619 research outputs found

    REDUCING POWER DURING MANUFACTURING TEST USING DIFFERENT ARCHITECTURES

    Get PDF
    Power during manufacturing test can be several times higher than power consumption in functional mode. Excessive power during test can cause IR drop, over-heating, and early aging of the chips. In this dissertation, three different architectures have been introduced to reduce test power in general cases as well as in certain scenarios, including field test. In the first architecture, scan chains are divided into several segments. Every segment needs a control bit to enable capture in a segment when new faults are detectable on that segment for that pattern. Otherwise, the segment should be disabled to reduce capture power. We group the control bits together into one or more control chains. To address the extra pin(s) required to shift data into the control chain(s) and significant post processing in the first architecture, we explored a second architecture. The second architecture stitches the control bits into the chains they control as EECBs (embedded enable capture bits) in between the segments. This allows an ATPG software tool to automatically generate the appropriate EECB values for each pattern to maintain the fault coverage. This also works in the presence of an on-chip decompressor. The last architecture focuses primarily on the self-test of a device in a 3D stacked IC when an existing FPGA in the stack can be programmed as a tester. We show that the energy expended during test is significantly less than would be required using low power patterns fed by an on-chip decompressor for the same very short scan chains

    The STAR MAPS-based PiXeL detector

    Get PDF
    The PiXeL detector (PXL) for the Heavy Flavor Tracker (HFT) of the STAR experiment at RHIC is the first application of the state-of-the-art thin Monolithic Active Pixel Sensors (MAPS) technology in a collider environment. Custom built pixel sensors, their readout electronics and the detector mechanical structure are described in detail. Selected detector design aspects and production steps are presented. The detector operations during the three years of data taking (2014-2016) and the overall performance exceeding the design specifications are discussed in the conclusive sections of this paper

    HDMI Transmitter

    Get PDF
    HDMI is the de facto global standard for connecting HD components and bridging the gap between consumer electronics and personal computer products, making it a priority to develop efficient hand-held, battery-powered units that support the standard.This is a study into how to design a low power and high performance system that can transmit HDMI-signals to a valid HDMI-receiver. The main priority is to implement the TMDS part of a HDMI-transmitter, where parallel data is encoded and serialized at high frequencies. The theory chapters provides an orderly summary of the complex workings of the HDMI-standard, in addition to an introduction to high-performance digital circuit design. This is followed by a system specification chapter, which sets the constraints of the design and discusses the hardware requirements. The subsequent chapter first deals with the design of a straightforward, basic HDMI-transmitter, before moving on to an enhanced design process. The basic design is used as a base for discussions in regard to how effective the suggested enhancement techniques are. The improvements result in an enhanced design able to operate at 742,5 MHz and support High-Definition video at the impressive resolution of 1080p30. This is achieved by using a 180nm, low-leakage library, and the final design consists of approximately 24.000 unit-sized transistor equivalents, consuming approximately a total of 13,6 mW

    A Static Time Analysis of 1-bit to 32-page SCA architecture for Logic Test

    Get PDF
    This research proposes the Static Time Analysis  of  32  page  Single  cycle  access  (SCA)  architecture  for Logic test. The timing analysis of each and very path of Logic test are observed that is setup and hold timings are calculated.  It also eliminates the peak power consumption problem of conventional shift-based scan chains and reduces the activity during shift and capture cycles using Clock-Gating technique. This leads to more realistic circuit behavior during at-speed tests. It enables the complete test to run at much higher frequencies equal or close to the one in functional mode. It will be shown, that a lesser number of test cycles can be achieved compared to other published solutions. The test cycle per net based on a simple test pattern generator algorithm without test pattern compression is below 1 for larger designs and is independent of the design size. The structure allows an additional on-chip debugging signal visibility for each register. The method is backward compatible to full scan designs and existing test pattern generators and simulators can be used with a minor enhancement. It is shown how to combine the proposed solution with built-in self-test  (BIST)  and  massive parallel   scan   chains.   The   results   are   observed   on   Xilinx XC3s1600e-5fgg48

    The Design of a CD Transport for Audio Applications

    Get PDF
    The project to design a CD transport (CD player) in conjunction with Perreaux Industries came about from the need for a source component in their Silhouette series of products. This project describes the design a high quality CD player, at a low price, to compliment Perreaux's Silhouette series. A CD drive is selected over a proprietary optical pickup due to the former's low cost and the standardisation of the interface. The control circuitry includes a micro controller and discrete logic to provide the correct data and clock signals to the SPDIF transmitter and DAC circuits. These two circuits provided a high quality analogue output, and facilitate an upgrade path by connecting the SPDIF output to an external DAC. After three board iterations, a final production ready revision was achieved. The design includes a high quality toroidal transformer, low jitter crystal oscillator, and a very high quality SPDIF pulse transformer output. The design also allows a remote input to control the player, and an optional digital cable via an RJ45 connector to provide synchronisation with a future design of the SXD2 DAC module, or to transmit SPDIF to a remote location. The specifications of the final design were higher than expectations. The digital output boasts equal or superior performance to competitive products in the same price range, with the analogue output attaining exceptionally high performance

    Block-level test scheduling under power dissipation constraints

    Get PDF
    As dcvicc technologies such as VLSI and Multichip Module (MCM) become mature, and larger and denser memory ICs arc implemented for high-performancc digital systems, power dissipation becomes a critical factor and can no longer be ignored cither in normal operation of the system or under test conditions. One of the major considerations in test scheduling is the fact that heat dissipated during test application is significantly higher than during normal operation (sometimes 100 - 200% higher). Therefore, this is one of the recent major considerations in test scheduling. Test scheduling is strongly related to test concurrency. Test concurrency is a design property which strongly impacts testability and power dissipation. To satisfy high fault coverage goals with reduced test application time under certain power dissipation constraints, the testing of all components on the system should be performed m parallel to the greatest extent possible. Some theoretical analysis of this problem has been carried out, but only at IC level. The problem was basically described as a compatible test clustering, where the compatibility among tests was given by test resource and power dissipation conflicts at the same time. From an implementation point of view this problem was identified as an Non-Polynomial (NP) complete problem In this thesis, an efficient scheme for overlaying the block-tcsts, called the extended tree growing technique, is proposed together with classical scheduling algorithms to search for power-constrained blocktest scheduling (PTS) profiles m a polynomial time Classical algorithms like listbased scheduling and distribution-graph based scheduling arc employed to tackle at high level the PTS problem. This approach exploits test parallelism under power constraints. This is achieved by overlaying the block-tcst intervals of compatible subcircuits to test as many of them as possible concurrently so that the maximum accumulated power dissipation is balanced and does not exceed the given limit. The test scheduling discipline assumed here is the partitioned testing with run to completion. A constant additive model is employed for power dissipation analysis and estimation throughout the algorithm

    Novel Front-end Electronics for Time Projection Chamber Detectors

    Full text link
    Este trabajo ha sido realizado en la Organización Europea para la Investigación Nuclear (CERN) y forma parte del proyecto de investigación Europeo para futuros aceleradores lineales (EUDET). En física de partículas existen diferentes categorías de detectores de partículas. El diseño presentado esta centrado en un tipo particular de detector de trayectoria de partículas denominado TPC (Time Projection Chamber) que proporciona una imagen en tres dimensiones de las partículas eléctricamente cargadas que atraviesan su volumen gaseoso. La tesis incluye un estudio de los objetivos para futuros detectores, resumiendo los parámetros que un sistema de adquisición de datos debe cumplir en esos casos. Además, estos requisitos son comparados con los actuales sistemas de lectura utilizados en diferentes detectores TPC. Se concluye que ninguno de los sistemas cumple las restrictivas condiciones. Algunos de los principales objetivos para futuros detectores TPC son un altísimo nivel de integración, incremento del número de canales, electrónica más rápida y muy baja potencia. El principal inconveniente del estado del arte de los sistemas anteriores es la utilización de varios circuitos integrados en la cadena de adquisición. Este hecho hace imposible alcanzar el altísimo nivel de integración requerido para futuros detectores. Además, un aumento del número de canales y frecuencia de muestreo haría incrementar hasta valores no permitidos la potencia utilizada. Y en consecuencia, incrementar la refrigeración necesaria (en caso de ser posible). Una de las novedades presentadas es la integración de toda la cadena de adquisición (filtros analógicos de entrada, conversor analógico-digital (ADC) y procesado de señal digital) en un único circuito integrado en tecnología de 130nm. Este chip es el primero que realiza esta altísima integración para detectores TPC. Por otro lado, se presenta un análisis detallado de los filtros de procesado de señal. Los objetivos más importantes es la reduccióGarcía García, EJ. (2012). Novel Front-end Electronics for Time Projection Chamber Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16980Palanci

    Power constrained test scheduling in system-on-chip design

    Get PDF
    With the development of VLSI technologies, especially with the coming of deep sub-micron semiconductor process technologies, power dissipation becomes a critical factor that cannot be ignored either in normal operation or in test mode of digital systems. Test scheduling has to take into consideration of both test concurrency and power dissipation constraints. For satisfying high fault coverage goals with minimum test application time under certain power dissipation constraints, the testing of all components on the system should be performed in parallel as much as possible. The main objective of this thesis is to address the test-scheduling problem faced by SOC designers at system level. Through the analysis of several existing scheduling approaches, we enlarge the basis that current approaches based on to minimize test application time and propose an efficient and integrated technique for the test scheduling of SOCs under power-constraint. The proposed merging approach is based on a tree growing technique and can be used to overlay the block-test sessions in order to reduce further test application time. A number of experiments, based on academic benchmarks and industrial designs, have been carried out to demonstrate the usefulness and efficiency of the proposed approaches

    One way Doppler extractor. Volume 1: Vernier technique

    Get PDF
    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second
    corecore