
Towards Fast and Portable Microkernels

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Uwe Dannowski

aus Dresden

Tag der mündlichen Prüfung: 12. Dezember 2007

Erster Gutachter: Prof. em. Dr. Dr. h.c. Gerhard Goos
Universität Fridericiana zu Karlsruhe (TH)

Zweiter Gutachter: Prof. Dr. Hermann Härtig
Technische Universität Dresden

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197561408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Zusammenfassung
Mikrokerne müssen maximal effizient sein. Als Basis feingliedrig komponentisierter Be-
triebssysteme stellen sie den Kommunikationsmechanismus zwischen den Komponenten
zur Verfügung und spielen damit eine besonders leistungskritische Rolle im Gesamtsy-
stem. Minimale Ausführungszeit und minimale Cachebenutzung des Mikrokerns sind da-
bei Schlüsselfaktoren. Gleichzeitig sollen Mikrokerne als zentrale Systemkomponente jedoch
auch portabel und leicht wartbar sein. Traditionell werden diese Ziele als unvereinbar ange-
sehen, da Mikrokerne für die jeweilige Systemkonfiguration optimiert werden müssen, um
ausreichend effizient zu sein.
Aus der hohen Zahl möglicher Systemkonfigurationen eines portablen Mikrokerns ergibt

sich ein Komplexitätsproblem. Durch Modularisierung und die damit erreichbare Konfi-
gurierbarkeit kann der Umfang der notwendigen Optimierungen jedoch reduziert werden.
Allgemein verwendbare und konfigurationsspezifische Teile des Kerns werden voneinan-
der getrennt, in verschiedenen Modulen platziert und bei der Erzeugung eines Kerns ent-
sprechend der Konfiguration zusammengefügt. Dieses Vorgehen wird bereits erfolgreich
im portablen Mikrokern L4Ka::Pistachio angewandt. Durch Unzulänglichkeiten heutiger
Programmiertechniken für Mikrokerne — hauptsächlich durch unzureichend feingranulare
Konfigurierbarkeit — lassen sich jedoch Probleme wie übermässiger Präprozessoreinsatz
und Quelltextduplikation oder, als Alternative, suboptimale Leistung nicht gänzlich ver-
meiden.
Der Einsatz objektorientierter Programmierung und speziell der Vererbung zum Zwecke

der Konfiguration und Komposition von Kerndatenstrukturen ist ein Erfolg versprechender
Ansatz, diese Strukturprobleme zu lösen. Konfigurationsspezifische Aspekte der Kernfunk-
tionalität und die dafür benötigten Daten werden in relativ kleinen Klassen gekapselt, die
je nach Zielsystem durch Vererbung zu vollständigen Klassen zusammengefügt werden.
Jedoch verursacht die flexible Implementierung von Objektorientierung oft einen zusätz-
lichen Laufzeitaufwand, der in einem Mikrokern nicht tolerierbar ist. Zum einen werden
zur Unterstützung dynamischer Polymorphie manche Funktionen durch indirekte und so-
mit nicht vorhersagbare Sprünge realisiert und behindern dadurch eine zügige Ausführung
der Instruktionsfolge durch den Prozessor. Zum anderen wird durch die Vererbungshierar-
chie die interne Struktur von Objekten in einer Weise festgelegt, die eine optimale Cache-
Ausnutzung auf dem kritischen Pfad des Mikrokerns verhindert.
Diese Arbeit stellt ein automatisiertes Optimierungsverfahren vor, das es erlaubt, Ob-

jektorientierung zur Komposition von Datenstrukturen im Mikrokern einzusetzen, ohne die
traditionell damit verbundenen Laufzeitkosten tragen zu müssen. Wissen, das dem Kern-
programmierer bekannt ist, jedoch nicht in geeigneter Weise an den Compiler weitergegeben
werden kann, wird dazu verwandt, den Quelltext automatisch so umzuformulieren, dass
der Compiler optimalen Code und optimale Datenstrukturen erzeugen kann. Die Transfor-
mationsschritte im Einzelnen sind:

1. Das Umwandeln der Vererbungshierarchien ausgesuchter Klassen in einzelne Klas-
sen ohne Vererbung unter Beibehaltung der Schnittstelle der Klassen. Dadurch wird

iii

verhindert, dass der Compiler unnötigerweise Code zur Laufzeitunterstützung für Po-
lymorphie generiert. Da keine Vererbung stattfindet, kann die interne Struktur von
Objekten der resultierenden Klasse nun gezielt beeinflusst werden.

2. Das Umordnen der Datenelemente innerhalb der Definition ausgesuchter Klassen, so
dass die resultierende Anordnung der Daten innerhalb der Objekte dieser Klassen zu
optimaler Cache-Benutzung auf dem kritischen Pfad führt.

Diese Schritte werden — für den Kernprogrammierer transparent — zur Übersetzungs-
zeit vor Aufruf des Compilers durchgeführt. Damit ergibt sich trotz separater Übersetzung
der einzelnen Quelltextdateien effektiv eine Optimierung des Gesamtprogramms Mikro-
kern. Durch die Realisierung der Transformationen auf Quelltextbasis wird kein speziell
angepasster Kern-Compiler benötigt, und es wird weitestgehende Unabhängigkeit vom ein-
gesetzten Compiler erreicht.
Bislang war automatisches Umordnen der Felder einer Klasse nur in typsicheren Spra-

chen gefahrlos möglich. Für Objekte, deren Struktur nicht durch kern-externe Spezifika-
tionen vorgegeben ist, lässt sich die Manipulation der Objektstruktur jedoch auch in typ-
unsicheren Sprachen voll automatisieren, ohne dabei die Korrektheit des Kerns zu gefähr-
den.
Die Entscheidung über die Auswahl der leistungskritischen Klassen im Mikrokern ist un-

abhängig vom Zielsystem und kann daher statisch erfolgen. Der kritische Pfad und die Zu-
griffsfolge sind jedoch einsatzabhängig und müssen deshalb während eines Profiling-Laufs
bestimmt werden. Dabei kann durch gezielte Ausnutzung von mikrokernspezifischen Eigen-
schaften eine sehr kompakte und leicht auswertbare Darstellung der Zugriffsinformationen
erreicht werden. Beispiele für solche Eigenschaften sind der extrem kurze kritische Pfad
sowie die geringe Anzahl der referenzierten Kernobjekte und eine sehr hohe Ähnlichkeit
der Zugriffsmuster auf dem kritischen Pfad.
Über die Vermeidung des Laufzeitaufwands der Vererbung hinaus erlaubt das Verfah-

ren, leistungskritische Klassen automatisch für den spezifischen Einsatzfall des Mikrokerns
zu optimieren, so dass die notwendigen Anpassungen nicht mehr manuell vom Program-
mierer vorgenommen werden müssen. Die automatische Transformation des Quelltextes
beschränkt sich dabei auf die Definitionen der laufzeitkritischen Klassen. Teile des Kerns,
die diese Klassen lediglich benutzen, bleiben somit unangetastet.
Das vorgestellte Verfahren wird exemplarisch auf den L4Ka::Pistachio Mikrokern ange-

wandt und evaluiert. Die Leistung eines Kerns mit Vererbungshierarchie und optimierten
Klassen wird der des für eine Architektur handoptimierten Originalkerns ohne Vererbung
gegenübergestellt. Dabei zeigt sich, dass das Verfahren die Laufzeitkosten der Vererbung
vollständig beseitigt und darüber hinaus bisher ungenutztes Optimierungspotential aus-
schöpfen kann.

iv

Acknowledgements
Some say I am a man of few words, so I could do away with this section by thanking all
who helped making this work happen. Yet, I would like to express my thanks to some
people in particular.
I am indebted to Jochen Liedtke, the father of the L4 microkernel, in many ways. He

offered me a Ph.D. position in Karlsruhe and made the System Architecture Research
Group a fun place to work, learn, and do research. Jochen introduced me to the Sherlock
Holmes debugging style and to Dr. Wagner Riesling, and his fantastic cooking let me eat
fish again after years of abstinence. His wit made even the toughest disputes enjoyable.
Jochen was a visionary, a great researcher, an excellent teacher, and a friend. He inspired
me and many other people for years, and he still does.
I would like to thank my advisor Prof. Gerhard Goos for “adopting” me after Jochen

passed away in 2001, for his guidance and especially for his patience over the years. Also,
I would like to thank Hermann Härtig, my second reviewer, for the confidence he had in
me and for freeing a few hours for my defense in his busy sabbatical calendar.
I am thankful to Volkmar Uhlig, Espen Skoglund, Joshua LeVasseur, and Jan Stöß, with

whom I enjoyed working on the Pistachio kernel, as well as to Stefan Götz and Andreas
Häberlen, for the creative years with many interesting technical discussions. I also thank
the students at UNSW/NICTA who ported the kernel to so many other architectures.
Thanks to Sebastian Biemüller for asking many many questions, for proofreading this

thesis, and for the irregular quiz nights at Scruffy’s Irish Pub. I would like to thank James
McCuller for the most professionally managed IT infrastructure ever and for his critical
view on many things. I have to thank Frank Bellosa for supporting my research for a year
and for keeping an office for me to work in even after I had left university. I would also
like to thank AMD, my employer, for providing plenty of distraction during the last year
of this work.
Special thanks go to Adelheid, Jochen’s wife, for her friendship and support over the

years, and for the lovely evenings with long conversations over experimental cooking and
excellent wine. I thank Ahmad for his friendship and support, for advice in so many areas
but this thesis, and for the supply of excellent coffee and food during my off-university
thesis writing hours at Café L’île. I am grateful to my parents for their constant support
from my very beginning, for the occasional nudge, and truckloads of chocolate. Last but
not least, a very special Thank You to Sinéad for her love and understanding. Being in
thesis write-up mode herself she knew very well what I was going through.

v

vi

Contents

1 Introduction 1

2 Background and Related Work 7
2.1 Caches . 7

2.1.1 Cache Architectures . 8
2.1.2 Reducing Cache Misses . 10
2.1.3 Reducing Miss Latency . 11

2.2 Data Structure Layout . 12
2.2.1 Classes . 12
2.2.2 Inheritance . 13

2.3 Program Transformations . 18
2.3.1 Build Process . 18
2.3.2 Class Flattening . 19
2.3.3 Field Reordering . 21

2.4 Kernel Portability Aspects . 24
2.4.1 Hardware . 24
2.4.2 Software . 27
2.4.3 Tools . 30

3 Case Study: L4Ka::Pistachio 33
3.1 The L4 X.2 API . 33
3.2 Implementation . 35

3.2.1 Configuration Management . 35
3.2.2 Data Types . 37
3.2.3 System Topology . 37
3.2.4 Mixed Programming Languages . 38
3.2.5 Tools . 39

3.3 Improving L4Ka::Pistachio with Inheritance 39
3.3.1 Configuration-specific class composition 40
3.3.2 Class Properties . 42

3.4 Inheritance-related Overheads . 42
3.4.1 Virtual Function Calls . 43
3.4.2 Object Layout . 44

vii

Contents

4 Eliminating Portability Overheads 47
4.1 Optimizing Performance-Critical Classes 47
4.2 Transparent Class Flattening for Field Reordering 50

4.2.1 Transparent Flattening . 50
4.2.2 Preconditions . 51
4.2.3 Flattening Fidelity . 52
4.2.4 Enforcing Restrictions . 53

4.3 Field Reordering Strategies . 54
4.3.1 Object Roles . 55
4.3.2 Field Access Mode . 55
4.3.3 Field Alignment . 56
4.3.4 Locks and Data . 57

4.4 Determining Field Access Patterns . 57
4.4.1 Method Review . 58
4.4.2 Microkernel Specifics . 60
4.4.3 Precise Tracing for Field Reordering 62

4.5 Field Reordering Algorithms . 65
4.6 Optimization Process . 66

5 Evaluation and Discussion 69
5.1 Evaluation Environment . 69
5.2 Automatic Class Optimization Results . 73

5.2.1 Virtual Functions . 73
5.2.2 Cache Footprint . 74
5.2.3 Performance . 75
5.2.4 Side Effects . 76

5.3 Optimization Costs . 77
5.3.1 Build Time Overhead . 77
5.3.2 Code Size . 78
5.3.3 Retargeting . 78
5.3.4 Maintenance . 79

5.4 Comparison with Manual Optimization . 79

6 Conclusions 81
6.1 Contributions of This Work . 81
6.2 Suggestions for Future Work . 82

7 Bibliography 85

viii

1 Introduction
Microkernels can and must be fast. A successful microkernel must have minimal cache
footprint and execution time. Any overhead in the microkernel reduces the performance
of the system on top. Early microkernels failed to deliver on the performance promise,
so that despite their conceptual superiority microkernel-based systems suffered from poor
acceptance outside a small research community. Lessons learned, today’s microkernels are
designed and often hand-optimized to add as little software overhead as possible to the
bare hardware costs of microkernel operations.
Microkernels must also be portable and maintainable. The complexity of the systems

built on today’s rapidly evolving hardware forbids write-once software. Even a component
as small as a microkernel is too complex (i.e., too expensive) to be completely re-written,
re-tested and re-verified from scratch for every new piece of hardware.
These two requirements are traditionally considered to be contradictory. Liedtke [35]

even argued that microkernels are inherently nonportable and need to be designed and im-
plemented from ground up for every new processor to achieve the necessary performance.
Later he accepted that even a microkernel designed for multiple architectures and written
mostly in a high-level language can perform sufficiently well. Key to the excellent per-
formance of such kernels was, however, to avoid the powerful but expensive (in terms of
run-time overhead) features of the high-level language.
I argue that object-oriented programming techniques such as inheritance for composition

can be introduced to a microkernel to improve its portability whereby its initial performance
is at least maintained if not even improved.
A microkernel is a rather contained software environment. The kernel typically is con-

figured statically at build time and no additional code is loaded or generated at run time,
so that all the code that can possibly be executed is already known at build time. Such a
closed environment allows to make simplifying assumptions that enable various optimiza-
tions. The internal implementation of the kernel can be changed rather freely provided the
kernel’s interface and behavior remain constant.
The root cause of the portability problem is the diversity of target configurations. A

target configuration traditionally includes one or more external aspects such as the pro-
cessor architecture, the hardware platform, and the operating system (OS) or run-time
environment. A target configuration may also include internal aspects such as different
selections of program features or alternative algorithms. Each configuration requires spe-
cific handling of its particular features, which is implemented in configuration-specific code.
Naively, every new configuration could be implemented in a completely separate code base.
However, target configurations naturally have more in common than what they differ in so

1

1 Introduction

that configuration-specific code often amounts to only a small fraction of the active code.
Large amounts of code can be reused across configurations.
Modularity is the key to reuse and configurability and thus to portability. Code is either

specific to one configuration, can be used for a set of configurations, or is generic and can
be used for all configurations. Each of these groups contributes a set of modules of which
selected modules can be combined accordingly to produce the code base for a particular
target configuration. There are three hardnesses of modularity: identifying dependencies
of code on configurations so as to minimize code duplication and maximize reuse; finding
the right interface for modules such that they can be combined in any required way; and
combining modules in an efficient way to achieve acceptable run-time performance.
Object-oriented programming strongly encourages modularity [10] by encapsulating data

and functionality in classes with well-defined interfaces. Inheritance allows to compose
classes from one or more other classes. New methods and data members can be added and
methods and data members inherited from a base class can be overridden, enabling fine-
granular combination and stepwise refinement of functionality. In earlier work I showed
how inheritance can be used to compose classes for kernel objects from configuration-
specific classes to manage the configuration diversity in a portable microkernel written in
C++ [15].
Efficient cache usage is of paramount importance to microkernel performance. Besides

generating compact and well-scheduled code, frequently accessed data structures must be
optimized for minimum cache footprint on the critical path. However, the optimal layout
of those data structures heavily depends on many factors such as the processor architec-
ture [35, 40], the particular choice of algorithms in the kernel, and the workload running
on top of the kernel. There is no one-fits-all layout. Consequently, performance-critical
data structures are often optimized manually for a particular, expected to be common con-
figuration by rearranging the order in which their data members appear in the structure
definition. Other configurations either suffer performance losses from suboptimal layout
or are considered important enough to justify their own manual layout optimization. The
latter then results in multiple configuration-specific definitions of the same data structure
in the code base, which reduces the maintainability of the code.
Inheritance addresses many problems with regard to code duplication and code selection.

However, the language implementation of inheritance often imposes considerable run-time
overhead — mostly in support of dynamic polymorphism — which stems from two sources:
inefficient method invocation and suboptimal object layout. Firstly, the implementation
of virtual function invocations often uses indirect calls. Such calls are problematic because
their target depends on the actual object that the function is invoked on, creating a hard
to predict data dependency in the control flow. This overhead can amount to as much as
40 percent in applications [33] and more than 120 percent in a microkernel [15]. Secondly,
the object memory layout of classes using inheritance is primarily governed by the inher-
itance relationship [25], i.e., members of base classes form subobjects in a derived object.
Furthermore, meta-data may be added to the object to help finding subobjects and vir-
tual functions. Thus the programmer has only limited control over the resulting objects’
memory layout and cannot achieve optimal cache usage by designing the kernel objects

2

properly. Suboptimal data structure layout of kernel objects can result in overheads of
11 percent or more in a microkernel. In this thesis I devise a methodology to eliminate the
overheads of inheritance inside a microkernel.
Support for dynamic polymorphism is not necessary when inheritance is solely used as

a tool to efficiently compose classes, an approach that perfectly lends itself to managing
modularity: A class for a kernel object inherits from a number of small, configuration-
specific classes the selection of which is determined for each particular configuration by the
kernel configuration framework. By convention, only the most-derived class is instantiated
and its objects are never treated as base-class objects. Then the exact type of all that
class’ objects is known at compile time and various optimizations can be applied.
Class flattening [37] creates a representation of a derived class that directly contains

all inherited members. Transparent class flattening is a variant of class flattening that
translates the class hierarchy of a derived class into a simple, flat class without visibly
changing the class’ interface. The definition of the original class is thereby replaced with
the definition of the flattened class. Code using a transparently flattened class does not need
to be adapted to accommodate for flattening. A compiler will generate code for invoking
methods using direct instead of indirect calls and will also not generate any inheritance-
related meta-data. I identify the properties of a class hierarchy that make it suitable for
transparent class flattening and describe an approach to safely automate the transparent
flattening process as a source-to-source transformation in a microkernel environment.
Field reordering [60] changes the placement of fields inside an object to optimize the

memory layout of the object according to certain criteria such as cache usage. This re-
ordering can take place at various locations: at runtime, through an indirection mechanism;
in the compiler or runtime system of a type-safe language; or before compilation. Applied
after class flattening, field reordering can eliminate the overhead of inheritance that relates
to suboptimal object memory layout caused by encapsulation of subclass objects. For per-
formance reasons and based on the assumption that kernel usage in a microkernel-based
system will not drastically change during execution, only a static reordering at build time
is feasible. In this thesis I devise a profiling-based approach to automatically optimize the
internal layout of performance-critical data structures in a microkernel.
The optimal layout of kernel objects is derived from access patterns observed while

the kernel is executing the envisaged workload. Profiling in an extensible full-system
simulator is the least intrusive and most precise method compared to instrumentation and
in-target statistical profiling. A profiling extension in the simulator collects information
about memory references to data members of performance-critical kernel data structures
and provides input to a layout optimizer that produces an optimal ordering of the data
members in the data structure definition. To minimize the overhead of profiling, the
extension exploits characteristics of microkernels such as execution in privileged mode,
extremely short and similar paths through the kernel, and a small number of performance-
critical objects being involved in every kernel operation. The optimal ordering is applied
automatically and transparently in a source-to-source transformation.
First flattening performance-critical classes and then reordering their members eliminates

the run-time overheads of inheritance, so that inheritance can be used to improve the

3

1 Introduction

structure of the code base with no negative effect on performance. Both flattening and
reordering can be automated and integrated into the kernel build process as transparent
optimization steps. Whereas manual layout optimizations of kernel data structures target
exactly one configuration and require both time and strong specific kernel expertise, the
proposed optimizations apply to any configuration and thus are immediately usable for all
kernel programmers.
Prototypically applied to the L4Ka::Pistachio microkernel, the combination of class flat-

tening and field reordering completely eliminates the run-time overhead of inheritance.
Performance of a kernel with a performance-critical class implemented as a class hierarchy,
flattened, and reordered, matches that of the original kernel with a simple, hand-optimized
class. In several configurations the automatic optimization even improves performance,
because the hand-optimized class is not optimal for those configurations.

Names and Notations
This thesis discusses optimizations of kernel data structures that are instances of compound
data types. Throughout this document these compound data types will be referred to as
classes and instances of them will be referred to as objects, following the naming as used
in the C++ specification [25]. The terms data member and field are synonyms.
Throughout this thesis, the term x86 architecture refers to the common subset of the

Intel 64 and AMD64 instruction set architectures implemented by processors of Intel and
AMD, respectively.
In this thesis, the initialism TCB always refers to the Thread Control Block kernel data

structure holding the state of a thread. In the literature this initialism also stands for the
trusted computing base of a system. Should this thesis ever refer to the trusted computing
base it will do so by using the unabbreviated name.
This work was applied to and evaluated in the L4Ka::Pistachio microkernel, a project

of the System Architecture Research group at the University of Karlsruhe, Germany.
Throughout this document, the names Pistachio, Pistachio kernel, and Pistachio micro-
kernel shall all refer to said microkernel.

Organization
This thesis is structured as follows: In Chapter 2, I provide background information that
helps understanding the remainder of the thesis. Section 2.1 discusses caches and strategies
for reducing cache misses and cache miss latencies. Section 2.2 illustrates how an in-
memory object representation relates to its type specification, especially in the presence
of inheritance. In Section 2.3, I introduce program transformations, in particular class
flattening and data member reordering. I also discuss related work in these two areas.
Section 2.4 presents portability considerations for kernel code.

4

Chapter 3 introduces the Pistachio microkernel and its portable application program-
ming interface (Section 3.1) and describes how it addresses portability at the source code
level (Section 3.2.) I propose inheritance as a solution to structural problems in Section 3.3
and provide experimentally determined estimates of how severely the introduction of in-
heritance will reduce the performance of the kernel in Section 3.4.
In Chapter 4, I detail my approach to eliminating the overheads of portability. Section 4.2

describes transparent class flattening to enable data member reordering for complex class
hierarchies. Section 4.3 discusses novel strategies for data member reordering that are
motivated by observations on object usage in a microkernel. In Section 4.4, I present a
profiling approach to determine data member access patterns that is aggressively optimized
to leverage microkernel specifics. I give an example of a data member reordering algorithm
in Section 4.5. Section 4.6 illustrates how transparent class flattening and field reordering
can be seamlessly integrated into the kernel build process.
I evaluate my approach in Chapter 5. Section 5.1 describes the evaluation environment,

including hardware and software tools. In Section 5.2, I show by means of a cache analysis
and several microbenchmarks that the proposed optimization technique can completely
eliminate the overheads of inheritance and beyond that can optimize object layouts for a
particular configuration and workload. Section 5.3 provides an insight into the costs of the
optimization, and Section 5.4 compares automated optimization to a manual approach.
Finally, Chapter 6 concludes my thesis with a summary of its contributions and gives

directions for future work.

5

1 Introduction

6

2 Background and Related Work
This chapter provides background information for the remainder of the thesis and discusses
related work in the following areas:

• I optimize the cache footprint and thus execution performance of operations on data
structures. In Section 2.1, I describe cache architectures, cache misses, and strategies
for reducing or hiding cache latency.

• I optimize the memory layout of data structures by changing their definition. In
Section 2.2, I describe how a structure’s memory layout relates to its definition, and
especially in the presence of inheritance.

• I employ and specialize the program transformations class flattening and field reorder-
ing. I describe program transformations in general and both techniques in particular
in Section 2.3 and discuss related work.

• I present a technique that can be used to improve portability of kernel code. In
Section 2.4, I describe aspects that need to be considered when writing portable
kernels.

2.1 Caches
A cache is a place for storing items for easier or faster access. To use an item, a cache
lookup is performed first. If the item is found in the cache, the lookup resulted in a cache
hit, and the item from the cache can be used. Otherwise, a cache miss is said to have
occurred and the item is to be found somewhere else.
The uses for caches are manifold. Buffer caches in an operating system store recently

accessed disk blocks; web caches store documents recently retrieved from the network;
DNS caches store network addresses of recently resolved host names. Processors are of-
ten equipped with memory caches to store frequently used information such as data or
instructions for fast access.
Caches exploit the principle of locality. Two types of locality can be observed in pro-

grams: Temporal locality means that an item used recently is likely to be used again soon.
Spatial locality means that items placed near each other are likely to be used close together
in time.
Over the decades, the performance of processors has improved much faster than the

performance of memory. In recent years, this disparity worsened by approximately 42

7

2 Background and Related Work

percent every year [20]. Ideally, one would desire huge memories accessible at the full
speed of the processor. However, hardware needs to be small to be fast, and fast hardware
also tends to be expensive.
Caches are small but fast memories. Building on the principle of locality, they allow to

maintain the illusion of huge, fast memories. They hold only a tiny subset of main memory’s
contents but make this subset accessible with a fraction of main memory’s latency. Until
the 1980s, processors often did not have any caches, whereas today two levels of caches
are a commodity, and a third level can be found in larger servers systems. The size of
the caches increases with their distance from the processor, but so does also the time to
access them. Die photos of today’s general purpose processors show that caches consume
approximately 50 percent of die real estate.

2.1.1 Cache Architectures
A cache holds copies of portions of main memory’s contents for fast access. The unit of
data that is transferred between the cache and memory (or the next cache level) is called
a cache block. The optimum size of a cache block has been found to be 32 or 64 bytes,
depending on cache size. Memory can be thought of as an array of cache blocks or memory
blocks.
The locations in the cache where a cache block can be stored are called cache lines.

The process of loading a cache block into a cache line is called a line fetch; the process of
removing a block is called eviction or flushing.
Associated with each cache line is the block’s address in memory, called the tag, and

various status bits. A typical status bit is the valid bit indicating whether the cache line
is currently holding a cache block. A cache is organized as a number of sets of a fixed
number of cache lines. The cache lines in a set are also called ways, and their number
defines the cache’s associativity. A cache with n cache lines in n/m sets of m cache lines
per set is called an m-way set-associative cache. The two special cases m = n and m = 1
are referred to as a fully-associative and direct-mapped caches, respectively.
Figure 2.1 illustrates the process of a cache lookup. The address of the data requested is

used as input for the cache lookup process. The index bits of the address select a set. The
tag bits of the address are compared in parallel with the tag bits of each line in the selected
set if that line’s valid bit is set. If a match is found, the offset bits of the address locate
the requested data within the matching cache line. Due to the use of parts of the address
for selecting a set, the mapping of memory locations to cache sets is known. Neighboring
memory blocks map to different cache sets unless the cache is fully-associative.
Depending on where the cache is positioned relative to the address translation hardware,

the addresses used for indexing and tag comparison can be virtual or physical addresses.
Virtually addressed caches remove address translation from the critical path of a cache
lookup. However, they need to be flushed when address translations change, for example
during an address space switch. Physically addressed caches avoid this at the expense of
a generally higher access time. Virtually-indexed physically-tagged caches determine the

8

2.1 Caches

offsetindextagaddress
0

tag v cache block data

= &

hit requested data

Figure 2.1: Cache lookup in a direct-mapped cache.

cache set using bits of the virtual address but then match the physical address against the
tags, allowing indexing and address translation to proceed in parallel.
Except for direct-mapped caches where the decision is trivial, the replacement policy of

a cache determines the line in a set a new cache block should be fetched into and thus
replace that line’s old contents. Ideally, the line that is least likely to be used in the near
future, i.e., whose next use is the farthest into the future, should be replaced. However,
such a prediction is usually impossible to make. Common policies that are nevertheless
reasonably effective are Round Robin or First-In First-Out, (Pseudo-)Least-Recently-Used,
or (Pseudo-)Random.
In a write-through cache, a cache hit on a write updates both the cache and memory.

In a write-back cache, the same access updates only the cache; cache and memory become
inconsistent, and the cache line is marked dirty by setting the respective status bit. The
contents of a dirty cache line that is about to be replaced must be written back to memory
before a new cache block can be loaded into the cache line. Replacement of dirty lines is
therefore more expensive than replacement of clean lines which can simply be discarded.
A miss on a write in a write-allocate cache causes the respective cache block to be fetched

into the cache. In a no-write-allocate cache, a write miss goes to memory and does not
affect the cache. Write-back caches usually perform write-allocation in the hope for future
accesses to hit in the cache. Write-through caches usually follow the no-write-allocate
policy because future writes still need to update memory.
Multi-port caches can handle more than one request at a time, such as accepting a second

request while the first request’s data is being fetched from memory through a second port.

9

2 Background and Related Work

A cache may also serve requests in parallel through multiple request ports. To allow for
such simultaneous accesses, caches may be organized in separately addressable banks with
bits of the offset inside the cache line selecting the bank. Bank conflicts may arise from
requesting data in the same bank but in different indices and may prevent simultaneous
accesses.
In systems with more than one entity accessing memory, such as multiple processors with

private caches or active devices, coherence between caches must be maintained for system
correctness. Clean cache lines held in one cache whose contents are requested by another
entity for modification must be invalidated; dirty cache lines must be written back to
memory (or transferred to the remote cache) before their content can be accessed remotely.
If all entities share a common memory bus, coherence can be achieved by monitoring or
snooping the other bus agents’ accesses. Each agent checks its local cache for blocks being
requested remotely. In contrast, directory-based coherence protocols maintain information
about the caching location and status of a block in one place, the directory.

2.1.2 Reducing Cache Misses
Unfortunately, not all memory accesses always hit in the cache. Various approaches in
hardware and software have been devised to reduce the rate of certain types of cache
misses. Hill and Smith [21] categorized cache misses as follows:

Compulsory misses occur when data is not found in the cache because it is being refer-
enced for the first time. This situation arises after starting a program or after a cache
flush, for example due to an address space switch.

Capacity misses occur when data is not found in the cache and all cache lines already
hold valid data, i.e. when the cache is full. This situation arises when the working
set of the program is too large to fit completely in the cache. Capacity misses would
not occur in a cache of infinite size.

Conflict misses occur when data is not found in the cache and all ways of the set in which
the data should be found already hold data but other sets still have unused lines.
Conflict misses would not occur in a fully-associative cache of the same size.

Compulsory misses can be reduced by increasing the cache block size. However, with
larger cache blocks the time to fetch a block into the cache increases as well. Capacity
misses can be reduced by increasing the cache size, thereby also increasing hit time and
power consumption. Conflict misses can be reduced by increasing associativity, which again
may result in higher hit time and power consumption.
Alternatively, cache miss rates may be reduced by changing the software to best utilize

the cache. Calculations on arrays can often be rearranged without affecting program
correctness. Loop Interchange exchanges inner and outer loops such that the inner loop
operates on array elements within a cache block rather than striding through the array.
Nested loops that work on both rows and columns of arrays can in some cases be broken

10

2.1 Caches

down into several smaller loops that operate on subsets of the elements; this technique is
called blocking or tiling and can, like loop interchange, be performed by the compiler.
Cache-conscious data placement arranges non-array objects such as global variables, con-

stants, and stacks globally to minimize cache misses. Cache-conscious allocators exploit
domain knowledge to collocate and reallocate objects that are accessed together, for exam-
ple the nodes in a tree. Structure splitting gathers the hot parts of objects and allocates
the cold parts separately which are then referred to from their hot counterparts. Reorder-
ing functions within the program image can reduce conflict misses. Aligning functions and
basic blocks with the beginning of cache blocks can reduce cache misses for sequential code
by increasing utilization of a cache block.

2.1.3 Reducing Miss Latency
Cache misses are expensive. First, the next lower, slower level of the memory hierarchy
must be informed of the access. Then it takes several bus transactions to fetch the block
into the cache, because the data bus width is most often much smaller than a cache block.
The parts of the cache block are transferred either in sequential order or according to some
interleaving scheme. Several techniques reduce or hide the latency of a cache miss: On one
hand, enhanced line fetch strategies reduce the time between the request of a datum and
its availability to the processor. Prefetching, on the other hand, tries to hide the latency
of the memory hierarchy by requesting data before they are accessed.
A straightforward implementation of a cache might stall the processor until the complete

block has been fetched into the cache. The Early Restart strategy releases the processor as
soon as the requested data has been fetched, even though parts of the cache block are still
in transfer. A subsequent request to data in the same block will be stalled until the block
has been fetched completely. Streaming applies Early Restart also to subsequent requests
to the line being fetched. Requested Word First transfers the part of the cache block first
that contains the requested word, thereby minimizing the latency for the requested word.
Nonblocking caches support out-of-order execution cores by continuing to serve requests to
other cache lines while handling a miss.
Hardware prefetching looks for regularities in the addresses of memory accesses in order

to detect streams and requests cache blocks before the program accesses the data. Often,
multiple independent streams can be tracked concurrently. With software prefetching,
the compiler or developer inserts special prefetch instructions to request the data. In
contrast to hardware prefetching, software prefetching can avoid prefetching beyond the
end of a stream and the resulting unnecessary bus traffic. Software prefetching can also
benefit irregular access patterns if the distance between the prefetch instruction and the
actual access is large enough. Prefetching too early, however, can be counterproductive by
replacing other data that are needed between fetch and use of the prefetched data.

11

2 Background and Related Work

2.2 Data Structure Layout
Computers store the information they process in data structures. A data type is the
description of a data structure whereas an object is an instance of a data type. The
description of a data type is called type definition.
Data types can be classified into elementary types and compound types. Elementary

types describe the basic data types of the language such as characters, integer and floating
point numbers. Objects of elementary type are stored in consecutive bits of storage such
as in a register or in one or more bytes in memory.
Compound types are constructed from a finite number of components, each of which

can be of elementary type or of compound type again. Examples for compound types are
arrays and classes. A known or bound number of objects of the same type can be stored in
an array. With the help of object references, objects can also be arranged in lists or trees,
which are suitable for managing an unknown number of objects. A class type groups a set
of objects of elementary or compound type and a set of associated functions.
Type-unsafe languages, such as C and C++, allow the programmer to reason about

the internal structure of an object. This is one of the reasons why C is popular for sys-
tem programming where externally defined data structures need to be manipulated. In
contrast, type-safe languages generally hide the details of object representation from the
programmer, leaving the object layout to the compiler or the run-time system. In some
cases, however, extensions to type-safe languages allow the precise definition of compound
types’ object representations, for example in the Common Intermediate Language [17].
This section describes the in-memory representation of compound C++ objects of class

type and illustrates how this representation is influenced by the various methods of type
construction.

2.2.1 Classes
A class groups related variables and functions. The variables are called data members
or fields; the functions are referred to as member functions or methods. Data members
represent the attributes (or the state) of an object, whereas member functions define the
behavior of an object. A class defines a has-a relation between the class and its data mem-
bers. Each object of a class contains all nonstatic data members of the class. In contrast,
static data members exist only once per class; they are shared between all instances.
The following extract from the C++ specification [25, clause 9.2, Class members, para-

graph 12] defines how the internal memory layout of an object is derived from the structure
of the class definition:

Nonstatic data members of a (non-union) class declared without an interven-
ing access-specifier are allocated so that later members have higher addresses
within a class object. The order of allocation of nonstatic data members sep-
arated by an access-specifier is unspecified (11.1). Implementation alignment
requirements might cause two adjacent members not to be allocated immedi-

12

2.2 Data Structure Layout

ately after each other; so might requirements for space for managing virtual
functions (10.3) and virtual base classes (10.1).1

Access specifiers are the keywords private, protected, and public that define the acces-
sibility of members from non-member functions of the class. Figure 2.2 shows an example
of a simple class definition and the corresponding object memory layout.

class A
{
 char a;
 char b;
 char c;
};

a

b

c

+0

+1

+2

object base address

Figure 2.2: A simple C++ class and its memory layout.

Alignment requirements of members may cause insertion of unnamed space, padding, in
the object. Furthermore, the alignment requirement for objects of the class is derived from
the maximum alignment requirement of all data members [25, clause 3.9, Types, paragraph
5].
Often, however, alignment requirements for members of a class can be overruled. With

the GNU C++ compiler, for example, the attribute(packed) type attribute added to a
class specification forces the compiler to assume the minimum alignment for all members:
one byte for members, one bit for bitfield members. As a result, no padding larger than
or equal to a byte will occur in objects of that class. The same can be achieved by placing
#pragma pack(1) before the class definition. Packing can also be specified globally as a
command line option-fpack-struct[=<n>]. The pragma specification is the most portable
as it is consistently supported by most C and C++ compilers [19,22,24,39].
Using the packing mechanism, a programmer has complete control over the object rep-

resentation of a simple class type.

2.2.2 Inheritance
Inheritance allows to form new classes based on classes that have already been defined.
The new, derived class (or subclass) inherits all data members and member functions from
the base class (or superclass.) An object of the derived class is often referred to as a derived
object.
A derived class can add new data members or methods, thereby enabling extension.

It can also override inherited methods or shadow inherited data members to modify the
behavior, thereby enabling specialization. Code reuse is enabled by inheriting methods
from the base class that have identical implementations for derived and base classes instead
of duplicating the implementation in the derived class.

1Italic typeface not present in original.

13

2 Background and Related Work

Inheritance defines an is-a relation between a derived class and its base class. Since a
derived class inherits all members from its base class, an object of a derived class (actual
type) can serve as an object of a base class (current type), for example through an explicit
type cast or by assignment to a base class pointer. This concept is called polymorphism.
Inheritance can be applied recursively, forming a class hierarchy. The class that a derived

class inherits from, i.e. that is listed as a base class in the derived class’ specification, is
referred to as a direct base class. Base classes of direct base classes are indirect base classes.
A class can serve as a direct base class for zero or more derived classes. Likewise, a derived
class can inherit from one or more direct base class. A mixin is a class that cannot stand by
itself but provides functionality to be inherited by a derived class. The effects of different
types of inheritance on object layout are discussed below.

Simple Inheritance

Inheriting from a base class places an object of the base class as a compact subobject into
the derived object. The layout of the base class subobject is most often identical to that
of an object of the base class, although the C++ specification does not mandate this. By
placing the subobject at the start of the derived object and any additional data members
declared in the derived class behind it, a derived object can be treated as an object of
its base class at the same address. For example, a pointer to the derived object can be
assigned to a pointer to a base class object without any address calculation required.

A
a1 : int
a2 : int

B
b : int

C
c1 : int
c2 : int

A

B

C a1
a2
b
c1
c2

C::A
C::B

C

Figure 2.3: A simple C++ class hierarchy, the object lattice, and the memory layout of a
most derived object. Inherited members form compact base class subobjects
within the derived object. Members added in a derived class follow.

Figure 2.3 shows an example of a class hierarchy and the memory layout of the most
derived object. Placement of data members in a derived object is first governed by the
inheritance chain, then by the order in which added members are declared.

Polymorphic Functions

A derived object can be treated as an object of a base class; a derived class can override
functions defined by a base class. If a method is invoked on such a derived object while

14

2.2 Data Structure Layout

it is being treated as a base class object, the version of the method defined by the base
class will be called. In contrast, polymorphic functions, also known as virtual functions,
allow to invoke the implementation defined in the derived class. The keyword virtual in
a method declaration is used to explicitly request this behavior. For a virtual function,
the version of the method that should be called depends on the actual type of the object.
Therefore, the object needs to carry some sort of type identifier with it.
The address of a virtual function must be found dynamically at execution time. This

process is referred to as late binding. A common implementation of late binding uses a
virtual function table, the vtable. Such a vtable contains the entry points of all virtual
functions of a class. Since the entry points are the same for all objects of a derived class,
the vtable can be shared among all objects of a class. The vtable is referenced from each
object via a vtable pointer which effectively acts as the type identifier of the object.
The vtable pointer is a hidden data member in the object; it is neither declared as a

member nor can it be addressed from within the language. It is usually placed at the
start of the object, but sometimes also at the end (for example, in Cfront [55].) A derived
object and its base class object can share the vtable pointer, because their vtables contain
pointers to the very same function implementations. Virtual functions introduced in the
derived class are appended to the vtable. Those functions will never be invoked from the
base class as it is not aware of the derived class.

A
a1 : int
a2 : int
virtual f1

B
b : int
virtual f1

C
c1 : int
c2 : int
virtual f1

A

B

C
a1
a2
b
c1
c2

vtable pointer

C::A
C::B

C

Figure 2.4: Object memory layout of a class with virtual functions.

Figure 2.4 shows an object layout of a class with virtual functions. Compared to an
object of an otherwise identical class with no virtual functions, the object size increases.
Also, depending on where the implementation stores the vtable pointer within the object,
data members may be located at different offsets.
Given an object’s address, invoking a virtual function on this object then involves the

following three steps:

1. Read the vtable pointer from the object;

2. Read the address of the function from the vtable at the virtual function’s index;

3. Call the function2

2Depending on the architecture this step and the previous step could be combined in one instruction.

15

2 Background and Related Work

Two indirections via memory are necessary to reach a virtual function, whereby the
first indirection is dependent on the object address. The dynamic selection of the actual
implementation also makes virtual functions unsuitable for inlining. Research has been
performed to improve the performance of virtual function invocations. Several approaches
favor replacing the dynamic function call with a switch statement and a number of static
calls [2, 11,29].

Multiple Inheritance

Multiple inheritance refers to a situation where a derived class has more than one direct base
class. Subobjects of all direct base classes are placed in the derived object. The placement
of those subobjects is not defined by the C++ standard. However, most compilers place
base class subobjects in the order in which the base classes are listed in the derived class’
specification. Figure 2.5 shows a class hierarchy with multiple inheritance and a possible
object layout.

B1
x1 : int
y1 : int

B2
x2 : int
y2 : int

B3
x3 : int
y3 : int

C
c : int

B1 B2 B3

C x1
y1
x2
y2
x3
y3
c

C::B1

C::B2

C::B3

C

Figure 2.5: A C++ class hierarchy with multiple inheritance and the resulting memory
layout of an object of the most derived class C.

In addition to the most derived object’s vtable pointer, each base class object may have
its own vtable pointer, too (not shown in Figure 2.5). The derived class can, however,
share its vtable pointer with one of the base classes. Especially for small objects with
many base classes the storage overhead for vtable pointers may be significant.

Multiple Inheritance with Common Base Classes

A class can be a direct base class of a derived class only once. However, it can be an
indirect base class more than once. In such a scenario, multiple subobjects of the base
class exist in the derived object, as is shown in Figure 2.6.
Each of those subobjects can be manipulated independently. Naming ambiguities, which

arise when addressing members inherited from the common base class, must be resolved us-
ing the scope resolution operator :: to identify the intermediate base class whose subobject
is meant.

16

2.2 Data Structure Layout

A
a : int

B1
b1 : int

B2
b2 : int

B3
b3 : int

C
c : int

A A A

B1 B2 B3

C a
b1

a
b2

a
b3

c

C::B1

C::B2

C::B3
C

C::B1::A

C::B2::A

C::B3::A

Figure 2.6: A C++ class hierarchy with multiple inheritance and a common base class and
the resulting memory layout of an object of the most derived class C.

Multiple Inheritance with Virtual Base Classes

A class becomes a virtual base class when it is prefixed with the keyword virtual in a
derived class’ inheritance specification. Being a virtual base class is not an attribute of the
base class; it is determined by how the class is inherited. Subobjects of virtual base classes
exist only once in the derived object and are shared between all derived classes that inherit
them. Figure 2.7 shows an example of virtual base classes.

A
a : int

B1
b1 : int

B2
b2 : int

B3
b3 : int

C
c : int

A

B1 B2 B3

C

a
vptr.A

b1

b2

b3

vptr.B1

vptr.B2

vptr.B3

c

C::B1

C

C::B*::A

Figure 2.7: A C++ class hierarchy with virtual inheritance and the resulting memory lay-
out of an object of the most derived class C. Subobject A is shared among
objects of all classes that virtually inherit from A, directly or indirectly.

Subobject A is shared between the objects of B1, B2, and B3. Only one instance of A
exists in C. C’s subobjects B1, B2, and B3 each contain a pointer to a vtable. The subobjects
of B2 and B3 span noncontiguous memory locations. A is part of B2, yet neither b1 nor
B1’s vtable pointer belong to C::B2; likewise for B3. Besides pointers to virtual functions
the vtables contain the displacement of subobject A relative to the containing object (B1,
B2, or B3). A reference from B2 (or B1 or B3) to A::a thus requires an indirection and an
address calculation.

17

2 Background and Related Work

To complicate matters, a class can be a virtual base class and a nonvirtual base class at
the same time, so that shared and unshared base class subobjects exist.

Summary

For simple classes, data members appear in the object in the same order as they appear in
the class specification. Data members of derived objects, however, are first placed according
to inheritance relationships and then by order of appearance. Furthermore, metadata may
be included in the object. Consequently, the placement of members in objects of complex
class hierarchies can not be influenced by the programmer as freely as in a simple class.

2.3 Program Transformations
Program transformation is the process of transforming one program into another. Two vari-
ants of program transformation can be distinguished: rephrasing transforms the program
within the language whereas translation changes the language of the program. Compilation
translates a program given in a high-level language into machine code so that the program
can be directly executed by a processor. Rephrasing aims to improve a certain aspect of a
program while maintaining its behavior.
This section describes the build process for C++ programs and the two program trans-

formations class flattening and field reordering. It also discusses related work in the area
of those transformations.

2.3.1 Build Process
For more than 25 years, the approach to turning OS source code into an executable has
not changed much. C has been and still is the predominant programming language in all
major desktop and server operating system kernels today [9, 36,52,53].
The build process for operating system kernels written in C or C++ does not differ much

from the process of building applications in those languages. The most notable difference
is that operating system kernels are highly self-contained whereas applications often rely
on functionality provided in libraries.
Many programming languages support separate compilation. Source code modules or

units, often stored in a separate file, are translated one-by-one into object files. All object
files are then combined to the final program. Separate compilation can significantly reduce
the build time of large programs by compiling only the modules that were modified or
whose dependencies were modified.
The common build process for C and C++ programs (and OS kernels) consists of the

following four stages:

preprocess Starting with the source file that is to be translated, the preprocessor replaces
#include directives with the contents of the file they refer to. This process is re-
cursive. The result is a single, linear representation of (at least) all the code that is

18

2.3 Program Transformations

necessary to perform the translation, such as data types, base classes, and declara-
tions of functions or variables implemented in other source files that are referred to
from the source current file. #include directives allow to share common code among
multiple source files.
In a second step, macros are expanded. Macros can also take parameters that are
substituted during expansion. Furthermore, the presence or value of macros can be
tested using the #if directive. Depending on the expression used, all text between
an #if directive and its corresponding #endif directive are included or removed,
allowing for conditional compilation.

compile The compilation stage transforms source code from the high-level language to
assembly language. This stage itself consists of several steps. A front end for the
high-level language performs lexical, syntactical, and semantical analysis of the input
and generates an intermediate representation of the program. A middle end performs
further analysis (e.g., dependence analysis, alias analysis, pointer analysis) and opti-
mizations (e.g., inline expansion, dead code elimination, constant propagation, loop
transformation, register allocation.) Finally, a back end for the target emits assembly
code for the optimized intermediate representation, involving instruction scheduling,
selection of addressing modes, register and memory allocation, etc.

assemble The assembler translates assembly code into blocks of binary instructions, blocks
of data, and address information, the symbol table. Symbolic local jump targets turn
into offsets of jump instructions; function entry points and global data appear as
public symbols; references to nonlocal memory objects or jump targets are marked
as external symbols requiring relocation. The output of the assembler is an object
file.

link During the link phase, all object files are combined into the final binary. External
symbols of one object file are matched with public symbols of other object files.
Code and data of all object files are merged into common sections. Object-file relative
addresses are assigned addresses relative to the final binary, and addresses for external
symbols are filled in. External symbols that cannot be found in the object files of the
program are looked up in libraries for linking at program load time. The complete
program is emitted as a final binary file that can then be loaded by the operating
system for execution.

2.3.2 Class Flattening
Class flattening is a rephrasing program transformation. From a derived class in a class
hierarchy (the source class), it creates a simple class (the target class), which does not use
inheritance. The flattened target class directly contains all direct and inherited members
of the source class and has no base classes itself, as illustrated in Figure 2.8.
Class flattening includes all direct and inherited members of the source class into the

target class. This can be achieved by walking the inheritance graph, beginning at the

19

2 Background and Related Work

class A {
public:
 int a;
 void f() { /* A::f */ };
 void g() { /* A::g */ };
};

class B : A {
public:
 int b;
 void g() { /* B::g */ };
 void h() { /* B::h */ };
};

(a) Class hierarchy for B

class FlatB {
public:
 int a;
 int b;
 void f() { /* A::f */ };
 void g() { /* B::g */ };
 void h() { /* B::h */ };
};

(b) Class B flattened into FlatB

Figure 2.8: Class flattening creates a stand-alone class without base classes from a derived
class’ hierarchy. All members accessible in the derived class appear in the
flattened class.

source class, in a breadth-first manner. All members that do not yet exist in the target
class are copied there whereby the language’s rules for hiding and overriding of inherited
members define whether a member already exists.
The flat form of a class was introduced by Meyer [37]. Meyer sees two uses for the flat

form: inspection of the full feature set of a class by a developer, and distribution of a class
without its history. A first brief description of the flattening process was given by Meyer in
1997 [38] whereas a command line utility to create a flat form of Eiffel classes was already
available in 1998 [37].
Independent of Meyer, Bellur et al. describe a class flattening tool for C++ [5]. The

flattener manipulates preprocessed source code. The authors target class flattening as a
means to eliminating virtual functions for which they describe two alternative approaches:
In the stand-alone approach, the flattener copies all relevant member functions and data
members from a selected class K and its base classes into a new class FlatK and removes
the inheritance relationship. In the parallel hierarchy approach, a separate class hierarchy
with Flat-prefixed class names is created where all virtual functions are de-virtualized
while the inheritance relationship is maintained. To use the flat version of a class, the
programmer and/or the flattener can turn selected variables of type K or related types
into the respective type for FlatK (variable flattening). The flattener can also create copies
of client functions, i.e., functions that have at least one parameter of type K or related type
(client function flattening). These functions with parameters of type FlatK instead of K
overload the original client functions. They will be used whenever a client function is called
with the flattened version of the class. An automated approach for variable flattening is
suggested by the authors, but considered infeasible due to the high cost of a full data
flow analysis. They report a 4.25-5.58 times faster execution for two example programs
that are best cases for flattening: short, inlinable virtual functions; no use of dynamic
polymorphism.

20

2.3 Program Transformations

A second use of class flattening proposed by Bellur et al. [5] is enhancing program un-
derstanding by presenting a flat form of a class in a source code browser, like suggested by
Meyer. Furthermore, the authors mention that class flattening can also ease debugging,
because execution no longer jumps up and down in the class hierarchy.
Another use of class flattening can be found in the area of software quality measurement.

A very detailed description of the class flattening process for C++ by Beyer et al. [6] has
been implemented in the Crocodile measurement tool [34]. Beyer et al. also discuss the
impact of inheritance on software metrics like size, coupling, and cohesion [7]. Comparing
values for original and flattened versions of classes led the authors to an improved inter-
pretation of values for the unflattened version. Furthermore, the additional data allowed
to detect more candidates for restructuring, and gave insights into the use of inheritance,
be it for source code sharing, definition of interfaces, or creation of type hierarchies.
Binder [8] applies class flattening to reduce complexity in the context of software testing.

There, only a flattened class allows to define a reasonably sized class test plan for all features
inherited.
All instances of class flattening in previous work create a second, flattened variant of

the class definition, which coexists with the original. This work proposes transparent class
flattening which replaces the original class definition with the flattened variant.

2.3.3 Field Reordering
Field reordering arranges fields of a compound data structure according to an optimization
criterion. It is commonly used to improve the spatial locality of compound data structures
to optimize cache usage when accessing them. Field reordering can be performed in the
run-time system, in the compiler, or as a source-to-source transformation. The latter relies
on a correlation between the order of fields in the type specification and the resulting object
layout, such as described for C++ in Section 2.2.1.
In type-safe languages, field reordering is automatically safe because the object’s in-

memory representation is left to the compiler or run-time system. In other languages, for
example in C or C++, the programmer can reason about the internal structure of an object
and make static assumptions about the placement of fields. Arbitrarily reordering fields
could therefore negatively impact program correctness.
Truong et al. [60] present field reordering as a technique to improve the cache behavior

of dynamically allocated data structures in C. With field reordering, “fields of a data
structure often referenced together are grouped together to fit into the same cache line.”
Truong et al. exploit the fact that nonstatic data members of a C data structure are
assigned increasing addresses in the order they appear in the data structure declaration.
This behavior is defined in the C language specification [26]. Consequently, changing the
field order in the declaration influences their mapping to memory addresses and thus to
cache lines. Truong et al. leave determining the optimal layout to the programmer, because
“At present, the automatic detection of the most frequently used fields of a structure
is beyond the possibility of current compiler technology.” In combination with another

21

2 Background and Related Work

optimization technique, instance interleaving, Truong et al. obtain speedups of 1.08–2.53,
reducing cache or TLB miss ratios by 35 to 96 percent.

Semi-Automatic Field Reordering

Chilimbi et al. [14] automate field reordering for C programs in so far that a tool produces
recommendations for new field orderings. These recommendations need to be checked
and eventually implemented by the programmer, because the authors deem automatically
determining whether layout manipulations are safe with respect to program correctness
impossible. Profiling information from a previous program run is combined with static
analysis in order to, in the end, construct a field affinity graph for every structure type.
In these graphs, nodes represent fields and edge weights are proportional to the frequency
of the fields being accessed contemporaneously, with contemporaneously meaning being
accessed within a certain time (100ms). All instances of a type are treated identically,
as most instances were found to show “similar access characteristics (i.e., consecutive ac-
cesses to the same field in different (indistinguishable) instances, rather than different
fields).” Chilimbi’s approach places fields with high temporal affinity near each other; no
assumption is made about structure alignment on cache-line boundaries, as this “can only
be determined at run time”. Chilimbi et al. reports performance improvements of 2 to 3
percent after reordering five of the most frequently used data structures in Microsoft’s SQL
Server.
Kistler and Franz [28] call field reordering “data member clustering”. A second technique,

referred to as “data member reordering” attempts to optimize the order of fields within
a cache line. Memory interleaving and cache line-fill buffer forwarding are identified as
source of different latencies for the words in a cache line after a cache miss. Like Chilimbi
et al., Kistler and Franz build temporal relationship graphs (TRGs) for objects. Nodes in
the graph correspond to fields in the object. The weights of the edges reflect the number
of times fields were accessed subsequently within a specific number of disjunct memory
references. “The TRG is created by collecting path profiling information and then stepping
through each program path returned by the profiler.” These graphs are then subjected to
a graph partitioning algorithm that associates fields with cache lines. It is, however, left
unclear how multiple potentially different TRGs for objects of the same class lead to an
optimized layout for the class. “Finding an optimal order of fields within cache lines is
done with an exhaustive search...” By limiting the application to type-safe programming
languages such as Oberon, the optimization process can be fully automated. Kistler and
Franz also discuss optimizing the layout of derived objects. Subobjects inherited from
supertypes are considered inseparable. Layout optimizations are thus restricted to how
fields introduced in the derived object are placed behind the inherited subobject. The
likely but unstated reason for this limitation is polymorphism. The paper also states that,
“Encapsulation of object types often leads to subtypes having only minimal access to their
inherited fields, thereby reducing temporal relations between fields from different derivation
levels.” However, access patterns to fields of a data structure are actually not related to
accessibility of inherited fields from derived types. Kistler and Franz report speedups of 3

22

2.3 Program Transformations

to 96 percent for their layout optimization. How much of this speedup can be attributed
to “data member reordering” (inside a cache line) on top of “data member clustering” (of
fields into cache lines) is not described.
Zatloukal et al. [65] present a slightly different algorithm for finding an optimized field

ordering. A program’s access behavior is modeled in a per-structure member transition
graph (MTG). The nodes in the graph represent the members. The edges between any
members i and j carry transition and survival probabilities. The transition probability
describes how likely member i is accessed immediately before member j. The survival
probability describes how likely a cache line that was in the cache when member i was
accessed is still in the cache when member j is accessed. The graph is built from data
collected during the program’s execution. Access to the compiler’s type information allows
gathering traces that include each memory address accessed, and for each access to a
structure member, the name of the structure and its member. From the MTG, cache
hit probabilities can be determined for any member ordering by a set of equations. The
optimization algorithm uses a Branch-and-Bound algorithm [30] that considers all possible
orderings for small structures, and a Local Search algorithm [1] that iteratively improves
the initial ordering for larger structures. Finally, the ordering suggested by the optimization
algorithm is subjected to a simulation step that reports cache miss rates for the reordered
structures based on the initially collected trace. The result of the optimization is a new
ordering for members that the programmer may choose to implement. Zatloukal et al.
report a performance improvement of 1.3 percent after reordering seven data structures
in Microsoft’s SQL server. This is less than the results reported by Chilimbi et al. [14],
because a limitation in the profiler did not allow to reorder any of the five most frequently
used structures that were optimized by Chilimbi.
None of previous work on field reordering in type-unsafe languages has completely au-

tomated the process of field reordering. At best, a new ordering is suggested, which then
still needs to be verified and — if found safe — be performed manually by a programmer
by modifying the structure definition. Furthermore, field reordering has been applied to
C, but not to C++ and therefore not to C++ class hierarchies either.

Complexity

There has been considerable research into the complexity of field reordering. For complete
access traces an algorithm can find the optimal layout in exponential time: it simply
tries all possible placements. Thabit [58] showed that optimal data packing using pairwise
frequency information is NP-hard and that the optimal packing also depends on the cache’s
replacement policy. Likewise, Kennedy and Kremer [27] showed that the problem is NP-
hard. Petrank and Rawitz [44] showed that no polynomial time method can guarantee a
data layout whose number of cache misses is within O(n1−ε) of that of the optimal data
layout, where n is the length of the trace. In addition, if only pair-wise information is
used, no polynomial algorithm can guarantee a data layout whose number of cache misses
is within O(k− 3) of that of the optimal data layout, where k is the size of the cache. The
results hold even when the computation sequence is completely known, objects have the

23

2 Background and Related Work

same size, and the cache is set associative. These general results, however, do not preclude
effective optimization targeting specific (rather than all) data access patterns [66].

2.4 Kernel Portability Aspects
Porting is the process of bringing a software to an environment different to the one(s)
it has been written for. Porting often requires modifications to the software in order to
adapt to the new environment. Such modifications are either generalizations or (partial)
reimplementations. Generalization replaces parts of the software that are incompatible
with the new environment with a more generic variant whereas partial reimplementation
adds variants that are compatible with the new environment. In contrast to rewriting
a piece of software from scratch for every new environment, porting promises less effort
through the reuse of parts that need not be adapted. Portability is a software metric
expressing the ease of porting.
The challenge for portable software is configuration diversity. A configuration is char-

acterized by numerous aspects. The most notable aspects are instruction set architecture,
word width, and run-time environments. However, several more hardware properties as
well as diversity of software and development tools add to the configuration space. This
section discusses various aspects of the environment that a portable kernel needs to address.

2.4.1 Hardware
Porting software to a new hardware platform involves more than recompiling for the target’s
instruction set. Other aspects deserving consideration include the target’s word width and
endianess, and the topology of the system. Furthermore, implementations of conceptually
similar hardware often differ more or less so that supporting them requires porting as well.

Instruction Set

An instruction set architecture (ISA) specifies the native data types of a machine, instruc-
tions and their binary representation (opcodes), addressing modes, registers, operating
modes, and handling of internal and external events such as exceptions and interrupts.
All major processor vendors have developed their own ISA or ISA extensions. Over the

years ISAs have evolved, although not always in a backwards compatible way. Examples
are the reuse of removed instructions’ opcode space for new instructions3 and slightly
different instruction behavior in newly added operating modes.4
High-level languages abstract from the instruction set; the mapping to actual instruc-

tions is performed by the compiler. Code written in the high-level language is generally
portable provided it does not make assumptions about the underlying instruction set (as
self-checking or self-modifying code would do.)

3For example, x86’s INC and DEC instructions were replaced by x86-64’s REX prefix.
4Compare default operand sizes in x86’s real mode, protected mode, and long mode.

24

2.4 Kernel Portability Aspects

However, certain instructions that are required for system programming have no repre-
sentation in the high-level language and thus need to be emitted separately, for example
in embedded assembly fragments (inline assembly) or in assembly source files. Also, ex-
ceptions and interrupts influence the software-observable state of the machine and require
operations (e.g., saving and restoring the context of interrupted code) that cannot be
captured in the high-level language. Such code must be rewritten during porting.

Word Width

The width of a general purpose register limits the size of the data that can be manipulated
efficiently with arithmetic and logic instructions. It is also the most common amount of
data transferred between memory and the register set. The machine word width has been
used to define the size of certain data types in high-level languages. For example, the C++
specification defines that int be as wide as the word width of the machine. Furthermore, it
defines that char, short int, int, and long int each provide the same or more storage,
in this order.
The width of memory addresses determines the size of the address space and thereby

limits the amount of data directly accessible to an instruction. Often, the width of an
address is identical to the width of a general purpose register. The C++ specification,
however, leaves the size of a pointer as implementation-defined.
Assumptions, that the sizes of pointers, ints, and long ints are identical and that

values of these types can be assigned without loss, are unportable. The size of compound
data types and the offsets of members in classes may differ between machines of different
word width. Relying on a particular word width when shifting bits “off the word” is not
portable either.

Endianess

In most programming models, memory is considered a byte-addressable storage media. All
words larger than eight bits require more than one byte for being stored in memory. The
byte that stores the least significant bits is the least significant byte. The endianess of
a system defines how these bytes map to consecutive memory addresses. A little endian
system stores the least significant byte at the address of the word, with the remaining bytes
following in order of increasing significance. In contrast, a big endian system stores the most
significant byte first, followed by the remaining bytes in oder of decreasing significance.
A system’s endianess is generally transparent to the C programmer. However, it becomes

visible when aliasing memory using different types. For example, accessing the same mem-
ory location as both an int and a char yields different values on big and little endian
systems.
Another difference concerning the declaration of bit-fields and how individual fields map

to bits of the containing type manifests when working with unions of bit fields and inte-
gers. The C++ specification merely defines: Bit-fields are assigned right-to-left on some
machines, left-to-right on others. It is, however, commonly observed that bit-fields are

25

2 Background and Related Work

assigned right-to-left on little-endian machines, and left-to-right on big-endian machines.
That is, the first bit field declared will be stored in the least significant bit of the first
byte occupied by the bit-field in memory. Therefore, for a given bit-field layout to map
to particular bits in an overlapping integer type, the declaration of the bit field must be
adapted to the endianess of the target.

System Topology

The topology of a system, i.e., the number and type of cores, the caches, the buses, and
the memory configuration, influence decisions with respect to system correctness and per-
formance.
The amount of parallelism available in a system determines the selection of suitable

kernel algorithms. While code on a uniprocessor system can safely assume that no other
code is executing at the same time, this assumption can lead to incorrect results on a mul-
tiprocessor system. Mechanisms such as locking or inter-processor communication must
be employed to coordinate access to shared state and parallel execution. Such multipro-
cessor mechanisms impose overheads that can be avoided in a uniprocessor configuration.
Unlike Java, both C and C++ are inherently single threaded at the language level. Their
execution models do not cater for concurrency. Hence, synchronization must be explicitly
designed into algorithms.
Memory latency (ignoring caches) does not differ among the execution cores in simulta-

neous multithreading (SMT) and multicore systems. In ccNUMA systems, however, with
multiple memory blocks backing different parts of the global physical address space, access
latency is a function of the distance between the requester of a datum and the datum’s
location. Therefore, code and data require careful placement to minimize access latencies
and avoid unnecessary bus traffic.
The structure of the memory hierarchy, especially the location of caches, is influential

to decisions about what information can efficiently be shared between cores and where.
Often, frequently updated, shared data can be turned into more local instances on which
a higher-level cooperation protocol operates, thereby reducing cache-line bouncing. Exact
information about the line size of caches allows to avoid false sharing [59].

Common Hardware

Across a wide range of configurations, there exists a variety of hardware to support con-
cepts such as virtual memory, scheduling, and communication. While each concept is
implemented in very similar ways, the details of the implementation differ, as the following
three examples show.
All memory management units (MMUs) that translate virtual to physical addresses

use a cache, the translation look-aside buffer (TLB), to speed up the translation. Some
MMUs invoke a software handler on a TLB miss, others contain hardware to walk tables
in memory to load the missing translation information. Common to both approaches is a
software-managed structure in memory that is then looked up by the TLB-miss handler

26

2.4 Kernel Portability Aspects

in software or by TLB-miss hardware. In the latter case, the format of the structure in
memory is defined by the hardware, whereas with a software-loaded TLB only an interface
for installing or removing single entries in the TLB is defined.
All timer devices have the following in common: they can be programmed to “tick”

at fixed intervals (periodic timers) or once after a number of cycles has passed (one-shot
timers), and they can generate interrupts for those ticks. However, the device registers to
program the interval are very diverse across platforms.
Another prominent example of slightly different yet standard hardware are serial ports

as could be found in PCs for the last two decades. Their NS16550-compatible controllers
are programmed via a well-defined set of 8-bit registers. Device drivers for those controllers
bear a high similarity across all platforms. They only differ in the method of reading and
writing the controller registers, that is, at which address the registers are mapped and
which instructions are used (e.g., memory or I/O space) to access them.

2.4.2 Software
Besides the hardware, also the software environment can differ between configurations. For
applications, the run-time environment is part of the software environment. For a modular
kernel that runs on the bare hardware with no support layers underneath it, the software
environment is defined by the internal and external interfaces of the kernel. Aside from
rather high-level kernel components, internal interfaces exist between different program-
ming languages. The external interfaces of the kernel are its application programming
interface (API) and its application binary interface (ABI).

Calling Conventions

A calling convention defines how parameters and return values are passed between the
caller of a function in a high-level language and the function being called. It also defines
who (caller or callee) is responsible for saving and restoring resources used by both. Most
calling conventions use processor registers, the stack, or a combination of both. Calling
conventions may also designate certain registers for particular purposes, such as defining
a general purpose register as the stack pointer register.
Often, several incompatible calling conventions exist for a given architecture. They

originate from different programming languages (e.g., Pascal vs. C), compiler vendors, or
even compiler versions. If multiple conventions are supported by a compiler, one particular
can often be chosen at the file scope or even for single functions.
Normally, the compiler takes care of generating the code for placing parameters in the

correct registers or memory locations, for saving and restoring registers that must be pre-
served, and for extracting return values. A kernel programmer is exposed to the details
of calling conventions when hand-written assembly code needs to invoke functions imple-
mented in the high-level language.

27

2 Background and Related Work

Inline Assembly

In system programming it is sometimes necessary to access registers or invoke instructions
that have no representation in the high-level language. Inline assembly is a convenient
mechanism for embedding assembly code directly in the body of a function. The C++
standard sets aside the asm(...) construct for this purpose, whereby the details of ...
are vendor specific.
The assembly fragment is often specified with preconditions, post-conditions, and a

clobber list. Pre- and post-conditions define input and output constraints which describe
the mapping between elements of the high-level language (e.g., variables, object addresses,
constants) and elements of the assembly language (e.g., registers, addresses, immediate
values) before and after the assembly code fragment. The clobber list informs the compiler
of what other resources are modified as a side effect of the assembly code such as further
registers, flags or memory.
The following example illustrates the power of this mechanism. The inline assembly

code embeds an x86 instruction XCHG, which atomically swaps its operands, into the current
function. More specifically, the code atomically writes the value 1 into the memory location
of variable L and stores the previous content of L in variable v, resembling a simple version
of the lock acquire operation.

asm ("xchg %0, %[lock]"
: "=r" (v) // output (%0, register, store in v)
: "0" (1), // input (same as %0, preload with 1)

[lock] "m" (L) // input (memory location of L)
: "memory"); // clobber

From this specification the compiler may generate the following assembly code in the body
of the function:

movl $1, %eax # 1 => tmp
#APP

xchg %eax, -12(%ebp) # tmp <=> L
#NO_APP

movl %eax, -8(%ebp) # tmp => v

The constraints in the inline assembly string (%0 and %[lock]) are substituted with the
respective registers or address expressions (%eax and -12(%ebp)) allocated for the elements
of the high-level language. Code to satisfy pre- and post-conditions is generated before and
after the inlined assembly code which is enclosed between #APP and #NO_APP comments in
the example above.
Except for the constraints, inline assembly code is a meaningless string to the compiler.

Therefore, optimizations must treat it as a black box; that is, its instructions are not
reordered or broken apart. The compiler, however, is free to schedule surrounding code as
it sees fit as long as dependencies are honored.

28

2.4 Kernel Portability Aspects

Assembly code in dedicated files is quickly identified as being inherently nonportable.
In contrast, inlined assembly code has the often unexpected potential to make a file or
function written in a high-level language nonportable.

Member Offsets

When interfacing assembly code to higher-level languages, it may become necessary for
hand-written assembly code to access nonstatic data members in objects of a high-level
compound structure of which only the base addresses are available.
At least three approaches for determining the offsets of individual data members in

composite structures can be distinguished: dummy sections, access to compiler tables, and
machine generated header files. They are briefly described below.

Dummy sections For every composite structure, an empty section is generated with a sec-
tion address of zero. Nonstatic data members of the structure are assigned symbolic
names in this section at the appropriate offset. The address of a structure member
can then be generated by adding the offset of its symbol in the section to the base
address of the object.

Compiler tables Compilers often generate additional non-program information such as
debug information, which may also include field offset information. An assembler
may allow to programmatically refer to such information from assembly code. Field
offsets can then be used as assembly language constants that are added to the object’s
base address.

Machine-generated header files In C and C++, the macro offsetof(type, member)
returns the byte-offset of member in an object of type type as a constant expression.
A special C file contains offsetof expressions for members of a class in a specific for-
mat: MACRO(symbol name, expression). The macro expands to easily recognizable
inline assembly code including the symbol name whereas the constant expression is
passed into as a constant. The file is fed to the compiler for transformation into an
assembly file such that the constant expressions result in integer constant literals.
The output is scanned for the inline assembly lines to generate a header file with
lines of #define SYMBOL VALUE that can then be included from assembly files.

API Portability

An operating system kernel is the layer between the hardware and applications; a mi-
crokernel is the layer between the hardware and the operating system components and
applications. On its upper interface, the kernel exposes the application programming in-
terface (API). The application binary interface (ABI) maps the API to hardware primitives
available on the particular target configuration.
An API is portable when its elements (e.g., the abstractions and mechanisms it defines)

appear in a sufficiently similar fashion on all target configurations. The kernel implements

29

2 Background and Related Work

the API through the ABI by means of the underlying hardware. Without a portable
API, code reuse in the kernel would be minimal. Hence, a portable API is a necessary
precondition for a portable kernel.

2.4.3 Tools
The third source of configuration diversity in the kernel’s environment is the build system,
including such tools as compiler, assembler, linker, and other programs. The main reasons
for this diversity are the freedom in implementation of those tools and their evolution.
A vendor and version lock-in on development tools is often not desirable and should

be avoided at reasonable cost. Tool openness is particularly important for an open source
project, as it lowers the bar for exploration and experimenting that come before commercial
uptake. The attractiveness of “it just builds” cannot be underestimated.
Although the build system is not directly reflected by kernel code, it still affects the

kernel code base. The following list briefly discusses the influence of tools diversity on the
kernel.

Freedom in implementation Language specifications often leave certain aspects to the
implementation of the compiler or the run-time system. Compiler vendors have used
this freedom to create incompatible solutions. While a strictly standards compliant
program will translate with almost any compiler, the outputs of different compilers
and even different versions of the same compiler are often not compatible.
Examples for such incompatibilities are different calling conventions, locations of
vtable pointers, and object layouts in general. Another example can be found in the
GCC compiler tool chain: version 3 and above use a different name mangling scheme
than earlier versions, with the result that code compiled with different versions cannot
be linked together successfully. While a kernel is usually compiled with only one
compiler version at a time, hand-written assembly code that interfaces with C++
code needs to be aware of the mangling scheme and thus of the compiler version.
Name mangling schemes also tend to differ largely between compilers of different
vendors.

Compiler extensions Often, compiler vendors implement particular features that go be-
yond the language specification. Usually, such extensions address optimizations or
ease of use. An example for the latter are the <? and >? operators in GCC 3.x
versions. These minimum and maximum operators avoid multiple evaluation and
are thus convenient to use. Examples for extensions targeting optimization are the
__builtin_expect branch hint expressions that allow to specify the likely outcome
of an expression and thus help the compiler generate more compact and thereby more
efficient code.

Increasing standards compliance Over the last years, a trend towards stricter standards
compliance can be observed among compiler vendors. Vendor-specific extensions have

30

2.4 Kernel Portability Aspects

an increasingly hard time to survive. Code that makes use of such extensions needs
to be adapted to either avoid them or use them only when available.

Incompatible concurrent specifications A prominent example for incompatible specifi-
cations are the AT&T syntax and Intel syntax for the x86 assembly language. Both
describe the same object, mnemonics for processor instructions, yet they are in-
compatible (Source and destination operands are swapped; immediate values and
operand sizes are specified differently, etc.) The parts of the kernel that are written
in or contain assembly language need to be aware of the syntax being expected by
the assembler.

Code quality Different compilers often generate more or less optimal code from the same
input. The main reasons here are different advances in compiler optimization tech-
niques between vendors. Also a change in a compiler’s internal structure may allow
more optimizations in later versions. Source code that translates to optimal code
with a new compiler may be all but optimal when translated with an older compiler.

31

2 Background and Related Work

32

3 Case Study: L4Ka::Pistachio
The L4 microkernel is a second generation microkernel that was initially developed by
Jochen Liedtke at GMD, Germany, IBM Research, New York, and Karlsruhe University,
Germany. He implemented early kernel versions in MASM assembly code for x86 proces-
sors. Assembly versions for Alpha and MIPS processors, L4Alpha [51] and L4Mips [43],
were implemented by the Operating Systems group at Dresden University of Technology,
Germany, and the DiSy group at the University of New South Wales, Sydney, Australia.
Due to licensing restrictions of the x86 kernel, Fiasco [42], a C++ version for x86 pro-
cessors focussing on real-time properties, was implemented by Dresden University. High-
performance C++ implementations by Karlsruhe University followed. Based on the latest
Karlsruhe kernel, National ICT Australia branched off a version for embedded systems.
The L4Ka::Pistachio microkernel is a reference implementation of the L4 experimental

Version X.2 API. Its major design goals are IPC performance, portability, and reusabil-
ity [56]. Pistachio was designed and implemented by colleagues and me at the System
Architecture Research Group at Karlsruhe University, Germany. The DiSy group has con-
tributed several ports. At the time of writing, the kernel is available for 10 architectures
and 23 platforms, and supports single- and multiprocessor configurations. Pistachio is writ-
ten in C++. Expensive language features such as exceptions, run-time type information,
and virtual functions are avoided in performance-critical parts of the kernel.
After introducing the L4 API in Section 3.1, I discuss the L4Ka::Pistachio microkernel’s

approach to portability in Section 3.2, showing how it addresses the portability aspects
discussed in Section 2.4. In Section 3.3, I show how class hierarchies can be used to improve
Pistachio’s structure by building kernel data structures from a set of fine-grained, config-
uration specific classes, and Section 3.4 analyzes the runtime overhead of that approach.

3.1 The L4 X.2 API
The L4 X.2 API is the latest member of a series of L4 API specifications, representing
more than ten years of microkernel research. The L4 X.2 API is described in the L4
eXperimental Kernel Reference Manual [57].
The L4 API defines two major abstractions and two mechanisms:

Threads are the abstraction for activities. An L4 thread is represented by its register
state (a subset of processor registers and virtual registers introduced by the L4 API),
a global, unique identifier, and an associated address space. All threads bound to
a particular processor are scheduled according to their assigned static priority and
time-slice length.

33

3 Case Study: L4Ka::Pistachio

Address spaces are the abstraction for protection and isolation. Resource permissions
are managed in address spaces. L4 address spaces are no first class object; they are
indirectly identified via any thread associated to this particular space. All threads
in an address space have the same rights and can freely manipulate each other.

Inter-process communication (IPC) is the mechanism for data transfer and controlled
execution transfer between threads. A message transfer is synchronous and involves
exactly two threads. Both sender and receiver have to agree on the time of the
transfer as well as on the format of the message. Messages can transport simple
words and more complex descriptors that are interpreted by the kernel.

Mapping is the mechanism for transfer of resource permissions between address spaces.
Access to a resource is granted by transferring resource descriptors in an IPC message,
thereby enabling user-level management of address spaces. Resource permissions can
be duplicated or moved. The receiver’s permissions can only be a subset of the
sender’s permissions. Mapping can be applied recursively. Revocation of resource
rights is done asynchronously through the unmap primitive and does not require
explicit consent from the receiver of the mapping operation.

Hardware generated events such as exceptions and interrupts are translated into kernel-
generated IPC messages. On an hardware interrupt, the kernel synthesizes a message to
a thread that is registered as the handler for that interrupt. The sender appears to be a
thread with a special per-interrupt identifier. Similarly, hardware exceptions are mapped
onto an IPC based fault protocol. In the name of the faulting thread, the kernel synthesizes
a message with information about the cause of the fault and sends it to the faulting
thread’s exception handler. The faulting thread is then set to receive a reply message from
the exception handler to resume execution. The IPC fault protocol is transparent to the
faulting thread; its state is preserved by the kernel. On a page fault exception, the fault
message is sent to the pager of the thread, expecting a memory mapping in the reply.

Portability
The L4 X.2 Kernel Reference Manual [57] defines the generic API for all 32-bit and 64-bit
machines. The generic API is as such independent of specific processor architectures and
also endianess-independent. It is complemented by processor-specific ABI specifications.
The manual differentiates between several interfaces of different levels of abstraction.
The Logical Interface defines all concepts and logical objects such as system-call oper-

ations, logical data objects, data types and their semantics. Altogether, they form the
logical L4 API. Binary representations of most data types and generic data objects are
defined independently of specific processors (although there are two different versions, one
for 32-bit and a second one for 64-bit processors). Both versions together form the Generic
Binary Interface of L4. For ease-of-use and standardization reasons, the two fundamental
interfaces are complemented by two more interfaces: The Generic Programming Interface
defines the objects of the logical interface and the generic binary interface as pseudo C++

34

3.2 Implementation

classes. The Convenience Programming Interface makes the most common operations more
easily usable for the programmer. Convenience and ease-of-use, not completeness, is the
criterion for this interface. The Processor-specific Binary Interface is not part of the generic
L4 API specification. It defines the binary kernel interface by means of processor-specific
features, e.g., methods of system call invocation, protocols specific to the processor, etc.
The strict separation between API and ABI allows to write portable applications. Every

complete L4 language binding has to include the entire convenience programming interface
so that portable applications can use this interface to abstract from machine-specific details.
The L4 API makes one fundamental assumption, though: Addresses (pointers, function
entry points, etc.) are as wide as the general purpose registers of the machine and hence
the IPC message word.

3.2 Implementation
The API and ABI specification together define the interface of the microkernel. As such,
they define how applications talk to the kernel and how the kernel exports its services to
applications. However, it is left to the implementation how the kernel provides the services
defined in the specification.
Common to all L4 kernels are three major data structures: thread control blocks (TCBs)

representing an L4 thread, page tables representing an address space, and the mapping
database for tracking mapping operations to enable recursive revocation using the unmap
primitive.
The previous section discussed L4 at run time; this section discusses L4Ka::Pistachio

at build time. It describes selected aspects of L4Ka::Pistachio’s implementation thereby
focusing on portability. I discuss configuration management, data types, system topology,
multiple programming languages, and developer tool chains.

3.2.1 Configuration Management
Pistachio achieves its level of portability through configurability. Kernel functionality has
been categorized to be either generic or specific to one (or a combination of several) config-
uration dimensions. Configuration dimensions are orthogonal degrees of freedom in system
configuration. In Pistachio, three configuration dimensions are defined (see Figure 3.1),
and in every dimension, one or more instances are defined: processor architecture (ia32,
ia64, amd64, arm, alpha, powerpc, powerpc64, mips32, mips64, sparc64), platform (pc99,
efi, pleb, malta, ipaq, etc.), and API (v4, v5e). Furthermore, combinations of instances of
different dimensions can be defined (e.g., v4-ia32, v5e-arm, etc.)
Code (and declarations) for a particular instance of a configuration dimension or a

combination is placed in its respective subdirectory. Code that differs for aspects not
defined as configuration dimensions is either placed in different source files or surrounded
by directives for conditional compilation.

35

3 Case Study: L4Ka::Pistachio

generic

plat

apiarch

glue

Figure 3.1: Pistachio distinguishes three configuration dimensions: the architecture, the
API, and the platform. Code is either generic or it is specific to one or a
combination of several configuration dimensions.

Pistachio uses the CML2 configuration management system [46]. The CML2 language
allows to define menu items (booleans, one-of, numeric or text inputs), rules for visibility
of items, and rules for derivations of values. The output of CML2 is a set of variable-value
pairs. The CML2 system consists of three Python [50] programs. Run interactively, it
presents a hierarchy of menus to the user to make selections. Run from a script it accepts
command line arguments as input selections.
CML2 emits configuration information in several files and formats. One file contains

lines of the form VARIABLE=VALUE. Another file contains #define VARIABLE VALUE and
#undef VARIABLE directives that can be evaluated by the C++ preprocessor. In Pistachio,
the first file is sourced by the build system to allow for the configuration-dependent selection
of source files and configuration-dependent specification of options for tools. By use of a
compiler command line option, the second file is read by the preprocessor before any source
file is being parsed. Hence, configuration information is present in any source and header
file of the kernel and can be used to control conditional compilation.
Often, code specific to one instance of a configuration dimension needs to refer to code

or data from another configuration dimension without knowing the exact instance in that
other dimension. For example, API-specific code may need to invoke an architecture-
specific function. Pistachio uses computed includes to select the files that contain the
desired functionality. With computed includes, the path name for an #include directive
is produced by a macro: For example, the directive #include INC_ARCH(foo.h) will in-
clude the file include/arch/ia32/foo.h if the architecture has been set to ia32. Like
configuration information, the necessary macro definitions are read by the compiler before
any source file.

36

3.2 Implementation

3.2.2 Data Types
In Pistachio, the kernel’s type system is mostly decoupled from that provided by the
compiler. The following basic data types are available to kernel code:

s64_t, s32_t, s16_t, s8_t, u64_t, u32_t, u16_t, u8_t are signed and unsigned inte-
ger types of the respective word width as indicated by the name. These types are
guaranteed to not change across configurations.

word_t is an unsigned integer of the processor’s general purpose register size. The word
width changes with the architecture, i.e., it is 64 on 64-bit architectures and 32 on
32-bit architectures.

addr_t is a single-byte granular pointer type for safe address calculations. Since the L4
address space model has not yet been extended to handle physical address spaces
that are larger than the virtual address space of the machine, kernel code does not
support physical and virtual addresses of different sizes. They are assumed to be of
equal width.

Above types are defined per architecture based on the types provided by the compiler.
Details of compiler-specific type definitions (like special modes for large data types on
narrower architectures) are thus effectively hidden from the kernel programmer. The data
types are available in all C/C++ header and source files by inclusion of the architecture-
specific header file via the compiler’s command line.
As described in Section 2.4.1, the mapping of bit fields to the bits of the containing word

depends on the endianess of the system. In Pistachio, a set of preprocessor macros hides
this detail from the programmer. Depending on the endianess of the system (which is
published as a derived configuration variable), the sequence of the fields in the declaration
is reversed or not, resulting in the first field always containing the least significant bit of
the containing word.

3.2.3 System Topology
Pistachio runs on uniprocessor and multiprocessor systems, supporting the following types
of the latter: simultaneous multithreading (SMT), multi-core, symmetrical multiprocessing
(SMP), as well as cache-coherent nonuniform memory access (NUMA), or some combina-
tion thereof.
Depending on system configuration and scalability requirements, a kernel object may

exist per system, per node, per physical processor, per core, or per logical processor (hard-
ware thread). Often, code accessing such an object may not need to be aware of the
differences and can thus benefit from hiding them.
An example for such an object is the scheduler in Pistachio, of which one exists for

every logical processor. Code invokes “the scheduler” by first calling the get_scheduler()
function to obtain a reference to the appropriate scheduler object which is then used for the
actual invocation. The get_scheduler() function could return a reference to the global

37

3 Case Study: L4Ka::Pistachio

scheduler object in a uniprocessor configuration or determine the current processor number
to index into an array of scheduler objects. Pistachio, however, places the seemingly
global (from the C++ language’s point of view) scheduler object in a region of virtual
memory that maps to different physical memory for every logical processor, referred to
as the processor-local region. The indirection through the MMU eliminates the need for
identifying the current processor number, independent of the actual configuration (single
or multi-processor). The code can become very clean as it needs not be concerned about
the level of parallelism in the system.
By the use of a macro at the place of definition, global objects (in the sense of C++) can

be placed into particular data sections in the kernel’s virtual address range. Some of these
regions are backed with node-local (.data.nodelocal) or processor-local (.data.cpulocal)
memory. Furthermore, static initialization of “global” objects in such regions is repeated
for every node or logical processor whereas global objects not marked specifically are ini-
tialized once by the boot processor.

3.2.4 Mixed Programming Languages
Some parts of the kernel must be implemented in assembly language, such as accesses to
control and status registers via special instructions. Another example are the entry and exit
stubs for handlers of system calls, exceptions, and interrupts.1 A kernel programmer may
also choose to provide hand-optimized assembly implementations of common, performance-
critical code paths.
In Pistachio, special instructions are wrapped into inline functions that contain inline as-

sembly code. Likewise, the stack-based thread switch is encapsulated in an inline function.
System call and exception handlers reside in assembly files in the respective architecture-
specific directory. For several architectures, a hand-optimized assembly version of the
common case IPC path exists, the is so-called IPC FastPath. Functions in C++ that are
invoked from assembly code, such as the C implementation of the IPC path, are declared
extern "C" to disable name decoration.
In all these cases, assembler code frequently references kernel objects defined in the high-

level language. A compiler generates the correct field offsets relative to the base address
of an object, and it continues to do so after the programmer changed the data structure
declaration. Hand-crafted assembly code, however, is not updated automatically. Thus,
unsafe references from assembler code to data structures defined in the high-level language
are acceptable only if field offsets are not hard-coded but automatically derived.
Initially, the Pistachio build process generated a C file with constant expressions as

initializers for elements of an array that was then compiled with the target compiler. The
array elements were then extracted from the resulting object file to create a header file.
However, recent compilers chose to generate code for initializing the array at run time

1Some compilers, e.g., GCC for the ARM, AVR, M68K, SH, and H8 architectures, provide extensions that
generate prologue and epilogue of functions such that they can directly be used as interrupt handlers.

38

3.3 Improving L4Ka::Pistachio with Inheritance

and thus rendered that approach unusable. Therefore, Pistachio uses a machine-generated
header file that contains the appropriate offsets, as described in Section 2.4.2.

3.2.5 Tools
As an open-source project, Pistachio needs to build with popular open source develop-
ment tools. Being able to build the kernel for the most popular target architecture, x86,
with almost any version of the freely available GNU toolchain (GCC, Binutils, Make) has
proven to be an invaluable property because it radically lowers the bar for experimentation
and thus improves acceptance in the community of potential customers. Requiring some
(arbitrary) version of an easily available toolchain is generally accepted whereas requiring
a particular version of such a toolchain or a patched, custom-built version are less favor-
able. Yet, the more exotic the target architecture is, the more acceptable becomes the
requirement for a particular version of the toolchain.
With the wide availability of the GNU toolchain on almost any *NIX-like operating

system (or execution environment such as Cygwin [47]), requiring GCC (or compatibles)
for building Pistachio has not raised any problems. Requests have been made to support
the Intel C++ compiler; that work is underway. In an earlier experiment with the Hazelnut
kernel, supporting Microsoft’s C++ compiler for building user-land applications has not
been positively acknowledged once.
The evolution of the GNU toolchain has left its marks in the Pistachio kernel code

base. The trend towards stricter C++ standards compliance usually demands code that
can also be built with a less strict (i.e., earlier) version. Newly introduced or removed
compiler extensions, however, need to be either avoided completely or wrapped in macros
whose definition depends on the compiler version. An example of such an extension is
__builtin_expect(expr, value), giving hints to the compiler about the most probable
value of an expression (often used with if and switch statements.) It is wrapped in the
EXPECT_TRUE(expr), EXPECT_FALSE(expr), and EXPECT_VALUE(expr, value) macros. If
the extension is not available, these macros simply evaluate to their first argument.

3.3 Improving L4Ka::Pistachio with Inheritance
In terms of performance, Pistachio has fulfilled expectations: all assembly versions of
L4 were discontinued soon after Pistachio’s availability. They had been maintained in
lack of alternative similarly efficient implementations in a high-level language. However,
performance is only one of the design goals of Pistachio; portability and maintainability
are the other two.
A general rule of thumb asserts that a project that was created by a single person with

an effort of 1 can be made available to a small group in-house with an effort of 3 and to the
public with an effort of 10. Pigoski [45] attributes approximately 80 percent of the time
invested in a long-term software project to maintenance, of which 50 percent are spent
reading and trying to understand the source code.

39

3 Case Study: L4Ka::Pistachio

The source code infrastructure of the Pistachio microkernel has very well served its
purpose of allowing to quickly build a portable microkernel for multiple architectures.
Measured by the time required for porting, Pistachio can be considered highly portable:
For example, the ports of Pistachio to the Alpha and SPARC64 processors were reportedly
completed within just two weeks. The Pistachio code base has also been (ab)used as an
OS construction kit, allegedly because of its carefully crafted and easily understandable
data structures for x86 hardware as well as its lean, easily extensible structure.
Nevertheless, Pistachio can still be improved, especially in terms of configurability and

code reuse, which in turn can improve performance and readability. The file-based selection
of code limits the granularity at which code can be selected and configured. This problem is
being worked around by unnecessary code duplication or excessive preprocessor use. Either
the definition of data structure or a function is replicated for all configurations to allow
one configuration to be implemented differently, or excessive use of preprocessor directives
such as #ifdef, #else, and #endif is made to keep all variants in the same location, or
text fragments of the definition are placed in separate files and combined using #include
directives somewhere amid the definition. Readability of the alternatives severely decreases
in the order listed. Source browsers, humans and especially machines, often have severe
problems telling apart the many definitions for a class or function under the same name
that coexist in different paths of a source tree.
An approach somewhere between these extremes defines “one-fits-all” data structures

that contain the joint set of all members required by all configurations. However, such data
structures potentially waste cache performance. With access characteristics for members
differing across configurations, the object layout can be optimal for only one configuration.
An example for such conflicting optimizations is Pistachio’s TCB class tcb_t that has been
optimized for the ia32 port, but the MIPS64 port developed by Nourai [40] requires several
additional data members and a rather different layout for optimal IPC performance.
Furthermore, the ability to share code between configurations needs to be refined: For

example, the amd64 port and the ia32 port bear so many similarities that large parts of
the code could be shared. However, the amd64 port was created by copying and modifying
the ia32 port. Merging the two ports has long been considered impossible with current the
directory structure, and adapting the structure to allow the merge was beyond the scope of
the amd64 port. The result is increased maintenance, because bug fixes to common parts
need to be applied to both ports separately. Even worse, some bugfixes on one side were
not carried over to the other and thus led to diversions that will make merging harder.

3.3.1 Configuration-specific class composition
Pistachio’s structural problems described above can be solved by using inheritance for
object composition as follows. The class of a kernel object is composed from multiple
classes that each encapsulate functionality (and the associated data) specific to an instance
of a configuration dimension or configuration feature, as shown in Figure 3.2.
The classes form a class hierarchy with the most derived class representing the actual

kernel object. Throughout the hierarchy, implementations can be refined in more derived

40

3.3 Improving L4Ka::Pistachio with Inheritance

arch api ...

object

Figure 3.2: Kernel objects are composed from a classes that each encapsulate functionality
and data specific to an instance of a configuration dimension.

classes: member functions can be overridden and data members can be hidden with more
suitable variants. In the most derived class direct as well as inherited members and methods
can be accessed without knowing where in the hierarchy they are implemented. The
internal structure of the most derived class becomes irrelevant to the code using the class.
There may also be superclasses that are specific to a certain combination of configuration

dimensions. These would inherit from classes for each of their configuration dimensions
and be in turn a base class for even more specific subclasses or the most derived class.
Inheritance relationships between the classes that form the hierarchy are derived from

the target configuration. Thus, for different configurations, the hierarchy contains different
superclasses. The most derived class, however, has a stable interface across all configura-
tions. Only this most derived class is used throughout the kernel to instantiate and access
objects of the class.
Functionality implemented in one configuration-specific superclass may need to invoke

functionality implemented in another configuration-specific superclass. To allow methods
to invoke methods implemented somewhere else in the hierarchy a common, top-level base
class must be defined that declares the interface of the final, most derived class.
Figure 3.3 illustrates configuration-specific class composition for kernel objects by a

simplified example of the thread control block (TCB) class tcb_t.

l4 tcb t

ia32 tcb t v4 tcb t up tcb t

tcb t

(a) Uniprocessor V4-API kernel on IA-32

l4 tcb t

amd64 tcb t v4 tcb t smp tcb t

tcb t

(b) Multiprocessor V4-API kernel on AMD64

Figure 3.3: Two simplified examples of the tcb_t class hierarchy

Class tcb_t inherits part of its implementation from an architecture-specific mix-in
(ia32_tcb_t or amd64_tcb_t), an API-specific mix-in (e.g., v4_tcb_t), and another mix-

41

3 Case Study: L4Ka::Pistachio

in that is either uniprocessor-specific (e.g., up_tcb_t) or multiprocessor-specific (e.g.,
smp_tcb_t).

3.3.2 Class Properties
Classes composed from a hierarchy of configuration-specific subclasses as developed in the
previous section have the following properties:

• The class hierarchy has a common virtual base class at its root. At a minimum, this
base class declares the interface between the configuration-specific mix-ins as pure
virtual functions.

• Configuration-specific mix-ins add missing or specialize existing functionality. They
also add the data members required for implementing this functionality.

• Neither the base class nor the mix-ins need to be complete classes and thus cannot
be instantiated.

• The most derived class is not abstract. It is the only class in the hierarchy that can
be instantiated.

• Methods should be declared virtual so as to allow overriding at arbitrary places in
the hierarchy.

• Every method declared in the base class has at least one implementation in the class
hierarchy. If there is more than one implementation, there must exist exactly one
final overrider such that no ambiguities arise.

• Data members must have unique names throughout the class hierarchy, unless there
is one final shadower that ensures no ambiguities arise.

The purpose of the class hierarchy is to flexibly compose the most derived class. The
class hierarchy changes from configuration to configuration. Yet, independent of where
and how functionality is implemented inside the class hierarchy, the interface of the most
derived class remains stable and only this class is to be used by other code.
Code using the class must not make any assumptions about the internal structure of the

class, i.e., it must not even assume the class was actually composed from a class hierarchy.
Hence, code must refer to all members of the class without base class specifiers. There are
also no base classes this class could possibly be compatible with.

3.4 Inheritance-related Overheads
Two types of run-time overhead can be attributed to inheritance: the overhead of indirect
calls to implement polymorphic function invocations, and the overhead of a suboptimal

42

3.4 Inheritance-related Overheads

object layout such as dictated by the inheritance relationship. In this section, I show the
performance implications of introducing a class hierarchy for performance-critical classes
in the Pistachio microkernel. I conducted two isolated experiments focusing on one type
of overhead each.
Performance of the microkernel is evaluated by measuring IPC performance with the

pingpong IPC microbenchmark. Two threads send messages back and forth and measure
the round trip time. Those threads can reside in the same address space, in different
address spaces, or on different processors. Throughout the benchmark, the length of the
messages is increased. For each message size, the benchmark reports number of processor
cycles for a single message transfer (i.e., half the cycles for a round trip) averaged over a
large number of transfers.

3.4.1 Virtual Function Calls
To determine the performance impact of using virtual functions on the kernel’s critical
path, I modified the flat class tcb_t to be a class hierarchy with a virtual base class and
a mix-in class, as shown in Figure 3.4.

base_tcb_t

virtual utcb_t* get_utcb() = 0
virtual word_t get_mr(word_t index) = 0
virtual void set_mr(word_t index, word_t value) = 0
virtual word_t get_br(word_t index) = 0
virtual void set_br(word_t index, word_t value) = 0

ia32_tcb_t

virtual utcb_t* get_utcb() { ... }
virtual word_t get_mr(word_t index) { ... }
virtual void set_mr(word_t index, word_t value) { ... }
virtual word_t get_br(word_t index) { ... }
virtual void set_br(word_t index, word_t value) { ... }

tcb_t
/* all attributes */
/* all other methods /

Figure 3.4: Class tcb_t with several virtual functions, which are frequently called during
an IPC operation

I declared the architecture-specific, performance-critical member functions get_utcb,
get_mr, set_mr, get_br, and set_br in the base class as pure virtual functions and moved
their definition from the most derived class into the mix-in class. These functions are called
several times on the IPC path. All data members remained in the most derived class. The
compiler generated a vtable pointer at the start of the tcb_t object. To ensure that the

43

3 Case Study: L4Ka::Pistachio

mapping of referenced data members to cache blocks did not change, an unreferenced
member found in the first cache block was temporarily moved to the end of the structure
to make room for the vtable pointer.
Figure 3.5 shows IPC performance of an empty message transfer between threads in the

same address space for two different configurations: the unmodified kernel (baseline) and
the kernel with the tcb_t class hierarchy (hierarchy). Measurements were performed on
an Intel Pentium 4 processor with 2.8 GHz. The combined hardware costs for entering and
leaving the kernel are indicated as the dark parts of the bars.

baseline 346

hierarchy 540

Figure 3.5: Introducing a class hierarchy effectively doubles the execution time (in proces-
sor cycles) of the IPC path in the kernel.

The introduction of virtual functions adds an absolute run-time overhead of 194 processor
cycles to an IPC message transfer operation. This amounts to 56 percent overhead in
total, or to 120 percent overhead in software. The overhead can be attributed to the
non-predictable indirect calls used for invoking virtual functions.

3.4.2 Object Layout
To evaluate the influence of inheritance-dictated object-layout on microkernel performance,
I modified the tcb_t class to inherit most of its data members from various base classes,
as shown in Figure 3.6. No functions were moved to base classes, and no member functions
are virtual functions.

basic_tcb_t
space
stack

v4_tcb_t
utcb*
scheduler
my_local_id

list_tcb_t
queue_state

resources_tcb_t
resources
resource_bits

rrsched_tcb_t
ready_list
total_quantum
timeslice_length
current_timeslice
priority

ia32_tcb_t
pdir_cache

delay_tcb_t
sensitive_prio
current_max_delay
max_delay

smp_tcb_t
cpu
tcb_lock

state_tcb_t
saved_partner
saved_state
thread_state

timeout_tcb_t
wait_list
absolute_timeout

debug_tcb_t
present_list

id_tcb_t
my_global_id

ipc_tcb_t
partner
send_list
send_head

stuff_tcb_t
misc
flags
arch

tcb_t
/* no attributes */
/* all methods */

Figure 3.6: Class tcb_t inherits data members from several base classes.

The placement of data members in base classes follows a logical structure, i.e., debugging-
related members are placed in debug_tcb_t, multiprocessor-related members reside in

44

3.4 Inheritance-related Overheads

smp_tcb_t, etc. The placement of members in base classes also determines their place-
ment in the object (see Section 2.2.2.) The access behavior of operations on the derived
class, however, does not reflect the logical structure but is of a cross-cutting nature. Con-
sequently, the data members that are referenced on the IPC path are spread across the
object. Figure 3.7 visualizes the distribution of referenced data members for two tcb_t
objects involved in an IPC operation.

src

dst

Figure 3.7: Two objects of class tcb_t — memory locations accessed on the IPC path are
marked black. Addresses increase from left to right. Thin vertical lines indicate
64-byte cache-block boundaries.

The 28 bytes of the seven referenced data members in the source TCB and the 36 bytes
of the nine referenced data members in the destination TCB would fit in one cache block
per object. Instead, they are spread out over three cache blocks. As this applies to both
sender and receiver TCB, the cache footprint is four cache blocks larger than optimal. The
influence of this subobtimal object layout on IPC performance is shown in Figure 3.8.

baseline 332

class hierarchy 368

Figure 3.8: IPC performance of a baseline kernel and a kernel with a suboptimal object
memory layout due to inheritance.

The run-time overhead for an empty IPC message transfer between two threads in the
same address space amounts to 36 cycles or 11 percent.
In the IA-32 instruction set, offsets smaller than 128 Bytes can be encoded with an 8-bit

displacement, whereas larger offsets require a 32-bit displacement. Due to different offsets
of tcb_t data members in the two kernels, the assembler used different addressing modes for
some instructions accessing those members. Hence, the length of those instructions varies.
For the experiment, however, the instruction count and the instruction cache footprint of
the IPC path remained constant.

45

3 Case Study: L4Ka::Pistachio

46

4 Eliminating Portability Overheads
In the previous chapter I showed how inheritance can be used to improve the software
structure of the Pistachio microkernel along with experiments that hint at the run-time
overheads to be paid when doing so. These overheads have always been a popular argument
against the use of inheritance in performance-critical scenarios such as microkernels.
For simple classes, field reordering can maximize spatial locality by rearranging fields

according to access characteristics. However, this does not apply to classes composed using
inheritance, because the field order is dictated by inheritance. Class flattening transforms
derived classes into simple classes and thereby makes those classes suitable for field reorder-
ing. It also removes the overhead of virtual functions. A key contribution of this work is
to combine class flattening and field reordering to optimize class hierarchies for maximum
performance on a kernel’s critical path. Field reordering for kernel objects is driven by
field access patterns that are best gathered through profiling. The process of collecting
this profiling information can be aggressively tailored towards optimizing microkernel ob-
jects by incorporating knowledge about microkernel peculiarities, generating complete yet
compact information that allows to find an optimal reordering.
The remainder of this chapter describes my approach to completely eliminate the run-

time overheads of inheritance in a microkernel. Section 4.1 introduces the optimization
methodology in detail. Section 4.2 discusses class flattening as an enabling technology for
field reordering of class hierarchies. Section 4.3 presents previously unconsidered strate-
gies for field reordering, some of which are specific to kernel data structures. Section 4.4
describes a customized approach to determining field access characteristics to drive field
reordering. An example field reordering algorithm using such collected access character-
istics is sketched in Section 4.5. Section 4.6 shows how transparent flattening and field
reordering work in concert as a transparent optimization in the build process.

4.1 Optimizing Performance-Critical Classes
The memory layout of compound data structures such as structs and classes determines
the cache footprint when accessing their fields. For a microkernel, a small cache footprint
is crucial for performance of the kernel and of the system as a whole. Poor cache usage on
the kernel’s critical path results in costly cache misses in the kernel and once more in the
application to reload the evicted data.
In the light of the high number of possible target configurations of a portable microker-

nel, optimizing the memory layout of critical kernel data structures by manually reordering
their fields in the class declaration is a tedious task and the result is not portable. Fields

47

4 Eliminating Portability Overheads

accessed on one architecture may remain unreferenced on another architecture. Similarly,
one algorithm may access fields that another, alternative algorithm does not access. Fur-
thermore, the set of fields accessed may also depend on the input set, that is, on the
behavior of the applications on top of the microkernel.
The set of fields that are referenced on the kernel’s critical path depends on several

factors. The access sequence to these fields also depends on the quality of the compiler
and the optimization level: redundant loads may be avoided; independent field accesses
may be performed in different order; and field accesses may be merged or split.
On top of that, classes composed using inheritance expose properties that make field

reordering impossible altogether, as the placement of fields inherited from base classes
is governed by the inheritance relationship. However, composing classes from a number
of small configuration-specific superclasses is an elegant solution to the problem of code
selection in a portable microkernel. Code duplication can be avoided and portability and
maintainability are improved.
All overheads associated with inheritance, sub-optimal cache usage and indirect function

calls, can be eliminated with a combination of class flattening and field reordering. Class
flattening converts a class hierarchy into a single, flat class, thereby removing inheritance
and thus virtual functions and any notion of subobjects. Subsequently, field reordering can
freely arrange the fields in a cache-optimal way.
The mapping of fields to memory addresses and thus to cache blocks depends on the

order in which the fields appear in the class declaration, the inheritance relation, and
on the size of the cache blocks, which in turn may vary among different members of an
architecture family or even different implementations of the same processor.
The vast number of possible constellations and resulting optimal field placements calls

for an automated approach to optimizing performance-critical kernel data structures. The
optimization should be transparent to the programmer; a kernel developer should focus
on designing efficient algorithms and reusable code (and specialized, optimized code where
appropriate), but not fiddle with internal layouts of data structures or the cost of function
calls, both of which are details of the language implementation.
Field reordering requires information about field access patterns to arrange fields in a

cache-optimal way. Since access patterns depend on many factors including the workload
running on the kernel, the best time for precisely determining these patterns is during
the execution of the kernel in the target system. The field reordering optimization is
driven by feedback from the kernel being executed. Initial execution of the kernel under
load generates field access information that can be used to reorder fields of performance-
critical classes in subsequent, optimizing kernel builds. Knowledge about the peculiarities
of microkernels allows to tailor the process of collecting access patterns to the task of field
reordering, in particular it enables low-footprint yet full-detail traces of the critical path
to be captured that are a requirement for finding an optimal field order [16].

48

4.1 Optimizing Performance-Critical Classes

Safety of Transformation

In the closed code biotope of a microkernel, both class flattening and field reordering
can be automated if certain conditions are met: Flattening is a safe and transparent
transformation when inheritance is used only as a means to efficiently compose the most
derived class and code using the class does not make any assumptions about the class
beyond its interface. Such a requirement is also strongly supported by the principle of
encapsulation.
Field reordering is safe for classes that are not externally visible (data types for API

elements), that do not interface with predefined structures (page tables, descriptor tables,
etc.), and where no code makes static assumptions about their internal layout. Code that
automatically adapts to changes in internal layout is unproblematic.

Whole-program Optimization

Both class flattening and field reordering are whole-program optimizations by nature. All
parts of the program must use the same definition of a class to produce compatible objects.
For manageability reasons, however, most larger C++ programs — and that includes
microkernels — are broken down into many source files that are then translated separately.
Nevertheless, separate compilation does not preclude such whole program optimizations.

As long as those optimizations are deterministic and applied equally to the same classes
in all translation units, they should produce the same results. Hence the effect of a whole
program optimization is kept and objects of optimized classes in separately translated files
remain compatible.

Location of Optimization

Class flattening and field reordering can both be applied in different places: outside or
inside the compiler. Both techniques could be added to optimization frameworks already
present in todays compilers and leverage the existing infrastructure. For example, GCC
can use basic block profiling data generated with an instrumented version of a program to
optimize branches and place basic blocks optimally during subsequent compilations of the
program.
The downside of integrating the techniques into a compiler is that — unless they become

standard optimizations — they require the use of a modified compiler. Standard compilers
are often preferred over custom-build compilers. Modifying commercial compilers may not
be trivial due to lack of source access. The alternative to integrating both techniques into
the compiler is to implement them as source-to-source transformations that are applied
before compilation. Most build environments allow for such processing to be performed
before compilation.
By keeping class flattening and field reordering separate from the compiler, the opti-

mization is not tied to a particular compiler and can be combined with nearly any build
system. Therefore, the optimization described in this work performs both class flattening
and field reordering as source-to-source transformations.

49

4 Eliminating Portability Overheads

4.2 Transparent Class Flattening for Field Reordering
Inheritance defines an “is-a” relationship between a derived class and a superclass: An
object of the derived class can be treated as an object of the superclass. This implies that
fields inherited from a superclass form a subobject of the superclass within the object of
the derived class and that this subobject has the same layout as an object of the superclass.
Consequently, the freedom of placing fields in an object of a derived class is restricted by
the inheritance relationships used to compose the class.
When a derived class is flattened, however, all fields become direct members of the class.

The memory layout of a flattened (i.e., simple) class is directly related to the order in
which the fields appear in the class definition and is therefore suitable for subsequent field
reordering. In this sense, class flattening acts as an enabling technique for field reordering
of classes composed with inheritance.
This work proposes transparent class flattening, which replaces the original definition of

a class with its flattened version. The scope of the flattening transformation is thereby
limited to the class definition itself. No use place of the class must be transformed, which
greatly reduces the complexity of the flattening algorithm. The direct benefit is that no
code using the class needs to be adapted to use the flattened variant of the class, and that
existing confidence in that code is maintained.
Section 4.2.1 describes transparent class flattening and Section 4.2.2 states the precon-

ditions that enable transparent flattening. Section 4.2.3 discusses fidelity aspects of class
flattening whereas Section 4.2.4 shows how the restrictions that enable transparent flat-
tening can be enforced.

4.2.1 Transparent Flattening
All instances of class flattening in previous work create a second, flattened variant of the
class definition, which coexists with the original. To make use of the flattened variant, code
must be modified to refer to the new class name. Variable declarations must be changed
to the flat class and functions with a parameter of the class’ type must be duplicated to
also accept the flattened class.
In contrast, transparent class flattening replaces the original class definition with the

flattened variant. The original and the flattened version of the target class expose the
same interface — under the same class name. Behavior with respect to this interface does
not change either. Thus the flattened variant can be used in place of the original class.
The fact that the class has been flattened is transparent to code using the class.
Unsurprisingly, the mechanics of (traditional) and transparent class flattening are very

similar. The main difference is that inherited members are copied into the source class
instead of a newly created target class. Furthermore, the inheritance specification is re-
moved from the most derived class’ definition. Figure 4.1 illustrates the transformation of
a class by transparent class flattening.
As flattening removes inheritance, there is no need to declare member functions as virtual

functions in the target class. The keyword virtual is removed during flattening. As a

50

4.2 Transparent Class Flattening for Field Reordering

class A {
public:
 int a;
 void f() { /* A::f */ };
 void g() { /* A::g */ };
};

class B : A {
public:
 int b;
 void g() { /* B::g */ };
 void h() { /* B::h */ };
};

(a) Class hierarchy for B

class A {
public:
 int a;
 void f() { /* A::f */ };
 void g() { /* A::g */ };
};

class B {
public:
 int a;
 int b;
 void f() { /* A::f */ };
 void g() { /* B::g */ };
 void h() { /* B::h */ };
};

(b) Class B flattened transparently

Figure 4.1: Transparent class flattening modifies the most derived class. Inherited members
visible in the most derived class are copied into the class and the inheritance
specification is removed.

result, the compiler can generate direct calls to member functions and even inline them.
The runtime overhead of virtual functions is thus eliminated. Likewise, the compiler will
not include a vtable pointer in the object, eliminating the space overhead of inheritance.
Definitions of base classes can be deleted after flattening if they were used exclusively

to compose the most derived class.

4.2.2 Preconditions
Not all classes are suitable for class flattening, though. The preconditions that enable
transparent class flattening are as follows:

No dynamic polymorphism Objects of the flattened class are not compatible to objects
of a former base class. Thus, objects of the flattened class must not be treated as
objects of a base class.

No ambiguities Ambiguous members would result in conflicting definitions after flattening
that can no longer be resolved by identifying the base class the member was inherited
from. Thus, the inheritance hierarchy of the target class must not contain ambiguous
members.

No access to hidden members Flattening removes members that are hidden by a defi-
nition in a more derived class. Thus, code must not access hidden members through
identification of the respective base class.

51

4 Eliminating Portability Overheads

No partially virtual base classes If a base class appears multiple times in the inheritance
hierarchy of the target class, it must always be a virtual base class. Otherwise,
flattening would result in conflicting definitions.

A typical scenario that meets above conditions is when inheritance is used for composi-
tion of classes, i.e., with abstract hierarchies.
To enable combined class flattening and field reordering for selected classes in the Pis-

tachio microkernel, the class structure introduced in Section 3.3.2 to improve Pistachio’s
portability fulfills above preconditions. By design, those classes are composed and to be
used so as to ensure they can be flattened transparently.

4.2.3 Flattening Fidelity
Transparent class flattening replaces the hierarchical definition of the target class with
an equivalent, flat definition. Equivalence is maintained as far the interface of the class is
concerned, whereby the interface consists of member functions and fields that are accessible
without further qualification (such as scope operators.) Member functions will produce the
same results and side effects (within the language) in the flat class as they did in the original
class. To this extent, both versions of the class expose identical behavior.
Former base classes of the flattened class could be removed completely if they are not

referenced anywhere else in the code. Automating this step would require analysis of the
complete code including inline assembly fragments. It should be noted, however, that
removing unused base classes is not an inherent part of transparent class flattening.

Valid C++

Although it may seem obvious, the class must be a valid C++ class prior to flattening.
Transparent class flattening transforms a most derived class in a class hierarchy into a
semantically equivalent, flat class. This transformation can only produce acceptable output
only if the input is acceptable, too.
Furthermore, allowing a class to be valid only after flattening would defeat one of the

purposes of introducing powerful, well-known programming techniques in the microkernel
to enhance the software structure for improved readability and maintainability. Developers
would additionally have to understand the effects of class flattening, thereby adding to the
complexity of microkernel construction instead of reducing it.

Visibility

The lookup algorithm of C++ defines the visibility of entities. Entities can be hidden
behind other entities with the same name that the algorithm considers earlier. For class
flattening, two cases are relevant.
In a class hierarchy, inherited fields and functions can be hidden. Hidden fields are

shadowed by fields with the same name defined in a more derived class. Hidden functions

52

4.2 Transparent Class Flattening for Field Reordering

are overridden by functions with the same name, not only the same signature, further down
in the hierarchy.
In objects of a class constructed from superclasses, inherited yet invisible fields continue

to exist in the subobjects of the base class in the derived class. They can still be accessed
via explicit qualification through the scope operator referring to the base class and so can
hidden functions. Class flattening removes base classes and thus the possibility to refer to
members of base classes. Hidden members become inaccessible and can therefore safely be
removed. They also need not exist for compatibility of subobjects, because the target class
does not inherit any subobjects.

Access Control

Access to an inherited member is governed by the access specifier (private, protected,
public) preceding the member declaration in the class where it is defined and by all access
specifiers in the base class specifiers of subclasses.
Access to members in the flattened class must be at least as good as in the original class.

Improved access is, however, tolerable: The code must be valid with and without flattening
and so cannot rely on potentially improved access after flattening.
Taking this to the extreme, class flattening can remove all access specifiers and mark

all members public without loosing protection. Consequently, data member declarations
in the flattened class are not separated by access specifiers. This is important for the
subsequent field reordering stage as the allocation order of fields is only defined to be
sequential within the reach of one access specifier, and implementation-defined otherwise.

4.2.4 Enforcing Restrictions
The preconditions that enable transparent class flattening impose restrictions on the struc-
ture of target classes. In a microkernel, these restrictions can be enforced easily. The key
is to build the kernel twice, with and without class flattening.
Building a working kernel without the optimization ensures that the input of class flat-

tening is valid C++ according to the language definition of the compiler being used. Here,
the tendency of most compilers toward the C++ Language Specification [25] is very help-
ful. After flattening, the compiler will flag most violations of the described restrictions as
errors in the source, as they manifest in invalid C++ constructs. Any remaining cases can
be detected and flagged by the flattening process.
Any polymorphic use of the target class by client code will result in incompatible as-

signments after flattening, because the base class is no longer a base class of the target
class. Uses of the scope operator in client code will result in dangling base class references,
because the flattened class does not have any base classes. Ambiguous fields and functions
with the same signature would result in invalid code (redefinition) and are flagged by the
compiler after flattening. However, functions with the same name but different signatures
would appear as overloads of the name and may result in unexpected behavior instead of a

53

4 Eliminating Portability Overheads

compile error. Ambiguous method definitions must therefore be detected by the flattening
process. The flattening process must also flag partially virtual base classes.

4.3 Field Reordering Strategies
This section describes various factors driving field reordering that have not been considered
by previous work. These factors lead to higher optimization potential or can simplify the
field reordering algorithm. Not all factors are necessarily applicable at the same time,
depending on hardware configuration and usage scenarios. The resulting strategies may
also, at least partially, contradict each other.
For objects that span multiple cache lines, the mapping of fields to these cache lines

depends on the location of the field in the object and the location of the object relative to
the cache line boundaries. Since the offset of a field is the same for all objects of a class,
object placement/allocation is a key concern for field reordering. Three reasons support
well-controlled placement of objects.
First, when objects can be allocated at arbitrary addresses, the location of cache line

boundaries within the object is unpredictable. Packing all referenced fields tightly will
produce a layout that, in the best case, maps these fields to the minimum number of cache
lines. In the worst case it maps the fields to one cache block more than the minimum. The
minimum can only be achieved reliably when objects are aligned at cache line boundaries,
or at a constant offset to them.
Second, alignment requirements of fields determine the alignment requirement of the

containing object. To ensure proper alignment of a field in an object, the compiler places
the field at an offset that is a multiple of the field’s alignment requirement and demands
that the object is aligned accordingly.
Third, when an object is known to be aligned at its size (or the next higher power of

two), an object’s base address can be derived by masking a pointer to an arbitrary location
inside the object. This technique is very popular in kernels. For example, the L4 kernel uses
the memory behind a TCB as per-thread stack space. A mask operation yields the base
address of the current thread’s TCB from the value of the stack pointer register. Similarly,
Linux maintains a thread’s kernel stack as part of the per-thread task_struct object.
The task_struct for the currently executing thread can efficiently be found without any
memory reference by masking the stack pointer. Therefore, aligning objects at their size
(or the next higher power of two) is beneficial.
Alignment of objects at cache block boundaries can result in internal fragmentation.

For objects spanning multiple cache lines, which are the focus of this work, fragmentation
should be rather small. There is certainly a trade-off to be made between memory con-
sumption and cache performance. In a microkernel, however, the performance gained by
aligning objects at cache line boundaries may well make up for the waste of memory.
Aligning objects on at least cache block boundaries allows precise placement of fields to

minimize cache footprint.

54

4.3 Field Reordering Strategies

4.3.1 Object Roles
Previous work does not distinguish objects of the same class when reordering fields. Based
on the observation that objects of a class show similar access behavior, statistics used to
drive field reordering for a class are built from all accesses to all objects of the class. This
observation certainly holds true for programs that operate on a large number of objects
such as on nodes in a tree.
A microkernel, however, typically manipulates only very few objects during its short,

performance-critical operations, and not all instances of a class referenced during an oper-
ation necessarily have identical access characteristics. Depending on the role of the various
instances, the access pattern to fields in objects of the same class may be very differ-
ent. Consequently, the sets of accessed fields may differ largely across instances, justifying
separate treatment of instances for field reordering.

YX

a

c

a

b

c

d

YX

a

c

a

c

b

d

Figure 4.2: Although objects of the same class have a common layout, the cache footprint
for accessing them can be minimized by field reordering if the objects’ access
patterns are considered separately.

The extreme but illustrative example in Figure 4.2 shows the effects of keeping objects
separate. Assume an operation on two objects, X and Y, of the same class references fields
a, b, c and d in the first object and only fields a and c in the second object. For purpose of
illustration, the fields be each half a cache line in size and accessed in alphabetic order. A
straightforward approach would pack fields in sequential order a, b, c, and d. The resulting
layout will use two cache lines for each object. Differentiating between objects, the fields
could as well be packed a, c, b, d, so that a and c map to one cache line and b and d to a
second. This layout would use only one cache line for object Y.
Less extreme cases can be found in the microkernel’s critical operations. For example,

analysis of a particular IPC system call in the L4Ka::Pistachio microkernel reports nine
fields accesses in the destination thread control block but only six of these fields are accessed
in the source thread control block.

4.3.2 Field Access Mode
The set of fields of a data structure that are referenced during an operation can be divided
into the two subsets of fields that are only read and fields that are written. Fields that are

55

4 Eliminating Portability Overheads

read as well as written belong to the written set.
In a write-back cache, write accesses only update the cache, marking the corresponding

cache line as dirty. In contrast to a clean line, i.e., a cache line that was not the target of a
write hit, the contents of a dirty line must be written back to memory before the line can
be replaced. This implicit write-back operation adds to the latency of the miss causing
the replacement. Write-back operations may also be triggered by other bus agents such as
another processor or an I/O device accessing the memory locations cached in a dirty line.
The number of cache lines marked dirty by an operation has no direct influence on

this operation’s execution time (assuming no self-interference occurs.) Instead, deferred
write-back of dirty lines will penalize completely unrelated code. While not beneficial for
the current operation, minimizing the number of dirty cache lines may improve overall
performance as it reduces pressure on the memory hierarchy.
A minimum number of dirty lines can be achieved by packing the written fields closely

together within the referenced fields and aligning them on a cache line boundary. For
example, analysis of a particular IPC system call in the L4Ka::Pistachio microkernel reports
nine fields accessed in the thread control block but only three of these fields are written.

4.3.3 Field Alignment
Proper alignment of fields can be a matter of performance or, worse, a matter of correctness.
For example, optimization guidelines for IA-32 processors [23] recommend to align all 32-,
64-, and 128-bit data such that their base addresses are a multiple of four, eight, and 16,
respectively. Accesses that span cache line boundaries are likely to incur large penalties
(cache line split). On the ARM processor [3], the LDR instruction will rotate the 32-bit
value read from an unaligned memory location according the lower two bits of the address.
The STR instruction, however, simply ignores the two lower bits of the address. Accessing a
32-bit word on an unaligned address will thus read a garbled value and store to a different
location. In some system configurations, unaligned accesses may also trigger alignment
exceptions. In general, primitive data types should be naturally aligned, that is, such that
their base address is a multiple of their size (or the next higher power of two.)
Strict natural alignment of fields is unnecessary as long as all accesses are aligned. For

example, a 64-bit integer can safely be 4-byte aligned when it is only ever accessed in 32-bit
words. When the architectural word width is smaller than the field, operations are often
executed as multiple operations on parts of the field. Some instruction set extensions, such
as AMD’s 3D!Now and Intel’s SSEx, contain instructions to efficiently manipulate larger
words or multiple words at once, and optimizing compilers make use of these instructions
for manipulating wide words.
Analyzing the kernel’s critical path can not guarantee that fields are never accessed in

larger chunks anywhere else where improper alignment may result in incorrect behavior or
exceptions being raised. Slight performance penalties due to unaligned accesses may be
neglected if they happen off the critical path. Yet, the requirement for natural alignment
can still be relaxed when the generated code is known to be safe, i.e. by telling the compiler
to not use complex instructions.

56

4.4 Determining Field Access Patterns

Avoiding multimedia instructions in the kernel may also be beneficial for other reasons,
since these instructions usually utilize resources of the floating point unit (FPU). The
FPU is often multiplexed (lazily) among user threads. Using it in the kernel would involve
expensive state management that outweighs the potential performance gains by orders of
magnitude.
Relaxed alignment requirements for large fields increase the flexibility in placing these

fields and may simplify the placement algorithm or allow a higher level of optimization.

4.3.4 Locks and Data
Often a lock variable is stored with the data it protects. In Linux (version 2.6.16) many
examples can be found, such as in block device request queues, in the directory entry cache,
in socket structures, and in network device driver structures. Java implementations store
object locks in the object header or with the fields of the object. The multiprocessor version
of the L4Ka::Pistachio kernel stores a lock for synchronized access to thread control blocks
in the thread control block itself. A spin lock’s contention rate could be used to determine
whether a lock is preferably placed in the same cache-line as the data it protects or in a
different one to avoid false sharing.
A high-contention lock variable is frequently read by the processors trying to acquire the

lock. The cache line containing the lock variable is usually marked shared in all caches.
When the processor holding the lock frequently writes data to this cache line, the line is
first invalidated in all other caches to exist exclusively in this processor’s cache. Then the
processor updates the line with the new value, but immediately after that the line will be
written back to memory because the other processors try to read the lock variable and
experience a cache miss. Therefore, placing frequently written data in the same cache line
as the high-contention lock protecting it will result in cache-line bouncing.
In contrast, a low-contention lock variable usually resides in a cache line marked exclusive

on the processor that holds the lock or held it last, or it is not in any cache. A processor
acquiring the lock will fetch the cache line and mark it exclusive. Placing data that is
protected by the lock in the same cache line will automatically transfer that data to the
processor that is about to modify it.
Thus, a high-contention lock variable should not be stored in the same cache line as

the data it protects, while it may be beneficial to store a low-contention lock variable
along with the data it protects. Which fields of a data structure a lock in the same data
structure protects can be specified using annotations. Alternatively, such information may
be inferred automatically from code by static analysis [18].

4.4 Determining Field Access Patterns
Reordering fields for optimal cache usage requires precise information about field accesses.
The actual code that accesses fields is not very interesting; the memory accesses it generates
carry the required information. To drive optimization as described in the previous section,

57

4 Eliminating Portability Overheads

field access information must include the order in which fields are accessed, the access
mode (read or write), and the access width.
This section describes how field access patterns of performance-critical microkernel op-

erations can be determined, and how they can be determined precisely and efficiently.
First, several techniques for analyzing program behavior and their suitability for obtain-
ing field access information are discussed in Section 4.4.1. Then, Section 4.4.2 describes
characteristics of microkernels in the light of memory access tracing. In Section 4.4.3 a
profiling approach to determining field access patterns for selected classes in a microkernel
is discussed.

4.4.1 Method Review
Several techniques can be used to analyze program behavior. The following list briefly
describes each technique and discusses its suitability for the problem of determining field
access information for the critical path in a microkernel.

Static source code analysis The data and control flow information produced by analyzing
the source code can be used to identify all fields of a particular class that are possibly
accessed during the execution of a particular function.
Static analysis cannot identify the critical path in the kernel. The reported set of
accessed fields may be much larger than the set of actually accessed fields, because
the latter can be very dependent on the input, i.e., on the usage scenario of the
kernel.
Static source code analysis can also not determine the exact sequence of field accesses
because, to a large degree, this sequence depends on the compiler. Optimization may
reorder independent field accesses compared to their order in the source code. The
effective width of field accesses is also compiler-dependent. For example, when the
code reads several bits in a group of bit fields, the compiler could generate many
small byte-sized loads for every bit or a single wide load and extract the bits from
the register one by one.
Source code analysis is usually limited to one programming language, or at least
to programming languages at the same level. It fails to analyze inline assembly
and assembly code that implements system call and exception handler stubs or even
complete system calls.
As such, static source code analysis can only provide incomplete and conservative
estimates of field access information in a kernel.

Sampling Event-based or random sampling uses hardware to generate deterministic or
random events while the code to be analyzed is executing. It lends itself to analyzing
a target system under a realistic workload. Random sampling can identify frequently
executed code paths by recording the instruction pointer at the time of the event.

58

4.4 Determining Field Access Patterns

Event-based sampling can identify hot spots for resources provided the resource can
trigger events.
Sampling imposes a low runtime overhead and is unintrusive as far as the target code
is concerned. However, it requires substantial support infrastructure in hardware and
software: hardware to trigger events at arbitrary times, the trigger event handler,
and a facility to extract sampling data from the target system.
Since events are asynchronous to the instruction stream under analysis, context infor-
mation must be extracted by the event handler. To determine the target of memory
accesses made by the analyzed code, the handler must identify and decode the current
instruction at the time of the event and calculate the addresses of memory operands
based on register contents at the time of the event. Event-based sampling is not
necessarily precise, especially in processors with many pipeline stages.
Logging data is collected inside the running kernel on the target system. Thus, the
data must be extracted from the target system to be available to the optimization
process on the build system. Data can be extracted either by the system running on
top of the instrumented kernel or by a remote system via a kernel debugging facility.
Both approaches require adding substantial amounts of infrastructure to the target
system.
While a rich set of performance counters can be found in many server and desktop
processors, their availability is often rather limited in embedded processors. Further-
more, the kernel may export them to applications or use them for its own purposes,
so they may not be available for sampling. The latter is especially true for timer
devices.
Statistical sampling is best used for analyzing hot spots of resource usage or hot paths
in programs. However, due to its statistical nature it is unsuitable for recording exact
traces of program execution in general and memory references in particular.

Instrumentation Instrumentation adds code to synchronously invoke logging functions
for interesting events during execution. These events can be function entry and exit,
basic block boundaries, but also memory references. Such code can be added by the
compiler during the build process or later by binary instrumentation tools such as
Atom [54], EEL [31], and Etch [48]. Due to its synchronous nature, instrumentation
can provide exact information to the logging facility.
Instrumentation can impose significant run-time overhead, depending on the level of
detail required. The instrumented code can also be much larger than the uninstru-
mented version. The logging infrastructure must be reachable from the instrumented
code. Usually the functions are called directly and must thus reside in (and pollute)
the same space as the target code.
Like with sampling, logging data is accumulated in the target system and needs to
be extracted from there before it can be used for field reordering. Logging code
generated by instrumentation tools often assumes to be run as an application on an

59

4 Eliminating Portability Overheads

operating system, e.g., it opens files or registers handler functions to be executed at
program exit.

Simulation Full system simulators such as SimOS [49], Simics [62], QEMU [4], or Bochs [32]
can execute the kernel with its intended workload on top. An extensible simulator
allows to interpose on almost arbitrary points in the simulation, for example at the
memory interface of the processor core. Assuming a faithful simulation, all memory
accesses can be captured in exactly the order and width like a real target processor
would issue them.
The simulator can run an unmodified kernel and workload. However, the slowdown
due to simulation can be enormous. A simulator may also not be able to sufficiently
represent the target system, for example exotic devices.
Using a simulator for the analysis requires that the target system is available as a
simulation target. Simics is a good example as it offers a wide variety of simulation
targets. The simulator API is consistent across targets, so a customized profiling
extension can be reused.
Field access information can be extracted from the simulator in a format suitable
for optimization. Invocation of the simulator can be made a part of the build and
optimization process.

Profiling the actual kernel with workload on top has a major advantage over analyzing
the source code: the actual programming language, compiler, optimization level, etc. used
to generate the kernel binary are irrelevant. They are part of the kernel build process,
but they are of no concern for the process of gathering field access information. What is
analyzed is the combination of all, i.e., what will be running on the target system.
A slowdown of the target system due to run-time overhead of profiling may result in false

identification of critical paths. For example, a network server as workload may experience
massive packet losses and behave differently, marking other paths as critical. In such cases
replacing the actual workload with a workload simulator causing a representative mix of
kernel activities could help. System call and event statistics collected with low overhead
in an instrumented kernel executing the workload on real hardware would fuel such a
workload simulator.
In summary, of the methods reviewed above, executing the kernel in a full system simu-

lator is the most suitable method for collecting field access information because it provides
precise information about the memory references on the critical path.

4.4.2 Microkernel Specifics
The key to reducing the amount of memory trace data that needs to be collected is to
aggressively customize the tracing process for the purpose of collecting field access infor-
mation in a microkernel. That can be achieved by incorporating knowledge about the
microkernel. Part of this knowledge is inherent in the way microkernels are used, part

60

4.4 Determining Field Access Patterns

is available in the kernel source and/or configuration information. This section presents
observations about microkernels that can be used to tailor the tracing process to field
reordering in a microkernel.

Processor Mode

Kernel objects store state information pertaining to API objects or kernel-internal resource
management. Kernel objects are accessed by kernel code.1 That is, code that accesses
kernel objects is executing in the processor’s privileged mode.
Consequently, for collecting access information to kernel object fields the tracing facility

needs to consider memory accesses only while the processor is executing in privileged mode.
For an instrumented kernel this restriction is automatic, because only kernel code is

instrumented to log accesses with the tracing facility. When simulation is used, the memory
tracing simulator extension can ignore any accesses in unprivileged mode. Determining the
simulated processor’s privilege mode is a standard feature of a simulator API.2

Path Length

A microkernel is the lowest software layer in a microkernel-based system. As such, it acts
as a service provider to applications. The kernel offers its services through system calls.
Performance-critical system call handlers are rather short, typically in the order of tens
or hundreds of instructions. Microkernel invocations can be thought of as separate, short
runs of the program “microkernel”, interspersed with longer executions of user code. With
a limited code path length like this, a complete trace of one kernel invocation is limited in
size, too. Furthermore, such short traces expose a high level of similarity. For example,
a trace of an IPC system call transferring three words between threads A and B will not
differ from a trace for that IPC call between threads C and D, except for the thread
identifiers and hence the respective kernel objects being referenced.
The short path length through the kernel, the resulting small trace size for one kernel

invocation, and the high similarity of traces of kernel invocations suggest online processing
of the trace at the end of the path rather than after many invocations at the end of a
tracing session. Such short traces are similar in spirit to the hot data streams [13] with
the difference being that they are readily identified by the start and end of kernel code
execution whereas hot data streams are extracted from a program’s complete data reference
trace.
The start and end of a kernel invocation are detected the easiest by the memory tracing

approach using a simulator. An instrumented kernel would require annotations of all
possible kernel entry and exit points to find the start and the end of a trace.

1The kernel may export kernel objects so that unprivileged code can access them. However, optimizing
user-level accesses to kernel objects is outside the scope of this work.

2Simics exposes the SIM_processor_privilege_level() function [63], bochs defines the function get_CPL,
and QEMU uses a masking operation on a bitfield of flags.

61

4 Eliminating Portability Overheads

Address Ranges

The target classes for field reordering are known in advance and so is the size of objects
of these classes. Addresses of statically allocated kernel objects are known at kernel build
time. Addresses of dynamically allocated objects can only be determined at run-time, but
may be easy to track in certain cases. For example, almost all L4 kernels store thread
control blocks, the performance-critical kernel objects, in an array. At the time of writing,
only one L4 kernel [40] allocates thread control blocks dynamically from the kernel heap.
However, it then stores their addresses in a statically allocated table.
When address ranges of objects of target classes either are known in advance or can

be determined easily at run time, as is often the case, the trace data can be filtered
immediately to contain only references to objects of target classes.
Addresses of dynamically allocated objects in a running kernel can be found by monitor-

ing updates to statically allocated indirection tables (like those described above.) Address
ranges of statically allocated objects can be statically configured in the tracing facility.

Number of Objects

Often-called and thus performance-critical microkernel calls typically reference only very
few kernel objects. More complex operations involving many kernel objects, such as address
space deletion, tend to be invoked less frequently. For example, a simple IPC message
transfer between two threads in the L4Ka::Pistachio microkernel involves two, at most
three thread control blocks. The pingpong benchmark running on the kernel references at
most four thread control blocks during one kernel invocation, in the startup phase when
address spaces are created.

4.4.3 Precise Tracing for Field Reordering
Full memory reference traces of programs are precise in the sense that they do not omit
information. Usually they are huge (in the multi-Gigabyte range for a few seconds of pro-
gram execution) and require post-processing to extract the interesting information. They
often contain a high percentage of useless information. In contrast, field affinity graphs [12]
and member transition graphs [28] store only pairwise temporal information about field
accesses. Prior research has shown that such pairwise information is theoretically insuffi-
cient for finding an optimal field placement [44], and has suggested to keep complete traces
when the sequence of memory references is short.
The remainder of this section describes the design of a tracing facility for collecting field

access information to drive field reordering for selected target classes in a microkernel. The
tracing facility performs aggressive online compression of memory reference trace data. It
heavily exploits the microkernel specifics described in Section 4.4.2 to customize tracing.
The facility collects only the information that is necessary to drive field reordering with
the (additional) strategies described in Section 4.3.

62

4.4 Determining Field Access Patterns

For static customization, the tracing facility uses information from various sources such
as definitions in the kernel source, addresses from the kernel binary’s symbol table, and
debug information from the kernel binary. These are embedded when the tracing facility
is built.
The tracing facility produces sequences of field references for different kernel invocations

and their frequency of occurrence, whereby invocations that differ only in the addresses
of referenced objects are considered identical. These sequences contain all the necessary
information for field reordering.

Address Filtering and Type Inference

Memory references are filtered by processor privilege mode and address ranges as detailed
in the previous section, so that the tracing facility receives only memory references to
kernel objects that are objects of a target class for field reordering.
Since address information of statically and dynamically allocated, typed kernel objects

is used to filter memory references, the type of the kernel object that was referenced can
be inferred from the address range the reference was made to. Along with the information
about the memory access, the address filter delivers the base address and the type of the
referenced object.
To find references to objects in (potentially padded) arrays of objects, address filtering

employs a number of range-stride-size checks. The address is first compared with the lower
and upper bounds of the array, then the offset into the array is taken modulo the distance
between array elements, the stride, and compared with the object size. Address ranges
occupied by single objects, that is, static objects and dynamically allocated objects, are
stored in data structures supporting fast lookup. Addresses of statically allocated objects
(that are known at build time) are inserted at the start of tracing.
Supporting large padding between objects in an array is necessary as this space is often

used for different purposes: Most L4 kernels keep the kernel stack of a thread in the unused
part of the 1KB or 2KB block that is allocated for the TCB in the linear virtual array of
TCBs. Likewise, the Linux kernel stores a thread’s kernel stack in unnamed space behind
the thread control structure, for which 8KB are allocated in total.

Address Abstraction

Accesses to fields of different objects need to be tracked separately to allow optimizing for
differing field usage patterns. However, the actual addresses of referenced objects are not
relevant for field reordering.
To distinguish between the kernel objects that are used during a microkernel invocation

while abstracting from their addresses, the tracing facility assigns sequential object num-
bers to objects as they are encountered. Objects with different addresses that are used in
the same place in similar invocations will be assigned the same object numbers: For exam-
ple, the first TCB referenced during an IPC operation in the L4Ka::Pistachio microkernel
belongs to the target thread of the send phase, while the second TCB referenced belongs to

63

4 Eliminating Portability Overheads

the source. Substituting object numbers for object addresses as described abstracts from
the actual object in favor of an “object role.”
The tracing facility can store addresses of objects sequentially in an array, using the

array index as the object number. Linear search is efficient because typically the expected
number of referenced objects during one performance-critical microkernel invocation is very
small (2-3). Kernel invocations that reference more objects than fit into the statically sized
array are labeled as problematic and ignored or reported to the kernel builder.
Memory references are converted to quadruples (n, o, s,m), with n being the number of

the distinct object instance encountered since kernel entry (not the actual address of it),
o the offset of the reference into that instance, s the access size, and m the access mode
(read vs. write.)

Per-class Sequences

Using the type information from address filtering, quadruples are recorded in sequences of
accesses since the kernel was entered. For every field reordering target class a sequence of
references to objects of that class is built.

A

B

R

R
W

W

(0,1,1,r), (1,0,1,r), (1,1,1,w), (0,4,1,w)

(0,1,1,r)

(1,0,1,r)

(1,1,1,w)

(0,4,1,w)

time

ad
dr

es
se

s

Figure 4.3: Two objects (A and B) of a class, a time line of references to fields of these
objects (R=read, W=write) between kernel entry and kernel exit, and the
resulting quadruple sequence.

When exiting the kernel (or on the next entry), the sequence is compared with previously
recorded sequences. On a match, a counter associated with the matching sequence is
increased. Otherwise, the sequence is added to the list of known sequences with a counter
value of one. Runaway sequences of long-running operations in the kernel (idle loop, kernel
debugger, etc.) are cut off when reaching an unreasonable length. For example, sequences

64

4.5 Field Reordering Algorithms

recorded in the L4Ka::Pistachio microkernel during a run of the pingpong IPC benchmark
are between 2 and 85 quadruples long.

Sequence Weights

The value of an access sequence’s counter in relation to the sum of all counters represents
the weight of that access sequence in the profile. Without information about the actual
code paths taken, the sequences describe precisely the access patterns to fields in the class
and the probability of the pattern during the tracing session. The sequence with the highest
weight should be used to determine a new field ordering.
A sequence with a lower weight may be a subset of a sequence with a higher weight in

terms of field footprint. That is, optimization goals do not contradict, and optimizing for
the latter also optimizes for the former, although potentially not as much as possible. By
comparing only the footprint, not the sequence of accesses, inclusion indicates a possibility
for merging both sequences, thereby further increasing the weight of the more frequent
sequence.

4.5 Field Reordering Algorithms
Section 4.3 discussed a number of strategies for placing fields in objects. These strategies
can be incorporated into algorithms for finding an optimal member order based on the
precise field access information collected by the tracing approach described in the previous
section. Which strategies should be applied, and with what priorities in case of conflicts,
depends to a large extend on the hardware configuration (e.g., caching strategies, allocation
policies) as well as the direct and indirect costs of accesses (e.g., access latency, delayed
background operations.) Devising a generic algorithm that covers all scenarios is beyond
the scope of this work. Therefore, this section merely presents an example of a field
reordering algorithm.
The following algorithm targets a scenario with a single object of the target class being

accessed on the critical path. The algorithm further assumes a write-back cache, i.e.,
modified cache lines are more expensive than unmodified lines due to the delayed write-
back operation. All fields of the target class that are modified constitute the rw set; all
fields that are only read constitute the ro set.

1. Move the rw set to the start of the class definition.

2. Move the ro set behind the rw set.

3. Order the members of each set by decreasing field size.

4. Fill any alignment-related gap between the two sets by moving suitably-sized mem-
bers of the ro set to the start of the ro set.

65

4 Eliminating Portability Overheads

The result is a cluster of all referenced members at the start of the (cache-line aligned)
object. At the start of this cluster, which maps to the minimum number of cache lines, the
modified members form another cluster, which maps to a minimum number of dirty cache
lines, as shown in Figure 4.4.

written read unreferenced

dirty clean not in cache not in cache

Figure 4.4: Field groups after reordering

4.6 Optimization Process
The optimization proposed in this chapter comprises transparent class flattening followed
by field reordering, whereby field reordering is driven by profiling data collected from a
previous execution of the kernel to optimize. Figure 4.5 illustrates the various stages of
the optimization process.

Intermediatesource codeBinary
Modularsource code Memberoffsets

weaveflattenbuild Memoryaccess tracerun(simulate)
Optimizedsource codeOptimizedbinarybuildreorderTarget cacheconfiguration

Figure 4.5: The optimization process

First, the modular source code that uses inheritance to compose kernel objects from
a number of small, configuration-specific classes is preprocessed and target classes are
flattened.

66

4.6 Optimization Process

The resulting intermediate source code is then built to produce a kernel binary. During
the build process, information such as the offsets of fields in target classes is extracted.
The kernel with the envisioned workload is executed in a simulator to obtain field access
information for those classes that should have their fields reordered.
Field access information, field offsets, and information about the target system’s cache

such as the cache line size drive the field reordering process that rewrites the declarations
of target classes in the intermediate source code.
Finally, the rewritten, optimized source code is built to produce a kernel binary that

uses optimized field placements. The intermediate source code is not stored between both
kernel builds but recreated instead. Reordering is only active during the second, optimizing
build when the necessary data is available.
The combination of class flattening and field reordering also lends itself to optimizing

aspect-oriented code. Weaved code could thus also serve as input to the flattening process.
The weaving process typically includes a preprocessing phase itself so that the preprocessor
then need not be run prior to flattening.

Transparent Optimization
A kernel developer should not need to run flattening or reordering tools separately. Instead,
they should be an integral part of the build process and thus become a mostly transparent
optimization. Applying both optimizations during every build run adds only minimal
overhead, allowing them to be “always-on”.
Class flattening and field reordering are best applied after preprocessing the source code,

as shown in Figure 4.6. Depending on the actual build system, the compiler driver is
launched such that it either invokes the three stages in place of the preprocessor or assumes
an already preprocessed source with the three stages being run prior to compiler invocation.

preprocessor

flattener reorderer

compiler assembler

Figure 4.6: The standard build process for a source file is extended by class flattening and
field reordering between the preprocessing and the compilation stage.

In the Pistachio microkernel, the selection of classes that are good candidates for opti-
mizing is portable across all configurations. Therefore, the list of classes to be optimized
can be set statically in the build environment, so that the common kernel developer does

67

4 Eliminating Portability Overheads

not need to be concerned with it. Input for field reordering can be picked up automatically
by the reordering stage once the kernel has been profiled.

68

5 Evaluation and Discussion
The optimization technique described in this thesis is aimed at enabling object-oriented
programming in microkernels without negatively impacting their performance. A kernel
with a class hierarchy that has been optimized should therefore be compared with the
original kernel, which does not use inheritance.
Evaluation of the optimization technique was performed in the context of the Pistachio

microkernel. A microbenchmark reveals the impact of the optimization on the kernel’s
cache footprint and IPC performance. When an optimization is to be performed the costs
of the optimization must be considered as well. Such costs include the application costs of
the optimization, but also those to create and maintain the optimization tools.
The hardware and the software tools that were used to perform the evaluation are de-

scribed in Section 5.1. Section 5.2 evaluates the effectiveness of the proposed optimization
technique in terms of function call overhead, cache footprint and execution performance
of the kernel’s IPC path; it also discusses side effects of the technique. The costs of the
automated optimization technique are discussed in Section 5.3, followed by a comparison
with manual optimization in Section 5.4.

5.1 Evaluation Environment
Evaluation of the optimization technique involved measuring microkernel performance on
hardware as well as analyzing the tools that perform the various steps of the optimization
process. In this section, I first describe the hardware used for carrying out the experiments
and then briefly introduce the tools.
Except for Section 5.2.1, the system used for the performance analysis contains a 3.6GHz

Intel Pentium 4 processor with a 16KB write-back L1 data cache and a trace cache with a
capacity of 12Kµops. The shared L2 cache of 2MB is sectored with a line size of 64Bytes
and two lines per sector. Furthermore, the system contains 2GB of PC-4300 266MHz
DDR2 main memory. For this hardware, Table 5.1 lists the cost of memory accesses and
kernel entry and exit operations in processor cycles. Memory latencies were measured with
the CPU-Z tool [61]. Kernel entry and exit use the SYSENTER and SYSEXIT instructions,
respectively.
Profiling runs to determine access patterns for member reordering and the cache anal-

ysis were executed in the Simics full-system simulator [62], version 3.2.17. Simics offers
simulation targets for many architectures and popular platforms. It has a well-documented
API [63] which can be accessed from modules written in C or Python.

69

5 Evaluation and Discussion

Operation Cycles
L1 hit 4
L1 miss, L2 hit 30
L2 miss 318
kernel entry+exit 183

Table 5.1: Costs of various operations in terms of processor cycles.

Performance of the microkernel is evaluated by measuring IPC performance with the
pingpong IPC microbenchmark, in which two threads send messages back and forth and
measure the round trip time. Those threads can reside in the same address space or
in different address spaces. Throughout the benchmark, the length of the messages is
increased. For each message size, the benchmark reports number of processor cycles for a
single message transfer (i.e., half the number of cycles for a round trip) averaged over a
large number of transfers.

The Class Flattening Tool

Class flattening is implemented as a source-to-source transformation in a stand-alone class
flattening tool called collapse, which is described in more detail by Oberländer [41].
collapse modifies the declaration of classes whose names are specified via command line
options. It performs the following steps:

1. The input file is parsed into an abstract syntax tree (AST). The parser is based
on the GCC grammar. Using the C AST library libcast, it creates an internal
representation of the source code that can be easily manipulated: Duplicating or
moving code are operations on subtrees, and renaming identifiers (e.g., class names)
involves only replacing a string pointer.

2. Various visitors walk the AST to perform the following operations: They determine
the class hierarchy, clone base class members into the target class, remove the keyword
virtual, adjust scope names of stand-alone members, remove the inheritance specifier
and optionally any base classes.

3. Another visitor then writes the textual representation of the updated AST as C++
source code into the output file.

The class flattening process operates on preprocessed source code and is therefore to be
executed between the preprocessing and the compilation stage.

The Profiling Extension

The profiling simulator extension collects data member access characteristics for target
classes during execution of the kernel under workload. It is written in C and interfaces

70

5.1 Evaluation Environment

with the Simics API. It refers to header files from the Pistachio kernel source tree to
statically configure address ranges, for example, for TCBs.
The extension interposes at the interface between the processor core and the memory

hierarchy where it can snoop all memory accesses generated during program execution. It
does so by registering a function that is invoked for every memory access with information
about the direction (read vs. write), the cause (data vs. instruction), the logical and the
physical address, and the size of the access.
Accesses during one kernel invocation are filtered by processor mode and address range

as described in Section 4.4.3. Actual addresses are abstracted into an object number in the
current invocation and an offset. Every access to an object of a target class is stored as a
quadruple (object number, offset, size, read or write) in a per-class sequence. The sequences
are recorded and eventually processed at the end of the invocation, i.e., when switching
back to user mode. The profiling extension keeps track of distinct access sequences and
counts their occurrences.

Paths recorded: 17722
Paths dropped: 0
 1 0,128,4,r 0,128,4,r 0,128,4,r 1,0,4,r 1,0,4,w 1,128,4,r 1,0,4,r 1,0,4,w 1,12,4,w 1,128,4,w 1,16,4,w 1,180,4,w 1,20,4,w 1,176,4,w
 1,0,4,w 1,4,4,w 1,24,4,w 1,184,4,w 1,188,4,w 1,192,4,w 1,36,4,w 1,72,4,w 1,88,4,w 1,92,4,w 1,80,4,w 1,84,4,w 1,96,4,w 1,100,4,w
 1,112,4,w 1,116,4,w 1,122,2,w 1,120,2,w 1,28,4,w 1,124,4,w 1,4,4,w 1,128,4,w 1,32,4,w
 1 0,128,4,r 0,128,4,r 1,0,4,r 1,0,4,w 1,128,4,r 1,0,4,r 1,0,4,w 1,12,4,w 1,128,4,w 1,16,4,w 1,180,4,w 1,20,4,w 1,176,4,w 1,0,4,w 1,4,4,w
 1,24,4,w 1,184,4,w 1,188,4,w 1,192,4,w 1,36,4,w 1,72,4,w 1,88,4,w 1,92,4,w 1,80,4,w 1,84,4,w 1,96,4,w 1,100,4,w 1,112,4,w 1,116,4,w
 1,122,2,w 1,120,2,w 1,28,4,w 1,124,4,w 1,4,4,w 1,128,4,w 1,32,4,w
 2 0,128,4,r 0,128,4,r 1,0,4,r 1,128,4,r
 2 0,128,4,r 0,128,4,r 1,0,4,r 1,0,4,w 1,128,4,r 1,0,4,r 1,128,4,r 1,128,4,r 1,12,4,r 1,4,4,r 1,128,4,r 1,128,4,r 1,4,4,r 1,12,4,w
 1,0,4,r 1,8,2,w 1,128,4,r 1,32,4,w 1,12,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r
 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,28,4,r 1,28,4,w 1,16,4,w 1,20,4,w 1,12,4,r 1,176,4,w 1,180,4,w 1,124,4,w 1,0,4,r
 1 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 0,36,4,r 1,72,4,r 1,72,4,w 0,68,4,w 0,64,4,w 0,36,4,w 0,20,4,w 0,16,4,w 0,24,4,r 0,32,4,r 0,28,4,w
 0,16,1,r 0,36,1,r 0,48,4,r 0,112,4,r 0,52,4,w 0,48,4,w 0,36,4,r 0,36,4,w 1,16,1,r 1,4,4,r 1,32,4,r 1,28,4,r 1,24,1,r 1,132,4,r
 1,132,4,w 1,24,4,r 1,180,4,r 1,12,4,r 1,140,4,r 1,144,4,r 1,148,4,r 1,152,4,r 1,176,4,r 1,20,4,w 1,16,4,w 1,176,4,w 1,180,4,w
 1 0,12,4,r 0,72,4,r 1,16,4,r 1,20,4,r 0,0,4,r 1,16,4,w 0,16,4,w 0,24,4,r 1,4,4,r 1,32,4,r 0,32,4,r 0,28,4,w 1,28,4,r 1,24,4,r 1,36,1,r
 1,36,4,r 1,64,4,r 0,72,4,w 1,68,4,w 1,64,4,w 1,36,4,w 0,20,4,w 0,12,4,r 0,176,4,r 0,16,4,w 1,16,4,w 1,12,4,r 0,112,4,r 1,112,4,r
 0,36,4,r 1,12,4,r 1,4,4,r
 1 0,12,4,r 1,0,4,r 1,16,4,r 0,16,4,w 0,20,4,w 0,24,4,r 0,32,4,r 0,28,4,w 2,16,1,r 2,4,4,r 2,32,4,r 2,28,4,r 2,24,4,r 2,16,4,w 2,20,4,r
 2,12,4,r 2,4,4,r
 1 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 0,12,4,r 1,12,4,r 1,12,4,r 1,176,4,r 1,16,4,w 0,16,4,w 0,12,4,r 1,112,4,r
 0,112,4,r 1,36,4,r 1,112,4,r 1,48,4,w 0,52,4,r 1,52,4,w 0,52,4,r 0,48,4,w 0,52,4,w 1,36,4,w 1,112,4,r 1,112,4,r 0,12,4,r 0,4,4,r
 1 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 0,12,4,r 1,12,4,r 1,12,4,r 1,176,4,r 1,16,4,w 0,16,4,w 0,12,4,r 1,112,4,r
 0,112,4,r 1,36,4,r 1,112,4,r 1,48,4,w 0,52,4,r 1,52,4,w 0,52,4,r 2,48,4,w 0,52,4,w 1,36,4,w 1,112,4,r 1,112,4,r 0,12,4,r 0,4,4,r
 1 0,12,4,r 0,72,4,r 0,16,4,w 0,20,4,w 0,24,4,r 0,32,4,r 0,28,4,w 0,16,1,r 0,36,1,r 0,48,4,r 0,112,4,r 0,48,4,r 0,52,4,r 1,52,4,w
 0,52,4,r 2,48,4,w 0,36,4,r 0,36,4,w 1,16,1,r 1,4,4,r 1,32,4,r 1,28,4,r 1,128,4,r 1,12,4,r 1,180,4,w 1,16,4,w
 32 0,128,4,r 0,128,4,r 0,16,4,r 0,20,4,w 0,12,4,r 0,140,4,w 0,144,4,w 0,148,4,w 0,152,4,w 0,156,4,w 0,20,4,r 0,176,4,w 0,16,4,r 0,180,4,w
 0,12,4,r 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 0,12,4,r 1,12,4,r 1,12,4,r 0,20,4,w 0,16,4,w 0,24,4,r 1,4,4,r 1,32,4,r
 0,32,4,r 0,28,4,w 1,28,4,r 1,128,4,r 1,24,4,r 1,36,1,r 1,16,4,w 1,20,4,r 1,12,4,r 1,4,4,r
 32 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 0,16,4,w 1,16,4,w 1,0,4,r 0,20,4,w 0,160,4,w 1,12,4,r 0,12,4,r 1,12,4,r 0,12,4,r
 1,12,4,r 0,12,4,r 1,128,4,r 0,128,4,r 0,24,4,r 0,36,1,r 0,132,4,r 0,132,4,w 1,12,4,r 0,72,4,r 0,16,4,w 0,20,4,w 0,24,4,r 1,4,4,r
 1,32,4,r 0,32,4,r 0,28,4,w 1,28,4,r 1,128,4,r 1,24,4,r 1,16,4,w 1,20,4,r 1,12,4,r 1,4,4,r 1,12,4,r 1,140,4,r 1,144,4,r 1,148,4,r
 1,152,4,r 1,176,4,r 1,20,4,w 1,180,4,r 1,16,4,w 1,156,4,r 1,176,4,w 1,180,4,w
 2 0,128,4,r
 1 0,12,4,r 1,0,4,r 1,16,4,r 0,16,4,w 0,20,4,w 0,24,4,r 0,32,4,r 0,28,4,w 0,16,1,r 0,36,1,r 0,48,4,r 0,112,4,r 0,48,4,r 0,52,4,r 1,52,4,w
 0,52,4,r 1,48,4,w 0,36,4,r 0,36,4,w 1,16,1,r 1,4,4,r 1,32,4,r 1,28,4,r 1,128,4,r 1,12,4,r 1,180,4,w 1,16,4,w
 1 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 1,12,4,r 0,20,4,w 0,16,4,w 0,24,4,r 1,4,4,r 1,32,4,r 0,32,4,r 0,28,4,w 1,28,4,r
 1,128,4,r 1,24,4,r 1,36,1,r 1,16,4,w 1,20,4,r 1,12,4,r 1,4,4,r
 1 0,128,4,r 1,12,4,r 0,128,4,r 1,0,4,r 1,128,4,r 0,12,4,r
 2000 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 1,12,4,r 0,20,4,w 0,16,4,w 0,24,4,r 1,4,4,r 1,32,4,r 0,32,4,r 0,28,4,w 1,28,4,r
 1,128,4,r 1,24,4,r 1,16,4,w 1,20,4,r 1,12,4,r 1,4,4,r
15641 0,12,4,r 1,0,4,r 0,0,4,r 1,16,4,r 1,20,4,r 1,20,4,w 0,12,4,r 1,12,4,r 1,12,4,r 0,20,4,w 0,16,4,w 0,24,4,r 1,4,4,r 1,32,4,r 0,32,4,r
 0,28,4,w 1,28,4,r 1,128,4,r 1,24,4,r 1,16,4,w 1,20,4,r 1,12,4,r 1,4,4,r

Figure 5.1: Profiling output for class tcb_t after partial execution of the pingpong bench-
mark. Lines have been wrapped for completeness of presentation.

At the end of the simulation, the profiling extension dumps its output into per-class files.
Figure 5.1 shows an example of such a file. These files reside on the machine running the
simulation which is usually also the machine used for building the kernel. The results of
profiling are thus readily available for the layout optimizer.

The Layout Optimizer

The layout optimizer, called shuffle, determines a new member ordering for a class. It
uses profiling data and the class’ object layout information as input. shuffle is a stand-
alone tool and operates on one class at a time.

71

5 Evaluation and Discussion

In the profiling output, the sequence with the highest count represents the critical path
and drives optimization. When there is no single predominant sequence, the optimizer tries
to merge sequences that have nonconflicting optimization goals. That is the case when a
sequence references a subset of the members referenced by another sequence. Alternatively,
the sequence to govern optimization can also be chosen manually.
Member offsets and sizes are extracted from debug information generated during the

build process of the profiled kernel. The object-relative addresses in the elements of the
sequence are translated to member names.
The layout optimizer employs one or more strategies to determine a new member order-

ing. The cache configuration and the actual strategies and their respective parameters are
specified via the optimizer’s command line. The result is a list of member names in the
order in which they should appear in the optimized class’ declaration.

The Member Reordering Tool

Like class flattening, member reordering is implemented as a source-to-source transfor-
mation. The reordering tool reorder manipulates the order in which members appear
in a class declaration. Since reorder and collapse are very similar, they share large
parts of the code base and the processing. However, reorder applies different visitors to
manipulate the AST. In the AST, all members in a class declaration form a linked list
of subtrees. Therefore, reordering members merely involves sorting this list accordingly.
Padding members are inserted by creating a subtree for an array of bytes of the respective
size.
The new ordering of members for a class (as determined by the layout optimizer) is given

to reorder via a command line option. For each target class, the list of the first members
is specified. For example, A:a3,a1,a2 requests that class A be modified such that the list
of members starts with a3, followed by a1, and then by a2. The order of the remaining
members is left untouched. Naturally, by moving specified members to the start of the
declaration, all other members move automatically to the back. Padding space can be
inserted by specifying its size a number in the member list. For example, A:a3,a1,8,a2
would insert a new member, an array of 8 bytes, between members a1 and a2. Knowing
the names of all members in the class, reorder can find a name for the padding array(s)
without producing conflicts.
The reordering tool expects preprocessed source code. As such, it is invoked between

the preprocessing and the compilation stage of a standard build process. It reads an input
file and generates an output file, but it can also be used as a pipe to form arbitrary tool
chains.

Build Process Integration

The optimization described in this thesis is a whole program transformation. In a project
consisting of multiple source files, the optimization must be applied equally to all source
files.

72

5.2 Automatic Class Optimization Results

The make-based infrastructure of the Pistachio source tree specifies a rule for transform-
ing a C++ source file into an object file. It invokes the compiler driver gcc, which generates
an object file from a source file through preprocessing, compilation, and assembly. This
rule has been replaced with the command chain shown in Figure 5.2.

gcc −E file.cc | collapse −c tcb_t | reorder −r tcb_t:... | gcc −o file.o

Figure 5.2: C++ file build command line with optimization tools (most options omitted)

For each file, the compiler driver gcc is invoked to merely preprocess the source file. Its
output is sent to collapse, the class flattening tool. collapse flattens the tcb_t class
hierarchy as specified by a command line option. The output of collapse is then fed
to the reorder data member reordering tool. If a reordering specification file for class
tcb_t is available, reorder is invoked with the specification for reordering the tcb_t class
members; otherwise, reorder performs an identity transformation. The output of reorder
is eventually passed to gcc to execute the compilation and assembly stages, whereby gcc’s
input is declared as pre-processed C++ source code.

5.2 Automatic Class Optimization Results
To evaluate the automatic optimization approach described in this thesis for its effectiveness
in eliminating the overheads of inheritance, I compare a kernel with an optimized tcb_t
class hierarchy with an original kernel, which does not use inheritance for the class.
I modified the build process of the Pistachio kernel to include both class flattening and

field reordering and transformed the formerly simple tcb_t class into a class hierarchy.
The reordering tool shuffle was configured to move all members to the beginning of the
class declaration in the order they were referenced. For this purpose, shuffle used data
member offsets extracted from the kernel binary and traces collected with the profiling
simulator extension executing while the kernel with the pingpong benchmark.
In this section, I first show that class flattening removes the runtime overhead of virtual

functions. I then compare the cache footprints of the optimized and the original kernel on
objects of the tcb_t class, followed by a comparison of IPC performance of both kernels.
Furthermore, I discuss side effects of the optimization.

5.2.1 Virtual Functions
To show the effectiveness of class flattening in removing the run-time overhead of virtual
function calls, I continued the experiment described in Section 3.4.1. There, I converted
the flat class tcb_t into a class hierarchy with several virtual functions that previously
were inline functions in class tcb_t.
I then applied transparent class flattening to the class, turning the hierarchy into a flat

class again. Figure 5.3 shows the performance of the IPC message transfer mechanism.

73

5 Evaluation and Discussion

baseline 346

hierarchy 540

flattened 346

Figure 5.3: Overhead of virtual functions removed by transparent class flattening

The IPC performance of both the baseline and the flattened kernel is identical. In
fact, the binaries for both kernels differ merely in the string that embeds the build time
and compiler version into the binary. Through flattening the virtual functions became
nonvirtual and were as good candidates for inlining as they were in the baseline kernel.

5.2.2 Cache Footprint
An IPC message transfer between two threads involves two tcb_t objects, the sender
thread’s TCB and the receiver thread’s TCB labeled src and dst, respectively in the fol-
lowing figures. A tcb_t object occupies 192 bytes in memory, is 1K-aligned and therefore
spans three cache blocks of 64 bytes.
Figure 5.4 and Figure 5.5 both show the mapping of referenced members to cache blocks

in src and dst during an IPC message transfer between threads in different address spaces.
Thin vertical lines mark 64-byte cache block boundaries. Figure 5.4 shows the mapping
for the original kernel whereas Figure 5.5 shows the mapping for the optimized kernel.

src

dst

Figure 5.4: Referenced members in tcb_t objects of the original kernel

src

dst

Figure 5.5: Referenced members in tcb_t objects of the optimized kernel with fields re-
ordered for minimum cache footprint

The original kernel uses three cache lines for the two tcb_t objects accessed during an
IPC operation: one for the sender thread’s TCB and two for the destination thread’s TCB,
whereby a single member is referenced in the third cache line of the destination thread’s
TCB.
In contrast, the object layout of the optimized tcb_t class starts with a compact hot

part so that the accessed members span only one cache block per object. Field reordering
has achieved the minimum cache footprint of tcb_t objects on the kernel’s critical path.

74

5.2 Automatic Class Optimization Results

5.2.3 Performance
Class flattening removes inheritance and thereby the overhead of virtual function calls.
Field reordering optimizes the object layout of the flattened class for the configuration.
Performance of a kernel with inheritance is therefore expected to be no worse than that
of the original kernel. An optimized object layout may even improve performance in
configurations that the original, static layout was not optimal for.
To simulate cache pressure from applications, I extended the classic pingpong IPC bench-

mark to execute a cache thrashing loop before every message transfer. The loops in both
the ping and the pong thread each reference 32KB of memory (twice the size of the L1 data
cache) in 64-byte increments, thereby effectively replacing the whole L1 cache contents.
I analyzed the following three configurations: the standard pingpong IPC benchmark

on a standard Pistachio kernel (vanilla); the cache thrashing pingpong benchmark on a
standard kernel (baseline); and the cache-thrashing pingpong benchmark on a kernel with
an optimized tcb_t class hierarchy (optimized.) For each configuration, Table 5.2 shows
the average transfer time for a 0-word message between two threads in the same address
space (intra) and in different address spaces (inter). Figure 5.6 visualizes those numbers
with the overhead of the cache thrashing loop factored out.

inter intra
vanilla 1329 401
baseline 4713 3659
optimized 4677 3643

Table 5.2: IPC performance in terms of processor cycles. baseline and optimized include
the overhead of the cache thrashing loop in the benchmark application.

vanilla optimized vanilla optimized
inter intra

1329 1293 401 385

Figure 5.6: IPC performance in terms of processor cycles. The costs of the cache thrashing
loop have been factored out of the optimized numbers.

Despite the introduction of a class hierarchy and virtual functions in the tcb_t class, the
measurements show the performance of the kernel with the optimized tcb_t class hierarchy
to be no worse than that of the original kernel with a flat tcb_t class.

75

5 Evaluation and Discussion

Most importantly, this result confirms my thesis, that object-oriented programming can
be used even in such performance-critical cases as microkernel code without any extra
costs. The run-time overheads of inheritance shown in Section 3.4 have been eliminated
completely by the optimization described in this work.
Furthermore, the result shows that the optimization was able to improve on the IPC

performance of a kernel with a hand-optimized, supposedly optimal object layout. For IPC
between threads in different address spaces, the optimization saved 36 cycles or 2.8 percent.
For communication in the same address space the savings were 16 cycles or 4.2 percent.
The improvements can in part be attributed to the reduced cache footprint observed in
Section 5.2.2, in part to side effects discussed in the next section. That the improvements
are not a multiple of the costs given in Table 5.1 can be explained with out-of-order effects.

5.2.4 Side Effects
Side effects of the optimization beyond manipulation of object layouts can also influence
performance of the kernel. A full cache analysis helped revealing these. The numbers
of data and instruction cache blocks accessed during a round-trip IPC (i.e., two message
transfers) are shown in Table 5.3.

(a) Raw values
inter intra

vanilla 25/20 15/20
baseline 1051/21 1039/21
optimized 1049/19 1039/19

(b) Cache thrashing factored out
inter intra

vanilla 25/20 15/20
optimized 23/18 15/18

Table 5.3: Data and instruction cache footprint of a 0-word IPC message round-trip. The
numbers represent 64-byte cache blocks consumed by data/code.

Whereas the data cache footprint is the same for both kernels (vanilla and optimized)
when threads in the same address space communicate, the footprint is reduced by one cache
line per message transfer in case of a cross-address-space message transfer. The thread
switching code for IA-32 accesses the space member of the destination TCB only when
the threads reside in different address spaces. In the baseline kernel, this member at offset
128 maps to a different cache block than the remaining accessed members (Figure 5.4.) In
the optimized kernel, all referenced members in the object occupy the same cache block.
With the optimized kernel, the code cache footprint is two blocks smaller (i.e., one block

per IPC) than in the original kernel. While the instruction sequence is identical for both
kernels, the offsets of members in the objects changed and hence the addressing modes
of instructions accessing the members can differ. The space member of the tcb_t class
is at offset 32 in the optimized kernel and can be accessed with an 1-byte immediate
displacement in the instruction. In contrast, an offset of 128 in the baseline kernel requires
a 4-byte displacement. The reduced instruction length for accesses to the space member
shrunk the containing functions such as the IPC function by 3 bytes per such instruction.

76

5.3 Optimization Costs

For another member that happened to be moved from offset 0 to offset 4, the compiler
also generated more compact code in the optimized kernel. As a result, the cache footprint
of the IPC path taken in the benchmark case was reduced by one cache block, and IPC
performance improves.
In an early experiment, the space member was manually swapped with the unreferenced

cpu member near the start of the tcb_t object. The new offset allowed for a one-byte
displacement whereby the hand-crafted assembly version of the IPC path shrunk by three
bytes. This caused a jump target to be no longer aligned, which effectively resulted in
worse performance. After aligning the jump target performance improved as expected.
Most of the observed side effects can be attributed to the variable instruction length

of the x86 architecture. However, even architectures with a fixed instruction length may
require additional instructions when member offsets and hence displacements change across
the limits of addressing modes.

5.3 Optimization Costs
To employ the optimization described in this thesis, class flattening and field reordering
are added to the build process. Given the commonly low frequency of kernel builds, the
moderate increase in build time is insignificant. The simulator run at the end of the day
to produce input for an optimizing kernel build happens even less often.
The real costs of the optimization described in this thesis lay in the initial implementation

of the tools, the integration into the build system, and the adaptation to new target
configurations.

5.3.1 Build Time Overhead
On today’s development systems, building a microkernel such as the Pistachio kernel from
source code takes only a fraction of a minute. This is almost negligible compared to the
time a programmer spends thinking, writing code, and debugging.
The class flattening and field reordering source-to-source transformations as performed

by the collapse and reorder tools each parse, manipulate, and emit the complete prepro-
cessed source code before it is seen by the compiler, adding to the execution time of each
source file’s build process. Figure 5.7 shows the time to build a Pistachio kernel with and
without flattening and reordering. The measurements were performed with nonparalleliz-
ing builds using GCC 4.1.2 on an openSUSE 10.2 system with two 2.2GHz AMD Opteron
248 processors, 2GB main memory, and a FiberChannel-attached disk storage array.
Adding the class flattening and the field reordering tools to the build process increases

build time by 21 percent. Yet, with the commonly low frequency of kernel builds, this
increase is negligible.

77

5 Evaluation and Discussion

original optimizing

14.0s

16.9s

Figure 5.7: Kernel build time overhead

5.3.2 Code Size
The source-to-source transformation tools collapse and reorder, which share a common
code base, have been built around the libcast C++ parser library originally developed for
the IDL compiler IDL4. The profiling extension uses the Simics API. The offset extraction
tool is based on libdwarf for access to debug information.

source lines of code language
collapse + reorder 2002 C++
simulator extension 308 C
field offset extractor 245 C
build system integration 40 Makefile

Table 5.4: Code size of optimization software components

Table 5.4 lists code sizes for the various software components involved in the optimization
process. The numbers state actual lines of source code as reported by the sloccount
utility [64].

5.3.3 Retargeting
Initially, the optimization process was implemented for IA-32 targets of the Pistachio mi-
crokernel. To determine the cost of applying the optimization to a different configuration,
I adapted the process to the MIPS32 target.
Neither the source-to-source transformation tools nor their integration with the kernel

build process required any changes. All modifications were confined to the simulator pro-
filing extension. There, the detection of privilege levels needed minor adjustment: for
some targets, the Simics API function SIM_processor_privilege_level returns the nu-
meric value of the processor’s current privilege level, for other targets it returns one of the
predefined constants SIM_CPU_Mode_User or SIM_CPU_Mode_Supervisor.

78

5.4 Comparison with Manual Optimization

Altogether, the required changes amounted to 20 lines of code. Adapting the optimiza-
tion to further target configurations is expected to require even less work.

5.3.4 Maintenance
The Pistachio kernel is a research project under active development. Since the libcast
parser was implemented on an as-needed basis, introduction of previously unused language
constructs in Pistachio can require updates. However, this situation is rare as the parser
is mostly complete and thus the list of unused but useful language constructs is nearly
exhausted.
The Simics simulator used for collecting field access information is also evolving contin-

uously. With previous major upgrades, part of the architecture-specific API functionality
was marked deprecated in favor of more generic functionality. Such changes, however, had
only little impact on the profiling extension. It is expected that the trend towards more
generic internal interfaces eases future adaptation of the simulator extension to new target
configurations.
Based on the impact of changes seen so far, the maintenance burden for keeping the

optimization tools up to date with their dependencies is estimated at a few hours per year.

5.4 Comparison with Manual Optimization
The object layout optimization part of the technique described in this thesis automatically
adapts to the kernel configuration and the workload on top of the kernel. It is thereby
superior to manual layout optimizations that would have to be repeated for every such
combination of kernel configuration and workload.
When classes for kernel objects are composed from multiple base classes, such as proposed

in Section 3.3, manual optimization of object layouts is impossible. The class hierarchy
needs to be flattened before manual layout optimizations can be applied.
Even when the cost of manual optimization would not matter, the result is not guaran-

teed to be optimal, as shall be illustrated by the following example. Figure 5.8 visualizes
the result of a cache analysis of the IPC path for an inter-address space IPC at the time
this work was started, after the kernel had been manually optimized for Pentium III and
Pentium 4 processors.
In such a kernel, the space member lies at offset 128 and therefore maps to an additional

cache line. It is referenced during a cross-address-space IPC, which is the dominant IPC
operation in a microkernel-based multiserver operating system. Swapping space with the
unreferenced member cpu at offset 8 would have reduced the cache footprint. This was
one of the performance bugs discovered throughout the course of this work.
While optimizing for the Pentium III processor, it was observed that reading the cur-

rently active page table base address from control register CR3 was faster than reading
it from the current thread’s TCB. Later, while optimizing for the Pentium 4 processor,
however, reading from memory turned out to be faster. The inline assembly code in the

79

5 Evaluation and Discussion

resources

saved state
saved partner

misc

arch
flags

space

scheduler
max delay

current max delay
sensitive prio

priority

absolute timeout

current timeslice

timeslice length

total quantum

tcb lock

send head

send list

wait list

ready list

present list

queue state

pdir cache

stack

resource bits
partner

thread state

utcb
cpu

myself local

myself global R

R

R W

R

R

R

R

R

R

W

R

R

W

W

R

R

W

data access sequence

Figure 5.8: Accesses to members of the tcb_t class on the IPC system call path. Time
progresses in units of memory accesses from left to right. The object layout is
shown vertically, with thin horizontal lines marking cache block boundaries of
32 bytes. R=read, W=write, gray=source TCB, white=destination TCB.

thread switching function switch_to() and the hand-optimized assembly implementation
of the IPC path were therefore implemented in two variants of which one was selected by
conditional compilation via preprocessor symbols derived from the current target processor
selection in the kernel configuration.
The observed effect can be explained with the results of the cache analysis. On a Pen-

tium III with a cache line size of 32 bytes, the cache footprint of a 0-word IPC message
transfer is 4 cache lines. The member pdir_cache at offset 32, which holds the page table
base address for the thread, maps to a separate cache line. Not reading it and retrieving
the value from the CR3 register reduces the cache footprint by one line. On a Pentium 4
processor with a 64 byte cache line size this member is in the same cache line as all other
members (except for the space member at offset 128) and thus hits in the cache. Reading
the current page table base address from CR3 is then more expensive than reading it from
memory.

80

6 Conclusions
My thesis concludes by summarizing the thesis contributions in Section 6.1 and giving
suggestions for future work in Section 6.2.

6.1 Contributions of This Work
This thesis makes several research contributions:

• Class flattening has been used for enhancing program understanding, for eliminating
the run-time overhead of virtual function calls, and for software quality measure-
ments. I use class flattening to convert a hierarchy of classes to a single flat class
that can be optimized with member reordering, and to convert virtual functions into
normal functions.

• Class flattening has previously produced flattened versions of the original class that
coexisted with the original. Code modifications were required to use the flattened
version. I propose transparent class flattening, which transparently changes the defi-
nition of the original class and thus requires no changes to the code using the class.

• Member reordering has previously been used for improving the cache performance
of application programs. I apply member reordering to kernel data structures to
minimize the kernel’s cache footprint on the critical path.

• Previously, member reordering for C has only produced suggestions that had to be
applied manually. I use source-to-source transformation to automatically rewrite
data structure declarations prior to compilation.

• Member reordering for C has been limited to struct-like data structures. I extend its
applicability to classes composed from a hierarchy using inheritance.

• Previous approaches to member reordering were driven by pair-wise access frequen-
cies extracted from profiling information, which has been shown to be insufficient
for finding an optimal layout. I propose a profiling approach that can collect com-
plete and thus precise yet compact access traces by exploiting knowledge about the
properties of microkernels, thus allowing for optimal ordering.

• I propose several novel strategies for member reordering that can increase the opti-
mization potential.

81

6 Conclusions

Together, above contributions enable the careful use of inheritance and virtual functions
in a microkernel, for example to improve modularity and portability, without the run-time
overhead traditionally associated with them. Selected performance-critical classes can be
automatically optimized for the target system configuration and workload.
The following, additional contributions were made:

• For proof of concept, the reorder tool was designed and implemented, which allows
reordering the data members of selected C++ classes as devised by an external
specification. Reordering is performed as a source-to-source transformation to be
applied prior to compiler invocation.

• For proof of concept, a profiling extension for the Simics full system simulator was
designed and implemented to collect member access information on a microkernel’s
critical path.

• For proof of concept, class flattening and profile-driven member reordering were in-
tegrated into the build process of the Pistachio microkernel.

• For proof of concept, the class representing a thread in Pistachio was modified for
one configuration to be composed of several configuration-specific base classes.

The optimization technique described in this thesis is not limited to objects in a mi-
crokernel. It can be applied whenever inheritance is used for composition of classes and
dynamic polymorphism is not needed. An example are libraries that use a class hierar-
chy to share code between various classes, but implement only most derived classes and
operations on them.

6.2 Suggestions for Future Work
For this work, a proof-of-concept conversion of Pistachio’s TCB class tcb_t into a class
hierarchy was performed for one target configuration. Future work should complete this
conversion for all configuration dimensions and also devise a mechanism to create the
inheritance relationship automatically from the target configuration. Furthermore, other
classes than the TCB could benefit from this optimization. The space_t class seems to be
a potential candidate.
Set of classes that benefit from the optimization is rather static today for a microkernel

like Pistachio, making the selection portable across all target configurations. Approaches
to automatically identifying candidate classes could help dynamically adapting to future
design changes of the kernel.
Minimizing the kernel’s cache footprint has been a focus of this work. Field reordering

could also be beneficial in the absence of caches such as in deeply embedded systems, when
the memory latency of subsequent accesses might depend on the sequence of addresses.
The extension of the optimization technique beyond the microkernel, towards applica-

tions and libraries might lead to improved overall system performance.

82

6.2 Suggestions for Future Work

Finally, with automatic and safe inference of candidate classes, the technique could be
integrated into compilers as a standard optimization.

83

6 Conclusions

84

7 Bibliography
[1] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.

J. Wiley & Sons, New York, 1997.

[2] Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in C++ programs.
Lecture Notes in Computer Science, 1098:142–166, 1996.

[3] ARM Ltd. ARM Architecture Reference Manual, June 2000.

[4] Fabrice Bellard. QEMU – a full system emulator. Project homepage at http://
fabrice.bellard.free.fr/qemu/, 199x–2007.

[5] Umesh Bellur, Al Villarica, Kevin Shank, Imram Bashir, and Doug Lea. Flattening
C++ classes. Technical Report TR-92-23, New York CASE Center, Syracuse NY
13244, August 1992.

[6] Dirk Beyer, Claus Lewerentz, and Frank Simon. Flattening inheritance structures —
or — Getting the right picture of large OO-systems. Technical Report I-12/2000, Insti-
tute of Computer Science, Brandenburg University of Technology, Cottbus, November
2000.

[7] Dirk Beyer, Claus Lewerentz, and Frank Simon. Impact of inheritance on metrics for
size, coupling, and cohesion in object oriented systems. In R. Dumke and A. Abran,
editors, Proceedings of the 10th International Workshop on Software Measurement
(IWSM 2000): New Approaches in Software Measurement, LNCS 2006, pages 1–17.
Springer-Verlag, Berlin, 2001.

[8] Robert V. Binder. Testing object-oriented systems: a status report. American Pro-
grammer, 7(4):22–28, April 1994.

[9] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O’Reilly, 2005.

[10] Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proceedings of
the IEEE Computer Society International Conference on Computer Languages, pages
282–290, Washington, DC, USA, 1992. IEEE Computer Society.

[11] Brad Calder and Dirk Grunwald. Reducing indirect function call overhead in C++
programs. In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 397–408, Portland, OR, 1994.

85

http://fabrice.bellard.free.fr/qemu/
http://fabrice.bellard.free.fr/qemu/

7 Bibliography

[12] Trishul M. Chilimbi. Cache-Conscious Data Structures — Design and Implementation.
PhD thesis, University of Wisconsin, Madison, 1999.

[13] Trishul M. Chilimbi. Efficient representations and abstractions for quantifying and ex-
ploiting data reference locality. In Proceedings of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation (PLDI’01), pages 191–202,
New York, NY, USA, 2001. ACM Press.

[14] Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious structure
definition. In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation (PLDI’99), pages 13–24, New York, NY, USA,
1999. ACM Press.

[15] Uwe Dannowski. Managing code complexity in a portable microkernel. In Proceed-
ings of the ECOOP Workshop on Programming Languages and Operating Systems at
ECOOP 2004 (ECOOP-PLOS’04), Oslo, Norway, June 2004.

[16] Uwe Dannowski. Automated object layout optimization in a portable microkernel. In
Proceedings of the MIKES 2007: First International Workshop on MicroKernels for
Embedded Systems, pages 22–28, Sydney, Australia, January 2007.

[17] ECMA International. Standard ECMA-335 Common Language Infrastructure (CLI),
third edition, June 2005.

[18] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code.
In Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP’01), pages 57–72, New York, NY, USA, 2001. ACM Press.

[19] Free Software Foundation, Inc. GCC online documentation. 51 Franklin St, Fifth
Floor, Boston, MA 02110, USA, September 2006.

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, fourth edition, 2006.

[21] M. D. Hill and A. J. Smith. Evaluating associativity in CPU caches. IEEE Trans.
Comput., 38(12):1612–1630, 1989.

[22] IBM Corp. IBM XL C/C++ Enterprise Edition V8.0 for AIX Online Documentation,
October 2005.

[23] Intel Corp. IA-32 Intel Architecture Optimization Reference Manual, April 2006.

[24] Intel Corp. Intel C++ Compiler Documentation, September 2006.

[25] International Organization for Standardization (ISO). ISO/IEC 14882:1998(E) Pro-
gramming Languages — C++, September 1998.

86

7 Bibliography

[26] International Organization for Standardization (ISO). ISO/IEC 9899:1999(E) Pro-
gramming Languages — C, January 2005.

[27] Ken Kennedy and Ulrich Kremer. Automatic data layout for distributed-memory
machines. ACM Transactions on Programming Languages and Systems, 20(4):869–
916, 1998.

[28] Thomas Kistler and Michael Franz. The case for dynamic optimization: Improving
memory-hierarchy performance by continuously adapting the internal storage layout
of heap objects at run-time. Technical Report 99–21, University of California, Irvine,
May 1999.

[29] Bradley M. Kuhn and David Binkley. An enabling optimization for C++ virtual
functions. In Selected Areas in Cryptography, pages 420–428, 1996.

[30] A. H. Land and A. G Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960.

[31] James R. Larus and Eric Schnarr. EEL: machine-independent executable editing.
SIGPLAN Not., 30(6):291–300, 1995.

[32] Kevin Lawton. bochs: The open source IA-32 emulation project. Project homepage
at http://bochs.sourceforge.net/, 1998–2007.

[33] Y.-F. Lee and M. J. Serrano. Dynamic measurements of C++ program characteristics.
Technical Report ADTI-1995-001, IBM Santa Teresa Laboratory, January 1995.

[34] Claus Lewerentz and Frank Simon. A product metrics tool integrated into a software
development environment. In ECOOP’98: Workshop on Object-Oriented Technology,
pages 256–260, London, UK, 1998. Springer-Verlag.

[35] J. Liedtke. On micro-kernel construction. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles (SOSP’95), pages 237–250, New York, NY, USA,
1995. ACM Press.

[36] Richard McDougall and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture. Prentice Hall, 2006.

[37] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[38] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second edi-
tion, 1997.

[39] Microsoft Corp. Microsoft Visual C++ Online Documentation, September 2006.

[40] Abi Nourai. A physically-addressed L4 kernel. BE thesis, University of NSW, Sydney
2052, Australia, March 2005.

87

http://bochs.sourceforge.net/

7 Bibliography

[41] Jan Oberländer. Applying source code transformation to collapse class hierarchies in
C++. Study Thesis, System Architecture Group, University of Karlsruhe, Germany,
December 2003.

[42] Dresden University of Technology Operating Systems Group. The Fiasco microkernel.
Project homepage at http://os.inf.tu-dresden.de/fiasco/, 1998.

[43] University of New SouthWales Operating Systems Research Group. L4/MIPS. Project
homepage at http://l4mips.sourceforge.net/, 2000.

[44] Erez Petrank and Dror Rawitz. The hardness of cache conscious data placement.
In Proceedings of the 29th Annual ACM Symposium on Principles of Programming
Languages (POPL’02), Portland, OR, January 2002. Extended abstract.

[45] Thomas M. Pigoski. Practical Software Maintenance: Best Practices for Managing
Your Software Investment. J. Wiley & Sons, New York, 1996.

[46] Eric S. Raymond. CML2 Language and Tools Description, June 2000.

[47] RedHat, Inc. and others. Cygwin: A Linux-like environment for Windows. Available
from http://www.cygwin.com/, 2000–2007.

[48] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy,
Brian N. Bershad, and J. Bradley Chen. Instrumentation and optimization of
Win32/Intel executables using Etch. In Proceedings of the USENIX Windows NT
Workshop 1997, pages 1–8, August 1997.

[49] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Com-
plete computer system simulation: The SimOS approach. IEEE Parallel and Dis-
tributed Technology: Systems and Applications, 3(4):34–43, Winter 1995.

[50] Guido Van Rossum and Fred L., Jr. Drake (Editor). The Python Language Reference
Manual. Network Theory, 2003.

[51] S. Schönberg. L4 on Alpha, design and implementation. Technical Report CS-TR-407,
University of Cambridge, 1996.

[52] Amit Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley Professional,
2006.

[53] David A. Solomon. Inside Windows NT. Microsoft Press, second edition, 1998.

[54] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized
program analysis tools. SIGPLAN Not., 39(4):528–539, 2004.

[55] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

88

http://os.inf.tu-dresden.de/fiasco/
http://l4mips.sourceforge.net/
http://www.cygwin.com/

7 Bibliography

[56] System Architecture Group. The L4Ka::Pistachio microkernel. White paper, Karls-
ruhe University (TH), May 2003.

[57] System Architecture Group. L4 eXperimental Kernel Reference Manual, Version X.2.
Karlsruhe University (TH), August 2006.

[58] Khalid Omar Thabit. Cache management by the compiler. PhD thesis, Dept. of
Computer Science, Rice University, Houston, TX, 1981.

[59] Josep Torrellas, Monica S. Lam, and John L. Hennessy. False sharing and spatial
locality in multiprocessor caches. IEEE Transactions on Computers, 43(6):651–663,
1994.

[60] D. N. Truong, François Bodin, and André Seznec. Improving cache behavior of dynam-
ically allocated data structures. In Proceedings of the IEEE International Conference
on Parallel Architectures and Compilation Techniques, pages 322+, October 1998.

[61] Unknown author. CPU-Z: a freeware system information utility. Available from
http://www.cpuid.com/cpuz.php, May 2007.

[62] Virtutech Inc. Simics — a full system simulator, 1998–2007.

[63] Virtutech Inc. Simics Reference Manual (PAL), December 2005. Simics Version 3.0.

[64] David E. Wheeler. Estimating Linux’s size, November 2000.

[65] K. Zatloukal, A. Corduneanu, R. E. Ladner, V. Grover, and S. Meacham. Improving
cache performance by structure reordering. Extended Abstract, November 1998.

[66] Chengliang Zhang, Yutao Zhong, Mitsunori Ogihara, and Chen Ding. Harness of
modeling data locality and a sampling approximate approach. Technical Report TR
877, Computer Science Department, University of Rochester, September 2005.

89

http://www.cpuid.com/cpuz.php

	Contents
	1 Introduction
	2 Background and Related Work
	2.1 Caches
	2.1.1 Cache Architectures
	2.1.2 Reducing Cache Misses
	2.1.3 Reducing Miss Latency

	2.2 Data Structure Layout
	2.2.1 Classes
	2.2.2 Inheritance

	2.3 Program Transformations
	2.3.1 Build Process
	2.3.2 Class Flattening
	2.3.3 Field Reordering

	2.4 Kernel Portability Aspects
	2.4.1 Hardware
	2.4.2 Software
	2.4.3 Tools

	3 Case Study: L4Ka::Pistachio
	3.1 The L4 X.2 API
	3.2 Implementation
	3.2.1 Configuration Management
	3.2.2 Data Types
	3.2.3 System Topology
	3.2.4 Mixed Programming Languages
	3.2.5 Tools

	3.3 Improving L4Ka::Pistachio with Inheritance
	3.3.1 Configuration-specific class composition
	3.3.2 Class Properties

	3.4 Inheritance-related Overheads
	3.4.1 Virtual Function Calls
	3.4.2 Object Layout

	4 Eliminating Portability Overheads
	4.1 Optimizing Performance-Critical Classes
	4.2 Transparent Class Flattening for Field Reordering
	4.2.1 Transparent Flattening
	4.2.2 Preconditions
	4.2.3 Flattening Fidelity
	4.2.4 Enforcing Restrictions

	4.3 Field Reordering Strategies
	4.3.1 Object Roles
	4.3.2 Field Access Mode
	4.3.3 Field Alignment
	4.3.4 Locks and Data

	4.4 Determining Field Access Patterns
	4.4.1 Method Review
	4.4.2 Microkernel Specifics
	4.4.3 Precise Tracing for Field Reordering

	4.5 Field Reordering Algorithms
	4.6 Optimization Process

	5 Evaluation and Discussion
	5.1 Evaluation Environment
	5.2 Automatic Class Optimization Results
	5.2.1 Virtual Functions
	5.2.2 Cache Footprint
	5.2.3 Performance
	5.2.4 Side Effects

	5.3 Optimization Costs
	5.3.1 Build Time Overhead
	5.3.2 Code Size
	5.3.3 Retargeting
	5.3.4 Maintenance

	5.4 Comparison with Manual Optimization

	6 Conclusions
	6.1 Contributions of This Work
	6.2 Suggestions for Future Work

	7 Bibliography

