68 research outputs found

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Performance of image guided navigation in laparoscopic liver surgery – A systematic review

    Get PDF
    Background: Compared to open surgery, minimally invasive liver resection has improved short term outcomes. It is however technically more challenging. Navigated image guidance systems (IGS) are being developed to overcome these challenges. The aim of this systematic review is to provide an overview of their current capabilities and limitations. Methods: Medline, Embase and Cochrane databases were searched using free text terms and corresponding controlled vocabulary. Titles and abstracts of retrieved articles were screened for inclusion criteria. Due to the heterogeneity of the retrieved data it was not possible to conduct a meta-analysis. Therefore results are presented in tabulated and narrative format. Results: Out of 2015 articles, 17 pre-clinical and 33 clinical papers met inclusion criteria. Data from 24 articles that reported on accuracy indicates that in recent years navigation accuracy has been in the range of 8–15 mm. Due to discrepancies in evaluation methods it is difficult to compare accuracy metrics between different systems. Surgeon feedback suggests that current state of the art IGS may be useful as a supplementary navigation tool, especially in small liver lesions that are difficult to locate. They are however not able to reliably localise all relevant anatomical structures. Only one article investigated IGS impact on clinical outcomes. Conclusions: Further improvements in navigation accuracy are needed to enable reliable visualisation of tumour margins with the precision required for oncological resections. To enhance comparability between different IGS it is crucial to find a consensus on the assessment of navigation accuracy as a minimum reporting standard

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    On uncertainty propagation in image-guided renal navigation: Exploring uncertainty reduction techniques through simulation and in vitro phantom evaluation

    Get PDF
    Image-guided interventions (IGIs) entail the use of imaging to augment or replace direct vision during therapeutic interventions, with the overall goal is to provide effective treatment in a less invasive manner, as an alternative to traditional open surgery, while reducing patient trauma and shortening the recovery time post-procedure. IGIs rely on pre-operative images, surgical tracking and localization systems, and intra-operative images to provide correct views of the surgical scene. Pre-operative images are used to generate patient-specific anatomical models that are then registered to the patient using the surgical tracking system, and often complemented with real-time, intra-operative images. IGI systems are subject to uncertainty from several sources, including surgical instrument tracking / localization uncertainty, model-to-patient registration uncertainty, user-induced navigation uncertainty, as well as the uncertainty associated with the calibration of various surgical instruments and intra-operative imaging devices (i.e., laparoscopic camera) instrumented with surgical tracking sensors. All these uncertainties impact the overall targeting accuracy, which represents the error associated with the navigation of a surgical instrument to a specific target to be treated under image guidance provided by the IGI system. Therefore, understanding the overall uncertainty of an IGI system is paramount to the overall outcome of the intervention, as procedure success entails achieving certain accuracy tolerances specific to individual procedures. This work has focused on studying the navigation uncertainty, along with techniques to reduce uncertainty, for an IGI platform dedicated to image-guided renal interventions. We constructed life-size replica patient-specific kidney models from pre-operative images using 3D printing and tissue emulating materials and conducted experiments to characterize the uncertainty of both optical and electromagnetic surgical tracking systems, the uncertainty associated with the virtual model-to-physical phantom registration, as well as the uncertainty associated with live augmented reality (AR) views of the surgical scene achieved by enhancing the pre-procedural model and tracked surgical instrument views with live video views acquires using a camera tracked in real time. To better understand the effects of the tracked instrument calibration, registration fiducial configuration, and tracked camera calibration on the overall navigation uncertainty, we conducted Monte Carlo simulations that enabled us to identify optimal configurations that were subsequently validated experimentally using patient-specific phantoms in the laboratory. To mitigate the inherent accuracy limitations associated with the pre-procedural model-to-patient registration and their effect on the overall navigation, we also demonstrated the use of tracked video imaging to update the registration, enabling us to restore targeting accuracy to within its acceptable range. Lastly, we conducted several validation experiments using patient-specific kidney emulating phantoms using post-procedure CT imaging as reference ground truth to assess the accuracy of AR-guided navigation in the context of in vitro renal interventions. This work helped find answers to key questions about uncertainty propagation in image-guided renal interventions and led to the development of key techniques and tools to help reduce optimize the overall navigation / targeting uncertainty

    Global rigid registration of CT to video in laparoscopic liver surgery

    Get PDF
    PURPOSE: Image-guidance systems have the potential to aid in laparoscopic interventions by providing sub-surface structure information and tumour localisation. The registration of a preoperative 3D image with the intraoperative laparoscopic video feed is an important component of image guidance, which should be fast, robust and cause minimal disruption to the surgical procedure. Most methods for rigid and non-rigid registration require a good initial alignment. However, in most research systems for abdominal surgery, the user has to manually rotate and translate the models, which is usually difficult to perform quickly and intuitively. METHODS: We propose a fast, global method for the initial rigid alignment between a 3D mesh derived from a preoperative CT of the liver and a surface reconstruction of the intraoperative scene. We formulate the shape matching problem as a quadratic assignment problem which minimises the dissimilarity between feature descriptors while enforcing geometrical consistency between all the feature points. We incorporate a novel constraint based on the liver contours which deals specifically with the challenges introduced by laparoscopic data. RESULTS: We validate our proposed method on synthetic data, on a liver phantom and on retrospective clinical data acquired during a laparoscopic liver resection. We show robustness over reduced partial size and increasing levels of deformation. Our results on the phantom and on the real data show good initial alignment, which can successfully converge to the correct position using fine alignment techniques. Furthermore, since we can pre-process the CT scan before surgery, the proposed method runs faster than current algorithms. CONCLUSION: The proposed shape matching method can provide a fast, global initial registration, which can be further refined by fine alignment methods. This approach will lead to a more usable and intuitive image-guidance system for laparoscopic liver surgery

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    Augmented Reality in Minimally Invasive Surgery

    Get PDF
    In the last 15 years Minimally Invasive Surgery, with techniques such as laparoscopy or endoscopy, has become very important and research in this field is increasing since these techniques provide the surgeons with less invasive means of reaching the patient’s internal anatomy and allow for entire procedures to be performed with only minimal trauma to the patient. The advantages of the use of this surgical method are evident for patients because the possible trauma is reduced, postoperative recovery is generally faster and there is less scarring. Despite the improvement in outcomes, indirect access to the operation area causes restricted vision, difficulty in hand-eye coordination, limited mobility handling instruments, two-dimensional imagery with a lack of detailed information and a limited visual field during the whole operation. The use of the emerging Augmented Reality technology shows the way forward by bringing the advantages of direct visualization (which you have in open surgery) back to minimally invasive surgery and increasing the physician's view of his surroundings with information gathered from patient medical images. Augmented Reality can avoid some drawbacks of Minimally Invasive Surgery and can provide opportunities for new medical treatments. After two decades of research into medical Augmented Reality, this technology is now advanced enough to meet the basic requirements for a large number of medical applications and it is feasible that medical AR applications will be accepted by physicians in order to evaluate their use and integration into the clinical workflow. Before seeing the systematic use of these technologies as support for minimally invasive surgery some improvements are still necessary in order to fully satisfy the requirements of operating physicians

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan

    Technologies for Biomechanically-Informed Image Guidance of Laparoscopic Liver Surgery

    Get PDF
    Laparoscopic surgery for liver resection has a number medical advantages over open surgery, but also comes with inherent technical challenges. The surgeon only has a very limited field of view through the imaging modalities routinely employed intra-operatively, laparoscopic video and ultrasound, and the pneumoperitoneum required to create the operating space and gaining access to the organ can significantly deform and displace the liver from its pre-operative configuration. This can make relating what is visible intra-operatively to the pre-operative plan and inferring the location of sub-surface anatomy a very challenging task. Image guidance systems can help overcome these challenges by updating the pre-operative plan to the situation in theatre and visualising it in relation to the position of surgical instruments. In this thesis, I present a series of contributions to a biomechanically-informed image-guidance system made during my PhD. The most recent one is work on a pipeline for the estimation of the post-insufflation configuration of the liver by means of an algorithm that uses a database of segmented training images of patient abdomens where the post-insufflation configuration of the liver is known. The pipeline comprises an algorithm for inter and intra-subject registration of liver meshes by means of non-rigid spectral point-correspondence finding. My other contributions are more fundamental and less application specific, and are all contained and made available to the public in the NiftySim open-source finite element modelling package. Two of my contributions to NiftySim are of particular interest with regards to image guidance of laparoscopic liver surgery: 1) a novel general purpose contact modelling algorithm that can be used to simulate contact interactions between, e.g., the liver and surrounding anatomy; 2) membrane and shell elements that can be used to, e.g., simulate the Glisson capsule that has been shown to significantly influence the organ’s measured stiffness

    Augmented Reality in Surgical Navigation: A Review of Evaluation and Validation Metrics

    Get PDF
    Pre-operative imaging has been used earlier to guide traditional surgical navigation systems. There has been a lot of effort in the last decade to integrate augmented reality into the operating room to help surgeons intra-operatively. An augmented reality (AR) based navigation system provides a clear three-dimensional picture of the interested areas over the patient to aid surgical navigation and operations, which is a promising approach. The goal of this study is to review the application of AR technology in various fields of surgery and how the technology is used for its performance in each field. Assessment of the available AR assisted navigation systems being used for surgery is reviewed in this paper. Furthermore, a discussion about the required evaluation and validation metric for these systems is also presented. The paper comprehensively reviews the literature since the year 2008 for providing relevant information on applying the AR technology for training, planning and surgical navigation. It also describes the limitations which need to be addressed before one can completely rely on this technology for surgery. Thus, additional research is desirable in this emerging field, particularly to evaluate and validate the use of AR technology for surgical navigation. 2023 by the authors.This publication was made possible by NPRP-11S-1219-170106 from the Qatar National Research Fund (a member of Qatar Foundation).Scopu
    • …
    corecore