93 research outputs found

    Information-rich surface metrology

    Get PDF
    Information-rich metrology refers to the incorporation of any type of available information in the data acquisition and processing pipeline of a measurement process, in order to improve the efficiency and quality of the measurement. In this work, the information-rich metrology paradigm is explored as it is applied to the measurement and characterisation of surface topography. The advantages and challenges of introducing heterogeneous information sources in the surface characterisation pipeline are illustrated. Examples are provided about the incorporation of structured knowledge about a part nominal geometry, the manufacturing processes with their signature topographic features and set-up parameters, and the measurement instruments with their performance characteristics and behaviour in relation to the specific properties of the surfaces being measured. A wide array of surface metrology applications, ranging from product inspection, to surface classification, to defect identification and to the investigation of advanced manufacturing processes, is used to illustrate the information-rich paradigm

    Development of advanced geometric models and acceleration techniques for Monte Carlo simulation in Medical Physics

    Get PDF
    Els programes de simulació Monte Carlo de caràcter general s'utilitzen actualment en una gran varietat d'aplicacions.Tot i això, els models geomètrics implementats en la majoria de programes imposen certes limitacions a la forma dels objectes que es poden definir. Aquests models no són adequats per descriure les superfícies arbitràries que es troben en estructures anatòmiques o en certs aparells mèdics i, conseqüentment, algunes aplicacions que requereixen l'ús de models geomètrics molt detallats no poden ser acuradament estudiades amb aquests programes.L'objectiu d'aquesta tesi doctoral és el desenvolupament de models geomètrics i computacionals que facilitin la descripció dels objectes complexes que es troben en aplicacions de física mèdica. Concretament, dos nous programes de simulació Monte Carlo basats en PENELOPE han sigut desenvolupats. El primer programa, penEasy, utilitza un algoritme de caràcter general estructurat i inclou diversos models de fonts de radiació i detectors que permeten simular fàcilment un gran nombre d'aplicacions. Les noves rutines geomètriques utilitzades per aquest programa, penVox, extenen el model geomètric estàndard de PENELOPE, basat en superfícices quàdriques, per permetre la utilització d'objectes voxelitzats. Aquests objectes poden ser creats utilitzant la informació anatòmica obtinguda amb una tomografia computeritzada i, per tant, aquest model geomètric és útil per simular aplicacions que requereixen l'ús de l'anatomia de pacients reals (per exemple, la planificació radioterapèutica). El segon programa, penMesh, utilitza malles de triangles per definir la forma dels objectes simulats. Aquesta tècnica, que s'utilitza freqüentment en el camp del disseny per ordinador, permet representar superfícies arbitràries i és útil per simulacions que requereixen un gran detall en la descripció de la geometria, com per exemple l'obtenció d'imatges de raig x del cos humà.Per reduir els inconvenients causats pels llargs temps d'execució, els algoritmes implementats en els nous programes s'han accelerat utilitzant tècniques sofisticades, com per exemple una estructura octree. També s'ha desenvolupat un paquet de programari per a la paral·lelització de simulacions Monte Carlo, anomentat clonEasy, que redueix el temps real de càlcul de forma proporcional al nombre de processadors que s'utilitzen.Els programes de simulació que es presenten en aquesta tesi són gratuïts i de codi lliures. Aquests programes s'han provat en aplicacions realistes de física mèdica i s'han comparat amb altres programes i amb mesures experimentals.Per tant, actualment ja estan llestos per la seva distribució pública i per la seva aplicació a problemes reals.Monte Carlo simulation of radiation transport is currently applied in a large variety of areas. However, the geometric models implemented in most general-purpose codes impose limitations on the shape of the objects that can be defined. These models are not well suited to represent the free-form (i.e., arbitrary) shapes found in anatomic structures or complex medical devices. As a result, some clinical applications that require the use of highly detailed phantoms can not be properly addressed.This thesis is devoted to the development of advanced geometric models and accelration techniques that facilitate the use of state-of-the-art Monte Carlo simulation in medical physics applications involving detailed anatomical phantoms. To this end, two new codes, based on the PENELOPE package, have been developed. The first code, penEasy, implements a modular, general-purpose main program and provides various source models and tallies that can be readily used to simulate a wide spectrum of problems. Its associated geometry routines, penVox, extend the standard PENELOPE geometry, based on quadric surfaces, to allow the definition of voxelised phantoms. This kind of phantoms can be generated using the information provided by a computed tomography and, therefore, penVox is convenient for simulating problems that require the use of the anatomy of real patients (e.g., radiotherapy treatment planning). The second code, penMesh, utilises closed triangle meshes to define the boundary of each simulated object. This approach, which is frequently used in computer graphics and computer-aided design, makes it possible to represent arbitrary surfaces and it is suitable for simulations requiring a high anatomical detail (e.g., medical imaging).A set of software tools for the parallelisation of Monte Carlo simulations, clonEasy, has also been developed. These tools can reduce the simulation time by a factor that is roughly proportional to the number of processors available and, therefore, facilitate the study of complex settings that may require unaffordable execution times in a sequential simulation.The computer codes presented in this thesis have been tested in realistic medical physics applications and compared with other Monte Carlo codes and experimental data. Therefore, these codes are ready to be publicly distributed as free and open software and applied to real-life problems.Postprint (published version

    Comportamento mecΓ’nico de espumas de ligas de alumΓ­nio modeladas com recurso a micro-tomografia computorizada de raios-X

    Get PDF
    In recent years, there has been an increase in interest in cellular materials for structural applications, especially cellular metals (e.g., metal foams made of aluminium and its alloys). These closed-cell and open-cell foams usually have complex cellular structures resulting from the foaming process and their mechanical properties are governed by their cellular structures and by the properties of the base material. However, their mechanical characterization is difficult and most of the times can result in the destruction of the foam specimen. In this study, X-ray microcomputed tomography (Β΅CT) was used together with finite element modelling to develop numerical models to estimate the elastic moduli and evaluate the effects of processing of the information obtained with the Β΅CT scans in the final results. Such a technique complements experimental testing and brings great versatility. In order to accomplish this task, different thresholding techniques (segmentation) were applied to the 2D slices, which are the result of Β΅CT scans, with special focus on a manual global technique with the mass as a quality indicator. Then, some reconstruction algorithms (e.g. Marching Cubes 33) were used to create 3D tessellated models in the STL format, which were oversampled (excessive number of faces) and with errors. Therefore, a simplification/clean-up procedure was applied to solve those issues, being analysed in terms of mass maintenance, shape maintenance with the Hausdorff algorithm and face quality, i.e., face aspect ratio. Two different procedures were evaluated, with and without small structural imperfections, so that the impact of the procedures could be analysed as well as the effect of the presence of small defects. The results obtained were evaluated and compared to several analytical and theoretical models, models based on representative unit-cells and experimental results in terms of the relation between the relative density and the relative Young’s modulus. Results demonstrated that the developed procedures were very good at minimizing changes in mass and shape of the geometries while providing good face quality, i.e., face aspect ratio. The models were also shown to be able to predict the properties of metallic foams in accordance with the findings of other researchers. In addition, the process of obtaining the models and the presence of small structural imperfections were shown to have a great impact on the final results.Nos ΓΊltimos anos, tem-se verificado um aumento do interesse na Γ‘rea dos materiais celulares, mais especificamente metais celulares, para aplicaçáes estruturais (por exemplo, espumas metΓ‘licas de alumΓ­nios e as suas ligas). Estas espumas de cΓ©lula aberta e fechada tΓͺm, normalmente, uma estrutura celular complexa resultante do processo de espumação e as suas propriedades mecΓ’nicas dependem das suas estruturas celulares e das propriedades do material base. No entanto, a caracterização mecΓ’nicas destes materiais Γ© difΓ­cil e resulta, regularmente, na destruição dos specimens de espuma. Neste estudo, Micro-Tomografia Computorizada de Raios-X (Β΅CT) foi aplicada juntamente com modelação por elementos finitos para desenvolver modelos numΓ©ricos que conseguem estimar os mΓ³dulos de elasticidade e avaliar os efeitos do processamento da informação obtida pelos scans de Β΅CT nos resultados finais. Esta tΓ©cnica complementa os procedimentos experimentais e traz uma grande versatilidade. Para se completar a tarefa proposta, diferentes mΓ©todos de segmentação foram aplicados Γ s fatias 2D, que sΓ£o resultantes dos scans de Β΅CT, com especial atenção num mΓ©todo de segmentação manual global que utiliza a massa como indicador de qualidade. Depois disso, alguns algoritmos de reconstrução, por exemplo, Marching Cubes 33, foram aplicados para criar modelos 3D de faces triangulares no formato STL que demonstram sobreamostragem (excessiva quantidade de faces) e alguns erros. Por essa razΓ£o, um procedimento de simplificação/limpeza foi aplicado para resolver estes problemas, sendo analisados em termos de preservação de massa, preservação de forma com o algoritmo de Hausdorff e qualidade das faces, ou seja, razΓ£o de proporção. Dois procedimentos diferentes foram avaliados, um com e outro sem pequenos defeitos estruturais para que se consiga analisar nΓ£o sΓ³ o impacto do processamento dos modelos assim como o efeito da presenΓ§a de pequenos defeitos. Os resultados obtidos foram comparados com vΓ‘rios modelos analΓ­ticos e teΓ³ricos, modelos baseados em cΓ©lulas unitΓ‘rias representativas e resultados experimentais com base na relação entre a densidade relativa e o modulo de Young relativo. Os resultados demonstraram que os procedimentos desenvolvidos sΓ£o bons a preservar a massa e forma das geometrias deixando as faces com boa qualidade. Verificou-se tambΓ©m que os modelos foram capazes de prever as propriedades das espumas metΓ‘licas em concordΓ’ncia com o trabalho de outros investigadores. Adicionalmente, mostrou-se que o processo de obtenção dos modelos e a presenΓ§a de pequenas imperfeiΓ§oes estruturais tem um impacto relevante nos resultados finais.Mestrado em Engenharia MecΓ’nic

    Robust signatures for 3D face registration and recognition

    Get PDF
    PhDBiometric authentication through face recognition has been an active area of research for the last few decades, motivated by its application-driven demand. The popularity of face recognition, compared to other biometric methods, is largely due to its minimum requirement of subject co-operation, relative ease of data capture and similarity to the natural way humans distinguish each other. 3D face recognition has recently received particular interest since three-dimensional face scans eliminate or reduce important limitations of 2D face images, such as illumination changes and pose variations. In fact, three-dimensional face scans are usually captured by scanners through the use of a constant structured-light source, making them invariant to environmental changes in illumination. Moreover, a single 3D scan also captures the entire face structure and allows for accurate pose normalisation. However, one of the biggest challenges that still remain in three-dimensional face scans is the sensitivity to large local deformations due to, for example, facial expressions. Due to the nature of the data, deformations bring about large changes in the 3D geometry of the scan. In addition to this, 3D scans are also characterised by noise and artefacts such as spikes and holes, which are uncommon with 2D images and requires a pre-processing stage that is speci c to the scanner used to capture the data. The aim of this thesis is to devise a face signature that is compact in size and overcomes the above mentioned limitations. We investigate the use of facial regions and landmarks towards a robust and compact face signature, and we study, implement and validate a region-based and a landmark-based face signature. Combinations of regions and landmarks are evaluated for their robustness to pose and expressions, while the matching scheme is evaluated for its robustness to noise and data artefacts

    Automated calibration of multi-sensor optical shape measurement system

    Get PDF
    A multi-sensor optical shape measurement system (SMS) based on the fringe projection method and temporal phase unwrapping has recently been commercialised as a result of its easy implementation, computer control using a spatial light modulator, and fast full-field measurement. The main advantage of a multi-sensor SMS is the ability to make measurements for 360Β° coverage without the requirement for mounting the measured component on translation and/or rotation stages. However, for greater acceptance in industry, issues relating to a user-friendly calibration of the multi-sensor SMS in an industrial environment for presentation of the measured data in a single coordinate system need to be addressed. The calibration of multi-sensor SMSs typically requires a calibration artefact, which consequently leads to significant user input for the processing of calibration data, in order to obtain the respective sensor's optimal imaging geometry parameters. The imaging geometry parameters provide a mapping from the acquired shape data to real world Cartesian coordinates. However, the process of obtaining optimal sensor imaging geometry parameters (which involves a nonlinear numerical optimization process known as bundle adjustment), requires labelling regions within each point cloud as belonging to known features of the calibration artefact. This thesis describes an automated calibration procedure which ensures that calibration data is processed through automated feature detection of the calibration artefact, artefact pose estimation, automated control point selection, and finally bundle adjustment itself. [Continues.

    Analysis of defects in additively manufactured lattice structures

    Get PDF
    Additive manufacturing is a popular area of research because it greatly increases design opportunities, allowing for significantly more geometric freedom than in more established manufacturing methods, such as machining, casting and forming. A relatively small set of additive manufacturing processes are consistently used for the manufacturing of lattice structures, and these processes produce characteristic defects and geometric deviations within lattice structures. In this thesis, a modelling approach is presented for the generation of surface models of strut-based lattice structures into which defects and geometric deviations can be added. Conversion of the surface models into tetrahedral meshes for finite element (FE) analysis is also demonstrated. Signed distance functions (SDFs) form the foundation of the model and can be used to create surfaces of ideal lattice structures. The thesis demonstrates how modification of the signed distance function allows for the inputting of geometric deviationsβ€”namely, waviness, radius variation and elliptical cross sections. Surface defects are modelled by defining an additional function that applies displacements to the surface produced by the signed distance function. To understand the limitations of the proposed modelling approach, a sensitivity study is performed wherein the underlying parameters of the approach are modified to observe their impact on three quantities: SDF error, meshing error and mesh quality. X-ray computed tomography (XCT) was used for obtaining original data on geometric deviations and surface defects in lattice structures, more specifically, a BCCZ lattice structure. Cross sectional measurements of the struts was performed, as well analysing the strut surfaces to observe locations of increased surface defects. Comparisons were made between the design’s vertical struts and inclined struts. The XCT results showed the inclined struts to be significantly more prone to geometric deviations; radius variation, waviness and texture bias all showed greater deviations in the inclined struts. The cross sectional data, grouped by strut orientation, was fitted to probability density functions (PDFs) which were used in subsequent stages for generating lattice structures with geometric deviations statistically equivalent to the XCT measurement. The BCCZ lattice structures were also subjected to compression testing for determining the Young’s modulus of the design, which was determined to be 984.1 MPa. The proposed modelling approach was then configured, using the PDFs derived from the XCT data to generate a model of a lattice structure with geometric deviations applied. Upon the application of the geometric deviations, the simulated Young’s modulus reduced from 4148 MPa to 4023 MPa, suggesting that the introduction of geometric deviations does indeed reduce stiffness, however, these results are a significant overestimation of the experimentally determined Young’s modulus. A number of areas could be explored to improve this disparity, in particular, the updating of the material model used in the analysis. In summary, the work in this thesis demonstrates the versatility of SDFs for the modelling of strut based lattice structures. The XCT results showed strong trends between strut overhang angle and the exacerbation of geometric deviations and surface defects. The cross sectional data from the XCT measurement was well described by the PDFs; the simulated data showed very strong agreement to the XCT data. The FE modelling requires further investigation to improve its agreement with experimental data

    Multi-objective Optimisation in Additive Manufacturing

    Get PDF
    Additive Manufacturing (AM) has demonstrated great potential to advance product design and manufacturing, and has showed higher flexibility than conventional manufacturing techniques for the production of small volume, complex and customised components. In an economy focused on the need to develop customised and hi-tech products, there is increasing interest in establishing AM technologies as a more efficient production approach for high value products such as aerospace and biomedical products. Nevertheless, the use of AM processes, for even small to medium volume production faces a number of issues in the current state of the technology. AM production is normally used for making parts with complex geometry which implicates the assessment of numerous processing options or choices; the wrong choice of process parameters can result in poor surface quality, onerous manufacturing time and energy waste, and thus increased production costs and resources. A few commonly used AM processes require the presence of cellular support structures for the production of overhanging parts. Depending on the object complexity their removal can be impossible or very time (and resources) consuming. Currently, there is a lack of tools to advise the AM operator on the optimal choice of process parameters. This prevents the diffusion of AM as an efficient production process for enterprises, and as affordable access to democratic product development for individual users. Research in literature has focused mainly on the optimisation of single criteria for AM production. An integrated predictive modelling and optimisation technique has not yet been well established for identifying an efficient process set up for complicated products which often involve critical building requirements. For instance, there are no robust methods for the optimal design of complex cellular support structures, and most of the software commercially available today does not provide adequate guidance on how to optimally orientate the part into the machine bed, or which particular combination of cellular structures need to be used as support. The choice of wrong support and orientation can degenerate into structure collapse during an AM process such as Selective Laser Melting (SLM), due to the high thermal stress in the junctions between fillets of different cells. Another issue of AM production is the limited parts’ surface quality typically generated by the discrete deposition and fusion of material. This research has focused on the formation of surface morphology of AM parts. Analysis of SLM parts showed that roughness measured was different from that predicted through a classic model based on pure geometrical consideration on the stair step profile. Experiments also revealed the presence of partially bonded particles on the surface; an explanation of this phenomenon has been proposed. Results have been integrated into a novel mathematical model for the prediction of surface roughness of SLM parts. The model formulated correctly describes the observed trend of the experimental data, and thus provides an accurate prediction of surface roughness. This thesis aims to deliver an effective computational methodology for the multi- objective optimisation of the main building conditions that affect process efficiency of AM production. For this purpose, mathematical models have been formulated for the determination of parts’ surface quality, manufacturing time and energy consumption, and for the design of optimal cellular support structures. All the predictive models have been used to evaluate multiple performance and costs objectives; all the objectives are typically contrasting; and all greatly affected by the part’s build orientation. A multi-objective optimisation technique has been developed to visualise and identify optimal trade-offs between all the contrastive objectives for the most efficient AM production. Hence, this thesis has delivered a decision support system to assist the operator in the "process planning" stage, in order to achieve optimal efficiency and sustainability in AM production through maximum material, time and energy savings.EADS Airbus, Great Western Researc

    Fibre-reinforced additive manufacturing: from design guidelines to advanced lattice structures

    Get PDF
    In pursuit of achieving ultimate lightweight designs with additive manufacturing (AM), engineers across industries are increasingly gravitating towards composites and architected cellular solids; more precisely, fibre-reinforced polymers and functionally graded lattices (FGLs). Control over material anisotropy and the cell topology in design for AM (DfAM) offer immense scope for customising a part’s properties and for the efficient use of material. This research expands the knowledge on the design with fibre-reinforced AM (FRAM) and the elastic-plastic performance of FGLs. Novel toolpath strategies, design guidelines and assessment criteria for FRAM were developed. For this purpose, an open-source solution was proposed, successfully overcoming the limitations of commercial printers. The effect of infill patterns on structural performance, economy, and manufacturability was examined. It was demonstrated how print paths informed by stress trajectories and key geometric features can outperform conventional patterns, laying the groundwork for more sophisticated process planning. A compilation of the first comprehensive database on fibre-reinforced FGLs provided insights into the effect of grading on the elastic performance and energy absorption capability, subject to strut-and surface-based lattices, build direction and fibre volume fraction. It was elucidated how grading the unit cell density within a lattice offers the possibility of tailoring the stiffness and achieving higher energy absorption than ungraded lattices. Vice versa, grading the unit cell size of lattices yielded no effect on the performance and is thus exclusively governed by the density. These findings help exploit the lightweight potential of FGLs through better informed DfAM. A new and efficient methodology for predicting the elastic-plastic characteristics of FGLs under large strain deformation, assuming homogenised material properties, was presented. A phenomenological constitutive model that was calibrated based upon interpolated material data of uniform density lattices facilitated a computationally inexpensive simulation approach and thus helps streamline the design workflow with architected lattices.Open Acces
    • …
    corecore