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1 Introduction

1.1 Overview and aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Overview and aim

Monte Carlo simulation of radiation transport is currently applied in a large variety
of areas. This thesis is devoted to the development of advanced geometric models and
acceleration techniques that facilitate the use of Monte Carlo simulation in medical
physics applications involving detailed anatomical phantoms.

The geometric models implemented in most general-purpose codes impose limitations
on the shape of the objects that can be defined. These models are not well suited to
represent the free-form (i.e., arbitrary) shapes found in anatomic structures or complex
medical devices. Therefore, some clinical applications that require the use of highly
detailed phantoms can not be properly addressed. In addition, these simulations may
require extremely long computations and this often makes the study of realistic settings
unaffordable.

These problems can be tackled by having recourse to application-specific conceptual
and geometric approximations. Nevertheless, these simplifications may compromise
the accuracy of the simulations and reduce the applicability of the code. In this thesis
these limitations were overcome by implementing advanced geometric models and com-
putational tools that facilitate the description of complex objects typically encountered
in medical applications. To this end, two new Monte Carlo codes, based on the PENE-
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1.2. Thesis outline

LOPE package (see section 2.3), have been developed. The first code, penEasy, imple-
ments a modular, general-purpose main program and provides various source models
and tallies that can be readily used to simulate a wide spectrum of problems. Its as-
sociated geometry routines, penVox, extend the standard PENELOPE geometry, based
on quadric surfaces, to allow the definition of voxelised phantoms. This kind of phan-
toms can be generated using the information provided by a computed tomography (CT)
and, therefore, penVox is convenient for simulating problems that require the use of the
anatomy of real patients (e.g., radiotherapy treatment planning). The second code, pen-
Mesh, utilises closed triangle meshes to define the boundary of each simulated object.
This approach, which is frequently used in computer graphics and computer-aided de-
sign, makes it possible to represent arbitrary surfaces and it is suitable for simulations
requiring a high anatomical detail (e.g., diagnostic imaging).

To mitigate the inconveniences associated to long execution times, the ray-tracing al-
gorithms implemented in the new codes have been speeded up by using efficient com-
putational techniques, such as an octree spatial data structure. Additionally, a set of
software tools for the parallelisation of Monte Carlo simulations has been developed.
These tools effectively reduce the simulation time by a factor that is roughly propor-
tional to the number of processors available. It has been found that parallel computing
is indispensable to perform complex simulations with detailed anatomical phantoms.

1.2 Thesis outline

This dissertation is organised in five parts. The first part provides an overview of the
contents of the thesis and a brief introduction to the main topics to be addressed: med-
ical applications of ionising radiation and computer simulation of radiation transport.
This part also includes a description of PENELOPE, which is the basis of the codes
developed in this work.

The second part contains the main body of the dissertation, that is, the description of
the implemented geometric models and acceleration techniques. Chapter 3 describes
penEasy and its voxelised geometry package, penVox, which allows the combination of
quadric objects and voxels. Chapter 4 describes penMesh and its triangle mesh ray-
tracing algorithm. Chapter 5 presents a study of the parallelisation of Monte Carlo
simulations and introduces the script package clonEasy, its auxiliary code seedsMLCG,
and a new version of PENELOPE’s pseudo-random number generator (RANECU) with
a much longer period.
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Chapter 1. Introduction

The third part of the thesis provides several examples of the use of the previous tools
in medical physics. These applications have been presented in scientific conferences or
published in peer-reviewed journals during the course of the research reported in this
thesis. Chapter 6 presents some simulations in the fields of radiotherapy and dosimetry
that use objects described with quadric surfaces, voxels, or a combination of quadrics
and voxels. Chapter 7 presents the study of two clinically-realistic diagnostic imaging
cases that take advantage of a detailed anthropomorphic phantom defined with triangle
meshes.

The fourth part of the dissertation summarises the main conclusions that arise from
the investigations performed in this thesis and shows some future, and present, appli-
cations of the developed codes.

Finally, the appendices at the end of the dissertation, the fifth part, provide some aux-
iliary information. Appendix A contains a list of the publications and presentations at
scientific conferences associated to this thesis. Appendix B presents an excerpt of the
documentation of the two C++ classes implemented in penMesh.
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2 Background

2.1 Medical applications of ionising radiation . . . . . . . . . . . . . . . . . . . 7

2.2 Computer simulation of radiation transport . . . . . . . . . . . . . . . . . 8

2.3 The Monte Carlo simulation package PENELOPE . . . . . . . . . . . . . . 12

2.1 Medical applications of ionising radiation

Ionising radiations are routinely used in clinical facilities worldwide to diagnose and
treat several diseases. It is well known that the exposure to radiations may be harmful,
but their use is justified in those clinical situations where they can produce “more good
than harm”. This subjective value judgment has to take into account the available
alternative treatments and social and economic factors (Lindell et al. 1998).

Medical applications of ionising radiation are divided in three main classes: diagnostic
x-ray imaging, nuclear medicine and radiation therapy. Diagnostic x-ray imaging is the
use of x-rays to visualise the patient internal anatomy for clinical purposes. An imaging
modality of particular interest is computed tomography (CT), in which the patient body
is reconstructed in 3D from a set of 2D projection images obtained at different angles
around the patient. Nuclear medicine is a medical speciality characterised by the use of
radioisotopes for treatment or imaging purposes. The most common nuclear medicine
imaging techniques are single photon emission computed tomography (SPECT) and
positron emission tomography (PET). These procedures use pharmaceuticals labelled
with radionuclides to obtain 3D tomographic images that reflect biological processes
that take place at the cellular level. Radiation therapy, finally, is the use of radia-
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2.2. Computer simulation of radiation transport

tion sources for treating diseases, mainly malignant tumours (cancers). There are two
classes of radiation therapies: brachytherapy and teletherapy. The distinguishing char-
acteristic of brachytherapy is that the sources are located close to, or inside, the treat-
ment region. The radiation emitted by brachytherapy sources is typically composed of
low energy photons or electrons (energy below a few hundred keV). Teletherapy, in turn,
uses external radiation beams, such as high energy electron or photon beams produced
by linear particle accelerators (energy between 6 an 20 MeV) or 60Co beams (1.17 and
1.33 MeV photons).

The fast development of medical imaging technologies is significantly affecting the field
of radiation oncology. The simultaneous acquisition of PET and CT scans, for instance,
allows the obtention of images with functional information and high anatomical de-
tail, which facilitates the detection, localisation and evaluation of some kinds of tu-
mours. Another example is the advancement of intensity-modulated radiation therapy
(IMRT). In IMRT, the planning tumour volume is irradiated from multiple directions
using beams of varying intensity and shape, with the purpose of producing sharp dose
gradients between the tumour and the healthy tissue. The use of accurate imaging
modalities in the planning and delivery of IMRT treatments is of great importance to
assure that the whole tumour is actually located inside the irradiated volume. An incor-
rect use of imaging in IMRT is potentially of greater importance than typical uncertain-
ties produced in dose calibration (Li and Hendee 2007). For this reason, a significant
research effort is currently devoted to the development of image-guided radiation ther-
apy, a treatment modality that employs advanced imaging technologies to accurately
define the treatment volume and reduce the delivery uncertainties (Xing et al. 2006).

2.2 Computer simulation of radiation transport

Computer simulations are a valuable tool to describe the transport of ionising radiation.
In particular, they are useful to study a wide range of medical applications because they
are inexpensive, safe and can provide some information that would be very difficult, or
even impossible, to measure experimentally (e.g., perturbation factors in dosimetry,
scatter-fractions, 3D fluence maps, etc.)

The propagation of radiation in matter is described by the Boltzmann transport equa-
tion (see, for example, the review by Zheng-Ming and Brahme 1993). This integro-
differential equation can only be analytically solved in simple (e.g., semi-infinite) ge-
ometries. However, some numerical techniques can successfully reproduce the trans-
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Chapter 2. Background

port process. There is general agreement that the Monte Carlo method (Kalos and
Whitlock 1986) is the most accurate computational approach currently available. Ac-
tually, a detailed Monte Carlo simulation yields the exact solution to the transport
equation for a given interaction model and within the statistical uncertainty inherent
to the method. In contradistinction, other possible techniques, such as finite elements
(Boman et al. 2005; Gifford et al. 2006) or semi-analytical models (Hogstrom et al.
1981; Ahnesjö 1989), provide only approximate solutions.

Some of the state-of-the-art general-purpose Monte Carlo codes that are currently used
in medical physics are PENELOPE (described in section 2.3), EGS4 (Nelson et al. 1985),
EGSnrc (Kawrakow and Rogers 2006), MCNP5 (Booth et al. 2003), MCNPX (Hendricks
et al. 2007), FLUKA (Fasso et al. 2005) and Geant 4 (Agostinelli et al. 2003).

One of the reasons for the success of Monte Carlo algorithms lies in their conceptual
simplicity and in the relative easiness with which they can be coded on a computer.
These algorithms are based on the random sampling of a large number of independent
particle tracks (or histories) and in the subsequent estimation of certain quantities of
interest by averaging the contribution from each history. After a number N of histories
has been completed, the expected value 〈q〉 of the quantity of interest q is estimated as

q =
1
N

N∑
i=1

qi , (2.1)

where qi is the contribution from the i-th history. As a consequence of the stochastic
nature of the algorithm, Monte Carlo results have an associated statistical uncertainty.
For a sufficiently large number of histories, the central limit theorem applies and q

follows a normal distribution with standard deviation σ. This implies that 95.4% of
the estimated values will lie within a ±2σ interval around 〈q〉. The variance, σ2, is
estimated by the expression

σ2 ' 1
N

(∑N
i=1 q2

i

N
− q2

)
. (2.2)

Therefore, σ is inversely proportional to the square root of the number of histories. This
means, for example, that to reduce σ by a factor of two N has to be enlarged fourfold.
For this reason Monte Carlo codes typically require the computation of a huge number
of histories and, thus, long execution times. It is worth noting that, in addition to
the statistical uncertainties, the accuracy of Monte Carlo results is also bound by the
accuracy of the underlying cross sections (Andreo 1991).
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2.2. Computer simulation of radiation transport

In a detailed simulation, each particle track is described as a series of jumps between
points in which the particle interacts with the medium. The distance s between two
successive collisions is sampled according to

s = −λ ln ξ , (2.3)

where ξ is a random number uniformly distributed between 0 and 1 (see section 5.1)
and λ is the mean free path, which is inversely proportional to the total cross sec-
tion. The kind of interaction, energy loss, and angular deflection are sampled using
the probability distribution functions—the normalised differential cross sections—that
characterise the different atomic interaction processes in the material. The trajectory
between two consecutive interaction sites is assumed to be a straight line, an assump-
tion that is valid, in the absence of external electromagnetic fields, for amorphous ma-
terials or when the particle wavelength is much smaller than the interatomic distances.
The track ends when the particle’s energy falls below a user-defined cutoff, called the
absorption energy.

The detailed, i.e. collision-by-collision, simulation scheme described above is commonly
used for photon transport due to their relatively large mean free path (14 cm for 1 MeV
photons in water). For charged particles, however, λ is typically microscopic (0.3 µm
for 1 MeV electrons in water) and the simulation of every individual collision may be
unaffordable. This problem can be solved by having recourse to a condensed simulation
scheme, that is, using a multiple scattering theory to describe the collective effect of the
numerous interactions that take place in a macroscopic step (Berger 1963; Fernández-
Varea et al. 1993; Kawrakow and Bielajew 1998; Salvat 1998). A shortcoming of this
approach is that multiple scattering theories assume that particles move in an homo-
geneous medium and that the travelled distance is much larger than λ (i.e., there is
actually multiple scattering). As a result, condensed simulation may produce artefacts
in the vicinity of material interfaces and whenever it is applied to objects that are com-
parable in size to the mean free path.

Another limitation of condensed simulation is that it may not correctly account for the
effect of “catastrophic” events, that is, individual interactions that significantly mod-
ify the particle energy or direction. This can be overcome by implementing a mixed
simulation model in which condensed simulation is used to reproduce the contribution
of interactions that change the particle energy or direction below certain user-defined
thresholds (the so-called soft interactions) and detailed simulation is used for the re-
maining (hard) interactions (Berger 1963).
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Chapter 2. Background

A convenient figure of merit to assess the performance of an Monte Carlo algorithm is
given by the so-called simulation efficiency ε, defined as

ε =
1

t ∆2
, (2.4)

where t is the execution time and ∆ is a measure of the uncertainty, for instance

∆ =
σ

q
. (2.5)

An intrinsic efficiency can also be defined as

εN =
1

N ∆2
. (2.6)

Note that this quantity depends only on the algorithm, while

ε = εN
N

t
, (2.7)

also depends on the simulation speed (N/t, histories per second), which varies for dif-
ferent computers and compilers.

Apart from the physical interactions with the medium, the simulation codes also have
to handle the geometric aspect of particle transport. The algorithm that is used to
transport particles across the simulated universe (the geometry) is called the ray-tracer.
The ray-tracer determines the intersections between the particle path and the surfaces
of the different objects that have been defined. The ray-tracer model determines how
objects are defined and, thus, which kinds of shapes can be accurately modelled. It is
also one of the most time-consuming parts of the code, employing more than 50% of the
execution time in some applications.

The use of computer programs to create models of physical objects, commonly known
as computer-aided design, is a well-established and rapidly evolving field due to its
applications in industrial design and computer games, for instance. Two different ap-
proaches are generally used in computer-aided design to describe solid objects: con-
structive solid geometry and boundary representation. In constructive solid geometry,
objects are created combining simple primitive objects with Boolean operations. This
approach is employed by most Monte Carlo codes because it is robust and simple to im-
plement. The primitives that are most commonly used are mathematical surfaces (e.g.,
quadrics) or simple objects (e.g., cubes, capped cylinders, etc.). A voxelised geometry is a
particular case of constructive geometry in which the universe is described by the cells
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(called volume elements or voxels) of a uniform 3D grid. In the boundary representation
approach, solid objects are represented by its enclosing surface. The surface is typically
represented using polygonal meshes or more sophisticated surfaces like Bezier patches
or non-uniform rational B-splines (NURBS, Piegl and Tiller 1997). The boundary rep-
resentation model is more flexible than the constructive solid geometry because it is not
limited to combinations of primitive shapes and, therefore, it is able to represent any
arbitrary object. An example of the use of the two geometry models, for the definition of
a NaI detector, is shown in Fig. 2.1. Note that the first method defines volumes, while
the second defines the surface that enclose the volumes. A review of advanced anthro-
pomorphic phantoms for computer simulations can be found in Zaidi and Xu (2007) and
in Xu et al. (2007).

(a) (b)

Figure 2.1: Definition of a NaI detector using two different geometry models: (a) con-
structive solid geometry model based on quadric surfaces; (b) boundary representation
with triangles meshes. Only one half of the detector is represented to show the inner
structure.

12
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2.3 The Monte Carlo simulation package PENELOPE

PENELOPE (Salvat et al. 2006; Sempau et al. 1997; Baró et al. 1995), an acronym
of PENetration and Energy LOss of Positrons and Electrons, is a general-purpose
Monte Carlo simulation package that describes the transport of electrons, photons
and positrons in any material and for the energy range from 50 eV to 1 GeV. PENE-
LOPE, which is coded in FORTRAN 77, is free and open software. It is actively de-
veloped at the Universitat de Barcelona and distributed by the Nuclear Energy Agency
(http://www.nea.fr).

PENELOPE uses detailed simulation for photon transport and a mixed scheme for elec-
trons and positrons. Contrary to most other Monte Carlo codes, mixed simulation is
consistently employed for all interaction mechanisms, that is, elastic, inelastic, and
radiative collisions. The transport algorithm is controlled by a set of user-defined pa-
rameters: the cutoff energies for hard inelastic (WCC) and hard bremsstrahlung (WCR)
events, the maximum allowed step length (dsmax), and C1 and C2, which limit the av-
erage angular deflection and the maximum average energy loss between consecutive
hard elastic events, respectively. If these parameters are all set to zero, PENELOPE
effectively performs a detailed simulation of charged particle transport. An exception
is made for bremsstrahlung events. Due to the fact that the differential cross section
diverges for zero energy-losses, the minimum cuttoff value for radiative events is set
to 10 eV. A strict collision-by-collision simulation can still be performed by entering a
negative WCR value. In this case, the emission of bremsstrahlung photons with energy
less than 10 eV is disregarded and all the remaining events are simulated in a detailed
way.

PENELOPE has been extensively benchmarked with experiments and with other
Monte Carlo codes in the past (Sempau et al. 2003; Ye et al. 2004; Cot et al. 2004;
Vilches et al. 2007; Panettieri et al. 2007; Kryeziu et al. 2007; Fernández-Varea et al.
2007; Panettieri et al. 2007).

The PENELOPE package is the foundation of the computer codes introduced in chap-
ters 3 and 4. It was employed in this thesis due to its wide dynamic energy range and
outstanding physics models, especially for low energy radiation transport. These fea-
tures allow, theoretically, the simulation of any electron or photon beam currently used
in clinical facilities, from kilovoltage x-ray sources for diagnostic imaging to megavolt-
age linear accelerator beams for radiotherapy. Another advantage of PENELOPE com-
pared to other general-purpose codes is the flexibility and simplicity of its simulation
algorithm. In particular, the fact that the physics and geometric operations are clearly
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separated was essential to implement new geometric models without compromising the
accuracy of the physics part.

In order to use PENELOPE’s subroutines in a specific application it is necessary to
prepare a steering main program that defines the initial state of the particles (the ra-
diation source), tallies the relevant quantities of interest, and reports the final results.
To guide users in the development of their custom main program and to facilitate the
simulation of common cases, some sample codes are provided with the standard PENE-
LOPE distribution (for more details see Salvat et al. 2006, chapter 6):

• penslab: Main program to simulate the particle transport in an homogeneous
and infinite material slab. A monoenergetic electron, photon or positron point
source can be defined. The parameters tallied during the simulation include the
angular and energy distribution of the emerging and backscattered particles, and
the depth-distribution of deposited energy and charge.

• pencyl: Code to simulate in a multilayered cylindrical structure. The material,
thicknesses and radii of the different cylindrical objects are defined in the input
file. The code tallies the same parameters of penslab, as well as 2D dose distri-
butions.

• penmain: Generic main program to simulate complex experiments. This general-
purpose code includes a flexible source and several tallies. It uses the quadric
geometry package PENGEOM, which is described below.

Each sample program provides a number of features that can be controlled by the user
through an input file. Therefore, these codes can be readily used in many applications
without any modification of the original source code. Equivalently, a compiled version of
the code can be used in different studies without re-compiling. The input files describe
the simulated universe, the radiation source, the quantities to be tallied, and some
parameters of the Monte Carlo algorithm, such as the amount of particles that have
to be simulated, the maximum execution time, the absorption energies, and the cutoff
values for the mixed transport algorithm for electrons and positrons.

The options available in the sample codes do not cover all the possible applications of
PENELOPE and advanced users may have to create a new main program or extend
an existing one in order to get the maximum value from the simulations. It is also
possible to use alternative steering programs that are not distributed with the standard
distribution and that provide different features. An example of this is penEasy, a main
program for PENELOPE that has been developed over the past five years at the Institut
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de Tècniques Energètiques (Universitat Politècnica de Catalunya, Barcelona, Spain).
PenEasy is a modular general-purpose main program that was created with the aim
of simplifying the use of PENELOPE and, in particular, to extend its use in medical
physics. This code is described in detail in chapter 3.1.

The standard geometry subroutines used in PENELOPE simulations are contained in
the PENGEOM package. This package is distributed with PENELOPE and is used
by the sample main program penmain. PENGEOM implements a constructive solid
geometry model in which objects are defined by the volume enclosed between a set of
quadric surfaces. The PENGEOM geometry is coded in a text file using an intuitive
syntax described in the PENELOPE manual (Salvat et al. 2006, chapter 5). For each
body included in the simulation universe the geometry file contains the following infor-
mation: the equation of the quadric surfaces that limit the object, their side pointers
(i.e., whether the object is in the positive or negative side of the quadric), and a list
of other objects located inside it (if any). Quadrics can be defined either by giving its
implicit equation, or by describing the geometrical transformations that have to be ap-
plied to one of the standard surfaces shown in Fig. 2.2, the so-called “reduced” quadrics.
Figure 2.3 presents an example geometry file describing an object as the intersection of
the volumes limited by a cone (defined in reduced form) and a pair of parallel planes (in
implicit form).

The PENELOPE package provides two software tools, gview2d and gview3d, to visu-
alise the quadric geometry in two and three dimensions, respectively. These programs
employ the PENGEOM routines and, therefore, can be used to test that the objects
have been correctly defined. Figure 2.4 presents two sample visualisations of the sim-
ple object defined in Fig. 2.3.

The quadric geometry model implemented in PENGEOM is simple and robust but it
introduces a limitation on the kind of shapes that can be accurately represented. In
particular, this model is not capable of representing free-form surfaces and, therefore,
it can not accurately describe arbitrary anatomic structures. Idealised models of the
human anatomy based on quadric surfaces have been developed in the past (Snyder
et al. 1969). These models have been widely used in some fields, such as dosimetry and
radiation protection, but they are not appropriate to simulate applications in which the
anatomic detail is an essential factor, for example diagnostic imaging.
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Figure 2.2: Graphical representation of non-planar quadric surfaces in reduced form
(image taken from the PENELOPE manual; Salvat et al. 2006, page 174).
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Figure 2.3: Sample PENGEOM quadric geometry file describing an object as the volume
contained between a cone and a pair of parallel planes.

(a) (b)

Figure 2.4: Visualisation of a simple quadric object (a truncated cone) using the two
viewers distributed with PENELOPE: gview2d (a), and gview3d (b).
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The simulation of radiation transport involves physical and geometrical operations.
The first group includes the computation of distances between interactions and the
sampling of particle states after those interactions. In the second group the basic tasks
are the calculation of interface crossings and particle displacements. As it was ex-
plained in section 2.3, the general-purpose Monte Carlo simulation package PENE-
LOPE handles the geometrical part with the help of PENGEOM, a subroutine package
that defines homogeneous bodies as combinations of volumes limited by quadric sur-
faces. Although this geometric model is general enough for a large number of applica-
tions, it is not well suited in medical physics problems that require the simulation of
realistic anatomical structures. In these cases the geometry is usually represented in
terms of an uniform grid of parallelepipedic volume elements (voxels) with varying ma-
terial composition and mass density. The main advantage of voxelised models is that
the patient’s anatomy can be obtained by segmenting computerised tomography (CT)
scans.

In this chapter, two new Monte Carlo tools are introduced. In the following section we
present penEasy, a versatile main program for PENELOPE. In section 3.2, we describe
a set of geometry subroutines integrated in penEasy, named penVox, which allow the
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simulation of objects formed by combinations of quadric surfaces and voxels, or by vox-
els alone. Two simulations with simple geometries that can be represented with either
voxels or quadrics are presented, with the purpose of validating that the new geometry
routines do not affect the results. Some details on the approximations underlying the
transport of radiation in voxelised geometries are addressed in section 3.2.1.

The penEasy system has already been successfully used in a wide range of applications.
In the field of medical physics it has been applied, for instance, to obtain the response
of MOSFET dosimeters (see section 6.1), to characterise ionisation chambers (Kryeziu
et al. 2007; Panettieri et al. 2008), to compute stopping power ratios (Fernández-Varea
et al. 2007), and to simulate radiotherapy treatments (Panettieri et al. 2007). It has
also been the starting point for the development of two new Monte Carlo codes for
medical imaging applications, namely, MANTIS (Badano and Sempau 2006), which
offers the possibility of transporting optical photons in order to study indirect digital
detectors (see, e.g., Badano et al. 2006); and penMesh—described in chapter 4—which
uses a geometric model based on triangle meshes that has been employed to generate
realistic x-ray images of a detailed human phantom (Badal et al. 2007; Badal et al.
2008). Some example applications of penEasy, with and without penVox, are presented
in more detail in chapter 6, including a benchmark with other general-purpose Monte
Carlo codes and with experimental data (see section 6.3).

3.1 PenEasy

PenEasy is a modular, general-purpose main program for PENELOPE that includes
various source models and tallies. The rationale is to provide a tool suitable for a wide
spectrum of problems so that users do not need to develop a specific code for each new
application, a process that is usually error-prone and time consuming. For those cases
where these models are insufficient and some additional coding or adaptation needs
to be done, its modular structure is designed to reduce the programming effort to a
minimum.

PenEasy is free and open software, and can be readily downloaded from the website
http://www.upc.es/inte/downloads/penEasy.htm. The source code is mostly
written in FORTRAN 77, although it has recourse to some extensions included in For-
tran 95. A version of the main() function in C++ is also available from the same web-
site mentioned above. An auxiliary header file handles the different calling conventions
used by C++ and Fortran within the GNU compiler collection (http://gcc.gnu.org),
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allowing the use of PENELOPE’s subroutines and common blocks from C++ source
code.

The skeleton of the main program is displayed in Fig. 3.1. This structure follows, with
slight modifications, the flow diagram included in the PENELOPE manual (Salvat et al.
2006, page 214). Uppercase names denote routines from the PENELOPE (and PEN-
GEOM) kernel, whereas lowercase subroutines are provided with the penEasy package.
The code is structured in an initialisation phase, followed by three nested loops and the
reporting of results. Each cycle of the loop named “history” performs the simulation
of one primary particle and all its descendants, that is, of an electromagnetic shower.
Each cycle of “particle” simulates a single photon, electron or positron. Each cycle of
“interact” reproduces a single interaction, or the crossing of an interface if the distance
to the intersection is shorter than the distance to the next interaction. Thus the algo-
rithm essentially consists of repeating the sequence of calls to subroutines JUMP, STEP
and KNOCK: JUMP computes the distance to the next interaction event, returned through
the variable ds; STEP determines if an interface is crossed before completing the step
ds and displaces the particle; and KNOCK simulates the effect of the interaction and
returns the energy lost by the particle (variable de). If an interface is crossed (ncross
not zero) the trajectory is truncated at the boundary, no interaction takes place and a
new “interact” cycle begins. The simulation of a particle ends when it leaves the mate-
rial system (mat is zero), or when its kinetic energy (e) falls below some user-defined
absorption energy (eabs), which may depend on the material and particle type.

The generation of initial particle states is performed by the subroutine source, which
defines the position, direction, energy, statistical weight and particle type. A call to
tally (not shown in Fig. 3.1 for brevity) is performed every time there is a change
in the state of the particle to allow the scoring of the quantities of interest. In fact,
the solely task of tally (or source) is to call in succession all the individual tally
(source) routines, which are described in section 3.1.2 (3.1.1). Tallies or sources that are
inactive return the control to the calling procedure without further actions. Detailed
documentation for each source and tally is included in the distribution package.

The communication between the main program and the PENELOPE kernel—in order
to, for example, allow a source to set the initial state—is done via a common block that
holds the dynamical state of the particle being simulated at any time. Some tallies also
take advantage of this method.

The simulation can be stopped by any of the following events: (i) a predetermined num-
ber of histories has been completed; (ii) the allotted (either real or CPU) time has been
exhausted; (iii) a set of predetermined statistical uncertainties (one for each tally) has
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Figure 3.1: Basic structure of the Fortran version of the main program of penEasy.
Calls to tallying and other auxiliary subroutines have been removed for clarity. See
text for further details.

been reached; or (iv) the user sends a “stop” command through an external file that is
read at regular time intervals. After completion, a report is written for each tally. These
reports can also be obtained at regular intervals during the execution of the program,
to visualise its progress.

In order to reduce the computation time required for some ill-conditioned problems, a
variance reduction technique known as interaction forcing can be applied. Our scheme
is based on the approach adopted in the variance reduction subroutines provided with
PENELOPE, which create “virtual” interactions along a particle trajectory with an ef-
fective (reduced) mean free path. To keep the results unbiased, the appropriate statisti-
cal weight is assigned to any secondary particle or energy loss involved in these events.
Weight windows can be defined to control the range of values of the statistical weight
for which this method is to be applied.

Another useful characteristic is the possibility of initialising PENELOPE’s pseudo-
random number generator with integer numbers (the “seeds”) read from an external
file. This feature can be used in conjunction with the package of Linux scripts clonEasy
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(see chapter 5) to parallelise the execution in a straightforward way, without altering
the source code. The seeds required for the parallel execution can be obtained with the
code seedsMLCG, described in section 5.2.2.

3.1.1 Source models

PenEasy includes two configurable source models. Their configuration parameters are
set by the user through a global input file. Only one source can be active in any given
simulation.

The source called BIGS (an acronym for Box Isotropic Gauss Spectrum) allows the def-
inition of volumetric sources limited by quadric surfaces. The type of particle can be
either a photon, electron or positron with an arbitrary energy spectrum of emission or,
alternatively, with the spectrum defined by means of a Gaussian function. The angular
distribution has a constant probability per unit solid angle and can be limited by a cone
with arbitrary orientation in space. This includes, as limiting cases, point sources, 4π

isotropic sources and pencil beams. A point source can also be configured to “illumi-
nate” a distant field of arbitrary (quadric) shape, which can be useful, e.g., to define
an electron beam from an accelerator head that produces a square field on the patient
surface.

The source called PSF (Phase-Space File) reads the initial state of the particles to sim-
ulate from an external file, hence the name. Usually, this file is created by penEasy
in a previous run by means of the PSF tally (see below), for example to reproduce the
radiation field produced by a linac before entering the patient’s body. The PSF contains
information to identify all particles, either primary or secondary, belonging to the same
history (i.e., descendants of the same primary particle). This feature plays an important
role in the computation of the statistical uncertainty (Sempau et al. 2001).

The particles read from the PSF can be rotated, for instance to adapt it to the gantry
angle of a clinical linear accelerator, and also translated. Particle splitting, a variance
reduction technique intended to reduce the statistical uncertainty by creating K identi-
cal copies, with statistical weight 1/K, of each initial particle is also implemented. This
method—also called particle recycling by some authors, see e.g. Walters et al. (2002)—
should not be confused with restarting the PSF, which implies that the PSF itself is
recycled as a whole, that is, it is reread from the beginning after the last particle has
been used up. The second method should be avoided because it does not account for cor-
relations between between identical copies of the particles, thus producing an incorrect
estimation of the statistical uncertainty.
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3.1.2 Tallies

PenEasy includes subroutines to score the most common quantities of interest. The
tallies available in the current version are listed below.

• Spatial (3D) distributions of absorbed dose in homogeneous regions. These can
be scored in parallelepipedic bins, cylindrical shells or spherical shells. In the
case of parallelepipeds, the distribution can be integrated along the x, y and/or z

directions to obtain 2D or 1D results. The dose is estimated using the collision
estimator, i.e., scoring the energy deposited on the spot in each interaction.

• When voxelised geometries are used, the absorbed dose distribution can also be
scored. To speed up the tallying process, the scoring and voxels grids are the same.

• Fluence, differential in energy, in the detection material. This tally is based on
the relation, pointed out by Chilton (1978), between the track length of particles
visiting a certain volume and the average fluence in it. The total energy deposited
in the detector is also reported. The latter is estimated by combining track lengths
of charged particles, restricted stopping powers and “residual” deposition events—
such as the so-called track-ends (Nahum 1978).

• Pulse height spectra, that is, the distribution of energy deposition events (per
completed history) in a certain detection material. The total energy deposited in
the detector is reported as well.

• Energy spectra and total number of particles of each type (photon, electron or
positron) entering a certain material.

• Particle trajectories. This tally allows the representation of the particle tracks in
a 3D graph. To this end, particle coordinates after each interaction are written to
an external file.

• Phase-space file. Generates a file with the phase space (type of particle, energy,
position, direction, etc.) of all particles that reach the detection material. The PSF
is stored on disk in ASCII format (that is, plain text).

Note that tallying the dose distribution in voxels is similar to using the parallelepipedic
bins. However, since penVox allows voxels and quadrics to be combined in the same
simulation (see section 3.2), some voxels may be partly overlapped by a quadric body.
Hence, the mass of each voxel needs to be determined by integrating the mass density
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over its volume. This process is performed for voxels during the initialisation stage,
but not for parallelepipedic bins. For the latter, the mass density is simply taken from
the center of the bin. As a result, dose distributions produced by the tallies in the
first item of the list may be inaccurate inside the voxelised region or, in general, for
non-homogeneous bins.

All the reported quantities are normalised per unit simulated history. A set of gnuplot1

script files is provided to automatically create plots of the data generated by each tally.
It is also important to remark that all the tally routines are called using a common
interface, which facilitates the development of new ones by end users.

3.2 PenVox

Realistic models of the human body can be obtained using anatomic data obtained from
a CT scan. The CT data can be processed to estimate the chemical composition and
mass density of each voxel (Schneider et al. 2000; Reynaert et al. 2007), informa-
tion that is required by most radiation transport simulation systems. Other imaging
modalities—most notably magnetic resonance imaging (MRI)—can also be used to cre-
ate detailed anatomic phantoms.

In this section a new tool, named penVox, that allows the use of voxels in a PENE-
LOPE simulation is introduced. PenVox is fully integrated in penEasy, and its oper-
ation is controlled through sections of the same global input file used for the latter.
Other authors have developed subroutine packages for PENELOPE that are capable of
handling voxelised geometries—see for example Moskvin and Papiez (2005), Taranenko
and Zankl (2005) and García et al. (2007)—but penVox is, to the best of our knowledge,
the only one that allows the superposition of quadric objects and voxelised regions and
that works in conjunction with a general-purpose main program. Other Monte Carlo
codes have been adapted to voxelised geometries in the past, e.g., Geant 4, FLUKA, or
DOSXYZnrc (Walters et al. 2007) for EGSnrc.

The quadric geometry, consisting of combinations of bodies delimited by quadric (that is,
second order) surfaces—planes, spheres, cones, cylinders, etc—is handled by invoking
subroutines from PENELOPE’s standard geometry package PENGEOM. The tracking
across voxels, in turn, is performed using an algorithm inspired on the DPM code (Sem-
pau et al. 2000). To produce the superposition of both elements users must provide

1Gnuplot is an open source, freely available plotting program that can be downloaded from http:
//www.gnuplot.info.
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two geometry input files. The first one is a standard PENGEOM file. For details on
its format and on the associated visualisation tools the reader may consult the manual
(see also Fig. 2.3). The other file, which we shall call the voxels file, defines the number
of voxels to consider, their dimensions and a list of material and mass densities, one
pair for each voxel. The voxels boundary box is assumed to be located in the first octant
({x, y, z} > 0), with its vertex at the origin of coordinates. An example of voxels file is
given in Fig. 3.2.

Figure 3.2: First lines of a voxels file for penVox, showing the header section and the
beginning of the two-column list with the material number and density for every voxel.

In order to embed the voxelised region into the quadric geometry users must tag one
of the quadric bodies as transparent. This will cause penVox to treat it as if it were
a “hole” in the quadric geometry, thus being able to “see” the voxels underneath. An
example of a non-trivial geometry defined in this way is represented in Fig. 3.3. For
cases that do not require the explicit definition of quadric objects, the preparation of
a PENGEOM file may be omitted. A suitable parallelepipedic bounding box enclosing
all voxels is then automatically defined (using quadrics) by penVox without the users’
intervention.

During the initialisation of the penVox system voxels are classified in three groups: (i)
voxels that are fully visible; (ii) those that are partly overlapped by a quadric body; and
(iii) those that are invisible, that is, that are completely covered by quadrics and, there-
fore, effectively nonexistent from the viewpoint of the simulation. A particle that is
moving in a partly overlapped voxel can cross a boundary and enter a quadric body in a
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Figure 3.3: A notional example of a combination of voxels (a portion of a fictitious CT
scan) and quadrics (a brachytherapy source). Notice that the voxels region is also bound
with a quadric surface.

single step and, hence, every step it takes requires that both geometries be interrogated
to find the closest intersection.

The mass in each voxel (either covered, partly overlapped or fully visible) is also de-
termined during the initialisation by integrating the density using the ray tracing ca-
pabilities of PENGEOM. The average absorbed dose in each voxel is computed as the
ratio between the deposited energy and its mass. Note that the dose map is computed
for all voxels, including those that are totally covered by quadric bodies.

Voxels files can be obtained by processing CT scans; they can also be created by con-
verting a quadric geometry into a grid of volume elements with the help of genVox, a
stand-alone program included in the penVox package. GenVox is intended to produce
voxelised geometries that describe simple objects such as homogeneous or multilayer
phantoms. This functionality was used to simulate dose distributions for several lay-
ered phantoms irradiated with photon and electron beams of various energies with both
PENGEOM (using the quadric version of the geometry) and penVox (using the voxelised
version). In all the studied cases the differences were negligible, i.e., compatible with
the statistical uncertainties obtained, thus validating the new tracking algorithm.

Two example benchmarks performed with PENGEOM and penVox are presented. The
source used in these studies was a 1.5×1.5 cm2, 20 MeV electron beam. Figure 3.4
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shows the comparison for an inhomogeneous geometry composed of an aluminum cylin-
der (1 cm in diameter and 1 cm in length) in water (Bielajew 1993). The reported dose
profile was tallied 1 mm downstream the cylinder, in a line of voxels perpendicular to
the beam central axis. In the penVox simulation the water was described with voxels
and the cylinder with quadrics. The second example, shown in Fig. 3.5, was proposed in
the ICCR 2000 workshop by Rogers and Mohan (2000). The geometry consisted in lay-
ers of water, aluminum, lung, and water. The central axis depth-dose and the relative
difference with respect to penEasy’s maximum dose are represented.

Figure 3.4: Comparison of PENGEOM and penVox for the simulation of an aluminum
cylinder in water. See text for details.

3.2.1 The density effect

PENELOPE requires the definition of a specific material for each different density, even
when the chemical composition is the same. This poses a problem because, in general, a
CT scan contains millions of voxels with varying mass densities. Since the initialisation
time and the memory allocated increase linearly with the number of materials, the
definition of a large number of them is impractical.

A simple method that overcomes this difficulty is based on the fact that the cross section
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Figure 3.5: Central-axis depth dose calculated with PENGEOM and penVox for a lay-
ered geometry. The difference, relative to penEasy’s maximum dose, is presented in the
scale on the right. The statistical uncertainty in the simulations was below 1% at 2σ.

models for the relevant interactions are, with the exception of inelastic collisions of
charged particles, independent of the local mass density ρ of the medium. The distance
s between two consecutive interactions is a random variable that follows an exponential
distribution. In a medium with total cross section σ, s can be sampled according to the
expression

s = −λ ln ξ (3.1)

where ξ is a random number uniformly distributed between 0 and 1 (see section 5.1 for
a description of random number generators) and

λ =
A

NAσρ
(3.2)

is the mean free path. The symbols NA and A represent Avogadro’s number and the
molecular mass in atomic units, respectively. Eqs. (3.1) and (3.2) show that, everything
else being equal, s in inversely proportional to the density and, hence, spatial density
variations can be readily taken into account by scaling the distance to travel as ρ0/ρ,
with ρ0 the material nominal density.

Note that, for charged particles, the mass collision stopping power Sc/ρ can be written
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in terms of σc(W ), the inelastic cross section differential in the energy loss W , as

Sc

ρ
=

NA

A

∫
dW Wσc(W ). (3.3)

The polarisation of the medium caused by the incoming charged projectile produces a
partial screening of its electric field and, as a result, a decrease of the inelastic cross
section, a phenomenon known as the density effect (Sternheimer 1952; Fano 1963). The
density effect involves the introduction of a term in the differential cross section that
does depend on the mass density, a dependency that, by virtue of (3.3), propagates to
the collision stopping power.

Fortunately for our purposes, the variation of Sc/ρ with ρ is relatively small even for
fairly large density changes. This is illustrated in Fig. 3.6 for electrons in water, where
it can be seen that Sc/ρ deviates by less than 1% with respect to its nominal value
when the density changes by as much as 20%. The conclusion is that, for most practical
purposes, the transport can be carried out assuming that the cross sections for the
material with nominal density apply. This is in fact the approach taken in most Monte
Carlo codes that use a voxelised geometry (Jiang and Paganetti 2004; Reynaert et al.
2007).

It is important to point out that, in order to encapsulate the algorithm that moves par-
ticles inside voxels and to keep the penEasy main program simple, the scaling of flight
distances with 1/ρ is performed inside the tracking routine of penVox. A limitation of
this operating procedure is that the fluence tally cannot be employed inside the voxel
region because the main program is oblivious to the actual path lengths travelled in it.

The relatively little importance of the density effect correction on the absorbed dose
can be observed in the depth-dose profiles shown in Fig. 3.7, for a 20 MeV electron
beam. This figure compares depth-dose profiles obtained with PENGEOM and penVox
for water with densities 0.8 g/cm3 and 1.2 g/cm3. For the PENGEOM profiles, fictitious
materials defined with the PENELOPE database for water with varying density values
were employed (i.e., the density effect correction was calculated for the actual material
density). For the penVox case, the phantom was made of water with its nominal density
(i.e., with the density effect correction for 1.0 g/cm3 water) and the particle tracks were
re-scaled according to the voxel density. In this situation the depth-dose profile, in units
of MeV cm2/g, does not vary for different voxel densities (the profile corresponding
to voxels with density 0.8 g/cm3 is represented). It can be observed that the density
effect just slightly modifies the dose deposition, even for this extreme case in which the
material is 20% heavier (or lighter) than the nominal water.
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Figure 3.6: Variation, in percentage, of the electron collision mass stopping power (Sc/ρ)
in water of various densities, with respect to its nominal value (i.e., for ρ=1). Stopping
powers were obtained with the PENELOPE model and assuming a constant (indepen-
dent of ρ) mean ionisation energy.

The remaining question of how variations of the density effect could be taken into ac-
count in a simple manner is still of some interest. A possible, albeit only partially
correct, scheme is outlined below. Note that the method that is to be described has not
been implemented in penVox due to its limited practical impact.

The density effect correction δF on the stopping power for electrons with velocity β (in
units of the speed of light) and for a material with atomic number Z can be computed
as (Fano 1963)

δF =
1
Z

∫ ∞

0
dW

df(W )
dW

ln

(
W 2 + L2

W 2

)
− L2 (1− β2)

Ω2
. (3.4)

In this expression df(W )/dW is the so-called optical oscillator strength (OOS), which
characterises the response of the medium in distant (i.e. with low momentum transfer)
inelastic collisions. The OOS, which depends only on the structure of the atomic target
and on the energy W lost by the projectile, is closely related to the photoelectric cross
section for photons of energy W . The symbol Ω represents the plasma energy of an
equivalent free-electron gas and, for a given material, Ω2 is proportional to the mass
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Figure 3.7: Depth-dose profiles calculated with PENGEOM for water with densities
0.8 g/cm3 (dots) and 1.2 g/cm3 (dashes). The solid line corresponds to the profile cal-
culated with penVox using the nominal water cross sections (i.e., including the density
effect correction for 1.0 g/cm3 water).

density ρ. Finally, L is a function of β2 given by the largest root of the equation

1
Z

∫ ∞

0
dW

df(W )
dW

L2

W 2 + L2
− L2 (1− β2)

Ω2
= 0. (3.5)

Notice that, formally, β (or, equivalently, the kinetic energy of the projectile) and ρ

appear in Eqs. (3.4) and (3.5) only through the combination (1 − β2)/Ω2. Since Ω2 is
proportional to ρ, the density effect correction that corresponds to a certain combination
of β and ρ can be computed using the nominal density ρ0 of the material in question and
a velocity β′ such that

1− β2

ρ
=

1− β′2

ρ0
. (3.6)

PENELOPE tabulates the density correction given by Eq. (3.4) (with a convenient, sim-
ple OOS model) for ρ0 and a grid of kinetic energies T of the electron or positron. Thus,
in terms of T , the computation of δF for a voxel with density ρ can be done using ρ0
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instead and an equivalent energy T ′ given by

T ′ =
1√

1− β′2
− 1 =

√
ρ

ρ0
(T + 1)− 1 (3.7)

where use has been made of Eq. (3.6). In this relation the kinetic energy is expressed in
units of the electron rest energy (approximately 511 keV) and the relativistic relation
between T and β has been used.

Strictly speaking, this method of accounting for density changes from voxel to voxel is
not exact. It neglects the fact that the OOS itself also depends, to a certain extent, on
ρ. Let us consider, for the sake of concreteness, the PENELOPE model for the OOS of
an insulator, which is formed by a superposition of resonances of the form

df(W )
dW

=
∑
k

Zk δ(W −Wk), (3.8)

where the symbol δ represents Dirac’s distribution, Zk is the number of electrons occu-
pying the k-th shell and the Wk ’s are the resonance energies. Following Sternheimer
(1952), the resonance energy of each bound-shell oscillator is expressed with a semiem-
pirical formula that involves the ionisation energy of that shell, the mass density and a
free parameter; this parameter (and hence the resonances) is determined by requiring
that the equation

Z ln I =
∫ ∞

0
dW

df(W )
dW

lnW, (3.9)

is satisfied. The mean ionisation energy I, which plays a key role in the familiar Bethe
stopping power formula, can be inferred from experimental measurements. In order to
be rigorously correct, therefore, different values of I should be employed for different
densities so that the new Wk ’s could be re-computed.

At this point it is important to bear in mind that variations in the mass density of
the materials that are likely to appear in a CT scan are ultimately artefacts caused by
the presence of inhomogeneities inside voxels or by inaccuracies in the CT acquisition
and reconstruction processes. Therefore, it can be argued that the adaptation of the
inelastic cross section to the local voxel density may not only be a costly procedure in
terms of CPU time, but it can also worsen the agreement with experiments because
density variations are not factual.

Another, less fundamental, disadvantage of the recipe given by Eq. (3.7) is that it re-
quires changing the inner workings of the physics routines of PENELOPE, a course of
action that would be against the design principles of penEasy.
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As discussed in previous chapters, the geometric model is a key feature of a Monte Carlo
code, because it limits the type of applications that can be handled in practice. Most
general-purpose codes employ geometries based on the combination of simple primitive
objects, such as quadric surfaces. These primitives are convenient to simulate simple
or idealised objects, but they are not well suited to model objects that have free-form
(i.e., arbitrary) shapes, such as many organic structures. The use of a voxelised geom-
etry (e.g., penVox, described in section 3.2) facilitates the development of anatomical
phantoms from segmented CT scans. However, a shortcoming of voxelised phantoms
is that they have a limited resolution, which is determined by the voxel size. Further-
more, they are not flexible, that is, objects included inside the phantom can not be easily
translated or deformed (although a software tool for the manual reassignment of voxels
was developed by Becker et al. 2007).

Another problem of current general-purpose codes is that the implemented geometry
models are usually incompatible. This means that the geometry files can not be used in
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different codes and have to be created and visualised using tools specifically developed
for each code.

To overcome some of these limitations we have developed penMesh, a general-purpose
Monte Carlo code based on the PENELOPE subroutine package that employs a stan-
dard computer-aided design (CAD) geometry model: triangle meshes. triangle meshes
can approximate any arbitrary surface and, therefore, can represent the boundary of
virtually any object. Furthermore, they can be easily generated, manipulated, stored
and displayed using the powerful and well-established tools from the CAD and com-
puter games communities. Other Monte Carlo codes have also been adapted to CAD ge-
ometries, such as GEANT (Sulkimo and Vuoskoski 1996) or EGS4 (Tabary and Glière
2000). A triangle mesh geometry package for PENELOPE had been previously de-
veloped but the code had an extremely low simulation efficiency and is not publicly
available (Borglund et al. 2004).

In this chapter we present a detailed description of the penMesh code and its triangle
mesh ray-tracer algorithm. A benchmark with experimental measurements and an
analysis of the code performance are also provided in sections 4.3 and 4.4, respectively.
Example applications of this code in diagnostic imaging are provided in chapter 7.

4.1 PenMesh

The simulation code penMesh (Badal et al. 2007; Kyprianou et al. 2007; Badal et al.
2008) implements a general-purpose Monte Carlo algorithm that simulates the trans-
port of electrons, positrons and photons in a geometry composed of homogeneous bodies
limited by triangle meshes. The interaction between matter and radiation is simulated
by the state-of-the-art physics from the PENELOPE 2006 package (see section 2.3). The
particle tracking is handled by a new set of subroutines implementing the ray-tracing
algorithm described in section 4.2.2.

PenMesh uses a hybrid geometry model that combines the simplicity of objects defined
by quadric surfaces and the geometric detail of objects represented by triangle meshes.
The standard PENELOPE quadric geometry package (PENGEOM) is used to define a
bounding box that encloses the triangles and to track the particles outside this box. The
tracking inside is handled by the novel triangle mesh ray-tracer package.

The penMesh code is based on the penEasy package, the modular general-purpose main
program for PENELOPE described in section 3.1. Most of the features of penEasy are
made available to penMesh, such as its flexible source models and tallies for the most
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common quantities of interest (e.g., 3D dose distributions, energy fluence spectra, en-
ergy deposition pulse height spectra, etc.). Taking advantage of the main program mod-
ular structure, a new tally for the creation of radiographic images has been developed
and implemented in penMesh, as explained in section 7.2.

PenMesh and the new geometry package are coded in C++. However, they make use
of the original penEasy and PENELOPE subroutines and common blocks in Fortran.
Therefore, the code takes advantages of the advanced features of C++ (object-oriented
programming, dynamic memory, recursive functions, pointers, etc.) and the computa-
tional efficiency and simplicity of Fortran. The multi-language compilation is facilitated
by a header file that harmonises the naming conventions for the C++ and Fortran lan-
guages.1 The documentation for the new source code has been prepared using the au-
tomatic documentation generator system doxygen (http://www.doxygen.org). Ap-
pendix B provides a summary of the documentation for the two C++ classes employed
by penMesh.

4.2 Triangle mesh geometry

PenMesh uses a boundary representation geometry model in which the shape of each
object is described by a triangle mesh. The implemented algorithm is not limited to
any specific application and imposes only two restrictions on the meshes: being water-
tight closed (a particle may not enter or exit the mesh without crossing a triangle) and
not self-intersecting manifolds (triangles from the same mesh must not intersect). The
latter requirement is imposed so that a particle may not enter the triangle mesh from
within itself. The implemented algorithm can handle intersecting meshes from differ-
ent objects, meshes contained inside other meshes, and overlapping coplanar triangles.

Some advantages of triangle meshes compared to other mathematical surfaces—such
as quadrics, non-uniform rational B-splines, or Bezier patches—are that triangles can
be fitted to any arbitrary surface, can be exactly ray-traced (costly for cubic or higher-
order parametric surfaces), and can be easily generated, manipulated, stored and dis-
played using existing CAD software. An obvious drawback of the triangle meshes is
that curved surfaces can only be approximated up to the smallest triangle size used.
Nevertheless, the size of the triangles can be adapted to the required level of detail and

1PenMesh has been designed to be compiled in the Linux operating system and with the GNU compiler
collection (GCC; http://gcc.gnu.org) or compatible compilers (such as Intel R©Fortran). To use Fortran
code from C++ functions, the Fortran subroutines are simply declared as extern "C" void functions
and with an underscore attached at the end of the original name in lowercase. Similarly, common block
variables are accessed as extern "C" structures.
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no artifacts should appear in the simulation due to tessellation inaccuracies.

In penMesh, the mesh corresponding to each object used in the simulation is stored in
an external file in standard ASCII ply format (Stanford 3D Scanning Repository). The
ply file must contain three different sections: a header giving the number of triangles
and vertices in the mesh (other properties, like normals or color, may be included but
are not used); a list of the coordinates of each vertex; and, finally, a list of the vertices
associated to each triangle (adjacent triangles may share two vertices in a closed mesh).
Even though only a few features of the ply format are employed by penMesh, the ob-
jects can still be created and handled by most of the available CAD software. There are
also numerous programs that can export/import these ply files to/from other popular
CAD formats.

4.2.1 Spatial data structures: the octree

Every time a particle moves across the triangle mesh geometry it is necessary to check
if the particle’s trajectory intersects any triangle. A typical penMesh geometry contains
millions of triangles and, therefore, checking the intersection with every triangle at
each step would result in an extremely slow computation (Borglund et al. 2004). This
can be avoided by using a spatial data structure to group adjacent triangles inside
bounding boxes. Using this technique only those triangles located inside the boxes
crossed by the ray will be checked for intersection, therefore the total number of ray–
triangle intersection tests will be significantly reduced at the expense of adding ray–
bounding box intersection tests. Fortunately, computing the distance from a point to the
wall of an axis-aligned box is very fast and does not introduce a significant overhead in
the simulation (see Eq. 4.6 in section 4.2.3). The data structures most commonly used
for ray-tracing are the uniform grid, the octree, and the k-D tree (Chang 2001).

The uniform grid divides the space in axis-aligned equal-size boxes (voxels). The grid
ray-tracing is straightforward and can be accelerated by accounting for the periodicity
of the intersection between the ray and the voxel walls (Amanatides and Woo 1987).
The drawback of uniform grids is that they are inefficient in heterogeneous geometries,
i.e., when there are regions with high density of triangles and regions with low density
or without triangles. In this situation, using small voxels significantly increases the
required computer memory while forcing the program to calculate many unnecessary
intersections with empty voxels in the low density region. On the other hand, if large
voxels are employed the code has to calculate many ray–triangle intersections inside
the voxels located on the high density region and the code execution is slow.
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The octree (Meagher 1982; Glassner 1984; Chang 2001) is a hierarchical tree structure
that subdivides the space in different size boxes (nodes). The first node (root) is an axis-
aligned parallelepiped enclosing all the triangles. This node is divided in eight octants
of the same size, which are recursively subdivided in the same way. This subdivision
is applied until all the space is partitioned according to a predetermined termination
condition, on which we will elaborate later. The index of subdivision is called the octree
level and the final nodes are called leaves. Constructing and ray-tracing an octree is
fast and simple because the size and position of each node depends only on its level and
on the shape of the root node (Revelles et al. 2000).

The k-D tree (Chang 2001) is a binary space-partitioning hierarchical structure where
the space is recursively divided in two parts using axis-aligned planes which alternate
the dividing axis in the k dimensions (e.g., alternating planes along the x and y axis in
2D). The plane position is calculated according to a predetermined splitting condition
(e.g., the resulting volumes may contain exactly half of the triangles in the original
volume). The uniform grid and the octree are particular cases of a k-D tree with simple
splitting conditions. Therefore a k-D tree is theoretically the most efficient spatial data
structure when the splitting condition is correctly optimised for the given application
and geometry. Nevertheless, the creation and ray-tracing of a general k-D tree is not
as simple as for the other structures and the resulting computer code may require a
longer execution time.

Based on the expected efficiency and low overhead, an octree structure was imple-
mented in penMesh. The octree is generated on execution time using an heuristic ter-
mination condition that subdivides a node whenever the amount of triangles it contains
is larger than or equal to the value of the node level. This restrictive condition favours
the generation of higher level nodes tightly fit on the object surface and it has exhib-
ited optimum computing performance in our benchmark tests. The maximum octree
level can be chosen by the user depending on the complexity of the geometry (which
depends on the total number of triangles and their structure in space) and the avail-
able RAM memory in the computer where the simulation will be executed. As a rule of
thumb, it is good practice to allow as many subdivisions as possible since ray-tracing
a node is much faster than checking a triangle intersection (an analysis of the octree
performance is given in section 4.4).

Figure 4.1 shows a sample level 9 octree sorting the triangles from the anthropomor-
phic phantom described in section 7.1. The represented plane contains triangles cor-
responding to the skin, lungs, heart, liver, ribs, sternum and a vertebra meshes. A 2D
view of the octree structure, in EPS (encapsulated postscript) image format, is automat-
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ically generated by penMesh to allow the user to visually validate that the triangles are
correctly sorted and completely enclosed inside the defined bounding box. The octree
plane to be drawn, the maximum octree level, the bounding box size and location, and
the name of the meshes that are included in the simulation are specified in an external
input file.

Figure 4.1: Node structure of a level 9 octree sorting the triangles from a realistic
anthropomorphic phantom.

The EPS image is created taking advantage of the vector graphic capability of the
postscript language. This means that the walls of the octree nodes are not represented
by pixels, which would limit the image resolution and require a lot of computer space
for high level octrees, but defined as line segments by using the postscript commands
moveto and lineto. Figure 4.2 shows the header and first lines of a sample EPS image
created by penMesh.

4.2.2 Ray-tracing algorithm

The new geometric routines implement a robust and exact algorithm to track the move-
ment of particles across triangles contained inside octree leaves.

Ray-tracing inside the triangle region begins by locating the particle position in the oc-
tree structure. This is done searching recursively from the root node to the subnodes
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Figure 4.2: Header and first lines from a sample EPS image created by penMesh.

until the octree leaf that contains the particle position is found. Finding the subnode
that contains the particle is trivial because the splitting planes are located exactly at
the middle of the node (in each dimension). Then, PENELOPE’s physics routines sam-
ple the distance to the next interaction using a pseudo-random number generator and
taking into account the medium interaction cross sections (see Eq. 2.3). The ray-tracer
takes the sampled distance and searches for possible interface crossings in the recti-
linear path. If the interaction point is found in the current node and no triangle is
intersected, the interaction is processed. If the trajectory crosses a triangle, the parti-
cle is stopped on its surface and the medium material is updated. This triangle is not
checked for intersection in the following leap to avoid getting trapped on the triangle
surface due to computer rounding errors. Finally, if the particle reaches the leaf wall it
is stopped and the neighbour leaf is loaded. The leap continues in the new leaf without
re-sampling the interaction distance, because octree walls are virtual boundaries that
merely sort the triangles and do not represent real material interfaces.
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A variety of techniques can be used to find the neighbouring nodes and transport the
particles from one leaf to another (Chang 2001). A top-down approach consists of find-
ing the next leaf through a search from the root node. A bottom-up approach moves up
to the leaf parent and grand-parent nodes and then goes down looking for the neigh-
bouring node. Finally, the fastest approach—which we have implemented—takes ad-
vantage of pointers to the six leaf neighbour nodes (with the same or lower level) pre-
calculated in the initialisation stage using one of the previous methods. This approach
requires more computer memory (six extra pointer variables per leaf), but it simplifies
the transport algorithm considerably.

A general and robust ray-tracing algorithm has to address two complicated situations:
the intersection of triangle meshes from different objects and the presence of overlap-
ping coplanar triangles. These situations may represent the real geometry or may have
been artificially produced during the phantom generation or surface tessellation. Obvi-
ously, the triangle mesh geometry must be thoroughly inspected to assure that unreal-
istic object overlapping does not affect the simulation outcome.

PenMesh deals with triangle mesh intersections by storing the surfaces that are crossed
during the particle track in a virtual particle flight log. Every time a particle crosses
a surface the log is searched for the index of the corresponding object. If the surface
was not previously crossed, the particle enters a new object and its index is recorded in
the log. If the index is found in the log, the particle is exiting the object and its index
is deleted from the log. In the regions where multiple objects overlap the flight log
contains more than one entry of object indices. In such cases, the appropriate material
at the current position is determined by using a lookup table that establishes an object
priority hierarchy (see Segars 2001, Appendix A, and Kyprianou et al. 2007).

The flight log is necessary to determine the material found at any point inside the
geometry and the material that will be found when the particle exits the current object.
For this reason the generated secondary particles have to inherit a copy of the flight
log at the point they are created. It is possible to define a radiation source inside the
triangle mesh region but in such a case the source routine must load the appropriate
flight log for each particle. The log can be automatically calculated by transporting a
virtual ray from any point outside the triangle bounding box back to the source location.

A particle originating outside the octree region that enters and crosses the whole octree
will end up having only one entry in the flight log. This index corresponds to the quadric
body that defines the octree bounding box. Having more than one index in the log when
leaving the octree signals an inconsistency in the geometry. Object indices may remain
on the flight log if their triangle meshes are not correctly closed or they extend outside
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the defined bounding box.

The second complicated situation mentioned above is the handling of overlapping copla-
nar triangles. During the ray-tracing process, particles are stopped on the surface of
the intersected triangles. In case the distance to the next triangle is zero—as for copla-
nar triangles—a particle can get trapped, i.e., continuously jump between the coplanar
triangles without changing its actual location. In a real computer the situation may be
even worse because the intersection distance is calculated with a finite precision and a
null distance may be represented by a value close, but not equal, to zero. In this situa-
tion the particle could continue the track but the flight log would be corrupted and the
particle would move in an incorrect material. To avoid this problem the function that
looks for triangle intersections in penMesh has been adapted to detect coplanar trian-
gles, defined as those for which the intersection distance is smaller than 10−9 cm. All
coplanar triangles are crossed at the same time and the corresponding object indices
are recorded in the flight log. The active material is determined as usual.

4.2.3 Calculating ray–triangle, ray–box and triangle–box
intersections

The most time-consuming part of the triangle mesh ray-tracing is the calculation of
ray–triangle intersections (e.g., it accounts for 30% of the total simulation time in the
case analysed in section 4.4). PenMesh calculates these intersections using the effi-
cient algorithm developed by Möller and Trumbore (1997). This algorithm calculates
the intersection point in terms of the so-called barycentric coordinates (u, v). In this
coordinate system, a point with position vector P, located on the plane of the triangle
with vertices given by the position vectors V0, V1, V2, is expressed as

P(u, v) = (1− u− v)V0 + uV1 + vV2 . (4.1)

The point P is found inside the triangle if, and only if, u ≥ 0, v ≥ 0 and u + v ≤ 1. Given
a ray R in parametric form

R(t) = O + t d̂ , (4.2)

where O is the position vector of the ray origin, d̂ is a unitary direction vector and
t is a free parameter, it is possible to find the point of intersection between the ray
and the triangle, (u, v), and the distance to the intersection, t, by solving the equality
R(t) = P(u, v), that is,

O + t d̂ = (1− u− v)V0 + uV1 + vV2 . (4.3)
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As pointed out by Möller and Trumbore, the previous equation can be rearranged as

− td̂ + (V1 −V0)u + (V2 −V0)v = O−V0 , (4.4)

and this system of equations can be solved by applying Cramer’s rule, obtaining
t

u

v

 =
1

F ·E1


Q ·E2

F ·T
Q ·D

 , (4.5)

with E1 = V1 −V0, E2 = V2 −V0, T = p−V0, F = D×E2, and Q = T×E1. Note that
the triangle plane equation does not have to be calculated in this algorithm.

The intersections with the walls of the octree nodes also take a significant amount of
execution time (about 15%). Since the nodes are aligned with the axis the ray–box
intersection can be found with a simple and fast computation. For a particle located at
(xp, yp, zp) inside a box and moving with a direction vector (up, vp, wp) with up > 0, the
distance dx to the nearest box wall perpendicular to the x axis is

dx =
xmax − xp

up
, (4.6)

where xmax is the maximum value of x inside the box (the minimum x would be used in
the case up < 0). Equivalent equations can be used to find the intersection with the y

and z walls.

The triangle–box intersections that have to be calculated to distribute the triangles
into the leaves during the octree generation are computed using the algorithm devel-
oped by Akenine-Möller (2001). This algorithm takes advantage of the separating axis
theorem, which states that two convex polyhedra, A and B, are disjoint if they can be
separated along either an axis parallel to a normal of a face of the polyhedra, or along
an axis formed from the cross product of an edge from A with an edge from B. For
the particular case of a triangle and an axis aligned box, the implemented algorithm
requires checking 13 conditions.

4.3 Code validation

The performance of a new Monte Carlo code is typically evaluated by simulating a sim-
ple case that can be reproduced with previously well-established codes as well as with
laboratory experiments. In spite of the fact that penMesh uses the original physics
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routines from PENELOPE and the Monte Carlo algorithm from penEasy, which have
been extensively used and validated with experimental data in the past (see chapter 3),
it is still necessary to check that the new geometric models have been correctly imple-
mented.

Scatter fraction measurements provide a simple way to quantitatively compare experi-
mental and simulated data. Furthermore, scatter is one of the most important factors
of image quality degradation and, therefore, the accurate simulation of scattered ra-
diation is essential for the assessment of imaging systems. In order to analyse the
accuracy of penMesh, scatter fractions were measured, and simulated, in two regions
located 10 cm behind the CDRH2 phantom, an idealised model of the human abdomen
and lumbar spine described in the AAPM report 31 (1990). Figure 4.3 shows a pic-
ture of the phantom used in the lab and the triangle mesh version used by penMesh,
containing 4 independent objects and 48 triangles in total. The triangulated phantom
was designed with ParaView3. Scatter fraction measurements were also used by Mathy
et al. (2003) as a preliminary validation of a CAD geometry package for EGS4.

(a) (b)

Figure 4.3: CDRH abdomen and lumbar spine phantom (AAPM report 1990) used in
the scatter fraction measurements: (a) picture of the real phantom used in the lab; (b)
triangle mesh version containing four independent objects, with 48 triangles in total.

2Center for Devices and Radiological Health (CDRH), U. S. Food and Drug Administration (FDA).
3ParaView is an open-source, multi-platform application designed to visualise and manipulate digital

data. It provides a user-friendly graphical interface to the VTK library (http://www.vtk.org). This
program is freely available at the website http://www.paraview.org.
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Figure 4.4: Experimental setting for the scatter fraction measurement (not to scale).
The arrows mark the places where the fractions were tallied. The simulation geometry
did not include the lead discs.

The scatter fraction (SF) of a given image acquisition is defined as

SF =
Ss

Ss + Sp
, (4.7)

where Ss is the signal produced by the scattered x rays and Sp is the signal produced
by the primary (non-scattered) x rays (Chan and Doi 1983), as recorded in a standard
energy integrating x-ray detector. The scatter fraction can be experimentally measured
by blocking the primary beam with various size lead discs placed between the source
and the imaged object; this process is known as the beam-stop method (Brezovich and
Barnes 1977). A lead disc blocks the incident beam and projects a dark disc in the
image. Any signal detected at the center of the projected disc is generated only by
the radiation scattered within the object. The scatter fraction can be measured by
dividing the signal detected at the center of the projected disc (only scatter) and the
signal detected at the same location by removing the disc from the field (scatter plus
unscattered radiation). A diagram of the experimental setting used to measure the
scatter fraction is given in Fig. 4.4. Naturally, the diameter of the beam blocker affects
the measured scatter. The value corresponding to a disc with zero diameter (i.e., the
true scatter fraction) can be estimated by taking multiple measurements for discs with
decreasing diameters and extrapolating with a linear fit (Brezovich and Barnes 1977;
Chan and Doi 1983).

Measuring the scatter fraction in a Monte Carlo simulation is straightforward because
every x-ray interaction is simulated individually and the scattered and primary par-
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ticles can be differentiated without using beam blocks. In penMesh the particles are
labelled according to the interactions that they have suffered in the track. There are
four different kinds of particles: non-scattered (primaries), single elastic scattered, sin-
gle inelastic scattered, and multiple scattered. Using this information, and assuming
that the signal detected in the x-ray detector is proportional to the total energy of the
particles entering the scintillator (Chan and Doi 1983), the scatter fraction can be di-
rectly measured with Eq. 4.7.

A 90 kVp x-ray source, with 10×10 and 20×20 cm2 fields and a source-detector distance
(SDD) of 140 cm, was used. The scatter fraction was tallied 10 cm downstream the
phantom, in a point located behind the soft tissue region (containing 16.91 cm of lucite)
and a point behind the spine region (composed of 0.46 cm of aluminum and 18.95 cm
of lucite). The detector used in the experimental setup was a digital flat panel, model
Varian 4030CB (Varian Corp. Salt Lake City, UT, USA), with 2048×1596 195×195 µm2

pixels and a 600-µm-thick columnar CsI(Tl) scintillator. The x-ray tube was a Varian
B180 (Varian Corp., Salt Lake City, UT, USA) with 0.3 mm nominal focal spot and a
tube filtration of 1 mm aluminum.

The simulation used a point source emitting a realistic 90 kVp energy spectrum com-
puted with the software provided by Cranley et al. (1997). The square fields were con-
formed using a completely absorbing lead collimator defined with quadric surfaces. The
scatter fraction was estimated scoring the number of primary and scattered particles
that entered a 1.0 cm2 sensitive area centered at the point corresponding to the center
of the projected discs in the experimental setting. The lead discs were not included in
the simulation geometry because the scatter fraction was directly tallied counting the
particles that arrived at the sensitive area. The number of initial x rays for the 10×10
and 20×20 cm2 fields were 3·109 and 9·109, respectively. The simulation speeds, in an
Intel R©CoreTM 2 processor at 2.4 GHz, were 37127 x-rays/second for the first field and
32974 x-rays/second for the second.

Table 4.1 summarises the scatter fractions experimentally measured and simulated
with penMesh. Figure 4.5 displays the experimental measurements for different disc
diameters and the linear fits that produced the reported fractions. The agreement be-
tween the measured and simulated scatter fractions was quite good, taking into account
the large experimental (8%) and simulation (3–5%) uncertainties. However, differences
of up to 6.5% for some of the measurements were observed. These differences were ex-
pected because the techniques used for the measurements were different: beam block-
ers were used in the lab, while the simulation calculated the scatter fraction directly
labelling the particles that had been scattered. In addition, it was assumed that there
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was no transmission of radiation through the lead discs and no scatter coming from
the collimator. Furthermore, the scatter fraction was experimentally tallied in the 9
pixels closer to the center of the projected discs (sensitive area of 3.6·10−3 cm2) while,
for simulation efficiency reasons, the sensitive area in the simulation was much bigger
(1 cm2). Other sources of discrepancy were the idealised models used to simulate the
radiation source (point focal spot, nominal energy spectrum, etc.) and the detector (sig-
nal proportional to the deposited energy, 100% detection efficiency, no scattering in the
scintillator, no optical photon transport or energy dependent optical photon generation,
etc.). All these factors affect the experimental scatter fraction measurement using the
beam stop method.

Table 4.1: Experimental and simulated scatter fraction behind the soft tissue and spine
regions of the CDRH torso phantom, for a 90 kVp x-ray source. The statistical uncer-
tainty in the simulation is given as 2σ; the uncertainty corresponding to the experiment
was estimated as 8%.

Field Region Experiment Simulation Difference
10×10 soft 0.276 0.258 (± 3%) -6.5%

spine 0.405 0.400 (± 4%) -1.2%
20×20 soft 0.491 0.498 (± 4%) 1.4%

spine 0.626 0.664 (± 5%) 6.1%

An interesting feature of Monte Carlo simulations is that they can give more infor-
mation about the scatter than what can be actually measured experimentally. A sim-
ulation not only provides the scatter fraction but can also determine the fraction of
particles scattered by each interaction process, or which part of the geometry produced
the scattered particles (Zaidi 1999). As an example, Table 4.2 shows the simulated
results from Table 4.1 separated into the fractions corresponding to the x-rays that suf-
fered a single elastic interaction, an inelastic interaction, or multiple interactions in
the phantom.

4.4 Efficiency analysis

In order to assess the efficiency of penMesh and the octree structure in a typical
case, the performance of the coronary angiography simulation presented in section 7.3
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Figure 4.5: Scatter fractions experimentally measured for discs with different diam-
eters. The presented data correspond to: 20×20 field, spine region (squares); 20×20
field, soft tissue region (diamonds); 10×10 field, spine region (triangles); and 10×10
field, soft tissue region (circles). The equations of the linear fits are provided above the
corresponding data sets.

(page 97) was analysed. A profiling4 of the penMesh source code for this particular
application is presented in Fig. 4.6. The profiling displays the percentage of CPU time
used by the PENELOPE routines, the quadric geometry, the octree traversal, and the
ray–triangle intersection tests. It can be observed that the triangle mesh geometry
consumes 46% of the simulation time. This is of the same order of magnitude as the
time expended by the standard quadric geometry in a typical PENELOPE simulation,
although in our case the objects have much more detail. It is worth noting that the
quadric geometry (i.e., PENGEOM) expends a significant amount of time (9.5%), even
though it was only used to track the particles in the air volume surrounding the octree
region.

The performance of the octree structure was also analysed. Figure 4.7 shows an axial
slice, at the center of the phantom heart, of an octree with levels 3, 5, 7, and 9 (the
phantom is described in section 7.1). The simulation performance, in terms of required
computer memory and simulation speed5 as a function of the octree level, is presented

4The profiling was performed using the free software GNU gprof, which can be obtained at the website
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/gprof.html.

5In this application penMesh was compiled using the Intel R©Fortran and C++ compilers for Linux
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Table 4.2: Simulated scatter fractions for x rays scattered by different interaction mech-
anisms (statistical uncertainty given as 2σ). The relative importance of the different
interactions with respect to the total fractions given in Table 4.1 is also shown.

Field Region Scattering Simulated fraction % Total
10×10 soft elastic 0.073 (± 3%) 28.3

inelastic 0.048 (± 2%) 18.6
multiple 0.136 (± 2%) 52.7

spine elastic 0.086 (± 3%) 21.5
inelastic 0.083 (± 4%) 20.8
multiple 0.230 (± 4%) 57.5

20×20 soft elastic 0.077 (± 4%) 15.5
inelastic 0.118 (± 4%) 23.7
multiple 0.303 (± 4%) 60.8

spine elastic 0.076 (± 5%) 11.4
inelastic 0.158 (± 5%) 23.8
multiple 0.430 (± 5%) 64.8

Figure 4.6: Profiling of the penMesh code for the 90 kVp angiography simulation de-
scribed in section 7.3. The percentage of CPU used by the PENELOPE physics routines,
the quadric geometry (PENGEOM), the octree traversal, and the ray–triangle intersec-
tion tests, are displayed.

in Fig. 4.8. Only the memory allocated for the octree is shown; the simulation requires
an additional 346 MB of memory for storing the PENELOPE variables and the raw
triangles.

The presented results show that the octree spatial data structure plays a key role to

(option -O3 -ipo). For the timing tests, the simulation was run in a single CPU from a Dual-Core
AMD R©OpteronTM2 GHz processor.
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(a) (b) (c) (d)

Figure 4.7: Axial slice of the octree data structure sorting the triangles from the tes-
sellated NCAT phantom, at the height of the heart (see Fig. 7.1). Four different octree
levels are shown: (a) level 3, (b) level 5, (c) level 7, and (d) level 9.

(a) (b)

Figure 4.8: Performance of the penMesh code, for the 90 kVp angiography simulation,
using different levels of the octree structure: (a) computer memory required for storing
the octree structure (346 MB are allocated for the rest of the code); (b) simulation speed
(primary x rays per second in a single CPU).

increase the code efficiency. The octree accelerates the simulation five orders of mag-
nitude: from less than one particle per second, to more than 104 particles per second.
For octree levels higher than seven the acceleration saturates and the simulation speed
is almost constant. Indeed, the simulation is expected to run slower above a certain
octree level due to the extra time expended in the octree traversal. The number of
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octree nodes increases exponentially with the octree level, because the implemented
termination condition is very restrictive and many nodes are subdivided up to the max-
imum level. The computer memory used to allocate the octree structure also increases
exponentially, although only above seven octree divisions the memory expended in the
octree is larger than the memory used to store the raw triangles. Analysing the timing
and memory usage results we found that a level eight octree gives an optimum perfor-
mance in our application, with memory requirements available on standard worksta-
tions (about 1 GB RAM).
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The statistical variance of Monte Carlo calculations is, when everything else remains
the same, inversely proportional to the simulation time (see Eq. 2.2). For this reason,
and in spite of the fact that fast computers are available nowadays at low cost, there
are many situations where obtaining a reasonably low statistical uncertainty involves
a prohibitively large amount of computing time.

A simple way to overcome the previous limitation is by having recourse to parallel com-
puting, that is, by executing the simulation in multiple CPUs at the same time. Various
strategies and tools have been developed to facilitate the implementation of this solu-
tion, e.g., MPI, openMP, PVM and openMOSIX. All these have been successfully used
with Monte Carlo codes, but they have the drawback of requiring the modification of the
sequential code and the installation of additional software, which may be inconvenient
for some users.

In general, the parallelisation of an algorithm is not a straightforward task and it may
even be unfeasible. Fortunately, it can be achieved relatively easily in the case of a
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Monte Carlo radiation transport simulation code because each random history is sam-
pled independently from the others. The particles can be simply grouped into several
batches and executed in parallel on different computers or in different computing ker-
nels of multiprocessor computers. The results yielded by the independent runs of the
same code can be combined a posteriori to obtain a single final result with a reduced
statistical uncertainty. Some authors call this approach process replication (or domain
replication) to distinguish it from a possible alternative, domain decomposition, which
involves segmenting the space of possible states of the system, e.g., by splitting the
geometry or the energy range into pieces and assigning each piece to a different CPU.
The “natural” simplicity of the process replication scheme has led to the denomination
“embarrassingly parallel” used by some authors to refer to Monte Carlo algorithms (see,
e.g., Srinivasan et al. 2003).

In order to sample the probability distributions that characterise the system to be sim-
ulated it is necessary to have a source of randomness, typically a string of numbers
uniformly distributed between 0 and 1. True random numbers can be generated using
physical devices such as radiation detectors or semiconductors, but they are too slow
compared with computer speeds and their unpredictable nature makes it difficult to
debug the programs or check the results. For these reasons most Monte Carlo codes
use pseudo-random number generators, which provide a cyclic sequence of numbers
produced by deterministic algorithms (L’Ecuyer 1990; Knuth 1998). These algorithms
must be carefully chosen so that the correlations between the generated numbers are
not apparent. Thus, they are required to pass several statistical tests intended to check
the uniformity and independence of the produced sequence (Coddington 1994; Srini-
vasan et al. 2003).

In this chapter, a brief description of the basic properties of pseudo-random number
generators used in Monte Carlo codes, and a discussion of their use in parallel calcu-
lations, are provided. Section 5.2.1 introduces a set of Linux scripts and FORTRAN
programs, named clonEasy, that implement the process replication approach on a set
of “clone” CPUs governed by a “master” computer. This software package readily per-
mits parallel computations to be carried out without requiring additional software or
significant modifications of the original, sequential, code. Finally, a related software
tool named seedsMLCG, which provides the information necessary to initialise disjoint
sequences of any pseudo-random number generator based on a multiplicative linear
congruential algorithm, is presented in section 5.2.2. This auxiliary tool can be used,
for example, to obtain disjoint sequences of RANECU, the generator used in PENE-
LOPE.
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5.1 Pseudo-random number generators

The best pseudo-random number generators are those that perform as well as the true
random number generators in the randomness tests and have a solid mathematical
basis that justifies their essential properties and cycle length. A theoretical proof of
their quality is an important point since biased results due to subtle correlations have
been reported in the past (see e.g., Ferrenberg and Landau 1992).

Among the most well studied and extensively used algorithms for pseudo-random num-
ber generators there are those based on recursions with modular arithmetic. These
algorithms take a few input integer numbers, called seeds, and produce a cyclic se-
quence of integers which can be subsequently transformed into real values uniformly
distributed between 0 and 1. A family of algorithms that belong to this class is the so-
called multiplicative linear congruential generators (MLCGs). Although more recent
generators are known to perform better in some aspects and have therefore superseded
MLCGs for most applications, it can be argued that congruential generators are con-
ceptually simpler and their weaknesses well understood. In fact, generators based on
combinations of MLCGs (such as RANECU, which is described in section 5.1.1) have
been extensively used in the past and are still in use by numerous computer codes. The
Monte Carlo code PENELOPE, for instance, has been amply benchmarked against ex-
perimental results and other codes since its first release in 1996, and no bias that can
be attributed to its pseudo-random number generator has been detected to date.

An MLCG is initialised with a single seed, an integer value S0. It produces each term
of the sequence (Si, i = 0, 1, . . .) by multiplying the previous value by an integer a and
calculating the modulo m, i.e., computing the remainder of the integer division by m.
The possible remainders are all the integers from 0 to m−1. A null remainder, however,
should be avoided to prevent the generator from collapsing into a sequence of zeroes.
A real value ui in the interval [0,1) can be obtained by dividing Si by m. The resulting
sequence can thus be expressed by

Si+1 = (aSi) MOD m , ui =
Si

m
. (5.1)

The largest possible period of an MLCG is m−1. In case m is restricted to be repre-
sentable in a digital computer by a 32-bit-long signed integer, the maximum attainable
period is 231−1 ∼ 2·109. This period is clearly insufficient for present-day computers
since a single CPU working at a clock speed of 3 GHz can perform nearly 3·109 opera-
tions per second and, therefore, it could generate the whole sequence in a few seconds.
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This limitation can be overcome by combining two or more MLCGs, as it is explained
below.

A known weakness common to all MLCGs is, as pointed out by Marsaglia (1968), that
if groups of n successive random values are used as the Cartesian coordinates of points
in an n-dimensional space, they do not uniformly fill up the volume. Instead, they lie
on a relatively small number of parallel hyperplanes producing a lattice structure. The
maximal distance between adjacent hyperplanes is a convenient measure of the quality
of the generator and its determination is the goal of the so-called spectral test (Knuth
1998). When the distance between hyperplanes is small the illusion that points are
uniformly distributed in the hypercube is reinforced. This criterion is thus frequently
employed to find the best multiplier and modulus for an MLCG.

Another widely used algorithm for pseudo-random number generation, based on a re-
cursion with modular arithmetic, is the lagged Fibonacci. The generator RCARRY im-
plements an extension of this algorithm called subtract-and-borrow (Marsaglia et al.
1990). Its initialisation requires 24 seeds (Si, i = 0, . . . , 23) and a carry bit c23 (equal to
either 0 or 1), and it generates the elements of the sequence as

Si = (Si−10 − Si−24 − ci−1) MOD 224 , i > 23 , (5.2)

where ci−1 (i > 24) is 0 if (Si−11 − Si−25 − ci−2) ≥ 0 and it is 1 otherwise. This generator
has a very long period (∼ 5 · 10171) but it fails some statistical tests (Vattulainen et al.
1995) and, therefore, its use may compromise the reliability of the simulation results.
By studying RCARRY from the viewpoint of the dynamics of chaotic systems Luescher
(1994) showed that the detected correlations are short-ranged and that they can be
eliminated by simply discarding (p − 24) elements of every p consecutive elements of
the sequence, where p is a fixed user-defined parameter that determines the quality
(i.e., randomness) of the resulting generator. It can be argued that the corresponding
computer code, named RANLUX (James 1994), has therefore been proven to produce
random sequences of the highest quality, but the price to be paid is a low efficiency, that
is, the quantity of pseudo-random numbers produced per unit time is relatively small
compared with other algorithms.

Another heavily used generator is the Mersenne Twister1, which is based on the state-
of-the-art algorithm proposed by Matsumoto and Nishimura (1998). This algorithm
implements a version of the linear feedback shift register (Knuth 1998), which involves

1More information on the Mersenne Twister generator, and sample implementations in different com-
puter languages, can be obtained at the website:
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html.
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binary operations (i.e., modulo 2 operations) with the bits of the initial 624 seeds. The
Mersenne Twister is becoming increasingly popular due to the fact that it is consid-
erably faster than RANLUX and RANECU and that it has passed the most relevant
randomness tests available. However, although it has been demonstrated that the gen-
erated values are equidistributed in 623 dimensions and that the cycle period is of the
order of 106001, the theoretical basis for its random properties is not as established as it
is for RANLUX and its possible weaknesses are not well understood.

The string of random numbers employed by each processor participating in a parallel
Monte Carlo simulation should be uncorrelated with those used by the other processors
in order to guarantee the statistical independence of the different partial results. The
ability to produce these sequences is thus an important feature of a pseudo-random
number generator. While some algorithms can generate long independent strings in a
simple way (e.g., RANLUX produces one of these sequences for each integer value given
to its initialisation routine, see James 1994), more elaborated techniques are required
in other cases (for the Mersenne Twister they can be produced using a slightly modified
version of the generator in each node, as proposed by Matsumoto and Nishimura 2000).
MLCGs can not intrinsically produce independent sequences, but these can be obtained
using a simple procedure, as explained in section 5.1.2. The software library “Scalable
Parallel Random Number Generators Library” (Mascagni 2000) can be used to produce
uncorrelated sequences for a number of popular generators.

5.1.1 RANECU generator

The pseudo-random number generator RANECU was developed by L’Ecuyer (1988). It
combines the sequences S

(1)
i and S

(2)
i (i = 0, 1, . . .) from a pair of MLCGs with moduli

m(1) and m(2) and multipliers a(1) and a(2), respectively, to produce a new sequence Si

defined by
Si = (S(1)

i − S
(2)
i ) MOD (m(1) − 1) . (5.3)

The parameters of the two MLCGs used in RANECU, chosen so as to yield optimal re-
sults in the spectral test, are shown in Table 5.1. The period of the combined generator
is the least common multiple of the periods of S

(1)
i and S

(2)
i , and its lattice structure is

considerably better than that of its individual components, as explained below.

RANECU was coded in FORTRAN 77 by James (1990), for computers using registers
with a minimum of 32 bits. The FORTRAN code included in PENELOPE, which differs
from the one proposed by James mainly in that it returns a single value at each call
instead of an array of values, is displayed in Fig. 5.1. The reliability of RANECU stems
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Table 5.1: Parameters of the two multiplicative linear congruential generators used by
RANECU.

Generator Modulus (m) Multiplier (a)

S
(1)
i 2147483563 40014

S
(2)
i 2147483399 40692

Figure 5.1: FORTRAN code of the pseudo-random number generator RANECU, which
is included in the PENELOPE package.

from the well known mathematical basis of congruential generators and the fact that
it has successfully passed a number of statistical tests (L’Ecuyer 1988; Knuth 1998;
Coddington 1994; Gammel 1998). Moreover, it has been satisfactorily used for many
years in a number of Monte Carlo codes without showing any apparent artefact. A
version of RANECU (called RAN2) that incorporates an additional shuffling algorithm
is supplied with the book Numerical Recipes (Press et al. 1997).
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RANECU’s two MLCGs fulfil the following conditions:

1. m is a large prime number and a is a primitive root modulo m.

2. a2 < m.

3. (m(1) − 1)/2 and (m(2) − 1)/2 are relatively prime.

Condition 1 is equivalent to requiring that the MLCG attains its maximal period m−1,
i.e., that all the integer values between (and including) 1 and m − 1 are produced once
before repeating the initial seed. The second condition permits an MLCG to be coded in
an efficient and portable way with integers of bit length b such that m < 2b−1 by having
recourse to the so-called approximate factoring method (L’Ecuyer and Côté 1991). This
method is used to compute the product of the two integers Si and a modulo m without
overflow hazard (i.e., without exceeding the length of a signed long integer) by taking
advantage of the identity

(aSi) MOD m = [a (Si MOD q)− bSi/qc r]MODm , (5.4)

where q = bm/ac and r = m MOD a are the quotient and remainder, respectively, of
the integer division of m by a. This equation is directly implemented in the RANECU
source code shown in Fig. 5.1: for the first MLCG, q = 53668 and r = 12211; for the
second, q = 52774 and r = 3791; variables I1 and I2 contain the quotients bSi/qc; and
IZ is the combined seed, which is converted into a double-precision real value between
0 and 1 multiplying by USCALE. Since RANECU uses moduli slightly smaller than 231,
its MLCGs can be coded using integer arithmetic in 32 or more bits. Finally, the third
condition ensures that the combination of the two MLCGs produces a generator which
also attains its maximal possible period, (m(1)−1)(m(2)−1)/2, which is the least common
multiple of the individual periods m(1) − 1 and m(2) − 1. For the moduli of Table 5.1 this
yields a total period of 2305842648436451838 ' 2.3 · 1018.

It is a well-known fact that some generators have long-range correlations and, hence,
it is not advisable to use a large fraction of the sequence in a single simulation. This,
compounded with the increasing computing power available per monetary unit and the
widespread use of computer clusters, is bound to render RANECU obsolete in the long
run. Presently, it would take of the order of 104 years to cycle RANECU on a single-
processor computer working at a clock speed of 3 GHz (assuming that a call to the
RANECU function takes about 40 clock cycles to complete).

Using the general formula for the combination of MLCGs described by l’Ecuyer
(L’Ecuyer 1988), of which Eq. 5.3 is a particular case, it is possible to extend RANECU
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with additional MLCGs, provided that all of them meet the three conditions presented
above (the third condition must then be applied to any pair of m values). Particularly,
the MLCG with multiplier a(3) = 45742 and modulus m(3) = 2147482739, also studied
by l’Ecuyer (L’Ecuyer 1988), can be used to produce an extension of RANECU with a
sequence defined by

Si = (S(1)
i − S

(2)
i + S

(3)
i ) MOD (m(1) − 1) . (5.5)

This “extended” RANECU uses three initial seeds and has a period of ∼ 5 · 1027.

The structural properties of combined MLCGs are much better than those of single
MLCGs. To study the lattice structure of the generators, a plot of points with Cartesian
coordinates consisting of two (or three) consecutive random values in the interval (0,1)
can be employed. It can be calculated that for the two MLCGs in Table 5.1 and the
third one proposed above as an extension the number of parallel hyperplanes (straight
lines in the 2D case) that contain all these points is 65535 at most (Marsaglia 1968).
In contradistinction, RANECU requires of the order of 109 lines. As shown in Figs. 5.2
and 5.3, the lattice structure of the MLCGs is apparent in the represented x interval,
whereas the points from the extended RANECU (and similarly for the original version)
seem to be truly randomly distributed due to the much larger number of hyperplanes
present.

5.1.2 Parallel execution with multiplicative congruential generators

Statistically independent sequences of pseudo-random numbers for parallel executions
can be obtained from an MLCG (L’Ecuyer and Côté 1991; Mendes and Pereira 2003)
by applying the methodology described by L’Ecuyer (1988). As he states, an important
property of MLCGs is that any term in the cycle can be obtained without calculating the
intermediate values. Indeed, given an initial seed S0, the term Si can be found directly
using (cf. Eq. 5.1)

Si = (aiS0) MOD m = [(ai MOD m) S0]MODm . (5.6)

In order to compute ai MOD m, for large values of i, we have adapted to modular arith-
metic the right-to-left binary method for exponentiation described by Knuth (1998, page
462). The basic idea behind this method is that a high power of a can be obtained by
successively squaring a. For instance, since 6 is written as 110 in binary, a6 can be ex-
pressed (by reading the binary from right to left) as (a2)2 ·a2, which involves evaluating
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Figure 5.2: Graphical representation of the lattice structure of the extended RANECU
generator (dots) and of its MLCG components. Triangles correspond to the first MLCG
employed in RANECU (the second MLCG, not shown, produces a similar pattern) and
open circles to the third MLCG included in the extended generator (see text).

only three products. Notice that the approximate factoring method described above (see
Eq. 5.4) may not be applicable here to compute a6 (or any other power) because some
intermediate factors, a2 and (a2)2 in our example, may not fulfil the condition that their
squares are less than m, as required by condition 2 in the previous section. To over-
come this difficulty and to calculate the product without overflow, we have recourse to
the algorithm proposed by L’Ecuyer and Côté (1991). It consists of using the so-called
Russian peasant multiplication scheme (basically, halving one factor while doubling the
other) until the halved factor complies with the aforesaid condition 2, at which point
the approximate factoring method is applied.

For backward jumps (that is, i < 0 in Eq. 5.6) we define

ai MOD m ≡ ã(−i) MOD m (5.7)

where ã is the multiplicative inverse of a modulo m, that is,

a ã MOD m = 1 . (5.8)
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Figure 5.3: Three-dimensional lattice structure of the second MLCG used by RANECU.

The value of ã can be evaluated as ã = a(m−2) since, when a and m are coprime,

a(m−1) MOD m = 1 , (5.9)

an identity known as Fermat’s little theorem (see e.g., Knuth 1973). Alternatively, the
inverse can be obtained using the so-called extended Euclid’s algorithm (Knuth 1973;
Knuth 1998). The latter is an adaptation of the algorithm conceived by Euclid circa
300 B.C. to find the greatest common divisor (GCD) of two integer numbers m and a by
taking advantage of the fact that, if r is the remainder of the integer division of m by a,
then

GCD(m,a) = GCD(a, r) . (5.10)

By iterating the former expression, a division with null remainder is eventually found,
yielding the GCD as the last non-null remainder. The extended algorithm uses the
quotients and remainders of the intermediate iterations to find integers m̃ and ã such
that

a ã + m m̃ = GCD(m,a) (5.11)

by recursively expressing each residue as a linear combination of the original a and m

values. When m and a are coprime, as is the case with the MLCGs considered here, we
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find
a ã + m m̃ = 1 , (5.12)

known as Bézout’s identity—despite some authors attribute it to Bachet de Méziriac.
Now, since m MOD m = 0, it follows that ãMOD m is the sought inverse. We have found
that the extended Euclid’s algorithm takes less computer time than evaluating a(m−2)

and, hence, the former is the method of choice in our routines.

With all these ingredients, each CPU in a parallel calculation can be fed with a seed
that initiates a string of pseudo-random numbers that does not overlap other CPU
sequences. Indeed, if J is an integer larger than the number of calls to the pseudo-
random number generator performed by any of the CPUs during the simulation, then
the k-th CPU (k = 0, 1, . . . ,K − 1) is provided with the sequence {SJk+j | j = 0, 1, . . . , J −
1}. This method is known as sequence splitting and has the advantage of using the
original generator without alterations. A drawback of this approach are the long-range
correlations of the MLCG, which may become particularly relevant if J is related to m,
for instance if both are powers of 2.

A different procedure to obtain disjoint sequences is the jumping or leapfrog tech-
nique. This method consists of jumping a fixed distance K along the generator cycle
before the next seed is obtained. The resulting subsequence for the k-th CPU is thus
{SKj+k | j = 0, 1, . . . , J − 1}. Since, from Eq. 5.6, S(Kj) = (aK)j S0 MOD m , an MLCG
can be modified to leapfrog the sequence by merely replacing the multiplier a by aK

or, equivalently, by aK MOD m. Nonetheless, the generator with the new multiplier
may be cumbersome to code in a portable way because it may not comply with condi-
tion 2 mentioned above. Furthermore, it is not clear whether the resulting sequence of
pseudo-random numbers is as good as the original since all the tests (e.g., the spectral
test) have been performed using the latter. In other words, the correlations between
numbers K positions apart in the original sequence are, generally speaking, less well
known. Taking these considerations into account, we have opted for the sequence split-
ting method.
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5.2 New parallelisation software

5.2.1 clonEasy

The clonEasy package is a collection of Linux scripts and auxiliary FORTRAN programs
that implement Secure Shell-based communication2 between a “master” computer and
a set of “clones”. They perform simple operations, such as upload and download files or
compile and execute programs, with the aim of running a code that performs a Monte
Carlo simulation on all the clones at the same time. The scripts that are provided with
clonEasy are briefly explained below:

clon-setup : sets up the environment for clonEasy to work.
clon-upload : uploads files from the master to the clones.
clon-make : executes a compilation script on each clone.
clon-run : uploads the pseudo-random number generator

seeds and executes a program on all clones.
clon-download : downloads files from the clones to the master.
clon-remove : removes files and directories from all clones.

Most of these scripts take arguments; when not enough of them are provided, a message
is issued to the screen to inform the user. The scripts are written using the syntax of
the bash shell and, consequently, they may run under various Unix flavours, although
we have only tested them on Linux distributions. The README file distributed with
the package gives a detailed description of their use.

Secure Shell is used to execute commands on a remote machine and Secure Copy is
used to move files across the net. Thus, any computer on the Internet with a Secure
Shell server installed can be used as a node of a virtual computer cluster for parallel
calculations. It is not necessary to install any additional software on the clones or the
master and the sequential Monte Carlo source code does not need to be modified, except
for the fact that the initial random seeds for the pseudo-random number generator are
required to be read from an external file. A FORTRAN program included in clonEasy
and invoked by the scripts mentioned above prepares the communication with all the
clones that are listed in an external ASCII file, named clon.tab hereafter. In this file
each clone is identified by a name or IP address and it is given a unique nickname that
will be used as a prefix for the files downloaded to the master. Additionally, clon.tab

2For a description of the features and use of an open distribution of Secure Shell, the reader may
consult, for instance, the website http://www.openssh.com.
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also specifies the compilation command and the seeds for the generator that are to be
used for each clone. By default clonEasy expects to find two integer seeds per clone,
which may be for example the initialisation values of RANECU, or the “luxury level”
and the seed that are needed to initialise RANLUX. If more than two seeds are needed
the Monte Carlo code can be adapted so as to use the first introduced number as an
index in a list of predefined set of seeds or, alternatively, the clonEasy source code could
be adapted conveniently. As it was explained before, since the same code is executed
on all the nodes with the same initial conditions, the user should carefully choose these
seeds to produce independent sequences in each processor. As an example, the sample
file clon.sample.tab distributed with the package is displayed in Fig. 5.4.

Figure 5.4: Sample list of clones (clon.sample.tab) distributed with clonEasy.

The various processes that run in parallel do not need to communicate with each other.
When all of them have finished, their outputs are downloaded to the master where
they can be combined to obtain the global result with a reduced statistical uncertainty.
The FORTRAN program COMBINE, supplied with clonEasy, can be used to perform
this task. Its input file can be adapted to read a wide variety of output file formats.
COMBINE looks for some user specified keywords inside the output files and reads
the value of the quantity of interest qk (k = 0, 1, . . . ,K − 1) produced by each clone. It
can also process output files containing a data set, e.g., an energy spectrum. After Nk

histories have been simulated by the k-th clone producing the value qk with variance
σ2(qk), the global average value q and its standard deviation σ(q) are obtained using
the relations

q =
1
N

K−1∑
k=1

Nk qk (5.13)
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and

σ(q) =
1
N

√√√√K−1∑
k=1

N2
k σ2(qk) , (5.14)

where

N =
K−1∑
k=1

Nk (5.15)

is the total number of histories simulated. Notice that Eq. 5.14 is derived from 5.13 by
taking advantage of the independence of the various qk ’s. The overall relative uncer-
tainty ∆ is obtained as

∆ = 100
σ(q)

q
. (5.16)

The intrinsic and absolute simulation efficiencies are defined by

εN =
1

N ∆2
(5.17)

and
ε =

N

t
εN , (5.18)

respectively, where N/t stands for the total simulation speed, in histories per unit clock
time (i.e., real time), which would be achieved if all the clones were running in single-
process mode. We have

N

t
=

K−1∑
k=1

Nk

tk
, (5.19)

where tk is the CPU time (that is, user time) employed by the k-th clone to simulate Nk

histories. Note that εN depends only on the performance of the simulation algorithm
per unit simulated history, regardless of any timing considerations—hence the term
“intrinsic”.

The absolute simulation efficiency increases approximately linearly with total CPU
power, or what is equivalent in the case that all CPUs are identical, with the num-
ber of processors. This assertion is quite obvious from the considerations made above,
since no time is spent intercommunicating clones or sending information between these
and the master, except when required by the user. In consequence, N/t is proportional
to the computer power available and, since εN is independent of this quantity, Eq. 5.18
reflects the claimed linearity.
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5.2.2 seedsMLCG

The seedsMLCG code uses Eq. 5.6 to calculate elements of the sequence of an MLCG
that are located a certain distance ahead, or behind, the input seed. This code is in-
tended to provide the set of initial seeds required to implement the sequence splitting
technique and, thus, allow the parallelisation of the simulations.

On execution, the user is prompted to introduce the modulus and multiplier of an
MLCG and the separation (that is, the number J of intermediate random values) to
be jumped between consecutive seeds. Since integer numbers with sign are restricted
to 32 bits in most computers, the input separation is limited to the value 231 − 1. For
this reason, the program also allows the user to input the separation as the exponent
of a power of 10, in order to efficiently split the sequence of generators with very long
periods. Negative distances can be entered to jump the sequence backwards, with the
aid of Eq. 5.7. This capability may be useful for debugging purposes (for instance, to
reproduce a certain past history). Figure 5.5 shows the output from a seedsMLCG test
run.

The FORTRAN 77 source code of seedsMLCG is accompanied by three sample input
files containing the parameters that define the two MLCGs employed by RANECU and
the MLCG used in the extended version proposed in previous sections. These files are
read by the program by redirecting the keyboard input with the ‘<’ sign from the system
command line. In Table 5.2 a set of 30 seeds calculated with the three sample input
files is presented. Each seed starts a disjoint subsequence with 1015 pseudo-random
numbers. The generation of each seed takes a less than one millisecond on a modern
computer.

69



5.2. New parallelisation software

Figure 5.5: Test run output for seedsMLCG.
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Table 5.2: Seeds that start 30 disjoint subsequences separated by 1015 numbers, for the
two MLCGs in RANECU and for the third MLCG proposed as an extension in Eq. 5.5.

RANECU seed 1 RANECU seed 2 Extension seed
1 1 1

918882992 858672133 35977198
2069007070 1309916099 62205517

944675654 1438406465 392697167
149156960 257442270 820143318
360537627 133123709 609065445

1446789139 1248992867 917376822
888673974 2014364429 382392929

258943 664687714 1007129025
1434784182 1598489021 804921119

698429770 1978724894 1737229562
1590179518 797341276 755191382

658812725 1829379549 1732001184
1141813962 1863091192 672741026

970004038 827424326 1888778569
156172654 2028805919 1036204498
479486796 238097920 979439700

1926622811 1383430112 1507290784
1024191502 938910203 145727789

914109165 803254235 275064188
996688518 2093478795 206594468

1343291889 1203423504 1065781201
1783116228 282077422 1592352438

552569869 1861318300 1246750375
839738220 1673889598 1459353822

1436544680 196014388 1665060735
1590006138 1754830438 1909717237

88748046 1574175136 170682952
940315134 1848214072 1826881820

1676463528 1603536943 322770548
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5.3 Computer cluster Argos

The clonEasy package and the seedsMLCG code were employed in most of the studies
presented in this thesis. In order to perform the simulations shown in sections 6.1, 6.2
and 7.4, the clonEasy input file was adapted to the Linux-based heterogeneous clus-
ter Argos (argos.upc.es), located at the Institute of Energy Technologies (Universitat
Politècnica de Catalunya; Avinguda Diagonal 647, 08028 Barcelona, Spain).

At the time this thesis was concluded the Argos cluster was composed of 35 computers,
with a total of 74 processors3, interconnected with a 1 Gbps Ethernet. Each computer
was accessed through the Secure Shell protocol using the computer IP address inside
the private local area network. A short description of the computers found in the cluster
is provided in Table 5.3.

The status of the Argos cluster and the utilisation of its resources are controlled
by the distributed monitoring system Ganglia (http://ganglia.sourceforge.net)
and the command line utility Jmon (http://www.hlrn.de/doc/jmon). The infor-
mation collected by the Ganglia server is available in real-time at the public website
http://argos.upc.es/ganglia. This web interface also provides comprehensive
statistics of the cluster usage during the last year.

Table 5.3: Description of the computers in the Argos cluster. The data provided for each
computer are: number of CPUs, processor brand and model, clock speed and available
RAM memory.

Description Processors Speed RAM memory
Main server3 (argos.upc.es) 4 × Intel XeonTM 5130 2.0 GHz 4.0 GBytes
Legacy web server3 (sparc) 4 × TI UltraSparcTM II 0.25 GHz 0.25 GBytes
Nodes 1 to 10 1 × AMD AthlonTM XP 1.5 GHz 0.5 GBytes
Nodes 11 to 16 1 × Intel PentiumTM 4 3.0 GHz 0.5 GBytes
Nodes 17 to 22 2 × Intel PentiumTM 4 3.4 GHz 0.5 GBytes
Nodes 23 to 33 4 × Intel XeonTM 3.0 GHz 2.0 GBytes

3The main server and the web server were not used in the calculations.
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In this chapter the simulation tools developed in chapters 3, penEasy, and 5, clonEasy,
are applied to selected problems of radiotherapy and dosimetry. In section 6.1, the
simulation of the response of a metal-oxide-semiconductor field-effect transistor (MOS-
FET) detector employed in entrance in vivo dosimetry during radiotherapy treatments
is presented. This work was presented at the XV Congreso Nacional de Física Médica
(June 28, 2005; Pamplona, Spain), the biannual conference of the Spanish Medical
Physics Society. An extended version of the presented work was published by Panettieri
et al. (2007). Section 6.2 presents the simulations of a teletherapy and a brachytherapy
treatments. These simulations were intended to test penVox, the voxelised geometry
package employed by penEasy. Some preliminary results of these two studies were pre-
sented at the XIV Congreso Nacional de Física Médica (June 17, 2003; Vigo, Spain),
and at the IV Jornades de Recerca en Enginyeria Biomèdica (June 9, 2004; Barcelona,
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Spain), organised by the CREBEC (Catalan Biomedical Engineering Research Center).
Finally, section 6.3 presents the simulation of an internal dosimetry procedure per-
formed with a voxelised knee phantom and two semiconductor detectors. A benchmark
of the penEasy data with experimental measurements and with the Monte Carlo codes
EGS 4 and MCNPX 2.5 is provided. This simulation was performed in the framework
of an international comparison on Monte Carlo modelling proposed by the European
Union Coordinated Network for Radiation Dosimetry (Gómez-Ros et al. 2007). A de-
tailed description of this study and the results of the intercomparison, including our
simulation, has recently been published by Gómez-Ros et al. (2008).

6.1 MOSFET detectors for entrance dosimetry

An important application of Monte Carlo simulation is the study of radiation detectors
and dosimeters. The simulation of ionisation chambers, for instance, has played an
important role because an accurate characterisation of these devices is essential to
assess the reliability of dosimetric measurements (Andreo 1991; Nahum 1996).

The simulation of clinical dosimeters is far from trivial due to two reasons. First, in
most applications the radiation field is much larger than the sensitive region and,
therefore, only a small fraction of the simulated histories contributes to the deposited
energy. This gives rise to very inefficient simulations (i.e., long computing times), a
problem that can be tackled by using variance reduction techniques and parallelising
the execution. Second, dosimeters may have an optically thin sensitive volume, which
implies that the number of interactions per passing particle is also small. In this situa-
tion the so-called interface artifacts become prominent, thus challenging the condensed
history algorithm employed in virtually all general-purpose electron Monte Carlo codes
(see section 2.2). A careful selection of the transport parameters inside and in the close
vicinity of the sensitive volume is required to limit the influence of these effects on the
results. For instance, the configuration of EGSnrc and PENELOPE for the simulation
of ionisation chambers has been discussed in detail by Kawrakow (2000a) and by Sem-
pau and Andreo (2006), respectively.

In this section the simulation of radiation detectors based on the dual bias dual MOS-
FET technology is presented. A detailed description of these devices was provided
by Soubra et al. (1994). MOSFETs can be used for entrance in vivo dosimetry in
radiotherapy treatments. The small size, isotropic response and low dependence on
temperature changes allow the placement of these detectors on the patient skin and in-
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side the treatment field without introducing a significant perturbation. Furthermore,
the immediate read-out capability can provide a real-time validation of the delivered
treatment, which is interesting for quality assurance purposes.

In order to measure entrance dose the dosimeter has to be covered with a build-up cap to
guarantee that the sensitive region is under electronic equilibrium conditions. For high-
energy photon beams, the response under different build-up caps was experimentally
studied by Jornet et al. (2004) at the Hospital de la Santa Creu i Sant Pau (Barcelona,
Spain). An intriguing result of their work was that the response of the MOSFET de-
tector depended on the cap composition and, in particular, that the response under a
metallic cap was significantly higher than under water-equivalent caps. The purpose
of the simulations presented in this section was to reproduce the experimental results
and explain the observed overresponse under the metallic cap with the sensor exposed
to a 18 MV photon beam.

The preliminary work presented here was extended and published by Panettieri et al.
(2007). The main improvements introduced in the mentioned paper are the use of: (i)
more aggressive variance reduction techniques; (ii) a more realistic description of the
geometry that was provided by the manufacturer; (iii) several photon sources, namely,
monoenergetic beams from 2 to 10 MeV, a 60Co machine beam, and 6 and 18 MV beams
generated by a linear accelerator; and (iv) experimental measurements obtained with
thermoluminescent detectors.

6.1.1 MOSFET geometry

A high-sensitivity MOSFET model TN-1002RD manufactured by Thomson and Nielsen
Electronics, Ltd. (Ottawa, Canada) was modelled with the PENELOPE quadric geom-
etry package PENGEOM (see section 2.3). The geometry was based on the simplified
description given by Wang et al. (2004), which ignores the dual transistor internal
structure and the electric contacts. The MOSFET sensitive region was defined as a 1-
µm-thick SiO2 box with an area of 0.2×0.2 mm2, centered on the top of a 1.0×1.0×0.525
mm3 silicon substrate. The silicon dice was covered with a semi-ellipsoid epoxy bulb
(1.0 mm thick, 2.0 mm wide) and attached to a kapton cable (0.25 mm thick, 2.0 mm
wide), as shown in Fig. 6.1.

Three different build-up caps were defined. The simplest cap was a 3×3×3 cm3 cube
made of water-equivalent bolus material (density 1.02 g/cm3). The second cap consisted
of a 2 cm radius hemisphere made of polystyrene (density 1.03 g/cm3). Finally, the
third case reproduced a metallic cap from a P30 diode detector. This cap was made of a
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tungsten shell (external diameter 10.0 mm and thickness 1.6 mm, density 17.0 g/cm3)
covered by a thin plastic layer (thickness 0.5 mm, density 1.03 g/cm3). The empty space
between the tungsten shell and the detector—a MOSFET detector is smaller than a
diode—was filled with bolus. A cross section of the detector inside the metallic cap
is shown in Fig. 6.1. A 10×10×10 cm3 water phantom was defined downstream the
MOSFET.

Figure 6.1: MOSFET detector under a P30 metallic build-up cap. See text for details.

6.1.2 PENELOPE configuration

The difficulty of the MOSFET simulation stems from the small size of its sensitive
region: just 4·10−5 mm3. PENELOPE can accurately reproduce the response of these
devices thanks to its ability to perform detailed, that is, collision-by-collision, transport
of charged particles, as explained in section 2.3. The detailed simulation completely
eliminates the aforementioned interface artefacts, although its application in the whole
geometry would be extremely time consuming and, thus, impractical. Instead, it was
only used inside the sensitive SiO2 layer. Mixed simulation with very conservative
transport parameters was employed in two small volumes of epoxy and silicon (the
skin) surrounding the sensitive region. Larger step lengths were allowed in regions
located far from the detector. The transport parameters for the P30 case are given in
Table 6.1.

To speed up the simulation, two variance reduction techniques were implemented,
namely, interaction forcing and range rejection. Interaction forcing artificially in-
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Table 6.1: PENELOPE transport parameters used in the simulation of a MOSFET
detector under a P30 cap. The electron, photon and positron absorption energies (Eabs)
are given in eV; the maximum step length (dsmax) in cm. Note that detailed simulation
was used in the SiO2 layer.

Eabs(e−) Eabs(ph) Eabs(e+) C1 C2 WCC WCR dsmax Description
1.0e2 1.0e2 1.0e2 0.00 0.00 0.0e0 0.0e0 — SiO2

1.0e2 1.0e2 1.0e2 0.02 0.02 1.0e2 1.0e2 3.5e-3 Silicon skin
1.0e4 1.0e3 1.0e4 0.03 0.03 1.0e4 1.0e3 1.0e-3 Silicon cube
1.0e2 1.0e2 1.0e2 0.02 0.02 1.0e2 1.0e2 3.5e-3 Epoxy skin
1.0e4 1.0e4 1.0e4 0.03 0.03 1.0e5 1.0e3 5.0e-2 Bolus
1.0e4 1.0e4 1.0e4 0.03 0.03 1.0e5 1.0e3 5.0e-3 Epoxy
1.0e4 1.0e4 1.0e4 0.05 0.05 1.0e5 1.0e3 3.0e-3 Kapton
1.0e4 1.0e4 1.0e4 0.03 0.03 1.0e5 1.0e3 2.0e-2 Tungsten
1.0e6 1.0e5 1.0e6 0.03 0.03 1.0e6 1.0e3 5.0e-3 Plastic
5.0e4 1.0e4 5.0e4 0.05 0.05 5.0e4 5.0e3 1.0e30 Water

creased the photon interaction probability inside the skin to produce, on average, one
virtual interaction per crossing photon. To keep the simulation unbiased, the appropri-
ate statistical weight was assigned to the generated secondary particles. Range rejec-
tion was applied to electrons and positrons that had a very low probability of reaching
the sensitive region. At each electron (positron) step, the range (within the continuous
slowing down approximation) was read from a table kept in memory by PENELOPE.
The particle was discarded whenever the distance to the silicon oxide was more than
1.33 times its range, which was estimated in the MOSFET lowest density material
(epoxy) and using a tabulated energy above the actual value to avoid time consum-
ing interpolations. As a result the particle range was overestimated, which reduced
the chance of removing particles that could contribute to the measurement. Range re-
jection produced a significant acceleration of the simulation because most secondary
electrons and positrons were created in the cap or the water phantom, quite far from
the MOSFET sensitive region.

The evaluation of MOSFET responses was the first application that made extensive use
of the clonEasy parallelisation package described in chapter 5. The simulations were
executed in the Argos cluster (see section 5.3).
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6.1.3 Response using different build-up caps

This section presents the preliminary results of the MOSFET simulations. The dosime-
ters were irradiated with a simplified model of an 18 MV photon beam produced by a
linear accelerator. The model consisted in a cone beam, with 1◦ aperture, located 1 m
above the detector. The energy of the emitted photons was sampled from a realistic
energy spectrum previously simulated by Duch (1999). This source model produced a
circular photon field with a diameter of 3.5 cm at the phantom plane. We opted not to
use a phase-space file due to the huge amount of particles that were required in the
simulation.

The response of the detector was estimated by scoring the absorbed dose inside the
sensitive volume. This approach assumed that the response was proportional to the
deposited energy, which is a good approximation for dual bias dual MOSFET dosime-
ters (Soubra et al. 1994). Table 6.2 shows the simulated responses for different build-up
caps.

Table 6.2: Simulated response of the MOSFET detector under different build-up caps.
The statistical uncertainty is given at 2σ level.

Build-up cap Response [eV/hist] Uncertainty Histories CPU time [h]
P30 9.88 · 10−4 3.4% 1.43 · 1010 214

Bolus 6.31 · 10−4 4.6% 1.12 · 1010 184
Polystyrene 5.52 · 10−4 5.1% 1.07 · 1010 67

These results can be compared with the experimental data obtained by Jornet et al.
(2004). The responses of the P30 and the polystyrene caps normalised to the bolus case
are given in Table 6.3. Taking into account the statistical uncertainty and the numer-
ous simplifications assumed in the simulation (particularly in the MOSFET geometry
and the source model), the experimental and simulated Polystyrene/Bolus ratios show
a reasonable agreement. For the metallic (P30) cap, both the simulation and the ex-
periment show an increase in the response with respect to the bolus, although the
agreement in this case is not so good. A more accurate geometry description, a realistic
radiation source, and the simulation of more particle tracks allowed us to improve the
agreement considerably, well within the associated uncertainty (see Panettieri et al.
2007 for details).
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Table 6.3: Experimental and simulated MOSFET responses under the P30 and the
polystyrene build-up caps normalised to the response under the 3 cm bolus. The sta-
tistical uncertainty is indicated in parenthesis at 2σ. The differences, relative to the
experimental values, are also provided in percent.

Response ratio Experimental Simulated Rel. diff.
P30/Bolus 1.395 (± 3.8 %) 1.566 (± 5.8 %) -12%

Polystyrene/Bolus 0.948 (± 3.4 %) 0.874 (± 6.9 %) 7.8%

(a) (b) (c)

Figure 6.2: Photon (a), electron (b) and positron (c) average fluence spectra inside the
MOSFET sensitive region under a bolus cap (solid line) and a metallic P30 cap (dashed
line).

In order to study the observed increase in energy deposition under the metallic cap, the
particle fluence spectra, differential in energy, was tallied (see chapter 3 for details on
the penEasy fluence tally). The photon, electron and positron spectra for the bolus and
the P30 cases are plotted in Fig. 6.2.

These spectra suggested that positrons could play a significant role in the observed
overresponse. To analyse the contribution of positron transport, the P30 and the bolus
simulations were repeated with effectively infinite absorption energy for these particles.
Electrons created in pair production events and annihilation photons were followed as
usual. The resulting responses are given in Table 6.4.

The data in Tables 6.2 and 6.4 revealed that the ratio P30/bolus decreases from 1.57 to
1.19 when positron transport was disconnected. These results confirm that positrons
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Table 6.4: Simulated response of the MOSFET detector, under the P30 and bolus caps,
disregarding positron transport.

Build-up cap Response [eV/hist] Uncertainty Histories CPU time [h]
P30 6.86 · 10−4 10% 2.14 · 109 17.4

Bolus 5.77 · 10−4 9.7% 2.14 · 109 16.2

have a substantial contribution to the observed effect. More positrons are created in the
tungsten layer due to the fact that its pair production cross section is larger than that
of elements with lower atomic number, such as those found in typical water equivalent
materials (e.g., bolus).

6.2 Dose distributions in radiotherapy treatments

Computer simulations are routinely used to plan and optimise radiotherapy treat-
ments. The purpose of a treatment planning system is to assist the radiation physicist
to ensure that the defined treatment volume receives the prescribed dose while the dose
to the surrounding healthy tissue is minimised.

The codes that are most commonly used today in the clinic for treatment planning are
based on pencil beam and convolution/superposition algorithms (Hogstrom et al. 1981;
Ahnesjö 1989; Sterpin et al. 2007).

Several studies have shown that, in certain situations, these semi-analytic approxima-
tions may introduce significant errors in the calculation of dose distributions, especially
in inhomogeneous regions (Knöös et al. 1995; Krieger and Sauer 2005) or when there
is a lack of electronic equilibrium (Martens et al. 2002; Carrasco et al. 2004; Knöös
et al. 2006). However, these algorithms are still used because they can compute the
treatment dose distribution in the time frame required in the clinic, i.e., a few minutes.

Recently, a new generation of simulation codes based on accelerated Monte Carlo al-
gorithms have been developed and it is expected that they will substitute the semi-
analytic codes in the near future (Reynaert et al. 2007; Chetty et al. 2007). Some of
the Monte Carlo codes that are capable of computing the dose distribution produced
by a real radiotherapy treatment in a few minutes are Macro Monte Carlo (MMC,
Neuenschwander and Born 1992), Super Monte Carlo (SMC, Keall and Hoban 1996),
PEREGRINE (Hartmann-Siantar et al. 1995), Voxel Monte Carlo (VMC++, Kawrakow
2000b), Dose Planning Method (DPM, Sempau et al. 2000), Monte Carlo Dose Engine
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(MCDE, Reynaert et al. 2004), and ORANGE (van der Zee et al. 2005).

General-purpose Monte Carlo codes—such as EGS, FLUKA, Geant, MCNP, or
PENELOPE—are, in principle, more accurate than the semi-analytic or accelerated
codes, but they are too slow to be routinely used in the clinic. In spite of this fact, these
Monte Carlo codes are still useful to validate the accuracy of the commercial planning
systems and as a source of reference data. In exceptional situations they can also be
employed to improve the planning of treatments in situations where the other codes
are not reliable (e.g., near metallic implants).

In the following subsections we present the simulation of two radiotherapy treatments
with penVox, the voxelised geometry package for PENELOPE described in chapter 3.
The two studied cases are: a teletherapy treatment using an electron beam from a
linear particle accelerator; and a brachytherapy treatment with a 192Ir high dose-rate
(HDR) source. The voxelised anthropomorphic phantom used in these simulations is
described below. The aim of these simulations was to demonstrate that the presented
geometric subroutines can successfully handle a voxelised phantom, thus making fea-
sible the use of PENELOPE to simulate realistic radiotherapy treatments.

6.2.1 Voxelised anthropomorphic phantom

A voxelised phantom of the human head and neck region was created segmenting a CT
scan of an anthropomorphic Alderson-Rando male phantom1 (Alderson Research Lab-
oratories Inc., Long Island City, New York, USA) described in detail by Alderson et al.
(1962) and in ICRU Report 48 (1992). The CT voxel size was 0.58×0.58×3.0 mm3 and
the original number of voxels in the x, y and z directions was 512×512×100, respec-
tively. In order to optimise the use of computer memory the voxel matrix was reduced
to 300×425×70 removing unnecessary air layers surrounding the head.

The CT segmentation, that is, the mapping from CT Hounsfield units (HU) to media
composition, was performed using the generic conversion table provided by the TMS-
Helax planning system (Helax AB, Uppsala, Sweden). CT units are defined as

HU = 1000
(

µ

µwater
− 1

)
, (6.1)

where µ is the average attenuation coefficient of the voxel. This conversion table, re-
produced in Table 6.5, is based on the relations between HU and electron density given
by Knöös et al. (1985). The table defines an interval of HU values and a nominal den-

1The CT scan was obtained by Dr. Alberto Sánchez-Reyes at the Hospital Clínic de Barcelona (Spain).
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sity for each body tissue. The conversion from HU to material density was performed
defining linear functions between the nominal densities of consecutive materials.

Table 6.5: Generic mapping from CT Hounsfield units to media composition provided
by the TMS-Helax treatment planning system.

Hounsfield units Density (g/cm3) Material
[−1000,−481] 0.00121 Air

[−480,−97] 0.500 Lung
[−96, 47] 0.950 Adipose
[48, 127] 1.050 Muscle

[128, 527] 1.100 Cartilage
[528, 975] 1.334 Cartilage 67%, Bone 33%

[976, 1487] 1.603 Cartilage 33%, Bone 67%
[1488, 1823] 1.850 Bone
[1824, 2223] 2.100 Bone 2
[2224, 2639] 2.400 Bone 50%, Aluminum 50%
[2640, 2831] 2.700 Aluminum
[2832, 3000] 2.830 Aluminum 2

The simple approach for CT segmentation that was used to create the phantom, equiv-
alent to a thresholding segmentation, is not accurate and may introduce significant
artifacts in the voxel composition (Cozzi et al. 1998; Reynaert et al. 2007; Chetty et al.
2007). One of the limitations of this segmentation method is that it does not use any a
priori information of the tissue distribution and, therefore, the voxel composition may
be mis-assigned due to partial volume effects (e.g., a voxel containing muscular tissue
and bone may be erroneously mapped as cartilage). Apart from this, the fact that the
conversion table was not adapted to the particular scanner used to obtain the initial
phantom CT may produce a systematic bias in the mapping from HU to material com-
position. In spite of these shortcomings, the simple mapping was used to facilitate the
comparison of the Monte Carlo and the TMS-Helax simulations. This method is also
used in other general-purpose codes that can handle voxelised geometries.

It has been shown that mis-assignment of media composition can produce significant
errors in the dose distributions calculated by treatment planning system (Verhaegen
and Devic 2005). Therefore, a more sophisticated segmentation method should be used
in case the simulations are intended for clinical use or to perform quantitative compar-
isons with experimental measurements (Schneider et al. 2000; Reynaert et al. 2007).
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In the presented studies, the accuracy of the segmentation process was not relevant
because the purpose of the simulations was just to test the new geometric subroutines
and not to validate the phantom anatomy.

6.2.2 Teletherapy treatment

A teletherapy, or external beam radiotherapy, treatment was simulated with penVox
and the phantom described in the previous section. The radiation source employed in
this case was a 10×10 cm2 electron beam with a nominal energy of 12 MeV, impinging
on the patient head with an inclination of 30 degrees, at the level of the nose. The beam
was created simulating a linear accelerator Mevatron KDS (Siemens AG, Munich, Ger-
many) with PENELOPE, as explained by Sempau et al. (2001). The beam was stored
in a phase-space file (PSF) containing the position, movement direction and energy of
2.5·106 particles. The PSF was read by penEasy’s PSF source routine (see section 3.1.1),
with a splitting factor of 100 (i.e., each particle was cloned 100 times with a statistical
weight of 1/100).

The isodose curves simulated with the combination of penEasy and penVox are graph-
ically represented in Fig. 6.3 (a) and (d). This radiotherapy treatment had been previ-
ously simulated by Sempau et al. (2003) with the accelerated Monte Carlo code DPM
and the commercial planning system TMS from Helax (Helax AB, Uppsala, Sweden).
The isodoses calculated with DPM and TMS-Helax are also shown in Fig. 6.3. Due to
the reduced number of particles in the PSF, and the small voxel size, the dose distri-
bution maps calculated by penEasy and DPM had significant uncertainties. In spite of
the fact that the particles were splitted 100 times, the PSF latent variance still limited
the accuracy of the simulation (see Sempau et al. 2001, Appendix B). For this reason,
the presented isodose curves were obtained combining 5×5 adjacent voxels on the xy

planes.

This simulation demonstrated that penEasy is capable of simulating a radiotherapy
treatment with an anthropomorphic phantom created from a CT scan. This feature can
be used to compare PENELOPE with the accelerated codes used in the clinic. In the
presented case, we found that the isodoses calculated by DPM were in better agreement
with PENELOPE than those calculated by the semi-analytical code TMS.
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(a) penEasy (b) DPM (c) TMS-Helax

(d) penEasy (e) DPM (f) TMS-Helax

Figure 6.3: Radiotherapy treatment simulated with penEasy, TMS-Helax and DPM.
Figures (a), (b) and (c) provide the isodoses obtained for the sagittal plane X=118; (d), (e)
and (f) for the coronal plane corresponding to Z=48. Arbitrary isodoses are represented.

6.2.3 Brachytherapy treatment

PenVox and the voxelised phantom described in section 6.2.1 were also used to sim-
ulate a fictitious brachytherapy treatment. A high dose-rate 192Ir source—a sim-
plified version of the microSelectron HDR source (Nucletron B.V., Veenendaal, The
Netherlands)—was modeled with quadric surfaces. As shown in Fig. 6.4, the source was
composed of an iridium cylinder (diameter 0.65 mm and length 3.60 mm) enclosed in-
side a stainless steel encapsulation (diameter 0.90 mm and length 4.50 mm); a piece of
the steel cable that is used to deploy the source was also simulated (diameter 0.70 mm).

To reproduce a brachytherapy treatment, the source was vertically inserted inside the
throat of the voxelised phantom. The source was located inside an air region, in contact
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with the esophagus wall and close to the spine. This location was chosen to study the
effects of material heterogeneities (air, muscle and bone) on the isodose curves. The
relevance of this study comes from the fact that most commercial brachytherapy treat-
ment planning systems are based on Monte Carlo simulations in homogeneous water
phantoms and disregard the presence of inhomogeneities (Nath et al. 1995; Anagnos-
topoulos et al. 2004). For the sake of simplicity, the 192Ir emission espectrum was
reduced to a single 340 keV gamma.

Figure 6.4: Quadric geometry of a high dose-rate 192Ir brachytherapy source (simplified
version of the source model microSelectron HDR from Nucletron).

The presented study provides an example of the convenience of combining quadric sur-
faces and voxels. Since the brachytherapy source is smaller than a voxel, it would have
been impossible to represent it using the phantom voxel size. Reducing the voxels to
a size capable of representing the internal source structure would require an unafford-
able amount of computer memory. By using quadrics surfaces to describe the source in
detail and voxels to model patient anatomy, we benefit from the best features of each
geometric model.

The simulated dose distributions are shown in Fig. 6.5. An anisotropy in the dose dis-
tribution can be clearly seen in the sagittal view (Fig. 6.5 (a)). The anisotropy is caused
by the cylindrical shape of the radioactive source and by the presence of the steel cable.
The 3% isodose (with respect to the maximum voxel dose) is located approximately at
1.5 cm from the source. Therefore, most of the dose is delivered within a short distance,
which is a desirable feature in brachytherapy treatments. As expected, the isodoses are
affected by the presence of different surrounding materials. However, the perturbation
is small and may not have clinical relevance in the simulated treatment, as suggested
by Anagnostopoulos et al. (2004). This simulation was executed in parallel in 4 com-
puters from the Argos cluster (AMD AthlonTM XP 1800+ processors at 1533 MHz and
1 GByte RAM; see section 5.3 for more details) using the clonEasy package (see chap-
ter 5). The total number of primary particles was 4·107 and the overall CPU time was
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approximately 55 hours (∼200 histories/second per computer).

(a) (b)

Figure 6.5: Simulation of a brachytherapy treatment using a 192Ir brachytherapy
source: (a) sagittal view of the isodose curves and the corresponding CT slice (X=118,
the voxel material is shown); (b) axial view of the isodoses and the CT slice (Z=64, the
voxel density is shown). In both cases, the four most external isodoses correspond to a
0.5%, 1.5%, 3% and 15% of the voxel dose maximum, respectively. The axis show the
voxel number.

The work presented in this section shows that penEasy and penVox can be useful to
assess brachytherapy treatments. Ongoing work in collaboration with the Hospital
Universitario Puerta del Mar (Cádiz, Spain) aims at applying these tools in a realistic
setup.

6.3 Internal dosimetry with Germanium detectors

The penEasy system with quadric geometries and voxels, i.e., using penVox, has been
benchmarked with other Monte Carlo codes and with experimental measurements in an
international comparison on Monte Carlo modelling organised by the European Union
Coordinated Network for Radiation Dosimetry (CONRAD, Gómez-Ros et al. 2007). One
of the cases proposed in the intercomparison was a measurement of the gamma radi-
ation field produced by an homogeneous distribution of 241Am in the osseous tissue of
a knee. This problem required the superposition of quadric objects (two germanium
detectors) and voxels (a segmented CT of a knee phantom). Figure 6.6 shows a 3D ren-
dering of the simulation setting and the detector inner structure. The detectors were
located inside the voxels bounding box, thus masking or partly overlapping some air
voxels.
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(a) (b)

Figure 6.6: Volume rendering of the full simulation geometry for the CONRAD in-
tercomparison experiment (a), and inner structure of the Ge detectors described with
quadric surfaces (b). The detectors are inside the voxels bounding box, which is shown
as a parallelepiped in (a). See text for details.

In this study the BIGS source from penEasy (see section 3.1.1) was configured to emit,
from all voxels containing bone, photons with the energy spectrum of americium and
with a uniform emission probability per unit volume. The pulse height spectrum tally
(see section 3.1.2) served to obtain the energy distribution of pulses in the sensitive
region of both Ge detectors. This spectrum was subsequently convolved with a Gaussian
distribution to account for the full width at half maximum (FWHM) experimentally
obtained for this detection system.

The doses absorbed in the voxels were also scored with the corresponding penEasy
tally. A sample 2D slice of the dose distribution map is displayed in Fig. 6.7. It can be
observed that the energy deposited in the bone voxels, which contain the radioactive
material, is approximately four times higher than that in the muscle voxels.

The experimental and the penEasy pulse height spectra, in units of counts per second
per kilobecquerel (cps/kBq), are plotted in Fig. 6.8 (a). Figure 6.8 (b) presents a compar-
ison of our result with equivalent simulations performed with the Monte Carlo codes
EGS 4 and MCNPX 2.5 (data from the CONRAD report, Gómez-Ros et al. 2008). The
results show that penEasy, and the other codes, can correctly reproduce the shape of the
main peaks of the pulse height spectrum. The differences observed in the low energy

89



6.3. Internal dosimetry with Germanium detectors

Figure 6.7: Dose distribution map tallied by penEasy inside the voxelised knee phan-
tom, which is composed of bone, muscle and air voxels. The scale is given in eV/g per
primary history.

region could be caused by scattering radiation coming from parts of the experimental
setting that were not included in the simulation (such as the cryostat located above
the detectors and the phantom support table) or from an inaccurate description of the
phantom materials. The shape of the peaks in this region is also related to the electron
transport models considered by the different codes and, according to Ménard (2004), to
the modelling of the Doppler broadening effect for inelastic photon interactions.

(a) (b)

Figure 6.8: Energy deposition pulse height spectra measured inside the sensitive re-
gions of the two Ge detectors for the 241Am source in a knee phantom: (a) penEasy and
experimental data; (b) comparison of penEasy, EGS 4 and MCNPX 2.5. The average
statistical uncertainty was less than 1% for penEasy.

The measured, and simulated, peak efficiency at 59.54 keV, defined as the area under
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the previous spectrum in the interval from 57.7 to 64.4 keV, is provided in Table 6.6. The
three Monte Carlo codes estimate a consistent value of the peak efficiency. Simulated
results are higher than the measurement, but fall within the experimental uncertainty
(±8%). The latter was estimated taking into account the inaccuracies in the position
and orientation of the detectors around the reference measurement position. In partic-
ular, it was found that a ±1 cm variation in the distance between the source (knee bone)
and the Ge detectors produced a 7% modification of the peak efficiency (see Gómez-Ros
et al. 2008, Table 4). Therefore, the systematic discrepancies could be explained by
geometric differences between the simulated and the experimental settings.

Table 6.6: Peak efficiencies (in cps/kBq) simulated and experimentally measured at
59.54 keV. Uncertainties given as 2σ when available.

Method Peak efficiency
Experimental 3.56 ± 0.28

penEasy 3.69 ± 0.01
MCNPX 2.5 3.70

EGS 4 3.66
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In this chapter we present two practical applications of the penMesh code—described
in chapter 4—in the field of medical imaging. The clinically-realistic anthropomorphic
phantom used in these simulations is described in the following section. Section 7.2
introduces the simple detector and source models that have been implemented in pen-
Mesh for the simulation of radiographic imaging systems. Section 7.3 presents the
simulation of coronary angiography images. This work was presented at the SPIE
Medical Imaging 2007 symposium, Physics of Medical Imaging conference (San Diego,
February 19, 2007) and published in the conference proceedings (Badal et al. 2007). Fi-
nally, section 7.4 shows the simulation of an x-ray imaging procedure performed during
a prostate brachytherapy treatment. This simulation was presented at the 9th Bien-
nial ESTRO Meeting on Physics and Radiation Technology for Clinical Radiotherapy
(Barcelona, September 10, 2007). A paper describing this work (Badal et al. 2008)
was published in the journal of the European Society for Therapeutic Radiology and
Oncology (ESTRO).
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7.1 Triangle mesh-based anthropomorphic phantom

The triangle mesh geometry model implemented in penMesh can represent any three-
dimensional shape. This feature is particularly convenient for the description of or-
ganic structures. A comprehensive review of computational anthropomorphic mod-
els was provided by Zaidi and Xu (2007). Phantoms described by standard bound-
ary representation models can be tessellated and exported to triangle meshes using
existing computer-aided design software. One of the most accurate phantoms of this
kind is the NURBS-based Cardiac-Torso (NCAT) phantom (Segars 2001). The NCAT
is a highly detailed male anatomical model created by fitting non-uniform rational B-
splines (NURBS) to the high-resolution CT scans from the Visible Human Project (Na-
tional Library of Medicine). An interesting feature of the NCAT is that it is a 4D phan-
tom, that is, it can be deformed to reproduce the cardiac and the respiratory motions
(Segars et al. 2003). This phantom is extensively used to simulate medical imaging
applications, especially in nuclear medicine.

In order to use penMesh in medical applications, we prepared a triangle mesh-based
version of the NCAT phantom (Badal et al. 2007; Kyprianou et al. 2007). This tes-
selated phantom, shown in Fig. 7.1, is composed of 330 closed triangle meshes and
comprises, in total, 5 million triangles. A lower resolution version, with 1.5 million
triangles, was also prepared. The ray-tracing of the low resolution phantom is signif-
icantly faster than the high resolution one because the ray–triangle intersection tests
spend a significant fraction of the execution time, as shown in section 4.4.

A detailed triangle mesh-based heart phantom was also developed by Banh et al. (2007)
and registered into the phantom described above. The new heart model, shown in
Fig. 7.2, was created segmenting a high-resolution CT angiography scan, fitting smooth
surfaces on the organ boundaries, and tessellating the resulting surfaces into triangle
meshes using the VTK1 and ITK2 software libraries, as described by Kyprianou et al.
(2007).

The material composition of the organs included in the phantoms was approximated by
the average stoichiometric compositions measured by Woodard and White (1986).

1The Visualization Toolkit (VTK) is an open-source software system for 3D computer graphics, image
processing, and visualisation. It is freely available at http://www.vtk.org.

2The Insight Segmentation and Registration Toolkit (ITK) is an open-source software toolkit for per-
forming registration and segmentation of digital images. It is freely distributed by the U. S. National
Library of Medicine at http://www.itk.org.
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Figure 7.1: High-resolution tessellated version of the NCAT phantom adapted to pen-
Mesh. In total, 330 closed triangle meshes, with over 5 million triangles, are used to
define the shape of the organs.

7.2 X-ray detector and source models

In order to simulate a medical imaging system it is necessary to create a model of
the image formation process. With this purpose, a tally routine to create radiographic
images has been developed according to penEasy’s specifications and included in pen-
Mesh. Due to the wide energy range in which PENELOPE can be applied, the new tally
can cover from low-energy x-ray imaging (e.g., mammographic systems) to radiotherapy
portal imaging. This tally can also be used with penEasy, but it is not included in the
standard distribution for consistency with its general-purpose approach.

The new tally employs a simple model in which an image is formed by scoring the en-
ergy deposited inside the detecting object (typically a thin layer of CsI or some other
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Figure 7.2: Triangle-mesh based heart model segmented from a high-resolution CT
angiography scan.

scintillating material). The detector geometry can be defined with triangle meshes, or
with quadric surfaces in case the detector is located outside the octree bounding box.
The detector location, size, orientation, and the number of pixels in which it is divided,
are introduced through the simulation input file. The image tally reports a text, or bi-
nary, file containing the energy deposited in each pixel, in units of eV/cm2 per simulated
particle. A gnuplot script provided with penMesh can be used to convert the reported
file into an image in which the grey level of each pixel is directly proportional to the
deposited energy. The use of an absolute scale allows for a straightforward comparison
of images obtained using different geometries or simulation parameters.

For the sake of simplicity, and to maximise the simulation efficiency, the material of
the detector layer was defined to absorb all the incoming radiation in the simulations
presented in the current chapter. This was done defining an absorption energy larger
than the maximum source energy. In this situation, the detection efficiency is 100% and
the pixel values correspond to the energy fluence on the detector surface. A drawback
of this method is that x-ray scattering inside the detector is neglected.

The presented image tally includes an alternative method to generate images, which
consists in a pure ray-tracing of the simulation geometry. In this deterministic method,
i.e., not based on Monte Carlo techniques, a virtual ray is cast from the focal spot to
the centre of each pixel and the probability that an x ray does not interact in the full
path is scored as the pixel value. The interaction probability is calculated using the
cross-sections from the PENELOPE database for the mean energy of the input x-ray
spectrum (multiple rays with different energies could be simulated for each pixel, but
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this would naturally increase the simulation time). The resulting image corresponds to
the image that would be generated in an ideal detector disregarding beam hardening
effects and any radiation scattered inside the phantom (or, equivalently, using an ideal
anti-scatter grid). This tally is extremely fast (requires of the order of 1 minute of
computing time for a full body image) and produces high contrast, noise-free images,
because it does not include the effect of scattered radiation or the statistical uncertainty
associated with an Monte Carlo simulation.

The x-ray sources used in the presented simulations were modelled taking advantage
of the standard penEasy source BIGS (Box Isotropic Gauss Spectrum), which was de-
scribed in section 3.1.1. The x rays were emitted from a point focal spot, forming a
cone beam. A version of the BIGS source in which the focal spot is a surface defined
by a combination of three gaussian functions was prepared, but it was not used in the
studies reported in this chapter.

The source cone beam was collimated to a square field using a completely radiopaque
collimator defined with quadric surfaces between the source and the octree region. The
emitted energy spectrum was precalculated using the data from the IPEM report 78
(Cranley et al. 1997), with 0.5 keV energy bins, a ripple-free high voltage source, a
tungsten anode with 10◦ angle, and 3 mm aluminum filtration.

7.3 Simulation of coronary angiography

Coronary angiography is the radiographic visualisation of the coronary vessels after
injection of radiopaque contrast media (Scanlon et al. 1999). The ability to simulate
clinically-realistic angiography images in the computer may be valuable for the opti-
misation of angiographic systems, as well as to study in detail the physical processes
involved in the formation of the images (Kyprianou et al. 2007).

PenMesh and the anthropomorphic phantom described above were used to simulate
coronary angiograms. The right and left coronary arteries from the NCAT heart were
filled with contrast media composed of 10% per volume of iodine and 90% of blood.
The phantom triangles were sorted with a level 8 octree spatial data structure. The
triangle meshes corresponding to the intestines were not included in the simulation
geometry. The source-to-detector distance was 100 cm, and the air gap between the
phantom and the detector was 15 cm. In this configuration the coronary arteries were
approximately located at 75 cm from the source, giving a geometrical magnification of
1.33 in the image plane. The PENELOPE absorption energies were set to 3 keV for
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photons and 20 keV for electrons. At these energies, the photon mean free path and
electron CSDA (continuous slowing down approximation) range in air were 5 cm and
0.8 cm, respectively.

Simulated coronary angiography images for a 90 kVp and a 60 kVp x-ray energy spectra
and a 50×50 cm2 detector with 1000×1000 pixels (pixel size of 500 µm) are presented in
Fig. 7.3. Each simulation was performed in parallel using the script package clonEasy
(see chapter 5) in 100 CPUs of the computer cluster at the Center for Devices and
Radiological Health (U. S. Food and Drug Administration). In total, 9.5·1010 primary x
rays were simulated for each case. The 90 kVp simulation required 24 hours of parallel
computing, while the 60 kVp required 20 hours. The image grey scale corresponds to the
energy deposited in the detector plane per unit area and per primary particle (eV/cm2

per x ray). This makes it possible to quantitatively compare images obtained using
different simulation parameters (e.g., different energy spectra). Taking advantage of
the capabilities of the Monte Carlo simulated data, Fig. 7.4 presents a decomposition
of the 90 kVp angiography image based on the interactions that each individual x ray
underwent while traversing the triangle mesh phantom.

The simulated angiograms are equivalent to the ones obtained in the clinic, within the
limitations of our anatomical phantom and detector model. More clinically-realistic im-
ages could be obtained including the inner structure of the lungs and differentiating
trabecular and cortical bone in the phantom. The iodine-filled coronary arteries can be
clearly observed. As expected, the contrast in the 60 kVp image is better than in the
90 kVp (the vessels are darker than the background). Studying the contribution of scat-
ter to the generated images, it can be seen that Compton scattering (which is dominant
in the multiple scattering image) is the main scattering process, while the contribution
of Rayleigh interactions is much smaller. Nevertheless, Compton scattering produces
large angular deflections and does not preserve anatomical information, while Rayleigh
scattering gives small angular deflections and produces a blurred image with reduced
contrast.

Apart from the image tally, penEasy’s pulse height energy spectra and energy deposi-
tion tallies were also used in the simulations. The spectra tallied at the detector during
the generation of the previous scatter images, and the initial spectrum without phan-
tom, are presented in Fig. 7.5. The integral of the pulse height spectrum is proportional
to the number of particles per history that arrive at the detector. The spectra shows that
most of the primary particles are absorbed in the body. Indeed, only 1.5% of the pri-
mary x rays arrive at the detector. Additionally, the majority of the detected particles
were scattered in the body. Despite this, the full image—including scatter—still shows

98



Chapter 7. Medical imaging

(a) (b)

Figure 7.3: Simulated coronary angiography images for a 90 kVp (a) and 60 kVp (b)
x ray source. The detector pixel size was 500×500 µm. For each simulation, nearly
1011 primary x rays were simulated in one day of parallel computing in 100 CPUs. The
image gray scale has units of eV/cm2, and its value corresponds to the energy deposited
in the flat panel detector per unit area and per primary particle.

a clear projection of the anatomy, because the scattered radiation is fairly uniformly
distributed, while non-scattered particles preserve the anatomic information. Another
interesting feature that can be observed in the spectra is that inelastic scattered pho-
tons have, as expected, less average energy than the non-scattered. In particular, most
of the non-scattered radiation has an energy above 55 keV, while most of the multiply
scattered radiation is below this energy. This suggests that a detector optimised for
detecting particles with energy higher than 55 keV could produce an image with less
scatter and, hence, with better quality.

The energy deposited per primary particle in the volume of some organs, for the 90 kVp
and 60 kVp simulations, is given in Table 7.1. The statistical uncertainty in the energy
deposition was below 1% for all organs. The radiosensitive tissues that receive more
radiation dose are the bones (including the ribs and the spine) and the skin. For all
the organs except the skin the energy deposited per primary particle increases between
20% and 30% for the 90 kVp spectrum with respect to the 60 kVp. Note that the relative
difference in the deposited energy for the two spectra equals the relative difference in
the average absorbed dose in the organ volume. However, this calculation does not take
into account the fact that, in a real situation, the 60 kVp image will require a larger
number of primary x-rays. The energy deposited in the skin volume is considerable,
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(a) Non scattered primary particles. (b) Single Rayleigh (elastic) interaction.

(c) Single Compton (inelastic) interaction. (d) Particles scattered more than once.

Figure 7.4: Decomposition of the 90 kVp angiography image depending on the interac-
tions that each individual x-ray underwent while traversing the triangle mesh phantom
(in eV/cm2 per primary particle).

and the resulting absorbed dose per primary particle is 12.5% higher for the 60 kVp
case. The reason for this increase is that the body attenuates low energy radiation
more efficiently. Indeed, as it can be seen from the pulse height spectra, most of the
radiation below 30 keV is completely absorbed in the body.
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Figure 7.5: Pulse height spectra tallied at the detector plane for the 90 kVp image.
The spectra corresponding to all the particles and to the different kinds of scattering
are provided. The initial normalised source spectrum is also presented, with the scale
shown at the right of the plot.

Table 7.1: Energy deposited in the phantom organs during angiographic imaging with
60 kVp and 90 kVp x-rays (in keV per primary particle). The increase in the deposited
energy for the 90 kVp with respect to the 60 kVp is also provided (in %). The statistical
uncertainty was below 1% for all organs.

Organ 60 kVp image 90 kVp image % difference
Bones 4.21 5.62 +33.5
Skin 3.11 2.72 -12.5
Liver 0.77 1.06 +37.7
Heart muscle 0.56 0.76 +35.7
Stomach 0.32 0.40 +25.0
Left lung 0.57 0.69 +21.1
Right lung 0.23 0.29 +26.1
Rest of the body 7.96 9.10 +14.3
TOTAL 17.73 20.64 +16.4
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7.3.1 New heart model

The previous angiographies were obtained using the heart included in the original
NCAT phantom (2001 version). With the aim of increasing the realism of the simulated
images, the study was repeated using the new heart model described in section 7.1.
Figure 7.6 shows the obtained results, for the 90 kVp x-ray source and the two image
formation models described in section 7.2. In this case a large detector, with an area
of 50×100 cm2 and 500×1000 pixels, was defined. Due to the relatively large pixel size
(1 mm2), the low resolution version of the NCAT phantom, shown in Fig. 7.6 (a), was
employed (see section 7.1 for details). The full Monte Carlo simulation, Fig. 7.6 (b),
used 1011 x rays and was executed in parallel for approximately 4 days in 30 computers
from the Argos cluster (described in section 5.3) using the clonEasy scripts (see chap-
ter 5). A level 8 octree was used in the simulation. For each execution, 386 MByte of
memory were required and the simulation speed was 14420 x-rays/second per CPU.3

Comparing this performance with that of the previous case, we see that the use of the
low resolution phantom (i.e., less triangles) significantly reduces the required memory
and increases the speed. The average statistical uncertainty in the reported pixel val-
ues, for pixels with values above half the image maximum value, was below 1%. Finally,
the ray-tracing simulation, Fig. 7.6 (c), required only 3 minutes of execution in a single
CPU. This time includes about 2 minutes of initialisation (the time spent reading the
triangles, creating the octree structure, reading the material database, etc.).

In summary, we have shown that penMesh can accurately simulate coronary angiog-
raphy using an advanced triangle mesh geometry. The simulation provided relevant
information that can be employed in the optimisation of imaging systems.

7.4 Simulation of prostate brachytherapy imaging

As a second example of the capabilities of penMesh, we simulated projection images of
the human pelvis region. Several radioactive seeds were included inside the phantom’s
prostate to simulate the assessment of the seed positioning during a clinical prostate
brachytherapy treatment. A detailed description of this imaging procedure can be found
in the ESTRO recommendations on prostate brachytherapy (Ash et al. 2000; Salembier
et al. 2007).

A simplified model of a brachytherapy seed, as described in the ICRU Report 72 (2004),

3In this case the reported timing results correspond to an Intel R© XeonTM 5130 CPU at 2.0 GHz and
with 4 GByte of RAM. The code was compiled with GCC (option -O3).
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(a) (b) (c)

Figure 7.6: Whole body angiography with the low resolution version of the NCAT phan-
tom and the new heart model: (a) 3D rendering of the phantom, containing 1.5 million
triangles; (b) Monte Carlo simulated image (grey scale: eV/cm2 per initial x ray); (c)
fast ray-tracing projection (grey scale: detection probability in %).

Figure 7.7: Simple model of a 125I brachytherapy seed, composed of two cylinders tes-
sellated into 80 triangles.

was created with the open-source program ParaView (see http://www.paraview.

org). The seed, shown in Fig. 7.7, was modelled using two concentric cylinders. The
internal cylinder (3 mm in length and 0.5 mm in diameter) represented a silver marker
that allows the seeds to be readily seen in radiographic images, and the external cylin-
der (4.5 mm in length and 0.8 mm in diameter) represented a titanium encapsulation.
Radioactive 125I is absorbed on the surface of the silver rod in a real seed but it was not
included in our simple model.
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7.4. Simulation of prostate brachytherapy imaging

Figure 7.8: Closeup of the simulated treatment. The 112 125I brachytherapy seeds can
be seen inside the phantom’s prostate.

The seed cylinders were tessellated into 80 triangles and stored as triangle meshes in
ASCII ply format (Stanford 3D Scanning Repository), which is readable by penMesh
(see section 4.2). The meshes were cloned to produce 112 identical seeds and distributed
forming a cylindrical pattern around the prostate to reproduce a brachytherapy treat-
ment. A small random shift was applied to each seed to account for a small drift inside
the prostate and implantation inaccuracies. A closeup of the treatment setting is pro-
vided in Fig. 7.8. The bladder, prostate and urethra are represented as a wire frame
(i.e., only the triangle edges are shown) to allow the visualisation of the seeds.

In the simulations presented in this section, the source-to-detector distance was 100 cm.
The detector was located 20 cm behind the patient, producing a 1.3 geometrical magni-
fication of the prostate region. A completely radiopaque collimator was used to define
50×50 cm2 and 10×10 cm2 fields on the detector plane. A dilute barium sulphate con-
trast (3% weight/volume concentration) was injected inside the bladder and the urethra
to facilitate the visualisation of these organs in the projection images, as recommended
by (Ash et al. 2000). PenMesh was compiled using the GCC compilers and executed
in parallel, using clonEasy, in 30 nodes of the computer cluster Argos (see section 5.3).
The computer used to report the simulation speed had an Intel R©XeonTM3.0 GHz CPU
and 2 GByte of RAM memory. An octree with 8 levels of subdivision was used. Each
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execution required 260 MBytes of computer memory.

Figure 7.9 shows the simulated radiographic images for a 70 kVp x-ray source with
a 50×50 cm2 field, and a 60×60 cm2 detector with 500×500 µm2 pixels. Figure 7.9
(a) was created with the ray-tracing model described in section 7.2. The grey scale
corresponds to the probability, in %, that an x ray will arrive at the pixel without in-
teracting. According to the obtained pixel values, more than 99.5% of the x rays that
cross the phantom are absorbed or scattered before reaching the detector surface. This
simulation required just 3 minutes of computing time in a single CPU.

Figure 7.9 (b) displays the full Monte Carlo simulation. The image was created scoring
the energy of the particles arriving on the detector plane and, therefore, the grey scale
has units of eV/cm2 per emitted x ray. The simulation speed was 17450 x rays per
second. In total 1011 rays were simulated; this would have required more than 66 days
of computation in a single CPU (but only 2.2 days in the computer cluster). The speed
of this simulation using an octree with level 10, 4 and 0 (i.e., no octree) was 17725, 3105
and 4 x rays per second respectively. Therefore the octree accelerated the simulation
more than 4300 times and it is definitely an essential component of the algorithm.

(a) (b)

Figure 7.9: Simulated anteroposterior radiographic images produced by a 70 kVp x-ray
source collimated to a 50×50 cm2 field, on a 60×60 cm2 detector with 500 µm pixels: (a)
ray-traced image (grey scale: detection probability in %), (b) full penMesh simulation
(grey scale: eV/cm2 per initial x ray). Pixels with values higher than the scale maximum
are displayed in white.
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The presented large-field images show the high level of detail of the phantom. The
bladder and the urethra, which contain a radiopaque contrast, can be clearly observed,
as well as the intestines, which do not attenuate as much radiation as the surrounding
tissue. The radioactive seeds can also be seen but not clearly because the image pixels
are almost as big as the seeds.

In order to visualise the inner structure of the seeds a simulation with a higher reso-
lution detector was performed. Figure 7.10 shows the simulation of a 10×10 cm2 field
on a 10×10 cm2 detector with 200×200 µm2 pixels. Four images are displayed, corre-
sponding to: (a) the ray-tracing model, (b) the full simulation, (c) the image formed only
by x rays that have not interacted in the phantom (this is also the image that would
be obtained with an ideal anti-scatter grid), and (d) the image created by scattered x
rays and secondary radiation (including electrons). All these images have a linear grey
scale with black at the value 0, and white at 0.4% for the ray-traced image (a) and
at 1.5 eV/cm2 per history for the rest. In this case 1010 x rays were simulated and the
speed in the reference CPU was 12175 rays per second (about 9.5 days in a single CPU).

By analysing the data from the previous simulation it was found that only 0.24% of
the emitted x rays arrived at the detector, and 0.077% of the rays were detected after
being scattered in the phantom. This gives an estimated scatter fraction of 0.32 at the
detector surface. Note that this value is similar to those provided in Table 4.1 for the
same irradiation field and x ray source and a simple lucite torso phantom.
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(a) (b)

(c) (d)

Figure 7.10: Simulated radiographies of the prostate region for a 70 kVp source with
10×10 cm2 field, on a 10×10 cm2 detector with 200 µm pixels: (a) ray-traced image, (b)
full penMesh simulation, (c) non-scattered x rays, (d) scattered x rays and secondary
radiation.
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8 Conclusions

This thesis has been devoted to the design and implementation of new Monte Carlo
tools that facilitate the accurate simulation of medical physics applications involving
complex geometries. The main conclusions that arise from the presented work are:

1. penEasy, the general-purpose Monte Carlo package for PENELOPE presented
in section 3.1, can accurately simulate clinical applications of ionising radiation.
The modular structure of its main program and the comprehensive set of tallies
and source models that it includes allow the simulation of a wide variety of cases
and facilitate the implementation of new tallies, sources, variance reduction tech-
niques and geometric models.

2. penVox, the geometry package for penEasy presented in section 3.2, extends the
applicability of PENELOPE to voxelised objects. This code can be used to compute,
for example, dose distributions produced by radiotherapy treatments in anatomic
phantoms created from CT scans.

3. penMesh, the simulation code presented in section 4.1, combines the features of
penEasy with the flexibility of a geometric model based on triangle meshes. Its
new ray–tracing algorithm can efficiently handle highly realistic phantoms. This
code has been used to simulate diagnostic imaging applications in which the geo-
metric detail was an essential factor.

4. clonEasy and its auxiliary program seedsMLCG, described in section 5.2, provide
a simple way to run Monte Carlo simulations in parallel. These software tools
produce an effective reduction of the execution time that is roughly proportional to
the number of processors available. The use of parallel computing is indispensable
to perform complex simulations with detailed anatomical phantoms.

111



8.1. Future work

During the course of the research reported in this thesis the developed codes have been
tested in realistic medical physics applications, and also compared with other Monte
Carlo codes and experimental data. As a result, the new codes, which are free and open
software, are ready to be publicly distributed.

8.1 Future work

Some researchers from various institutions are already using the presented software
tools. For example, penEasy and penVox are currently used to simulate stereotactic
body radiotherapy treatments at the Karolinska Institute (Stockholm, Sweden; see
Panettieri 2008) and to obtain mammographic images at the Center for Devices and
Radiological Health (CDRH, U. S. Food and Drug Administration; see Park 2008). Pen-
Mesh is also used at the CDRH for the simulation of coronary angiographies with heart
phantoms containing realistic pathology models Kyprianou et al. 2007.

It is expected that the development of the codes will continue in the future. A feature
that will soon be implemented in penMesh is a more realistic x-ray detector model.
The new image formation model, which has already been described by Kyprianou et al.
(2008), will take advantage of depth- and energy-dependent distribution functions cal-
culated by the MANTIS code (Badano and Sempau 2006) for columnar CsI detectors.
Ongoing work also aims at implementing more advanced variance reduction techniques
in penEasy (e.g. azimuthal splitting, see Bush et al. 2007), developing an interface to
read/write phase-space files in IAEA format (Capote et al. 2006) and preparing a new
source model that will automatically generate the cascade of beta and gamma (or x)
rays from radioactive elements. Another useful tool under development is a converter
that will take quadric objects defined with the PENGEOM model and tessellate them
into triangle meshes suited for penMesh. This tool will facilitate the visualisation of
PENGEOM geometries and it will also allow the use of some complex geometries al-
ready defined with quadrics, such as particle accelerators and multileaf collimators, in
penMesh simulations.
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B penMesh documentation

A comprehensive manual describing penMesh’s source code has been prepared by
means of the automatic system doxygen (http://www.doxygen.org). This free and
open-source documentation generator parses the C++ code and extracts information
on the code structure and also descriptions of the defined functions and variables that
were written as comments during the code development.

An excerpt of the documentation generated for the two C++ classes used by penMesh is
presented in the following sections.

B.1 octree_node Class Reference

This class describes a nodes of the octree structure. Each node in the octree is an in-
stance of this class, from the root node, which has level 0 and encloses the whole struc-
ture, to the leaves, which are the ending subnodes and contain may contain triangles
inside (file <octree_definition.h>).

Public Member Functions

• octree_node ()

Default class constructor.

• octree_node (double x0, double y0, double z0, double x1, double y1, double z1,
char level0, octree_node ∗father0)

Explicit class constructor.
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• ∼octree_node ()

Class destructor.

• void set_node_parameters (double x0, double y0, double z0, double x1, double
y1, double z1, char level0, octree_node ∗father0)

Sets the values of the node attributes (variable).

• octree_node ∗ get_node (double &px, double &py, double &pz, char level_-
limit=char(-1))

Searches from the input node (the octree root usually) for the subnode that contains
the input point and that has the maximum level specified (this is needed in function
’set_neighbors’ because the stored neighbors can not have a higher level, i.e., smaller
size).

• octree_node ∗ get_node_fast (double &px, double &py, double &pz)

Searches from the input node for the subnode that contains the input point. This func-
tion assumes that the point is already located inside the node and the execution is faster
than for the previous function.

• void create_subnodes_with_triangles (int &input_max_level)

Generates the octree structure and distribute the triangles (to be called recursively).

• void clean_octree ()

Free the dynamically allocated memory that is not required after the octree creation.

• double get_wall_distance (double &x, double &y, double &z, double &invers_vx,
double &invers_vy, double &invers_vz, int &num_neighbor)

Calculates the distance and neighbor number of the nearest node, for the input position
and inverse value of the direction cosines.

• void set_neighbors (octree_node ∗in_node)

Set the ’neighbor’ class variable: pointers to the 6 neighbor nodes of each node.

• double get_triangle_intersection (double &x, double &y, double &z, double &u,
double &v, double &w, triangle_octree ∗∗triangle_found_array)
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Calculates the intersection with internal triangles and returns the distance and a
pointer to the intersected triangle.

• octree_node ∗ step_octree (double &ds, double &dsef, int &ncross)

Moves the current particle (in common /track/) across the octree and the triangular
mesh. Equivalent to PENGEOM’s STEP subroutine.

• void store_secondary_flight_log (int &old_nsec)

Check if there are new secondary particles and store the corresponding flight_log.

• void get_flight_log (int &track_label)

Loads the flight_log saved when the secondary particle was generated inside the octree,
and set the static class variable ’last_triangles’ to NULL.

• void init_flight_log (int &current_organ, int &current_material, int &track_-
label)

Clears the class static variables ’flight_log’ and ’last_triangles’, and store the input or-
gan and material in the log.

Public Attributes

• double x_min, y_min, z_min

Lower corner of the octree node.

• double x_max, y_max, z_max

Upper corner of the octree node.

• char level

Recursion level of the current node in the octree hierarchy (0 for the root node).

• octree_node ∗ son [8]

Pointers to the 8 descendants of the node (NULL for leaves).

• octree_node ∗ father

Pointer to the father of this node (NULL for root).
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• octree_node ∗ neighbor [6]

Array with pointers to the 6 neighbor nodes (NULL for root).

• triangle_octree ∗∗ triangle_list
List of pointers that point to the triangles that are found inside this sub-node.

• int num_triangles
Number of triangles that are found inside—or intersect—this node.

Static Public Attributes

• static triangle_octree ∗ triangle_mesh
Static variable that stores the collection of triangles that define the simulation geometry.

• static int triangle_mesh_size
Size of the triangle mesh (i.e., number of triangles).

• static int amount_nodes [MAX_LEVEL+1]

Amount of nodes for each octree level.

• static int amount_leaves [MAX_LEVEL+1]

Amount of leaves in each level of the octree.

Private Member Functions

• bool termination_condition (int &max_level)

Checks the condition that decides whether the node is a leaf (final node) or it has to be
further sub-divided.

• void sort_triangles ()

Distributes the triangles in the octree structure, that is, set the ’triangle_list’ class mem-
ber variable of each leaf (final node) assigning pointers to the triangles inside the node.

• void update_flight_log (int found_organ, int found_material, int &new_organ,
int &new_material)
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Updates the data in the flight_log using the information of the new organ found.

Static Private Attributes

• static triangle_octree ∗ last_triangles [MAX_OVERLAP]

Array of pointers to the triangles intersected in the last step (or NULL).

• static int flight_log [2 ∗MAX_OVERLAP]

Vector with a list of all the organs that the current particle has entered but not exited
yet (the organ and material numbers are stored in consecutive positions in the array).

• static int secondary_flight_log [MAX_SECONDARIES][2 ∗MAX_OVERLAP]

Array of flight logs to store the flight_log at the moment a secondary particle was gen-
erated.

• static int old_warnings [MAX_WARNING]

Array with the ID of the overlapping warnings that have been displayed.

Friends

• void draw_octree_ps (octree_node ∗octree, int &octree_max_level, double &z_-
plane, const char ∗file_ps, bool first_call=true)

Draws the octree structure at the input z plane in postscript format (one square for each
leaf in the plane).

• void triangles_per_leaf (octree_node ∗octree, int &octree_max_level, double
&mean_tri, double &sigma_tri, int &leaves_full, int &leaves_empty, bool first_-
call=true)

Calculates the mean quantity, and standard deviation, of triangles inside the leaves
with maximum level, and the amount of empty leaves.
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B.2 triangle_octree Class Reference

This class describes each triangle that is part of the simulation geometry (file
<triangle_octree.h>).

Public Member Functions

• triangle_octree ()

Implicit constructor for the triangle objects.

• triangle_octree (double new_vert0_X, double new_vert0_Y, double new_vert0_-
Z, double new_vert1_X, double new_vert1_Y, double new_vert1_Z, double new_-
vert2_X, double new_vert2_Y, double new_vert2_Z, short int new_organ, short int
new_material)

Explicit class constructor.

• void set_triangle_members (double new_vert0_X, double new_vert0_Y, dou-
ble new_vert0_Z, double new_vert1_X, double new_vert1_Y, double new_vert1_Z,
double new_vert2_X, double new_vert2_Y, double new_vert2_Z, short int new_-
organ, short int new_material)

Sets the value of all the class members.

• bool intersect (double &orig_X, double &orig_Y, double &orig_Z, double &dir_X,
double &dir_Y, double &dir_Z, double &distance)

Calculates whether the input ray intersects this triangle or not using the Moller-
Trumbore algorithm.

• bool inside_box (double x_min, double y_min, double z_min, double x_max, dou-
ble y_max, double z_max)

Calculates whether the present triangle is inside or overlaps the input box (octree node).

Public Attributes

• double vert0_X, vert0_Y, vert0_Z

Coordinates of the first vertex of the triangle.
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• double vert1_X, vert1_Y, vert1_Z

Coordinates of the second vertex of the triangle.

• double vert2_X, vert2_Y, vert2_Z

Coordinates of the third vertex of the triangle.

• short int organ

Identification number of the organ which owns this triangle.

• short int material

Identification number of the organ material.
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Epilogue

Peregrino

¿Volver? Vuelva el que tenga,
Tras largos años, tras un largo viaje,
Cansancio del camino y la codicia
De su tierra, su casa, sus amigos.
Del amor que al regreso fiel le espere.
Mas ¿tú? ¿volver? Regresar no piensas,
Sino seguir siempre adelante,
Disponible por siempre, mozo o viejo,
Sin hijo que te busque, como a Ulises,
Sin Ítaca que aguarde y sin Penélope.
Sigue, sigue adelante y no regreses,
Fiel hasta el fin del camino y tu vida,
No eches de menos un destino más fácil,
Tus pies sobre la tierra antes no hollada,
Tus ojos frente a lo antes nunca visto.

Luis Cernuda (1961)
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