1 = r0.r + (r0.g*s1.width) + s1.base

TEX r0 r0.rg s0

// r0 = r0.r + (r0.g*s0.width) + s0.base

MAD o0 r1 r0 c0

// o0 = r1 * r0 + c0 (3 left-most elems)

mad o0 r1 r0 c0

// o0 = r1 * r0 + c0 (1 right-most elem)

END

(c) CTM code

Figure 2: An example shader program for elementwise matrix multiplication plus an offset, described in (a) �, (b) ��, and (c) CTM code.

Figure 2(c) shows the resulting CTM code from the
example shader program in Figure 2(b). From left to right,
the format of an instruction is opcode, destination, and
sources. There are several kinds of registers in the CTM ISA:
(i) general-purpose vector registers (r0–r127); (ii) “sampler“
registers (s0–s15), used to specify the base address and width
of an input buffer (i.e., ��������–��������% in �� code);
(iii) constant registers (c0–c255), used to specify constant
values; (iv) output registers (o0–o3) that are used as the
destination for the final output values which are streamed
to the output buffer (shown in Figure 1) when the shader
program instance completes. All registers are each a vector
of four 32-bit elements where the individual elements of the

vector are named �, �, &' and �. Both base registers and
constant registers are configured during setup by the CTM
driver, but are otherwise read-only.

CTM defines both TEX and ALU instructions. A ���
instruction defines a memory load from an input buffer, and
essentially implements the �� ��!" call in ��. The input
coordinates (����� �� ��) are made available in register
�� at the start of the shader program instance. The address
is computed from both �� and a sampler register (i.e., s0).
For example, the address for the sources given as ��·����
is computed as ��(�+��(�∗��(width+��(base. All ALU
instructions are actually VLIW operation pairs that can be
issued in parallel: a three-element vector operation specified
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in uppercase, followed (on a new line) by a scalar operation
specified in lower case. In the example the ALU instruction
is a pair of multiply adds that specify three-source operands
and one destination operand for both the vector (MAD) and
scalar (mad) operations. ALU instructions can access any of
r0–r127 and c0–c255 as any source operand.

CTM allows many other options that we do not describe
here, such as the ability to permute (swizzle) the elements
of the vectors after loading from input buffers or before
performing ALU operations, and also for selectively masking
the elements of destination registers. A complete description
of the r5xx ISA and the associated ABI format is available in
the CTM specification [23].

In summary, this software flow allows us to support
existing shader programs written in ��, and also allows us
to avoid inventing our own low-level ISA.

4. A GPU-Inspired Architecture

In this section we describe the architecture of our high-
throughput soft-processor accelerator, as inspired by GPU
architecture. First we describe an overview of the architec-
ture, and explain in detail the components that are relatively
straightforward to map to an FPGA-based design. We then
describe three features of the architecture that overcome
challenges of an FPGA-based design.

4.1. Overview. Figure 4 illustrates the high-level architecture
of the proposed GPU-like accelerator. Our architecture is
designed specifically to interface with a HyperTransport
(HT) master and slave, although interfacing with other
interconnects is possible. The following describes three
important components of the accelerator that are relatively
straightforward to map to an FPGA-based design.

Coordinate Generation. As described in Section 3 and by the
CTM specification, a shader program instance is normally
parameterized entirely by a set of input coordinates which
range from the top-left to the bottom-right of the compute
domain. The coordinate generator is configured with the
definition of the compute domain and generates streams of
coordinates which are written into the register file (register
��) for shader program instances to read—replacing outer-
looping control flow in most program kernels.

TEX and ALU Datapaths. TEX instructions, which are
essentially loads from input buffers in memory, are executed
by the TEX datapath. Once computed based on the specified
general-purpose and sampler registers, the load address is
packaged as an HT read request packet and sent to the HT
core—unless there are already 32 in-flight previous requests
in which case the current request is queued in a FIFO buffer.
When a request is satisfied, any permutation operations (as
described in Section 3.3) are applied to the returned data
and the result is written back to the register file. The CTM
ISA also includes a method for specifying that an instruction
depends on the result of a previous memory request (via a
special bit). Each TEX instruction holds a semaphore that is

Cg shader
program

CTM binary

CTM asm

cgc

C/C++ host
program

Written by developer:

CTM driver

GPU
processor

System memory
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Figure 3: The software flow in our system. A software developer
writes a high-level �� shader program and a host program. The ��
shader program is translated into a CTM binary via the ��� and
������� compilers and is then folded into the host program.
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Figure 4: Overview of a GPU-like accelerator, connected to a
Hypertransport (HT) master and slave.

cleared once its result is written back to the register file—
which signals any awaiting instruction to continue. ALU
instructions are executed by the ALU datapath, and their
results can be written to either the register file or the output
register.

Predication and Control Flow. Conditional constructs such
as if and else statements in �� are supported in CTM
instructions via predication. There is one predicate bit per
vector lane that can be set using the boolean result from
one of many comparison operations (e.g., >, <=, ==,
! =). Subsequent ALU instructions can then impose a write
mask conditional on the values of these bits. More complex
control flow constructs such as for loops and subroutines are
supported via a control flow instructions that provide control
of hardware-level call/return stacks, and branch and loop-
depth hierarchies; space limitations prevent us from fully-
explaining control flow instructions here, hence we refer the
reader to the CTM specification [23] for further details.

Output. Similar to input buffers, the base addresses and
widths of the output buffers are preconfigured by the CTM
driver in advance (in the registers o0–o3). When a shader
program instance completes, the contents of the output
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registers are written to the appropriate output buffers in
memory: the contents of the output registers are packaged
into an HT write request packet, using an address derived
from one of the output buffer base addresses and the original
input coordinates (from the coordinate generator). Write
requests are posted, meaning that there is no response packet
and hence no limit on the maximum number of outstanding
writes.

4.2. Tolerating Limited Memory Ports. In Figure 4 we observe
that there are a large number of ports feeding into and out
of the central register file (which holds r0–r127). One of
the biggest challenges in high-performance soft processor
design is the design of the register file: it must tolerate the
port limitations of FPGA block memories that are normally
limited to only two ports. To fully pipeline the ALU and
TEX datapaths, the central register file for our GPU-inspired
accelerator requires four read and three write ports. If we
attempted a design that reads all of the ALU and TEX source
operands (four of them) of a single thread in a single cycle,
we would be required to have replicated copies of the register
file across multiple block memories to have enough ports.
However, this solution does not provide more than one write
port, since each replicant would have to use one port for
reading operands and the other port for broadcast-writing
the latest destination register value (i.e., being kept up-to-
date with one write every cycle).

We solve this problem by exploiting the fact that all
threads are executing different instances of the same shader
program: all threads will execute the exact same sequence
of instructions, since even control flow is equalized across
threads via predication. This symmetry across threads allows
us to group threads into batches and execute the instructions
of batched threads in lock-step. This lock-step execution in
turn allows us to transpose the access of registers to alleviate
the ports problem.

Rather than attempting to read all operands of a thread
each cycle, we instead read a single operand across many
threads per cycle from a given block memory and do this
across separate block memories for each component of the
vector register. Table 1 illustrates how we schedule register
file accesses in this way for batches of four threads each
that are decoding only ALU instructions (for simplicity).
Since there are three operands to read for ALU instructions
this adds a three-cycle decode latency for such instructions.
However, in the steady-state we can sustain our goal of
the execution of one ALU instruction per cycle, hence
this latency is tolerable. This schedule also leaves room
for another read of an operand across threads in a batch.
Ideally we would be able to issue the register file read for
a TEX instruction during this slot, which would allow us
to fully utilize the central register file, ALU datapath and
TEX datapath: every fourth cycle we would read operands
for a batch of four threads for a TEX instruction, then be
able to issue a TEX instruction for each of those threads
over the next four cycles. We give the name transpose to this
technique of scheduling register accesses.

This transposed register file design also eases the imple-
mentation of write ports. In fact, the schedule in Table 1

Table 1: The schedule of operand reads from the central register file
for batches of four threads (T0–T3, T4–T7, etc.) decoding only ALU
instructions. An ALU instruction has up to three vector operands
(A, B, C) which are read across threads in a batch over three cycles.
In the steady state this schedule can sustain the issue of one ALU
instruction from every cycle.

Clock cycle Inst phase Register file read ALU ready

0 ALU0 ALU:A(T0,T1,T2,T3) —

1 ALU1 ALU:B(T0,T1,T2,T3) —

2 ALU2 ALU:C(T0,T1,T2,T3) —

3 — — T0

4 ALU0 ALU:A(T4,T5,T6,T7) T1

5 ALU1 ALU:B(T4,T5,T6,T7) T2

6 ALU2 ALU:C(T4,T5,T6,T7) T3

7 — — T4

8 ALU0 ALU:A(T8,T9,T10,T11) T5

9 ALU1 ALU:B(T8,T9,T10,T11) T6

10 ALU2 ALU:C(T8,T9,T10,T11) T7

11 · · · · · · · · ·

uses only one read port per block memory, leaving the
other port free for writes. From the table we see that ALU
instructions will generate at most one register write across
threads in a batch every four cycles. There are two other
events which result in a write to the central register file:
(i) a TEX instruction completes, meaning that the result
has returned from memory and must be written-back to
the appropriate destination register; (ii) a shader program
instance completes for a batch of threads and a new batch
is configured, so that the input coordinates must be set for
that new batch (register ��). These two types of register write
are performed immediately if the write port is free, otherwise
they are queued until a subsequent cycle.

4.3. Avoiding Pipeline Bubbles. In the previous section we
demonstrated that a transposed register file design can
allow the hardware to provide the register reads and writes
necessary to sustain the execution of one ALU instruction
every cycle across threads. However, there are three reasons
why issuing instructions to sustain such full utilization of
the datapaths is a further challenge. The first reason is
as follows. In the discussion of Table 1 we described that
the ideal sequence of instructions for fully utilizing the
ALU and TEX datapaths is an instruction stream which
alternates between ALU and TEX instructions. This is very
unlikely to happen naturally in programs, and the result of
other nonideal sequences of instructions will be undesirable
bubbles in the two datapaths. The second reason, as shown
in Figure 5, is that the datapath for implementing floating-
point operations such as multiply add ()��) and dot product
(�*�$, �*�#) instructions is very long and deeply pipelined
(64 clock cycles): since ALU instructions within a thread
will often have register dependences between them, this can
prevent an ALU instruction from issuing until a previous
ALU instruction completes. This potentially long stall will
also result in unwanted bubbles in the ALU datapath.
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MADD, DP3, and DP4 ALU instructions. The pipeline latency of
each unit is shown on the left (for Altera floating point IP cores),
and the total latency of the datapath is 53 cycles without accounting
for extra pipeline stages for multiplexing between units.

The third reason is that TEX instructions can incur sig-
nificant latency since they load from main memory; since
an ALU instruction often depends on a previous TEX
instruction for a source operand, the ALU instruction would
have to stall until the TEX instruction completes.

We address all three of these problems by storing the
contexts of multiple batches in hardware, and dynamically
switching between batches every cycle. We capitalize on
the fact that all threads are independent across batches as
well as within batches, switching between batches to (i)
choose a batch with an appropriate next instruction to
match the available issue phase (TEX or ALU) and (ii) to
hide both pipeline and memory latency. This allows us to
potentially fully utilize both the ALU and TEX datapaths,
provided that ALU and TEX instructions across all batch
contexts are ready to be issued when required. Specifically,
to sustain this execution pattern we generally require that
the ratio of ALU to TEX instructions be 1.0 or greater:
for a given shader program if TEX instructions outnumber
ALU instructions then in the steady state this alone could
result in pipeline bubbles. Storing the contexts (i.e., register
file state) of multiple batches is relatively straightforward:
it requires only growing the depth of the register file to
accommodate the additional registers—although this may
require multiple block memories to accomplish. In the next
section we describe the implementation of batch issue logic
in greater detail.

4.4. Control Flow. The thread batching and scheduling
solutions above present problems for the control flow
instruction, FLW. The first problem of finding time to
schedule the execution of such instructions is easily solved.

Table 2: The schedule of operand reads from the central register file
for batches of four threads (T0–T3, T4–T7, etc.) decoding both ALU
and TEX instructions. TEX instructions require only one source
operand, hence we can read source operands for four threads in a
single cycle.

Clock
cycle

Inst phase Register file read ALU ready TEX ready

0 ALU0 ALU:A(T0,T1,T2,T3) — —

1 ALU1 ALU:B(T0,T1,T2,T3) — —

2 ALU2 ALU:C(T0,T1,T2,T3) — —

3 TEX TEX:A(T0,T1,T2,T3) T0 —

4 ALU0 ALU:A(T4,T5,T6,T7) T1 T0

5 ALU1 ALU:B(T4,T5,T6,T7) T2 T1

6 ALU2 ALU:C(T4,T5,T6,T7) T3 T2

7 TEX TEX:A(T4,T5,T6,T7) T4 T3

8 ALU0 ALU:A(T8,T9,T10,T11) T5 T4

9 ALU1 ALU:B(T8,T9,T10,T11) T6 T5

10 ALU2 ALU:C(T8,T9,T10,T11) T7 T6

11 · · · · · · · · · · · ·

Column 2 in Table 2 shows two cycles each period where the
ALU is fetching operands B and C. As the batch scheduler
and instruction issue logic is idle during this time, the
hardware can be used to schedule an FLW instruction. Since
FLW requires neither a read or write to the register file, no
structural hazards arise.

The second problem is how to resolve diverging control
flow. Diverging control flow is when threads within a batch
decide to take alternate branch paths. It turns out, the
r5xx ISA has encoded support within the FLW instruction
to resolve this specific problem. This is because GPUs use
the same technique to resolve diverging control path when
executing multiple threads using SIMD hardware. The way
these instructions are handled is through the hardware
management of thread states which are not visible to the
programmer. These thread states are manipulated by the
control flow instructions, depending on the previous thread
states (the state before an FLWinstruction is executed),
the evaluation of the branch condition, and a resolution
function when threads disagree. Much of this hardware
level management is considered on a case-by-case basis. For
example, as threads execute over an else instruction the active
state of each thread is flipped. This requires all threads to
execute serially through all branch paths and mask register
writes when they are inactive. Fung et al. [24] have explored
optimizations of this technique in more detail. For more
details of how the r5xx ISA programs and handles control
flow, see the CTM specification [23].

5. Implementation

This section describes our work to implement our GPU-
inspired accelerator on the XtremeData platform. After an
overview of the XtremeData XD1000 and how we map the
CTM system to it, we describe the low-level implementation
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of the two key components of our accelerator: the central
register file and the batch issue logic.

5.1. The XtremeData XD1000. As illustrated in Figure 6, the
XtremeData XD1000 is an accelerator module that contains
an Altera Stratix II EPS180 FPGA, and that plugs into
a standard CPU socket on a multisocket AMD Opteron
motherboard. IP cores are available for the FPGA which
allow access to system memory via Hypertransport (HT) that
provides a single physical link per direction, each of which
is a 16-bit-wide 400 MHz DDR interface and can transfer
1.6 GB/sec. The host CPU treats the XD1000 as an endpoint
that is configured by a software driver to respond to a
memory-mapped address range using the HT slave interface,
similar to other regular peripherals. The FPGA application
can also initiate DMA read and write transactions to system
memory by constructing and sending HT request packets,
providing efficient access to memory without involving the
CPU. In our work we extend the XtremeData system to
conform to the CTM interface by (i) adding a driver layer
on top of the XD1000 driver, and (ii) by memory-mapping
our accelerator’s hardware configuration state registers and
instruction memory to the HT slave interface. Instruction
memory resides completely on-chip and stores up to 512
instructions—the limit currently defined by CTM. Each
instruction is defined by the ABI to be 192 bits, hence
the instruction store requires three M4K RAM blocks. The
RAM blocks have two ports: one is configured as a write
port that is connected directly to the configuration block
so that the CTM driver can write instructions into it; the
other is configured as a read port to allow the accelerator to
fetch instructions. The CTM driver initializes the accelerator
with the addresses of the start and end instruction of the
shader program and initiates execution by writing to a
predetermined address.

5.2. Central Register File. While our transposed design allows
us to architect a high-performance register file using only two
ports, the implementation has the additional challenges of (i)
supporting the vast capacity required, and (ii) performing
the actual transposition. Each batch is composed of four
threads that each require up to 128 registers, where each
register is actually a vector of four 32-bit elements. We
therefore require the central register file to support 8 KB
of on-chip memory per batch. For example, as illustrated
in Figure 7, 32 batches would require 256 KB of on-chip
memory, which means that we must use four of the 64 KB
M-RAM blocks available in the Stratix II chip in the XD1000
module. Figure 8 shows the circuit we use to transpose the
operands read across threads in a batch for ALU instructions
so that the three operands for a single instruction are
available in the same cycle: a series of registers buffer the
operands until they can be properly transposed.

5.3. Batch Issue Logic. As described previously in Section 4.3,
to ensure that the ALU datapath is fully utilized our soft
processor schedules instructions to issue across batches. For
a given cycle, we ideally want to find either an ALU or TEX
instruction to issue. Figure 9 shows the circuit that performs
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Figure 6: An XtremeData system with a XD1000 module.
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Figure 7: Mapping our register file architecture to four Stratix II’s
64 KB M-RAM blocks. The read circuitry shows an example where
we are reading operands across threads in a batch for a vector/scalar
ALU instruction pair (VLIW): 	
 as an operand for the vector
instruction and 	� as an operand for the scalar instruction. While
not shown, register writes are implemented similarly.

this batch scheduling, for an example where we want to
find an ALU instruction to issue. We can trivially compare
the desired next instruction type (ALU in this case) with
the actual next instruction type for each batch as recorded
in the batch state register, since this information about the
next instruction is encoded in each machine instruction (as
defined by the CTM ABI). As shown in the figure, we take
the set of boolean signals that indicate which batches have
the desired next instruction ready to issue and rotate them,
then feed the rotated result into a priority encoder that gives
the batch number to issue. The rotation is performed such
that the previously selected batch is in the lowest-priority
position. In the example, we rotate such that the signal for
batch 2 is in the lowest-priority right most position, and
the priority encoder hence chooses batch 0 as the first batch
with a ready ALU instruction. For a GPU-like programming
model where all threads are executing the same sequence of
instructions, this is sufficient to ensure fairness and forward
progress. The batch issue logic can be pipelined with a
total budget of four cycles for the circuit, hence during a
second cycle the the batch number is used to index the
context memory to read the program counter value for that
batch, and during a third cycle the program counter value
is used to index the instruction memory for the appropriate
instruction.
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6. Measurement Methodology

In this section we describe the system simulation and bench-
mark applications that we use to measure the performance of
our GPU-inspired soft processor implementation.

6.1. System Simulation. We have developed a complete
simulation framework in +������ to measure the ALU
utilization and overall performance of workloads on our
GPU-like soft processor. Note that we verify the functional
accuracy of our simulation by comparing with the outputs of
the CTM programs running on the ATI RV570 GPU (on an
ATI Radeon x1950 Pro graphics card).

Clock Frequency. Since we do not have a full RTL imple-
mentation of our soft processor, we instead assume a system
clock frequency of 100 MHz. We choose this frequency to
match the 100 MHz HT IP core, which in turn is designed to
match a 4x division of the physical link clock frequency (i.e.,
400 MHz). We feel that this clock frequency is achievable
since (i) other soft processor designs easily do so for Stratix II
FPGAs such as the NIOS II/f which executes up to 220 MHz,
and (ii) the GPU programming model and abundance of

threads allows us to heavily pipeline all components in our
design to avoid any long-latency stages.

HyperTransport. Our simulation infrastructure faithfully
models the bandwidth and latency of the HT links between
the host CPU and the FPGA on the XD1000 platform. We
limit the number of outstanding read requests supported by
the HT master block to 32, as defined by the HT specification;
additional requests are queued. We compute the latency of
an HT read request as a sum of the individual latencies
of the subcomponents involved. We assume that our soft
processor is running at 100 MHz as described above, and
that the memory specification is the standard DDR-333
(166 MHz Bus) SDRAM that comes with the XD1000 system.
We assume a constant SDRAM access latency of 51 ns, while
a constant latency is of course unrealistic; since it contributes
only 17% of total latency, we are confident that modeling
the small fluctuations of this latency would not significantly
impact our results. The latencies of the HT IP core (both
input and output paths) were obtained from Slogsnat et al.
[25], and the latencies for the the host HT controller, DDR
controller, and DDR access were obtained from Holden [26].
Our HyperTransport model is somewhat idealized since we
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Figure 9: Batch issue logic for hardware managing 4 batch contexts.

Table 3: A breakdown of how each stage of an HT memory request
contributes to overall access latency.

Action Stage Latency (ns)

Request
(1) FPGA HT IP core 70

(2) host HT controller 32

SDRAM (1) access and data fetch 51

(1) host builds response packet 12

Response (2) host HT controller 30

(3) FPGA HT IP core 110

Total Latency 305

do not account for possible HT errors nor contention by the
host CPU for memory (Table 3).

Cycle-Accurate Simulation. Our simulator is cycle accurate at
the block interfaces shown in Figure 4. For each block we
estimate a latency based on the operations and data types
present in a behavioral � code implementation. We assume
that the batch issue logic shown previously in Figure 9 is fully
pipelined, allowing us to potentially sustain the instruction
issue schedule shown previously in Table 1.

6.2. Benchmarks. Since our system is compatible with the
interface specified by CTM we can execute existing CTM
applications, including �� applications, by simply relinking
the CTM driver to our simulation infrastructure. We evaluate
our system using the following three applications that have
a variety of instruction mixes and behaviors. Note that in
our work so far we have not observed any applications with
the potentially problematic instruction mix of more TEX
instructions than ALU instructions.

Matmatmult. Matmatmult is included with the CTM SDK
as CTM assembly code and performs dense matrix-matrix
multiplication based on the work of Fatahalian et al. [27].

We selected this application because of its heavy use of TEX
instructions to access row and column vectors of an input
matrix: the ratio of ALU to TEX instructions for Matmatmult
is 2.25.

Sgemm. Sgemm computes Cnew = α(A · B) + βCold and
represents a core routine of the BLAS math library, and was
also included with the CTM SDK as CTM assembly code.
Sgemm also makes heavy use of TEX instructions to access
two input matrices. The ratio of ALU to TEX instructions for
Sgemm is 2.56.

Photon. Photon is a kernel from a Monte Carlo radiative
heat transfer simulation, included with the open-source
Trident [3] FPGA compiler. We ported this application by
hand to �� such that each instance of the resulting shader
program performs the computation for a single particle,
and input buffers store previous particle positions and
other physical quantities. We selected this benchmark to be
representative of applications with higher ratios of ALU to
TEX instructions: for Photon it is exactly 4.00.

7. Utilization and Performance

Our foremost goal is to fully utilize the ALU datapath. In
this section we measure the ALU datapath utilization for
several configurations of our architecture and also measure
the impact on performance of increasing the number of
hardware batch contexts. Recall that an increasing number
of batches provide a greater opportunity for fully utilizing
the pipeline and avoiding bubbles by scheduling instructions
to issue across a larger number of threads.

Figure 10 shows ALU utilization assuming the 8-bit HT
interface provided with the XD1000 system, for a varying
number of hardware batch contexts—from one to 64 batches.
Since each batch contains four threads, this means that we
support from four to 256 threads. We limit the number of
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Figure 10: ALU datapath utilization for the 8-bit HT interface
provided with the XD1000 system.

batch contexts to 64 because this design includes a central
register file that consumes 512 KB of on-chip memory, and
thus eight of the nine M-RAMs available in a Stratix II FPGA
(64 KB each). In the figure we plot ALU utilization (utilized)
as the fraction of all clock cycles when an ALU instruction
was issued. We also break down the ALU idle cycles
into the reasons why no ALU instruction from any batch
could be issued (i.e., averaged across all batches contexts).

In particular, we may be unable to issue an ALU instruction
for a given batch for one of the following three reasons.

Semwait. The next instruction is an ALU instruction, but it
is waiting for a memory semaphore because it depends on an
already in-flight TEX instruction (memory load).

Inside ALU. The next instruction is a ready-to-issue ALU
instruction, but there is already a previous ALU instruction
executing for that batch: since there is no hazard detection
logic, a batch must conservatively wait until any previous
ALU instruction from that batch completes before issuing a
new one, to ensure that any register dependences are satisfied.

NotALU. The next instruction is not an ALU instruction.
From the figure we observe that when only one hardware

batch context is supported the ALU datapath is severely
underutilized (less than 10% utilization), and the majority
of the idle cycles are due to prior ALU instructions in the
ALU pipeline (inside ALU). Utilization steadily improves for
all three benchmarks as we increase the number of hardware
batch contexts up to 16 batches, at which point Matmatmult
and Sgemm achieve utilization of 70% and 75%, respectively.
However, neither Matmatmult nor Sgemm benefit from
increasing further to 32 batches: in both cases waiting for
memory is the bottleneck (Semwait), indicating that both
applications have consumed available memory bandwidth.
Similarly, increasing even further to 64 batches yields no
improvement, with the memory bottleneck becoming more
pronounced. In contrast, for Photon the increase from 16
to 32 batches results in near perfect utilization of the ALU
datapath; correspondingly, the increase from 32 to 64 batches
cannot provide further benefit. Intuitively, Photon is able to
better utilize the ALU datapath because it has a larger ratio of
ALU to TEX instructions (four to one).

While the HT IP core provided for the XD1000 is limited
to an 8-bit HT interface, the actual physical link connecting
the FPGA and CPU is 16 bits. Since memory appears to
be a bottleneck limiting ALU utilization, we investigate the
impact of a 16-bit HT link such as the one described in [25]
as shown in Figure 11. For this improved system we observe
that the memory bottleneck is sufficiently reduced to allow
full utilization of the ALU datapath for all three benchmarks
when 32 hardware batch contexts are supported. In turn,
this implies that support for 64 or more hardware batch
contexts remains unnecessary. The fact that 32 batches seems
sufficient makes intuitive sense since 32 batches comprises
128 threads, while the ALU datapath pipeline is 64 cycles
deep and thus requires only that many ALU instructions to be
fully utilized—more deeply pipelined ALU functional units
would likely continue to benefit from increased contexts.

While maximizing ALU datapath utilization as our
overall goal, it is also important to understand the impact
of increasing the number of hardware batch contexts on
performance. Figure 12. shows speedup relative to a single
hardware batch context for both 8-bit and 16-bit HT inter-
faces. Interestingly, speedup is perfectly linear for between
two and eight contexts for all benchmarks and both HT
designs, but for 16 and more contexts speedup is sublinear.



International Journal of Reconfigurable Computing 13

1 2 4 8 16 32 64

A
LU

u
ti

liz
at

io
n

(%
)

Number of hardware batch contexts

0

20

40

80

100

60

(a) Photon

1 2 4 8 16 32 64

A
LU

u
ti

liz
at

io
n

(%
)

Number of hardware batch contexts

0

20

40

80

100

60

(b) Matmatmult

1 2 4 8 16 32 64

A
LU

u
ti

liz
at

io
n

(%
)

Number of hardware batch contexts

0

20

40

80

100

60

inside alu

UtilizedSemwait

Notalu

(c) Sgemm

Figure 11: ALU datapath utilization for a 16-bit HT interface.

For the 8-bit HT interface performance does not improve
beyond 16 contexts, while for the 16-bit HT interface 32
contexts provide an improvement but 64 contexts do not.
Looking at the 16-bit HT interface for 32 contexts, we see that
each benchmark speedup is inversely related to the ratio of
ALU to TEX instructions: applications with a smaller fraction
of TEX instructions benefit less from the latency-tolerance
provided by a larger number of contexts. Photon benefits the
least and has a ratio of 4.00, followed by Sgemm that has a
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Figure 12: Speedup versus a single hardware batch context for (a)
8-bit and (b) 16-bit HT interfaces.

ratio of 2.56; Matmatmult benefits the most and has a ratio
of 2.25.

7.1. Reducing the Register File. While we have demonstrated
that 32 hardware batch contexts is sufficient to achieve near
perfect ALU datapath utilization, as shown in Section 5.2
this is quite costly, requiring four M-RAMs on the Altera
Stratix II. While this may not be an issue if a single
accelerator is the only design on the chip, if there are
other components or multiple accelerators then storing all
of the batch states would be a problem. However, most of
the 128 general-purpose vector registers per thread defined
by CTM will not be used for many applications. In our
architecture it is straightforward to reduce the number
of registers supported by a power of two to reduce the
total memory requirements for the central register file. For
example, Photon, Matmatmult, and Sgemm each use only
4, 15, and 21 general-purpose registers, hence the proposed
customization would reduce the size of the central register
file by 32x, 8x, and 4x, respectively; for Photon this would
instead allow us to build the central register file using only 16
of the much smaller M4 K memories.
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7.2. Summary. These results indicate that even for a deeply
pipelined ALU of 53 clock cycles we are able to fully utilize
this datapath by interleaving the execution of instructions
from different batches. This is made possible by the abun-
dance of independent threads provided by the data-parallel
GPU programming model.

8. Conclusions

We have presented a GPU-inspired soft processor that
allows FPGA-based acceleration systems to be programmed
using high-level languages. Similar to a GPU, our design
exploits multithreading, vector operations, and predication
to enable the full utilization of a deeply pipelined datapath.
The GPU programming model provides an abundance of
threads that all execute the same instructions, allowing us to
group threads into batches and execute the threads within a
batch in lock-step. Batched threads allow us to (i) tolerate
the limited ports available in FPGA block memories by
transposing the operand reads and writes of instructions
within a batch and (ii) to avoid pipeline bubbles by issuing
instructions across batches. Through faithful simulation
of a system that is realizable on an XtremeData XD1000
FPGA-based acceleration platform we demonstrate that
our GPU-inspired architecture is indeed capable of fully
utilizing a 64-stage ALU datapath when 32 batch contexts are
supported in hardware. The long-term goal of this research
is to discover new high-level programming models and
architectures that allow users to fullyexploit the potential of
FPGA-based acceleration platforms; we believe that GPU-
inspired programming models and architectures are a step
in the right direction.
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