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ABSTRACT 

Very-Large-Scale-Integration Circuit Techniques in 

Internet-of-Things Applications 

Jiangyi Li 

Heading towards the era of Internet-of-things (IoT) means both opportunity and challenge 

for the circuit-design community. In a system where billions of devices are equipped with 

the ability to sense, compute, communicate with each other and perform tasks in a 

coordinated manner, security and power management are among the most critical 

challenges. 

Physically unclonable function (PUF) emerges as an important security primitive in 

hardware-security applications; it provides an object-specific physical identifier hidden 

within the intrinsic device variations, which is hard to expose and reproduce by adversaries. 

Yet, designing a compact PUF robust to noise, temperature and voltage remains a challenge. 

This thesis presents a novel PUF design approach based on a pair of ultra-compact 

analog circuits whose output is proportional to absolute temperature. The proposed 

approach is demonstrated through two works: (1) an ultra-compact and robust PUF based 

on voltage-compensated proportional-to-absolute-temperature voltage generators that 

occupies 8.3× less area than the previous work with the similar robustness and twice the 

robustness of the previously most compact PUF design and (2) a technique to transform a 

6T-SRAM array into a robust analog PUF with minimal overhead. In this work, similar 

circuit topology is used to transform a preexisting on-chip SRAM into a PUF, which further 

reduces the area in (1) with no robustness penalty.  



In this thesis, we also explore techniques for power management circuit design. 

Energy harvesting is an essential functionality in an IoT sensor node, where battery 

replacement is cost-prohibitive or impractical. Yet, existing energy-harvesting power 

management units (EH PMU) suffer from efficiency loss in the two-step voltage 

conversion: harvester-to-battery and battery-to-load. We propose an EH PMU architecture 

with hybrid energy storage, where a capacitor is introduced in addition to the battery to 

serve as an intermediate energy buffer to minimize the battery involvement in the system 

energy flow. Test-case measurements show as much as a 2.2× improvement in the end-to-

end energy efficiency. 

In contrast, with the drastically reduced power consumption of IoT nodes that operates 

in the sub-threshold regime, adaptive dynamic voltage scaling (DVS) for supply-voltage 

margin removal, fully on-chip integration and high power conversion efficiency (PCE) are 

required in PMU designs. We present a PMU–load co-design based on a fully integrated 

switched-capacitor DC-DC converter (SC-DC) and hybrid error/replica-based regulation 

for a fully digital PMU control. The PMU is integrated with a neural spike processor (NSP) 

that achieves a record-low power consumption of 0.61 µW for 96 channels. A tunable 

replica circuit is added to assist the error regulation and prevent loss of regulation. With 

automatic energy-robustness co-optimization, the PMU can set the SC-DC’s optimal 

conversion ratio and switching frequency. The PMU achieves a PCE of 77.7% (72.2%) at 

VIN = 0.6 V (1 V) and at the NSP’s margin-free operating point. 
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Chapter 1 Introduction 

1.1 Internet-of-things: Opportunities and Challenges 

Initially enabled by the recent decade’s advances in radio-frequency identification (RFID), 

sensor networks, communication techniques, and Internet protocols, Internet-of-things 

(IoT) has become a main information technology focus [1, 3]. The number of connected 

IoT nodes disruptively grew by 300% in the five years from 2009 to 2014 [64] and is 

projected to reach 200 billion by 2020 [65]. 

The deployment of billions of devices, each with the ability to sense, compute, 

communicate and perform specific tasks will enable and improve various daily-life 

applications. One of the examples is the smart home, where home appliances such as 

heating, ventilation, air conditioning, lighting systems, home security systems and more 

are integrated with monitoring, controlling and communicating capabilities to not only 

improve the quality of life for the homeowners but also yield economic benefits that come 

from more efficient use of energy. 

However, with opportunity comes challenge; it is not easy to realize the IoT vision, and 

multiple key challenges must be tackled, including but not limited to availability, reliability, 

mobility, scalability, security, and privacy. 

IoT’s availability challenge exists for both software and hardware. For software, 

availability refers to the capability of the IoT application to provide access and service to 

the users anywhere, anytime and simultaneously. For hardware, this means the device must 
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be present when it is requested by the users and must have the capability (performance, 

energy, etc.) to handle the tasks. 

IoT’s reliability refers to the reliability of the service and devices. For instance, when 

the devices are deployed in-field, they must operate robustly under varying environmental 

conditions and aging effects of device elements. Also, the software must be verified 

thoroughly before deployment and updated quickly in response to known issues. IoT’s 

reliability is especially critical when the application involves emergency response (such as 

leak detectors) or the tasks involve high potential financial risks (such as smart 

manufacturing). 

Mobility refers to IoT’s ability to continuously provide service while the users are 

moving. This is especially important when it comes to smart-car applications. IoT’s 

scalability involves the ability to add and remove users, devices or services in the system. 

Specifically, when an IoT application is designed, it should be able to efficiently 

accommodate increasing numbers of users, devices, and services. This is a key requirement 

for smart buildings and cities; the cost of reorganizing the infrastructure can be 

prohibitively high. 

Finally, security and privacy are the most critical challenges for IoT applications. An 

enormous amount of information will be transferred in an IoT system, which may include 

highly sensitive data that involves user privacy or public safety. Securing such information 

is critical. Moreover, given that many IoT nodes will have very stringent power budget as 

they will likely be powered through energy harvesting (especially for sensor nodes), the 

energy cost of conventional security techniques could easily dominate the system energy 

budget and thus drastically degrade the application’s availability and reliability [2]. 
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1.2 Emerging VLSI Techniques for IoT 

To tackle these challenges, several emerging techniques are proposed in various layers of 

the IoT system architecture, from the object layer up to the application layer [1]. These 

techniques include but are not limited to ultra-low-power circuit design, lightweight 

authentication protocols, ultra-low-power hardware security circuits, energy-harvesting, 

ultra-low-power radio-frequency communication circuits and protocols, emerging 

networking protocols and more. 

For the circuit community, these emerging techniques cover various fields of research 

and development. In this thesis, however, we focus mainly on two fields: physically 

unclonable function (PUF) for hardware security and fully-integrated power management 

circuits. 

1.2.1 Physically Unclonable Function for Hardware 

Security 

The most fundamental requirements for security and privacy in an IoT system are 

identification and authentication [2]. Identification involves creating and storing an object-

specific identifier, which can be later used to identify the objects. Examples include chip 

anti-counterfeiting, RFID for supply chain management, and more. Authentication is more 

complicated as it is designed to not only identify an object but also to prevent the process 

from being compromised by impersonation attacks from potential adversaries. 

The creation and storage of an object-specific identifier, a physical root of trust [4], is 

at the center of secure identification and authentication. Conventionally, these keys are 

created during the deployment phase of building an IoT system and stored in on- or off-

chip nonvolatile memory (NVM). However, these keys can be exposed by various invasive 
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and noninvasive attacks, and it is easy to duplicate a malicious instance once the key of the 

original is exposed. Plus, the cost of the extra process to integrate on-chip NVM can be 

prohibitive in some cost-sensitive applications, especially those requiring many devices at 

relatively low cost. 

As a result, the concept of PUF has been proposed, where the secret key is created and 

stored using the object’s inherent hidden physical properties. As one of the early 

exploratory examples, [66] proposes to use a piece of three-dimensional inhomogeneous 

material to serve as an “optical PUF.” A laser beam is blocked by the structure and the 

photon–material interferences will cast an instance-specific two-dimensional image. 

Several “electrical PUFs” (for simplicity, all PUFs in this thesis are electrical) have 

been implemented by taking advantage of intrinsic device variations [14–19]. Various 

circuits are proposed to create instance-specific keys from random device variations. Some 

designs use random reset states of cross-coupled inverters [14–17], while other works use 

such analog circuits as current mirrors [18] and amplifiers [19]. 

Notably, in some cases, PUFs can also be used in an authentication protocol [6, 9–12]. 

These PUF designs, instead of generating a single, fixed key, generate instance-specific 

outputs based on certain input patterns. Each input-output pair forms a challenge-response 

pair, and by checking if the correct response is generated by an instance to a certain 

challenge, the instance is identified by the IoT system. Moreover, to avoid reproduction or 

impersonation, for this type of PUF, the challenge–response space is usually very large 

(more than 1010), to avoid replay attack where the adversary exhaustively reads all the 

challenge-response pairs. 
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One of the key challenges in PUF design is robustness. As the PUF output is generated 

from intrinsic device variations, it is susceptible to various environmental conditions, 

device aging, and temporal noise. A PUF’s robustness refers to the stability of its output 

on repeated reads (where noise can change the output) and when temperature and supply 

voltage are changed. We detail robustness and other important design metrics of the prior 

art in Section 2.2. 

1.2.2 Fully-Integrated Power Management Circuits 

Another field of emerging techniques is the fully-integrated power management circuits in 

IoT devices. As is discussed in Section 1.1, the availability and reliability of devices are 

critical challenges in an IoT system. Both these challenges closely correlate to powering 

the IoT devices practically, efficiently and cost-effectively. For instance, for a smart 

building application, it can be cost-prohibitive and sometimes impractical to replace the 

batteries of the IoT devices. In such cases, energy harvesting is attractive [34, 36–43, 48] 

as it can enable energy-autonomous operations. On the other hand, fully-integrated power 

management circuit, which is based on switched-capacitor DC-DC converters (SC-DC), 

gains increasing interest in both academia and industry as it effectively reduces the system 

form factor and Bill-of-Materials (BoM) cost [34, 35, 37, 39, 40, 42, 46, 48, 49]. 

Photovoltaic (PV) energy harvesting is a highly attractive harvesting modality due to 

its high efficiency and low cost. Consequently, designing photovoltaic energy-harvesting 

power management units (EH PMU) has been an active research area [36–43]. 

Conventional EH PMU architecture involves two-step conversions in series: from a PV 

cell to a battery and from the battery to a load. However, the two-step conversion introduces 
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substantial energy loss, especially with large voltage differences between PV cell, battery, 

and load. Particularly, for SC-DC, these high-ratio conversions would result in substantial 

conversion losses. 

An alternative architecture has been proposed [36–38, 40], where the two-step 

conversion is partially avoided by converting some of the energy directly from the PV cell 

voltage to the load voltage, while only the extra energy harvested by PV cell (or consumed 

by load) goes through the two-step conversion, improving the end-to-end energy efficiency. 

Yet, such improvement will diminish when the difference between the harvesting power 

and load power is large so that most of the energy will still go through the two-step 

conversion. Notably, for a load such as an IoT node, where the load power varies drastically, 

the efficiency improvement of such an architecture can be minimal. 

On the other hand, near- and sub-threshold operation has gained popularity as it 

significantly improves a system’s energy efficiency. However, the nature of near- and sub-

threshold operation imposes further challenges in power management circuit design. 

Due to process, voltage and temperature (PVT) variations, as well as other fast-varying 

variations (supply-voltage droop, coupling noise, etc.), robust near- or sub-threshold 

operation requires a prohibitive voltage margin. Thus, adaptive circuit techniques such as 

in-situ timing-error detection and correction (EDAC) [62], timing-error prediction [60, 61] 

and dynamic voltage scaling (DVS) have been used in the PMU–load co-design such that 

the supply voltage of the IoT node can be tuned dynamically according to the current PVT 

variations [59, 60, 63]. These works, however, either employ an off-chip regulator [59], 

which results in a slow transient response, increased system form factor, and extra power 

consumption for off-chip circuits, or utilize an on-chip low-dropout regulator (LDO) [63] 
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with substantial power conversion loss when the difference between LDO input and output 

becomes large. Moreover, both use voltage reference and comparators, which further 

increases quiescent power and lower overall power conversion efficiency (PCE). 

It is proposed to use direct error regulation integrated with the SC-DC to enable a fully 

integrated and fully digital PMU design [58], where the timing error directly triggers the 

SC-DC for fast droop response and error statistics are used to scale the supply voltage (VDD) 

up or down via the SC configuration. However, in this design, the loss of regulation due to 

inactivity or noncritical execution can cause critical failures. Also, the SC is designed to 

switch at a fixed frequency, thus its efficiency is degraded when the load power varies 

substantially. 

1.3 Contribution of this Thesis 

In this thesis, we present the work we have done in the field of PUF and fully-integrated 

power management circuit design.  

In Chapter 2, we present a PUF design approach based on a pair of ultra-compact analog 

circuits whose output is proportional to absolute temperature (PTAT) [20]. The difference 

between the output voltages of a pair of PTAT voltage generators is sensitive to transistor 

threshold voltage (Vth) mismatch but robust against temperature and supply voltage (VDD) 

variations. Moreover, comparing to the PUF design relying on bi-stability, the proposed 

analog PUF is more robust to temporal noises due to its non-switching operation. The 

measurement results from prototype chips show that the proposed PUF design achieves an 

8.66× smaller per-bit area than the previous work with similar robustness, and the proposed 
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design is twice as robust as the previously most compact PUF design [15] in a robustness 

figure of merit defined Section 2.4.2. 

In Chapter 3, we propose a technique to reuse existing System-on-Chip (SoC) resources 

(SRAM and ADC) to create a PUF. The work centers on configuring the access transistors 

of a 6T-SRAM bitcell to form a pair of threshold voltage (Vth) sensors with minimal area 

overhead. Compared to conventional digital PUFs using SRAM reset states, this work 

exhibits better robustness. Compared to the prior art using dedicated circuits [13–19, 31], 

the proposed design costs substantially less area: The per-bit area cost of the proposed 

design is 12× less than the most compact design with comparable robustness [7]. Such 

compactness allows 12× PUF bits to be integrated into the chip with minimal overhead. 

In Chapter 4, we propose a novel EH PMU architecture with a hybrid capacitor–battery 

storage for end-to-end energy efficiency improvement under varying load and harvested 

power. Introducing a capacitor in the system as an intermediate energy buffer allows one 

to minimize the amount of energy that goes through two-step conversion and improves the 

end-to-end efficiency. Based on measurements in test cases with the chip prototype, the 

proposed architecture is able to achieve up to 2.2× better end-to-end efficiency. We analyze 

cases with a reasonably-simplified model and explore the trade-off between system design 

parameters, load/harvester conditions and expected efficiency improvements. 

In Chapter 5, we present a PMU–load co-design based on a fully integrated SC-DC 

with a state-of-the-art Neural Spike Processor (NSP) performing motor intention decoding 

tasks with record-high power efficiency. In this work, we use direct error regulation to 

remove the excessive voltage margin and the need for a voltage reference and a comparator, 

making the control circuits fully digital. A tunable replica circuit is added to assist error 
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regulation, preventing the loss of regulation in the case of inactivity and noncritical 

execution, as well as supply voltage overshoot. Moreover, we propose a control scheme to 

automatically optimize the efficiency of the PMU while guaranteeing robust operation of 

the load, by searching for the DC-DC converter’s optimal configuration and switching 

frequency. 

In Chapter 6, we conclude this thesis with a summary of our work. 
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Chapter 2 Ultra-compact and Robust Physically 

Unclonable Function Based on Voltage-

Compensated Proportional-to-Absolute-

Temperature Voltage Generators 

2.1 Motivation 

In the IoT era, physical objects will be integrated with electronics for sensing, computing, 

communication, and networking. The security of such systems is becoming one of the 

greatest challenges [1–3]. To tackle this challenge, both industry and academia have been 

making substantial efforts across layers spanning cryptographic algorithms, protocols, 

secure integrated circuits (IC), hardware architecture and many other areas. 

As an important security primitive on the chip level, PUFs serve as a physical root of 

trust [4] to enable various higher-level security operations. PUFs produce unpredictable 

and unique responses to given challenge inputs, which can then be used for secure key 

generation and storage, or to perform security protocols such as hardware authentication 

[5]. Moreover, the unclonable nature of a PUF, which is achieved by hiding the challenge–

response relationship in the PUF’s intrinsic physical parameters, ensures that it is costly, 

though possible,1 for the adversary to create an exact copy of a PUF instance. 

                                                 
1 For example, Ref. [29] report the process of cloning an SRAM-based PUF through emission analysis and focused ion 

beam circuit edit. 
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Previously, several PUFs have been implemented by leveraging intrinsic device 

variations [6, 9–12, 14–19]. These implementations conventionally fall into two classes: 

strong and weak PUFs.2 The main difference between those two types is the number of 

available challenge-response pairs (CRP). A strong PUF has an exponentially increasing 

number of CRPs in the PUF’s building parameters (e.g., silicon area) while a weak PUF 

has linearly increasing number of CRPs in building parameters. An extreme example of a 

weak PUF has only one CRP, which can serve as a chip ID or a secret key. This type of 

PUFs is also referred to as a physically obfuscated key (POK). 

We propose a novel design approach to a weak PUF based on a pair of ultra-compact 

analog circuits with PTAT output [20]. The difference between output voltages of a pair of 

PTAT voltage generators is sensitive to transistor threshold voltage (Vth) mismatch but 

robust to temperature and supply voltage (VDD). We fabricate test chips in 65 nm CMOS, 

each containing two 256 b PUF arrays. The proposed PUF design achieves an 8.66× 

reduction in area/bit compared to previous work with the similar robustness against noise, 

temperature, and VDD variations [18]. The nature of static, non-switching operation, 

differing from bi-stability-based PUFs, substantially improves its robustness to temporal 

noise. Additionally, the proposed design—thanks to its inherent robustness to temporal 

noise, temperature and voltage, the symmetric circuit design, and the differential reading 

scheme—can achieve low bit instabilities of 2%, 3.5%, and 1.004% across temporal noise, 

temperature variation (0–80 °C), and VDD variation (0.6–1.2 V), respectively. In terms of a 

robustness figure-of-merit (RFoM) combining all these instabilities, the proposed design 

                                                 
2 The name does not imply robustness to security attacks. It is solely based on the convention from [13]. 
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achieves twice better robustness than the previously most compact PUF design [15]. In 

addition, we experiment with the static-masking method, which can reduce RFoM to less 

than 1.95 × 10−4 with an area overhead of 25.4%. Finally, we use accelerated aging tests to 

confirm good robustness against device aging since the proposed PUF bitcell is based on 

analog circuits biased in the sub-threshold region. 

2.2 Previous Work 

In this section, we discuss several previous strong and weak PUF designs. We focus on six 

major requirements of the PUF design: 

• Uniqueness: Each PUF instance should have unique CRPs. 

• Unpredictability: It should be exceedingly hard to predict the outputs of a PUF 

based on a partial observation of the CRP space. 

• Unclonability: It should be exceedingly hard to clone a PUF even if the circuit 

design is fully disclosed. 

• Robustness: The output should be robust to noise, temperature, and VDD variations. 

• Compactness: It should take a minimal amount of silicon area to control cost. 

• Voltage scalability: It is desirable to have voltage scalability down to the near and 

sub-threshold regime for integration in an energy-constrained IC with neither 

separate supply distribution nor local regulation. 

2.2.1 Strong PUFs 

An arbiter PUF is one of the early delay-based strong PUFs [9]. The basic idea is to create 

two paths that have the same nominal delay. After manufacture, the two paths have slightly 
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different delays due to random process variations. Arbiter circuits can then find the faster 

path for producing a 1 b PUF output. However, for such a basic arbiter PUF, the uniqueness 

and unpredictability are found to be limited by the fact that multiple CRPs are partially 

based on the delays of the same paths. This creates correlations among CRPs. Inter-chip 

variation for arbiter PUFs can be only 23% [9]. Moreover, modeling attacks using machine-

learning algorithms can successfully predict the outputs of the basic arbiter PUF  [13] by 

reading only a small subset (hundreds or thousands of CRPs) of the whole CRP space. Also, 

the arbiter PUF is sensitive to VDD variation and exhibits the output flipping rate of 3.74% 

even with 2% VDD drop [9]. 

Several approaches have been proposed to improve unpredictability in arbiter PUFs [9, 

10, 21, 22]. A feedforward PUF can improve uniqueness and unpredictability [9], where 

the configuration of the later stages in delay paths is determined by the racing results of the 

earlier stages. Multiple arbiter PUFs in parallel together with input and output networks 

can also improve unpredictability [21]. However, these approaches can degrade robustness 

since each arbiter PUF has limited robustness and combining outputs from multiple PUFs 

can worsen the overall robustness. Moreover, it is still feasible to perform the modeling 

attack with the help of side-channel power analysis [23]. 

Another type of delay-based strong PUF is based on ring oscillators (ROs). For 

example, a challenge input might select two ROs among N ROs to compare their oscillating 

frequencies and generate a 1 b PUF output [10]. The number of CRPs is, therefore, (2
𝑁
) ≅

𝑁2 2⁄ . Although RO PUFs have fewer CRPs than arbiter PUFs, making RO PUF’s 

uniqueness higher, which is confirmed by the measured inter-chip variation of 46.15%, 

close to the ideal variation of 50%. However, uniqueness can be degraded, especially by 
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the layout impact, such as systematic gradient in the doping concentration, on RO 

frequencies. On the other hand, RO PUFs can also be vulnerable to modeling attacks [13]. 

The sequence of the frequencies of the ROs can be acquired by sorting algorithms and can 

be used to predict the output. Regarding robustness, the implementation in [10] exhibits an 

instability of 0.48% against the worst-case environmental variation (120 °C, 10% VDD drop) 

after employing a masking scheme that selects RO pairs with maximal frequency 

differences. 

A bi-stable ring PUF, another design based on logic gate delay variations, was first 

presented in [11] for FPGA and [12] for ASIC. It exploits the bi-stability of a ring 

composed of an even number of inverters. The ring’s steady state is determined by its 

inverters’ delay variations. Assuming a ring of N stages with each stage consisting of k 

parallel paths, by selecting a path in each stage, we can create kN CRPs. The bi-stable ring 

PUFs are generally more robust against temporal noise than arbiter PUFs since noise is 

averaged out during the stabilization process. Moreover, as proposed in [11] and [12], the 

settling time can be used as an indicator to filter out unreliable CRPs, as the unreliable 

CRPs having less delay mismatch will take more time to stabilize. As reported in [12], 

fewer than 10−8 bit error rate can be achieved with this filtering scheme across −25–125 °C 

and 0.7–1.2 V. However, as multiple CRPs are based on the same delay variations, as with 

the arbiter and RO PUFs, the bi-stable ring PUF is vulnerable to a modeling attack. 

2.2.2 Weak PUFs 

As shown in the previous section, one of the major challenges in strong PUFs is the inherent 

lack of unpredictability. In contrast, weak PUFs can generate very unpredictable bits 
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because each bit is generated with a dedicated set of components, minimizing the 

correlation among CRPs. This can substantially reduce the risk of a modeling attack. 

However, weak PUFs do have their own drawbacks. One of the main drawbacks of weak 

PUFs is a limited CRP space, which makes it possible to read out all CRPs. This drawback 

mandates the removal of any direct access to PUF outputs. Moreover, SRAM-based PUF’s 

risk of physical attacks, such as laser stimulation and emission analysis, is nontrivial and 

further countermeasures are needed to improve security [28, 29]. 

Several weak PUF designs have been proposed based on the bi-stability of cross-

coupled inverters. The SRAM power-up state can be used as a fingerprint for an RFID chip 

as the value of an SRAM bitcell just after power-up is determined by the process mismatch 

between two cross-coupled inverters [14]. However, power-up states may not be consistent 

over noise and environmental variations. Some authors propose to use a latch with a reset 

as a PUF bitcell and implement a 128 b array in a 0.13 µm CMOS [17]. With ~3% unstable 

bits against noise, the impact of environmental variations is measured to be non-negligible. 

As much as 5.5% of the bits flip when the temperature rises from 20 °C to 80 °C. A 

buskeeper cell can be used for its smaller area overhead and lower design complexity [15]. 

However, its robustness against temperature variations is low. At 85 °C, the error ratio is 

as high as 20%. Finally, it is proposed in [16] to add delay variation in the reset path of a 

bitcell to prevent invasive power-up probing attack. An aging-hardening technique that 

increases the mismatch between two cross-coupled inverters, along with majority voting 

and bit masking, are used to improve robustness against noise and environmental variations 

[16]. 
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Whereas most of the abovementioned PUF designs are based on digital circuits, a few 

designs are based on analog circuits. The input offset of a sense amplifier can be used to 

produce 1 b PUF output [19]. To enhance robustness against noise and environmental 

variations, the PUF design employs peripheral circuits to apply 3 V on one side of a 

differential pair to accelerate aging and thus increase the mismatch of the pair. Another 

PUF design leverages mismatches between NMOS and PMOS current mirrors [18]. The 

design takes a larger area than the digital designs [15], yet it achieves good robustness 

against noise and environmental variations, thanks to the large gain from the two current 

mirrors connected in series, as well as the non-switching nature of analog operation 

However, the impact of systematic variations and the non-tracking temperature sensitivity 

between NMOS and PMOS needs more investigation as these factors may skew the output 

and introduce temperature sensitivity.  

2.3 The Proposed Design 

This section introduces a weak PUF circuit based on ultra-compact voltage-compensated 

PTAT voltage generators. Figure 2.1(a) shows the overall architecture of the proposed 

design. It consists of a 16 × 16 bitcell array, 16 sets of top devices, each set shared by 16 

bitcells in a column, an address decoder synthesized with standard cells, a 16-to-1 dual-

ended multiplexer (MUX) built with NMOS pass-gates, and a comparator to digitize the 

MUX outputs. 

The 16 × 16 array organization is determined by the leakage current flowing from 

unselected cells. As the top device is shared among cells in the same column to reduce area 
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overhead, the leakage current from the unselected cells affects VOUTL and VOUTR. Based on 

simulations, we limit the number of cells sharing a top device and bitlines to 16. 

 
Figure 2.1 (a) The proposed 256 b PUF. It is composed of a bitcell array, an address 

decoder, an analog multiplexer, and a 1 b comparator. (b) A bitcell and a shared header in 

a column. (c) A PTAT voltage generator, two of which form a single PUF bitcell. 

Our proposed design is based on a pair of low-current analog circuits working in the sub-

threshold regime. Thus, two small capacitors (~30 fF) are added at the MUX outputs to 

reduce the impact of kick-back noise from the comparator without drastically degrading 

the speed of the output evaluation. The 30 fF capacitance is significantly larger than the 

bitline capacitance and mainly determines the evaluation time of ΔVout. 

The comparator is a classic sense amplifier with a PMOS differential pair and an 

NMOS cross-coupled latch. Since the offset of the comparator can directly affect the 

predictability of the PUF outputs, we add a post-silicon calibration capability in the test 

chip. This can be upgraded with automatic and dynamic offset cancellation techniques [24] 

or an online calibration loop. On the other hand, these automatic calibration circuits need 

to be carefully protected to prevent an adversary from manipulating the offset and obtaining 

direct control of the PUF output. 
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The core of our proposed PUF design is a novel bitcell. As shown in Figure 2.1(b), it 

consists of six minimally sized NMOS transistors, which results in a footprint of 1.936 µm2 

(2.2 µm × 0.88 µm). Four of the six transistors are access transistors to select one of the 

256 bitcells, while the remaining two (MBL and MBR) are configured as diodes to form a 

pair of PTAT voltage generators together with the shared top devices (MTL and MTR). 

High-threshold-voltage (HVT) devices are used for access transistors to reduce leakage 

current. The bottom devices are also HVT. The top devices are low-threshold-voltage 

(LVT) devices to meet the Vth-difference requirement of the top and bottom devices in the 

PTAT voltage generator design. This will be discussed further in the following derivations. 

A native biasing device (MBIAS) with low Vth is added in each column to isolate the virtual 

VDD of PTAT voltage generators from the actual VDD and its variations. 

We derive the output voltage of a PTAT voltage generator (Vout), similarly to the 

derivation in [18]. Figure 2.1(c) shows the simplified schematic of a single PTAT voltage 

generator ignoring the access transistors. The top devices are biased with Vgs of 0 V. The 

bottom devices are diode-connected and biased in the sub-threshold regime as the top 

devices mainly determine the current. Thus, as both transistors (MTR and MBR) are biased 

in the sub-threshold region, we can start with the well-known sub-threshold current 

equation: 

 𝐼sub = 𝜇𝐶ox
𝑊

𝐿
(𝑚 − 1)𝑉t

2exp (
𝑉gs−𝑉th

𝑚𝑉t
) (1 − exp (

−𝑉ds

𝑉t
)), (2.1) 

where μ is carrier mobility, Cox is sheet oxide-capacitance density, W and L are the width 

and length, Vth is threshold voltage, m is sub-threshold slope, Vgs/Vds is gate-source/drain-
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source voltage and Vt is the thermal voltage. Since MTR and MBR are connected in stack, 

the currents flowing through them are identical so that we can solve for VOUTR: 

 𝑉OUTR = 𝑉th2 −
𝑚2

𝑚1
𝑉th1−𝐾𝑉th(𝑇0)⏟              

𝑉th determined

+ 𝐾𝑉th ∙ 𝑇 + 𝑚2
𝑘𝑇

𝑞
ln (

𝜇1

𝜇2
⋅
𝐶ox1

𝐶ox2
⋅
𝑊1𝐿2

𝑊2𝐿1
⋅
𝑚1−1

𝑚2−1
)

⏟                          
temperature dependent

, (2.2) 

where the subscripts 1 and 2 represent MTR and MBR, respectively, 𝐾𝑉th is a combined 

constant of the Vth temperature dependencies of MTR and MBR, T0 is the reference 

temperature, k is the Boltzmann constant, T is temperature, and q is an electron charge. In 

this derivation, we assume Vds is sufficiently larger than Vt, allowing us to eliminate the 

second exponential term of Eq. (2.1). Noted that VOUTR should be large enough such that 

Vds of the bottom device satisfies the above assumption. We use the LVT top device to 

have sufficiently large difference between Vth1 and Vth2. Eq. (2.2) has temperature-

dependent and -independent parts. The first term is a function of mainly Vth and is roughly 

insensitive to temperature. The second part, on the other hand, is proportional to 

temperature, and the slope is defined by the relative sizing of MTR and MBR and 𝐾𝑉th. 

Based on Eq. (2.2), we can derive the difference of the outputs of the PTAT voltage 

generator pair (ΔVout): 

 Δ𝑉out = 𝑉outL − 𝑉outR = (𝑉th2L − 𝑉th2R) − (
𝑚2L

𝑚1L
𝑉th1L −

𝑚2R

𝑚1R
𝑉th1R) + 𝐾Δ𝑇, (2.3) 

where the subscripts L and R represent the left- and right-side outputs of a PUF bitcell, 

respectively, and KΔ is the difference in the temperature slopes between the two PTAT 

voltage generators. KΔ is supposedly very small as the generators are identically sized and 

symmetrically laid out.  

Then, a PUF response bit can be produced by finding the polarity of ΔVout with a 1 b 

comparator. Note that ΔVout contains no VDD-related terms, implying that it is robust against 
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VDD variations. Also, as the operation of the proposed PUF is relying on non-switching 

analog voltage generators, it has significantly better robustness to temporal noise, as 

compared to those designs based on SRAM bi-stability. Furthermore, as the PTAT voltage 

generator is operating in the sub-threshold regime, and the proposed PUF relies on 

comparing those small current/voltage differences, it will be significantly harder, or 

practically impossible for emission analysis to obtain the PUF bits. 

Equations (2.2) and (2.3) provide insights to design the proposed circuits.  

First, while we design PTAT circuits in this work, by sizing the top and bottom devices 

(Eq. (2.2)), we could make Vout to be complementary to absolute temperature (CTAT) or 

insensitive to temperature (i.e., Vout becomes a voltage reference).  

The reason that we choose PTAT over those two alternatives follows. First, if a CTAT 

is used, it tends to produce Vout that is lower at higher temperatures. Together with a larger 

Vt at high temperatures, this can reduce the Vds of the bottom transistor to the level where 

the second exponential term of Eq. (2.1) cannot be ignored. This is problematic since if 

that term appears in Eq. (2.3), it can create voltage dependency. Second, if the devices are 

sized to create a voltage reference, Vout inevitably can have nonlinearity to the temperature, 

which can increase bit-flipping ratio across temperature variations. The root cause of the 

nonlinearity is μ and m in the second term of Eq. (2.2), which are temperature dependent. 

In addition, to maximize ΔVout’s randomness, the impact of the top devices (MTL and 

MTR, the second term of Eq. (2.3)), should be minimized. As MTL and MTR are shared 

by 16 bitcells in the same column, the second term in Eq. (2.3) can introduce correlations 

among the outputs of these bitcells. In the worst case, the Vth mismatch between MTL and 

MTR is very large and can dominantly determine ΔVout, which causes the outputs of that 
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column to be all 1 or 0. To avoid this, we enlarged the shared top devices and employed 

common-centroid layout style to minimize the second term in Eq. (2.3). 

Finally, the third term in Eq. (2.3), the combined mismatches of various device 

parameters, can affect the robustness of PUF output if the first term is small, 1–2 mV (the 

second term is minimized as above), since the third term can dominantly determine the 

polarity of ΔVout. Upsizing the top devices and using the common-centroid layout style also 

helps to minimize the top devices’ contribution to the third term. In contrast, we cannot 

simply reduce the mismatch between bottom devices by the same techniques since that can 

reduce the magnitude of the first term in Eq. (2.3) and thus hurt the robustness. 

After minimizing the second and third terms of Eq. (2.3) and confirming they are 

negligibly small in most cases via simulation, we find that ΔVout is mostly determined by 

the Vth difference of the bottom devices. Since the local Vth variations of two bottom 

transistors have the same normal distribution with zero mean and the same standard 

deviation, ΔVout will also have a normal distribution with a zero mean. This ensures that a 

bitcell generates a 1 or 0 at close to 50%, improving inter-chip uniqueness. 

2.4 Measurement Results 

2.4.1 Test Chips 

The test chips for the proposed PUF design are fabricated in a 65 nm general-purpose 

CMOS process. Figure 2.2 shows a test chip die photo. Each chip includes two PUF 

instances, each having a total area of 1,900 µm2 (38 µm × 50 µm). The area per bit is 

3.07 µm2 when bitcells, shared top devices, and biasing devices are considered, while the 
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total area per bit is 7.42 µm2, including the bitcell array, decoder, comparator, and readout 

circuitry. 

 
Figure 2.2 Test chip die photo 

2.4.2 Robustness Measurement 

First, we examine the ΔVout distribution across all 20 PUFs from 10 chips. We use either 

the on-chip comparator or an off-chip ADC on a National Instruments data acquisition 

board to digitize or measure ΔVout, respectively. The effective accuracy specification of the 

ADC is 13 b with the input range configuration of ±1 V. As is shown in Figure 2.3, ΔVout 

exhibits desirable characteristics that follow the normal distribution with μ = 0.09 mV and 

σ = 31 mV. 

We then perform the calibration to remove the comparator offsets. The measured 

offsets have a distribution with μ = 4.9 mV and σ = 20 mV across 20 PUFs. 



23 

 
Figure 2.3 The differential output voltage (ΔVout) shows a normal distribution with a 

mean close to zero. 

The digitized bits from the on-chip comparator are then read out and their distribution is 

investigated. Figure 2.4 shows the two-dimensional map of the averaged digital outputs at 

different locations of the arrays. No noticeable spatial artifact is observed, indicating that 

the proposed design has a negligible systematic bias. 

 
Figure 2.4 Spatial distribution of digital bits averaged across 20 PUF instances, showing 

no systematic patterns. 
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Figure 2.5 Row- and column-wise average values of 20 PUF instances showing no 

systematic bias. 

 
Figure 2.6 Temporal noise can cause instability in reading. Over 500 readings, 6.54% of 

256 b is found to be unstable. Applying temporal majority voting with 11 and 21 readings 

(TMV11 and TMV21) reduces the unstable bit ratio to 2% and 1.5%, respectively. 

Furthermore, Figure 2.5 shows the values of digital bits averaged across rows and columns. 

The average values show no systematic patterns or strong gradients, again suggesting the 

design can well mitigate systematic process variations. A fluctuation near 50% is observed, 

but this is mainly caused by the limited number of bits per column. For a binomial 

distribution with p = 0.5, n = 320 (20 PUFs, 16 b per row, 16 columns). The standard 

deviation can be calculated as √𝑛𝑝(1 − 𝑝) = 8.944, corresponding to 2.8% of 320 b. This 
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calculated variation is close to the variation found in our measurement, showing our PUF 

design exhibits only a small systematic bias. 

We investigate the impact of temporal noise by repeatedly reading out the output of a 

PUF. As shown in Figure 2.3, some bitcells can have the small ΔVout of just a few millivolts. 

Such small values can make the output bits sensitive to noise. As shown in Error! 

Reference source not found., the measurements show that at most 6.54% of the 256 output 

bits can flip at least once while reading output 500 times. This probability is defined as an 

unstable-bit ratio. To improve robustness against noise, we employ a temporal majority 

voting (TMV) scheme [16]. We conduct the TMV off-chip, and the measurement shows 

that the TMVs using 11 and 21 readings (TMV11, TMV21) can reduce the unstable-bit 

ratio to 2% and 1.51%, respectively. 

 
Figure 2.7 Distribution of the sensitivity of ΔVout to VDD in 20 PUF instances. The mean 

and standard deviation are 0.01 mV/100 mV and 0.38 mV/100 mV, respectively. 

We also investigate the robustness against VDD variations. We expect it is high based on 

Eq. (2.3). As shown in Figure 2.7, the sensitivity of ΔVout to VDD variation exhibits μ = 

0.01 mV/100 mV and σ = 0.38 mV/100 mV across 20 256 b PUF instances. We also 

measure bit-flipping ratios of outputs across VDD = 0.6 to 1.2 V using the output generated 
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at 1 V as a reference. The bit-flipping is counted by comparing the PUF evaluations at 

various conditions against the reference. In this experiment, we use the off-chip ADC since 

the on-chip comparator is unstable when VDD ≤ 0.9 V due to design mistakes we made. As 

is shown in Figure 2.8, the bit-flipping ratio is measured to be less than 1.004% and 2.34% 

in the average and the worst case across 20 PUFs, indicating excellent robustness against 

VDD variation. 

 
Figure 2.8 Bit-flipping ratios across VDD = 0.6–1.2 V. The digitization is done with the 

off-chip ADC. 

We also measure the robustness of the output to temperature variations with the comparator 

recalibrated at each temperature. As is discussed in Section 2.3, automatic offset-

cancellation techniques or on-chip calibration loops can be implemented to avoid manual 

calibration. TMV11 is used to remove the impact of noise. As shown in Figure 2.9, across 

0–80 °C and 20 PUF instances, the bit-flipping ratio using the output at 20 °C as a reference 

is similar to its value in the VDD experiment, less than 3.5% and 6.64% in the average and 

the worst cases, respectively. Finally, we create a normal random-variable model based on 

two measured distributions: one for the difference of ΔVout per 10 °C (defined as 

Δ(ΔVout)/10 °C) and the other for ΔVout at 0 °C (Figure 2.10). The distribution of Δ(ΔVout) 
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is much narrower than that of ΔVout, implying good robustness against temperature 

variation. Using the model, we estimate the bit-flipping ratio against temperature variations. 

As shown in Figure 2.9, the bit-flipping ratios from the measurement and the random model 

match well, confirming the distribution is normal. 

 
Figure 2.9 The number of flipped bits across temperature variations (0 to 80 °C). TMV11 

is used to mitigate the impact of temporal noise. The measurements are well matched to 

the theoretical normal random-variable model based on these measurement results. 

 
Figure 2.10 The distributions of ΔVout and Δ(ΔVout). 

One of the promising ways to improve robustness against noise and environmental 

variations is to identify the unstable bits during manufacture tests and statically mask them. 

The masking information can be stored in nonvolatile memory. To identify potentially 

unstable bits, we can compare the |ΔVout| of a bitcell with a certain threshold voltage (Vfilter). 
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Those unstable bits can be discarded from the PUF output. Although we have no on-chip 

circuitry to perform this process, we can still analyze its feasibility based on the measured 

data. To evaluate robustness against noise and environmental variation at the same time, 

we define the RFoM as 

 𝑅𝐹𝑜𝑀 = √𝑃nom2 + 𝑃V
2 + 𝑃T

2, (2.4) 

where 𝑃nom is the ratio of unstable bits due to noise at a nominal environmental condition, 

𝑃V is the bit-flipping ratio against ±10% VDD variations, and 𝑃T is that against 0 to 80 °C 

temperature variations.  

 
Figure 2.11 RFoM improves with larger Vfilter. At Vfilter > 10 mV, the RFoM of a 256 b 

PUF instance is reduced to < 0.0195% (1/5120) even without TMV. 

As shown in Figure 2.11, by setting Vfilter = 10 mV, we can achieve a 0% bit-filliping ratio 

out of 20 256 b PUF instances even without TMV schemes. This implies that the RFoM is 

at most 1.95×10−4 (i.e., 1/5120). The overhead of this filtering scheme, which is the 

proportion of discarded bits, is 25.4% on average and 30.4% in the worst case across 20 

256 b PUF instances (Figure 2.12). Thanks to the proposed ultra-compact bitcell, the area 

overhead is manageable, making the filtering scheme attractive for improving robustness. 
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Also, the recent scaling of on-chip non-volatile memory [30] suggests that it would not 

introduce a substantial overhead to store the mask bits. 

 
Figure 2.12 The use of a larger Vfilter requires discarding bits to produce output, causing 

area overhead. Thanks to the proposed bitcell’s compact size, the overhead is 

manageable. 

2.4.3 Unpredictability and Uniqueness Measurement 

The uniqueness and unpredictability of the proposed PUF design are evaluated the through 

autocorrelation function (ACF) and NIST random tests [25]. A white-noise bitstream will 

have an ACF value close to zero at any lag value except zero. The ACFs for the 5120 b 

(20 × 256) streams generated from 20 PUF instances shows a 95% confidence bound of σ 

= 0.0188 (Figure 2.13), suggesting remarkable randomness. In addition, as shown in Table 

2.1, the 256 b outputs from 20 PUF instances pass all the NIST tests suitable to our data 

size (5120 b). We cannot conduct some of the tests—namely, Binary Matrix Rank, Linear 

Complexity, Overlapping Template Matching, Universal Statistical, Random Excursions, 

and Random Excursions Variant—due to the limited data size. The μ and σ of the 

probability that a bitcell produces a 1 output are 49.3% (126.15 b) and 3% (7.6 b), 

respectively, across 20 PUF instances. 



30 

 
Figure 2.13 ACF of 5120 b generated from 20 PUF instances, showing an excellent 

randomness. 

 
Table 2.1 The 256 b streams generated from 20 PUF instances pass all the NIST random 

tests. 

We then evaluate the uniqueness of the proposed PUF outputs with Hamming distance 

(HD). For this, we calculate inter-PUF HD defined as the HD between the outputs (after 

TMV) of two different PUFs selected from 20 PUFs at reference temperature and voltage 

(27 °C, 1 V). The HD of two bitstreams is defined as the number of different bits. As shown 

in Figure 2.14, the inter-PUF HD has a mean value of 0.5, indicating high randomness in 

the outputs. 
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Figure 2.14 Inter- and Intra-PUF HDs. Intra-PUF HD is measured and calculated with 

TMV-11. The separation between the means of two HDs is measured to be 88×. 

 
Figure 2.15 Intra-PUF HDs considering voltage (0.6–1.2 V) and temperature (0–80 °C) 

variations are measured. Those two HDs have 110× and 20× separations from the inter-

PUF HD. 

We also measure and calculate the intra-PUF HD to evaluate robustness. For the robustness 

against temporal noise, we first read a 256 b output from a PUF 500 times with TMV11 

and calculate the HD of 256 b outputs from any two of the 500 readings. The distribution 

of the HDs in Figure 2.14 shows μ = 0.0057 and σ = 0.0042, which exhibits an 88× 

separation from the inter-PUF HD distribution. Similarly, for the robustness against VDD 

and temperature variations, we measure and calculate the HD distributions with the same 

settings except changing VDD from 0.6 to 1.2 V and temperature from 0 to 80 °C, 
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respectively. The results in Figure 2.15 show the separations of 110× for VDD variations 

and 20× for temperature variations from the inter-PUF distribution. The HD measurements 

suggest that the proposed PUF has excellent randomness and robustness against noise and 

environmental variation. 

 
Figure 2.16 Power dissipation and energy per bit across throughputs. The maximum raw 

throughput is measured to be 10.2 Mb/s measured at 1 V VDD, at which the circuits 

consume 0.548 pJ/bit. 

2.4.4 Throughput and Power Consumption 

We measure the proposed PUF design’s maximum throughput while applying TMV11. 

The maximum operating frequency is defined as the frequency at which the bit-flipping 

ratio increases by a factor of two compared to the bit-flipping ratio at a very low frequency 

(500 kHz). The average maximum throughput across 20 PUFs is 10.2 Mb/s at VDD = 1 V. 

We also measure the power consumption and the energy per bit. As shown in Error! 

Reference source not found., at 10 Mb/s, the average power dissipation and energy per 

bit are 5.48 µW and 0.548 pJ/bit, respectively. At 0.5 Mb/s, they are 3.81 µW and 

7.62 pJ/bit. Those measurements at two different throughputs show that static power 

dominates total power dissipation. We can reduce the power consumption by activating 
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only one bitcell at a time whereas the current implementation unnecessarily activates 16 

bitcells in a row. 

2.4.5 Device Aging Measurement 

 
Figure 2.17 Nodal voltages during an accelerated aging test. While VDD and VBIAS are 

higher than nominal values, critical transistors (in red) are biased in the sub-threshold 

region. 

Robustness against device aging emerges as an important challenge for designing PUFs 

[17, 19]. Aging effects such as bias-temperature instability (BTI) and hot carrier injection 

(HCI) can gradually change device parameters (e.g., Vth and μ) [26, 27]. Device aging 

effects can have a direct impact on PUF output over time; thus, it is essential to mitigate 

the impact of device aging. On the other hand, aging effects can be intentionally used to 

harden PUF circuits against noise and environmental variations. Different transistors in 
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PUF circuits can be selectively aged during manufacturing burn-in tests to improve 

robustness [16]. 

 
Figure 2.18 The measurement of Δ(ΔVout) after the 82 h accelerated aging experiment at 

1.5 V and 125 °C. The accessed row has smaller Δ(ΔVout) because the aging effects of top 

and bottom devices cancel each other when creating ΔVout. 

The proposed design exhibits a significant advantage regarding robustness against aging 

effects simply because all the critical transistors (MTL, MTR, MBL and MBR in Figure 

2.1(b)) are always biased in the sub-threshold region across VDD = 0.6–1 V. In addition, 

their drain currents are less than 0.1 µA. Due to these small junction voltages and drain 

currents, therefore, the critical transistors experience little aging effects. Our measurements 

confirm the robustness of the PUF design against aging. Specifically, we conduct 

accelerated aging tests at a temperature of 125 °C and a VDD of 1.5 V for 82 h. Accelerated 

aging tests under the same condition for 16 h are able to induce up to 41.2 mV Vth shift in 

the pull-up transistor in an SRAM bitcell [27], which can account for the aging of multi-

year usage. During the aging test, we access one row of the array (i.e., the access transistors 

are turned on) while the remaining 15 rows are un-accessed. As shown in Figure 2.17, this 
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configuration stresses all the top devices (MTL and MTR) and the bottom diode-configured 

devices (MBL1 and MBR1) of the accessed rows but does not stress the diode-configured 

devices of the unaccessed rows (MBL2 and MBR2). 

 
Figure 2.19 The number of flipped bits of two 256 b PUF instances during the 82 h 

accelerated aging test. 

Figure 2.18 shows the distributions of the differences of bitcell ΔVout before and after the 

accelerated aging test. We define the difference as Δ(ΔVout) and plot the distributions 

separately for selected and unselected rows. The worst-case change is only 1.6 mV for 

selected and 3.5 mV for unselected rows in a 256 b PUF instance, indicating the aging has 

little impact on the output. The experiment shows that the unselected rows exhibit Δ(ΔVout) 

which are actually larger than the selected row. This is because, for the selected row, the 

aging effects of the top (MTL and MTR in Figure 2.1(b)) and bottom (MBL and MBR in 

Figure 2.1(b)) devices cancel each other, whereas for the unselected rows the bottom 

devices are not aged and the aging effects of the top devices are translated to ΔVout. In this 

regard, the PUF could select all rows when not accessed to make it more robust against 

aging effects. We also measure the bit-flipping ratio before and after the accelerated aging 
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test. As shown in Figure 2.19, the bit-flipping ratio is less than 0.0078% (2/256) across two 

PUF instances. This low bit-flipping ratio can be further eliminated via the filtering scheme 

discussed in Section 2.4.2. 

 
Figure 2.20 The proposed design achieves a significantly better trade-off of robustness 

and area efficiency compared to the state-of-the-art weak PUF designs. The 

measurements with and without TMV11 (native) are shown. The results of the previous 

designs are without TMV. 

2.5 Comparison and Conclusion 

2.5.1 Comparison 

In this section, we compare the proposed PUF circuits with the state-of-the-art designs. 

Based on the RFoM we defined in Section 2.4.2, we are able to compare the trade-off 

between area and robustness to noise and environmental variations between the proposed 

and the previous PUF designs (Figure 2.20). The previous works show a clear trade-off 

between RFoM and area. The reason behind this is evident: To achieve higher robustness, 

we often need to introduce large, sophisticated circuits, which incur area overhead. The 

proposed design, thanks to our novel circuit design, can push the trade-off: It achieves a 

2× to 3.66× better RFoM with native and TMV11 measurement, respectively, as compared 
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to the most compact yet still comparably sized work [15] and an 8.3× smaller footprint as 

compared to the most robust work [18]. 

 
Figure 2.21 The proposed design achieves voltage scalability down to 0.6 V. The bit-

flipping ratio at 0.6 V is more than 12.8× better than those of the previous designs. The 

off-chip ADC is used for digitizing ΔVout in our proposed design. 

We also compare the VDD scalability, which is an important feature if the PUF can be 

powered from the same power grids with other digital circuits, which actively seek to use 

deeply scaled VDD to reduce power dissipation. As shown in Figure 2.21, our design 

achieves an excellent VDD scalability down to 0.6 V with a 12.8× lower bit-flipping ratio 

seen in [18]. We consider Ref. [18] functional at VDD ≥ 0.7 V though it presents the results 

from 0.6 to 1 V; the error ratio increases significantly to 20% at 0.6 V (Table 2.2). 
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Table 2.2 Comparison of the state-of-the-art PUF circuits 

2.5.2 Conclusion 

This work presents compact and robust weak PUF circuits for security-oriented 

applications. The novel bitcell using a pair of voltage-compensated PTAT voltage 

generators consume a minimal footprint of 3.07 µm2/bit, which is 8.66× smaller than the 

state-of-the-art design having comparable robustness [18]. The proposed design exhibits 

2% bit instability under noise, 3.5% bit-flipping ratio across 0 to 80 °C, and 1.004% across 

0.6 to 1.2 V. Its RFoM is 2× better than the previous work that has the smallest yet still 

comparable footprint [15]. Excellent unpredictability and uniqueness are verified with 

ACF, NIST randomness test and inter-PUF HD. The maximal throughput is 10.2 Mb/s on 

average and the proposed design consumes 0.548 pJ/bit at 10 Mb/s. The design also 

exhibits robustness against device aging effects. Compared to the state of the art, the 

proposed design improves the trade-off between robustness and area efficiency while 

 [16] 
[17] 

Sym. 

[17] 

Cent. 

[18] 

SRAM 

[15] 

Buskeeper 
[18]3 Proposed 

Technology 22nm 0.13µm 0.13µm 65nm 65nm 65nm 65nm 

Total area/bit 

(um2) 
N/A 29.86 50.59 N/A N/A N/A 7.42 

Norm. bitcell size 

(um2) 
40.68 18.46 31.01 3.42 4.6387 25.5 3.07 

Unstable Bits at 

Norm. Cond. 

~30%4 

~3%1 3.04%4 3.78%4 16.6%4 ~4%7 1.73%4 
6.54%4 

2.00%2 

Temperature 

range(°C) 
25-50 0-80 0-80 25-85 -40~85 25-85 0-80 

Bit flipping ratio 

per 10°C 
N/A 0.68% 0.635% >6.67% 1.14%5 0.47%5 0.44% 

VDD range (V) 0.7-0.9 0.9-1.2 0.9-1.2 0.7-1 N/A 0.7-1 0.6-1.2 

Bit flipping ratio 

per 0.1V 
N/A 1.82% 1.82% >16.67% N/A 1.3%5 0.13%6 

Norm. Inter-PUF 

HD 
0.4805 0.506 0.501 0.3321 0.491 0.5014 0.5001 

Energy/bit (pJ) 
Native 0.013 

TMV15 0.19 
0.93 1.6 1.1 N/A 0.015 

Native 0.548 

TMV11 6.02 
1: Bit-error rate after TMV, aging hardening and bit-masking are applied. (>12% before masking) 2: TMV11 is used. 3: Only 

INV_PUF is included. SA_PUF has the similar performance. 4: Native read-out results. 5: Conservatively estimated from the disclosed 

unstable bit ratio. 6: Digitized with off-chip ADC 7: only reported Bit-error rate 
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achieving VDD scalability down to 0.6 V, enabling it to be integrated into the energy-

constrained systems that seek a cost-effective security measure. 
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Chapter 3 Transforming a 6T-SRAM Array into a 

Robust Analog PUF with Minimal Overhead 

3.1 Motivation 

As the era of IoT approaches, secure interactions between devices become one of the 

biggest challenges [1–3]. PUFs have emerged to serve as a low-cost security primitive on 

the chip level by providing keys or physical hash functions from the uncontrolled random 

variations within circuit elements [13–19, 31]. Also, PUFs can be used for chip-ID 

generation for device anti-counterfeiting [17]. Several recent arts [13–19, 31] propose 

various techniques to create a PUF with either SRAM bi-stability [15–17] or mismatch 

across analog circuits [18, 19, 31], to achieve high robustness against noise, temperature 

or VDD variations and device aging at low cost. 

Here, we propose a technique to reuse existing SoC resources—SRAM and ADC—to 

create a PUF. Unlike conventional SRAM-based PUFs utilizing reset states, our design 

centers on configuring the access transistors of a 6T-SRAM bitcell to form a pair of Vth 

sensors with minimal area overhead. By digitizing and comparing the outputs of a pair of 

sensors, we can acquire a PUF bit. As the operation of Vth sensor does not rely on transient 

switching activities, the proposed analog PUF has better robustness against temporal noise 

than conventional SRAM-based PUFs. Also, the proposed analog PUF design exhibits 

better robustness against temperature and VDD variations, as well as device aging. As 
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compared to prior arts using dedicated circuits [13–19, 31], our proposed design costs less 

area per bit, and this area savings is expected to increase with the number of PUF bits. 

We prototype a test chip with 1 Kb of SRAM and circuitry for the proposed analog 

PUF transformation. Off-chip ADC and data processing are used to digitize, compare and 

generate the PUF bits from analog outputs, which is expected to be implemented on-chip 

in IoT devices in the future. The per-bit area cost of our design is 0.622 µm2 for a 1 Kb 

PUF transformed from an SRAM array, marking 12× area reduction compared to the most 

compact design with comparable robustness [7]. The proposed design exhibits high 

robustness against noise, showing a Bit-Error-Ratio (BER) of less than 0.63% and an 

unstable-bit ratio of 2.15%. The bit-flipping ratio over −15~85 °C temperature variation is 

4.88% and that over 0.5–1.2 V VDD variation is 5.3%. Hamming distances (HD) and NIST 

randomness test confirm the desirable randomness and uniqueness of the proposed PUF. 

3.2 Proposed Technique 

3.2.1 Analog PUF Architecture 

Figure 3.1 shows the proposed analog PUF’s architecture and operation. The entire system 

consists of a regular SRAM, extra circuits for PUF transformation, and a subsystem (dash-

line box) for digitization and processing. By selecting and transforming the target bitcell at 

the input address (addr_key), the Vths of its two access transistors (AL, AR) are sensed, 

digitized and compared to generate one PUF bit. 

We build the SRAM with a 32 × 32 array of regular 6-T bitcells, a word-line (WL) 

decoder, and bit-line (BL) circuitries. We add a BL multiplexer (BLMUX), PUF switches 

(PSW), a PUF footer and a finite-state machine (FSM) to enable the transformation without 
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modifying the original circuits. We design the BLMUX with a one-layer multiplexing 

structure to minimize area overhead and use zero-Vth thick-oxide NMOS for the PUF footer. 

Adding the BLMUX slightly increases the capacitance (Cdb) on the bitline yet by less than 

3% and ignorable leakage due to floating the BLS and BLBS nodes in normal SRAM 

operation. The two-to-one MUX inserted before the WL decoder delays the critical path 

only slightly. 

 
Figure 3.1 Proposed architecture to transform an SRAM array to a PUF. 

Once triggered, the FSM disables normal SRAM operation, decodes the addr_key and 

controls other circuits through multiple signals: target WL at ADDR-R and the enable 

signal (PUFEN) are asserted; one of the 32 BL/BLB pairs is selected (BLS, BLBS) through 
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BLMUX by ADDR-C and PUFEN; PSW connects BLS and BLBS to either GND or the 

PUF footer at SL = 0 and SR = 1 (sense AR). The target bitcell is transformed into the 

effective analog PUF circuit as in Figure 3.2(a). The output voltage VPUF-R is proportional 

to the Vth of AR, which is then digitized (DPUF-R) by the ADC. Next, the FSM transforms 

it to Figure 3.2(b) to sense the Vth of AL by changing the PSW control signals (SL = 1, SR 

= 0) while keeping other control signals. The output voltage VPUF-L is digitized (DPUF-L) and 

compared with DPUF-R to generate a PUF bit. Those bits with same DPUF-L and DPUF-R values 

are set to fixed 1 or 0 based on the least-significant bit of the column address to balance 

the overall 1–0 ratio. 

 
Figure 3.2 (a) (b) equivalent circuits for sensing Vth of AR and AL, (c) operation 

principle, (d) physics (Vth) to outputs (VPUF-D) conversion. 

3.2.2 Principle of Operation 

The Vth-sensing circuits used in the proposed PUF are based on two-transistor voltage-

reference circuits [20]. 𝑉PUF,L is given by 
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where 𝜙𝑡 is the thermal voltage and n and β are the sub-threshold slope and strength of the 

transistors. The expression of 𝑉PUF,R has a similar form. The difference between VPUF-L and 

VPUF-R represents their Vth mismatch and shows reduced impacts from temperature and VDD 

variations due to the removal of shared parameters, as given by 

 𝑉PUF−D = 𝑉PUF,L − 𝑉PUF,R ≈ 𝑉th,AR − 𝑉th,AL. (3.2) 

Figure 3.2(c) shows the circuit operation with the I–V curves of PUF footer and the 

access transistor (header). The PUF footer has almost constant current (black line) as it is 

a zero-VGS device. The PUF headers’ current are exponential functions of VPUF,L/R (blue 

curves). The X-axis projection of the intersection point of the two currents is the output 

voltage. The Vth mismatch between two access transistors leads to different I–V curves, 

intersection points and, finally, output voltages with the same PUF footer. Figure 3.2 (d) 

shows a typical case: A 34 mV output-voltage difference represents a 33 mV Vth difference 

between the two headers (AL and AR). 

3.3 Measurement results 

We fabricate a test chip for the proposed analog PUF in 65 nm general-purpose CMOS 

(Figure 3.3). We use a National Instruments data acquisition card and LabVIEW as the 

digitization and data-processing system. The off-chip ADC has a 16 b precision for ±5 V 

input range. We truncate the ADC outputs to an effective number of bits (ENOB) of 9 for 

a range of 0–1 V. A lower ENOB will result in more bits set with the least significant bit 

of the column addresses as DPUF-L and DPUF-R are more likely to be the same, hurting the 

PUF’s randomness, while a higher ENOB increases ADC cost significantly. We chose 

ENOB of 9 as a sweet spot between PUF randomness and hardware complexity. 
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First, we measure the distribution of analog outputs of VPUF-L, VPUF-R and calculate VPUF-

D (= VPUF-L − VPUF-R) across 6,144 b from six PUF instances under normal condition (27 °C, 

1 V). Figure 3.4(a) shows the distributions of VPUF-L and VPUF-R with σ and μ of 12.72 and 

548.6 mV and 12.94 and 548.1 mV, respectively. The distribution of VPUF-D (Figure 3.4(b)) 

shows a mean of 0.536 mV, implying no bias in the PUF bits, and a standard deviation of 

17.97 mV, close to √2  times the standard deviation of VPUF-L and VPUF-R, suggesting 

independence between VPUF-L and VPUF-R. 

 
Figure 3.3 Chip Die Photo. 

 
Figure 3.4 (a) Distributions of VPUF-L and VPUF-R, (b) VPUF-D distribution. 
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bits flipped at least once throughout all the readings) and BER (number of bit errors 

comparing each reading to a reference key) are evaluated by reading the PUFs 10,000 times. 

As is shown in Figure 3.5, with more and more readings, we observe that the unstable bit 

ratio saturates to 2.15%, with an upper boundary for BER of 0.63%. The average BER is 

measured to be 0.26%. 
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Figure 3.5 Unstable-bit ratio and bit-error ratio vs. the number of readings. 

 
Figure 3.6 (a) Distributions of ΔVPUF-D/10 °C and ΔVPUF-D,−15 °C, (b) bit-flipping ratio and 

the bit-flipping ratio per 10 °C vs. temperatures. 
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standard deviation of 0.411 mV/10 °C, which is much narrower than the distribution of 

VPUF-D at −15 °C, implying desirable robustness against temperature variations. We also 

examine the robustness of digitized PUF bits by reading them at −15 °C, 10 °C, 35 °C, 

60 °C and 85 °C and comparing them with the reference key produced at 35 °C. Shown in 

Figure 3.6(b), the maximal bit-flipping ratio across the temperature range is about 4.88%. 

The worst bit-flipping ratio per 10 °C temperature change is 0.99%/10 °C. This value is 

also almost constant across the temperature range. 

Third, we sweep VDD from 0.5 V to 1.2 V and evaluate the output robustness, also for 

both the pre- and post-digitized cases. We measure ΔVPUF-D across VDD at the normal 

temperature (27 °C) and use a similar robustness metric, ΔVPUF-D/0.1V, which is the average 

VPUF-D change per 0.1 V VDD variation. As shown in Figure 3.7(a), its distribution exhibits 

a mean of 0.05 mV/0.1 V and a standard deviation of 1.04 mV/0.1 V, which is much 

narrower than that of VPUF-D at VDD = 1 V. The digitized outputs are tested across a VDD 

range of 0.5 to 1.2 V with a step of 0.1 V and compared to the reference produced at 1 V. 

The maximal bit-flipping ratio across the VDD range is 5.3% and the worst bit-flipping ratio 

is 1.3%/0.1 V at VDD = 1.2 V (Figure 3.7(b)). 

 
Figure 3.7 (a) Distributions of ΔVPUF-D/0.1V and VPUF-D,1V, (b) bit-flipping ratio and the bit-

flipping ratio per 0.1 V vs. VDD. 
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We then calculated both inter- and intra-PUF HDs to evaluate the uniqueness and 

robustness of our PUF design by dividing six PUF instances into 24 256 b keys. Figure 3.8 

shows the inter-PUF HD mean of 127.5, close to the ideal 128. The intra-PUF HD mean is 

0.731, 174.4× smaller than the average inter-PUF HD, great robustness to temporal noise. 

 
Figure 3.8 The inter- and intra-PUF HD measured under normal conditions. 

The mismatches between PUs/PDs (PMOS/NMOS) in an SRAM bitcell can be modulated 
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and μ of 0.46 and 0.03 mV. The distribution of ΔVAGE is much narrower than that of VPUF-

D (Figure 3.9(b)), suggesting great robustness against aging. The change of the standard 

deviation of ΔVAGE over aging time is shown in Figure 3.9(c), where σ(ΔVAGE) increases 

very slowly with stress time. Figure 3.9(d) shows a bit-flipping ratio due to aging effects 

of less than 1% over the stress time, suggesting desirable robustness against aging effects. 

 
Figure 3.9 (a) A typical ΔVAGE vs. accelerated aging time, (b) the distribution of ΔVAGE of 

1,024 PUF bits, (c) standard deviation of ΔVAGE vs. accelerated aging time, (d) bit-

flipping ratios during the aging test. 
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3.4 Comparison and Conclusion 

3.4.1 Comparison 

One of the benefits of reusing existing SRAM is lower area overhead as compared to 

designs with dedicated PUF cells. The total area overhead to transform a 1 kb SRAM array 

is 637 µm2, or 12% of the SRAM area, assuming an on-chip ADC is available in an SoC. 

The per-bit-area cost is then 0.622 µm2, marking the smallest per-bit area among the 

existing PUF designs with comparable robustness. 

 
Figure 3.10 (a) Area/bit vs. PUF bit counts (b) RFoM: PUF robustness vs. area. 
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potentially incur almost zero area overhead, achieves similar RFoM while its robustness 

against VDD variation and ramp-up time is not presented [15]. Interestingly, another digital 

PUF using SRAM reset states [18] shows substantially worse RFoM, implying that we 

should carefully examine such digital PUFs in term of robustness. Also, as described before, 

digital PUFs using SRAM reset states can be less robust against aging effects. Our 

comparisons are further summarized in Table 3.1. The proposed design achieves the lowest 

VDD,min, comparable robustness to the state of the art while consuming much smaller area 

per bit. 

 
Table 3.1 Comparison to state-of-the-art PUF circuits. 

3.4.2 Conclusion 

In this work, we present a technique to transform a 6T-SRAM array into an analog PUF 

with minimal area overhead. The technique transforms a pair of access transistors in a 

bitcell into two Vth sensors and produces a PUF bit by digitizing and comparing their 

outputs. We fabricated a silicon prototype in 65 nm CMOS and tested for randomness, 

uniqueness, and robustness against noise, temperature or VDD variations, and device aging. 

The measurements show that the proposed technique outperforms the prior arts in the trade-

off between area and robustness and costs much less per-bit area with an increased number 

of PUF bits. 

 Tech. 
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Range (°C) 

Bit flipping 

ratio per 10°C 

VDD 

range (V) 

Bit flipping 

ratio per 0.1V 

Norm. Inter-

PUF HD 

[17] Sym. 130 29.86 0.9 3.04% 0-80 0.68% 0.9-1.2 1.82% 0.506 

[17] Cent. 130 50.59 0.9 3.78% 0-80 0.635% 0.9-1.2 1.82% 0.501 

[16] 22 40.685 0.7 0.97%1 25-50 N/A 0.7-0.9 N/A 0.481 

[15] Buskeeper 65 4.63875 N/A ~4.5% -40~85 1.14%4 N/A N/A 0.491 

[15] SRAM  65 0.815 N/A ~6% -40~85 0.33%4 N/A N/A 0.497 

[18] SRAM 65 3.425 N/A 16.6% 25-85 >6.67% 0.7-1 >16.67%4 0.332 

[18] INV.3 65 25.355 0.7 1.73% 25-85 0.47%4 0.7-1 1.3%4 0.501 

[31] 65 7.42 0.6 2.00%2 0-80 0.44% 0.6-1.2 0.13% 0.500 

Proposed 65 0.6226 0.5 2.15% -15~85 0.99% 0.5-1.2 1.3% 0.498 
1: TMV, aging hardening and bit-masking are applied. 2: TMV11 is used. 3: Only INV_PUF is included. SA_PUF has the similar performance. 
4: Conservatively estimated from reported unstable bit ratio or BER. 5: only bitcell area, not including peripherals 6: Assuming on-chip ADC available 
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Chapter 4 Triple-Mode, Hybrid-Storage, Energy-

Harvesting Power Management Unit: 

Achieving High Efficiency against 

Harvesting and Load Power Variabilities 

4.1 Motivation 

The IoT vision projects deployment of trillions of devices virtually everywhere. Integrated 

with sensing, computation and communication capabilities, these devices will boost 

productivity and ultimately transform our everyday life experience [1, 3]. One of the 

biggest challenges in realizing the vision of IoT systems lies in powering all these devices 

practically and cost-effectively. Frequently recharging or replacing batteries of trillions of 

devices can significantly increase maintenance cost. In this aspect, energy harvesting 

garners a significant amount of attention [34, 36–43, 48] as it can enable energy-

autonomous operations of IoT devices. 

A PV cell, which converts light to electrical energy, is one of the most attractive 

harvesting modalities due to its high efficiency and low cost. Consequently, designing a 

PV EH PMU has been an active research area [36–43]. 

Figure 4.1(a) shows a conventional EH PMU architecture with two converters in series: 

one for transferring energy from a PV cell to a battery and the other from the battery to a 

load. This architecture, however, suffers from the fact those two converters always perform 

high-ratio voltage conversion. Typically, PV-cell output voltage (VPV) is in the range of 
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0.3–0.6 V, Li-Ion battery charging voltage (VBat) is in the range of 3–4 V, and the load 

supply voltage (VLoad), considering energy-efficient near/sub-threshold circuits, is in the 

range of 0.3–0.6 V. Therefore, in the worst case, this conventional architecture can perform 

greater than 100× cumulative-ratio voltage conversion. 

 
Figure 4.1 Conventional EH PMU architectures. (a) Single-mode architecture with two 

converters in series. (b) Dual-mode architecture with charging-direct and discharging-

direct modes. 

These high-ratio conversions can cause substantial loss in the end-to-end conversion 

efficiency. Particularly, SC-DC, which have gained increased popularity for the on-chip 

integration capability [34, 35, 37, 39, 40, 42, 46, 48, 49], often exhibit decreasing 

conversion efficiency as the conversion ratio increases [40, 49]. On the other hand, while 

inductor-based power converters are often more efficient in high-ratio voltage conversion, 

the aforementioned high conversion ratio can still introduce a considerable conversion loss 

in them [36]. 

To avoid such high-ratio conversion, an alternative architecture has been proposed [36–
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PV cell to VLoad while regulating VLoad by storing excess energy in the battery. In the 

discharging-direct mode, the load receives power through the direct path and the 

discharging path from the battery to VLoad. This architecture can reduce the amount of 

energy that flows through high-conversion-ratio paths, i.e., the paths between VBat and VLoad, 

improving the overall conversion efficiency. Note that Ref. [40] is slightly different from 

Ref. [36–38] in the sense that it uses a bidirectional converter for the converter between 

the battery and the load. Yet, their operations are roughly the same. 

 
Figure 4.2 (a) Photovoltaic harvesting power values for different lighting conditions 

along with typical IoT node power dissipation. (b) Temporal variations of harvested 

power and load-dissipated power cause frequent battery charging and discharging, 

degrading end-to-end energy efficiency. 

However, in this dual-mode architecture, the amount of energy that travels through the 
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4.2(a)), there exists almost always a substantial temporal mismatch between PHarv and PLoad, 

due to the widely varying lighting conditions [51], as well as varying power dissipation in 

a load’s different operating modes (e.g., data transmission, sensing/computation, sleep). In 

Figure 4.2(b), an IoT node with active/sleep mode is illustrated as an example, where the 

significant temporal variation of power dissipation forces a substantial portion of the 

energy to be either charged to or discharged from the battery, leading to high-conversion-

ratio loss and lower end-to-end conversion efficiency. In such cases, the alternative 

architecture in Figure 4.1(b) only gains minimal efficiency improvement. 

 
Figure 4.3 (a) The proposed triple mode EH PMU architecture with hybrid energy storage 

in battery and capacitor. (b) Hysteresis control scheme to switch among the three 

operating modes. 
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contains a capacitor, which serves as an intermediate energy storage and thus allows the 

voltage of the capacitor (VCap) to fluctuate within a set range. This enables the proposed 

architecture to use the direct path without battery involvement even under a temporal 

mismatch of PHarv and PLoad, improving the EH PMU’s end-to-end energy efficiency. 

Although our architecture is based on SC-DC, it can be realized with inductive converters. 

Inductive converters typically have higher conversion efficiency, yet they can also suffer 

from low conversion efficiency for performing a large-ratio voltage conversion [36]. 

Maximal utilization of the low-conversion-ratio path under harvester and load power 

mismatches can improve end-to-end conversion efficiency. 

We fabricated a test chip of the proposed PMU architecture in 65 nm CMOS. Our 

measurements show that the proposed architecture achieves up to 2.2× higher end-to-end 

conversion efficiency over the conventional dual-mode architecture under typical PHarv and 

PLoad variation scenarios. We have also analyzed the effectiveness of the architecture and 

generated a framework for system design that guides capacitor sizing and capacitor voltage 

range selection for maximal efficiency improvement. 

4.2 Proposed Design 

4.2.1 System Architecture 

Figure 4.3(a) shows the proposed EH PMU architecture. It consists of three SC-DC and 

one digital LDO, along with a battery and a capacitor. The first SC-DC, the harvesting 

converter, interfaces a PV cell to the capacitor, converting from VPV to VCap. The second 

converter, the charging converter, delivers the excess power to the battery (charging), 

converting from VCap to VBat. The third converter, the discharging converter, supplies the 
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load the necessary power in case the power harvested by the PV cell is insufficient, 

converting from VBat to VCap. Finally, a digital LDO regulates VLoad to the desired voltage. 

The proposed EH PMU operates in one of the three modes, namely direct, charging-

direct, and discharging-direct modes. A control unit, built with comparators and digital 

logic circuits, switches among the three modes based on the level of VCap. Figure 4.3(b) 

shows the principle of the mode change control. If PHarv > PLoad, the excess power charges 

the capacitor and raises VCap. If VCap crosses an upper threshold (VUpp), it asserts the enable 

signal (EN1) of the charging converter to store the excess harvested energy in the battery 

(i.e., charging-direct mode). 

Similarly, if PHarv < PLoad, the capacitor gets discharged, decreasing VCap. When VCap 

crosses the lower threshold (VLow), it asserts the enable signal (EN2) of the discharging 

converter to supply power from the battery to the load (discharging-direct mode). 

Finally, If PHarv ≈ PLoad, both the charging and discharging converters are disabled, 

and the photovoltaic cell via the charging converter directly powers the load. Any temporal 

mismatch between PHarv and PLoad is buffered by the intermediate storage capacitor without 

involving battery charging and discharging. In essence, this scheme regulates VCap between 

VUpp and VLow, creating a range of voltage as a buffering range. Note that we add hysteresis 

near VUpp and VLow to avoid excessive switching among the modes since the converters are 

switching at fixed frequencies. Other regulation schemes, such as pulse frequency 

modulation, can also be used to control the charging and discharging converters to improve 

the stability, as well as the efficiency of the system. 
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4.2.2 Circuit Implementations 

Figure 4.4 shows the schematics of the harvesting converter. It is a step-up converter that 

can perform 2× or 3× voltage conversion from VPV to VCap. Specifically, it consists of two 

unit blocks that can be configured in series for 3× or in parallel for 2× voltage conversion. 

The settings for each conversion configuration are summarized in Figure 4.4 right bottom. 

Figure 4.4 left bottom also shows the waveforms of the non-overlapping clocks (phi1, phi2 

and their inverted signals). The parallel configuration in 2× mode can maximize capacitor 

utilization and thus enable larger power-transfer capacity. To support low input voltage 

(~0.3 V), we used transmission gates in the power transfer path to reduce device ON 

resistance. Also, the converter generates and uses switching clock and other control signals 

that swing from 0 to VCap, further improving the ON resistance of the power transistors. 

 
Figure 4.4 Schematics of the harvesting converter. 

As shown in Figure 4.5, we designed the charging converter based on an eight-stage 

configurable-ratio charge pump topology. It can perform 6× to 9× step-up operation, 
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three stages. Figure 4.5 left shows the unit building block of each stage. High Vi can incur 

reverse body bias, substantially increasing the ON resistance of the power transistors. To 

avoid such effects, using deep N-well, we connect the body of the NMOS power transistors 

to the input of the current unit stage (Vi) and the body of PMOS to the output (Vi+1). 

 
Figure 4.5 Schematics of the charging converter and overstress protection circuitry. 

We used thin-oxide devices in the charging converter to reduce ON resistance while the 

output voltage of the converter can be as high as 3 V to 4 V. Therefore, it is critical to 

implement overstress protection. Particularly, while the converter is disabled—i.e., while 

the EH PMU is not charging the battery—the high battery voltage can stress the thin-oxide 

devices of the charging converters. As shown in Figure 4.5, we designed the overstress 

protection circuitry using a comparator with a predefined offset that compares the internal 

output of the converter and VBat. If the internal output is smaller than VBat by a predefined 

amount, the protection circuitry asserts rdy, turning off the thick-oxide output PMOS to 

isolate VBat from the converter’s thin-oxide devices. The assertion of rdy gates the clock to 

the comparator and the flip-flop to save power dissipation. The level converter is designed 

based on the structure proposed in [52]. 
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The discharging converter design is based on a two-stage 1/4-step-down architecture 

(Figure 4.6) to down-convert VBat to VCap. Figure 4.6 shows the schematics of each stage. 

Similar to Figure 4.4, phi1 and phi2 are non-overlapping clock phases. The transistors on 

the high side of the stage receive clocks that swing from Vo to Vi, instead of 0 to Vi, which 

reduces the power dissipation and allows the use of thin-oxide transistors. Similarly, the 

transistors on the low side receive clocks that swing from 0 to Vo. Finally, as shown in 

Figure 4.7, we based the output digital LDO on the shift-register topology [37]. This 

provides the regulated load supply voltage (VLoad) from VCap. 

 
Figure 4.6 Schematics of the discharging converter. 

 
Figure 4.7 Schematics of the output digital LDO. 
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based on current-starved ring oscillators with tunable capacitive loads for frequency tuning 

(Figure 4.8(a)). These clocks swing from 0 to VCap. The clock generator for the discharging 

converter is based on ring-configured delay cells, each of which consists of a self-gated 

cross-coupled inverter and a leakage device (Figure 4.8 (b)). We can tune the oscillation 

frequency by modulating the gate bias of the leakage device [39]. This clock swings from 

0 to VBat. 

 
Figure 4.8 The clock generator design for the (a) harvesting converter, charging converter 

and LDO, and (b) discharging converter. 

 
Figure 4.9 Self-start circuits including the cold-start detector. 
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Since the clock of the harvesting converter swings from 0 to VCap, if no charge is stored in 

the capacitor or battery, the clock generator cannot function, requiring the harvesting 

converter to have self-start capability. To implement the self-start circuitry, we added two 

PMOS transistors (M1 and M2, Figure 4.9) and a cold-start detector (similar to [45]). If 

VCap is lower than a predefined threshold (i.e., too little charge resides in the capacitor), it 

makes VPV provide power to the clock generator for the cold start. As VCap increases and 

crosses a predefined threshold of ~0.35 V, RSTN is asserted, which makes VCap power the 

clock generator and other controls. While it is possible to keep using VPV, the use of VCap 

is desirable to reduce the ON resistance of the power transistors, thus improving the 

charging converter’s conversion efficiency. Note that we used a thick-oxide device for the 

PMOS for VPV (M1) to reduce the leakage in the normal non-cold-start operation (Figure 

4.9). 

 
Figure 4.10 (a) Robustness of trip point voltage and power consumption of the cold-start 

detector across corners. (b) Monte-Carlo simulations of the trip-point voltage at each 

process corner. 

We performed corner and Monte Carlo simulations to evaluate the cold-start technique’s 

robustness. As shown in Figure 4.10(a), the predefined threshold (Vtrip) of the cold-start 
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of tens of nanowatts, small enough to have a minimal impact on the EH PMU efficiency. 

Figure 4.10(b) shows the results of the 250-point Monte Carlo simulation at each of the 

five process corners. As Vtrip varies in a reasonable range, the detector can robustly assert 

RSTN to start and stop the cold-start process. It is possible to implement tuning capability 

for the cold-start detector so that Vtrip can be tuned based on process corner information. 

Yet, this is beyond the purpose of this work. 

It is noteworthy that our proposed EH PMU architecture may frequently enable and 

disable the charging and discharging converters if PLoad and PHarv vary widely. Frequent 

enabling and disabling of the converters can waste a considerable amount of energy since 

the charge stored in the flying capacitors while the converters are enabled can be lost via 

leakage while the converters are disabled. To save this energy, we can use a charge-

retention technique such as one proposed in [46]. 

4.2.3 End-to-End Energy Efficiency Analysis of EH 

PMU 

In this section, we analyze the end-to-end energy efficiency of the proposed EH PMU. To 

do so, we first define a metric for the efficiency (Effov). The conventional PCE metric used 

for individual converters is insufficient for the evaluation of end-to-end efficiency: It 

cannot capture the impact of charging and discharging of energy storage devices. Therefore, 

we propose Effov as 

 𝐸𝑓𝑓ov = {

𝐸Load+𝐸Bat∙𝑃𝐶𝐸discharge

𝐸mpp
, 𝑖𝑓 𝐸Bat > 0

𝐸Load

𝐸mpp+|𝐸Bat|/𝑃𝐶𝐸charge/𝑃𝐶𝐸Harvest
, 𝑖𝑓 𝐸Bat < 0,

 (4.1) 
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where Empp is the total amount of energy that a PV cell harvests at its maximal power point 

(MPP); ELoad is total load energy consumption; PCEdischarge is the measured average PCE 

of battery-to-load conversion; PCEcharge is the measured average PCE of capacitor-to-

battery (proposed) or load-to-battery (conventional dual-mode architecture, Figure 4.1(b)) 

conversions; PCEHarvest is the efficiency of the harvester converter; EBat is the amount of 

energy charged to or discharged from the battery during a time window (negative if a 

battery is discharged). Note that we do not include the LDO efficiency in the efficiency 

improvement analysis simply because it equally affects the proposed and the baseline 

architectures. In this regard, Effov is defined as the efficiency from harvester and battery to 

the LDO input. 

Note that the energy drawn from the battery is what was previously harvested and 

charged to the battery. Therefore, we need to take the PCEs of harvesting and charging into 

account in defining Effov. Similarly, the load will eventually consume the energy charged 

to the battery. Therefore, we include the impact of PCE for the discharging operation in 

defining Effov. Also, note that Effov has no terms related to the change of energy stored in 

the capacitor. This is because in the test case studies, for simplicity, we assume that the EH 

PMU system operates in a steady state in the energy perspective: The amounts of energy 

flowing in and out of the capacitor are roughly the same. The capacitor energy storage 

could be incorporated into Effov for more generalized studies. 

We constructed a simplified test case to emulate practical PHarv and PLoad variations. 

We focus on short-term (a few seconds) temporal mismatch of PHarv and PLoad. Therefore, 

we assume PHarv is constant but PLoad changes periodically between active and sleep modes. 

Figure 4.11(a) shows the PHarv and PLoad profile of the test case. It can be modeled with 
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three parameters: (1) the active-to-sleep-mode power dissipation ratio of a load (K1 = 

Pactive/Psleep), (2) the total load energy consumption to harvester energy generation ratio (K2 

= ELoad/EHarv), and (3) the active-to-sleep-mode duration ratio (K3 = tactive/tsleep). 

 
Figure 4.11 (a) Simplified test-case emulating PHarv and PLoad variations. (b) End-to-end 

efficiency analysis of the proposed EH PMU architecture. 
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specify PCEHarvest since it is the same between the proposed triple- and the conventional 

dual-mode architectures and thus has no impact in the comparisons. We also assume that 
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proposed architecture, only the net difference between ELoad and EHarv over the test case 

duration is charged to or discharged from a battery. 

Figure 4.11(b) shows the Effov improvement of the proposed EH PMU architecture over 

the conventional dual-mode architecture. Here we used the VUpp and the capacitor size of 

our design. We fixed K3 at 1% while sweeping K2 and K1•K3 (= Eactive/Esleep). This analysis 

shows that the Effov improvement of the proposed architecture peaks (2.75×) at K2 = 1 and 

a high K1•K3 value. It reduces as K2 deviates from 1 since EBat dominantly degrades Effov 

in both the proposed and the conventional architectures (see Eq. (4.1)). Note that the worst 

case of our proposed architecture happens where it cannot use the storage capacitor and 

operates similarly with the conventional dual-mode architecture. Specifically, if K1•K3 is 

very small, for example, the variation of load-power dissipation becomes small and so does 

the energy charged to or discharged from the storage capacitor. This makes a large portion 

of energy flow to the battery, degrading Effov. 

4.3 Measurement Results 

4.3.1 Chip Measurements 

We fabricated the test chip for the proposed EH PMU in 65 nm CMOS. The target 

maximum load current of the EH PMU is 140 µA at 0.45 V load VDD. We use ~2 fF/µm2 

metal-insulator-metal (MIM) capacitors to implement the capacitors. The total active area 

of the design is 0.48 mm2. See the die photo in Figure 4.12(a). 

We use a PV cell with a 7.5 mm2 radiant-sensitive area for measurement. To facilitate 

the test procedure, instead of using a controllable light source and a real rechargeable 

battery, we use two source meter units (SMU) to emulate the behaviors of a PV cell and a 
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rechargeable battery. Figure 4.12(b) describes the setup, where the first SMU (SMU1) is 

connected in parallel with a PV cell that is fully covered in dark. This SMU-PV system can 

emulate PV cell behavior under various lighting conditions simply by adjusting the amount 

of the current that SMU1 sources. The other SMU (SMU2) is connected to VBat and VSS, 

which can emulate a rechargeable battery by operating in the voltage source mode. SMU2 

can measure the current coming in and out of the unit, which are roughly equivalent to 

charging and discharging currents. 

 
Figure 4.12 (a) Die photo. (b) Testing setup using SMU-based PV cell and rechargeable 

battery. 

We measured the harvesting efficiency (PCEHarvest) of the harvesting converter across PV 

cell currents ranging from 0.5 to 32 mW/cm2. As shown in Figure 4.13(a), the converter’s 

peak PCEHarvest is 60.9% for VCap = 0.5 V and 61.9% for VCap = 0.6 V with off-chip MPPT 
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control. (Our test chip has no on-chip MPPT control loop due to the limited design time.) 

The extraction efficiency, POUT/PMPP, is shown in Figure 4.13(a), where the PMPP is the 

output power of the PV cell at the maximal power point. Figure 4.13(b) shows the measured 

PMPP across varying irradiance levels and the corresponding optimal PCEHarvest of the two 

operation modes. The maximal PMPP is ~600 µW and the corresponding PHarv is 196 µW 

for VCap = 0.5 V and 298 µW for VCap = 0.6 V. 

 
Figure 4.13 (a) Harvesting converter conversion efficiency, PV cell extraction efficiency. 

(b) The output power of PV cell at maximal power point and optimal harvesting 

efficiency of the harvesting converter. 

We also measured the charging-converter PCE for variable-ratio conversions from 0.6 V 

to 3 V, where the charging converter is enabled when VCap reaches VUpp (0.6 V in our test 

cases). As shown in Figure 4.14, the peak PCE is measured to be 63.8% at 6× conversion 
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and decreases at higher conversion ratios, which is able to convert higher input power. 

Then, we measured discharging-converter PCE (Figure 4.15). Converting 3 V VBat to 0.6 V 

VCap, the converter achieves 59.1% peak PCE. When VCap is 0.5 V, the peak PCE is 55.8%. 

Finally, we measured the current efficiency of the output LDO. As shown in Figure 

4.16, operating at 1 MHz clock, 0.5 V VCap, and 50 mV dropout voltage, the LDO consumes 

2.7 µA quiescent current. Considering a typical load of 120 µA, the current and power 

efficiencies are 97.7% and 87.9%. Table 4.1 summarizes the measurement results and 

Table 4.2 compares the proposed design with some prior work. 

  
Figure 4.14 Power conversion efficiency of the charging converter. 

 
Figure 4.15 Power conversion efficiency of the discharging converter. 
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Figure 4.16 Current efficiency and quiescent current of the output LDO. 
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4.3.2 Test Case Studies 

In the test case studies, we configure our proposed EH PMU architecture with the following 

system parameters: VUpp = 0.6 V, VLow = 0.5 V, CCap = 0.47 mF. We choose the capacitor 

size that is sufficient to handle transient power mismatch between PHarv and PLoad. We will 

further discuss optimizing these system parameters in Section 4.4. We emulate the 

conventional dual-mode architecture by reusing our EH PMU and configuring it with the 

following system parameters: VUpp = 0.52 V, VLow = 0.5 V, CCap = 1 µF. We cannot 

completely eliminate CCap as it causes control stability issues, but this slightly improves the 

efficiency of the emulated dual-mode architecture, ensuring fair comparisons. Due to the 

greatly reduced buffering voltage range and a smaller capacitor, even with a slight 

mismatch of PHarv and PLoad, the EH PMU operates in either charging-direct or discharging-

direct mode. 

 
Table 4.3 Detailed setup of the experiments. 

We operate and measure our proposed EH PMU under three test cases that emulate realistic 

PHarv and PLoad variations. Table 4.3 summarizes the details of the test cases. In the first test 

case (Experiment 1), we periodically modulate PHarv by enabling and disabling the PV cell 

Test I
load

 Variations P
PV

 Variations V
Low

-V
Upp

 C
Cap

 

Exp. 1 

Proposed Constant 50µA 1Hz enabling/disabling 0.5-0.6 0.47mF 

Baseline Constant 50µA 1Hz enabling/disabling 0.5-0.52 1µF 

Exp. 2 

Proposed 120µA, T
active

=50ms, 

Period=1s 

Always enabled 0.5-0.54 0.47mF 

Baseline 120µA, T
active

=50ms, 

Period=1s 

Always enabled 0.5-0.52 1µF 

Exp. 3 

Proposed 120µA, T
active

=50ms, 

Period=1s 

1Hz enabling/disabling 0.5-0.6 0.47mF 

Baseline 120µA, T
active

=50ms, 

Period=1s 

1Hz enabling/disabling 0.5-0.52 1µF 
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output every second. This case can mimic a shading effect: The PV cell has some shade 

and thus produces substantially smaller PHarv. In the second test case (Experiment 2), we 

use a PLoad profile with a 50 ms 120 µA peak power dissipation every second. This mimics 

the load’s active-sleep-mode transition. Finally, in the third test case (Experiment 3), we 

combine Experiments 1 and 2, both PHarv and PLoad vary. In all three experiments, we 

consider the lighting level in the range of 0.5 to 32 mW/cm2. 

 
Figure 4.17 Example waveforms measured during Experiment 3. The proposed EH PMU 

can handle the mismatch between PHarv and PLoad, thus minimizing battery involvement. 

Figure 4.17 shows several key waveforms measured during Experiment 3.  

In the beginning, PHarv is set larger than PLoad, assuming the load is in the sleep mode. This 
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Peak power spike 
Filtered out by Cap.

 

t(s)

Ppeak

0

PLoad

PHarv
0

PHarv,Max

Vcap

IBat

VUpp

Charging Cap. 
Instead of Battery

 

0
 

 

VLow

t(s)

t(s)

t(s)1 2 3 4 5 6 7

~50ms

120μA×0.45V=54μW

Varying during test

Battery 
current

0



73 

nonzero IBat. Note that IBat and Vcap fluctuate because of the hysteresis-based control (Figure 

4.2(b)).  

Specifically, if Vcap reaches VUpp, the controller enables the charging converter, and this 

makes Vcap not rise too much beyond VUpp, and eventually drop to below VUpp − ΔV, at 

which point the controller disables the charging converter. This makes both IBAT and Vcap 

fluctuate.  

Eventually, the load enters active mode and starts to draw current, directly from the 

harvester. This temporarily makes IBat smaller, creating a notch in the IBat waveform 

(denoted by the first blue arrow).  

Then, PHarv is reduced, assuming the lighting conditions get worse. The load, although 

in the sleep mode, consumes some amount of power, and thus VCap drops. As denoted by 

the second blue arrow, the load again enters the active mode, consuming the peak amount 

of power. This creates a steeper slope in the VCap waveform. Still, the sufficiently sized 

capacitor delivers the necessary power and therefore no current is drawn from the battery. 

Note that VCap does not cross VLow.  

After this, PHarv again becomes larger than PLoad, and the excessive power is charged 

into the buffering capacitor, increasing VCap toward VUpp (denoted by the third blue arrow). 

Throughout this experiment, our proposed EH PMU operates either in the direct or the 

charging-direct mode. No battery discharge occurs. 
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Figure 4.18 Battery charging and discharging power (average) and end-to-end efficiency 

measurement during Experiment 1. The proposed EH PMU achieves up to 1.52× higher 

Effov over the conventional dual-mode architecture. 

Across all three test cases (Experiments 1, 2 and 3), the proposed EH PMU architecture 

can significantly improve the end-to-end efficiency.  

In Experiment 1, as shown in Figure 4.18, we find that our proposed architecture 

achieves 1.52× higher Effov than the baseline that emulates the conventional dual-mode 

architecture. Notably, the Effov improvement is large at the light intensity that makes EHarv 

similar to ELoad. This is because any difference of EHarv and ELoad requires charging to or 

discharging from the battery, worsening Effov. This is indeed the same conclusion that we 

have in the Effov analysis in Section 4.2.3.  

Similarly, in Experiments 2 and 3, the proposed EH PMU architecture exhibits 1.83× 

and 2.20× higher Effov over the emulated baseline (Figure 4.19 and 4.20). Again, we find 

that Effov improvement is large at the light intensities that make EHarv and ELoad similar. In 

addition, larger PHarv and PLoad variations (used in Experiment 3) benefit the proposed EH 

PMU architecture. 
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Figure 4.19 Battery charging and discharging power (average) and end-to-end efficiency 

measurement during Experiment 2. The proposed EH PMU achieves up to 1.83× higher 

Effov. 

 
Figure 4.20 Battery charging and discharging power (average) and end-to-end efficiency 

measurement during Experiment 3. The proposed EH PMU achieves up to 2.2× higher 

Effov. 
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The size of the capacitor and buffering voltage range together determine the amount of 
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relationship. In the first order, the amount of energy buffered in the capacitor increases 

quadratically with the buffering voltage range. However, as we increase the buffering 

voltage range, i.e., increasing VUpp, the linear loss of the last output LDO proportionally 

increases. We can reduce such loss by replacing the output LDO with a more efficient SC-

DC. However, as we discussed in the Introduction, SC-DCs indeed exhibit lower PCE with 

an increasing voltage conversion ratio. Furthermore, as VCap gets higher, the harvesting 

converter also becomes less efficient, again due to the increasing conversion ratio. On the 

other hand, a higher VCap requires smaller voltage conversion for the charging converter 

(i.e., VCap to VBat), improving its conversion efficiency. 

To understand these trade-offs, we created a framework to estimate the proposed EH 

PMU’s end-to-end efficiency (Figure 4.21).  

This framework takes the following inputs to predict Effov:  

• PHarv: average harvesting power. 

• Pactive: load power dissipation during the active mode. 

• Psleep: load power dissipation during the sleep mode. 

• tactive: active mode time. 

• twindow: steady-state time window. 

• VLow: lower bound of buffering voltage range. 

• VUpp: upper bound of buffering voltage range. 

• PCE0, PCE1, and PCE2: PCE of the discharging, harvesting and charging 

converters, respectively. 

• PCE3: PCE of the last down-conversion from VCap to VLoad, which the digital 

LDO performs in the current design. 
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•  
• Figure 4.21 Framework to evaluate the trade-off between capacitor size, 

buffering range selection and end-to-end efficiency of the proposed EH PMU 

architecture. 

In this framework, we assume for higher VUpp, an SC-DC will be used to perform this 

conversion. Ecap-active and Ecap-sleep represent the amount of energy discharged from and 

1 // PCE0: PCEDischarge from VBat to VLoad; independent of VCap 1 

2 // PCE1: PCEHarvest; function of VCap 2 

3 // PCE2: PCECharge; function of VCap    3 

4 // PCE3: Conversion PCE from VCap to VLoad; function of VCap 4 

5 // We use Linear interpolation to find PCE1, PCE2, PCE3 as a function of VCap 5 

6 // Eq1(EBat, Eharvest, PCE0, PCE1, PCE2): Equation (1) calculating Effov  6 

7 // when cap is small, VCap fluctuate between upper/lower bound 7 

8 PCE3previous = PCE3((VUpp + VLow)/2);  // initial PCE3, as VCap fluctuate btw. VUpp & VLow 8 

9 PCE1previous = PCE1((VUpp + VLow)/2);  // initial PCE1, as VCap fluctuate btw. VUpp & VLow 9 

10 For CCap= CCap,min: CCap,step: CCap,max { 10 

11         Ecap-active = (Pactive/PCE3previous - Pharvest ∙ PCE1previous) ∙ Twindow ∙ K3; 11 

12     Ecap-sleep = (Pharvest ∙ PCE1previous – Psleep) ∙ Twindow ∙ (1-K3); 12 

13         Ebuffer = CCap ∙ (VUpp
2-VLow

2); 13 

14     if (Ecap-active>Ecap-buffer & Ecap-sleep>Ebuffer) { // VCap reach both boundaries  14 

15                EBat = (Ebuffer - Ecap-active)/PCE0)/PCE0 + (Ecap-sleep - Ebuffer) ∙ PCE2((VUpp + VLow)/2); 15 

16                Effov = Eq1(EBat, Eharvest, PCE0, PCE2((VUpp + VLow)/2));  16 

17        } else { 17 

18                    if (Ecap-active > Ecap-sleep)  {// VCap stays near VLow 18 

19                                         // x: actual higher bound of VCap during test 19 

20                        x = solve (CCap ∙ (x2-VLow
2) == Ecap-sleep);  20 

21                        PCE3previous = PCE3((x + VLow)/2);   21 

22                        PCE1previous = PCE1((x + VLow)/2); 22 

23                        EBat = (Ecap-sleep - Ecap-active)/PCE0; // EBat<0 23 

24                        Effov = Eq1(EBat, Eharvest, PCE0, PCE1((x+VLow)/2), PCE2((x+VLow)/2)); 24 

25                    } else { // VCap stays near VUpp during test 25 

26                                          // x: actual lower bound of VCap during test 26 

27                        x = solve (CCap ∙ (VUpp
2-x2) == Ecap-active);  27 

28                        PCE3previous = PCE3((x + VUpp)/2);  28 

29                        PCE1previous = PCE1((x + VUpp)/2); 29 

30                        EBat = (Ecap-sleep - Ecap-active) ∙ PCE2((x+VUpp)/2); // EBat>0 30 

31                        Effov = Eq1(EBat, Eharvest, PCE0, PCE1((x+VUpp)/2), PCE2((x+VUpp)/2));  31 

32                    } 32 

33                }  33 

34 } 34 
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charged to the capacitor during the active period and sleep period, respectively. Ebuffer is 

the amount of energy that CCap can store (provide) while VCap increases (decreases). Note 

that the power profile in Figure 4.21 is represented by K1, K2 and K3, the same as in Section 

4.2.3. We can evaluate the framework while increasing Ccap (intermediate storage capacitor 

size) in a small step size. Comparing Effov from the framework evaluations yields the 

optimal system parameters. 

Note that VCap is a complex function of various parameters including power profile, 

capacitor size, VUpp and more. To precisely solve for VCap, therefore, we would need to 

perform an iterative process, increasing the complexity of the framework. Instead, we 

approximated the converter efficiencies (which are functions of VCap) using efficiency 

values found in the previous evaluation with one step smaller capacitor size, using 

PCE1previous and PCE3previous for PCE1 and PCE3 in calculating Ecap-active and Ecap-sleep (Lines 

11 and 12 in Figure 4.21). As long as we use a fine-grained step in the capacitor size sweep, 

this approximation will introduce only minimal error. 

As an example, we evaluated the framework with the following parameters: Pharvest = 

10 µW, Pactive = 360 µW, Psleep = 0.360 µW, tactive = 10 ms, Twindow = 1 s, VLow = 0.5 V, VUpp 

= [0.6 V, 0.9 V, 1.2 V, 1.5 V]. These parameters result in ELoad/EHarv = 0.4, tactive/twindow = 

1%, and Pactive/Psleep = 1000. Figure 4.22(a) shows the results of the framework evaluations: 

Effov improvement of the proposed EH PMU architecture over the conventional dual-mode 

architecture as a function of Ccap. Here we assume the PCEs of the converters are roughly 

constant across VCap That is, the increased loss when converting from higher VCap to VLoad 

and from VPV to higher VCap, as well as a reduced loss when converting from higher VCap to 
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VBat, are all neglected. In Figure 4.22(b), we considered the impact of VCap on the PCEs in 

evaluating the framework. 

 
Figure 4.22 The trade-off among capacitor size, buffering voltage range (VUpp) and Effov 

improvement over the conventional dual-mode architecture. (a) Results without 

considering converters’ PCE dependencies on VCap. (b) Results with considering the 

dependencies. At ELoad/EHarv = 0.4, the maximal Effov improvement is ~1.58× for both (a) 

and (b). 

Both results show that increasing Ccap benefits the proposed EH PMU architecture with a 

maximal improvement of ~1.58×. It is also shown that increasing VUpp can help reduce Ccap 

for the same amount of Effov improvement. Finally, as shown in Figure 4.22(b), the VUpp-

incurred PCE degradation of the converters are pronounced if Ccap is too small or large: If 

the capacitor is too small, it can tolerate only a small amount of power mismatch between 

harvester and load, worsening Effov. If the capacitor is too large, VCap remains very close to 
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VUpp because 𝐶𝑐𝑎𝑝(𝑉𝑈𝑝𝑝
2 − 𝑉𝐿𝑜𝑤

2 ) is larger than Ecap-active. In this case, high VUpp can hurt 

PCE1 and PCE3. 

Finally, it is noteworthy that the model we used above can be extended to general power 

profiles, by dividing the time window in a more fine-grained way, adding the history effect 

on the VCap, and employing an iterative solving function for VCap from the power and 

previous VCap values. Also, the PCE calculation can be improved as the current PCEs in 

the model is using an average value calculated at average VCap, while the actual PCE should 

be averaged in the energy aspect. Finally, in the above analysis, leakage of the energy-

storage capacitor is ignored as we use a ceramic capacitor with little leakage in the 

experiments. A leakier capacitor can waste a fixed amount of power, degrading end-to-end 

efficiency. Thus, we need to avoid the capacitor whose leakage is a good fraction of 

average harvesting and load power. 

4.5 Conclusion 

In this chapter, we present a triple-mode, hybrid-storage EH PMU architecture interfacing 

a PV cell, a 3 V battery and a 0.45 V load. It consists of three SC-DCs and a digital LDO 

for load–supply voltage regulation. The proposed EH PMU architecture can effectively 

cope with the temporal mismatch of harvested and load power while minimizing battery-

charging and -discharging operations. Based on several test cases that emulate practical 

harvested and load power variations, our proposed architecture achieves up to 2.2× better 

end-to-end efficiency than the conventional dual-mode architecture. We also analyze the 

trade-off among capacitor sizing, capacitor-voltage-range selection, and end-to-end 

efficiency, providing system-level design guidelines. 
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Chapter 5 Fully Integrated and Fully Digital Hybrid 

Error/Replica-based Nanowatt Power 

Management Unit and Neural Spike 

Processor Co-design with Energy-

Robustness Co-optimization Control 

5.1 Motivation 

Enabled by the recent advances in ultra-low-power circuits, the drastically reducing power 

consumption of IoT nodes that scales down to the sub-microwatt range impose new 

challenges in PMU design, including compact form factor, ultra-low quiescent power, high 

PCE while delivering sub-microwatt, wide input voltage range and low input voltage 

support for energy-harvesting applications, among others. 

Moreover, as near- or sub-threshold operation gains popularity for its significantly 

improved system energy efficiency, the nature of such operation imposes further 

challenges. Due to PVT variations, as well as other fast-varying variations (supply voltage 

droop, coupling noise, etc.), robust near- or sub-threshold operation requires a prohibitive 

voltage margin. As a result, IoT nodes must support adaptive circuit techniques such as in-

situ timing-error detection and correction [62], timing-error prediction [60, 61], and DVS 

capabilities in the PMU such that the IoT node’s supply voltage can be tuned dynamically 

according to the current PVT variations [59, 60, 63]. 

Previous adaptive DVS works (Figure 5.1) either employ an off-chip regulator [59], 

resulting in a slow transient response, increased system form factor, and extra power 
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consumption for off-chip circuits, or utilize on-chip LDO [63] that has substantial power-

conversion loss when the difference between input and output becomes large. Both factors 

prohibit their use in a sub-microwatt system that operates in the deep sub-threshold regime. 

Moreover, both of them require a voltage reference and comparators, which further 

increases quiescent power and lowers overall PCE. 

 
Figure 5.1 Previous adaptive DVS works either require off-chip components [59] or have 

an inefficient LDO [63]. Both of these require a voltage reference and a comparator. 

Direct error regulation can be integrated with SC-DC to enable a fully integrated and fully 

digital PMU design [58]. In such a system, the timing error directly triggers switching of 

the SC-DC for fast droop response, and error statistics are used to scale the supply voltage 

(VDD) up or down by changing the SC configuration. However, in this design, the loss of 

regulation due to inactivity or noncritical execution can cause critical failures. Also, the SC 

is designed to switch at a fixed frequency [58], so its efficiency is degraded when the load 

power varies substantially. This problem worsens significantly for IoT nodes, where the 

load power can vary by orders of magnitude (Chapter 4). 

This work presents a PMU–load co-design that tackles the aforementioned challenges. 

The proposed PMU is designed based on a fully integrated SC-DC and integrated with a 

state-of-the-art Neural Spike Processor (NSP) performing motor intention decoding tasks. 

The NSP marks a record power efficiency of 0.61 µW for a 96-channel system 
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(6.35 nW/Channel), 27× better than the prior art [56]. Employing in-situ error detection 

and correction (EDAC), the NSP operates robustly in the deep sub-threshold (Vth) regime 

while the timing error is used by the PMU to modulate its output voltage for (1) robust 

operation across PVT variations and (2) high PCE at ultra-low load power dissipation 

through a hybrid error/replica-based, energy-robustness co-optimization control scheme. 

 
Figure 5.2 The proposed DVS architecture employs hybrid error/replica-based regulation 

integrated with an on-chip SC-DC to tackle the challenges in prior works. 

Our hybrid error/replica-based controller (Figure 5.2) removes the need for voltage 

reference and comparator, making the control scheme fully digital and operable under low 

input voltage (VIN), and allowing the SoC to be directly powered by capacitors and 

harvesters. This avoids efficiency degradation in conversions to/from battery level (~4 V) 

[57]. In the hybrid error/replica-based design, a tunable replica circuit (TRC) is added to 

assist the error regulation, preventing loss of regulation. Moreover, with automatic energy-

robustness co-optimization, the PMU is able to set the optimal conversion ratio (CR) and 

switching frequency (fSC) for the SC-DC. With the PMU achieving a PCE of 77.7% 

(72.2%), the NSP-PMU SoC consumes 0.77 µW (0.83 µW) at VIN of 0.6 V (1 V) at the 

margin-free operating point, respectively, marking a record-high power efficiency of 

8.1 nW/Channel for the 96-channel system, 21× reduction from the prior art [56]. 
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5.2 System Architecture and Implementations 

5.2.1 Neural Spike Processor 

Recent advances in neuroscience and integrated circuits offer possibilities for long-term 

brain-computer-interface (BCI) implants. Similar to IoT nodes, such implants have 

stringent power budgets as they are preferably powered with wireless energy-harvesting 

devices. However, with wireless communication often easily dominating overall power 

consumption, on-implant processing that reduces the wireless data rate substantially is 

highly desirable. In this work, an NSP that integrates spike detection, sorting and the first 

half of motor intention decoding is able to reduce the wireless data rate by more than four 

orders of magnitude (Figure 5.3). 

 
Figure 5.3 The proposed NSP with a high level of integration reduces the wireless data 

rate by more than four orders of magnitude. 

Figure 5.4 shows the architecture of the NSP–PMU SoC. The NSP starts with 96 threshold-

crossing spike detectors whose outputs feed three sorters via three 32-to-1 priority-encoded 

MUXs. The three sorter outputs then merge into the decoder via a queue. The sorter adopts 

our 1.5D Bayesian boundary sorting algorithm, where the decision is made based on 

partitions defined by orthogonal boundaries in the two-dimensional space of features (max 

and min values of a spike waveform) (Figure 5.5). This algorithm requires one to two 

orders of magnitude× less computation and achieves a comparable or better accuracy than 

the conventional distance-based algorithms for many datasets [54]. 
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Figure 5.4 Schematic of the proposed NSP–PMU SoC. 

 
Figure 5.5 The proposed 1.5D-boundary-based sorting. 

For decoding, we adopt our ensemble observation Kalman filter (EOKF) [54], which uses 

regressed spiking rates as state observation in a Kalman filter (KF) and saves 400× 

computation versus the standard KF (Table 5.1). For the DREAM dataset, the EOKF 

achieves better accuracy than the standard KF especially in the higher velocity regime 

(Figure 5.6) [54]. We mapped these algorithms to deep sub-Vth circuits in a 0.18 µm that is 
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carefully selected for low leakage. The NSP marks a record-low power dissipation of 

0.61 µW for a 96-channel system (6.35 nW/Ch.), a 27× reduction from the prior art [56]. 

 
Table 5.1 EOKF reduces computational complexity by 400×. 

 
Figure 5.6 Performance comparison between standard KF and EOKF. 

5.2.2 PMU and NSP Co-design 

The PMU and NSP are co-designed to support two features: (1) modulating NSP supply 

voltage (VDD) across PVT variations to remove the prohibitive safety margin for deep sub-

Vth circuits and (2) optimizing its PCE by automatically finding an optimal configuration 

for the DC-DC converter. 

To enable the first feature, we propose hybrid error/replica-based regulation. This 

scheme uses in-situ EDAC [58] embedded in the NSP, which directly regulates VDD by 

controlling a 63-ratio configurable SC-DC. We added the EDAC capability to the NSP by 

leveraging recent advances [62]. First, following the sparse insertion scheme, we inserted 

error detection latches (EDL) only between the sorters and the queue (Figure 5.4; 
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weight memory. To reduce the power overhead of body swapping, we designed it to swap 

only the body of the accessed memory bank (out of 16). 

Figure 5.7 showcases the process of the error/replica-based regulation. Upon each 

timing error detected, the PMU controller sets the SC-DC to immediately start a new 

switching phase so as to recover its output voltage. Moreover, the fSC of SC-DC is instantly 

boosted for the rest of the core clock cycle so as to supply the extra power for the body-

swapping error correction. If errors continue to occur, the controller reduces the SC-DC 

CR, thus raising VDD. 

 
Figure 5.7 Showcase waveforms of the error-based regulation process. 

 
Figure 5.8 The tunable replica circuit schematic. 

We added a TRC to enable continuous error-based regulation (Figure 5.8). The existing 

error-based works [58, 59] lose regulation if the critical paths are not executed due to e.g., 

input inactivity or VDD overshoot. The TRC sets the upper and lower VDD bounds, avoiding 

the issue. Since we pipelined the NSP with two-phase latches, the critical path per latch 

stage is 0.5•TCLK. In the TRC, Delay1 is tuned to 0.4•TCLK such that a timing violation is 
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detected by SLUV slightly before the actual critical path in NSP fails. On the other hand, if 

the NSP critical path becomes much shorter than 0.5•TCLK under the VDD overshoot case, 

TRC will assert TRC_OV through the OV detection logic when (Delay1 + Delay2) < 

0.5•TCLK.  

However, false OV detection can happen when 2•TCLK < (Delay1 + Delay2) < 2.5•TCLK. 

This limits the maximal value of Delay2. As a result, we chose Delay2 as 0.8•TCLK and 

added a NOR gate after the OV detection logic to mask TRC_OV with TRC_UV. In such 

cases, when a false OV detection happens, Delay1 will reside in [0.67,0.83]•TCLK and 

TRC_UV will be asserted. Note that TRC does not directly affect exact VDD settings, thus 

adding no margin. 

To enable the second feature in the PMU, the automatic PCE optimization across 

operating conditions, we devised the CR/fSC search scheme in the context of the error-based 

regulation. It finds fSC and CR of the SC-DC for the optimal PCE. Prior works on error-

based regulation paid little attention to such a scheme [58, 59], while voltage look-up tables 

are often used in some of the conventional voltage-based regulations [48, 60].  

The scheme is devised to first scale VDD to the point of the first failure (PoFF, VDDmin) 

using EDAC. This minimizes the NSP’s power dissipation since it operates at a fixed clock 

frequency (30 kHz). Then, it finds a PCE-optimal CR/fSC setting by setting a proper value 

of ΔV = VDD,OC − VDD (VDD,OC as the open-circuit SC-DC output voltage) which balances 

the SC-DC’s switching and linear losses. 

In more general application cases, where the clock frequency can vary, the same control 

scheme can still be applied. In these cases, the clock frequency can be determined either 

by the system performance requirement or by the energy management systems that sense 
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the energy availability. After that, the proposed control scheme can then be triggered and 

scale VDD to PoFF so that the power consumption of the load is minimized. 

 
Figure 5.9 The state diagram of the proposed controls: the CR/fSC search and the error-

based regulation. 

Figure 5.9 shows the state diagram of the CR/fSC search.  

First, the controller finds VDDmin by reducing CR to the minimum (CRmin) where the 

error rate (ER) reaches a target error rate (TER), using the highest allowed fSC that 

minimizes ΔV (CR- and SCR-).  

Then, CR is set to an optimal value: CRopt = CRmin + CRoffset at CRO-. CRoffset is 

proportional to the optimal ΔV, which is a function of SC-DC design parameters and VIN, 

but insensitive to load conditions. Setting CRopt raises VDD, largely reducing the ER.  

After that, the optimal fSC is found by reducing fSC until ER reaches TER again, at which 

point ΔV also reaches its optimal value. The system then goes into the aforementioned 

error/replica-based regulation (RUN, RUN+, and RUN-).  

During the regulation, if fSC reaches predefined upper/lower bounds (fSC,max/fSC,min; 

implying switching or linear loss becomes dominant), the controller reinitiates the above 
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CR/fSC search (CR+ or CR-). CR+, SCR+, and CRO+ states are for the CR search if the 

optimal CR is higher than the current CR. Measured example waveforms of the control 

scheme are shown in Figure 5.10, confirming its correct operation. 

 
Figure 5.10 Waveforms of the CR/fSC search process. 

We designed the fully digital controller performing the error/replica-based regulation and 

the CR/fSC search to avoid variable VREF generators and voltage comparators. These would 

impose power and delay overhead and also VIN scaling limits on the PMU. This allows the 

SoC to be powered directly by capacitors and energy harvesters and avoids the efficiency 

degradation in conversions to and from battery level (4 V) [57]. 

5.3 Measurement Results 

We prototyped the SoC in a 0.18 µm process (Figure 5.11), which is carefully selected for 

low leakage, as the performance requirement of the system (both NSP and PMU) is 

relatively low. The NSP operates at the target frequency of 30 kHz at VDD of 0.32 V with 

0.1% TER while consuming only 0.61 µW (Figure 5.11). 
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Measured



91 

 
Figure 5.11 Chip Die Photo. 
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Figure 5.12 Power and performance of the NSP. 

We also tested the PMU’s full functionality by varying its output in a fine-grained manner 

and changing the CR (Figure 5.13(a)) at high PCEs (Figure 5.13(b)). 
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Figure 5.13 Performance of the integrated SC-DC. (a) Desirable VDD scaling behavior 

and (b) high PCE. 
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Figure 5.14 NSP-PMU SoC power breakdown. 

The SoC consumes 0.78 µW at the setting found automatically via the proposed control 

scheme. Of this, the NSP consumes 0.61 µW and TRC uses 7 nW. The SC-DC losses (SC 

Loss) are 151 nW at 0.6 V VIN and 198 nW at 1 V. The PMU controller (SC CNTL) 

consumes 14 nW at 0.6 V VIN and 27 nW at 1 V (Figure 5.14). 

We also validated the proposed CR/fSC search. We first validated that CRoffset remains 
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Figure 5.15 The measurements validate the optimal CRoffset robustness across load and 

VIN conditions. 

 
Figure 5.16 PIN comparison between the brute-force search and the proposed CR/fSC 

search at (a) VIN = 0.6 V and (b) VIN = 1 V. (c) PCE comparison between the brute-force 

search and the proposed CR/fSC search for the wider load power range. 

Using CRoffset = 3 and for 1 V VIN, our scheme found fSC = 14.9 kHz and CR = 23, at which 

the SoC draws PIN = 0.84 µW (Figure 5.16(a)). For 0.6 V VIN, it found fSC = 18.4 kHz and 

CR = 39, at which the SoC consumes 0.77 µW (Figure 5.16(b)). We then swept all the 

possible CRs and fSCs, and found that the SoC consumes the optimal PIN of 0.83 µW at fSC 

= 12.9 kHz, CR = 23 and VIN = 1 V, and PIN  = 0.77 µW at fSC = 18.4 kHz, CR = 39 and VIN 

= 0.6 V. Our search achieves PCEs within 1% of the brute-force PCE (Figure 5.16(a, b)). 

We further evaluated the efficacy of the scheme across a wider load-power range. It still 

achieves at most 2.2% worse PCE than the brute-force search (Figure 5.16(c)). 
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Table 5.2 Comparison to the prior BCI processors. 

 
Table 5.3 Comparison to the prior PMU–load co-designs. 

Table 5.2 compares to the state-of-the-art BCI processors [55], [56]. The proposed SoC 

draws 21× less power of [56] even after including the PMU overhead. It also demonstrates 

the first end-to-end NSP integration at comparable or better accuracy over prior arts. As 

compared to the prior PMU–load co-designs (Table 5.3), our design demonstrates 

continuous regulation and optimal PCE search in error-based regulation, which has an 

advantage over voltage-based regulation designs [48], [60] in terms of PMU VIN scalability, 

fully digital control, and safety-margin reduction. 
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Chapter 6 Conclusions 

One of the key challenges in realizing the vision of IoT is security and privacy. The 

enormous amount of information transferred in the network between billions or trillions of 

IoT devices imposes harsh security requirements on the communication. PUF serves as an 

important primitive in circuit design for hardware security, as it provides an object-specific 

identifier that is hard to expose or impersonate for malicious adversaries. Such identifiers 

are critical in identification and authentication tasks, which are among the most 

fundamental requirements of secure IoT systems. However, building compact yet robust 

PUF circuits remains a challenge as there exists a direct tradeoff between these two metrics 

in a PUF design. 

Chapter 2 presents a novel compact PUF design based on a pair of ultra-compact PTAT 

voltage generators. Measurements from chip prototypes demonstrate substantial 

improvement in the robustness–compactness tradeoff over the prior art. A similar idea is 

employed in Chapter 3, where instead of using dedicated circuits, we transform a 

preexisting on-chip SRAM into an array of PUFs. By reusing existing hardware resources 

while adding minimal peripheral circuits, we are able to further reduce the per-bit area of 

a PUF substantially without hurting its robustness. 

Another important aspect in IoT systems is power management circuits. On one hand, 

energy harvesting is highly preferred for low-power IoT nodes as battery replacement for 

those nodes is cost prohibitive and impractical. However, previous EH PMU architectures 
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suffer from efficiency loss as most of the energy goes through two voltage conversions 

(harvester-to-battery and battery-to-load), resulting in substantial energy loss. We present 

an EH PMU in Chapter 4 that introduces a hybrid storage architecture using a capacitor as 

intermediate energy buffer and minimizing the amount of energy going through the two 

voltage conversions. We also analyze the design trade-offs between the capacitor size, load 

and harvester power profiles, and the efficiency improvement from the proposed 

architecture. 

On the other hand, with the drastically reduced power consumption of IoT nodes, there 

come new challenges in PMU design: Adaptive DVS, fully on-chip integration and high 

PCE are required. In Chapter 5, we present a PMU–load co-design based on fully integrated 

SC-DC and hybrid error/replica-based regulation for fully digital PMU control. We also 

devise a control scheme to optimize both the VDD margin and the PMU PCE by 

automatically searching for the SC-DC’s optimal configuration and switching frequency, 

at which point the loss components are balanced and the optimal PCE is achieved. 

There is more to be studied for the research fields covered in this thesis. For PUFs, the 

recent art shows that although the robustness and compactness have substantially improved 

over the last decade, there is still much work to be done. For weak PUFs such as we are 

working on, the major challenge is that its bit instability can never be reduced to be close 

enough to zero. As a result, extra information must be stored on-chip to assist reliable PUF 

evaluation, such as error correction codes or bit mask. This allows various possible attacks, 

especially fault injection attack by manipulating the bit mask stored in NVM. Thus, it is 

yet to be explored on the architecture level how to minimize the amount of stored 

information. Also, it is noteworthy that multiple strong PUF structures use a circuit 
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topology similar to that used in weak PUFs. Thus, it is worth exploring if the compact 

voltage-generator-pair structure can also be used for strong PUF design. 

For the EH PMU, the improvement of the proposed architecture in the context of a real-

life harvester/load power consumption profile is yet to be investigated. Additionally, the 

possibility of implementing a single SC topology to transfer power between multiple 

voltage domains, instead of using multiple converters is worth investigating. 

Lastly, for PMU–load co-design, one of the major challenges for further investigation 

when applying such adaptive design in a commercial product is timing closure. Specifically, 

when the supply voltage is designed to adapt to the critical path, preventing hold-time 

violations on all possible timing arcs becomes a critical issue. 
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