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Power during manufacturing test can be several times higher than power consumption

in functional mode. When operating in test mode, the circuit’s internal scan chains are

generally either operating in shift mode or capture mode. When in shift mode, the circuit’s

state can be set to an arbitrary value by shifting the desired values into the flops. When

operating in capture mode, the circuit’s flops are set by the normal functionality of the

circuit. As a result, the power during test can also be divided into two categories: shift

power and capture power. In this dissertation, I have described three different architectures

to reduce shift and/or capture power during test as well as in certain scenarios, including

field test.

In the first architecture, scan chains are divided into several segments. The segments can

be enabled or disabled during capture mode to save power. Every segment needs a control

bit to enable capture in a segment when new faults are detectable on that segment for that

pattern. Otherwise, the segment should be disabled to reduce capture power. We group

the control bits together into one or more control chains. We will show this approach can

dramatically reduce power in many circuits.

Two significant disadvantages of the first architecture include 1) the likely need for one

or more extra pins to shift data into the control chain, and 2) the need for significant post-

processing of fault simulation data to determine the appropriate values of the control bits

on each pattern. To address these issues, we explored a second architecture, that stitches

the control bits into the chains they control as EECBs (embedded enable capture bits) in
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between the segments. This allows an ATPG software tool to automatically generate the

appropriate EECB values for each pattern to maintain the fault coverage. This works even

in the presence of an on-chip decompressor.

The last architecture presented in this dissertation focuses primarily on the self-test of

a device in a 3D stacked IC when an existing FPGA in the stack can be programmed as a

tester. We explore the total energy expenditure during scan shift that is needed when very

short chains are fed by high bandwidth TSV connections from the FPGA to the circuit under

test. We show that the energy expended is significantly less than would be required using

low power patterns fed by an on-chip decompressor for the same very short scan chains.

All of the proposed approaches can be utilized at manufacturing and while testing circuits

in the field to significantly reduce the total energy used during test.
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Chapter 1

Introduction

The manufacturing process of a chip is very complex. The first step is to harvest the

silicon from nature and form it into a cylinder ingot and cut the ingot into multiple thin

layered pieces called wafers. The next step is to allow the photolithographic “printing”

process to form a die’s multilayered transistors and interconnects corresponding to electrical

circuits on every wafer. Hundreds of devices (e.g. processors) can be created together on a

single silicon wafer. Finally, the wafer can be cut into pieces, where each piece corresponds

to a single die ready for packaging. The outer package of a die protects the die and delivers

critical power and electrical connections. The packaged die is now called a chip. It can be

placed directly onto a circuit board and can then be used multiple contexts (e.g. in mobile

devices such as the circuit board in the smartphone or tablet).

Unfortunately, the fabrication process is imperfect. Manufacturing test is thus performed

to verify whether the design was manufactured correctly (i.e. whether the chip is a working

part). In order to verify it is a working chip, a software tool called ATPG (automatic test

pattern generation) is used to generate test patterns. A test pattern corresponds to the values

(e.g. logic 0’s or logic 1’s for digital circuits) applied to the circuit under test, which enables

the test engineer to distinguish between a circuit that is operating correctly and a circuit

that displays defective circuit behavior. Test equipment, such as automatic test equipment

(ATE), is utilized to apply test patterns and check the circuit’s responses automatically.

While finding appropriate test patterns for combinational circuits is relatively straight-

forward, developing a test set for sequential circuits is more difficult. In particular, the

response of a sequential circuit depends on both the input pin values as well as the values in

the sequential storage elements, such as the flip-flops, in the circuit. To test for particular

potential defects, appropriate values need to reside in these sequential elements (flip-flops).

If these values are to be placed in those flip-flops using the normal operation of the circuit,
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a large amount of backtracking over many clock cycles often must be performed by the se-

quential ATPG tool that is generating the test patterns. This process takes quite a long

time and is hard to perform successfully.

To make testing a chip easier, DFT (design for test) techniques are widely used to improve

the testability of a design. One of the most commonly used DFT techniques is called scan

design. To make a sequential circuit into a full-scan circuit, all the sequential elements are

serially connected to each other to form one or more scan chains. During test, the sequential

elements in the scan chain can be set to 0 or 1 by shifting the appropriate values into the

sequential elements one at a time on every clock cycle. Depending on the number of flip-flops

in the circuit, multiple scan chains can be inserted instead of a single chain to reduce the

chain length and thus the number of clock cycles the circuit needs for scan shift. (All the

scan chains can potentially be shifted at the same time.)

Thus, the following steps are used to test the full-scan circuit. First, the ATE chooses the

next test pattern in the pattern set to apply. The circuit is placed in shift mode by asserting

the “scan enable” signal, and values corresponding to the selected test pattern are shifted

into the scan chain to set up the test. The ATE also applies the appropriate values directly

to the input pins. The combinational logic in the circuit will then operate as a function of

the values in the flip-flops and at the inputs. New logic values calculated by the circuit will

appear at the functional inputs to the flip-flops and at the circuit outputs. The scan enable

signal is de-asserted, and the values at the inputs to the flip-flops are captured in the flip

flops. This is called capture mode. (Multiple capture cycles may be used for some tests.)

The output values are sampled, and the circuit is placed back in shift mode to shift out the

values captured by the flip-flops from the circuit logic. These values can then be compared

to the expected values to determine whether that copy of the circuit has passed that test

pattern. While the captured values are shifted out, the next pattern can be shifted in to set

up the next test pattern to be applied. This process repeats until all of the test patterns

have been applied (or at least until the circuit fails a test and is shown to be defective.)

Unfortunately, over time, test has become more difficult and costly. In particular, while

circuit scaling has led to significant increases in the number of transistors integrated per

square inch on a chip and thus allows chips with higher performance to be manufactured,
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more test patterns are needed to test them—increasing test time. In addition, with more

test patterns, more energy is also consumed during test. Furthermore, when tests attempt

to provide as much defect coverage as possible with as few patterns as possible, the amount

of switching activity and power drawn is often much higher during test than during normal

functional operation.

This power and energy consumption during test is a significant problem. For example,

excessive power draw during test can cause “IR-drop,” which tends to increase circuit delays.

As a result, some good dies may fail a test that expends too much power even though

they would operate correctly under normal conditions—causing yield loss as good chips are

discarded. Excessive power draw can also cause integrated circuits (ICs) to have hot spots,

and in some cases even damage or reduce the life expectancy of a chip.

Historically, a significant portion of the low power test research has focused on power

draw during scan shift because a significant fraction of the test time and test power is

expended during shift. There are many proposed approaches to reduce scan shift power,

such as adjacent fill (e.g. [4]), which is one of the easiest to implement. Adjacent fill takes

advantage of the fact that, when generating test patterns, there are many don’t care bits

that can be set to either 0 or 1 in the scan chains while still allowing the targeted fault to

be detected. The adjacent fill approach will fill the don’t care bits with the same value as

the bit next to them. This approach is advantageous in that it allows certain defects to be

targeted deterministically with the chosen ATPG algorithm in the normal way, and then fills

the remaining don’t care bits with values that reduce power draw during shift.

In contrast, reducing capture power is less straightforward. Even though only a few flip-

flops in the scan chain may be used to detect a new, as-of-yet undetected targeted fault,

many additional flip-flop values may change value during capture. Changes in the values of

those flip-flops then propagate further into the circuit during capture mode. The resulting

switching activities can create hot spots within a chip.

The test power problem becomes even harder in the presence of an on-chip decompressor.

When such a decompressor is used, many of the don’t care values are used to accomplish

test data compression instead of reducing power draw. ATPG tools still allow patterns to

be generated in a low power mode, but the overall reduction that can be achieved must also
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satisfy the needs of the decompressor.

As a result, a test architecture in chapter 3 is discussed where a separate control chain has

been used to reduce capture power while also being compatible with the on-chip decompressor

structure. In this architecture, we focus on significantly reducing capture power without

requiring changes to the initial test set, any increase in test time, or any reduction in the

accuracy of determining whether a chip is defective or not. We ensure that the DFT hardware

is independent of the test generation procedure/test pattern set and thus can be optimized

separately.

To implement this architecture, we break a long scan chain into smaller scan segments

whose ability to capture data during capture mode is dependent on a bit in a control register.

Simple analysis has been done to allow those control bits to be set to enable capture only

when the corresponding segment is needed for additional targeted fault detections. With

very low flip-flop overhead, we can achieve high power reduction across multiple circuits—

even when we start with low-power patterns generated by a commercial tool. For some

patterns in the circuits, the power reduction approaches 100%.

Because the investigated architecture requires one or more separate control chains to be

added to the existing DFT circuitry, it requires at least one extra pin apart from the on-chip

decompressor logic. The extra control pin becomes a problem because the ever smaller sizes

of chips will give less and less room for the pins that are needed for the design. (Alternatively,

if the size of the chip remains the same, but if the amount of logic on the chip increases with

increasing transistor density, pins are still a precious resource because the same number of

pins on a package must now access the additional logic.) As a result, we have come up with

another architecture to embed the control bits in between the scan segments instead of in a

separate chain as was done in the previous architecture. In other words, the extra control

bits that were originally in the additional control chain now become part of the existing scan

circuitry, which eliminates the use of the extra control pin.

This alternative approach described in chapter 4 also greatly saves on the time spent on

post processing as compared to the architecture in chapter 3. Specifically, because of the way

the control is implemented, a standard ATPG tool is capable of automatically determining

the appropriate values of those control bits to achieve the desired fault coverage. The values
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for the control bits can be set by shifting data into the normal functional scan chains in which

the control bits are embedded. In addition, this is true even in the presence of an on-chip

decompressor. Finally, when inserted into a full-scan design that already contains flip-flops

with an enable input (such as for clock gating or sleep modes), no additional logic must be

inserted in the paths of the functional logic—minimizing the impact on the functional circuit

delay.

While the two previous approaches may be applied to any circuit, reducing test power

becomes especially important when testing assembled 3D stacked ICs. Because bare dies

are stacked directly on top of each other within the package in a 3D stacked IC, any heat

generated by the test is less likely to escape. Thus, even more serious power problems

occur. Furthermore, excessive power draw and the corresponding rise in temperature is

especially important in field test, where parts may be exposed to environments that have

higher temperature than normal due to weather or other heat-producing components in other

parts of the system. In field test, having a quick test result in addition to low power test is

crucial. As a result, we also explore an architecture to address both issues that can aid in

the field test of a 3D stacked IC when an FPGA inserted in the stack is repurposed to apply

patterns to other dies in the stack during test.

Using an FPGA as a tester will help in both test time and test power. As shown in

Figure 2.8, a 3D stacked IC has many TSVs (through silicon vias) which can be utilized

to transmit test patterns into the scan chains on the die under test from the FPGA. Also,

because there are many more TSVs in a 3D stacked IC than the number of pins on a board,

much shorter scan chains can be inserted to save shift time when the chains can be fed from

the FPGA. This is an improvement over using an on-chip decompressor when the scan chains

are very short because very short chains require more patterns to be generated and applied

when an on-chip decompressor is used [3]. Increasing the number of patterns would increase

the total energy expended during test and lead to an increase in temperature—especially

at the location of the decompressor itself. The fact that industry has already incorporated

FPGAs into some 3D stacks, makes the explored architecture especially reasonable in those

stacks because additional dies do not need to be added for test. To program the FPGA

as an efficient tester, we devised an intelligent way to store and apply the test patterns
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Figure 1.1: 3D stacked IC

in the underlying structure of the FPGA—allowing us to bypass the widely used on-chip

decompressor structure. In this work we focus primarily on reducing shift power.

Thus, this dissertation presents three architectures for reducing power during test in VLSI

circuits by reducing switching activities during shift cycles or capture cycles or both. The rest

of the dissertation is organized as follows. Chapter 2 This chapter introduces some important

concepts in manufacturing test, FPGA as well as all the background that the reader needs

for a better understanding of the later chapters in this dissertation. Chapter 3 introduces an

architecture to reduce capture power in an on chip decompressor test environment [3] with

low overhead in test area and volume of test data, and a significant reduction in capture

power consumption. Chapter 4 introduces a new architecture where the extra control bits are

embedded in between the scannable D-flip-flops (scan DFFs) with little to no effort required

for post-processing the patterns from the ATPG tool. Chapter 5 introduces a FPGA based

tester in 3D stacked ICs and describes its advantages in reducing power compared to the

widely used test data compression method on chip decompressor in a 3D stacked IC. This

is approach is especially appropriate in field test. Chapter 6 outlines a conclusion of the

methods investigated in this dissertation.
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Chapter 2

Background of Manufacturing Test and FPGA

This chapter introduces some important concepts in manufacturing test, FPGA as well

as all the background that the reader needs for a better understanding of the later chapters

in this dissertation.

2.1 Manufacturing Test

Manufacturing test is the process to verify whether a chip is manufactured correctly. It is

performed after a circuit comes out of the manufacturing line and is used for filtering defective

parts. To make manufacturing test more effective and efficient, test patterns (sometimes

called test vectors) for a digital circuit are generated by an ATPG tool by targeting faults.

A fault is a "model" of a defect that represents the defect’s behavior and effect on the logical

operation of a circuit. If a circuit has no faults, we call it a fault-free circuit. When a certain

set of values (e.g. test pattern) is applied to the inputs of the fault-free circuit, the output

values from the circuit are called the expected response.

Figure 2.1 shows the basic flow of manufacturing test with its three basic components as

follows:

• Circuit under test (CUT): This is the circuit being tested.

• The test application circuitry of the automatic test equipment (ATE): It is used to

apply test patterns and collect responses from the output pins of the CUT so that they

can be compared to the expected test response.

• The memory of the automatic test equipment (ATE): This is used to store the test

patterns and the expected test response.

As shown in Figure 2.1, the ATE will apply test patterns to the circuit. Then the CUT’s

response is analyzed. If the CUTs’ response are the same as the response of a fault free
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Figure 2.1: Manufacturing test of a circuit. [1]

circuit. Then the circuit is considered working correctly for that particular test pattern.

The responses are also stored in the ATE for other purposes such as diagnosis.

Testing of a combinational only circuit is relatively easy. Once the value of the primary

inputs has been set, the corresponding primary outputs are also determined and can be ob-

served accordingly.However, if testing a sequential circuit is considered, which has sequential

elements such as flip-flops, it can become very complicated. Figure 2.2 shows the Huffman

model [5] that represent the structural of a sequential circuit. Sequential elements (DFFs

in Figure 2.2) in the circuit need to be set to the desired values because the output of a

sequential circuit does not only depends on the values of the input pins, but also on the

current state of the circuit (the values in the sequential elements). In this case, the ATPG

(automatic test pattern generation) tool needs to create test patterns over many clock cycles

to make sure the sequential circuit is in the state the tool expects it to be. As a result,

sequential ATPG is much harder to implement compared to combinational ATPG. Both the

run-time and complexity to generate the test patterns can increase drastically. Thus, it has

also been found to be impractical for large circuits [2].

To make it easier to create and apply effective tests, DFT (Design for Test) circuitry

has been developed. DFT techniques improve testability by increasing the controllability

and observability of the circuit logic. The most popular DFT techniques for testing VLSI

circuits include scan design, Built-In Self-Test (BIST), and test data compression. We briefly

describe all of these DFT techniques in the following subsections because they are necessary
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Figure 2.2: Original circuit with no scan design.

to understand the investigated approaches described in the following chapters.

2.1.1 Scan Design

The purpose of the scan design is to more easily access the sequential logic elements in

the circuit under test. This is achieved by replacing the D-flip-flops (DFFs) in Figure 2.2

with a scannable D flip-flop (SDFF) design, such as that shown in Figure 2.4. The overall

circuitry with the scan chain inserted then becomes Figure 2.3.

2.1.1.1 Scannable D-flip-flop

To easily apply predetermined values to the sequential elements (flip-flops) during the

scan-based testing procedure, every flip-flop in the circuit will have a mux added before the

D input. It thus becomes a scannable D-flip-flop known as a Mux-D Scannable D-flip-flop.

Figure 2.4 shows such a flip-flop. When the scan enable (SE) signal is 0, and the clock signal

rises, the value at Dn is “captured” in the flip-flop, and the captured value appears on the

Q output. The value will remain the same at Q at least until the next rising clock edge.

When SE is 1, the value at the scan data input (SDI) is captured by the flip-flop on the

next rising clock edge. SE is set to 1 when the circuit is in shift mode.
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Figure 2.3: Scan design.

Figure 2.4: Scannable D-flip-flop.
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Figure 2.5: Scan chain

2.1.1.2 Scan Chain

If the scannable D-flip-flops are serially connected, they will form a shift register called a

“scan chain,” when SE is set to 1, as shown in Figure 2.5. (Note that the paths from the Q

output of the flops to the circuit’s functional logic are not shown in the figure.) In this scan

chain, only 3 clock periods are needed to set the values of the flip-flops to values entered at

SDI and to observe the values previously captured in the flip-flops at SDO.

2.1.1.3 Test Procedure

The procedure used during scan-based testing is conducted by applying a particular se-

quence of operations to the scannable D flip-flops over multiple clock cycles. The relationship

of the different parts of the test procedure to each other in time are shown in Figure 2.6 and

described in more detail below:

Shift in: When the clock is low, the scan enable signal, SE, is set to 1 to choose the test

data path (either from SDI or its previous scannable D flip flop’s Q output). SE is a global

signal that changes the data source on all the scannable D flip-flops in the corresponding

scan chains. Test data is applied to the pin that feeds the first SDI of the first scannable D

flip-flop in the shift register. The circuit is now in shift mode and no longer operating as its

original functionality. On each rising edge of the clock, a new value is shifted into the chain.

The last shift-in clock edge will set all the scannable D flip-flops to the values needed by the

test pattern. It is these values that will be used to test the internal logic of the circuit.

Capture: When the scan data is applied, right after the last shift clock cycle, the scan

enable signal, SE, is set to zero to select the functional data path through each scan mux.
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Figure 2.6: Scan Testing Procedure.

The functional data paths feeding the D inputs to the scan flip-flops should have the logic

values associated with the circuit’s natural response to the applied test pattern. On the next

rising edge of the clock, the circuit’s response, including any fault effect that reaches the

flip-flops, is captured into the scan flip-flops.

Shift out: After capturing the circuit response, the scan enable (SE) signal is set to 1

again to select the scan/shift path (SDI) through the scan muxes to shift out the values in

the scannable D flip-flops.

Once the responses are collected during shift out, and the final values of the output pins

are collected, we can then compare the actual shift out values and output pin values with

the expected shift out values and output pin values (expected values refer to the values that

should be present when there is no defect in the circuit). If there is a discrepancy between

the two sets of values, then we know that there is a problem with the circuit. (However, even

if the values match, there could still be a defect that would cause an error for a different

test pattern.) Unfortunately, the shifting process generally takes many clock cycles—all of

which add to the total energy expended during test.
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Figure 2.7: Overview of the BIST architecture [2]

2.1.2 Built in Self Test

Built-In Self-Test (BIST) [6] involves adding additional circuitry to allow a device or

part of a device to perform a test without the help of an ATE. In general, adding BIST

to a circuit involves the implementation of an on chip test pattern generator (TPG) and a

signature analyzer (SA). Figure 2.7 shows a CUT (circuit under test) with BIST. When the

circuit is being tested, the test pattern generator (TPG) generates patterns that are applied

to the CUT, and a signature analyzer (SA) collects the CUT response to the test patterns

and examines them. The signature analyzer has an expected output response to indicate if

the circuit has passed or failed the test. Most BIST architectures that test the circuit logic

(i.e. LBIST) use linear feedback shift registers (LFSRs) as a TPG because the LFSR can

generate a sequence of good pseudorandom values with relatively little area overhead [7].

An LFSR is built using flip-flops and exclusive OR (XOR) or exclusive NOR (XNOR) gates.

The signature analyzers (SAs) in the BIST architectures are commonly built from multiple-

input signature registers (MISRs). A MISR (multiple-input signature register) also uses a

version of an LFSR to collect and compact the test response after the test patterns have been

applied to the circuit. Note that unknown values (e.g. generated from memories containing

unknown data) entering the MISR will make the predicted signature indeterminate, and

thus such values need to be avoided or masked. BIST is an especially good solution for

testing of critical circuits that have no direct connections to external pins, such as embedded
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Figure 2.8: 3D stacked IC, which has shown before in the previous chapter

memories or logic cores used internally by the device [2]. However, especially in LBIST,

obtaining 100% fault coverage is difficult with LBIST. Thus, deterministic top-off patterns

may need to be added to help detect random-pattern resistant faults.

2.1.2.1 The Utilization of an FPGA for Test

As we mentioned earlier, using BIST is a good solution for testing a part of a circuit that

has no directly connected external pins. In this subsection, we will briefly discuss the use

of FPGAs in test as a BIST as well as the use of FPGAs on 2D boards and in 3D stacked

ICs [8].

In a regular board, where the packaged chips are placed horizontally (this would be a 2D

board), an FPGA may be used for several purposes. For example, it may replace a more

expensive dedicated ASIC (Application Specific Integrated Circuit) to provide the required

performance while meeting area or power constraints. In addition, the re-programmability

of FPGAs allows designs to be modified easily over a system’s lifetime, as specifications

or standards change, or even as design errors or enhancements are discovered. Finally,

2D versions of FPGAs have been used for performance acceleration, allowing co-processing

hardware to be reconfigured “on-the-fly” when a particular portion of the code can benefit [9].

It is reasonable to expect that these advantages of FPGAs will likely carry over into the 3D

IC space.

An FPGA can be placed in one layer or multiple layers in a 3D stack and has the potential
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to serve different purposes in a variety of applications. Intel has already created an embedded

multi-die interconnect bridge (EMIB) used to connect its CPUs to Altera FPGAs to enhance

performance and handle power issues [10]. Altera and Amkor have proposed a face-to-face

packaging approach consisting of a mother die (FPGA) and daughter die (ASIC) [11]. Xilinx

currently produces FPGAs that contains multiple FPGAs and other dies sitting side-by-side

on a silicon interposer, aiding in prototyping and emulating large processor systems [12], [13].

FPGAs have also been used to aid in testing for many years. Boards may be partially

tested (even when not all the chips and firmware are available yet), by adding more func-

tionality to the load board at the factory or by connecting chips directly on the board [14].

When used to test other chips on the board, an FPGA can serve as a generator of tests

for a directly connected chip. For example, memory built-in-self test (MBIST) is used to

test memories and ultimately enable some repair of defective memories when enough spare

rows and columns are available. If the MBIST design is programmed into an FPGA con-

nected to a memory, the FPGA can be used to test the memory through a set of read and

write operations. Alternatively, it may also serve as a target for functional or protocol-based

tests—receiving information from or sending data to other chips based upon their functional

behavior.

2.1.3 Test Data Compression

Because the amount of logic contained within digital circuits has increased due to circuit

scaling, test time and test data volume have increased as well. Test data volume includes

the data used to store the test patterns and responses. In a manufacturing environment, this

information must be communicated to and from the ATE with a relatively small number

of pins—leading to issues of test data bandwidth. To address these issues, various on chip

decompressors and response compactors have been proposed to allow chips to be fully tested

while minimizing the test data volume and test data bandwidth that are required (e.g. [3]).

An example of this architecture is depicted in Figure 2.9. As shown in the figure, these on

chip decompressors are used to feed many scan chains. This allows shorter chains to be used

without increasing the required pin count, and thus it often helps to reduce the overall test

time by reducing the number of shift cycles as well (provided that the chains are not made
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Figure 2.9: The overall architecture of Test Data Compression. [2]

extremely short).

The on chip decompressor (OCD) proposed in [3] is implemented by a ring generator and

a phase shifter, as shown in Figure 2.10. The on chip decompressor design takes advantage

of the fact that many don’t care bits are present in deterministic test patterns that target

a particular fault or set of faults. In other words, the faults will be detected regardless of

the values to which those bits are set in the test pattern. Thus, the on chip decompressor

takes a stream of information from its inputs and generates a stream of output values that

feed into more scan chains than the number of decompressor inputs. An algorithm is used

to determine what input stream is needed to guarantee that the needed deterministic bits

will be present in the corresponding scan cells. The maximum compression provided by the

approach corresponds to the ratio between the number of inputs to the ring generator and

the number of scan chains (outputs from the phase shifter), provided that the scan chains

are balanced.

2.2 Fault Models

Defects are physical problems that occur in an actual manufactured copy of a circuit. In

contrast, faults are models of defects that predict how the presence of a defect will affect the
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Figure 2.10: On Chip Decompressor [3]

logical behavior of that circuit. Fault models are used by ATPG algorithms to provide the

targets for test pattern generation and to serve as a means of characterizing the effectiveness

of the final test set. Thus, an ATPG tool will try to generate a test pattern set that will

detect all of the faults in the fault list and achieve 100% fault coverage. In this dissertation,

we concentrate on the two most common types of fault: the stuck-at fault and the transition

fault.

2.2.1 Stuck-at Fault Model

The stuck-at fault model is the earliest and the most common fault model. A stuck-at

fault [15] occurs when a wire in the circuit is permanently “stuck” at a fixed logic value.

For example, this behavior could result from a short to ground or a short to power. Two

conditions must be satisfied to detect a stuck-at fault:

• Excitation: The test pattern must ensure that the good and faulty circuits have dif-

ferent logic values at the fault site. This is achieved by justifying the appropriate logic

value at the fault site in the good circuit to the appropriate bits in the test pattern.

• Obvservation: The difference in logic value between the good and faulty versions of

the circuit must be propagated to a primary output or a scannable D flip-flop.

Even though all physical defects are not well-modeled by stuck-at faults—especially in

circuits manufactured in today’s advanced technology nodes—test sets that target stuck-at

faults have historically been able to achieve good coverage of the actual defects. However, to
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obtain even better defect coverage, other fault models have been explored. One of the most

important of these additional fault models is the transition fault model.

2.2.2 Transition Fault Model

Some defects may cause gates in the CUT to have a higher than normal delay. This higher

than normal delay means that the gate will switch at a lower speed than expected when the

CUT’s inputs change. This additional delay may cause changes in the output values of gates

in the combinational logic of the circuit to not reach the outputs of the circuit or the inputs

to the circuit’s flip-flops within the needed clock period. When this occurs, the wrong values

may be captured at the outputs or in the flip-flops, causing errors in circuit operation.

As a result, the transition-fault [16] model has been proposed to model a large amount

of extra delay at a logic gate due to the presence of a defect. There are two types of faults

possible in the transition fault model: a slow-to-rise fault and a slow-to-fall fault.

• A slow-to-rise fault refers to a slow transition at a gate input or output when the

transition is from a logic 0 to a logic 1.

• A slow-to-fall fault refers to a slow transition at a gate input or output when the

transition if from a logic 1 to a logic 0.

To detect a transition fault, a pair of test patterns is applied. The first pattern sets the

value at the fault site to the appropriate value (logic 0 for a slow-to-rise fault and logic 1 for

a slow-to-fall fault). The second pattern launches the transition by setting the value at the

fault site to the opposite value in the good circuit (logic 1 for the slow-to-rise fault and logic

0 for the slow-to-fall fault.) In the faulty circuit, it is assumed that the transition doesn’t

happen and that the fault site remains at the initial logic value for a long time.

The second pattern must also propagate the value at the fault site to an observation

point, which could either be a primary output or a scannable D flip flop. Because the

delay is assumed to be large, the length of the path to the output/flip-flop is assumed to

be irrelevant. Depending on how the transition is launched and captured, there are two

transition fault pattern generation and application approaches used in scan-based circuits:

launch-off-shift [17], launch-off-capture [18].

18



Figure 2.11: Waveform for Launch-off-Shift delay test [2].

2.2.2.1 Launch-off-Shift Method (LOS)

In the launch-off-shift (LOS) approach [17], the transition at the gate is launched by the

last shift cycle during the shift operation, as shown in Figure 2.11. The launch clock is then

immediately followed by a fast capture clock pulse such that the time difference between

launch and capture corresponds to the clock period at which the circuit is being tested. The

scan enable (SE) signal is high during the last shift and must go low within one system clock

period to allow capture at the capture clock pulse. So the SE signal, which typically drives

all scannable D flip-flops in the CUT, should also switch to low for all scannable D flip-flops

within the specified time for capture to occur at system clock speed. This requires the SE

signal to be driven by a well-designed buffer tree or strong clock buffer, and it is costly to

implement.

2.2.2.2 Launch-off-Capture Method (LOC)

In the launch-off-capture approach [18], the circuit’s logic itself is used to launch the

transition at the targeted gate. As shown in Figure 2.12, after the last shift cycle, the first

capture-mode clock cycle is applied to the CUT (launch clock). This launches the transition

between the first and second pattern. Then, one more capture clock is used to capture the

test results. Only the time between the two capture pulses must be “at-speed.” As a result,

the SE signal is not required to de-assert at-speed to initiate a transition at the gate.
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Figure 2.12: Waveform for Launch-off-Capture delay test [2].

2.3 Test Power Issues

Excess power during test can increase circuit delays, cause IR drop, cause overheating,

and damage or reduce the long term reliability of a chip [19]. Achieving low test power

may be especially important when tests need to be applied in the field—such as in an

environment where other external factors are already leading to increased temperature. Thus,

effective techniques to minimize power expended during test are needed [20]. Minimizing

power consumption in VLSI circuits increases the life expectancy and the reliability of the

circuit [21], [22]. The estimation of the power consumption during test is based on the

following equation 2.1 [23].

p =
1

2
f · V 2

dd ·
∑
g

Cg ·Ng (2.1)

Here f, Vdd and Cg denote clock frequency, supply voltage and capacitance of gate g,

respectively. Ng denotes switching activity, i.e., the number of gate output transitions per

clock cycle. If we consider the frequency, voltage, and capacitance to be pre-determined,

then optimizing the the power consumption during test will be solely related to the number

of transitions that occur during test.

As mentioned earlier in Section 2.1.1.3, the power consumption can be divided into two

stages during test: shift and capture. Together with Equation 2.1, we can deduce that we

need to reduce the number of transitions during test in either or both of the stages to be

able to effectively reduce power consumption.
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Historically, multiple researchers have previously attempted to reduce test power during

both shift and capture based on Equation 2.1 by using a variety of test generation and DFT

techniques. The techniques are elaborated as follows.

Common techniques to reduce power during scan shift include adjacent fill [4] and test

vector reordering [24]. Some researchers have attempted to prevent data from flowing into the

combinational logic during scan shift by preventing the flow of changing logic values into the

combinational circuitry during shift [25], [26], [27]. For example, the authors of [25] removed

power to the first level of logic after the DFFs during the shift procedure. Reordering of the

scan cells can also be used to reduce power during shift. For example, in [28], scan cells with

similar weights during weighted random scan were grouped together into the same chain to

help reduce shift power.

Other researchers have focused on reducing scan shift power in the presence of an on-

chip decompressor (e.g. [29], [30], [31], [32], [33] and [34]). For example, the authors of [29]

modified the decompressor hardware to allow a constant value of 0 to be shifted into a group

of chains over multiple shift cycles, with those shift cycles determined by the values in a

control register. A related approach was taken in [30], and it was noted that scan chains

that only load constant values could be kept in shift mode when the test is applied to reduce

the power of scan chain unload as well.

Capture power reduction has also been identified as being important, especially in the

context of at-speed test. Some researchers have attempted to reduce this capture power

by intelligently filling don’t cares in the test patterns to reduce power draw during the

capture cycle (e.g. [35], [36]). In some cases, instead of simply lowering power, an attempt

is made to create pseudo-functional patterns that are more similar to the those seen during

normal operation (e.g. [36], [37]). The authors of [36] applied this concept to an on-chip

decompressor, where they allow the shifted out data to be fed back to the beginning of the

chain so that the data shifted in can come from either the decompressor or the value that has

been shifted out. When applying an X-filling encoding algorithm, the authors of [38] used

the existing MISR data to select the possible flip flops to be enabled during capture; [39]

and [40] further modified the EDT decompressor by adding encoded blocks and shadow

registers. However, the reduced number of don’t cares that result from X-filling approaches
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can lead to reduced efficiency of the test pattern compression algorithms.

Disabling flip-flops from capturing to reduce capture power has also been discussed.

In [41], additional test points were added to the already-present clock-gating circuitry to

allow different clock gating circuitry to be independently controlled. The ATPG procedure

was then modified to take advantage of these additional test points—reducing test power at

the cost of additional pattern count. The authors of [42] also attempted to reduce capture

power through modifying the test generation procedure to reduce the number of flip-flops

to which fault effects propagate, and they then cluster and reorder the flip-flops into chains

based upon the optimized test patterns. A limitation of these approaches is that they both

require changes to the test generation procedure. Disabling individual chains or groups of

scan chains has been proposed as well (e.g. [43], [44]). For example, the authors of [44] have

created a low-power BIST architecture that breaks the scan chains into groups that can be

disabled together, allowing constant values to be supplied to sub-circuits of the combinational

logic. In [45], [46] and [47], the scan chains were divided into shorter chain segments that

could be shifted independently, allowing fewer simultaneous transitions during scan shift.

In [46], only one chain was allowed to capture a test response at given time, further reducing

overall power. The work of [46] was extended in [43] to change the test generation procedure

to create special test patterns targeted toward their architecture.

In the next chapters, three architectures that complement this previous work in low power

test will be introduced.
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Chapter 3

Reducing Capture Power through the Use of a Control Chain

The work in this chapter was first presented in [48].

3.1 DFT Architecture for Segment-based Capture Control

As mentioned earlier, our approach complements the previous work in the realm of low-

power test pattern generation. It takes a fine-grained approach to preventing particular

segments of the chain from capturing data when those scan segments are not needed by the

current pattern for fault detection. Furthermore, we aimed to do so in a way that is i) simple

to implement, ii) scalable, and iii) valid even in the presence of an on-chip decompressor.

Here, we will describe a solution that:

1. Does not require changes in the test generation procedure carried out by a modern

commercial ATPG and fault simulation tool.

2. Does not force the DFT insertion process to be dependent on a particular test pattern

set.

3. Retains the original test pattern set as well as the original fault coverage with no

increase in test pattern count.

4. Does not require internal changes to an on-chip decompressor.

To satisfy the stated requirements, here we describe a solution that adds one or more

“control chains” to a design. Each functional chain is broken up into multiple segments—each

of which is controlled by a bit in the control chain. That bit determines whether or not the

segment will capture data during the capture clock cycle. If targeted faults will be detected

in that segment, then capture is enabled. Otherwise, the segment will hold its value. This

will not only prevent the flip-flops in the segment from changing value, but it will prevent
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any transitions that would have arisen from those flip-flop toggles from propagating into the

rest of the circuit.

For example, to see how the proposed solution can be implemented, consider Figure 3.1.

In this figure, Mux-D scan flip-flops for the functional chain are shaded in grey, and the

Mux-D scan flip-flops for the control chain are shaded in green. The functional chain is

broken up into two segments: the first segment in the figure is only one bit long while the

second segment (to the right) is two bits long.

Figure 3.1: Schematic design of segmented scan chain.

The value in each control flip-flop determines whether the segment it controls will capture

a new value or maintain its old value. There are multiple ways to implement this; however,

in the figure, we have chosen to insert an additional multiplexer before each scan flip-flop.

The select line for this multiplexer is connected to the control flip-flop for that segment.

When the control value is equal to a logic 1, the functional flop will hold its original value

on the next capture cycle because the Q value at the output of the flip-flop will be fed back

into the input. In contrast, if the value in the control flip-flop is equal to zero, the functional

flip-flop will capture data from the circuit itself (shown as D0, D1, D2, etc.) provided that

the scan enable signal, Scan En is set to zero, and thus the chain is not in shift mode.
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If the approach is implemented directly as seen in the figure, then there is some additional

delay in the functional path due to the presence of the additional mux. If only a few flip-flops

are destinations of critical paths, then this could be handled by removing the mux from those

flip-flops and not disabling them. Alternatively, other approaches that disable the flip-flop

by gating the clock or adding an enable input, etc. could be used instead.

In the figure, the control chain is fed directly from an additional scan data input. This

allows the control chain to be implemented independently of any on-chip decompressor that

may be present, although one could potentially generate the control bits with the on-chip

decompressor if one designed the control chain appropriately and had access to the on-chip

decompressor ATPG tool’s algorithm.

Note that we expect that the control chain may be shorter than a normal scan chain

even if it controls segments on multiple chains. Thus, only a single additional input may be

needed for control if the number of segments is not too large. It could also be possible to

use a de-multiplexer at this input to shift data into multiple short control chains in-turn.

This could potentially allow those control chains to be located closer to the segments they

control and reduce the delay between the control chain and segments. A detailed analysis of

the advantages and disadvantages of such an approach is left to future work.

Note that this implementation was designed with the intention of handling static test

patterns. Minor modifications should allow our approach to work with dynamic patterns

implementing both launch-off-shift and launch-off-capture.

3.2 Methodology

To implement the proposed approach, it is necessary to a) split each scan chain into

multiple segments that can be independently controlled during capture, and b) determine

which segments should have capture enabled for each pattern. Intuitively, if a segment only

detects faults on the current pattern that have already been detected by a previous pattern,

then that segment can be disabled for the current pattern. Once the segments that should

be enabled for each pattern are determined, they can be used to generate the control values

that will ultimately be shifted into the control chain.

In this architecture, data were collected for four different circuits obtained from open-
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cores.org. The characteristics of these circuits are listed in Table 4.2.

Table 3.1: Benchmark circuit properties

Circuit # of # of avg. length # of
scan DFFs scan chains of scan chains patterns

des56 382 4 96 114
fm_receiver 521 5 104 388
colorconv 858 9 96 150
fpu_double 5434 5 1087 476

For each circuit, the following procedure is followed:

1. Insert the scan chains.

2. Create the on-chip decompressor logic using a commercial software tool.

3. Run ATPG and record the patterns being shifted out of the on-chip decompressor into

the scan chains.

4. Determine which faults are detected by each flip-flop in each pattern.

5. Divide the scan chains into segments of equal (or approximately equal) length.

6. Iterate through all patterns.

(a) Identify which faults have been detected by a previous pattern and remove those

faults from consideration.

(b) Consider each segment in turn. If the segment detects new faults, record that fault

as newly detected and specify that capture should be enabled for this segment

and pattern. Otherwise, disable capture for this segment on this pattern.

(c) For the segments that are currently still considered enabled on this pattern, we

apply the procedure shown in Figure 3.2 to further disable some of these segments.
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Figure 3.2: Procedure to determine which segment to keep when faults are detected in
multiple segments.
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The procedure shown in Figure 3.2 is an approach that allows us to identify faults that are

detected by multiple segments so that only one of the multiple segments will have capture

enabled—provided that the other segments are not needed for the primary detection of

another fault. A more detailed description of this procedure is shown below:

1. Use the list of all faults newly detected by the current pattern in part (b) above.

2. Iterate through all of the faults in the list.

(a) If the current fault is detected by only one segment, we call it a unique fault. The

segment that detects the unique fault is added to the list of mandatory segments

for that pattern, and all other faults detected by that segment are removed from

the fault list.

(b) If the current fault is detected by more than one segment, it is added to the

non-unique fault list. (Note that when a segment is identified as mandatory, both

faults that have not been considered yet as well as faults that are in the non-unique

fault list will be dropped if they are detected by that mandatory segment.)

3. Iterate through all of the remaining faults in the non-unique fault list.

(a) Add the first segment that detects this non-unique fault to the enabled segment

list. (This list was previously composed only of the mandatory segments.)

(b) Remove all faults from the non-unique fault list that were also detected by the

selected segment.

Once the entire process is complete, we know which segments should be enabled during

capture for every pattern to maintain the fault coverage of the original test set. This infor-

mation can then be recorded as control bit data that will be shifted into the control chain

for each pattern.

3.3 Results

As already noted, to evaluate the effectiveness of our approach, we ran our experiments

on circuits obtained from opencores.org. A commercial tool was used to insert scan chains

in each circuit, create an on-chip decompressor, and generate a low power test pattern set.
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For each circuit, the steps outlined in Section 3.2 were followed to identify which segments

should capture data for each test pattern in the low power stuck-at test pattern set. The

goal was to see how much additional capture power reduction above and beyond that which

was already obtained by the commercial tool is possible with this approach. Because the

size of the segments affects the degree to which fine-grained control and power reduction can

be achieved, the analysis was repeated for different segment lengths.

Different segment lengths correspond to different amounts of overhead. In particular,

each segment requires an additional control flip-flop to be inserted into the control bit shift

register (i.e., the green flip-flops in Figure 3.1). In this chapter, we characterize this overhead

as a percentage of the original number of flip-flops in the circuit. Thus, a chain with 10

segments and 100 flip-flops would correspond to an overhead of 10%.

We estimate the capture power by counting the number of flip-flops that toggle during

capture for all of the segments for which capture is enabled. We did not simulate the effect

of this toggling on the combinational logic for this set of experiments. However, if those

simulations were performed, the overall reduction in circuit switching would be even greater

than that shown below. The toggling reduction is calculated as:

Toggle reduction =
Togglesdisabled
Togglesall

∗ 100% (3.1)

where Togglesdisabled refers to how many toggles would have happened in the disabled seg-

ments and Togglesall refers to the toggles that occur when all the segments capture.

3.4 Capture Power Reduction Based on Forward Simulation

Figure 3.3 shows the plot of average percent reduction in toggle count as the overhead

is increased (i.e., number of segments per chain is increased). Experiments for each circuit

were run until the overhead exceeded 10%.

For all four circuits, increasing the overhead (i.e. using shorter segments and more control

bits) reduces the overall toggle count—thereby reducing capture power. For smaller circuits,

we see that the toggle reduction at approximately 3% scan chain overhead is about 60% for

des56, 60% for fm_receiver and 70% for colorconv. For our largest circuit, fpu_double, we

see that with an overhead of approximately 3%, we can achieve almost 90% toggle reduction
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Figure 3.3: Average % reduction in toggle count.

on average. Increasing the overhead allowance to approximately 10% allows us to achieve

an average toggle reduction of almost 93%.

Note that increasing the overhead by decreasing the segment length allows much bet-

ter toggling reduction for all circuits. This makes sense because it is easier to pinpoint a

small number of flip-flops that will be used to achieve the desired fault detections when the

segments are smaller. In the limit, each flip-flop could be its own segment, although the

overheard would be prohibitive. Fortunately, the data shows that high toggle reduction can

be achieved with much lower overhead.

Also note that the proposed approach is especially effective for the fpu_double circuit.

It is not only the largest circuit we studied, but it also contains many don’t cares in its test

patterns. Many of those test patterns are required to detect just a few new hard-to-detect

faults. As a result, it may be that only a single segment may need to remain enabled for

detection for many test patterns. This is different from a circuit such as des56, which is

more observable, requires fewer patterns, and tends to detect more faults per pattern. As a

result, des56 is more likely to have more segments enabled on each pattern.

Figures 3.4–3.6 give more detailed data for fpu_double for an overhead of approximately

3.4%. The data for other overheads and other circuits follow similar trends.

Figure 3.4 shows the percentage of segments disabled during capture as a function of
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Figure 3.4: Percentage of segments disabled during capture for fpu_double circuit with
overhead of 3.4%

pattern index. Here, the pattern index refers to the number of patterns in the test set that

have been previously been applied during testings. We see that as testing progresses, and the

pattern index increases, the percentage of segments that can be disabled starts to increase

rapidly. Our experiments show that for 113 patterns in the overall pattern set (i.e. 23.7%

of the patterns) all but one segment can be disabled. The corresponding toggle reduction

for each pattern is shown in Figure 3.5 for the same circuit and overhead. We found that

the average toggle reduction was 90% and the median reduction was 93.3%. In some cases,

the toggle reduction is almost 100%. As shown in Figure 3.6, we also see a clear correlation

between segments disabled and toggle reduction.

As mentioned earlier, fpu_double was partitioned into 5 scan chains. We also wanted

to determine whether some chains had significantly more toggles than others. The total

number of toggles during test for each chain are shown in Table 3.2 under the “original

toggle” column. The column to the right shows the number of toggles that can be removed

from each chain during test across all test patterns. The last column shows the percentage

of the original toggling that we were able to remove with the proposed approach. We see

that the toggle reduction is distributed fairly evenly across the five chains, although the last

chain has less percent reduction and more toggles overall. However, that chain also had
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Figure 3.5: Toggle reduction per pattern during capture for fpu_double circuit with overhead
of 3.4%

Figure 3.6: Correlation between toggle reduction and segments disabled.
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more toggles originally. If additional reduction were needed, reordering and/or distributing

flip-flops among the chains could be a possibility.

Table 3.2: Toggle count distribution across the 5 chains in fpu_double.

chain number original toggle reduced toggle % reduction
1 145244 131877 90
2 202195 183840 90
3 189093 171303 90
4 189093 143222 92
5 313673 259479 82

3.5 Additional Capture Power Reduction based on Reverse Simulation

Implementing reverse simulation is a well-known technique to reduce the size of a test set.

Intuitively, faults detected at the end of ATPG are “hard” faults that must be deterministi-

cally targeted. In contrast, some of the faults targeted early during test pattern generation

may be “easy” faults that would have been detected fortuitously by a later pattern anyway.

In our capture power reduction approach, we note that in the early patterns, all or

almost all scan segments are needed for capture because we only disable those segments that

are not capable of detecting any new faults. This behavior is clearly shown in Figure 3.4.

Intuitively, all of the segments will be retained for the first pattern because they are all

capable of detecting a new fault (e.g., a stuck-at fault on the D-input to the flip-flop if

nothing else).

Thus, in this section, we wanted to see if any additional capture power reduction was

possible through a type of reverse simulation. Specifically, we start with all segments that

are enabled for each pattern after forward simulation has been completed. We then consider

the patterns in reverse order and determine which faults are detected by each pattern on the

enabled segments. If any enabled segment does not detect a new fault when the simulation is

considered in this reverse pattern order, then it can be removed as well. Figure 3.7 shows the

33



detailed algorithm for this approach. Fault_List_Global in the algorithm refers to faults

that are detected by the enabled segments in all patterns considered in reverse thus far;

Fault_list_i_j refers to faults that are detected by enabled segment j in the ith pattern.

Figure 3.8 compares the toggle reduction of fpu_double with an overhead of approxi-

mately 3% with and without backwards simulation. It is clear that additional reduction is

possible. In fact, for some specific patterns, up to an additional 13% reduction was seen.

Such patterns are closer to the beginning of the test set because those are the patterns that

showed the least reduction originally, and by the time we reach those patterns through back-

ward fault simulation, many easy faults would have been detected already. Thus, with very

little additional effort, we can disable capture for even more segments.

3.6 Area overhead and delay

After the control chain has been added, the global routing might be an issue because

the wire spans across the whole circuit. The timing delay might also be an issue; the added

muxes could add extra delay in the functional path. We extracted the area overhead and

delay results from a synthesis tool. The results are presented in Table 3.3.

Table 3.3: Area Overhead and Timing Delay with extra control chain added

circuit # of segment original area original timing
name scan length area overhead timing increased

chains % delay percentage%
des56 4 30 20527 13.1 2.19 5.9

colorconv 9 30 77533 10.72 47.98 1.5
fm_receiver 5 30 42047 16.72 30.25 2.45
fpu_double 5 30 535049 15.0 96.74 0.48

If the length of the control chain becomes too long, multiple control chains can be added.

However, each additional chain will require a new input pin.
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3.7 Conclusion

In this chapter, we have shown that very high toggling reduction can be achieved during

capture cycles even when we start with patterns that have been created by a commercial tool

to achieve low power. Note that because we are disabling capture in scan chain segments,

any effort made by the ATPG algorithm to reduce shift power for those segments for the

pattern shifted into the chain will perform a “double duty”. A reduced number of transitions

during scan in will lead to a reduced number of transitions during scan out for the bits in

those disabled segments because the values will be identical during shift in and shift out.

Because good results can be achieved with low flip-flop overhead, it should often be

possible to completely shift data into a single control register that controls multiple functional

chains in the same time required for a functional chain’s load/unload operation. In addition,

because toggling in the control chain will not feed into the circuit’s combinational logic,

it should have a minimal impact on power compared to toggling in the normal functional

chains.

Also note that our approach tries to maximize the toggling reduction using a very greedy

approach. The overall reduction is especially high for the largest circuit, and it reaches ap-

proximately 90% on average with little effort and overhead. We can get even more reduction

(up to 13% for specific patterns that originally still had high toggle counts) when we remove

additional segments by simulating the patterns again in reverse order. However, the final

patterns (i.e., those generated last during ATPG) still have much less toggling than the

initial patterns (i.e., those generated first during ATPG).
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Figure 3.7: Reverse Simulation Flow
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Figure 3.8: Comparison of toggle reduction between original flow and Backwards Simulation
flow.
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Chapter 4

Low Power Test through ATPG-Configured Embedded Enable Capture Bits

Work contained in this chapter has been accepted for publication at the International

Test Conference 2021. [49]

Although the first architecture can achieve great test power reduction, a large amount

of post processing was required to determine appropriate values for the control bits. Thus,

in this chapter, we explore an alternative approach that removes the need for the extensive

post processing by embedding the segment control bits within the chains themselves. This

also removes the need for the expensive extra pin that is required for the first architecture.

Like the first architecture, this second approach is compatible with an on-chip decom-

pressor. However, while the on-chip decompressor was bypassed when implementing the

control chain in the previous chapter, in the second architecture, the control bits will be fed

by the on-chip decompressor itself. We will also discuss in this chapter, that when inserted

into a full-scan design that already contains flip-flops with an enable input (such as for clock

gating), no additional logic must be inserted in the paths of the functional logic—minimizing

the impact on the functional circuit delay.

4.1 Second DFT Architecture for Segment-Based Capture Control

Figure 4.1: Schematic design of regular scan chain with enable signal.
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Figure 4.2: Schematic design of segmented scan chain.

Figure 4.1 shows a scan chain consisting of five scannable D flip-flops. In this example

we assume that the scannable D flip-flops (SDFF0–SDFF4) consist of a D flip-flop with a

multiplexer added at the input—forming a MUX-D scannable D flip-flop outlined in grey.

One input of the MUX acts as the functional input (labeled D0–D4), and the other input

serves as the Scan In (SI) input. A Scan Enable (SE) signal is used as the multiplexer select

line. These scannable D flip-flops also have an enable input (EN). Each flip-flop will only

clock the data in when the EN input is asserted. A global enable signal dictates whether the

flip-flops capture data from combinational logic that feeds into D0–D4 (not shown) during

normal functional operation. De-asserting the EN signal prevents the change of data in the

flip-flops. The Scan-Enable signal (SE) is OR’ed with the global enable to ensure that data

can be shifted into the flip-flops during test regardless of the value of the global enable.

However, the global enable signal must be asserted during the capture cycles of test when

SE is de-asserted. The global enable signal can be used during functional operation of the

circuit to allow this part of the circuit to enter a low-power mode by preventing changes in

the flip-flop values.

Figure 4.2 shows the same five flip-flop scan chain (shaded in grey) from Figure 4.1

split into two segments using two additional EECB flip-flops (shown in green). Segment 1

consists of two scan cells SDFF0 and SDFF1. Similarly, segment 2 consists of three scan cells

SDFF2, SDFF3, and SDFF4. In this figure, each EECB scannable D flip-flop is connected

to the first scan-flop of the segment it controls. Unlike the circuit shown in Figure 4.1, here

the global enable signal is set to low during test. This will allow the EECB cells to solely
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control whether or not the scan chain captures data during test. When SE is set to high, the

segmented scan-chain works as a regular shift register. When SE is set to low, the outputs of

the OR gates (shaded in green) are determined by the outputs of EECB bits. The value in

each EECB flip-flop determines whether the segment it controls will capture a new value or

maintain its old value. A logic 0 stored in the EECB flop at the start of a segment leads to

a 0 at the output of the OR gate connected to the EN pin of the flip-flops in that segment.

This has the effect of denying capture and the segment flip-flops retaining their previous

value. In the example of Figure 4.2, using two EECB flops, we can control the two segments

independently and have both segments disabled, both segments enabled or only one of the

two segments enabled. In functional mode, the EECBs should be set to 0 to allow the global

enable to have full control of whether or not the functional flip-flops capture data.

In this example, our approach harnesses the existing enable inputs to the flip-flops in the

circuit as seen in Figure 4.2 to allow or deny capture. Alternatively, other approaches, such

as disabling the flip-flop by gating the clock, could be used instead to disable capture during

test. The hardware overhead compared to the original chain of Figure 4.1 is one MUX-D

flip-flop and one OR gate per segment, plus the additional routing occurring locally.

In Figure 4.2, the EECB bits become part of the original scan chain. This allows the

ATPG tool to generate the appropriate logic values for the EECB bits to capture data in

those segments that are needed to detect targeted faults for a particular test pattern. Even

though this approach only appears to save on capture power, we will show with an example

below that it can also save on shift.

In Figure 4.3, we have 21 bits in the scan chain ranging from SDFF0 to SDFF20. The scan

chain is shifting values from left to right. Assume the initial state of the values in SDFF0–

SDFF20 is 001110101110100101100, and the new pattern generated by the ATPG tool

that will be shifted in is 001XX11X010X01X01XX01. The don’t care bits in the new

pattern are randomly filled with zeros or ones, and the new pattern that is actually shifted

in is 001101110100011011101.

All the values in the scan cells (SDFF0 – SDFF20) after the first shift cycle are displayed

in the third row in Figure 4.3. If a toggle occurs in a SDFF, then the color of the box for

that SDFF is changed to a light grey. We can see that the total number of toggles after the
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Figure 4.3: Shift in random patterns into a regular scan chain.

Figure 4.4: Shift in low power patterns into a regular scan chain

Figure 4.5: Shift in low power patterns into the segmented scan chain
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first shift cycle is 13. We can also calculate the toggles for the rest of the shift cycles when

the first pattern is completely shifted in, and we get a total of 263. Once the entire pattern is

shifted in, and the testing process reaches the capture stage, we assume the capture response

in the scan cells (SDFF0 to SDFF20) is 010100101101110010101. Then the total number

of additional toggles in the SDFFs arising from the capture cycle is 9. Then, to shift out

the data, we assume the second pattern is 0x1xx1xx010x01x011xx0. The randomly filled

pattern is 011001010101010011100. The total number of toggles including the shift-in,

capture, and shift-out cycles is 565.

Figure 4.4 shows the same example, but this time, a low power pattern will be shifted

into a regular scan chain. Once again, assume that the scan chain has an initial value of

001101001011101011100. Because the pattern that is generated from the ATPG tool is

low power, assume that the pattern generated by the ATPG tool will be adjacently filled. As

a result, the new pattern that is shifted into the scan chain is 100010010001001111100.

For every shift cycle, we count the number of toggles in the scan cells (SDFF0–SDFF20).

We get 250. For the capture response, assume that we have the same capture response

010100101101110010101 as occurred with the randomly-filled test pattern. (Obviously,

this would not necessarily be true). The number of toggles during the capture cycle is 8.

Note that the number of toggles during capture was approximately the same in both cases.

The second pattern when adjacently filled is 011111000100010011000. Shifting in this

pattern while shifting out the previous capture values leads to 246 additional toggles. For

shift in, capture, and shift out, we get 504, which is ((565-504)/565)*100%= 10.79% power

reduction in total.

Assume the 21 bit chain is now broken into two segments; EECB0 is inserted to control

SDFF0 to SDFF9; EECB1 is inserted to control SDFF10 to SDFF20. Figure 4.5 shows

an example when low power patterns are shifted into a segmented scan chain controlled by

EECBs. Assume SDFF0 to SDFF9 are disabled during the capture stage. As a result, the

first pattern that is shifted in is 00011111001100010010001. The toggles during the shift

and capture are 241 and 3 respectively. Note that the segment that does not capture retains

the low-power shifted-in values. This will reduce toggling during the shift out of the test

results. The second pattern that is shifted in is 00111110001100010011000, assuming
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scan cells (SDFF0–SDFF10) will be disabled during capture. For shift in, capture and shift

out, we get 448, which is ((565-448)/565)*100%= 20.7% power reduction in total.

We found that an ATPG tool is able to generate both stuck-at and Launch off Capture

(LOC) transition fault patterns automatically for this segmented scan chain design. In

the case of LOC patterns, a segment whose EECB value is 0 is disabled for both capture

cycles. The ATPG tool is also able to generate patterns for a design in which an on-chip

decompressor is used to fill the segmented scan chains.

4.2 EECB Insertion Procedure

To implement the proposed approach, it is necessary to split each scan chain into multiple

segments that can be enabled/disabled during capture. More specifically, the following

procedure in Figure 4.6 is followed for each circuit studied in this chapter.

The implementation procedure in Figure 4.6 can be illustrated with the following example

and the following steps. Assume you are given a circuit with 503 scan cells, where the scan

cells will be configured into 5 chains.

1. Insert balanced scan chains so that the scan chain lengths are approximately the same.

In this case, there are either 100 or 101 scannable D flip-flops per chain. Assume the

number of scan cells per chain are as follows. Chain 1: 101; Chain 2: 101; Chain 3:

101; Chain 4: 100; Chain 5: 100;

2. Assume the scan chains will be split evenly into two segments. (A larger number of

segments is also possible.) Then the number of scan cells per segment per chain is as

shown in Table 4.1.

3. Insert EECBs in between the scan segments by modifying the Verilog netlist according

to the structure shown in Figure 4.2. As shown in Figure 4.2, one EECB cell and a

two-input OR gate are inserted before the first scan cell of every segment. The EECB0

shift-in signal will be the previous shift-in signal of SDFF0. In this case, it is the SI

signal for that scan chain. The output of the EECB will fan-out to three paths: it

feeds back to one of the inputs of its own mux, the shift-in signal for the first scan cell

of the segment it controls, and one of the inputs into the added OR gate. The other
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Figure 4.6: Flow chart of EECB insertion procedure.

Table 4.1: Number of scan cells per segment per chain

chain 1 1 2 2 3 3 4 4 5 5
number
segment 1 2 1 2 1 2 1 2 1 2
length

number of
scan cells for 51 50 51 50 51 50 50 50 50 50
each segment
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input to the OR gate is the OR of the original enable signal and SE. In this example,

we need two EECBs and two additional OR gates per chain, and then we can connect

accordingly.

4. Change the test procedure file. In the ATPG test procedure, the minimum number of

shift cycles depends on the number of scan cells in the longest functional chains and

the number of EECBs that are being added. In this example, the original length of

the scan chain is 101. Two EECBs are added per chain. The minimum number of shift

cycles should be changed to 101+2=103.

5. Use the ATPG tool to create the on-chip decompressor with the updated test procedure

and Verilog netlist.

6. Generate the on-chip decompressor test patterns automatically with the ATPG tool.

In this chapter, the power is estimated by counting the number of times each gate input

or output or internal wire switches during test.

4.3 Results

To evaluate the effectiveness of our approach, data were collected for four different circuits

obtained from opencores.org. The characteristics of these circuits are listed in Table 4.2.

Table 4.2: Characteristics of Benchmark Circuits

Circuit # of # of avg. length
scan DFFs scan chains of scan chains

des56 312 5 62-63
fm_receiver 509 5 101-102
colorconv 879 5 175-176
fpu_double 5364 5 1072-1073

For each circuit, the steps outlined in Section 4.2 were followed to generate a low power

stuck-at test set and a low power transition fault test set using LOC (launch off capture).
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The goal was to see how much additional test power reduction in both shift and capture,

above and beyond that which was already obtained by the ATPG low power test pattern set,

is possible with this approach. To investigate the effect that different segment lengths may

have on the overall power reduction, the process was repeated for different segment lengths.

4.3.1 Stuck-At Fault Model Results

In our first set of experiments, low power test patterns that target stuck-at faults in

the presence of an on-chip decompressor are applied to the circuits using the procedure in

Section 4.2.

4.3.1.1 Unconstrained patterns generated with the ATPG tool

In this experiment, the ATPG tool has perfect freedom to decide whether to enable or

disable a particular segment during each capture cycle. We then estimate the test power

(during both shift and capture cycles) by counting the switching activities for all four circuits

in Table 4.2.

Figure 4.7: des56 Test Power Reduction for Stuck-at Fault Patterns

Figure 4.7 shows the results for circuit des56. The X-axis presents different conditions

under which the test power reduction is calculated:

• Average shift power per pattern: The sum of the switching activity across all shift

cycles divided by the number of patterns.
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• Average capture power per pattern: The sum of the switching activity across all capture

cycles divided by the number of patterns.

• Average power per pattern: The sum of the switching activity across all shift and

capture cycles divided by the number of patterns.

• Total shift power : The sum of the switching activity across all shift cycles for all

patterns.

• Total capture power : The sum of the switching activity across all capture cycles for all

patterns.

• Total power : The sum of the switching activity across all shift and capture cycles for

all patterns.

The legend in the figure shows that the different colored bars represent different seg-

ment lengths. The y-axis shows the percentage of test power reduction compared to the

original des56 test pattern set generated for the version of the circuit without our DFT

architecture. The results are presented in the same manner for the remaining three circuits

in Figures 4.8, 4.9 and 4.10.

Table 4.2 shows that fpu_double has longer scan chains compared to the other circuits.

For this reason, the experiments run on fpu_double and the results shown in Figure 4.10 are

presented for the scan-chain partitioned into smaller fractional segments compared to the

other three circuits.

Figure 4.8: fm_receiver Test Power Reduction for Stuck-at Fault Patterns
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Figure 4.9: colorconv Test Power Reduction for Stuck-at Fault Patterns

Figure 4.10: fpu_double Test Power Reduction for Stuck-at Fault Patterns

The results for the four circuits in Figures 4.7 – 4.10 show that the DFT architecture

presented in Section 4.1 can be used to save power during test in both the shift and capture

stages for the stuck-at fault model. From our results, we see that the largest of our four

circuits, fpu_double, displays the best power reduction and can achieve up to 35% total test

power reduction and almost 45% reduction for total capture power. A closer analysis of the

test patterns show that fpu_double has the most don’t care bits out of the four circuits and

that a large number of patterns in the test set for fpu_double only detect a few hard-to-detect

faults, requiring only a few segments to be enabled during capture for these patterns.
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4.3.1.2 All segments are forced to capture for the first few patterns

In this experiment, we force all segments to capture during the first N patterns by

constraining the values of all the EECBs to be 1 when the ATPG tool generates test patterns.

The reasoning behind this involves the fact that easy-to-detect faults are more likely to

be fortuitously detected in the first few patterns if all segments capture. This allows the

targeting of faults later in the test set to focus on the harder-to-detect faults (when only a

few segments will need to be enabled for detection). The goal is to reduce the total number

of patterns needed and thus the total energy expended during test. The disadvantage is that

the switching activity of the early patterns will likely be higher with this approach.

Consider the results for des56 shown in Figure 4.11. This experiment was run with the

scan chain divided into 32-bits per segment (half of the scan chain length per segment). The

legend labels the bars as 0, 5, 10...60 to indicate the number of initial patterns for which

all segments are forced to capture. Here, bar 0 indicates that the ATPG tool has complete

control over whether a particular scan segment can capture or not; a 5 means that all scan

segments are forced to capture for the first five patterns in the test pattern set. The data

show that the best power reduction occurs when all segments are forced to capture for the

first five patterns.

Figure 4.11: des56 Test Power Reduction for Stuck-at Fault Patterns when all the segments
are enabled during capture for the first n patterns. Each colored bar corresponds to a
different value of n. (Segment length = 32 bits.)
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Figure 4.12 shows the relationship between the pattern count and the total switching ac-

tivity during test as the number of initial patterns (n) constrained to capture in all segments

changes from 0 to 60. In each group of bars, the pattern counts or switching activities for

test sets with different values of n are divided by the corresponding value for the original

test set generated for the version of des56 with no EECBs.

From Figure 4.12, it is clear that all groups of bars show a similar trend—emphasizing the

importance of achieving a low pattern count test set to minimize the total energy expended

during test. However, even when the test pattern count is not minimized, the proposed

approach still achieves significant reduction in switching activity, as shown by the reduction

that occurs across all values of n.

Note that although constraining the initial patterns to capture in all segments was useful

for des56, it was less useful for fm_receiver. The majority of the faults in fm_receiver are

in the cone of influence of only a few of the scan cells in the chains. As a result, the amount

of fortuitous detection achieved by forcing all of the segments to capture in fm_receiver is

less than for des56. As a result, it is necessary to consider this characteristic of the circuit

when determining the appropriate value of n for test pattern generation.

Figure 4.12: Total number of patterns and corresponding switching activity when all seg-
ments are forced to capture for the first few patterns in the pattern set for des56
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4.3.2 Transition Fault Model Results

So far we have analyzed data collected on tests targeting stuck-at faults. In this section,

we repeat the experiments and analyze power savings when targeting transition faults.

4.3.2.1 Unconstrained patterns generated with the ATPG tool

In this experiment, while targeting transition faults, the ATPG tool is given the freedom

to decide whether to enable or disable a particular segment during every capture cycle.

Results for the four circuits are presented in Figures 4.13–4.16. Circuits des56, colorconv,

and fpu_double show power savings in shift and capture as well as total power. We see that

our largest circuit fpu_double can achieve up to 37% total test power reduction.

Figure 4.13: des56 Test Power Reduction for Transition Fault Patterns

Figure 4.16 for circuit fm_receiver shows that on a per-pattern basis we see good power

reduction for average shift, capture, and overall power. However, when the chains are seg-

mented to lengths of 1/4 chain and 1/2 chain, the total shift power and total power increased

slightly. This is related to a pattern count increase. Specifically, when generating a test pat-

tern set for transition faults for fm_receiver, we noticed that the pattern count had increased

by about 20% for the 1/4 chain and 1/2 chain scenarios compared to the original circuit with-

out the segmented scan chain. The number of patterns for the 1/3 chain scenario was also

higher but not to the same degree as the other two cases.
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Figure 4.14: colorconv Test Power Reduction for Transition Fault Patterns

Figure 4.15: fpu_double Test Power Reduction for Transition Fault Patterns

Figure 4.16: fm_receiver Test Power Reduction for Transition Fault Patterns
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The first set of bars marked "pattern count/original" in Figure 4.17 shows this increase

in pattern count over the original circuit. The other three sets of bars in the figure show the

total shift power, total capture power and total power compared to the original circuit. The

information in the last three groups is the same information as in Figure 4.16 but presented

in a way that illustrates the direct correlation between the pattern count increase and the

power savings obtained for the circuit.

Figure 4.17: fm_receiver Total test power for transition fault patterns with regard to pattern
count for different amounts of scan chain segmentation

4.3.2.2 All segments are forced to capture for the first few patterns

We found that the number of transition fault test patterns generated with LOC increased

when all of the segments were forced to capture for all of the values of n. As a result, while

this optimization worked for stuck-at faults it doesn’t appear to be useful for transition

faults.

4.3.3 Overhead

4.3.3.1 Area Overhead

Different segment lengths correspond to a different area overhead. In particular, each

segment requires an additional MUX-D flip-flop and an OR gate to be inserted in between

the segments. In this chapter, we extract the area overhead after synthesizing and mapping
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the circuits to a standard cell library. The global enable signal was included for all flops.

The area overhead results are presented in Table 4.3 for des56, fm_receiver and colorconv

where the circuits were partitioned into 1/4, 1/3 or 1/2 chains, and for fpu_double where

the scan chains are partitioned in 1/36 chain, 1/12 chain or 1/6 chain.

Table 4.3: % Area overhead with different segment lengths

des56 Lseg 16(1/4 chain) 21(1/3 chain) 32(1/2 chain)
Ao 5.2 4.65 4.13

fm_receiver Lseg 26(1/4 chain) 34(1/3 chain) 51(1/2 chain)
Ao 3.22 2.92 2.84

colorconv Lseg 44(1/4 chain) 60(1/3 chain) 90(1/2 chain)
Ao 4.05 3.69 3.49

fpu_double Lseg 30(1/36 chain) 90(1/12 chain) 180(1/6 chain)
Ao 2.44 2.31 2.24

As expected, as the segment length gets larger, the area overhead gets smaller. In Sec-

tion 4.3.1 and 4.3.2, we saw that larger segment lengths (and thus lower area overhead) can

achieve good power reduction. For example, the area overhead for des56 when the segment

length is 21 (1/3 of the scan chain length) is 4.65% while the power reduction for stuck-at

patterns is just above 20%. As the segment length gets larger, the power reduction stays

around 20% (Figure 4.7), but the area overhead drops to 4.13%. In the case of transition

faults, the total power reduction doubles (Figure 4.13) when going from a segment length of

21 to 32.

In Table 4.3, the area overheads for fpu_double are reported for smaller segments (1/36,

1/12, and 1/6 instead of 1/4, 1/3 and 1/2) because the average length of the scan chains

(as shown in Table 4.2) for fpu_double is larger than those of our remaining three circuits.

We see that the area overhead for fpu_double is 2.44% for segments of length 1/36 while

allowing for total power savings of over 30% for both stuck-at (Figure 4.10) and transition

fault (Figure 4.15) tests.
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4.3.3.2 Test Time Overhead

The EECB bits inserted between the segments require extra shift cycles for each pattern.

This leads to a test time overhead per pattern. In addition, if more patterns are needed once

the EECBs are added, then the test cycles for the extra patterns should also be included

when counting the test time overhead. The test time overhead (To) when scan chains have

EECBs inserted is given by:

To =
Nn ∗ (CL+NEECB)− CL ∗No

(CL ∗No)
∗100% (4.1)

where NEECB is the number of EECB bits that are inserted per scan chain, No is the number

of patterns in the original pattern set, Nn is the number of test patterns in the new test

pattern set where EECB bits are inserted and CL is the length of the longest scan chain.

The test time overhead with regard to different segment lengths for stuck-at fault patterns

as well as transition fault patterns for our largest circuit fpu_double is shown in Figure 4.18.

For both stuck-at and transition fault test–sets, we see that the test–time overhead is under

10%. Due to the larger test pattern sets for the transition fault test generated using the

LOC method compared to the stuck-at-fault tests, we see that the test overhead is a little

higher. However, we also see that as the segment length increases, the test time overhead

approaches 2% for stuck-at-patterns and 3% for transition patterns. (Similar results are seen

for the smaller circuits.)

4.4 Conclusion

Significant switching activity reduction can be achieved by disabling capture of selected

scan chain segments during test using EECBs. For our largest circuit, fpu_double, using a

chain length of 180 (1/6 chain), we can achieve total power savings of approximately 37%

while incurring only 2.4% area overhead and only 1.9% test time overhead. We expect the

approach to scale well to even larger circuits that have a high percentage of don’t care values

in their test pattern sets.

A significant advantage of the proposed approach is that the ATPG tool is able to generate

test patterns that include the appropriate EECB values automatically without significant

post processing. Furthermore, in most cases, multiple segment lengths can lead to good
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Figure 4.18: % Test time overhead for stuck-at and transition fault patterns for fpu_double
.

power reduction for each circuit—indicating that good trade-offs between power reduction

and test time and area overhead are possible.

56



Chapter 5

FPGA based Tester to Enhance Field-Testing in a 3D Stacked IC

The work in this chapter was first presented in [8] and a license has been acquired to

reprint this article.

With many other researchers having developed many techniques to reduce shift power

and/or capture power and the two architectures we have investigated, general approaches

to reduce test power have been covered. However, in certain scenarios, less work has been

done, such as field test.

In field test, parts may be exposed to environments that have higher temperature than

normal due to weather or other heat-producing components in other parts of the system,

especially in 3D stacked ICs. Dies are stacked on top of each other within the package in

3D stacked ICs. The structure of the 3D stacked IC makes heat less likely to escape. This

creates even more serious power problems during test. Using an FPGA as a field tester for

a 3D stacked IC could potentially solve some of these problems.

5.1 Using an FPGA for low power testing of other dies in a 3D stack

Various methods have been developed for testing 3D stacks. For example, [50] discusses

methods for scan-chain design and optimization for 3D ICs. They found that 3D scan-chain

optimization achieves significant wire-length reduction compared to common 2D optimiza-

tion approaches. The authors of [51] discuss DFT architecture and ATPG for interconnect

test of 3D memory chips (DRAMs) and propose serial and parallel TAMs (Test Access Mech-

anisms) to communicate between dies. The serial TAM is used to transport test mode in-

structions and low-bandwidth test data, while the parallel TAM is used for high-bandwidth

volume-production test data. There has also been significant research on the testing of

TSVs [6], test scheduling [52], and the communication of test data between layers through

the JTAG port [53].
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Test approaches for chip logic in 3D stacks have generally assumed that all test data

will initially be provided through the bottom die by a tester (ATE). However, 3D stacks

provide other potential self-test options as well. In particular, one die in the stack may be

used to test another die in the stack through the available TSV connections. The very short

distances between dies in a stack can make SerDes connections very efficient. In addition,

there is usually a high density of through silicon vias (TSVs) available.

If an FPGA is included in the stack for functional purposes, the high density TSVs

between the FPGA and another die may not only serve as functional communication buses

under normal operation, but also could have been added for performance enhancement or

repair. As a result, the high bandwidth available may also allow a large number of short

chains to be accessed directly for scan-based testing, reducing the overall shift cycles as well

as the power dissipated during test.

The advantages of using an FPGA as a tester on a board become magnified in the 3D

IC space. For example, an important issue in 3D is how and when to test each die in the

stack. Bandwidth to upper dies is likely to be limited to a few pins at the base die, and

the IEEE 1838 Standard [54] committee has developed protocols and methods for delivering

high-bandwidth test data. These include a test access port (TAP) and TAP controller on

every die, a serial boundary wrapper on every die interface to conduct interconnect testing,

and a parallel port.

Bypassing traditional test and measurement equipment with FPGAs on boards has been

previously shown to help significantly reduce test costs and allows high-speed testing because

FPGA-based instruments can be reconfigured as needed and have direct access to the circuit

[55]. FPGAs have also been embedded into SoCs (System on Chips) to provide system

test capabilities [56]. Using this approach, the FPGA may be reprogrammed for different

functions at different times, so the FPGA may be used to add functionality to the chip, as

well as being used as an embedded tester. In the case of a 3D stacked IC, because the dies

may come from different companies, dedicated embedded tester logic may be provided by

each IP provider. Thus, in addition to providing a means of testing the stack, this approach

may help protect the intellectual property (IP) among the different companies with IP in the

stack. Furthermore, using an FPGA as a tester in a 3D stack provides significant additional
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security advantages over an FPGA on a board because the inter-die connections are hidden

in the stack and cannot be physically probed. As a result, test data, including test patterns,

may never need to appear outside of the stack, and side channel analysis, such as power or

thermal analysis, is much less likely to be effective.

Although on-chip decompressors were originally proposed to allow multiple shorter chains

to be filled by only a few scan channels of input test data, when chains get too short, the

number of patterns can increase—reducing or negating the improvement in test time and

test energy expended [57]. Thus, a third architecture that uses an FPGA in a 3D stack

as a field tester is explored in this dissertation, with the goal of reducing the total energy

expended during test. In this architecture, an FPGA has been used to bypass the traditional

on-chip decompressor to reduce power during test.

In our previous work [58], a tester design that was intended to take advantage of the

underlying FPGA structure was introduced. Specifically, we considered the case where

specific ATPG (automatic test pattern generation) patterns should be applied to the die

under test and how those patterns could be efficiently stored in the lookup tables (LUTs) that

form the programmable fabric of FPGAs. We explored both the FPGA resources required

as well as the the amount of scan flip-flop toggling expended during scan shift. Power

dissipation arising from scan shift toggling is especially important in 3D stack structures,

where excess toggling may generate heat that is difficult to remove from the stack. Excessive

toggling can also cause brownouts when the di/dt exceeds the capacity of power rails that

have limited connections to the board. Reducing the power consumption also increases the

allowable thermal budgets in a stack, allowing more ICs to pass thermal tests, increasing

the number of the chips that can be stacked together, and allowing the integration of more

functionality in a single stacked IC [59].

While the work presented in [58] served as a good initial exploration of the proposed

approach, multiple issues remained to be explored. In this chapter we expand the work

of [58] in several ways to better demonstrate the benefits of our approach. More specifically,

we make the following contributions:

• We explicitly extract the interior circuit toggling during shift to better estimate dy-

namic power and test time using our approach.
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• We investigate the trade-off between reducing power dissipation and more efficiently

storing patterns in the FPGA’s lookup tables by more efficiently dealing with don’t

cares. In particular, we consider adjacent fill merging (ADJCOM) and an “X”-retained

merging algorithm (XRET) in our analysis.

• We explicitly investigate the use of multiple-input signature registers (MISRs) for cap-

turing test responses and obtain data for MISR overhead along with the effect of

aliasing on fault coverage.

5.2 Exploiting FPGA’s Generic Architecture

As individual dies become more and more complex, the need for embedded instruments

(such as sensors, hardware monitors, environment monitors, built-in-self test (BIST) engines,

trace buffers, etc.) will only grow. There is a great possibility that they will be used not only

for manufacturing test and failure or yield-analysis, but also to identify and address aging,

wearout and thermal issues in the field and to verify or configure inter-die communication.

An FPGA in a 3D stack may be used as a controller for these instruments or it may be used

to implement some instruments, such as built-in-self-test (BIST) pattern generators.

One type of BIST pattern generator that may be implemented either in a die or on

an FPGA is an LFSR-based LBIST (logic BIST) engine. Although adding weights and test

points can increase the coverage of LBIST, top-off patterns may still be needed to achieve high

coverage.1 Thus, in this section, we describe one possible FPGA-based tester architecture

that is capable of generating specific patterns to apply to a die-under-test (such as those

that may be needed for top-off) while making use of the underlying FPGA architecture to

reduce the resources needed for the design.

To meet these goals, our chosen FPGA-based tester stores the data to be shifted into the

chains on different patterns into 1-bit LUTs on the FPGA. As an example, Figure 5.1 shows

how the outputs of a set of LUTs are fed into a multiplexer’s data inputs. The output of

the multiplexer feeds into one of the scan chains on the ASIC through a TSV (possibly via

a SerDes connection.) A counter is used to cycle through all of the entries in the LUTs so
1In order to achieve high test coverage, the number of top off patterns could be quite significant. Exploring

how to decrease the top-off patterns is left for future work.
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that they can be shifted out one-by-one into the chain. This same architecture is repeated

for all chains in the design.

Figure 5.1: Example FPGA-based implementation for storing pattern data for a single scan
chain. This is repeated for multiple chains, with LUTs possibly shared among chains.

To save on FPGA resources, we can reduce the number of LUTs by merging compatible

patterns into a single LUT that can be selected multiple times. Such merging may occur

both among those patterns that will eventually be fed into a single chain as well as across

chains, in which case a single LUT may fanout to multiple muxes. Each scan chain would

require one set of select lines for its MUX as shown in Figure 5.1.

Note that to maximize the efficiency of mapping scan data to LUTs, ideally, the scan chain

length will match the number of bits available in the LUT. For example, in our experiments,

we mapped our tester design to an FPGA with 5-input LUTs containing 32 bits. As a

result, we used scan chains of length 32 for each of the circuits when collecting data for this

architecture.
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Of course, the select line data are also needed. If the length of each chain is equal to the

size of a LUT, one set of select lines must be stored per mux/chain for each pattern. For

longer chains, more select line values would be needed so multiple LUTs may be unloaded

in sequence during scan shift. These values may be stored in the FPGA itself, in a memory

located in the stack, in a memory on the board, or they may be passed to the stack by an

external tester.

5.3 ADJCOM

Different approaches may be taken to merge patterns into LUTs. In particular, how

Xs are filled before and/or after a merge can influence the scan shift power and the LUT

overhead. Because we are interested in reducing the power during scan shift, we first look

at an approach which uses adjacent fill [60] to minimize switching activity.

5.3.1 Adjacent fill merging algorithm

The LUT design process starts with a synthesized Verilog circuit netlist, which undergoes

scan insertion with a scan chain size ideally equal to the size of the FPGA’s lookup tables.

(This will be 32 bits long in our later experiments.) An ATPG pattern set for stuck-at faults

is generated in such a way that any remaining X’s in the patterns are not automatically filled

by the tool but are kept in the pattern set. ATPG options (such as dynamic compaction)

are used to create the initial compact test set, but on-chip decompressors are not.

Table 5.1 shows an example of a pattern set divided among three chains. These ATPG

generated patterns are analyzed, and any don’t care “X" is filled with the value of an adjacent

bit. Consider chain 1 pattern 1 (01XX1) shown in Table 5.1; we fill the X with 1 (the same

value as the second bit) to decrease the switching activity—yielding 01111. The remaining

patterns are filled in a similar manner. The adjacently filled patterns are shown in Table 5.2.

After adjacent fill, these patterns no longer have any don’t care bits left and can now be

directly assigned to LUTs.

However, direct assignment of these patterns to LUTs can be wasteful. There might be

cases where, after adjacent fill, there are identical patterns within the same chain or across

different chains (e.g. pattern 11111 in Table 5.2). Instead of storing 11111 multiple times we

compress the data that needs to be stored in the LUTs using our Adjacent-Fill and Compress
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Table 5.1: Example original pattern set

Chain 1 Chain 2 Chain 3
Pattern 1 01XX1 100X0 XX1X1
Pattern 2 1XX11 11XX1 110XX
Pattern 3 X0XX0 1X001 1X0XX
Pattern 4 XX11X 101XX X1XX1

Table 5.2: Example Pattern Data after Adjacent Fill

Chain 1 Chain 2 Chain 3
Pattern 1 01111 10000 11111
Pattern 2 11111 11111 11000
Pattern 3 00000 11001 11000
Pattern 4 11111 10111 11111

(ADJCOM) algorithm illustrated in Fig 5.2.

For each chain, after we do adjacent fill, we determine what LUTs and mux connections

will be needed. Specifically, after ordering the patterns in chain order, we start selecting

patterns one-by-one. If the current pattern is identical to one already contained in a LUT,

no new LUT needs to be allocated, and a new mux connection may be made, if required. If

they are not the same, we create a new LUT, attach it to the LUT pool, and attach it to

this chain’s mux. In both cases, we record the appropriate select line index for this pattern

so that the correct mux input (and LUT) will be selected for this pattern during test. We

then check if there are any remaining patterns left. In summary, for each iteration, we need

to keep track of the muxes where each LUT connects and also when that LUT should be

selected (i.e., for which patterns) for each chain.

To help illustrate this ADJCOM compaction methodology, consider the following example

consisting of 3 chains, 4 patterns, and 5 bits per chain, with patterns shown in Table 5.2.

To reduce the LUTs and select lines required, we must merge the patterns when possible,

taking the following steps:

1. Because the LUT pool is empty, we push the first pattern of Chain 1 (01111) into the
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Figure 5.2: Flowchart for LUT and Select Line Reduction using ADJCOM.
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LUT pool. This LUT is added to the first data input of the mux for Chain 1, and the

select line value for Pattern 1, Chain 1 is set to 0.

2. Pattern 2 of Chain 1 (11111). This pattern cannot be merged with the LUT pool so

we must create a new LUT. The new LUT is added to the next data input for the mux

of Chain 1, and the select line value 1 for the pattern is recorded.

Now LUT pool: 01111, 11111. Chain 1 LUTs: 0,1; Chain 1 Select lines:0,1.

3. Pattern 3 of Chain 1: 00000. 00000 cannot be merged with LUT0 (01111) or ADJCOM

(11111). Add the pattern to the pool, attach the LUT to the third data input of the

mux of Chain 1, and record the select line value.

Now LUT pool: 01111, 11111, 00000. Chain 1 LUTs: 0,1,2 Chain 1 Select lines:0,1,2.

4. Pattern 4 of Chain 1: 11111. This pattern can be merged with ADJCOM (11111).

Since this pattern exists in the LUT pool and is already attached to this chain’s mux

at data input 1, it does not need to be added to another data input. However, the

select line value 1 must be recorded for this chain and pattern 4.

Now LUT pool: 01111, 11111, 00000. Chain 1 LUTs: 0,1,2; Chain 1 Select line values

:0,1,2,1.

5. Pattern 1 of Chain 2: 10000. This pattern cannot be merged with the existing LUT

pool so we must create a new LUT. The new LUT is added to the next data input for

the mux of Chain 2, and the select line value 0 for the pattern is recorded.

Now LUT pool: 01111, 11111, 00000, 10000. Chain 1 LUTs: 0,1,2; Chain 1 Select

line values :0,1,2,1. Chain 2 LUTs: 3; Chain 2 Select line values: 0.

This process continues until we have attempted to merge all of the patterns. The final

result is shown in Figure 5.3. The merging process allows LUTs to be shared among chains

and also allows the size of the muxes to be reduced when the same LUTs can be used multiple

times for each chain.
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Figure 5.3: Resulting implementation for patterns shown in Table II after pattern merging.

5.3.2 FPGA Implementation Results and Analysis

To evaluate the effectiveness of our algorithm, we ran several experiments on different

benchmark circuits obtained from opencores.org. These circuits were synthesized with Syn-

opsys Design Compiler using a 90 nm ASIC library. When generating the test patterns for

the circuits, both inputs and outputs of the circuits were registered.

An ATPG tool was used to insert multiple scan chains of length 32 (to match the size of

the LUTs in our target FPGA) in each circuit. The scan chains contain only Primary Inputs

(PIs), Primary Outputs (POs), and/or flip-flops—with the final chain possibly containing

fewer scan cells when the number of flip-flops plus the PIs was not evenly divisible by 32.

(The PIs and POs were registered in these experiments.) Stuck-at fault ATPG patterns were

generated as well. Details regarding each of the circuits studied are provided in Table 5.3.

The table lists the number of Primary Inputs (PIs), Primary outputs (POs), and Flip flops

(FFs) present in the original circuit as well as the number of test patterns generated with a

target test coverage at 100%, and the number of scan chains used.

Note that these circuits could very easily represent a core on a chip that needs to be

tested using top-off patterns after LBIST. Furthermore, although the tester design may be

used to apply top-off patterns only, in these experiments we will store and apply the entire

test set for each circuit.

After a test is applied, the capture values of the flip-flops and primary outputs are shifted

out to a MISR (multi-input signature register). In our experiments, we fill all the values in
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Table 5.3: Characteristics of our Opencores.org Benchmark Circuits

PIs POs FFs Faults Patterns Chains
quad 36 25 184 7132 40 6
color 297 34 858 36534 91 29
des56 132 67 193 16050 120 14
fm 10 12 521 23408 365 18
fpu 72 70 5493 276930 254 172

the PIs and scan chains with known values, and there are no uninitialized memories or other

sources of X’s, so we can use the MISR as our result compactor to store the test response.

To provide a proof-of-concept implementation of our design outlined in Section 5.2, we

mapped the tester architecture to a Xilinx Artix-7 (XC7A200T) FPGA device using Xilinx

Vivado software. The Artix 7 series configurable logic block (CLB) provides real 6 and 5

input look-up tables (134,600 LUTs), distributed memory (2,888Kb), block RAM memory

(13,140Kb), shift register (1.444Kb) logic capabilities, and fast wide multiplexers (16:1 MUX

using 4 LUTs or 1 slice) for efficient FPGA fabric utilization [61].

These features of the FPGA are important for efficient implementation of our controller.

Figure 5.4 shows a basic architecture of the test controller that tries to harness existing

FPGA resources. The structure consists of several modules—a LUT address generator, a

LUT layer, a RAM address generator, a RAM layer, a multiplexer layer, a scan register, a

signature register (MISR), and a scan enable signal generator. Our controller will have a

fixed set of 5-input LUTs that each store a 32-bit pattern. These LUTs will be multiplexed

with wide multiplexers. To take advantage of LUT sharing as described earlier, and to reduce

the total width of multiplexers as much as possible, the select lines for the multiplexers are

predetermined and stored in another RAM block (implemented as either distributed RAM

or block RAM on the FPGA). The test controller has three inputs (CLK, RESET, and a

scan signature from the ASIC), four outputs (a scan enable signal, a reset sent to the ASIC,

a registered bus feeding scan data to the ASIC via a SerDes connection, and an output that

indicates whether the test passes or fails.)

As noted earlier, we ran experiments on several circuits from opencores.org to vali-

date the effectiveness of our approach. Two separate implementations for each circuit were
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Figure 5.4: FPGA-based tester block diagram.

generated—one where all modules were implemented as distributed RAM or slice LUTs in

the FPGA and a second where the mux select signals were all grouped into a larger Block

RAM (BRAM) in the FPGA. For both experiments, we used Verilog HDL and synthesized

it with Xilinx Vivado 17.2 with a synthesis goal set to reduce the overall system area. Re-

sults of these two experiments are shown in Tables 5.4 and 5.5. Note that the area results

include all the structures shown in Figure 5.4 except the signature register, golden signature,

and XNOR comparison logic. This signature logic is negligible compared to the rest of the

FPGA-based tester block design.

Table 5.4 shows that the tester architecture takes up very little area on the FPGA and

that the tester can be operated at a clock frequency of 164.3 to 254.5 MHz for Experiment 1.

Note that the tester does not need to operate at the speed of a functional ASIC because the

tester is primarily engaging in scan shift operations, which can occur at a much slower clock

frequency. In fact, a slower clock frequency for scan shift is likely to be preferable to prevent

thermal issues in the stack during test. The smallest circuit quad used negligible hardware
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Table 5.4: Experiment 1: All modules are distributed RAMs/Slice LUTs

Circuits Max Freq (MHz) Slice LUTs % use LUTs
quad 254.5 207 0.15%
color 210.7 2107 1.5%
des56 233.1 797 0.6%
fm 180.4 2515 1.8%
fpu 164.3 11571 9.8%

resources and was the fastest while fpu used the most resources (9.8% of LUTs available)

and could be run at just over 164.3 MHz. In experiment 1, the speed of the circuits goes up

if less LUTs are used. However, if more LUTs are used, more routing resources are required,

and this may lead to longer routes and more signal delay.

Table 5.5: Experiment 2: Mux select lines implemented in block RAMs (BRAMs)

CKT Max Freq Slice % use Block %use
(MHz) LUT LUTs RAMs BRAMs

quad 212.7 160 0.1% 1 0.3%
color 220.9 974 0.7% 3 0.8%
des56 232.1 452 0.3% 1 0.3%
fm 221.5 1725 1.2% 3 0.8%
fpu 200.3 1687 1.1% 30 8.2%

Table 5.5 shows the results for Experiment 2, where we store the patterns and select lines

in LUTs and BRAMs respectively. This results in fewer LUTs compared to Experiment 1

because all the LUTs of Experiment 1 that were dedicated to storing the multiplexer select

line values are no longer needed. The corresponding data are now stored in one or more of

the 365 available block RAMs (BRAMs) instead. Keeping the select lines in BRAMs also

helps to increase the tester speed of three of the circuits. However, the small size of the quad

circuit prevented it from taking significant advantage of the BRAMs.
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5.3.3 Data Reduction using ADJCOM

Another issue we wanted to explore was how much data reduction we were able to achieve

with our current FPGA-based architecture. We took a preference in reducing the number of

LUTs, storing only the compressed scan chain pieces in the LUTs. As a result, the number

of bits in the LUTs should be less than the original data bits. If the number of select lines

needed for each chain MUX was not too large, then even storing pattern bits and select line

bits should be less than the original data needed to store the test patterns.

The data obtained for our 5 circuits is shown in Table 5.6. (Note that this does not

consider additional bits needed to implement the actual controller in the FPGA.) The first

column corresponds to the circuit name and the second to the original amount of test data

that would need to be stored. This is simply equal to:

32×#ofchains×#ofpatterns (5.1)

including padding, for chains of length 32 bits. Column 3 corresponds to the number of bits

stored for pattern pieces in the LUTs and is equal to the number of LUTs identified with the

algorithm in Section 5.3.1 multiplied by 32 (LUT size). Column 4 adds the data for the select

line values on each pattern and is equal to the number of select lines needed for all chain

muxes multiplied by the number of patterns. Column 5 corresponds to the percent reduction

in data required when Columns 3 and 4 are added together and compared with the original

test data shown in Column 2. We see a larger percentage reduction in the number of bits

needed to store LUTs and select lines as the total original test data increases. Specifically,

we see a reduction of 51% for our largest circuit. This is encouraging. Column 6 compares

Column 2 and 3 to determine the percent reduction in data storage needed if only the data

in the LUTs is considered. This might be significant if we are worried about the occupancy

of the FPGA but are obtaining the values on the select lines from an external memory.

Finally, Column 7 compares the amount of data stored for select bits only (number of

total select bits multiplied by the number of patterns) to the total number of bits in Column

2. This comparison is most appropriate from the perspective of how much data may need

to be stored in an external memory for feeding to the FPGA. For four of the five circuits
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tested we see this reduction in test data to be over 75%.

Table 5.6: Data Storage Reduction

Original LUT Select % ↓ % ↓ % ↓
CKT total data line (LUT (LUT (sel

(bits) (bits) (bits) +sel) only) only)
quad 7680 6624 1260 -2.7% 14% 83%
color 84448 67424 70034 -63% 20% 17%
des56 53760 25504 9960 34% 53% 81%
fm 210240 80480 50370 38% 62% 76%
fpu 1398016 370272 308610 51% 73% 76%

We thus see that the selected FPGA-based tester architecture is highly effective at re-

ducing the amount of test data that may need to be stored in an external memory or on the

FPGA itself. Even more encouraging, the method appears to scale very well with increasing

amounts of test data.

Although we were able to compact our data well enough in the previous section, the

overall compaction rate is considerably less than is often achieved with the compression

rate of traditional on-chip decompressors alone. Of course, it is still possible to write the

decompressor’s incoming channel data to LUTs or to on chip memories in the FPGA.

There are several reasons why having less compaction rate may not be a significant

problem. First, as already noted, the patterns stored in the LUTs may correspond only to

those top-off patterns that are needed to get coverage for random-pattern-resistant faults

that are not covered by LBIST engines. This automatically reduces the test data volume

that needs to be stored. Even if the number of top-off patterns required is relatively large, as

we showed in Table 5.6, there are multiple approaches to storing the test data depending on

the size and available resources in the FPGA and off-chip memories that can help ameliorate

the issue.

In addition, one of the reasons why such decompressors are needed is to reduce the test
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data bandwidth when the test inputs and outputs are limited to only a few pins. When an

FPGA in a 3D stack is used, it may be possible to have many more chains on other dies

accessed directly either through individual TSVs or through TSVs that are implementing

SerDes. SerDes TSV channels are extremely efficient in 3D because of the very short distances

between dies. This means that the test data bandwidth may automatically be higher in 3D

between dies even without an on-chip decompressor, if we choose not to use one. In addition,

if test patterns are going to be generated or selected within the stack so that only a subset

of all potential patterns in the set are applied to better match suspected defects or operating

conditions, it might be necessary to set the decompressor to bypass mode and use patterns

stored in the LUTs directly instead.

Finally, thermal issues during test are likely to be very problematic in 3D because it

may be more difficult for heat to escape, even with new materials proposed to enhance

heat dissipation [62]. Thus, reducing switching activity during scan shift is very important.

Although low power ATPG for on-chip decompressors is possible with commercial tools, some

approaches to reducing scan shift toggling, such as adjacent fill, are difficult or impossible

to apply in the presence of on-chip decompressors because they depend on having a large

number of X’s. It may be easier to get low power test patterns from our approach if enough

X’s remain in the patterns to perform adjacent fill.

To investigate this possibility, we collected data regarding the difference in switching

activity obtained both for patterns shifted in as the output of a power-limited on-chip de-

compressor as well as for our original scan patterns with adjacent fill implemented after

merging.

For these experiments we used scan chains of length 32 bits for all the circuits whether

generating patterns with or without an on-chip decompressor. To try to make the switching

activity comparison as fair as possible, more than 200 test sets were created for each circuit

with different low-power parameters when patterns were generated in the presence of the

on-chip decompressor. The pattern set with the lowest toggling activity that did not lead

to a significant reduction in test coverage was selected for comparison against our approach.

We also used low-power options to generate patterns for our approach and allowed X’s to

remain in the test set for merging and adjacent fill.
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Figure 5.5: Switching activities for our method vs. on chip decompressor.

5.3.4 Switching Activities

To collect the switching activities, we apply our test set to each circuit, simulate the

circuit, and extract total switching activity from every node in the circuit using VCD (value

change dump) files. In each case, the switching activities of flip-flops in the chains as well as

any switching activities that would have been generated in the circuit’s combinational logic

is also included during both shift and capture. The switching activity reduction achieved

using our ADJCOM approach over the on-chip decompressor during scan test for each circuit

is shown in Figure 5.5 (To make the comparison fair, the switching activities in the on-chip

decompressor is not included). The switching activity reduction is computed using:

%reduction = (1− activityADJCOM

activityon chip decompressor
)× 100% (5.2)

We see that each circuit shows significant reduction in total switching activity, with our

largest circuit fpu showing an 81% reduction. One possible reason for this is that, when an on

chip decompressor is used, the ATPG tool tends to create more patterns than the original

pattern set.2 Higher pattern count translates to more switching activity. Our approach

requires fewer patterns. This, coupled with our use of adjacent fill, results in lower power

consumption for ADJCOM. It is also encouraging that the associated tester architecture

works better for the largest circuit with increasing amounts of test data: fpu.
2Note that the length of the scan chain can have a bearing on the number of patterns produced from an

on chip decompressor [57] with larger chains leading to fewer patterns.

73



5.4 XRET

The data storage experiments of Section 5.3.3 showed that some circuits did not see as

much of a benefit (e.g. circuit color showed a 63% increase in LUT and Select line data over

the original case). In this section we propose a new algorithm called X retained merging

algorithm (XRET) to efficiently deal with don’t cares to improve the storage of LUTs data

and select lines on an FPGA.

5.4.1 Merging with “X” in pattern set retained

In this approach, the don’t care bits in the original pattern set are retained in order to

achieve the maximum pattern reduction. The way the patterns are merged is different, such

that it significantly improves the results regarding the number of LUTs (and therefore the

area overhead and data compaction). For each chain, we analyze the patterns that will be

applied to that chain and see if different patterns can be merged into a single LUT. We also

look to see if patterns across different chains can be merged to reduce the total number of

LUTs. Note that a pattern can only be merged with a member of the current global list

of LUTs (i.e., the LUT pool), if for all bit positions of the pattern the bits are compatible

between the pattern and the LUT. An X merged with a defined value (0 or 1) is replaced by

the defined value in the merged LUT. In each case, we need to keep track of the muxes that

each LUT connects to and when that LUT should be selected (i.e., for which patterns) for

each chain.

To help illustrate this compaction methodology, consider the same patterns used in Ta-

ble 5.1. To reduce the LUTs and select lines required, we must merge the patterns when

possible, taking the following steps:

• Because the LUT pool is empty, we push the first pattern of Chain 1 (01XX1) into the

LUT pool. This LUT is added to the first data input of Chain 1’s mux, and the select

line value for Pattern 1, Chain 1 is set to 0.

• Pattern 2 of Chain 1:1XX11. This pattern cannot be merged with the LUT pool so we

must create a new LUT. The new LUT is added to the next data input for Chain 1’s

mux, and the select line value 1 for the pattern is recorded. Now LUT pool: 01XX1,

1XX11. Chain 1’s LUTs: 0,1; Chain 1’s Select lines:0,1.
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Figure 5.6: Flowchart for LUT and Select Line Reduction using XRET.
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• Pattern 3 of Chain 1: X0XX0. X0XX0 cannot be merged with LUT0 (01XX1) or

XRET(1XX11). Add the pattern to the pool, attach the LUT to the third data input

of Chain 1’s mux, and record the select line value. Now LUT pool: 01XX1, 1XX11,

X0XX0. Chain 1’s LUTs: 0,1,2 Chain 1’s Select lines:0,1,2.

• Pattern 4 of Chain 1: XX11X. This pattern can be merged with LUT0 (01XX1).

Create merged pattern 01111 and replace LUT0 in the pool with this merged pattern.

Since LUT0 exists in the LUT pool and is already attached to this chain’s mux at data

input 0, it does not need to be added to another data input. However, the select line

value 0 must be recorded for this chain and pattern 4. Now LUT pool: 01111, 1XX11,

X0XX0. Chain 1’s LUTs: 0,1,2; Chain 1’s Select line values :0,1,2,0.

• Pattern 1 of Chain 2: 100X0. This pattern can be merged with XRET (X0XX0) to

create 100X0. Replace XRET with this new merged pattern in the pool. Add XRET

to Chain 2’s MUX 0th data input and record 0 as the select line value for Chain 2,

pattern 1.

Figure 5.7: Resulting implementation for patterns shown in Table I after pattern merging.

This process continues until we have attempted to merge all of the patterns. To store

the final data into the LUTs, we replace any remaining don’t cares with 1s and 0s using the
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adjacent fill technique.

This gives us our final LUT pool: 01111, 10000, 10110, 11001. The resulting implemen-

tation is illustrated in Figure 5.7. For this example, we see both a reduction in the LUT bits

as well as the select line bits compared to the implementation after ADJCOM (Figure 5.3).

Table 5.7 shows that this new merging algorithm takes up less area on the FPGA com-

pared to the adjacent fill merging algorithm and that the tester can be operated at a clock

frequency of 167.6 to 270.2 MHz for Experiment 1 where all modules were stored in dis-

tributed RAMs or slice LUTs. Again, the tester does not need to operate at the speed of

a functional ASIC. The circuits used negligible hardware resources. Our largest circuit fpu

showed the most reduction in LUT use (down from 11571 in Table 5.4) to 2996). Other

conclusions that were drawn from Table 5.4 can also be applied here.

We also see a similar pattern to that in Table 5.5 when we run the XRET algorithm

and store the Mux select lines in block RAMS instead of distributed RAMs. The results are

shown in Table 5.8. We see across all five circuits a slight improvement in the max clock

frequency and a slight increase in the slice LUT count compared to ADJCOM where the Xes

in the ATPG patterns are filled adjacently first before merging.

Table 5.7: Experiment 1—All modules are distributed RAMs/Slice LUTs

CKT Max Freq Slice % use
(MHz) LUTs LUTs

quad 270.2 175 0.12%
color 232.4 1182 0.8%
des56 240.3 578 0.4%
fm 168.2 2074 1.5%
fpu 167.6 2996 2.4%

5.4.2 Data Reduction using XRET

Using this new XRET algorithm, we repeat the data storage experiments described earlier

in Section 5.3.3 for the benchmark circuits. The data storage reduction results for the circuits
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Table 5.8: Experiment 2— Mux select lines implemented in block RAMs (BRAMs)

CKT Max Freq Slice % use Block %use
(MHz) LUT LUTs RAMs BRAMs

quad 229.1 124 0.08% 1 0.3%
color 251.4 847 0.6% 3 0.8%
des56 273.1 397 0.6% 1 0.3%
fm 247.8 796 0.6% 3 0.8%
fpu 223.6 1387 1.2% 30 8.2%

are shown in Table 5.9.

Table 5.9: Data Storage Reduction

original LUT Select % ↓ % ↓ % ↓
CKT total data line (LUT (LUT (sel

(bits) (bits) (bits) +sel) only) only)
quad 7680 5600 1224 11% 27% 84%
color 84448 37824 68951 -26% 55% 18%
des56 53760 18496 9480 48% 66% 82%
fm 210240 66368 49275 45% 68% 77%
fpu 1398016 44384 284988 76% 96.8% 79.6%

Comparing the results seen in Table 5.9 with the ones obtained using ADJCOM (Ta-

ble 5.6), we can see that XRET has a much higher compaction rate when the “Xs” are retained

during the merging for all of our circuits across all three storage scenarios (LUT+select line

bits, LUT only, and select lines only).

5.4.3 Switching activities

The switching activities reduction during scan test for each circuit is shown in Figure 5.8.

The blue bars (ADJCOM) and red bars (XRET) show the percentage of power reduction

compared to an on-chip decompressor. Both approaches achieve a good amount power

reduction. We see that ADJCOM achieved a slightly higher power reduction compared to
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Figure 5.8: Switching Activities for our methods vs. on-chip decompressor

XRET. However, the XRET approach can still achieve almost the same amount of power

reduction as ADJCOM and while achieving a much better compaction rate. As a result,

XRET is a very good option when the tester needs to achieve good compaction rates while

still prioritizing thermal issues during test. Furthermore, we consider XRET our best option

unless power reduction is the main concern and there are plenty of FPGA resources available.

In order to obtain a more direct visualization of the power dissipation, we used Cadence

Encounter Test to automatically generate the layout for all five circuits and mapped the

switching to the location where the cell is located. Figure 5.9 shows an IC floorplan with

total switching activity during test for fpu. Note that the two 2D subplots are divided into

100×100 squares, where each square could have one or even hundreds of cells. Red squares

correspond to areas of high switching activity while purple/blue squares correspond to low

switching activity areas. The IC floorplan shows that the switching activity is not only low

in the case of XRET but areas of red spots are almost non-existent compared to the on-chip

decompressor case.

Note that the switching activity corresponds to the total switching activity in each block

throughout test in both cases. The floor plans are identical (i.e. the mapping of logic to the

floorplan is the same in both the left and the right square), and the on-chip decompressor

itself is not included in the floorplan on the right. This was done to make the comparison

more fair. If the on-chip decompressor were included in the floorplan, even more total
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switching activity would be seen in the circuit on the right.

Figure 5.9: Switching activities in IC floorplan for fpu using XRET versus an on-chip de-
compressor. The legend shows switching activity scale – red corresponds to high switching
and purple/blue low switching activity.

5.5 Test Response and Test Time

The test architecture shown in Figure 5.4 contains the LUTs as well as the select lines

for the muxes generated using either the ADJCOM or XRET algorithms. These are used to

apply the compacted test patterns to the scan chains. The test response is then captured as

a signature using a multiple-input signature register (MISR). The use of a MISR is common

in DFT architectures to compress the test responses. Their primary downside arises when

unknown values may be present in the test responses due to partial scan designs, memory

elements, etc., that lead to unknown values. In our case, no unknowns will be present in any

of our benchmark circuits; however, if they were present in a design, previously proposed

approaches, such as X-compact [63] could be used to help prevent unknown values from

propagating into and corrupting the signature.

Unfortunately, MISRs are also known to cause some loss of coverage due to aliasing [64].

In this section, we investigate the use of a MISR and its effect on the test coverage for the

benchmark circuits and patterns studied. We will show that the coverage loss is reasonable

and is in line with normal coverage loss (≤5%) due to a MISR [65].
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Table 5.10: Test coverage before and after using MISR

Test Test MISR
Circuit coverage coverage MISR XNOR

w/o MISR with MISR Length Tap Points
quad 99.57% 98.21% 11 9,11
color 100.00% 96.80% 34 1,2,27,34
des56 99.98% 98.87% 19 1,2,6,19
fm 99.93% 99.77% 23 18,23
fpu 99.18% 97.82% 177 172,174,175,177

For our experiments, one MISR per circuit is being used. The MISR length is dependent

on the number of chains in the circuit and is computed as:

MISR Length = #of chains+ 5. (5.3)

For example, consider circuit quad. Table 5.3 earlier showed that it had 6 scan chains;

the number of bits in the MISR is 11 for this circuit. Each MISR is created using taps for

XNOR gates using a characteristic polynomial and tap points based on [66]. Table 5.10

reports the size of the MISR as well as the test coverage achieved before and after using

the MISR. We see an average coverage reduction of only 1.4% across the five circuits with

coverage reduction ranging from 0.16% for fm to 3.2% for color.

Our method also uses less test time for the benchmark circuits than using an on-chip

decompressor for 32-bit scan chains. Test time is especially important in field testing because

a device must be taken offline to perform the test. Because the FPGA programming to

implement the tester can be done without the circuit-under-test being taken offline, we do

not include the time required to program the FPGA in our analysis. Figure 5.10 shows

the percentage of the test time used by the on-chip decompressor that is needed by our

FPGA–based approach. Compared to an on chip decompressor for the same scan chain

length, we can reduce the test time by 38% to 90%.

81



Figure 5.10: Test time reduction:our Method vs. on chip Decompressor.

5.5.1 Conclusions

In this chapter, we have explored some of the advantages of using an existing FPGA as a

tester in a 3D stack. We have implemented two different merging algorithms (ADJCOM and

XRET) for an FPGA-based tester design. The two methods require a very small fraction of

FPGA resources for the circuits studied. We also see a reduction in the switching activity

as well as test time when compared to on-chip decompressors for both methods.

Furthermore, the investigated technique can take advantage of the high TSV bandwidth

that is likely possible in 3D die stacks to transmit data to multiple chains in parallel. In

general, most of these advantages should also carry over into the 2.5D space.
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Chapter 6

Conclusions

Due to the large amount of previous work focused on reducing shift power during test, we

primarily focused on reducing capture power. In our work on the first architecture, we have

shown that very high toggling reduction can be achieved during capture cycles even when

we start with patterns that have been created by an ATPG tool to achieve low power. Note

that because we are disabling capture in scan chain segments, any effort made by the ATPG

algorithm to reduce shift power for those segments for the pattern shifted into the chain

will perform a “double duty”. A reduced number of transitions during scan in will lead to a

reduced number of transitions during scan out for the bits in those disabled segments because

the values will be identical during shift in and shift out. However, because of limitations

on the number of pins available for test input and output in ASICs, the extra pin needed

for the control register becomes quite expensive. As a result, we explored another related

architecture that removed this limitation.

In the second architecture, we removed the extra scan input pins needed for the control

bits by embedding the control bits within the existing functional scan chains. Another

significant advantage for this approach is that the ATPG tool can automatically generate

the required values for those control bits and remove the large amount of post processing

time that is required when implementing the first architecture. We also showed that we can

reduce both shift and capture power during test in the presence of an on-chip decompressor

and have extended our analysis to the testing of transition faults.

In the last architecture, we have explored some of the advantages of using an existing

FPGA as a field tester in a 3D stacked IC because excessive heat buildup is especially

problematic in 3D stacks. In this work, we made good use of the existing FPGA fabric when

implementing the tester. In addition, the investigated technique can take advantage of the

high TSV bandwidth that is likely possible in 3D die stacks to transmit data to multiple
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chains in parallel. This allowed us to implement very short chains with a corresponding

savings in test time and total energy expended during test.

In the optimizations described in this dissertation, we have implemented two different

merging algorithms (ADJCOM and XRET). The two methods require a very small fraction

of FPGA resources for the circuits studied. We also see a reduction in the switching activity

as well as test time when compared to on-chip decompressors for both methods. In general,

many of these advantages should also carry over into the 2.5D space.
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