11 research outputs found

    Muistikeskeisen radioverkon vaikutus tietopääsyjen suoritusnopeuteen

    Get PDF
    Future 5G-based mobile networks will be largely defined by virtualized network functions (VNF). The related computing is being moved to cloud where a set of servers is provided to run all the software components of the VNFs. Such software component can be run on any server in the mobile network cloud infrastructure. The servers conventionally communicate via TCP/IP -network. To realize planned low-latency use cases in 5G, some servers are placed to data centers near the end users (edge clouds). Many of these use cases involve data accesses from one VNF to another, or to other network elements. The accesses are desired to take as little time as possible to stay within the stringent latency requirements of the new use cases. As a possible approach for reaching this, a novel memory-centric platform was studied. The main ideas of the memory-centric platform are to collapse the hierarchy between volatile and persistent memory by utilizing non-volatile memory (NVM) and use memory-semantic communication between computer components. In this work, a surrogate memory-centric platform was set up as a storage for VNFs and the latency of data accesses from VNF application was measured in different experiments. Measurements against a current platform showed that memory-centric platform was significantly faster to access than the current, TCP/IP using platform. Measurements for accessing RAM with different memory bandwidths within the memory-centric platform showed that the order of latency was roughly independent of the available memory bandwidth. These results mean that memory-centric platform is a promising alternative to be used as a storage system for edge clouds. However, more research is needed to study how other service qualities, such as low latency variation, are fulfilled in memory-centric platform in a VNF environment.Tulevaisuuden 5G:hen perustuvissa mobiiliverkoissa verkkolaitteisto on pääosin virtualisoitu. Tällaisen verkon virtuaaliverkkolaite (VNF) koostuu ohjelmistokomponenteista, joita ajetaan tarkoitukseen määrätyiltä mobiiliverkon pilven palvelimilta. Ohjelmistokomponentti voi olla ajossa millä vain mobiiliverkon näistä pilvi-infrastruktuurin palvelimista. Palvelimet on tavallisesti yhdistetty TCP/IP-verkolla. Jotta suunnitellut alhaisen viiveen käyttötapaukset voisivat toteutua 5G-verkoissa, pilvipalvelimia on sijoitettu niin kutsuttuihin reunadatakeskuksiin lähelle loppukäyttäjiä. Monet näistä käyttötapauksista sisältävät tietopääsyjä virtuaaliverkkolaitteesta toisiin tai muihin verkkoelementteihin. Tietopääsyviiveen halutaan olevan mahdollisimman pieni, jotta käyttötapausten tiukoissa viiverajoissa pysytään. Mahdollisena lähestymistapana tietopääsyviiveen minimoimiseen tutkittiin muistikeskeistä laitteistoalustaa. Tämän laitteistoalustan pääperiaatteita on korvata nykyiset lyhytkestoiset ja pysyvät muistit haihtumattomalla muistilla sekä kommunikoida muistisemanttisilla viesteillä tietokonekomponenttien kesken. Tässä työssä muistikeskeisyyttä hyödyntävää sijaislaitteistoa käytettiin VNF-datan varastona ja ohjelmistokomponenttien tietopääsyviivettä sinne mitattiin erilaisilla kokeilla. Kokeet osoittivat nykyisen, TCP/IP-pohjaisen alustan huomattavasti muistikeskeistä alustaa hitaammaksi. Toiseksi, kokeet osoittivat tietopääsyviiveiden olevan saman suuruisia muistikeskeisen alustan sisällä, riippumatta saatavilla olevasta muistikaistasta. Tulokset merkitsevät, että muistikeskeinen alusta on lupaava vaihtoehto reunadatakeskuksen tietovarastojärjestelmäksi. Lisää tutkimusta alustasta kuitenkin tarvitaan, jotta muiden palvelun laatukriteerien, kuten matalan viivevaihtelun, toteutumisesta saadaan tietoa

    Towards Scalable OLTP Over Fast Networks

    Get PDF
    Online Transaction Processing (OLTP) underpins real-time data processing in many mission-critical applications, from banking to e-commerce. These applications typically issue short-duration, latency-sensitive transactions that demand immediate processing. High-volume applications, such as Alibaba's e-commerce platform, achieve peak transaction rates as high as 70 million transactions per second, exceeding the capacity of a single machine. Instead, distributed OLTP database management systems (DBMS) are deployed across multiple powerful machines. Historically, such distributed OLTP DBMSs have been primarily designed to avoid network communication, a paradigm largely unchanged since the 1980s. However, fast networks challenge the conventional belief that network communication is the main bottleneck. In particular, emerging network technologies, like Remote Direct Memory Access (RDMA), radically alter how data can be accessed over a network. RDMA's primitives allow direct access to the memory of a remote machine within an order of magnitude of local memory access. This development invalidates the notion that network communication is the primary bottleneck. Given that traditional distributed database systems have been designed with the premise that the network is slow, they cannot efficiently exploit these fast network primitives, which requires us to reconsider how we design distributed OLTP systems. This thesis focuses on the challenges RDMA presents and its implications on the design of distributed OLTP systems. First, we examine distributed architectures to understand data access patterns and scalability in modern OLTP systems. Drawing on these insights, we advocate a distributed storage engine optimized for high-speed networks. The storage engine serves as the foundation of a database, ensuring efficient data access through three central components: indexes, synchronization primitives, and buffer management (caching). With the introduction of RDMA, the landscape of data access has undergone a significant transformation. This requires a comprehensive redesign of the storage engine components to exploit the potential of RDMA and similar high-speed network technologies. Thus, as the second contribution, we design RDMA-optimized tree-based indexes — especially applicable for disaggregated databases to access remote data efficiently. We then turn our attention to the unique challenges of RDMA. One-sided RDMA, one of the network primitives introduced by RDMA, presents a performance advantage in enabling remote memory access while bypassing the remote CPU and the operating system. This allows the remote CPU to process transactions uninterrupted, with no requirement to be on hand for network communication. However, that way, specialized one-sided RDMA synchronization primitives are required since traditional CPU-driven primitives are bypassed. We found that existing RDMA one-sided synchronization schemes are unscalable or, even worse, fail to synchronize correctly, leading to hard-to-detect data corruption. As our third contribution, we address this issue by offering guidelines to build scalable and correct one-sided RDMA synchronization primitives. Finally, recognizing that maintaining all data in memory becomes economically unattractive, we propose a distributed buffer manager design that efficiently utilizes cost-effective NVMe flash storage. By leveraging low-latency RDMA messages, our buffer manager provides a transparent memory abstraction, accessing the aggregated DRAM and NVMe storage across nodes. Central to our approach is a distributed caching protocol that dynamically caches data. With this approach, our system can outperform RDMA-enabled in-memory distributed databases while managing larger-than-memory datasets efficiently

    Architectural Principles for Database Systems on Storage-Class Memory

    Get PDF
    Database systems have long been optimized to hide the higher latency of storage media, yielding complex persistence mechanisms. With the advent of large DRAM capacities, it became possible to keep a full copy of the data in DRAM. Systems that leverage this possibility, such as main-memory databases, keep two copies of the data in two different formats: one in main memory and the other one in storage. The two copies are kept synchronized using snapshotting and logging. This main-memory-centric architecture yields nearly two orders of magnitude faster analytical processing than traditional, disk-centric ones. The rise of Big Data emphasized the importance of such systems with an ever-increasing need for more main memory. However, DRAM is hitting its scalability limits: It is intrinsically hard to further increase its density. Storage-Class Memory (SCM) is a group of novel memory technologies that promise to alleviate DRAM’s scalability limits. They combine the non-volatility, density, and economic characteristics of storage media with the byte-addressability and a latency close to that of DRAM. Therefore, SCM can serve as persistent main memory, thereby bridging the gap between main memory and storage. In this dissertation, we explore the impact of SCM as persistent main memory on database systems. Assuming a hybrid SCM-DRAM hardware architecture, we propose a novel software architecture for database systems that places primary data in SCM and directly operates on it, eliminating the need for explicit IO. This architecture yields many benefits: First, it obviates the need to reload data from storage to main memory during recovery, as data is discovered and accessed directly in SCM. Second, it allows replacing the traditional logging infrastructure by fine-grained, cheap micro-logging at data-structure level. Third, secondary data can be stored in DRAM and reconstructed during recovery. Fourth, system runtime information can be stored in SCM to improve recovery time. Finally, the system may retain and continue in-flight transactions in case of system failures. However, SCM is no panacea as it raises unprecedented programming challenges. Given its byte-addressability and low latency, processors can access, read, modify, and persist data in SCM using load/store instructions at a CPU cache line granularity. The path from CPU registers to SCM is long and mostly volatile, including store buffers and CPU caches, leaving the programmer with little control over when data is persisted. Therefore, there is a need to enforce the order and durability of SCM writes using persistence primitives, such as cache line flushing instructions. This in turn creates new failure scenarios, such as missing or misplaced persistence primitives. We devise several building blocks to overcome these challenges. First, we identify the programming challenges of SCM and present a sound programming model that solves them. Then, we tackle memory management, as the first required building block to build a database system, by designing a highly scalable SCM allocator, named PAllocator, that fulfills the versatile needs of database systems. Thereafter, we propose the FPTree, a highly scalable hybrid SCM-DRAM persistent B+-Tree that bridges the gap between the performance of transient and persistent B+-Trees. Using these building blocks, we realize our envisioned database architecture in SOFORT, a hybrid SCM-DRAM columnar transactional engine. We propose an SCM-optimized MVCC scheme that eliminates write-ahead logging from the critical path of transactions. Since SCM -resident data is near-instantly available upon recovery, the new recovery bottleneck is rebuilding DRAM-based data. To alleviate this bottleneck, we propose a novel recovery technique that achieves nearly instant responsiveness of the database by accepting queries right after recovering SCM -based data, while rebuilding DRAM -based data in the background. Additionally, SCM brings new failure scenarios that existing testing tools cannot detect. Hence, we propose an online testing framework that is able to automatically simulate power failures and detect missing or misplaced persistence primitives. Finally, our proposed building blocks can serve to build more complex systems, paving the way for future database systems on SCM

    Equivalence classes for named function networking

    Get PDF
    Named Function Networking (NFN) is a generalization of Content-Centric Networking (CCN) and Named Data Networking (NDN). Beyond mere content retrieval, NFN enables to ask for results of computations. Names are not just content identifiers but λ-expressions that allow an arbitrary composition of function calls and data accesses. λ-expressions are pure and deterministic. In other words, they do not have side effects and they always yield the same result. Both properties together are known to as referential transparency. Referentially transparent functions can be evaluated individually no matter where and in what order, e.g. geographically distributed and concurrently. This simplifies the distribution of computations in a network, an attractive feature in times of rising needs for edge computing. However, NFN is affected by a lacking awareness for referentially opaque expressions that are characterized by having changing results or side effects, i.e. expressions that depend on outer conditions or modify outer states. The fundamental motivation of this thesis is to retrofit NFN with a clearer notion of referentially opaque expressions. They are indispensable not only to many common use cases such as e-mail and database applications, but also to network technologies such as software defined networking. We observed that many protocol decisions are based on expression matching, i.e. the search for equivalent expressions. Driven by this observation, this thesis explores possibilities to adapt the determination of equivalences in dependence of crucial expression properties such as their ability for aggregation, concurrent evaluation or permanently cacheable results. This exploration results in a comprehensive set of equivalence classes that is used for explicit attribution of expressions, leading to a system that is aware of the true nature of handled expressions. Moreover, we deliver a solution to support referentially opaque expressions and mutable states in an architecture that bases upon uniquely named and immutable data packets. Altogether, the findings condense to an extended execution model. It summarizes how the attribution of expressions with equivalence classes influences specific protocol decisions in order to support referentially transparent as well as referentially opaque expressions. We believe that our approach captivates due to its generality and extensibility. Equivalence classes depend upon universal properties. Therefore, our approach is not bound to a specific elaboration like NFN. We evaluate the applicability of our approach in a few application scenarios. Overall, the proposed solutions and concepts are an important contribution towards name-based distributed computations in information-centric networks

    Deux défis des Réseaux Logiciels : Relayage par le Nom et Vérification des Tables

    Get PDF
    The Internet changed the lives of network users: not only it affects users' habits, but it is also increasingly being shaped by network users' behavior.Several new services have been introduced during the past decades (i.e. file sharing, video streaming, cloud computing) to meet users' expectation.As a consequence, although the Internet infrastructure provides a good best-effort service to exchange information in a point-to-point fashion, this is not the principal need that todays users request. Current networks necessitate some major architectural changes in order to follow the upcoming requirements, but the experience of the past decades shows that bringing new features to the existing infrastructure may be slow.In this thesis work, we identify two main aspects of the Internet evolution: a “behavioral” aspect, which refers to a change occurred in the way users interact with the network, and a “structural” aspect, related to the evolution problem from an architectural point of view.The behavioral perspective states that there is a mismatch between the usage of the network and the actual functions it provides. While network devices implement the simple primitives of sending and receiving generic packets, users are really interested in different primitives, such as retrieving or consuming content. The structural perspective suggests that the problem of the slow evolution of the Internet infrastructure lies in its architectural design, that has been shown to be hardly upgradeable.On the one hand, to encounter the new network usage, the research community proposed the Named-data networking paradigm (NDN), which brings the content-based functionalities to network devices.On the other hand Software-defined networking (SDN) can be adopted to simplify the architectural evolution and shorten the upgrade-time thanks to its centralized software control plane, at the cost of a higher network complexity that can easily introduce some bugs. SDN verification is a novel research direction aiming to check the consistency and safety of network configurations by providing formal or empirical validation.The talk consists of two parts. In the first part, we focus on the behavioral aspect by presenting the design and evaluation of “Caesar”, a content router that advances the state-of-the-art by implementing content-based functionalities which may coexist with real network environments.In the second part, we target network misconfiguration diagnosis, and we present a framework for the analysis of the network topology and forwarding tables, which can be used to detect the presence of a loop at real-time and in real network environments.Cette thèse aborde des problèmes liés à deux aspects majeurs de l’évolution d’Internet : l’aspect >, qui correspond aux nouvelles interactions entre les utilisateurs et le réseau, et l’aspect >, lié aux changements d’Internet d’un point de vue architectural.Le manuscrit est composé d’un chapitre introductif qui donne les grandes lignes de recherche de ce travail de thèse, suivi d’un chapitre consacré à la description de l’état de l’art sur les deux aspects mentionnés ci-dessus. Parmi les solutions proposées par la communauté scientifique pour s'adapter à l’évolution d’Internet, deux nouveaux paradigmes réseaux sont particulièrement décrits : Information- Centric Networking (ICN) et Software-Defined Networking (SDN).La thèse continue avec la proposition de >, un dispositif réseau, inspiré par ICN, capable de gérer la distribution de contenus à partir de primitives de routage basées sur le nom des données et non les adresses des serveurs. Caesar est présenté dans deux chapitres, qui décrivent l’architecture et deux des principaux modules : le relayage et la gestion de la traçabilité des requêtes.La suite du manuscrit décrit un outil mathématique pour la détection efficace de boucles dans un réseau SDN d’un point de vue théorique. Les améliorations de l’algorithme proposé par rapport à l’état de l’art sont discutées.La thèse se conclue par un résumé des principaux résultats obtenus et une présentation des travaux en cours et futurs

    Towards Fast and Portable Microkernels

    Get PDF

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore