
Evolving Distributed Embedded
Applications during Operation

Kilian Telschig

Dissertation

Faculty of Applied Computer Science
University of Augsburg

2023

Supervisor:
Co-supervisor:

Date of submission:
Date of disputation:

Prof. Dr. Alexander Knapp
Prof. Dr. Bernhard Bauer

August 10, 2022
December 1, 2022

Abstract
Evolving Distributed Embedded Applications during Operation

by Kilian Telschig

The availability of third-party apps is among the key success factors for software
ecosystems: The users benefit from more features and innovation speed, while third-
party solution vendors can leverage the platform to create successful offerings. How-
ever, this requires a certain decoupling of engineering activities of the different par-
ties not achieved for distributed control systems, yet. While late and dynamic in-
tegration of third-party components would be required, resulting control systems
must provide high reliability regarding real-time requirements, which leads to inte-
gration complexity. Closing this gap would particularly contribute to the vision of
software-defined manufacturing, where an ecosystem of modern IT-based control
system components could lead to faster innovations due to their higher abstraction
and availability of various frameworks. Therefore, this thesis addresses the research
question: How we can use modern IT technologies and enable independent evolu-
tion and easy third-party integration of software components in distributed control
systems, where deterministic end-to-end reactivity is required, and especially, how
can we apply distributed changes to such systems consistently and reactively during
operation?

This thesis describes the challenges and related approaches in detail and points
out that existing approaches do not fully address our research question. To tackle
this gap, a formal specification of a runtime platform concept is presented in con-
junction with a model-based engineering approach. The engineering approach de-
couples the engineering steps of component definition, integration, and deployment.
The runtime platform supports this approach by isolating the components, while
still offering predictable end-to-end real-time behavior. Independent evolution of
software components is supported through a concept for synchronous reconfigura-
tion during full operation, i.e., dynamic orchestration of components. Time-critical
state transfer is supported, too, and can lead to bounded quality degradation, at
most. The reconfiguration planning is supported by analysis concepts, including
simulation of a formally specified system and reconfiguration, and analyzing po-
tential quality degradation with the evolving dataflow graph (EDFG) method. A
platform-specific realization of the concepts, the real-time container architecture, is
described as a reference implementation. The model and the prototype are evalu-
ated regarding their feasibility and applicability of the concepts by two case studies.
The first case study is a minimalistic distributed control system used in different se-
tups with different component variants and reconfiguration plans to compare the
model and the prototype and to gather runtime statistics. The second case study is a
smart factory showcase system with more challenging application components and
interface technologies. The conclusion is that the concepts are feasible and applica-
ble, even though the concepts and the prototype still need to be worked on in future
– for example, to reach shorter cycle times.

Kurzfassung (German)
Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

von Kilian Telschig

Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für
Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Inno-
vationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbie-
ten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten
der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht
wurde. Während Drittanbieter-Komponenten möglichst spät – sogar Laufzeit – in-
tegriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässig-
keit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität
führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Pro-
duktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponen-
ten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frame-
works zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation
folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden
und unabhängige Entwicklung und einfache Integration von Software-Komponenten
in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten
gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen
Systemen konsistent und im Vollbetrieb vornehmen?

Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im
Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig be-
handeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikati-
on einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-
Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integra-
tion und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt
den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem
Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch
Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dy-
namische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers
mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurations-
planung wird durch Analysekonzepte unterstützt, einschließlich der Simulation for-
mal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen
Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Con-
tainer Architecture wird als Referenzimplementierung und Evaluationsplattform be-
schrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Kon-
zepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines
minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu ver-
gleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-
Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und
Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach mach-
bar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch wei-
tere Arbeit benötigen – zum Beispiel, um kürzere Zyklen zu erreichen.

Acknowledgements
I would like to thank my supervisor Prof. Alexander Knapp. Thank you for your
support of this work – your guidance, your perseverence, and your faith in the topic.
I would also like to thank my co-supervisor Prof. Bernhard Bauer, my co-disputant
Prof. Jörg Hähner, and all people from the University of Augsburg who supported
and challenged my work. Thank you to Prof. Wolfgang Reif and everyone from the
Institute for Software & Systems Engineering for the chair retreats (“Hütte”) with
all the interesting presentations, discussions and sociable evenings. Some of your
research is referred in this thesis and I will definitely keep an eye on it. I would
like to thank my supervisors, mentors, and colleagues at Siemens for helping me
grow professionally and personally. Thanks Dietmar, for getting me hooked on ar-
chitecture research in the automation domain by your passion and foresight. Thanks
Konstantin, for sharing your advice and experience, and for our philosophical dis-
cussions. Thanks Sebastian and Andreas S., for taking on the challenge of supervis-
ing me and for stressing the bigger picture and the ecosystem perspectives of my
research. And thanks Bene for your advice, especially when I started the industrial
PhD. Thanks Nicole and Andreas B. for supporting me and my topic both before
and after I started as a full-time employee at Siemens. I would also like to thank
Fabian and all the other colleagues from the PhD circle for all the formats in which
we exchanged research ideas and concepts across fields. Finally, I have to thank my
family and friends for their understanding the many times I had to focus on my
work. I would like to thank my “doctor brother” André in particular and also Philip
for the invaluable tuesdaily and all the on- and off-topic discussions. I also thank my
sister Carmen for our quality time that helped to stay on track in tough times. And
thank you to Claudia, who lovingly supported me through all the years. Without
your support this thesis would likely not exist!

Contents

1 Introduction 1
1.1 Research Scope and Contribution . 4
1.2 Running Example: The onBtnSwitch System 7
1.3 Thesis Structure . 9

2 Foundations and Related Approaches 11
2.1 Architecture Principles . 11

2.1.1 Model-Driven Engineering (MDE) 12
2.1.2 Component-Based Software Engineering (CBSE) 14
2.1.3 Distributed Systems . 16

2.2 Industrial Control Systems . 19
2.2.1 Real-Time Computer Systems . 20
2.2.2 Distributed Control and Communication Technologies 24
2.2.3 Embedded Linux . 32

2.3 Formal Methods . 36
2.3.1 Timed Evolving Algebras . 37
2.3.2 Term Rewriting . 39
2.3.3 Component Frameworks for Dynamic Reconfiguration 42

3 A Component Model for Modular and Evolvable Distributed Embedded
Applications 47
3.1 Design-Time Model . 48

3.1.1 Software Components . 48
3.1.2 Distributed Embedded Applications 54
3.1.3 System Models and Topologies 56
3.1.4 Deployment Descriptions . 60

3.2 Runtime Model . 64
3.2.1 Application Containers . 64
3.2.2 System Layer (CPU, Network and I/O) 67
3.2.3 System Execution Management (Agent) 71

3.3 Model Consistency . 75
3.3.1 Pre-Deployment Model Fragments 76
3.3.2 Deployment Descriptions . 81

4 Reconfiguration of Distributed Embedded Applications during Operation 87
4.1 Model Extensions for Reconfiguration 87

4.1.1 Reconfiguration Coordination 90
4.1.2 Container Lifecycle Management 93
4.1.3 Transitioning between Applications 96

4.2 Reconfiguration Consistency . 105
4.2.1 Correctness and Feasibility . 106
4.2.2 Quality Degradation . 110

4.3 Reconfiguration Blueprints . 114

4.3.1 General Reconfiguration Timing Template 115
4.3.2 Minor Component Updates . 116
4.3.3 Updating DAG-Style Applications 118
4.3.4 Application Start and Stop . 120

5 Evaluation Platform: Real-Time Container Architecture 123
5.1 Platform Overview . 123

5.1.1 Introduction and Goals . 123
5.1.2 Architecture Constraints . 126
5.1.3 System Scope and Context . 127

5.2 Runtime Platform Architecture . 127
5.2.1 Solution Strategy . 128
5.2.2 Building Block View . 130
5.2.3 Runtime View . 133
5.2.4 Deployment View . 139
5.2.5 Cross-cutting Concepts . 141

5.3 Complementing Systems . 148
5.3.1 Application Development Environment 148
5.3.2 System Monitoring Dashboard 149
5.3.3 Update Management System . 151

6 Evaluation of the Platform Concepts and Prototype 153
6.1 Case Study: onBtnSwitch . 153

6.1.1 Model and Implementation Summary 154
6.1.2 Comparison of Simulation and Prototype 155
6.1.3 Runtime Measurements . 162

6.2 Case Study: CubeBot . 168
6.2.1 System Overview . 168
6.2.2 Design and Implementation . 169
6.2.3 Configuration and Operation . 172

7 Conclusion 177
7.1 Summary and Discussion . 177
7.2 Future Directions . 185

A Evaluation Reconfiguration Plans 189

Bibliography 203

1

Chapter 1

Introduction

Software-defined manufacturing is predicted to reshape the manufacturing land-
scape of the future [XCG+21]. According to this, several national and international
initiatives such as Industry 4.0 [SS16] are currently achieving a separation between
physical manufacturing layers and their usage by (cloud) connected software. The
extrapolated next step is resource sharing and collaboration across manufacturing
sectors to ultimately schedule production workloads freely on a unified global man-
ufacturing platform. Production as a service [BNO+21] is fully unleashed when the
derivation of concrete production processes and allocation to suitable smart facto-
ries is solved automatically on-demand (see figure 1.1). One precondition for this
vision is the availability of a large number of “flexible and universal manufacturing
nodes [. . .] that can produce a wide range of products and easily switch from one
product to another” [XCG+21]. Thus, there is a lot of research on assumed technical
enablers for this, for instance artificial intelligence (AI), information and communi-
cations technology (ICT), (industrial) internet of things (IoT/IIoT), blockchain, but
also, robotics and 3D printing. However, we attack a less frequently considered
technical gap in the runtime platform close to and even immediately controlling the
technical process. But before we get into that, we briefly recap the current runtime
approaches in factory automation (we will go more into detail and include other
domains such as avionic and automotive in chapter 2).

At its core a factory is an industrial control system that uses primary equipment
to solve a production problem. The kind and timing of the equipment’s engage-
ment – especially the coordination of the equipment – is often still solved by me-
chanics an the like, but of course also by industrial control software. According
to the traditional automation pyramid [ISO13], the field-level control software on
Programmable Logic Controllers (PLCs) cyclically calculates outputs from inputs.
It uses I/O modules to communicate with the primary equipment and with other
PLCs, e.g. to provide commands and setpoints or to directly actuate physical com-
ponents. This process can be monitored and manipulated from Supervisory Control
and Data Acquisition (SCADA) systems and especially Human-Machine-Interfaces
(HMIs). Higher-level control (e.g. decision on production quantities) may be pos-
sible in pre-defined ways from corresponding IT systems, i.e., Manufacturing Ex-
ecution System (MES) and Enterprise Resource Planning (ERP). This is a common
system architecture, especially for high-throughput repetitive automation systems
with low required flexibility and adaptability in the use of the primary equipment.
Most often, it is important for the purpose of such a system that the end-to-end reac-
tivity from sensors over controllers to actuators is bounded (sometimes this is even
safety-critical). Figure 1.2 shows a small sorting system that could be used in a bot-
tling plant. A barcode scanner detects when a specific product unit is passing the
conveyor – in this case a bottle. Shortly behind the location a switch should be able

2 Chapter 1. Introduction

FIGURE 1.1: Production as a service: Automatic value chains across smart factories
could solve production problems on-demand with low specific engineering effort
by reasoning about possibilities to produce a product based on its bill-of-process

(BOP) and bill-of-materials (BOM), or even directly on its digital twin.

FIGURE 1.2: A (not so) plain sorting system in a bottling plant: Redirect selected
bottles to another conveyor using a switch and a barcode scanner. The routing
decision is time-critical, but additional information from other systems is needed.

to redirect the bottle to another conveyor if needed, e.g., if it contains a certain bev-
erage. The success depends on the conveyor speed, the distance between bottles,
and the effective reactivity of the switch. Thus, the time for the calculation of the
routing decision and delivery of the command may be in the range of a few mil-
liseconds. However, the bottle’s destination must be determined from the barcode,
e.g. via an OPC UA [ISO20] request to the SCADA system or a direct database query.
This example shows a typical automation problem for traditional distributed control
systems, but also, how IT systems are already used in time-critical decisions.

In more recent approaches towards more flexible and adaptable production sys-
tems, the lower layers of the pyramid may collapse to more “autonomous” cyber-
physical production systems (CPPS), special cyber-physical systems (CPS) to enable
Industry 4.0 [Mon14]. Figure 1.3 shows a sketch of such a system, a variant of which
is studied more in detail in section 6.2. In a keynote at WICSA and CompArch
2016, Ghezzi abstracted the challenge of architecting safe, secure and reliable CPSs
(cf. [TKG16]) as fulfilling the following formula (based on Zave and Jackson [ZJ97],
but with environment E, software S, and requirements R):

E&S |= R

In terms of this model, we distinguish CPPSs from traditional automation in that

Chapter 1. Introduction 3

they better work in less limited environments E due to their more self-reflective soft-
ware S, which can reason about how to fulfill (potentially dynamic) requirements
R. CPPS are usually controlled by a MAPE-K loop program to achieve more auton-
omy in terms of the self-* abilities (self-optimization, self-healing, . . .) [KC03]: The
CPPS continuously m

¯
onitors the sensor input, a

¯
nalyzes the current situation, p

¯
lans

required actions (e.g. based on goals and rules) and then adapts the e
¯
xecution of

its actions – which may all involve internal k
¯
nowledge. These systems are more au-

tonomous in the sense that they can operate in a wider decision space only limited
by the capabilities of their equipment and their reasoning. The promising benefit
of autonomy is that less engineering may be required to make the CPPS contribute
to the production processes, and that these could be adapted faster. However, be-
sides using different internal architectures and technologies, CPPSs may also require
a higher level of (semantic) communication and interaction with other CPPSs. Such
multi-CPS-systems can be found in literature as multi-agent systems (MAS) [DKJ18],
collaborative embedded systems (CrESt) [BBK+21], or collaborative intelligent sys-
tems (CIS) [BNO+21], to mention just a few. To avoid that the autonomy is limited
by special-purpose interfaces between CPPSs, common languages (or: ontologies)
are introduced, so the CPPS understand each other [Woo09]. Due to all these as-
pects, modern IT technologies are becoming more important in control loops, be-
cause they provide rich libraries and abstractions that help to solve the complex-
ity of CPPS. However, IT technology is in general less deterministic, which leads
to reliability problems in time-critical control systems. Moreover, as already stated
by Zoitl [ZLMV10], much work towards flexible and adaptable systems was focus-
ing on the higher-level control (planning and scheduling of the production process),
whereas the flexibility and adaptability of the lower-level real-time control execut-
ing the process is usually restricted. Even with the newer IT-based approaches, the
adaptability on lower levels during production is limited to choosing from avail-
able skills (corresponding to ontologically modeled actions taken in the MAPE-K
loop above, cf. [MBW+18]) and often only in idle production phases when no hard
deadlines exist. This in turn limits the higher-level adaptability – e.g. the logic for
reasoning about skills can not be adapted during operation. This is not acceptable
considering the long lifetime and high cost of downtime of factories versus obsoles-
cence of IT technologies, especially regarding security when they are more and more
cloud connected. Additionally, not being able to update all the application parts
frequently simply does not leverage the full innovation speed of modern IT tech-
nologies. Thus, reconfiguration of distributed embedded applications as a whole –
regardless of their concrete architecture (e.g. agents, skills etc.) – should be possible
during operation without or at least with deterministic degradation of the system’s
end-to-end reactivity. This problem was first tackled by our work and still there is
little research into this direction.

This thesis describes our concepts to get closer to “classical” determinism with
“modern” technologies to improve the engineering efficiency, abstraction of control,
and lower-level adaptability of distributed embedded applications. In particular, we
propose a component-based runtime platform concept and reconfiguration mecha-
nism that is independent from concrete patterns in the architecture of the distributed
embedded application and the organization of the equipment in terms of collabora-
tion. We also want to make it possible to solve collaborative production problems
by distributed embedded applications that span across CPPSs (even from different
vendors), but also including traditional automation system parts. This would en-
able distributed solutions even with less powerful semantic languages and models,
as the interfaces would not need to cover all the production problems that might

4 Chapter 1. Introduction

FIGURE 1.3: A CPPS in a bottling plant: A robot uses cameras to detect bottles of
different colors and shapes and redirects them based on reasoning about where and

how to place it, possibly even including “discussions” with other systems.

occur in the various domains in such a virtually integrated distributed embedded
application. Therefore, software components and distributed embedded applica-
tions should be reusable in different constellations of CPPS due to abstraction (from
concrete equipment, from concrete network topologies, . . .). To make this possible,
CBSE engineering activities are decoupled, e.g. distributed embedded applications
can be defined independently from a concrete deployment and are allocated to com-
puting nodes in a later engineering step – a concept known from Automotive Open
System Architecture (AUTOSAR) [AUT15]. We think that this is a necessary step as a
basis for an ecosystem of independent hardware and software suppliers for rapidly
adaptable higher-level distributed control systems. Obviously, there are many chal-
lenges arising from this, that we have to exclude from the scope of this thesis. The
next sections will describe the concrete scope and contribution of this thesis, a run-
ning example, and the outline.

1.1 Research Scope and Contribution

The subject of this thesis is how we can use modern IT technologies and enable
independent evolution and easy third-party integration of software components in
distributed control systems, where deterministic end-to-end reactivity is required,
and especially how we can apply distributed changes to such systems consistently
and reactively during operation. We explain the different aspects of this subject
before we list our concrete contribution. Modern IT technologies such as neural net-
works can contribute to achieving higher-level control due to their abstraction and
reuse potential, faster innovation cycles, and an increasing number of talents. How-
ever, they are not designed for use in time-deterministic systems. We are looking
for approaches that are widely independent from programming platforms and com-
munication technologies used by the software components (so that any existing or
upcoming framework can be leveraged transparently by applications), and which
make them useable in real-time control loops. It is important for the speed of sys-
tem development that consistent integration and reuse of software components is
very easy, despite hard end-to-end real-time requirements. We expect system adap-
tations to happen more frequently due to shorter lifecycles of (reused) components
and the nature of upcoming classes of control systems, if we can avoid the high cost
of downtime during reconfigurations. Thus, the problem arises what design- and
runtime concepts can be used to achieve system adaptations during full operation.
This is required for the adaptation of non-stop control systems, too, e.g. when a
shutdown would lead to deformation of the equipment. However, we don’t only
want to replace individual components that are backwards-compatible, but even

1.1. Research Scope and Contribution 5

change multiple components simultaneously if required or even restructure a dis-
tributed embedded application. In the extreme case, it should even be possible to
replace a distributed embedded application with a completely different one during
operation. Therefore, we must be able to change the set of component instances,
their communication relationships, their I/O access, and support state transfer. A
fundamental architectural problem resulting from these integration and adaptation
goals is how the software components can stay as independent as possible over all
phases from development over integration until execution while the resulting sys-
tem must fulfill real-time requirements. However, we also describe some limitations
of the scope of this thesis. First, we exclude self-reconfiguration, safety, security, and
supporting aspects such as billing and intellectual property protection, even though
we tried to make our concepts extensible for those aspects in later iterations. As we
target modern IT technologies, which have less predictable execution behavior, the
scope of real-time requirements is limited to the millisecond-scale regarding dead-
lines (not microseconds). While function blocks are widely used in control software
today and could be related to software components, they are too fine grained for a
runtime platform for modern technologies. A software component based on such
classical technology would more likely be a function block diagram. In terms of
object-oriented programs, the granularity of a software component is not an object
or a set of objects, but a (potentially multi-threaded) program. Finally, our aim is
not to define the most feature-rich system and component model or support specific
widely used middleware technologies. Instead, we keep the system and component
model minimalistic and rather achieve a break-through in the dynamic integration
over all phases. That means when it comes to the features required from the runtime
platform to achieve such a break-through, we are interested in understanding and
modeling in detail how distributed real-time integration and dynamic reconfigura-
tion of a modular application can be enabled.

Contribution. We make following contribution to this area of research:

• An overview and discussion of important concepts from the interrelated – but
to some degree disjoint – fields of software architecture, real-time systems,
and formal methods, including existing architectures for distributed embed-
ded systems and concepts for dynamic reconfiguration.

• A conceptual framework based on Real-Time Maude for formal specification
and analysis of modular distributed real-time systems and their dynamic re-
configuration consisting of a design-time model with a component model, a
distributed embedded application model, a hardware model, a network topol-
ogy model, a deployment model, and a reconfiguration plan model, and a
runtime model with a model of application containers, of network commu-
nication, of a real-time container agent, and of reconfiguration plan execution.

• An evolving dataflow graph as part of the conceptual framework, which is
an abstract transition system of the behavior of a distributed embedded sys-
tem including ongoing reconfigurations that can be constructed from a given
instance of the component model.

• Reconfiguration blueprints for systematically deriving reconfiguration plans
for specific reconfiguration use cases.

6 Chapter 1. Introduction

• An architecture documentation of the real-time container architecture, which
complies to the formal runtime platform model and supports modern IT tech-
nologies within software components.

• An evaluation of the conceptual framework and the real-time container archi-
tecture prototype via two case studies, which analyze and demonstrate how
the formal analysis can be used for systems based on the platform-specific re-
alization, how the real-time container architecture can be extended for specific
industrial I/O technologies, how modern IT technologies are supported within
containers, how well engineering steps can be decoupled by the conceptual
framework, and what runtime behavior can be achieved based on a 24 hour
benchmark run with a reconfiguration loop.

Publications. Throughout the work on this contribution, we published following
papers that already describe some of the concepts in earlier phases and less formally:

ETFA 2017: Kilian Telschig and Alexander Knapp. Towards Safe Dynamic Updates of
Distributed Embedded Applications in Factory Automation. [TK17]

Why safe updates of distributed embedded systems without downtime will be
required in factory automation and how it could be achieved with time deter-
minism and modern technologies by means of real-time containers (vision).

CASE 2018: Kilian Telschig, Andreas Schönberger, and Alexander Knapp. A Real-Time
Container Architecture for Dependable Distributed Embedded Applications. [TSK18]

Informal description of our concrete real-time container architecture (engineer-
ing, architecture, runtime behavior) for easy integration of distributed control
systems from software components (without dynamic reconfiguration) and
first benchmark measurements.

ICSA 2019: Kilian Telschig and Alexander Knapp. Synchronous Reconfiguration of
Distributed Embedded Applications During Operation. [TK19a]

Reconfiguration extensions for the real-time container architecture, especially
how exactly dynamic updates are specified and executed synchronously across
nodes based on reconfiguration plans (without state transfer).

INDIN 2019: Kilian Telschig and Alexander Knapp. Time-Critical State Transfer dur-
ing Operation of Distributed Embedded Applications. [TK19b]

State transfer extensions for the real-time container architecture, i.e., additional
reconfiguration primitives/steps and examples how to use them to maintain
the state of the software components either without downtime or with deter-
ministic quality degradation.

INDIN 2022: Joseph Hirsch, Marius Lichtblau, Marian Lingsch Rosenfeld, Kilian
Telschig, and Alexander Knapp. Cube Bot – A Smart Factory Showcase for the
Real-Time Container Architecture. [HLL+22]

A proof-of-concept showing that the I/O handling and component model of
the real-time container architecture is suitable for technologies in upcoming
smart factory systems, i.e., a straight-forward way to add support for using
USB webcams and an RS-232 interface of a robot by containerized components

1.2. Running Example: The onBtnSwitch System 7

by I/O extensions according to the philosophy of the real-time container archi-
tecture, and an application that uses a neural network and the API of the robot
to realize a Cube Bot system which sorts cubes by colors.

In close proximity of the contribution, but beyond the exact thesis scope we pub-
lished following additional papers:

WICSA 2016: Kilian Telschig, Nikolai Schöffel, Klaus-Benedikt Schultis, Christoph
Elsner, and Alexander Knapp. SECO Patterns: Architectural Decision Support in
Software Ecosystems. [TSS+16]

A pattern language for software ecosystem patterns and a methodology to
systematically derive architectural decisions based on ecosystem patterns, an
ecosystem classification, and an architecture knowledge base. In this thesis
we contribute platform concepts to technically enable ecosystem scenarios in
industrial domains, too.

Computer 7/2021: Arne Bröring, Christoph Niedermeier, Ioana Olaru, Ulrich Schöpp,
Kilian Telschig, and Michael Villnow. Toward Embodied Intelligence: Smart Things
on the Rise. [BNO+21]

A foresight study of likely industrial application scenarios for artificial em-
bodied intelligence in the next two decades, including how this would disrupt
these domains and influence megatrends. In this thesis we contribute plat-
form concepts that could be used for the technical realization of some of the
proposed scenarios, e.g. production as a service.

EuroPLoP 2022: Joachim Fröhlich, Steffen Klepke, Christoph Stückjürgen, and Ki-
lian Telschig. Seamless Upgrade: Upgrade Functions Executing on a Control Sys-
tem. [FKST23]

A pattern to enable harmless upgrades of individual software functions using
in-field testing and a coordinated switch-over. In this thesis we also enable up-
grades of individual functions, but this approach also enables compatibility-
breaking updates of multiple functions in the distributed control system. In
turn, we do not (yet) allow the application to influence the reconfiguration
timing to consider application-specific conditions of the technical process.

1.2 Running Example: The onBtnSwitch System

We describe onBtnSwitch, a small “hello world” kind of distributed control system
first described in [TSK18]. We use it as running example throughout this thesis, e.g.
to show some instantiations of the different model fragments and to demonstrate
different reconfiguration use cases and analyses. We also use it in parts of the evalu-
ation, especially for comparing the model-based analysis and the prototype as well
as for a benchmark reconfiguration loop. The simplicity of onBtnSwitch makes it a
good running example, because the core subject of this thesis is our runtime platform
concept and not application-specific considerations.

Figure 1.4 shows an overview of onBtnSwitch. Two nodes (node1 and node2) are
connected via Ethernet. We use SIMATIC IOT2040 devices with x86-based CPUs
running at 400 MHz and with 1 GB RAM. The microcontrollers have a USER But-
ton and a USER LED, which are accessible via GPIO (in our case gpio63 and gpio13).
An embedded application distributed over the two nodes should invert the state

8 Chapter 1. Introduction

FIGURE 1.4: The running example system onBtnSwitch. Two micro-controllers are
connected via Ethernet. When the USER button is pressed (rising edge) on the first
node, the USER LED on the second node shall be switched on/off within 250 ms.

This is done by two components of a distributed embedded application.

of the USER LED on node2 whenever the USER button on node1 is pressed (rising
edge). We assume that the end-to-end reactivity of this inversion from any button
press until the effective LED switch is time-critical and must be done within 250 ms,
for instance. An additional engineering system ES is used to start and monitor the
system and to trigger reconfigurations. It is usually only connected to one of the
nodes and reaches the other one via the plant network. As an example reconfigu-
ration, assume we have to simultaneously replace the Button Controller component
on node1 and the LED Controller component on node2, because the interface between
them changes from a boolean risingFlank to an integer flankCount. The GPIOs need
to be handed from the old component versions to the new ones during these re-
placements. Also note that the network message msg1 becomes larger, which might
require simultaneous network reconfiguration, too. This reconfiguration should be
done during full operation while deterministically maintaining the 250 ms reactiv-
ity, but including state transfer if needed. Section 6.1 describes more reconfiguration
scenarios for onBtnSwitch.

Despite the simplicity of onBtnSwitch it still demonstrates the conflicting require-
ments that should be addressed by our runtime platform:

Distributed: The application is distributed over two nodes, so there is network com-
munication between at least two software components.

Embedded: The application components need to access the installed equipment
(button and LED).

Stateful: The application components might have a state that is needed for compu-
tation (e.g. whether the button was already pressed before).

Real-time: The distributed embedded application must provide bounded end-to-
end reactivity (250 ms).

Mixed-criticality: Besides the time-critical embedded application, ES-related pro-
cesses for operation features share the same CPU and network (e.g. SSH).

Cross-platform: It should be possible to use the best-fitting platforms and frame-
works (“modern IT technology”) for each software component independently
from the others (e.g. C++ in one component and Python in another one).

1.3. Thesis Structure 9

Third-party: It should be easy to integrate the different software components, so
that third-party components from independent solution vendors could be used
(ultimately: reuse components from a public marketplace). In particular, this
also leads to the need to isolate components at runtime to limit their potential
system impact.

Reconfiguration: Still, we want to update during full operation, even in case of
breaking changes that require simultaneous replacements (e.g. the content of
the network communication changes from boolean to integer).

Thus, while onBtnSwitch might seem over-simplified in the first place, it still
shows many challenges that we expect in real distributed control systems. For in-
stance, consider “hand-eye-coordination” of a robot and a camera in a smart factory,
where instead of a button input a camera is used and instead of an LED output a
robot is controlled. In such more advanced systems, easy integration and bounded
end-to-end reactivity is desired, too, but probably more difficult to achieve. In the
evaluation in section 6.2 we describe such a system as a more realistic smart factory
case study which also uses more challenging technologies.

1.3 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2 (Foundations and Related Work) gives an overview of existing approaches
to distributed embedded applications and their dynamic reconfiguration.

Chapter 3 (A Component Model for Modular and Evolvable Distributed Embed-
ded Applications) provides a conceptual framework for formal specification and
analysis of component-based distributed real-time systems based on Real-Time Maude
based on a design-time model and a runtime model of the abstract runtime platform.
This chapter focuses on static systems, but already provides some reconfiguration-
enabling features such as its timing behavior and reconfiguration hooks.

Chapter 4 (Reconfiguration of Distributed Embedded Applications during Opera-
tion) specifies reconfiguration extensions to the static model described in chapter 3,
so that such systems can be changed during operation based on reconfiguration
plans. This chapter includes methods for analysis of such reconfigurations and re-
configuration blueprints for some kinds of reconfigurations.

Chapter 5 (Evaluation Platform: Real-Time Container Architecture) documents the
architecture of a realization of the runtime platform concepts modeled in chapter 3
and chapter 4. It is a reference solution to show that the platform concepts are feasi-
ble, especially with regard to the underlying goals and assumptions. A prototype of
the real-time container architecture was used for the platform-specific aspects of the
subsequent evaluation.

Chapter 6 (Evaluation of the Platform Concepts and Prototype) describes the eval-
uation of our modeling and runtime platform concepts using our Maude model from
chapters 3 and 4 and our platform prototype from chapter 5. The onBtnSwitch sys-
tem was used to gather runtime statistics and to compare the real system with the

10 Chapter 1. Introduction

simulation. A more challenging CubeBot system was used to study the suitability of
our engineering and runtime concepts for real distributed control systems.

Chapter 7 (Conclusion) summarizes the results of this thesis and gives an outlook
of future work.

11

Chapter 2

Foundations and Related
Approaches

We give an overview of various existing approaches to distributed embedded appli-
cations and their dynamic reconfiguration. This intersection is still rare compared
to the amount of work in each of the related fields (see figure 2.1). Thus, we cover
approaches to distributed control systems without dynamic reconfiguration and re-
lated architectures and concepts for dynamic reconfiguration in other kinds of sys-
tems. Some of these approaches are the basis for the concepts described in the sub-
sequent chapters. Other approaches are covered to locate our work in the state of
the art and to clearly point out the technical gap addressed. We also provide some
background on related architectural principles, technologies and formal methods as
foundation for this thesis.

We structured the foundations and related work in three blocks. In the first block
we elaborate on architecture principles that lead to modularity, maintainability, and
evolvability of potentially distributed systems. These principles were taken into ac-
count during fundamental design decisions in our concepts, e.g. Component-Based
Software Engineering (CBSE). The second block is on runtime platform concepts for
industrial control systems. We propose runtime platform concepts for distributed
control systems with hard real-time requirements, which support dynamic reconfig-
uration. Thus, we compare the different architectures and mention existing work to
add support for dynamic reconfiguration, where available. Some of the existing con-
cepts are part of the foundation of our work, e.g. the Logical Execution Time (LET)
paradigm. We also elaborate on concrete technologies used in our evaluation proto-
type, such as Embedded Linux and containers. Finally, the third block is on formal
methods, which build the basis for our formal specification. This block also covers
existing formal component frameworks which support dynamic reconfiguration. As
this is a huge field, we only give an overview and focus on those approaches which
are at least close to reconfiguration of distributed real-time systems.

2.1 Architecture Principles

“The software architecture of a system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and proper-
ties of both” [BCK03]. There are some fundamental software architecture principles
besides more specific patterns and tactics that lead to “good” architectures in the
sense that system goals are achieved. However, new software architecture concepts
require that these principles are instantiated, again. This is particularly difficult for
distributed control systems, for which we have to define a feasible system architec-
ture, too. “A system’s architecture is a representation of a system in which there

12 Chapter 2. Foundations and Related Approaches

FIGURE 2.1: An overview of related fields by alternative terms for the title of our
publication “Synchronous Reconfiguration of Distributed Embedded Applications
during Operation” [TK19a]. The terms are not always synonyms, but indicate the
broad range of potentially related work. Despite the potential impact, the combi-

nation of all these aspects is still rare.

is a mapping of functionality onto hardware and software components, a mapping
of the software architecture onto the hardware architecture, and a concern for the
human interaction with these components” [BCK03]. Especially in the context of
distributed control systems, software architecture principles collide with the non-
functional aspects such as real-time requirements. We describe software and system
architecture principles, which we consider foundational for a modern approach to
distributed control systems.

2.1.1 Model-Driven Engineering (MDE)

A model is an abstraction of a part of reality based on selected artifacts and rela-
tionships between them (cf. [FOSS20]). A software and system architecture can also
be seen as a model of a system, as it shows the important aspects for understand-
ing a system and its context. Often an architecture in its role as a model is mainly
used for reasoning about a system, e.g. based on an underspecified set of agreed
terms and ad-hoc drawings, to then implement this by development teams. There
may be different views by different stakeholders, i.e., different (hopefully) comple-
mentary models or different excerpts of (hopefully) the same model for different
purposes. Even the code of a system can be seen as a (computation-centered) model,
too, and there should be a strong correlation between the architecture-level model
and the code. Model-Driven Engineering (MDE) (see figure 2.2) is an approach to
create more formalized, machine-consumable and interlinked models via domain-
specific (modeling) languages (DSL/DSML), so that then tool support can be lever-
aged, e.g. for automated model transformations and even code generation [Sch06].
While there are still many research challenges, MDE is widely used across domains
and industries [BCPP20]. The Model Driven Architecture (MDA) defined by the
Object Management Group (OMG) provides following principles and specifications
so that Model-Driven Engineering (MDE) can be used effectively and interchange-
ably [OMG14]. A basic principle is that metamodels should be defined for each
model, defining what kinds of elements exist and which relationships are allowed.
Using the metamodels, general-purpose modeling tools can ensure that a model in-
stantiation is conformant and abstract model transformations and code generators
can be defined. In the MDA, MOF [OMG16] and UML [OMG15b] are proposed for

2.1. Architecture Principles 13

FIGURE 2.2: An abstract overview of MDE based on [GPR06] (fig. 5.1).

metamodeling and modeling independently from specific technologies and tools. In
addition to custom DSLs, a wide range of metaprogramming languages and con-
cepts exist, which enable model-driven concepts more integrated with the target
programming languages (e.g. reflections or aspects) [LS19]. More abstracted from
the code there are Architecture Description Languages (ADL), which focus on ar-
chitectural entities and the relations between them, e.g. components, interfaces and
connectors [MT00]. In general, any set of graphical and text-based DSLs can be com-
bined to provide the most intuitive and efficient modeling experience to the users
of the corresponding model fragments, as long as the integration is defined. Be-
sides using well-defined models, the model-based approach should also foster sep-
aration of concerns. According to this fundamental principle, any bigger problem
should be approached via independently analyzable aspects to make it comprehen-
sible. Dijkstra promoted this principle in 1982 arguing: “[. . .] even if not perfectly
possible, [separation of concerns] is yet the only available technique for effectively
ordering one’s thoughts that I know of” [Dij82]. It is a prerequisite for sequential
and parallel division of labor in software and system engineering. The MDE ap-
proach should support separation of concerns by abstraction (transformation pat-
terns, technology independence, . . .), layers (e.g. business, logic, implementation)
and views/viewpoints (not everything visible in every representation, consistency
ensured by model). A major separation should be maintained between a platform-
independent model (PIM) and the platform-specific model (PSM). The PSM includes
concrete technologies, whereas the PIM is an abstraction that can be translated to
different technologies. This has the benefit that technologies can be exchanged with
minimized adaptations on the transformation level. The MDA also suggests that
models can also distinguish between the representation of the current reality (“as-
is”) and the desired future reality (“to-be”). In modern approaches towards agility
and CI/CD it is even required to include versioning concepts in the MDE approach
(cf. [CS21]), e.g. based on semantic versioning [Pre13]. This is particularly im-
portant, if we change the system model and want to apply the change to a running
instance of the system. However, the models are not only useful with code genera-
tors. Consistent and up-to-date documentation can be generated from the model in
different delivery forms. And last but not least, the models can and should be used
in all stages for analysis of the different system aspects (performance, correctness,
. . .). If we combine MDE with CBSE (see section 2.1.2), an important aspect of the
component model and the runtime platform is to effectively separate this analysis
for the different engineering steps.

Based on these concepts, MDE can reduce time, cost and risk while improving
the resulting systems’ fitness for purpose [OMG14]. The models and automation

14 Chapter 2. Foundations and Related Approaches

can help master the complexity of systems and to become faster, encouraging more
frequent changes of systems in an agile manner. Thus, these concepts can be found
in our component model and platform concept, and even in the structure of this
thesis. Sections 3 and 4 describe our design-time and runtime model in several
separately analyzable model fragments along the proposed engineering workflow
and in a technology-neutral formal specification. Section 5 describes a platform-
specific realization of this specification. The evaluation in section 6.1 describes that a
platform-independent formal specification can be used for engineering and analysis
of distributed control systems running on the platform-specific platform prototype
to some extent. While there is a gap between the formal specification artifacts and
the platform-specific artifacts, especially the reconfiguration plan description lan-
guage shows how close the two sides of the concepts are, so that model transforma-
tions and code generation could be achieved in future. In context of our approaches
for dynamic reconfiguration, we are still looking for ways to generate a reconfigu-
ration plan to transition to the new system based on a “diff” between two system
versions. Reconfiguration planning is a manual step as of today, but the platform-
independent reconfiguration blueprints described in section 4.3 are a first step to-
wards more generically solving dynamic reconfiguration problems for distributed
control systems in order to automate this complex engineering step.

2.1.2 Component-Based Software Engineering (CBSE)

We recall the separation of concerns principle, to break down problems into aspects.
This principle has been applied in many platforms and architecture concepts, es-
pecially by different ways to modularize a system. One common modularization
concept is CBSE. Following abstract definition of the term software component was
formulated by Szyperski: “A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by third
parties” [Szy98]. However, Szyperski also stated that software components and cor-
reponding runtime platforms were not highly standardized across industries, as in
other engineering disciplines, and that this is probably due to the immaturity of soft-
ware engineering compared to other much older disciplines [Szy98]. Standards are
still emerging today, even though there are several established domain-specific stan-
dards, some of which we cover in section 2.2. Figure 2.3 shows some of the widely
used elements of component-based systems. A component runtime platform starts
and stops components providing an execution context in which behavioral elements
can be executed. The interaction between the component and its environment is only
possible via the communication means provided and required by its ports. Different
communication and execution concepts by the runtime platforms lead to dedicated
more or less formalized component models. If the component model is formalized
and covers all required information from design-time to runtime, it can be a good
basis for MDE. Thus, the MDE-related principles from section 2.1.1 also apply to
component models.

On top of a component model, CBSE defines decoupled structured procedures
leveraging modularization and composition techniques built on the strict interfaces
of software components and the abilities of the corresponding engineering and run-
time platform. According to Janisch, “CBSE is characterized [by] (1) independent
development of reusable components (2) system development by assembly and hi-
erarchical composition (3) maintenance and evolution by substitution (and adapta-
tion) of components” [Jan10] (see figure 2.4). The degree to which these engineering

2.1. Architecture Principles 15

FIGURE 2.3: An abstract view on component-based systems based on [TK17].

FIGURE 2.4: An abstract view on CBSE based on [Jan10].

steps are supported and decoupled by the component model influences the com-
plexity and the potential for reuse. One important aspect for this thesis is, if the
component model allows for substitution of components during operation and if
yes, with what impact on the system’s availability. If this is not supported, then
downtime is required for maintenance and evolution. Another important aspect
also mentioned in the component definition by Szyperski is that the composition
step can be done by a different organizational unit or even by third parties. Does
the component model or platform provide measures to protect the quality of the
overall system from problems occurring in third-party components, e.g. prevent il-
legal communication attempts by containment? If not, this would likely increase the
required integration-time efforts due to quality assurance measures. Last but not
least we highlight the aspect of performance engineering (cf. [WFP07]): How much
model-based analysis of capacity and timeliness is possible and to what degree is
measurement-based analysis required late in the engineering process? If much of
these efforts happen late (e.g. towards the lower right in a waterfall process), then
performance-related optimizations may be required in a try-and-error fashion span-
ning the complete process and even leading to project failures.

In the last decades, research has been carried out to apply CBSE with the ma-
jor goal to master the complexity of embedded systems [ABGP05]. In 2005, CBSE
had not been widely adopted for embedded systems in lack of runtime technolo-
gies fulfilling the demanding non-functional aspects, including real-time require-
ments [Crn05]. IEC 61131-3 function blocks [IEC13] already allowed for CBSE in
industrial automation [ZHD05], though. One of the major advantages of CBSE over
other modularization and integration techniques is that all component instances and
communication relationships are declared at design time outside of the code. Thus,
CBSE has the potential that functional and non-functional integration requirements

16 Chapter 2. Foundations and Related Approaches

can be analyzed at design-time without executing components and even before an
implementation exists. Another benefit is that the platform can be just a logical
one, or at least that only minimal overhead is caused, by resolving connectors at de-
sign time via generators. This was leveraged by the AUTOSAR [AUT16] standard,
which has successfully enabled CBSE for distributed control systems in the auto-
motive domain. We elaborate more on specific technologies like AUTOSAR and
function blocks in section 2.2.2. Section 2.3.3 elaborates more on formal component
frameworks for dynamic reconfiguration.

In chapter 3 we formally specify a component model for modular and evolvable
distributed embedded applications first outlined in [TSK18]. Due to our approach,
software components have independent life cycles as they are independently devel-
oped, built and dynamically orchestrated within containers. Our platform only re-
quires minimal interface and wiring information to manage a software component.
One of the primary goals of our runtime architecture is to enforce the component
interface – including non-functional aspects – so that the integrator does not need
to fully trust the (potentially third-party) component developers, while at the same
time, we do not impose many restrictions to the component implementation (e.g.,
the use of a certain programming language etc.). Moreover, our aim was to make it
as easy as possible for the integrator to compose software components and we made
it possible to change those compositions even in presence of compatibility-breaking
changes and even during operation while maintaining the non-functional (real-time)
properties. For these purposes, we proposed reconfiguration extensions in [TK19a]
and concepts for enabling state transfer [TK19b], which are formally specified in
chapter 4. Our concepts are the first to enable such “arbitrary” dynamic reconfigu-
rations of distributed control systems. In the end, all this work was done with the
primary goal to effectively enable agile CBSE for distributed control systems with
maximum possible reuse at minimal integration effort, deterministic system reactiv-
ity and dynamic reconfiguration at the same time. However, to achieve this break-
through, we used a minimalistic component model compared to other approaches,
e.g. we do not support compositional components. The structure of our component
model (PIM/PSM, design-time/runtime, static/reconfiguration, . . .) will hopefully
help to lift our concepts to more sophisticated component models in future.

2.1.3 Distributed Systems

An important aspect of a component model is how it supports distributed systems.
“A distributed system is a collection of autonomous computing elements that ap-
pears to its users as a single coherent system” [VT17]. Distributing components
leads to specific problems: “Reliability, security, heterogeneity, and topology of the
network; latency and bandwidth; transport costs; and finally administrative do-
mains” [VT17]. Ignoring them is also referred to as the eight fallacies or pitfalls
of distributed systems [Tha09] [Rot06]. In distributed control systems (or: net-
worked embedded real-time systems), these problems may be even more important
and difficult at the same time. Based on the definition above, a distributed control
system is a collection of multiple autonomous computing elements that collabora-
tively control a technical process (see figure 2.5). Dedicated design principles for
distributed embedded applications exist (the software part of distributed control
systems, cf. [Kop11]), especially to achieve deterministic end-to-end timing (see sec-
tions 2.2.1 and 2.2.2). In this section we elaborate in general on different approaches
to distributed computing to illustrate the required decisions in designing a platform
for distributed control systems.

2.1. Architecture Principles 17

FIGURE 2.5: Schematic overview of component-based distributed control systems.

A common principle in networked systems is to use different kinds of layered
architectures, such as protocol stacks according to the OSI Reference Model [Zim80].
In CBSE usually runtime platform and middleware layers exist, which give a strict
bound to the ways in which a component can interact with its environment and
hides the network topology and deployment. They can also be seen as one abstract
platform layer, however, there can be huge differences between different runtime
platforms. On one extreme, a runtime platform might not even consider how com-
ponents communicate with each other, so it can be combined with “any” middle-
ware. The other extreme is that the runtime platform offers platform-specific inter-
faces for that. The latter approach gives more control to the platform, while the first
extreme is more open for application-specific selection of middleware technologies.
As a compromise in-between, the platform might support only specific standard
communication means (e.g. generic socket-based communication) and introduce
some kind of interceptor layer to keep control over the communication. To offer
more abstraction and make it easier to stay conformant, client libraries might be
provided by the platform for use within software components. They could also be
generated based on the component interfaces. The more control the platform has
over the communication, the more it can offer abstract solutions for the problems of
reliability, security, heterogeneity, and topology. To ensure latency and bandwidth
feasibility, the non-functional behavior of components and distributed (embedded)
applications need to be declared.

Regardless of the layering, there are different integration styles (cf. enterprise
integration patterns [HW04]), which impact the coupling of components. Besides
shared memory we can in general distinguish send/receive communication and re-
quest/reply communication. Shared memory in its raw form leads to high coupling
due to the required co-location and to achieve consistent concurrent access, so we
exclude this style for component-based systems. However, storage or database com-
ponents can be used in the application or platform layer, which strictly translate the
memory access to exchanges of messages (e.g. read and write requests) and maintain
ACID properties [HR83] as required (e.g. transactional consistency). In a sender/re-
ceiver relationship, one component provides values, which are transmitted within
messages to the other component if needed, where the values are required. This
can be done synchronously and asynchronously. Usually, sending is done asyn-
chronously, so that the sender continues after the value is written, but the sender

18 Chapter 2. Foundations and Related Approaches

might also be blocked or actively wait until the value has been successfully deliv-
ered. On receiver side, the platform may trigger the component on reception (event
style), or just make new values accessible to the component. In general, synchronous
communication leads to temporal coupling of components, at least. Regardless of
synchronous or asynchronous communication from component view, the platform
may introduce additional delays to transmit and deliver values, e.g. based on time
triggers, quota restrictions, or the state of a receiver. Especially message-oriented
middleware (MOM) highly decouples the times of sending and receiving, and may,
for instance, support an event style reception to be delayed until the receiving com-
ponent is started. The platform may also support multicasting (1:n) or concasting
(n:1) and even blackboard (n:m) relationships, which are particularly common in
publish/subscribe-based middleware.

In a request/reply relationship, a component sends a message to another compo-
nent and expects a reply message. Again, this can be done synchronously or asyn-
chronously. In the synchronous case, the requester would wait for the reply message
and only then continue. In the asynchronous case, a callback within the requester
might be used, or even polling, while parallel work is continued. Note that the
sender/receiver variants of synchronous and asynchronous communication apply
both to the request and the reply message. For instance, the request might be stored
in a dispatch queue and handed to the receiving component, later, so that only one
request is processed at a time. In a client/server form, the reply is provided by
the same component to which the message was sent, e.g. in remote procedure calls
(RPC). However, especially in MOM-based systems, the decoupling can be further
increased by allowing the reply to be sent from a different component after a chain
of computations. On requester side the reply is associated with the request based
on a correlation identifier within the message either by the platform or within the
component. More in general, there may be different integration styles used within
the different layers. For instance, the software components might have client/server
interfaces, which are realized by the platform via a publish/subscribe-based mid-
dleware. Another example is that the platform might provide a (distributed) shared
memory interface to the component with synchronous read and write operations,
but uses a temporally decoupled message-oriented middleware underneath caring
for the synchronization of the data between the components.

An important aspect of the integration styles is how communication relation-
ships are created. In service-oriented architectures (SOA) the client can usually look
up the server via its name (e.g. URI) or by some other discovery features. In event-
based architectures the publishers and subscribers are coupled by using the same
topics, again via the name or more sophisticated features such as wildcard subscrip-
tions. In component-based software engineering, the communication relationships
are usually defined by connectors from outside of components. Discovery features
may still be supported by the platform – at least in a mocked form. However, it is
one of the core concepts of software components that their scope ends at their ports,
which should abstract from any concrete relationships with other components. This
gives full control to the runtime platform and improves analyzability at engineer-
ing time. If communication relationships are to be created dynamically, this should
be done via dynamic reconfiguration from outside of components transparently to
the inside. It would also be possible to solve this via privileged components or a
(self-)reconfiguration interface offered by the platform, though. The communica-
tion relationships may also be created by message brokers to abstract the knowledge
about where messages need to be sent. A central broker might become a bottleneck,

2.2. Industrial Control Systems 19

but there may also be multiple brokers in a logical star topology, or even one bro-
ker per node to achieve a decentralized or even peer-to-peer communication on the
network level. A broker-less communication can be achieved if the communication
relationships are realized without a broker component at all, e.g. by sending or redi-
recting messages directly between connected ports according to static or dynamic
configurations. In the end, these approaches provide different ways to abstract from
concrete communication relationships on the lower layers such as different network
topologies in the physical layer (ring, star, . . .).

Given this wide range of alternative combinations it is a fundamental aspect of
this thesis to answer how deterministic end-to-end real-time behavior can be sup-
ported by the platform, while enabling dynamic reconfigurations. Our platform-
independent concepts aim at making it possible to define a distributed embedded
application, and only later define its allocation to nodes. Still the approaches de-
scribed in sections 3.3 and 4.2 allow that the overall system’s behavior can be ana-
lyzed formally and deterministically, including the end-to-end reactivity from sen-
sors over processing and communication steps to actuators. Chapter 5 describes a
compliant platform realization, which achieves this for UDP-based inter-component
communication. This shows that it should be possible to build modular and evolv-
able distributed control systems based on arbitrary UDP-based middleware tech-
nologies. However, some problems are still open for future work, especially regard-
ing some of the mentioned fallacies of distributed systems. For example, we did not
include concepts to compensate the loss of a message or detect malicious messages
in case of unreliable or insecure networks. These concepts should be possible to add
in the application layer based on duplication of messages, checksums etc., but may
be solved within the platform layer by future work. Aiming at reconfigurable dis-
tributed control systems, our platform concepts do address the latency, bandwidth,
topology, and administration aspects, though.

2.2 Industrial Control Systems

An industrial control system uses primary equipment to engage in its environment.
The kind and timing of the engagement and its coordination is solved by the soft-
ware, besides mechanics and the like. It is often important for the purpose of such
a system that the end-to-end reactivity from sensors over controllers to actuators
is bounded, which leads to real-time requirements. In the sections 2.2.1 and 2.2.2
we elaborate on “classical” concepts and technologies for distributed/real-time sys-
tems. More recent approaches are based on more autonomous cyber-physical sys-
tems (CPS), which use artificial intelligence technologies to better work in the “real
world” without close human supervision [Pla19]. This trend is also called artificial
embodied intelligence and predicted to disrupt many industrial sectors and areas of
life in the next decade (e.g. smart factories, smart grid, implanted/ingestible micro-
devices, everyday life robots . . .) [BNO+21]. However, the internal implementation
as well as the timing and coordination of the engagement of multiple autonomous
CPSs lead to additional challenges such as emerging behavior design, runtime sys-
tem adaptation and scheduling effects of the computing and communication plat-
form [MZ16]. Thus, there is also a trend towards more IT-like technologies on em-
bedded Linux, which provide rich and reusable abstractions that help to solve the
challenges of collaborative CPSs. In section 2.2.3 we give an overview of embedded
Linux. We also include related “modern” concepts and technologies for distribut-
ed/embedded systems within the corresponding sections.

20 Chapter 2. Foundations and Related Approaches

2.2.1 Real-Time Computer Systems

“A real-time computer system is a computer system where the correctness of the
system behavior depends not only on the logical results of the computations, but
also on the physical time when these results are produced” [Kop11]. Real-time sys-
tem consists of one or more real-time computer systems together with the primary
equipment and the technical environment. There are soft real-time systems, in which
it is acceptable to occasionally miss computation and communication deadlines, e.g.
in conditions of a load peak. In this thesis we are aiming at hard real-time, where
each missed deadline is critical, as this can lead to total failure of the system and
even cause damage. We emphasize that we mean “real hard real-time”, where mil-
liseconds matter. We assume that future work will add fault-tolerance concepts so
that limited deadline misses can be tolerated (firm real-time). However, the most im-
portant aim of real-time computer systems is temporal determinism within a system
to contribute to its behavioral determinism within its technical environment. The
benefits of determinism (e.g. predictability and composability) and nondetermin-
ism (e.g. simpler abstraction, handling of uncertainty) have been discussed recently
by Lee [Lee21]. In real-time systems, determinism is usually valued higher.

We describe fundamental processing and communication models for real-time
systems based on Kopetz [Kop11]. In general, time-triggered and event-triggered
concepts can be distinguished. In time-triggered concepts, processing and commu-
nication are initiated at specific (absolute or relative) instants based on clock-related
events, usually in specific periods. In event-triggered concepts, processing and com-
munication is initiated by other events such as the arrival of a message. On hardware
level, processors and network interfaces are equipped with different kinds of clocks
that generate microticks in specific periods of time, e.g. based on crystal oscillations.
The microticks can be used to generate ticks (for use as time triggers) and times-
tamps (for events). Hardware-based event triggers use interrupt mechanisms of the
processor to immediately trigger an action, e.g. when a new message is available
in the buffer. However, the processing and communication models on the software
level usually provide abstractions of the triggering of the hardware. These abstrac-
tions should separate the two concerns of determining the instants at which applica-
tion parts and communication should be triggered (temporal control) from the logic
and interactions of the time-consuming application parts (logical control) [Kop11].
The more directly the logic can influence the processing and network schedule (e.g.
by raising an event or by sending a procedure call request to instantly execute logic
in another application part), the more difficult if not impossible it becomes to guar-
antee for hard real-time properties of such a system.

A real-time application is often structured in independently executable sequen-
tial programs called tasks, which are managed by some kind of real-time operating
system (RTOS). The RTOS controls the CPU scheduling of the local tasks, e.g. via
execution control messages or by simply calling tasks as subroutines (especially for
generative RTOSs). Once executing, a task computes outputs from inputs, poten-
tially using and updating an internal state, which summarizes information about
the past. Tasks interact with other tasks via an application programming interface of
the RTOS, e.g. queues. To increase dependability and support “reintegration” (e.g.
replication) the state of a component can be externalized between cycles (ground
state), potentially using a database component. A fixed CPU schedule may be calcu-
lated at design time, or the schedule may also be dynamically managed by a sched-
uler. Dynamically scheduled tasks are preempted by a scheduler of the RTOS, e.g.
when a task with higher priority becomes ready. To guarantee for hard real-time

2.2. Industrial Control Systems 21

properties the schedulability of possible task sets must be analyzed at design time.
For completely time-triggered (periodic) task sets, the schedulability can be decided
based on the tasks’ periods, deadlines and worst-case execution times. Only one
schedule period needs to be considered (the least common multiple of all periods),
because the schedule can be repeated. The analysis depends on the scheduling al-
gorithm, though. As a generic necessary schedulability test, a task set is not schedu-
lable if more execution time is required than provided, i.e., if ∑ ci/pi > n, with n
processors, periods pi and execution times ci. However, there may also be event-
triggered (sporadic/aperiodic) tasks, for which we do not know apriori the times
at which execution is requested. They can be handled statically by treating them
as periodic tasks based on a minimum request interval, e.g. by sporadic server
tasks. Alternatively, sporadic tasks can also be treated by mode changes, i.e., chang-
ing to a different static task set and schedule in case of an event. For independent
tasks (no precedence/order, no semaphores etc.), dynamic scheduling algorithms
such as rate-monotonic scheduling (RMS) and earliest deadline first (EDF) can be
used. In RMS, the tasks with the shortest periods (assumed to be equal to their
deadlines) are assigned the highest static priority. If the utilization does not exceed
n(21/n − 1) ≥ 0.693 (for n tasks), RMS guarantees all deadlines by always execut-
ing the highest-priority task ready to run [LSD89]. A task set with utilization of 1 is
schedulable if the periods are harmonic. With EDF, a utilization of 1 can be reached
without harmonic periods by always selecting the task with the shortest time left un-
til its deadline [LL73]. RMS and EDF are optimal for single-core systems, i.e., they
always fulfill all deadlines if the task sets are schedulable, but not for multi-core sys-
tems. They are also combined with server task models such as constant bandwidth
servers [AB04], especially to isolate soft or non-real-time tasks in mixed-criticality
systems [BD13]. Additionally, they are combined with statistical approaches to re-
duce the required over-provisioning by utilizing variability of the execution times,
e.g. statistical RMS [AB98]. However, in case of dependent tasks, a higher priority
task might have to wait for a lower priority task to free a shared resource or pro-
vide a result (priority inversion). To solve priority inversion and avoid deadlocks,
the priority ceiling protocol can be used on a single-core system, if all resource re-
quirements of the tasks are known apriori. Each resource gets the priority of the
highest-priority task that may request it. On requesting a resource, a task is not only
blocked if the resource is occupied, but also if the task’s current priority is lower than
any occupied resource’s priority (the priority ceiling). While accessing a resource a
task dynamically inherits higher priorities from any blocked tasks. This makes sure
that resources are not allocated in a way that prevents tasks from making progress
due to circular resource blocking. At the same time, higher priority tasks are always
favored except if they are blocked by lower-priority tasks. Thus, the schedulability
for each priority can be analyzed based on the utilizations of the tasks with higher or
equal priority and the worst-case blocking times by lower-priority tasks. However,
the exact timing behavior related to the dependencies must be known and analyzed,
i.e., we also have to consider consistency of the logical control in the schedule, as the
tasks usually exchange results.

These efforts to solve temporal control consistently with logical control stand in
contrast to our intention to easily and even dynamically integrate software compo-
nents in a CBSE approach. Therefore, we seek for ways to simplify or completely ab-
stract from scheduling and find it in the LET paradigm [KS12]. In the LET school,
the RTOS approaches above are classified as Bounded Execution Time (BET) ab-
straction, with the period and deadline as the bounds of the execution. From a
mathematical point of view BET-systems are in general usually modeled as Timed

22 Chapter 2. Foundations and Related Approaches

FIGURE 2.6: Overview of the three fundamental real-time programming abstrac-
tions (cf. [KS12] fig. 1). LET seems to be the most modular and evolvable abstrac-

tion for distributed control systems due to the strong temporal decoupling.

Automata [AD94]. Between BET and LET, the Zero-Execution-Time (ZET) abstrac-
tion exists, which abstracts from the execution time by the assumption that a task
terminates instantaneously, including input and output processing. The ZET ap-
proach has been leveraged by synchronous languages such as Esterel [Ber00] and
LUSTRE [HCRP91], which are compiled to one big linear task to periodically cal-
culate a logically instantaneous transition of a Mealy machine [Mea55] defined by
the program [Ber00]. To ensure correctness and hard real-time in particular, fixed-
point analysis is used to prove that the program terminates (before the next period
starts) [KS12]. The LET paradigm is a combination of BET and ZET, which was
first proposed for Giotto [HHK03]. Figure 2.6 shows an overview of the three ab-
stractions. It abstracts from the execution time by assuming that the task starts ex-
ecuting at the start of the period reading the inputs exactly at this instant (under
ZET assumption) and terminates exactly at the end of the period providing the out-
puts (under ZET assumption, again). This can be achieved logically by providing
the inputs and taking the outputs only between task executions, keeping back any
new inputs our outputs until the subsequent logical cycle turnover. As the exe-
cution platform processes the inputs and outputs in the cycle turnover, it must be
done under ZET assumption, again, as there is no time for this, logically. With the
LET paradigm, we can more easily assign more concurrent, independent tasks, com-
pared to BET, as the inputs and outputs are “frozen” during task execution, which
decouples the schedule to the extent that only the processor utilization needs to be
considered. Compared to ZET, the “frozen” semantic has the additional benefit of
temporal determinism with regard to the technical process. The temporal decou-
pling of tasks and the resulting simplicity to analyze the end-to-end reactivity are
major benefits of the LET paradigm [HDK+17]. This decoupled and deterministic
processing chain costs more runtime management overhead and more delay of the
computation, though. From an architectural perspective, this means that I/O and
communication has to be managed and to some degree implemented in the plat-
form layer.

The benefits of simplifying scheduling become even more important if we con-
sider chains of computations by distributed tasks and the communication between
them. For minimizing the end-to-end reactivity of a real-time system, these chains
could be phase-aligned by a holistic schedule, which plans a time trigger for the next
task activation or message transmission just after the preceding step is known to

2.2. Industrial Control Systems 23

have terminated as of the worst-case execution time (including any potential block-
ing) or worst-case communication time. The communication scheduling must there-
fore be considered in such a holistic schedule. The physical communication schedul-
ing might be based on static time slots (e.g. CAN, FlexRay, EtherCAT) or allow for
dynamic network transmission (e.g. Ethernet, Wi-Fi). On top of this, the protocol
stack and the platform could provide abstractions for the network scheduling, for
example, based on queueing disciplines, but it might also allow to directly write
into a time-triggered protocol frame, which thus leads to strong coupling of the task
and network scheduling. Depending on how the communication should be aligned
with the schedule or how events are ordered, the involved nodes might also have
to synchronize their clocks, e.g. by specific protocols such as PTP [IMS19]. For the
three different abstractions, following general concepts were proposed to minimize
the complexity of distributed scheduling. For classic BET-style systems, the Time-
Triggered Architecture (TTA) [Kop11] was proposed. In essence, all periodic task
executions and communication channels are timed in a rigid global schedule based
on an established global time base. Additional dependability concepts such as com-
ponent replication and voting, periodically persisting a ground state, and even a
secure download service (no hotfixing, though) are described as well. If the princi-
ples of TTA are followed, Periodic Finite State Machines (PFSM) [OEHK07] can be
used to model and analyze the behavior of a distributed control system. For ZET-
style systems, the PALS concept (Physically Asynchronous Logically Synchronous
systems) [SAS+09] can be used to achieve synchronous distributed systems. The
idea is to ensure that outputs of cycle n will be processed during cycle n + 1 also
on remote nodes. For this they must be buffered during cycle n on the receiver end,
of course. As clocks are not perfectly synchronous, messages must be sent only in
a time interval distant enough from the cycle start (by delaying if needed) and end
(by tuning period and WCET) depending to the bound of the clock skew. For dis-
tributed systems, LET can be expanded to the network communication, as we pro-
posed in our Real-Time Container Architecture [TSK18]. Our architecture solves this
reconfigurably on the platform level by an agent and a special barrier queueing dis-
cipline as described in the subsequent chapters. From abstraction perspective, the
same approach was also proposed as System Level LET, to achieve better analyz-
able distributed systems with regard to time-sensitive cause-effect chains [EAG18].
In System Level LET, communication tasks (could be application- or platform-level)
make sure that an output from the previous cycle intended for a remote receiver
is transmitted exactly during a period, and that all tasks on all nodes are executed
in globally synchronized isochronous cycles. This simplifies the end-to-end anal-
ysis, as each processing and remote communication step takes exactly one logical
period so they are chained temporally deterministic. The chain analysis can be done
as described by Hamann et. al. [HDK+17] or based on dataflow graphs using our
formal model as described in section 3.3. The LET paradigm is also the basis for
reconfigurations that must be executed synchronously across nodes to maintain sys-
tem consistency and availability, as we proposed in [TK19a] and also elaborate in
the subsequent chapters. For analyzing the end-to-end behavior during concurrent
reconfigurations, Evolving Dataflow Graphs (EDFG) can be used as proposed in sec-
tion 4.2.

Thus, the LET paradigm seems to be the most modular and evolvable processing
model for distributed control systems. This can outweigh the latencies caused by the
logical execution time and logical communication time, if the resulting reactivity is
still sufficient. The LET paradigm is the enabling basis of our concepts, including
our CBSE and MDE approach, the container-based execution platform concept and

24 Chapter 2. Foundations and Related Approaches

the reconfiguration model. The combined concepts separate multiple concerns as
elaborated in [TK19a]. The most important one is to separate the scheduling of tasks
and messages from the functionality and contents of tasks and messages. This way
we can reconfigure consistently and reactively without involving the application in
reconfiguration management. However, it might be possible to apply our concepts
to TTA and synchronous distributed systems in future work, as these architectures
also enable deterministic end-to-end chains with low coupling.

2.2.2 Distributed Control and Communication Technologies

We describe concrete related platform technologies for distributed control and com-
munication, including technical standards and selected proprietary platforms, which
we are aware of. The technologies combine different (non-/real-time) computing
concepts and solutions for distributed (non-/real-time) communication. We also in-
clude the aspects of MDE and CBSE, as well as features for dynamic reconfiguration.

Automotive

A typical and widely used RTOS standard is OSEK-OS [ISO05a], especially used in
automotive control systems. It requires fixed priority preemptive task scheduling
with priority ceiling, though non-preemptive, mixed preemptive and full preemp-
tive are possible, depending on the task set. Basic tasks run to completion unless
an interrupt occurs or they are preempted by a task with higher priority. Extended
tasks can additionally request to wait for an event, so that they release the CPU for
lower-priority tasks and only become ready again when the event is set. An event is
a binary information assigned to one task, only, so only the owning task can read and
reset an event flag or wait for it to be set. The event can be set from any other tasks
and by some interrupt service routines (ISR). There are two ISR categories, with and
without OS calls, which can be suspended all together or only the ISRs with OS calls.
If an ISR sets an event via the OS call, the tasks will be newly scheduled after all ISRs
have completed. The OS also controls concurrent resource access between tasks and
ISRs via critical sections (scheduler, code, memory, or hardware). Thus, OSEK-OS is
an event-triggered RTOS with the full scheduling complexity pointed out in the pre-
vious section. However, besides events set by programs, there are also alarms, which
enable dynamically configured clock counter condition triggers (i.e., time triggers).
At least one counter exists, the timer, for which a counter value condition can be con-
figured to periodically execute tasks or alarm callbacks. Thus, OSEK-OS can be used
to define time-triggered real-time systems, too. The OSEK-COM [ISO05b] extension
of the standard defines an API for communication between tasks and/or ISRs – in-
cluding remote tasks. It hides from the tasks the details of the deployment, the bus
technology, and the network topology to increase portability, reusability and inter-
operability, but still aims at hard real-time communication. The interaction layer of
the OSEK-COM specification requires that all messages and their metadata are stat-
ically configured, so that corresponding functions for sending and receiving them
can be generated. Internal and external message objects are then written to or from
message objects, which may have either queued (fixed queue length) or most-recent
behavior. The message objects also support abstractions to filters (time/value) and
to monitor whether deadlines were kept (both on sender and receiver side). The
latter can be configured with different mechanisms including setting a flag on the
message object, setting an event of the task, or activating an error task. Internal
messages (between co-located tasks) are delivered immediately, i.e., copied to the

2.2. Industrial Control Systems 25

message objects on the receiving end (potentially, multiple ones). External messages
are delivered indirectly via protocol data units in the network layer. While writing
the data to the corresponding frames, offset and endianness are handled according
to the communication configuration (in particular, the size of each message is fixed).
The network layer also issues transmission requests and reacts on reception indica-
tions in its interaction with the data link layer (which is not further specified in the
standard). Both direct transmission mode (event-triggered transmission by sending
a message by the application) and periodic transmission modes (time triggered) can
be supported, as well as mixed transmission mode. On the receiving end, the net-
work layer extracts received messages from the protocol data units to the configured
message objects. As all this functionality is generated based on a configuration, the
OSEK-OS configuration is a complex task, which highly influences the end-to-end
timing analysis.

On top of OSEK-OS, the AUTOSAR [AUT16] standard (meanwhile called AU-
TOSAR Classic Platform) has been defined and successfully enables CBSE for dis-
tributed control systems in the automotive domain. It defines a component model
and runtime environment so that software components could be logically wired
via a virtual functional bus (VFB) before defining the allocation to hardware in
a later engineering step. The runtime environment can be seen as a component-
based configuration abstraction of OSEK-OS, and the virtual functional bus as a
component-based configuration abstraction of OSEK-COM. A software component
has multiple tasks (behavior) with different sorts of triggers (time, messages, . . .)
and ports with sender/receiver interfaces and client/server interfaces, which are
translated to OSEK-OS features. For instance, a remote procedure call behavior is
realized on server side by an OperationInvokedEvent that triggers the task exe-
cution. A periodic behavior is achieved by a TimingEvent, which is realized by a
timer-triggered alarm. In addition, the runtime environment standard includes ba-
sic software modules to further standardize the configuration of the systems, e.g.
the data link layer is standardized (CAN, FlexRay, . . .). Generator tool chains then
create a monolithic image for each Electronic Control Unit (ECU) based on extracts
of the system description, a configuration of the platform, and the component in-
terfaces and implementations, so that for each ECU a different vendor’s toolchain
and runtime environment could be used. Several modeling and configuration for-
mats have been defined for AUTOSAR, for example ARXML as core of AUTOSAR
(cf. [AUT19a]), ARTEXT [Art22] on top of ARXML, and EAST-ADL [CFJ+10; Ass13]
for supplementary modeling, e.g. feature and safety requirements, including tim-
ing constraints. However, despite the wide tool support for these formats by var-
ious vendors, the configuration of the platform is complex, as many low-level de-
tails have to be provided by the engineer, for example on protocol data units, OS
tasks and I/Os. This makes even static reconfiguration a big effort, but dynamic
reconfiguration is very limited due to the generative, monolithic architecture of AU-
TOSAR classic. The LET paradigm has also been proposed on top of the AUTOSAR
classic platform to allow for deterministic multi-core execution [BD18]. A similar
approach was also described by [HDK+17], who describe the end-to-end analysis.
Meanwhile, LET is even part of the AUTOSAR standard [AUT19c]. This can sim-
plify integration and configuration, though at least tampering with configuration
items such as PeriodicEventTriggering and OffsetTimingConstraint is still possible and
to some extent required. However, dynamic loading of components and system
modes would be required in addition to the LET paradigm to apply dynamic re-
configurations as proposed in this thesis. Another direction to decrease complexity
is constraint-based system synthesis [GKC+15], which was also used in a concept

26 Chapter 2. Foundations and Related Approaches

to enable pre-defined dynamic reconfiguration of AUTOSAR-based distributed con-
trol systems [SDWB17]. This concept can mitigate failures of control units by a mon-
itoring and reconfiguration service, which triggers failure-specific mode switches
to degraded alternative architectures when periodic remote heartbeats are missing.
Those alternatives are derived from quality declarations that allow to automatically
synthesize “second-best” systems for each failure. These dynamic reconfigurations
are statically pre-defined and applied only locally, so they do not allow to roll out
new functionality or to break compatibility across nodes, though. In this sense, dy-
namic reconfiguration of distributed embedded applications is still not possible in
the AUTOSAR Classic Platform.

In the more recent AUTOSAR Adaptive Platform [AUT21b], this standard now
moves on from a static platform to a more dynamic one, in which software com-
ponents and relationships between them are created at runtime. Instead of OSEK-
OS, adaptive AUTOSAR is based on POSIX [ICS17]. We describe some related de-
tails on POSIX in the Linux-related section 2.2.3. The AUTOSAR Adaptive Platform
standardizes how such systems should be initialized, what functional clusters and
AUTOSAR services should be present, and the communication interfaces between
them as well as the configuration of the OS to run applications (i.e., POSIX pro-
cesses). For instance, the platform configures resource groups for the applications.
In general, platform- and user-level applications have the same access level – so it
is the responsibility of application developers not to access OS services and APIs
in non-compliant ways that restrict the portability of other applications. Processes
can and must request real-time scheduling policies themselves via the OS interface if
needed, but several settings should be configurable via a manifest file (priority, CPU
quota and affinity, RAM limits, . . .). The DeterministicClient platform API offers a
service WaitForActivation for cyclic task execution, which blocks until the next cycle
shall be triggered. The communication management specification [AUT21a] covers
aspects such as end-to-end communication protection and inter-application commu-
nication. For instance, inter-application communication could be realized via DDS,
for which a network binding is included. The current specification does not describe
how deterministic synchronization across nodes should be done, though it is spec-
ified as a requirement. Execution and communication management is done during
operation, but only during system start to achieve a more modularized deployment,
while updating of processes during operation is not covered in the standard. The
standard is still emerging, but up to now it does not provide end-to-end temporal
determinism. Menard et al. proposed the reactor-based solution DEAR [MGLC20]
on top of AUTOSAR adaptive to ensure logically deterministic (order-preserving)
execution of concurrent chains of computations without strict scheduling. The reac-
tor concept enables this by associating messages (related to method calls or events
in AUTOSAR adaptive) with a logical time called tag. On the start of a processing
chain, e.g. triggered by sensors, the physical time is used, whereas the consequent
messages keep the same tag. Based on the tags reactors then delay execution of ac-
tions (that react on input messages) according to a safe-to-process analysis, which
takes into account an upper bound of the clock skew and communication latencies,
but also deadlines, so that the order of message processing is preserved despite non-
deterministic dispatching on runtime level. Due to this concept, the reaction chains
are ordered consistently and logically instantaneous, but unlike the LET paradigm
the composition of reactors does not require explicit temporal alignment, which is
difficult to apply in AUTOSAR adaptive [MGLC20]. However, even though it was

2.2. Industrial Control Systems 27

claimed that reactors facilitate analysis of end-to-end latencies [MGLC20], the prob-
lem remains that it is difficult to analyze statically at design time, what the worst-
case communication time and effective computational reaction time will be, as the
number of parallel reactor executions and message transmissions as well as their
impact on the scheduling is not known. Finally, we are not aware of approaches for
reactive and deterministic distributed reconfiguration of such systems.

Avionics

In avionics, the ARINC 653 RTOS standard is the basis for safety-critical and real-
time distributed control systems [Pri08]. The scope of ARINC 653 is similar to the
scope of OSEK-OS. It includes task management based on partitions, the processes
of which may be time-triggered and event-triggered, which however is done in iso-
lated fixed time slices based on process scheduling attributes to ensure temporal
determinism. Besides the CPU time, the memory regions are partitioned to ensure
the isolation of the partitions via memory management features of the hardware. For
inter-partition communication, ARINC 653 includes a queue-based communication
abstraction, which also abstracts from the deployment of partitions. Synchronous
and asynchronous communication is supported, with polling or completion alerts.
It can also be used to achieve client-server communication, even dynamically via
service access points. Using sampling ports, the communication can be done in
typical data structures used in aviation data busses, e.g. including a status indi-
cation [Pri08]. Mode management is supported, too, so that different static task sets
can be defined. I/O management is done by the RTOS, including fault monitoring
and triggering of specific handling functions. The resulting time and space parti-
tioning of ARING 653 is used to achieve Integrated Modular Avionics (IMA), i.e.,
CBSE in avionic distributed control systems [GWC15]. To achieve distributed deter-
minism as a prerequisite, the Time Triggered Architecture (TTA) [Kop11] was also
proposed for avionic systems in three layers: to use Simulink on design and simula-
tion level, translate to Lustre to leverage the DO178B-level-A automatic code gener-
ator, and integrate into a distributed system according to the Time Triggered Archi-
tecture (TTA) using the time-triggered ARINC 653 RTOS on each node [CCM+03].
Time-triggered Ethernet with time synchronization and time division multiple ac-
cess (TDMA) was used to partition the network in the same way as ARINC 653
partitions the CPU and memory, e.g. in three traffic classes [GWC15]. However,
quality-of-service-based distributed communication has also been used in avionic
standards. As IMA is about defining a complete airplane architecture, the integra-
tion of the individual subsystems and components is highly complex. It results from
configuring CPU, memory, and network resources as well as communication rela-
tionships while ensuring end-to-end reactivity. For this purpose, interface control
documents (ICD) have been extended so that the information required for the corre-
sponding IMA concepts were included [GWC15]. There is ongoing work to harmo-
nize ARINC 653 and POSIX to fulfill the FACE requirements, an emerging military
avionics standard [BSG18] [BS20]. This leverages hypervisor features of an exist-
ing ARINC 653 operating system to run POSIX-based guest systems. It was even
claimed that automotive and avionic technologies may have synergies, e.g. in a
unified hypervisor infrastructure [GWC15]. An older approach still relevant to this
thesis is Giotto [HHK03], because this was the birth of the LET paradigm described
earlier. A Giotto program essentially consists of tasks that have input and output
ports (data points in a global space) and private ports. Additionally, mode switches
are possible to change the task set. The tasks are invoked at isochronous instants

28 Chapter 2. Foundations and Related Approaches

according to the LET paradigm, i.e., such that input valuations are only changed at
the cycle start, and output valuations are ignored until the cycle end. The logical ex-
ecution time of a task is determined from the current mode’s period (e.g. 10 Hz) and
the task’s frequency (e.g. 5, leading to 50 Hz invocation frequency or 20 ms logical
execution time). Only at cycle turnovers, the platform invokes drivers to provide
declared inputs from sensors and outputs to actuators, which is logically done in
zero time (ZET abstraction). Giotto includes a DSL for describing the system ar-
chitecture, from which a schedule description can be generated – the E code. The
platform-independent E code is finally used by the Embedded Machine at runtime to
schedule the tasks and drivers accordingly using platform-specific features of the
underlying RTOS. A well-timed Giotto program is schedulable for given WCETs of
the tasks if for all mode task sets M the sum of all individual task utilizations is
smaller than or equal to one [HKMM02]:

∑
t∈M

WCETt/LETt ≤ 1

A Giotto program is well-timed if mode switches only happen at the end of a mode
or otherwise if all tasks scheduled during a potential mode-disrupting switch are
present in the target mode as well and have the same LET. Hence, schedulability
analysis is highly simplified with the LET abstraction in Giotto. The HTL [HKMS09]
language and framework adds modules to the Giotto concepts, i.e., components.
Modules in HTL have modes and tasks, and communicate with each other via a set
of communicators. Modules are distributed to a set of hosts connected by a “reliable,
time-synchronized broadcast network” [HKMS09], so communicators also care for
remote communication. Hierarchical refinement is possible by declaring abstract
tasks in a mode. The concrete tasks are defined during mode switches (e.g. se-
lection of a fast or slow implementation). A little generalization of the Giotto task
model was proposed for that. The logical execution time of a refinement must be
larger than of the abstract task (though we believe that breaks the Liskov substi-
tution principle [Bar88]). To cope with that, inputs can be provided also before
the logical release time of a task, and the outputs can be released after the logical
termination time. Based on this platform, a concept for model-preserving runtime
patches [KLMS11] was proposed. A runtime patcher replaces a module, mode, or
refinement task with a new one during an atomic switch. At this time, all tasks of
the module must be in a quiescent state regarding communicators, and the behavior
with regard to communicators must stay compatible. This is ensured by analyz-
ing the program and the patch at design time and instructing the runtime patcher
with the new and intermediate E code. This schedule will, for instance, temporarily
block processes if needed, and activate different tasks at certain points in a period.
However, still none of these approaches aim at compatibility-breaking dynamic and
deterministic reconfiguration of distributed real-time systems during full operation.
Finally, we refer to a CBSE approach for avionic systems described by Panunzio
and Vardanega [PV14], which is very similar to our envisioned engineering process
described in chapter 3. This approach describes decoupled creation and reuse of
components, their assembly, their deployment, to then running the modeled system
by a generated real-time and communication architecture. In addition, our runtime
platform concepts provide the possibility to do each of the decoupled activities itera-
tively and apply changes easily, even during operation and even in case of breaking
changes, by our means for synchronous reconfiguration during operation.

2.2. Industrial Control Systems 29

Automation

We already gave an overview on trends and technologies in manufacturing in the in-
troduction. In this section, we elaborate more on related runtime platform concepts
for distributed control and communication technologies. In industrial automation,
usually PLCs [Bol15] are used to run control logic. A PLC is a special-purpose mi-
crocontroller, which continuously runs a program cycle. PLC programs are usually
defined via programming languages defined in IEC 61311-3 [IEC13]. For instance
sequential function charts (SFC) can be used to specify a cyclic procedural state ma-
chine, which is basically a Petri-net [MM21]. The individual functions and aggre-
gations of them that make up a PLC program are often generated from complex
mathematical models (e.g. integer programming) that are beyond the scope of this
thesis. We refer to Williams [Wil13] for more background on building such models.
A PLC works as follows [Eri96]. At the start of a cycle, the inputs are copied from
the input modules to the memory. Then a sequential program is executed, which
takes the copied inputs and its state and updates its state and internal outputs (i.e.,
it is a Mealy machine). Only after it completes, the internal outputs are propagated
to the output modules. Usually the next cycle starts immediately afterwards to im-
prove the reaction time, so the cycle time is not a constant period. In addition to
varying execution times, interrupts may be used to trigger intermediate logic, paus-
ing the cyclic execution. While this is intended for quick, event-triggered execu-
tion, it can also be used to achieve a time-triggered execution via timer interrupts.
Thus, PLC-based automation can also reach the full real-time analysis complexity as
described for RTOSs. For instance, different timers with rate-monotonic priorities
could be defined to which the different application parts are mapped, which leads
to the RMS utilization issues mentioned before. However, this could also be used
to define completely time-triggered systems, e.g. according to the LET paradigm,
because the freezing of inputs and outputs is naturally provided by the PLCs. Ad-
ditional complexity arises from advances on the hardware level. While traditionally,
special-purpose PLCs where used as reliable hardware platform, meanwhile also In-
dustrial PCs (IPCs) (standard PCs with emulated PLC environments) are more and
more popular due to hardening of the standard hardware and OS, possibly even
including a real-time separation kernel [Wil15]. This trend is recently expanded to-
wards edge control, where hypervisors are used to run real-time control side-by-side
with arbitrarily rebootable general-purpose operating systems, which are used to
run edge and IoT functionality (see also section 2.2.3) [Tho22]. This is thus a simi-
lar direction as in the avionic and automotive domains described before. With our
design-time, runtime and reconfiguration concepts in this thesis, we are aiming at
the real-time parts of such systems, however.

Communication between PLCs can be done by several industrial standards, in-
cluding OPC UA [ISO20], the field-level communication standard Profinet [IEC20],
but also DDS [OMG15a], more recently. These interoperability standards address
the need to integrate machines and controllers from different specialized vendors
for real-time control. The integration styles range from client/server in OPC UA
(classically) over cyclic sender/receiver in Profinet to Publish/Subscribe in DDS.
Traditionally, the timing of the distributed communication is not fixed, as often only
the most-recent value is important. Real-time control can be supported by prioritiz-
ing communication and time-triggered traffic scheduling, e.g. within the protocol
(as in Profinet) or by configuration of the bridge layer [ICS18]. Consequently, the
end-to-end behavior is not automatically deterministic, so depending on how tasks
and communication are triggered it can be difficult to analyze the end-to-end timing

30 Chapter 2. Foundations and Related Approaches

behavior of a distributed PLC-based control system. IEC 61499 (distributed function
block diagrams) [IEC12] is a standard for distributed control systems based on PLCs.
IEC 61499 applications consist of (compositional) function blocks (FB) that commu-
nicate with each other via events and data connections. The system configuration
maps FBs to devices and inter-FB communication to protocol messages – potentially
in a subsequent step following their wiring [DV07]. Due to the holistic architecture
model that includes the full deployment, end-to-end analysis is possible, provided
that the runtime and communication platform are selected and configured accord-
ingly. Thus, IEC 61499 is a good basis for CBSE of distributed control systems, for
instance with a V-Model methodology proposed by Zhang et al. [ZHD05]. On top of
that, IEC 61499 supports dynamic reconfiguration as described later in this section.

Unlike in automation and avionics, the distributed control system needs to be
changed more often and more extensively in automation. The importance to de-
sign reconfigurable manufacturing systems was described by Koren et al. [KS10].
According to them, manufacturing systems need to be reconfigured in case of mar-
ket demand changes, product changes and system failures, which can all happen
frequently. While their focus is on how to organize the machines and logistics to
achieve reconfigurable manufacturing lines, they also mentioned changing the soft-
ware structure as a means (downtime is assumed, though), leading to the require-
ment to use advanced controllers. They propose six principles of reconfigurabil-
ity: customization, convertibility, scalability, modularity, integrability, diagnosabil-
ity. These can also be applied to software reconfiguration. The software compo-
nents should be customizable via configuration data and convertible in the sense
that they can be reused in different situations. Scalability is needed so that we can
change the number of nodes and software components. A modular and easy to
integrate architecture is needed (which leads us to CBSE). And finally, the system
and reconfiguration status needs to be diagnosable. We add two interdependent
aspects to the six principles: coordination and dynamism. First, collaborative man-
ufacturing systems are more complex than just serial and parallel lines of machines,
as the machines could dynamically create collaboration relationships based on their
internal behavior and might even require adaptation of this behavior for concrete
collaborations. Second, if we can dynamically reconfigure on software level with-
out downtime, there might be no line changeover time at all or it could be done
deterministically in short idle moments. As mentioned in the introduction, much re-
search is going in the direction of process level reconfiguration. However, we think
that the concerns of deterministic dynamic distributed software reconfiguration and
production line reconfiguration should be separated into two reconfiguration lay-
ers as far as possible, as the complexity of both aspects is high. For instance, if you
consider autonomous machines interacting via some shared language or interaction
conventions, it would probably be too complex if arbitrary dynamic software recon-
figuration had to be incorporated in the design of these interactions, too. Therefore,
the process level reconfiguration is not considered in this thesis, at least not beyond
analyzing the system behavior also during reconfigurations. Instead, we provide a
dynamic and deterministic distributed reconfiguration approach, which can be used
by additional concepts on top to achieve dynamically reconfigurable manufacturing
systems. These concepts will probably require holistic, integrated reconfiguration
on the two layers, the coupling of which can be minimized, though, if the software
reconfiguration layer provides determinism. Therefore, this thesis focuses on mod-
ularity and integrability to facilitate CBSE as well as design-time and runtime con-
cepts to achieve analyzable dynamic reconfigurations with temporal determinism.

We describe existing approaches to dynamic reconfiguration of PLC-like control

2.2. Industrial Control Systems 31

systems. Wahler et al. [WRO09] proposed a concept for updating individual cyclic
components, which takes into account the timing of the update, a general algorithm
(download and initiate, exit old version, handover state, acquire and start new ver-
sion) and especially real-time state transfer. As of this concept, a state conversion
function should be part of the new version and executed just before the first cycle – it
is assumed to fit into that cycle (which worked up to 300 Hz in their evaluation). If it
does not fit into the cycle, they mention (but do not solve) the problem of maintain-
ing ACID properties during simultaneous replacements of multiple components.
This problem is even bigger in distributed and compatibility-breaking reconfigura-
tions, which we address with our concepts in this thesis. A prerequisite for transac-
tional consistency of such reconfigurations is determinism of the changes within the
end-to-end dataflow, which we achieve by our concepts. A more recent approach for
live updates in PLCs was proposed for Cetratus [MM21]. The concept is based on
a switch between a primary and a secondary container for Petri-net logic (i.e., SFC).
An update package contains the new Petri-net model (i.e., the new program) and a
state transformation matrix. The reconfiguration is triggered by an update request,
after which the new Petri-net model is loaded in the secondary container. Addition-
ally, the state of the primary model is loaded and potentially transformed using the
state transformation matrix within the first execution cycle in which the secondary
Petri-net is also computing the state equation, but its outputs are only monitored,
not yet provided to the equipment. This leverages their I/O virtualized environment
Cetarus, in which the inputs and outputs of a program are not directly exchanged
with the equipment, so the secondary container can be muted in order to perform
an in-field pre-activation test. The user monitors the behavior of the new version
and trigger the atomic switch, so that the container with the new program becomes
primary and its outputs are used instead. While the evaluation example is a recon-
figurable Vernadat system consisting of two machines and a robot, the Petri-net is
not distributed, not even over multiple containers on the same machine. An update
approach for IEC 61499 [IEC12]-based distributed control systems was described by
Zoitl et. al. [ZLMV10]. The IEC 61499 runtime should provide basic reconfiguration
services, which are meanwhile part of the standard. Using these services, a reconfig-
uration application can create and delete structural elements such as function blocks
and manipulate their states. Similar reconfiguration features can be found among
our modification steps and lifecycle steps (see section 4.1). Though the reconfigu-
ration application may manipulate the distributed control system, reconfigurations
are restricted to having only local effects, i.e., no compatibility-breaking changes
are possible in lack of a concept to ensure distributed integrity. This is addressed
by our runtime and engineering concepts as described in the subsequent chapters
(e.g. by distributed LET, coordination steps, Evolving Dataflow Graph . . .). Another
approach to dynamic reconfiguration of IEC 61499 systems was proposed by Pren-
zel and Provost [PP17]. They transform a function block diagram to Erlang OTP,
which natively supports updating of individual processes. Each process runs the
Moore machine of one function block, converted to Mealy machines as supported
by Erlang OTP, and communicate via Erlang events in an actor style. The new code
modules are started, the processes to update are suspended, state transfer is per-
formed, and then the processes resume in the new version. The updates needed to
be backwards-compatible, because distributed dependencies were not considered.
Additionally, there is a non-deterministic downtime of the components. The concept
was extended by Prenzel and Steinhorst [PS21] so that reconfiguration sequences of
reconfiguration operations defined by the IEC 61499 reconfiguration services were

32 Chapter 2. Foundations and Related Approaches

generated automatically. The ordering of start and stop operations in case of simul-
taneous function block updates is solved by topological sorting of a dependency
graph. Additional state transfer operations are included between stopping an old
version and starting a new version, potentially using a user-defined function block
for state transformation. The reconfiguration operations are strictly ordered based
on constraints, so that the consistency of the application can be guaranteed in the
sense of an interleaved switch from the old to the new event chain. Recently, Prenzel
et al. [PHS22] also added the possibility to quickly rollback dynamic reconfigura-
tions in case of a failure. The concept is based on the observation that most recon-
figuration operations are reversible (for instance, creating a function block can be
undone by deleting it, again), while only few of them lead to a point of no (quick)
return (e.g. deletion of a function block). The reconfiguration can thus be rolled back
in-time by applying the inverse operations in reverse order, if the fault happens
before the point of no return. However, the downtime during state transferal still
remains and sums up along the event chain. This limits the applicability of the re-
configuration concept to distributed function block networks, in addition to the fact
that remote communication with reconfiguration services is needed in time-critical
reconfiguration phases to ensure a consistent timing of reconfiguration operations.
However, as some of the reconfiguration concepts are similar to our approaches, it
may be possible to introduce an adapted form of our distributed coordination con-
cepts to reduce downtime. This would require more temporal determinism for this
event-based runtime, e.g. by a reactor approach as it was proposed for AUTOSAR
adaptive [MGLC20] (see also section 2.2.2).

2.2.3 Embedded Linux

POSIX [ICS17] is a widely used OS standard in desktop and server systems, but
also in embedded systems, as it also includes real-time scheduling interfaces. It is
implemented by many RTOSs, though not all of them are fully compliant and certi-
fied. For this thesis, Linux is most relevant, as we built our evaluation prototype on
a custom Linux distribution (see chapter 5). Many Linux distributions can be used
as RTOSs, too, especially with the real-time patches applied. This is also referred
to as embedded Linux. The major benefit of embedded Linux is the wide range
of mature software, including drivers and secure virtualization and network stack
components, and its customizability. To create a customized Linux distribution, es-
pecially in embedded domains, the Yocto build system can be used, which we also
did for our real-time container architecture prototype. Our prototype concept relies
on some CPU and network scheduling features provided by Linux, and especially
some containerization features.

Linux provides most system functions, subroutines, shell and utility programs as
specified by POSIX. This includes a portable character set, locales, tools (e.g. crontab,
find, patch . . .) and functions (pthread_create, timer_create, mmap . . .), as well as the file
system hierarchy (temporary files under /tmp, devices under dev etc.). However, we
are more after the general concepts behind the interfaces related to the core OS fea-
tures, especially those related to embedded systems and containers, some of which
are beyond POSIX. In general, application programs consist of one or more pro-
cesses. Processes may also contain threads, which are treated like processes, except
they share the same address space. Linux separates processes and threads in user
space from lower-level functionality in the privileged kernel space (including kernel
modules), e.g. scheduling and I/O. When a user space process requests services by
the kernel by system calls, the kernel checks whether the process may do so and what

2.2. Industrial Control Systems 33

information is visible based on several mechanisms. Whether specific functions and
features are accessible to a process at all is controlled by non-standardized privi-
leges, called capabilities in Linux [Ker02]. For instance, CAP_SYS_CHROOT is required
for calling chroot(), which can be used to lock a process into a fake root filesystem.
The capability CAP_NET_ADMIN is required for network administration, which can be
revoked from processes to force a certain virtual network interface setup. Even when
a function may be called as of the capabilities, its features may be limited by resource
limits [EK10] (e.g. the non-POSIX limits RLIMIT_RTPRIO and RLIMIT_RTTIME related
to real-time scheduling). Even more fine-grained access control for specific processes
can be achieved via Linux Security Modules (LSM) [WCM+02] and Secure Comput-
ing (Seccomp) [Cor09]. Additionally, each process can be in several kinds of not stan-
dardized namespaces [WK17], which limit the visibility of kernel objects (e.g. other
processes, network interfaces, mount points). A process can be further restricted
by control groups (cgroups) [HK21]. For instance, the CPU time and block device
access for all processes of a user can be limited to a specified quota via dedicated
cgroups. These kernel features are used by and together with container technologies
such as lxc [Can22] [Can22] and Docker [Mer14] to create isolated process spaces,
in which processes have only a limited view of the system according to a container
configuration and security profiles [Cha17; LMC+20; SCC+20]. Overall, Linux is a
POSIX-based operating system with rich isolation features, which not only improves
security, but which also provides architectural benefits including the possibility to
use containers as self-contained provisioning units while enforcing compliance of a
contained application to its declared interfaces. This is why we use Linux including
containers for the runtime platform concepts described in this theses.

However, we are aiming at hard real-time systems. Approaches such as the PA-
CORA framework [Bir14] (the thesis also contains an overview) have been proposed
in order to guarantee QoS (in this case, deadlines) of a set of distributed soft real-
time applications by optimizing resource allocation (compute, communication, ca-
pacity). Such approaches could be utilized in an architecture as proposed in this the-
sis, but within our scope, we do not try to minimize the allocated resources – instead
we assume the allocated resources as demanded by a given model well cover the
worst-case requirements so that deadlines are guaranteed in any case. Either way,
we need some RTOS features for our real-time applications, too. Linux provides
the RAM-only filesystem tmpfs [Ker16], which we can use (also within containers)
to avoid disk I/O by time-critical processes. The Linux kernel supports following
scheduling policies that can be requested by the processes via sched_setscheduler()
or sched_setattr() (cf. [KZL+22]). Normal processes run with scheduling policy
SCHED_OTHER, which under Linux is the completely fair scheduler (CFS). The only
requirement by POSIX is that a priority can be set, which on Linux must be equal
to 0. Thus, all normal processes have the same priority. The scheduler runs peri-
odically by means of a configurable timer interrupt (e.g. every 10 ms) and when
processes voluntarily release the CPU or become runnable. If no other process is
runnable, the scheduler picks one of the runnable processes in the normal thread
list. A nice value is used to fairly balance this selection per default, which can also
be manipulated from user space to de/prioritize processes. Besides that, the Linux
kernel supports real-time scheduling policies. The more basic policies also included
(optionally) in POSIX are SCHED_FIFO and SCHED_RR. Such processes can have higher
priorities up to 99. For FIFO processes, the scheduler selects from the highest prior-
ity thread list the longest-waiting runnable process and lets it run until it voluntarily
gives up the CPU, reaches its runtime limit (RLIMIT_RTTIME), or a higher-priority
task becomes runnable. When a FIFO process is preempted by a higher-priority

34 Chapter 2. Foundations and Related Approaches

task it is enqueued at the head of its priority’s thread list, otherwise at the tail. RR
processes (round robin) may also be preempted and re-enqueued when a config-
urable time quantum exceeds (e.g. 100 ms). Linux also provides the non-standard
real-time scheduling policy SCHED_DEADLINE, which enables isochronous task execu-
tion. Such processes automatically have the highest priority and will preempt any
other process when becoming runnable. If multiple processes use this policy, they
are scheduled via the earliest deadline first algorithm. When the process requests
this policy, it passes a period, a runtime, and a deadline to the kernel. Normally,
the process will become runnable at all periodic offsets from the request time. If the
deadline is the closest, the process will be set to running and keeps running until
it voluntarily gives up the CPU or until its runtime is used up. The isochronous
instants may be shifted by the kernel if the process should not release the CPU by
calling sched_yield() until the deadline, especially when it runs out of runtime. To
achieve real-time behavior, additional real-time tuning such as core pinning and pro-
cess memory locking is required in addition to using real-time scheduling policies.
In particular, the PREEMT_RT patches can be used to reduce the scheduling latencies
caused by non-preemptive parts of kernel-space functionality, which lead to prior-
ity inversion [RMF19]. For using real-time scheduling policies such as SCHED_FIFO
within containers while isolating their scheduling to a cgroup quota like we do our
concepts, the kernel must be configured for RT_GROUP_SCHED so we do not need to
assign an RLIMIT_RTTIME per process. Combining the fully preemptive kernel and
the real-time cgroup scheduling is not supported officially [RMF19], so that requires
an additional kernel patch and caution in configuring the system.

Linux not only supports time-triggered tasks via SCHED_DEADLINE, but also via
custom timers and also event-triggered tasks. The basic abstraction for this is pro-
vided by signals (either directly or via system functions). Kernel and application
processes in the same process group can generate signals for specific processes or
threads via their process or thread identifier (PID/TID). This can be done in case of
timer expiration, hardware events, or by system and application events. The list of
signal types is fixed. Some signals directly manipulate the process execution (e.g.
terminate on SIGKILL or continue on SIGCONT). Other signals can be accepted and
processed actively by the target process or thread (e.g. SIGINT). A process or thread
may also provide a pointer to a handler function triggered by the OS, which will
lead to preemption (“interruption”) of the normal process execution. It depends on
the signal whether the application can change the default action for a signal. Signals
can be blocked by each process’s signal mask, which keeps them pending until they
are unblocked, or they can also be ignored, so they are discarded. Signals may or
may not be queued and prioritized (prioritized, queued signals are called “real-time
signals” in POSIX), and some may contain an application-defined integer or pointer
value. Thus, the signal concepts provide features for process management and inter-
process communication, which together with supported scheduling policies and
the PREEMTP_RT patches can make Linux suitable as an RTOS. This requires mech-
anisms for maintaining inter-thread consistency (semaphore, mutex, spinlock,. . .)
while preventing priority inversion (priority ceiling and inheritance). The priority
ceiling of a mutex can be set dynamically by calling pthread_mutexattr_setprioceiling().
This can be used to avoid priority inversion by setting it to the highest priority
of any thread that might lock it, because threads will temporarily inherit this pri-
ority. However, for other resources such as semaphores, the POSIX standard re-
quires applications to implement priority inheritance on their own via correspond-
ing calls to pthread_setschedprio(). Additional care is required because POSIX de-
fines several option groups (defining optional OS features), which are important for

2.2. Industrial Control Systems 35

real-time systems, and the support of which depends on the Linux kernel configu-
ration. The Realtime Option Group includes the options to prioritize processes, to
lock memory in the RAM, and to use shared memory and POSIX message queues for
high-performance inter-process communication (IPC). It also includes the options to
synchronously force pending file I/O operations (in addition to asynchronous I/O
with a completion signal), or to prioritize them in the I/O queue according to the
calling process’s priority. The Advanced Realtime Option Group additionally pro-
vides an implicit CPU-time clock for each process counting the runtime, monotonic
clocks which do not jump backwards, the possibility to spawn processes with dif-
ferent scheduling parameters (versus forking, which normally inherits them), a spo-
radic server scheduling policy, for running asynchronous events in a process with
constantly reserved CPU bandwidth (not directly supported under Linux, however
available as SCHED_DEADLINE), and typed memory objects for name-based memory
mapping of I/O resources. The Realtime Threads and Advanced Realtime Threads
Option Groups provide real-time scheduling features on thread-granularity, for ex-
ample setting thread priorities. Finally, due to the high customizability and com-
plexity of Linux, at least safety-critical hard real-time systems do not seem possi-
ble today with some of the richer features enabled (e.g. cgroups), as latencies and
worst-case execution times (WCETs) are not predictable, though there are some ad-
vances [RMF19]. These aspects should be kept in mind when using a POSIX-based
OS or Linux in particular as an RTOS.

Besides RTOS and container features, we also use advanced networking fea-
tures of Linux [HGM+22] for orchestrating the containers and shaping the traffic.
Figure 2.7 shows a simplified overview of the packet flow through the kernel’s net-
work stack. Per default, each network interface – including virtual ones – has two
FIFO queues attached. When the driver receives a new packet (ingress) an sk_buff
structure is allocated at the socket buffer and a pointer is passed to the ingress Qdisc
(enqueue). The kernel asks the ingress Qdisc “occasionally” for the next incoming
packet (peek and dequeue) and gets the oldest one, per default. Firewall rules cre-
ated with iptables [EBJ+22] are evaluated at the green steps in the flow. The pointer
to the packet is first passed through the prerouting chain, which might for instance
modify the destination, before a routing decision is made based on the routing table.
If the destination is an IP address of a visible device of the local machine the packet
moves up the protocol layers to the application process. When a packet is sent by
an application, an initial routing decision is made to decide over which network
interface the packet is sent. A pointer to the socket buffer is passed through the cor-
responding output chain, where firewall rules may again modify the destination, for
instance. Thus, the routing decision is checked again after the output chain. Finally,
the pointer is enqueued to the egress Qdisc of the network interface. The kernel “oc-
casionally” asks the Qdisc for the next packet that should be transmitted. Note that
in case of containers, where we usually use virtual pair devices – one of them called
eth0 in the container namespace and the other in the host namespace – a packet leav-
ing the egress Qdisc on the one end is enqueued to the pair device on the other end
in both directions (packets to and from the container). In earlier versions of our plat-
form prototype, the dynamic orchestration of application containers was done via
firewall rules based on iptables. Unfortunately, when we evaluated this prototype
we measured that modifying the firewall rules took between 40-57 ms [TK19a]. To
enable dynamic reconfigurations without downtime this must be done during a cy-
cle turnover, though. As we wanted to enable periods of 100 ms and below, that was
unacceptable. Therefore, we redesigned the dynamic orchestration and moved this
Kernel-space functionality to a custom barrier queueing discipline (Qdisc) that we

36 Chapter 2. Foundations and Related Approaches

FIGURE 2.7: Location of queueing disciplines (Qdisc), the firewall, and the routing
decision in the packet flow through a network interface in Netfilter based on the

much more detailed (and accurate) original by Engelhardt [Jan19].

needed anyways as described in chapter 5. Note that a Qdisc does not necessarily
need to return a pointer during the peek operation, whereas firewall rules must pass
or drop a packet. For instance, the token bucket filter Qdisc does not yield a packet
while configured rates are depleted. Additionally, the ordering and headers (even
contents) of packets may be manipulated, and packets may be even deleted by a
Qdisc at any time. With adequate network configurations it is possible to prioritize
packets by their protocol or by their destination, for instance, and even to send them
in specific time slots as in TSN [ZHLL18]. In fact even the simple FIFO Qdisc in
Linux prioritizes packets by the Type of Service field of IP packets. Thus, the generic
Qdisc concept in the network stack of Linux enables a wide range of traffic shaping
approaches. A special-purpose kind of traffic shaping and scheduling (to achieve
LET-compliant UDP communication) is also provided by our barrier Qdisc besides
dynamic orchestration.

2.3 Formal Methods

After elaborating on related architectural principles and technologies for reconfig-
urable distributed control systems, this section describes more formal foundations
and related work. The basic concept for mathematically describing and analyzing
computer programs is to define a notation and semantics that result in some kind
of transition system (or state machine, automata) on which a calculus is defined.
A program run is thus a sequence of states and output information, which is deter-
mined by the program rules and input information. This is usually done by algebraic
means, i.e., by defining the sets of program terms and symbols that can be used to
model programs, and then using variable assignments to represent a dynamic state
and a strict semantics of what each program step (as of the terms) does to the state of
the program, including the program terms. This approach was also called evolving
algebras in general [Gur95], as many specialized formal methods were proposed.
Formal methods are important tools especially in safety-critical systems, or in gen-
eral, when correctness of a program in any circumstances and corner cases is of high-
est importance. We first describe formal methods used for specification and analysis
of distributed control systems in section 2.3.1. Our component and reconfiguration
model in chapters 3 and 4 is specified using some flavors of Maude [CDE+16], a
framework for term rewriting logic, which we describe in section 2.3.2. Finally, we
give an overview of formal frameworks for dynamic reconfiguration in section 2.3.3.

2.3. Formal Methods 37

FIGURE 2.8: A timed Kripke structure of a system which needs a fixed time to start
and stop and can stay stopped and running for arbitrary time. From any state the
stopped state is reachable within 8 units of time, so that the atomic proposition
working turns false, i.e., the timed CTL formula EG≤8¬working is always satisfied.

2.3.1 Timed Evolving Algebras

In context of real-time systems we don’t only want to model and analyze whether
certain states are reachable at all, but also in what time. Thus, the transition sys-
tem must somehow include passage of time, which increases the complexity (due to
more states and/or transitions). Various approaches for this were proposed based
on different untimed models. The naive approach is to replicate the states and tran-
sitions to cover all possible values of the clock, which is obviously computation-
ally complex. Timed Petri nets [Ram73] add a fixed duration to each transition in
a Petri net and record the time of each transition firing in a firing schedule. The
more general time Petri nets [MF76] (recently standardized in IEC 15909 [ISO19])
instead use a delay interval with minimum and maximum time between enabling a
transition (as of the conditions) and the actual firing of the transition, which takes
no time, but can be regarded as the end of the transition duration. To handle the
complexity resulting from the variable durations during reachability analysis, state
classes can be used [BD91]. Timed automata [AD94] were the first to use a dense
time base (real-valued clocks). This has been enabled in timed automata by con-
structing a reduced region automaton from equivalent clock regions to cope with the
infinite (time-extended) state space induced by the dense time base [AD94]. More
abstractly, partial-order reduction can be used to cope with state space explosion by
only analyzing a graph of independence-preserving regions instead of the full tran-
sition system [ABH+97]. As such optimizations and model checking based on timed
CTL [ACD90] are supported by tools such as UPPAAL [BDL04], timed automata are
widely used to specify and analyze real-time systems.

There are similar timed concepts based on Kripke structures (see [LÁÖ15] for
an overview) that allow for model checking with timed CTL, too, and are less com-
plex to evaluate than timed automata [LMS02]. Timed Kripke structures [LÁÖ15]
support both discrete (pointwise) and dense (continuous) time and they can be used
with Real-Time Maude [ÖM07] (see section 2.3.2). As this is a formal foundation of
this thesis, we describe timed Kripke structures more in detail based on [LÁÖ15].

Definition 1. A timed Kripke structure is a tuple T K = (S, T ,→, L) where

• S is a set of states,

• T is a time domain (e.g. N, Q+
0),

• −→⊆ S× T × S is a total transition relation with duration, and

• L : S→ P(AP) is a labeling function over a set of atomic propositions AP.

Figure 2.8 shows an exemplary timed Kripke structure in the typical graphical
notation. The basic idea is that while being in state s ∈ S, the propositions L(s)
hold. Transitioning from state s to s′ via transition s t−→ s′ ∈−→ takes t time units. In

38 Chapter 2. Foundations and Related Approaches

the pointwise interpretation, the state atomically changes to s′ exactly t units of time
after entering s, if no other transition is taken. In the continuous interpretation, inter-
mediate instants can be visited in addition, while still staying at s. For modeling this,
a path over T K is defined as an infinite sequence of configurations ⟨s, δ⟩ ∈ S× T ,
with δ being the time since entering state s. A timed path over timed configura-
tions ⟨s, δ⟩@c ∈ S × T × T additionally maintains a global system time c, which
always starts at 0. Thus, (timed) paths in the pointwise interpretation only reach
configurations ⟨s, 0⟩@c, with c increasing by the duration of the taken transitions.
A continuous interpretation would in general allow the same paths, but also paths
with an infinite amount of additional intermediate configurations ⟨s, δ⟩@(c + δ), as
long as there is a transition s t−→ s′ with δ < t. Nevertheless, explicit-state model
checking of continuous interpretations with timed CTL is possible by analyzing a
transformed timed Kripke structure with pointwise interpretation. For this, each
tick transition s t−→ s′ is split into multiple smaller tick transitions over intermediate
states equivalent to s. The durations of these intermediate tick transitions is set to
half of the greatest common divisor of all transition durations and interval bounds
in the timed CTL formula. Similar to the region graph in timed automata this en-
sures that all relevant points in time are visited by a discrete interpretation. This
way, Kripke structures are efficiently enriched which quantitative time modeling
and analysis. We refer to S# (“safety sharp”) [HLR16], a framework for simulation
and analysis of safety-critical systems that uses (untimed) Kripke structures. In this
framework, C#-based controller components and similar components modeling the
environment behavior perform lockstep, blackbox cycles (macro steps) under ZET
abstraction. Only the ground state between macro steps is analyzed, by translating
it to a Kripke structure. Additionally, the ground state can be manipulated, which is
especially used for fault injection. This way, an automated Deductive Cause Conse-
quence Analysis (DCCA) can be done to identify fault sets leading to hazards based
on the behavior of the real controller code in the simulation loop. At the end of sec-
tion 3.3 we mention an approach to model check systems in our formal framework,
which in the end is based on timed Kripke structures. It may be an interesting future
direction to explore applicability of the S# concepts to our model and architecture.

We finally mention other approaches called process algebra, which focus on com-
position mechanisms with messaging for modeling distributed systems. One promi-
nent example is communicating sequential processes (CSP) by Hoare [Hoa78], for
which timed CSP [DS95] adds time in a few additional or modified operators. In
timed CSP a process can wait until a certain time has passed (instead of instantly
skipping), it can timeout when waiting for a message, and it can be interrupted at a
certain time. Their composition mechanisms have been adopted to timed automata,
while their semantics – especially scheduling assumptions – lead to difficulties in
analyzing systems [OD08]. In case of timed CSP it was complained that a con-
stant reaction time between processing of consecutive messages is assumed [Old98].
However, these formal methods in raw form are not well suited for modeling and
analyzing dynamic systems with objects being created or removed as in dynamic
reconfigurations. The following section describes an approach which is better for
modeling such aspects and for which formal analysis based on timed evolving alge-
bra concepts is supported.

2.3. Formal Methods 39

2.3.2 Term Rewriting

A good and maybe the only method to specify and analyze dynamic reconfigura-
tions is (term) rewriting logic [Mes92], which we already find in Hammer [Ham09].
It allows to describe a system and its reconfiguration in an object-oriented way and
thus understandably, but still precisely. We specify our component model and run-
time platform concepts in Full Maude [CDE+16] (see Chapters 3 and 4). We also
use the Real-Time Maude extensions [ÖM07] for modeling passage of time during
computation and communication. With the underlying concepts supported by Real-
Time Maude [ÖM02], rewriting logic can be used to specify real-time systems ac-
cording to the common models described previously in section 2.3.1 (e.g. timed au-
tomata). Unlike those formalisms, Real-Time Maude allows for dynamic object cre-
ation and deletion (among other benefits), which makes it natural to model object-
based distributed real-time systems [Ölv14], and especially to model component-
based distributed real-time systems and their dynamic reconfigurations. We give a
brief overview of term rewriting with Real-Time Maude.

op nil : -> List [ctor] .
op _._ : Qid List -> List [ctor] .

op length : List -> Nat .

vars I J : Qid .
var L : List .

eq length(nil) = 0 .
eq length(I . L) = 1 + length(L) .

rl [collapse] : I . J . L => append(I, J) . L .

LISTING 2.1: An algebraic list specification and a rewrite rule in (Core) Maude.

Listing 2.1 contains a functional specification of a list of quoted identifiers in
(Core) Maude based on an example from the book All About Maude [CDE+07].
Three sets (sorts) are used as types: List, Qid, and Nat. Qid (quoted identifiers,
e.g. ’id1) and Nat (natural numbers) are predefined. The elements (members) of
List are given by two constructor operators (indicated to Maude by the trailing ctor
operator attribute). op nil has no attributes and is thus a constant – the empty list.
op _._ is a binary inline operator with the dot as the operator symbol and the under-
scores to indicate the non-default attribute positions. It takes a Qid and a List and
yields a new List – with the Qid at the head of the given List. Thus, the set of lists con-
tains exactly nil and all possible chains of applications of the dot operator with Qids
and nil at the tail. op length is a unary operator which takes a List and yields a Nat –
the number of elements in the list. This is defined by two equations using variables,
pattern matching and recursion. A term is either a constant, a variable, or the appli-
cation of an operator to a list of argument terms [CDE+07]. Before rewriting, Maude
first tries to simplify and reduce terms by applying defined equations, replacing
lefthand terms with righthand terms. For example, length(’a . ’b . ’c . nil) can
be reduced to 1 + 1 + 1 + 0 by applying the length equation three times, which can
be reduced to the third successor of zero (or just 3, as arithmetic operations and
number symbols are supported for Nat). Afterwards, Maude searches for applica-
ble rewrite rules. Listing 2.1 also contains an example rewrite rule labeled collapse,
which matches all lists with at least two elements. When applying the rule to a term,
Maude replaces the matching term or subterm with the righthand term of the same
kind, which is called a rewrite. The collapse rule replaces a list term with a modified
list term (the types are inferred from the operators), in which the head is a new Qid
calculated from the append operator applied to the two head elements. For exam-
ple, ’a . ’b . ’c . nil could be rewritten to ’ab . ’c . nil in one step and then to

40 Chapter 2. Foundations and Related Approaches

’abc . nil, after which no further progress is possible. This can be done using the
rewrite command like this in the Maude command line: rewrite ’a . ’b . ’c . nil. If
multiple rules match, then Maude uses a rewrite strategy to select one of them, for
example, fairly balancing between them. Thus, the rewrite command yields only one
possible trace from the initial term. Using the search command, we could check that
the length of all final lists resulting from a given input will be equal to one (omitting
the module argument for brevity):
search : ’a . ’b . ’c . nil =>! L:List such that length(L) =/= 1 .

Maude will then search all reachable end terms (due to the =>! operator) from the
given input and print those which do not have the length of one. Depending on
the state space spanned by applicable rewrite rules this can take very long. When
considering all possible rewrite sequences from all terms, a transition system is im-
plicitly defined, with the reduced terms as states and the rewrite rules as transitions.
It is also possible to evaluate LTL formulas on rewriting specifications by mapping
the possible markings to a Kripke structure [CDE+07].

Full Maude provides syntactic sugar to Core Maude for better specifying object-
based distributed systems with objects and messages between them. Object-oriented
modules implicitly include the CONFIGURATION specification, parts of which are shown
in listing 2.2. Elements of the sort Configuration are used as root term for rewrites

op __ : Configuration Configuration -> Configuration [ctor config assoc comm id: none] .
op <_:_|_> : Oid Cid AttributeSet -> Object [ctor object] .

LISTING 2.2: Configurations and Objects in Full Maude.

of Full Maude specifications. Two configurations separated with whitespace yield
another configuration. Two subsorts Object and Message exist besides the none con-
stant. Thus, a configuration is an unordered (due to the associative and commutative
equivalence defined by the attributes assoc and comm) set of objects and messages. As
specified in the other op term, an object is a 3-tuple of an object identifier (typically
Qid), a class identifier as of a class declaration, and an attribute list. Attributes are
key-value pairs with key identifiers and value sorts as declared in the correspond-
ing class declaration term. Listing 2.3.2 shows a Full Maude specification of a bank
account (cf. [CDE+07]).
class Account | bal : Int .
msgs credit debit : Oid Nat -> Msg .

vars A B : Oid .
vars M N N’ : Nat .

rl [credit] : credit(A, M) < A:Account | bal : N > => < A:Account | bal : N + M > .
crl [debit] : debit(A, M) < A:Account | bal : N > => < A:Account | bal : N - M > if N >= M .

LISTING 2.3: Specification of a bank account in Full Maude (cf. [CDE+07]).

A valid example configuration according to this specification would be:
credit(A-002, 100) < A-002 : Account | bal : 1000 >

The object A-002 is an instance of the Account class, and the credit operator applica-
tion is a message according to the special message operator declaration with msgs.
Using the rewrite rule credit this configuration could be rewritten to
< A-002 : Account | bal : 1100 >

Full Maude will reorder objects and messages to match a rule and try to balance
the processing of different message types (due to the attributes config and object

in listing 2.2), if multiple messages can be processed by matching rewrite rules.

2.3. Formal Methods 41

This way we can naturally specify object-based and distributed systems (though a
more detailed messaging specification is needed in our case). The rewrite and search
commands as well as LTL-based model checking features are also applicable to Full
Maude specifications. For example, we could search whether we can reach a state in
which an account gets a negative balance using this command:
search debit(A-002, 500) debit(A-002, 600) < A-002 : Account | bal : 1000 >

=>* < A-002 : Account | bal : N:Int > C:Configuration such that N < 0 .

As the rewrite rule debit has a condition which ensures that it is only applied if the
balance is sufficient, the search will yield no solution for a negative balance.

Real-Time Maude extends Full Maude for specification and analysis of the quanti-
tative temporal behavior of systems. For representing time a sort Time is introduced,
for which different time domains are predefined based on natural numbers (discrete)
and rational numbers (dense). A time domain must have a zero element and sup-
port the operators +, ·−,≤,< as known from natural and rational numbers [ÖM02].
Based on this, timed rewrites can work on tuples Configuration×Time instead of only
configurations, with an additional monotonous system time. The previously de-
scribed ordinary rewrite rules from Full Maude become instantaneous rewrite rules,
as they stay as-is and will work on the Configuration part, only (i.e., no progression
of time). Additional tick rules must be defined, which allow progression of time and
beyond that only change the Configuration to reflect the effects of the passed time
(e.g. counting down a timer). Real-Time Maude adds syntactic sugar for this and
provides guidelines in defining real-time systems. The tick rule for object-oriented
specifications is usually defined as in listing 2.4 [Ölv14].
vars T T1 T2 : Time . vars C1 C2 : Configuration . vars M : Msg . var SYSTEM : Configuration .

op mte : Configuration -> TimeInf [frozen (1)] .
eq mte(none) = INF . --- infinity value
ceq mte(C1 C2) = min(mte(C1), mte(C2)) if C1 =/= none and C2 =/= none .

op timeEffect : Configuration Time -> Configuration [frozen (1)] .
eq timeEffect(none, T) = none .
ceq timeEffect(C1 C2, T) = timeEffect(C1, T) timeEffect(C2, T) if C1 =/= none and C2 =/= none .

crl [tick] : {SYSTEM} => {timeEffect(SYSTEM, T)} in time T if T <= mte(SYSTEM) .

LISTING 2.4: The usual tick rule with operators mte and timeEffect [Ölv14].

The conditional rule allows progression of a variable amount of time (T) as long as T
is smaller than or equal to a maximum allowed time elapse, which as calculated from
the system configuration via the mte operator. The system configuration is updated
accordingly by the timeEffect operator. How Maude will determine a value for T is
specified by the selected time sampling strategy. Per default, a user-given tick value
is used if it is smaller than the mte value. In the maximal strategy the mte value
will be used unless it is infinity, in which case the user-given tick value is used.
The curly brackets are introduced so that the tick rule will match and update the
whole system term instead of only subterms of the configuration. Both mte and the
timeEffect operators are defined by system-specific equations for the corresponding
object and message types. For instance we could model a periodic behavior by a
clock attribute of one of the objects, which we count down as time progresses and
reset after instantaneously doing the periodic work:
class Periodic | clock : Time, period : Time .
eq mte(< P : Periodic | clock : T >) = T .
eq timeEffect (< P : Periodic | clock : T >, T2) = < P : Periodic | clock : T monus T2 > .
rl [reset] : < P : Periodic | clock : 0, Period : T > => < P : Periodic | clock : T > .

42 Chapter 2. Foundations and Related Approaches

The mte function returns the clock value, while the timeEffect operator decreases the
clock value accordingly. An instantaneous reset rule resets the clock value when it
has reached zero so that progression of time is possible, again. For timed rewriting
we can use the trew command from Real-Time Maude:
trew {< P : Periodic | clock : 100, Period : 100 >} in time <= 200 .

This will apply matching instantaneous rules and tick rules until a total of 200 units
of time have passed, which can only happen in the tick rule. In this case a possible
trace could be tick(100), reset, tick(100), leading to the final term
{< P : Periodic | clock : 0, Period : 100 >} in time 200 .

Using a corresponding tsearch command it is also possible to check whether certain
configurations are reachable from an initial state in bounded time. LTL formulas can
be evaluated like in Full Maude if a time limit is given, and Real-Time Maude also
features a timed CTL model checker based on timed Kripke structures [LÁÖ15], so
that absolute properties of the implied transition system can be proven with respect
to quantities of time. Section 3.3 includes an example showing how reactivity and
reachability of hazards can be analyzed through model checking. However, the state
space of our model is very large, so model checking features were used rarely in the
scope of this thesis. Still we used Real-Time Maude for platform-independent spec-
ification and analysis of our runtime platform concepts for modular and evolvable
distributed real-time systems. Though there is still a gap between our Maude-based
model and the Real-Time Container Architecture prototype, the model is very close
to the implementation, especially regarding reconfigurations. In fact, the Maude
model existed before we started with the implementation of the prototype, as the
platform-independent specification helped to abstract from the distracting realities
of Linux. The similarity to the implementation is important for trusting that the
model “faithfully reflects reality” [Gur94]. One of the main goals of the specifi-
cation is to formally describe and analyze reconfigurations, which we address by
using a similar reconfiguration plan description language in the model and the im-
plementation. For instance, by simulating a concrete reconfiguration plan in Real-
Time Maude, we can analyze its consistency and effects before executing it in the
real system. Other analysis aspects include the reactivity of a system, also during
reconfigurations. Sections 3.3 and 4.2 describe more in detail how to use Maude for
these analysis purposes in context of our formal framework.

2.3.3 Component Frameworks for Dynamic Reconfiguration

We give an overview of existing formal frameworks for dynamic reconfiguration.
Though we are aiming at dynamic reconfiguration of distributed control systems,
we include approaches for non-real-time systems, and non-distributed systems, and
also non-component-based systems. We focus on reconfiguration specification and
analysis concepts for the software level, not the technical process level, even though
the impact of the software reconfiguration on the technical process should be ana-
lyzable, too.

We first describe component frameworks for dynamically reconfigurable dis-
tributed systems, which do not support real-time systems. The first concept for dy-
namic updates was published in 1976 by Fabry [Fab76]. A module (a function) is re-
placed during system execution by a new version as follows: The new version is de-
ployed in addition, and an indirection mechanism is used by the callers, which keeps
pointing to the old version and switches to the new version once the old one is not

2.3. Formal Methods 43

used anymore. The indirection mechanism may use locking so that any internal ini-
tialization work (including transformation of data structures) is done during the first
invocation, only. The first approach for distributed module updates was proposed
by Bloom for the Argus framework [Blo83]. The approach supports “multi-site re-
placements” by means of a replacement environment for the user, which provides re-
placement and state transformation commands that can be executed remotely on the
different nodes from the user side. The user program that uses these commands to
achieve a distributed replacement can be seen as a reconfiguration plan. Remote pro-
cedure calls between the different modules may be preempted and aborted during
the concurrent reconfiguration. Alternatively, lock-based atomicity was proposed,
i.e., requiring exclusive access to the module by all users, including reconfiguration
operations. The consistency of replacements was analyzed with a dedicated formal
model. It models a module as a state machine which takes input events (invoca-
tion messages) and produces output events (reply messages), maintaining a history
abstraction within its state. An implementation of a module interface (called ab-
straction) may only generate a subset of the event sequences (futures) declared by
the abstraction. In essence, the main consistency criterion is that the two modules
need to be replacement compatible in the sense that the replacement should not
yield different futures in a sequence of invocations, so that all user transactions stay
consistent regardless of when the change happens. Kramer and Magee proposed a
quiescence-based approach for distributed systems [KM90]. Quiescence is the prop-
erty that a node is “consistent and frozen”, i.e., it is not working and will not be
working on any transactions (a bi-directional exchange of messages between two
nodes initiated by one node). Before replacing a node, it is brought to a quiescent
state by transitively blocking all nodes which may directly or indirectly trigger a
transaction within that node and then the node itself. For this, an acyclic prece-
dence graph of transaction invocation relationships between the nodes is needed, so
that the blocking can be ordered accordingly. Circular dependencies can be resolved
when consequential transactions do not lead to further transactions. In this case,
replies by nodes requested to be blocked are still allowed in order to reach a quies-
cent state. Only after blocking succeeded, the replacement is performed, so that it
can not disrupt any ongoing or incoming transactions. The effects of the reconfigura-
tion were analyzed by means of predicate logic. Tewksbury et al. [TMM01] extended
this concept for live upgrades of CORBA [OMG12] applications with distributed
component replicas. Their framework first enables replication of components for
fault tolerance by means of interceptors within the CORBA platform, so that each
replica processes each request and duplicate responses are eliminated. By analyz-
ing the CORBA method invocation graph at design-time, nested invocations and
thus the ordering of replacements is derived, so that quiescent states can be reached
consistently as described before. In a first phase, all components and replicas are
replaced transparently with a generated, backwards-compatible intermediate ver-
sion that is able to provide both the old and the new implementation and interface.
After all intermediate versions are ready, an atomic switchover of all participating
components is requested, so afterwards only the new component versions are active.
Finally, each component is replaced, again, so it only contains the new version. Each
of the replacements requires quiescence (i.e., blocking) as well as state transferal and
state conversion (at least copying of the buffered requests). Thus, the replacements
happens backwards along the invocation graph, while new forward transactions
are buffered, with replicas being replaced one after another within that order. The
different evolution steps – especially the atomic switchover – must happen at the
same point in the transaction history regardless of buffered requests. Therefore, their

44 Chapter 2. Foundations and Related Approaches

concept is completed by ensuring totally-ordered multicast of messages within the
middleware. A formal approach to such reconfigurations (with transferal of inter-
nal data and buffered requests) was described by Hammer [Ham09]. An algebraic
specification of a request/reply-based component model and a reconfiguration al-
gorithm is provided based on term rewrite logic with Maude. This modeling ap-
proach inspired us to use Real-Time Maude in this thesis. A reconfiguration plan
is modeled as a tuple ∆ = (A, R, α, ρ, δ, ς), with new components A, components
to remove R, connections α of new components, rewirings ρ of remaining compo-
nents, and message retainments δ and state transfer ς from old to new components.
Those are all sets and relations, and lead to following reconfiguration procedure via
corresponding reconfiguration transition rules, which are applied in addition to the
normal component execution and communication rules. First block all components
to be removed as of R by changing their state (they must eventually stop). Then
instantiate all new components in A and wire their required services according to
α. Also rewire the remaining components according to ρ before changing the state
of new components to initialized. Afterwards, the states and then the messages of
components in R are copied to the new components in A according to ς and δ. Fi-
nally, old components are removed and new components are activated. This concept
ensures consistency of the reconfiguration, also in the distributed case, with down-
time between stopping old components and starting the new ones. Hammer also
gives a comprehensive overview of similar work on reconfigurable “Java-like” (in
our terms) component models. This includes a classification whether and how the
different approaches address state transfer (messages, user-level, . . .) and atomicity
(e.g. quiescence, tranquility, . . .), and how reconfigurations are triggered (external,
programmed, . . .) and described (reconfiguration plan, discovery, reconfiguration
services, . . .). For more work into this direction without hard real-time we thus refer
to his work.

Many of the aforementioned concepts have a formal backing based on some
model similar to communicating sequential processes (CSP [Hoa78]). However, dis-
tributed real-time systems usually do not communicate via arbitrarily blockable
request/reply communication, because they must have a time-deterministic com-
munication and processing behavior from sensors to actuators. Therefore, a recon-
figuration concept for such a system must provide a solution for avoiding, coping
with, or at least analyzing temporal impact, including any distributed coordina-
tion of the reconfiguration. The first approach for backwards-compatibly updat-
ing individual components in real-time systems was proposed in 1996 by Sha et
al. [SRG96]. After creating the new component, it is fed with real input data un-
til it is ready, while its outputs are only monitored. As soon as the outputs of the
old and the new component versions converge, their roles are switched, i.e., the old
version is turned off and the new one is unmuted. If multiple component should
be replaced at the same time, only the switch must be done simultaneously (which,
however, can be difficult, as later chapters will show). This concept can be seen as
the basis for the existing approaches to updating real-time systems (cf. seamless
upgrade [FKST23]). In section 2.2 we already mentioned some approaches in au-
tomation, avionics, and automotive systems. We mentioned our approaches in the
Real-Time Container Architecture, the formal specification and analysis of which is
described in chapters 3 and 4 based on term rewriting logic. There is no comparable
approach to our Evolving Dataflow Graph for analyzing dynamic reconfigurations
of distributed LET-style systems. Hamann et. al. [HDK+17] proposed a formal anal-
ysis of the end-to-end behavior for system-level LET in AUTOSAR classic without
dynamic reconfiguration. In AUTOSAR adaptive, the reactor model was proposed

2.3. Formal Methods 45

in DEAR [MGLC20], for which a safe-to-process analysis was proposed to increase
the reaction chain consistency. Using the scheduling parameters from this analysis,
an end-to-end reaction time analysis could be performed which considers the com-
plete processing chains [MGLC20], but it has not been described more in detail to our
knowledge. Dynamic reconfiguration is not included in the analysis. As also men-
tioned, a formally backed concept for model-preserving runtime patches [KLMS11]
was proposed for HTL [HKMS09]. The concept can atomically add, remove, and
replace individual software components by adding operational semantics rules for
a runtime patcher (the design of which is not further specified). It is also discussed
that multiple components can be replaced sequentially (or “decomposed”), if the
components are independent, or synchronously in concurrent quiescent states. A
runtime patcher component observes all components’ states and recognizes which
of them are quiescent. If a component should be replaced, this is only done in qui-
escent states, which are also a valid initial state for the replacement. The replace-
ment transition includes termination of the old component (if not strictly adding)
and initialization of the new component (if not strictly removing). Though HTL is a
language for distributed real-time systems, the concept does not discuss how to syn-
chronously achieve this in the distributed case. State transfer and communication re-
configuration are not considered, either, so no structure-changing reconfigurations
are possible. As no structural changes are caused, no end-to-end timing analysis
is required for the concept. These aspects are considered by our concepts, so that
multiple components can be replaced, or added and removed, including distributed
breaking changes, that must be considered in the reconfiguration transition. In the
context of PLC-like systems we mentioned a non-formalized concept for updating
individual cyclic components [WRO09]. It performs the full replacement within the
first regular execution cycle, including termination, initialization and state transfer.
We also mentioned a similar, more formalized approach for live updates on PLCs
in Cetratus [MM21]. An atomic switch from a primary and a secondary container
is performed after in-field monititoring of the new logic. The full PLC program
– a Petri-net – is replaced in this concept, including a transfer of the state with a
transformation, if needed. The Petri-net is not distributed, not even over multiple
containers on the same machine. In section 2.2.2 we described the architecture and
update approaches for IEC 61499 [IEC12]-based distributed control systems, for in-
stance the approaches by Zoitl et. al. [ZLMV10] and by Prenzel and Provost [PP17].
Dubinin and Vyatkin proposed a more unambiguous mathematical model defining
the resulting transition system [DV07]. Drozdov et. al. provide an overview of for-
mal approaches to IEC 61499 [DDPV21], including the use of timed automata and
abstract state machines. Sünder et al. [SVZ13] described a formal framework for
modeling and verification of IEC 61499 reconfigurations. They use the term down-
timeless system evolution (DSE) to emphasize that a continuously running control
system is gradually changed both regarding software and hardware. The reconfig-
uration analysis focusses on the time-critical reconfiguration sequence that changes
the behavior of the control application. For this, an Net Condition/Event Systems
(NCES) model [RH95] both of the control application and of the reconfiguration con-
trol application must be created. This describes the behavior of the FBs and of their
interconnections as Petri nets, including the behavior and effect of reconfiguration
control FBs. This model enables model checking to analyze whether the control ap-
plication fulfills the requirements of consistency and timeliness, for instance.

To sum up, there are approaches to distributed real-time systems, which do not

46 Chapter 2. Foundations and Related Approaches

consider dynamic reconfiguration. Other approaches allow updates to real-time sys-
tems without considering distributed changes. We see some approaches towards re-
configuration of potentially distributed real-time systems based on IEC 61499. How-
ever, our concepts avoid coordination communication in time-critical phases by ex-
ploiting the time determinism of the distributed LET-style application. Thus, we
can completely avoid downtime in some distributed cases and minimize downtime
in other cases, depending on whether time-consuming state transfer operations are
needed. We keep the system’s reactivity deterministic during reconfigurations. We
are the first to enable compatibility-breaking distributed dynamic reconfigurations
of real-time systems deterministically and with no quality degradation. As quality
degradation cannot be avoided in all cases, we provide means to keep it determinis-
tic and short.

47

Chapter 3

A Component Model for Modular
and Evolvable Distributed
Embedded Applications

This chapter specifies a component-based model for distributed real-time systems
using Real-Time Maude [ÖM07]1. The model was described less formally in earlier
stages [TK17; TSK18; TK19a; TK19b]. It is designed to simplify integration of soft-
ware components in distributed control systems regarding the aspects of composi-
tion, allocation and reconfiguration. Regardless of simplicity and evolvability, these
systems must fulfill real-time requirements to achieve their purpose in the technical
process. Especially the reaction time of the system is important, i.e., the time be-
tween observation and reaction of the distributed control system must be limited.
The formal specification presented in this section thus describes the structures and
procedures needed to enable three goals at once: Simplify integration, meet real-
time requirements and enable dynamic reconfiguration. The proposed component
model uses the logical execution time paradigm to achieve deterministic temporal
behavior while avoiding priorities and time slices, because these lead to a big inte-
gration effort. In addition, it provides a structure to the real-time systems, which
makes them reconfigurable during full operation (as described in chapter 4) while
separating the concerns of functionality and reconfiguration. To achieve these goals,
not only the software part needs to be modeled, but also the physical aspects of the
system, i.e., of the hardware components and the network. Additionally, we have to
use a minimal component model rather than a rich one, so that we can achieve an
initial break-through over all phases, including dynamic reconfiguration.

This specification consists of a design-time model and a runtime model. The
design-time model must be instantiated by engineers in independent engineering
steps to define executable distributed real-time systems:

• Interfaces and functionality of software components
• Distributed embedded applications which consist of such components
• Microcontroller Units (MCUs) and the network topology of distributed sys-

tems
• Deployments of distributed embedded applications to distributed systems

The runtime model specifies the structure of the runtime environment and how it
executes distributed embedded applications:

• Application containers which execute software components in an isolated way

1Maude code is “compactified” in this thesis: Only the most important pieces are included (e.g.
omitting helper functions) and the strict syntax is relaxed using well-known elements from popular
languages such as json and html to reduce the optical noise.

48
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.1: A schematic overview of the engineering steps (each of which pro-
vides a model fragment): Software components are described and implemented in-
dependently and wired in distributed embedded applications. They are deployed

to a distributed system after describing the MCUs and the network topology.

• The system layer consisting of processing units, network interfaces and drivers
• The system execution management layer managing the nodes and containers

This is a platform-independent model, i.e., a technology-independent description of
the concept. However, it provides a ‘complete’ abstraction of hardware and topology
in the sense that besides the deployment mapping (and minimal platform-specific
refinements of some steps) no glue code is required to manage and execute com-
pliant distributed embedded applications on real hardware. The model can also be
used to analyze the consistency and feasibility of specified distributed embedded
applications. This is described in a third section in this chapter after specifying the
design-time model and the runtime model. To illustrate the formal model and to
explain the intention behind the different model elements, the onBtnSwitch example
system (see section 1.2) is used as running example. The reconfiguration extensions
are described separately in the subsequent chapter 4.

3.1 Design-Time Model

The following meta model can be used to define reconfigurable distributed real-
time systems. Each section describes a model fragment, which also corresponds to
an engineering step (i.e., instantiating the model fragment). The different model
fragments are specified in the order of the engineering methodology proposed in
[TSK18] (see figure 3.1). The major goal of the model is to decouple the engineering
steps, so that they can be worked on independently: The model simplifies integra-
tion and reuse of software components in different distributed embedded applica-
tions. Additionally, distributed embedded applications are defined independently
from a concrete allocation to nodes. Finally, the model builds the basis to enable
modifications of distributed embedded applications (e.g. updating software com-
ponents) during operation using reconfiguration plans. Thus, the engineering steps
are not ordered strictly – especially, as they can be done iteratively.

3.1.1 Software Components

According to Szyperski [Szy98] a software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties. Hence, in
our component model we have to make explicit the functional and non-functional
interface and dependencies to a component’s execution context. This information is
needed for integration both during design-time by engineers and engineering sys-
tems and for orchestration and execution during runtime. Additionally, the com-
ponent model must define the base operational behavior of software components,

3.1. Design-Time Model 49

FIGURE 3.2: An overview of the component type model in UML. A versioned soft-
ware component type has a unique versioned component identifier (VCID), a set
of software ports, one task declaration and its state kind. An important part of the

component type is its non-functional interface (e.g., the period of the task).

which is not part of the model fragment in this section, as it results from the run-
time model. The component implementation itself is a blackbox to integrators and
the runtime environment, but needs to be provided by the component developer
before execution. The implementation is basically given by a function defining the
translation of inputs to outputs, possibly including an internal state. For reconfigu-
ration purposes, a minimal optional reconfiguration interface can be specified and
implemented in case state transfer should be supported.

Component Description

Figure 3.2 shows an overview of the proposed structural meta-model of software
components in UML notation. In essence, a software component has software ports
with required and provided properties, one task, and potentially a state. For sim-
plicity, the non-functional properties (maxAge, sampleRate, period, wcet, maxSize) are
“flattened” into this model as attributes. A more mature model would provide
more extensibility and reusability. For instance, in the NFP modeling framework of
MARTE [OMG19], UML elements can be freely associated with non-functional prop-
erty (NFP) instances. However, this freedom in turn would cause meta-modeling
complexity in our formal approach, especially dealing with constraints (only allow
certain NFPs for specific classes), while we currently need a focused, minimum vi-
able non-functional model. The following definitions specify the structure of soft-
ware components in Maude. We define versioned component type identifiers con-
sisting of two strings – a component type identifier and a version identifier:

sort VCID .
op __ : String String -> VCID [ctor] .

The versioned component type is given as “c v” with a whitespace in-between,
e.g. ButtonController 1.0. In more algebraic definitions the versioned component type
identifier C = (c, v) is denoted as cv, e.g. c1.0. We choose the version identifiers from
N×N and denote them with a period in-between as “M.m”, e.g. “1.0” for major
version M = 1 and minor version m = 0. Throughout this specification, no seman-
tics is employed over the versioning other than unambiguously identifying a specific
version of a component type. Hence, both the component type identifier and the ver-
sion identifier could also be arbitrary strings or use another versioning scheme, e.g.
Semantic Versioning [Pre13], i.e., <major>.<minor>.<patch>. The <major>.<minor>

50
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

versioning scheme is used, because it is more compact and still illustrates the ver-
sioning idea. Future conceptual extensions could introduce semantics regarding be-
havioral compatibility based on versioned component types. We define interface
compatibility based on data types and timing. Therefore, the Maude code in list-
ing 3.1 specifies a minimal type system to declare data types. The primary focus of

sort Type .
ops bool uint32 uint64 : -> Type [ctor] .
op struct : NzNat -> Type [ctor] .
op size : Type -> NzNat .

LISTING 3.1: The data types used in this specification.

this minimal type system is to analyze non-functional runtime behavior, e.g. the du-
ration of transmitting values over network. Additionally, functional compatibility is
required when connecting ports, such as software ports. For each Type t, there exists
a positive natural number size(t), which specifies the bit size of values of this type
in memory and on wire. We define the primitive types Tp = {bool, uint32, uint64}.
Additionally, structures Ts = t1 × · · · × ti of types t1, ..., ti ∈ Tp, i ∈ N can be de-
fined, the sizes of which are the sum of their components’ sizes, i.e., their Type is
struct(∑i size(ti)).

Listing 3.2 specifies qualified quoted identifiers, properties and software ports. A
software port has a provided and a required interface. The required interface of the
software port is a set of required (input) properties declared by type, name and the
required maxAge ∈N, the maximum age (us) allowed until a fresh value is required.
The provided interface of the software port is a set of provided (output) properties
declared by their type, name and the provided refreshmentPeriod ∈ N, the period
(us) in which the property is updated. The maxAge and refreshmentPeriod belong to
the non-functional interface of the component. The idea is, that all non-functional
aspects required and provided by a component to do its work must be declared ex-
plicitly, so that the engineering system and the runtime environment can automati-
cally solve or at least detect non-functional issues and help to reduce the complexity
of composition, deployment and reconfiguration. The non-functional interface de-
fined in this specification is minimal and primarily serves as a first break-through
to show how non-functional component interfaces can be used to support the goal
of seamless third-party integration in distributed real-time systems. To improve the
readability and compactness of port definitions, we sometimes collapse provided
and required interfaces to one set of properties. To indicate the direction of prop-
erties, required (input) properties t pp ↦→ n ∈ reqIf are then written as ▷ppn

t and
provided (output) properties t pp ↦→ n ∈ provIf are written as ◁ppn

t . Additionally,
we use units to make higher numbers more readable.

sorts QQid MQQid .
subsorts Qid MQQid < QQid .
op _._ : Qid QQid -> MQQid [ctor prec 1] . --- qualified quoted identifiers ’x.’y.’z

sort Property .
op __ : Type QQid -> Property [ctor] .

class SwPort | reqIf: Map{Property,Nat}, provIf: Map{Property,Nat} .

LISTING 3.2: Model of software ports: required Properties are mapped to a maxAge
and provided Properties to a refreshmentPeriod.

A task declaration consists of a state declaration, the requested period of task
invocations, and the WCET of the task in microseconds:
class Task | fields: Set{Property}, period: Nat, wcet: Nat .

LISTING 3.3: Specification of tasks in Maude.

3.1. Design-Time Model 51

The state declaration of a task is a set of state properties (also referred to as the
internal state of the component). The task only declares internal state needed for the
computation, which corresponds to internal variables of the program; these cannot
be accessed from the outside of the component without low-level knowledge about
the program’s layout in memory. Thus, during reconfigurations the component has
to help actively to transfer this internal state. However, there are different notions of
‘state’ in this model. Listing 3.4 shows the different state kinds, which also declare
how state transfer is supported (if the component is stateful at all). A component
can be stateless, i.e., it works without a state or does not need state transfer during
reconfigurations to stay consistent. It can have a ground state, i.e., the component
implements the ground state pattern2: The component automatically considers and
updates a persisted state in each task invocation, so only this state needs to be trans-
ferred during reconfigurations. Finally, it can have implicit state kind, i.e., the com-
ponent has an internal state as described above, which cannot be accessed directly,
but the component implements a special dump/load API for creating/consuming a
ground state on demand (called state dump). The component implementation (in-
cluding dump/load) is treated later in this section. If the state kind is ground state,
then it specifies the worst-case bit size of the ground state. This is needed to calcu-
late the time needed for its transmission, for instance. If it is implicit state, then it
specifies the worst-case bit size of the state dump. Additionally, the WCET needed
for dumping or loading the internal state to or from a state dump must be declared
for implicit-state components.

sort StateInfo .

op stateless : -> StateInfo [ctor] .
op groundState : Nat -> StateInfo [ctor] . --- maxSize (bit)
op implicitState : Nat Nat -> StateInfo [ctor] . --- maxSize (bit), wcet (us) for dump/load

LISTING 3.4: The state kinds of software components.

A (versioned) component type is given by the versioned component type’s iden-
tifier, the communication interface as set of named software ports, one task declara-
tion, and its state interface:
class SWC | meta: VCID, ports: Set{Object}, task: Object, kind: StateInfo .

LISTING 3.5: Definition of (versioned) software component types.

Each versioned component type identifier cv is only used as meta information of
one versioned component type. A software component provides one task, which
processes data received via required properties of its ports (inputs) in a cyclic man-
ner and sends calculated data via provided properties of its ports (outputs), pos-
sibly including a state. The information needed to compose and deploy software
components are all provided in the component type description – no knowledge
about its implementation is needed. This is accomplished by adding non-functional
information to the component type description, which is currently: Bit sizes of prop-
erties and state, WCETs of tasks and the dump/load functions, the task’s period
and (required/provided) sample rates of properties. In this thesis, both maxAge and
refreshmentPeriod are mostly equal to the period of the single task of a component.
In [TSK18] we described how the two sample rate values can be used to produce or
consume multiple values per cycle. However, if the period and sample rates were
not equal, the definitions of the task implementation, especially of the value assign-
ments, needed to be adapted accordingly to represent multiple values, which we

2The ground state pattern is described in detail by Kopetz [Kop11].

52
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

omitted in this specification for simplicity. Another reason for the distinction be-
tween sample rates and periods is the potential to extend this component model
towards multiple tasks per component or compositional components running with
different periods using different subsets of the component’s properties.

Example 1. Following Maude code defines a versioned component type for a button con-
troller with no internal state, a period of 50 milliseconds, a WCET of ten milliseconds and
ground state size of 100 bits:

op btn-v1 : -> Object .
eq btn-v1 = < ’btn-v1:SWC |

meta: "Button Controller" "1.0",
ports: < ’btnIn:SwPort | provIf: empty, reqIf: bool ’btnState |-> 50000 >,

< ’btnPort:SwPort | provIf: bool ’risingFlank |-> 50000, reqIf: empty >,
task: < ’checkButton:Task | fields: empty, wcet: 10000 >,
kind: groundState(100) > .

In algebraic notation the ports would be denoted as follows:

btnIn ={▷btnState50ms
bool }, (3.1)

btnPort ={◁risingFlank50ms
bool }. (3.2)

Component Implementation

To complete the definition of a software component, the implementation is needed.
Again, it is important to note that the component implementation can be defined
independently from other steps such as deployment and reconfiguration. It is of
course also possible to define a versioned component type after its implementation
(e.g. for re-using an already existing implementation), if it complies with the fol-
lowing implementation abstraction. The implementation is specified by functions,
which consume and produce values of the data types specified beforehand. Thus
we first define values and corresponding functions in listing 3.6:

sorts NtVal Val .
subsort NtVal < Val .
class SerializableObject | size : NzNat .

op vNull : Time -> Val [ctor] .
ops vBool val32 val64 : Nat Time -> Val [ctor] .
op vObj : Object Time -> NtVal [ctor] . --- SerializableObject

op type : Val -> Type .
op age : Val -> Time .
op vAging : Val Time -> Val .

LISTING 3.6: The definition of values along with corresponding functions.

Each value has a parameter of sort Time, which can be retrieved via the age func-
tion. The age is set to zero when the value is created (e.g. an output computed
during the task execution) and is increased using vAging as time passes. The value’s
data parameter depends on the type. For primitive types t ∈ {bool, uint32, uint64},
the constructors vBool, val32 and val64 create corresponding values, where the data
parameter is a natural number within the representable range:

• vBool = {false, true} = {⊥,⊤} = {0b, 1b}
• val32 = {0u32, . . . , 232

u32}
• val64 = {0u64, . . . , 264

u64}

Subscripts are used to indicate bit lengths of numeric values, but they can be omitted
for brevity. The standard operations (+, −, . . .) for numeric values and logical
operators (¬, &, . . .) are used as defined in C18 [ISO18]. The data parameter of

3.1. Design-Time Model 53

a structured type is given by objects of user-defined classes derived from the base
class SerializableObject. The bit size of such a value is kept by its size field, and the
exact type is struct(size). The constructor function vObj constructs a value from such
an object. The size of a value v can be retrieved with size(type(v)) in general. Finally,
vNull is a typeless value, which can be used instead of proper values if no data is set
(e.g., when an input is missing). No further operations are defined for vNull.

class ComputingContext | inputs: Map{Property,Val}, memory: Map{Property,Val},
outputs: Map{Property,Val}, rte: Config .

--- computes outputs from inputs based on ComputingContext Objects
op doTask : VCID Object -> Object .

--- creates a StateDump object from the value assignment for the internal state
op doDump : VCID Qid Map{Property, Val} -> Object .

--- creates an updated value assignment for the state properties from a StateDump object
op doLoad : VCID Object -> Map{Property, Val} .

LISTING 3.7: Function prototypes for the component-specific implementation of its
task as well as dump and load for implicit-state components.

Listing 3.7 shows the functions which define a component’s implementation. The
task implementation of a versioned component type cv is given by an equation for
the doTask function, the VCID parameter of which matches cv. The function takes
a ComputingContext object (an abstraction of AppContainers, see section 3.2), which
holds value assignments for the input properties (inputs), state properties (memory)
and ground state objects (inherited from SerizalizableObject) within the rte Configu-
ration. Depending on the state kind, any of these fields may be empty. The equation
provided by the component developer yields the modified ComputingContext as of
the logic of the component. It should update the state properties and the ground
state objects as well as the value assignment for the output properties (outputs). Sim-
ilarly, the two functions doDump and doLoad provide a translation between the com-
ponent’s internal state and StateDump objects (inherited from SerializableObject). It is
important that the function definitions comply with the state kind of the component.
Stateless components are assumed not to depend on or provide a non-empty ground
state or a non-empty internal state. Hence, dump and load need not be defined, as
stateless components do not need to dump or load state during reconfigurations. For
ground state components, the cycle’s initial memory of the ComputingContext should
be ignored, as it should either be loaded from the current ground state or not be used
at all. The resulting internal state should also be ignored and persisted to a ground
state object within rte. It is assumed that the ground state is always updated and
used so that potential reconfigurations can handle the state transfer based on the
ground state, only. Thus, dump and load are not needed during updates (however,
these functions may be used to define the doTask equation(s), if needed. Only for
components with internal states, the doDump and doLoad functions serve as recon-
figuration interface and are not used for normal task implementation. The different
handling of state transfer during reconfigurations are described in chapter 4.

Example 2. Listing 3.8 defines the implementation for the ground-state component type
ButtonController1.0 from example 1.

class BoolStateDump | val: Bool .
subclasses BoolStateDump < StateDump < SerializableObject .

eq doTask("Button Controller" "1.0", <C:ComputingContext|
rte: < ’prev-in:BoolStateDump | val: B-PREV-IN >,
inputs: bool ’btnIn.’btnState |-> CURR-IN >)

= <C:ComputingContext| rte: < ’prev-in:BoolStateDump | val: asBool(CURR-IN) >,
outputs: bool ’btnPort.’risingFlank |-> CURR-IN and not vBool(B-PREV-IN) > .

LISTING 3.8: The task implementation of ButtonController1.0 using a ground state.

54
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

Concluding, we specified the structure and implementation of software compo-
nents. Software components, according to our model, process data in a deterministic
manner, both functionally and non-functionally. Component types give a clear in-
terface about expected and provided data, processing resources, and timing. The
component implementation is only needed for execution simulation. Only the com-
ponent type declaration (i.e., no component implementation) is needed for compos-
ing, deploying and reconfiguring software components at design-time as described
in the following sections.

3.1.2 Distributed Embedded Applications

The functionality of a distributed control system is provided by a distributed em-
bedded application. A distributed embedded application consists of component in-
stances and connectors, which wire the components instances’ ports to define com-
munication relationships between them. Not all ports need to be connected – they
can also be mapped to I/Os in a later step or be left unmapped. However, all re-
quired properties must be provided in the end. A distributed embedded application
has a global period, which applies to all its components, i.e., to the period of tasks
and to sample rates. The runtime behavior of a distributed embedded application
is specified in later sections, but at this point it is worth noticing that all tasks are
executed synchronously according to the logical execution time paradigm [KS12]:
Input properties are first provided to all components, then their tasks are triggered
and after the period is over, the output properties are extracted and further handled.
Finally, the end-to-end reaction time of a distributed embedded application from
inputs to outputs (including computation and communication) can be constrained.
The fulfillment of this constraint can only be answered definitely after the design is
complete, especially after we know which component runs on which node. The log-
ical execution time paradigm helps to keep this and further non-functional analysis
comprehensible (see section 3.3) as it provides temporal determinism while avoid-
ing detailed scheduling configuration (e.g. priorities, time slices, . . .). Thus, fixed
logical execution time simplifies the composition of components by third-parties.
Additionally, the synchronous cycle turnover is a global quiescent state of a dis-
tributed embedded application and enables the reconfiguration concept specified in
chapter 4.

sort Matching .
op _-->_ : QQid QQid -> Matching [ctor] . --- [[swc.]port.]prop --> [[swc.]port.]prop
op _<--_ : QQid QQid -> Matching [ctor] .

class Connector |
ports: Tuple{QQid,QQid}, --- qualified SwPorts (SWC.port)
matching: Set{Matching}. --- Properties of the Ports (prop)

LISTING 3.9: Definition of property matchings and port connectors.

A component instance is given by an application-unique component instance
identifier and the component’s interface – a versioned component type (identifier).
The versioned component type ButtonController1.0 defined in example 1 is already a
prototype for a component instance of this type. Thus a component is instantiated
by creating a copy of the versioned component type and setting the object identi-
fier according to the component instance identifier. Consequently, the task and the
ports are copied, too (along with all required and provided properties). They are
identified using qualified quoted identifiers (QQid) to avoid name clashes. Multi-
ple instances of a component type can exist in a distributed embedded application.
Listing 3.9 shows the definition of port connectors. A port connector (connector)

3.1. Design-Time Model 55

connects properties of the two software ports ci.pn and cj.pm given in its ports tu-
ple. QQids are used, where pn identifies a port of component instance ci and pm a
port of component instance cj. Additionally, the connector specifies a set of match-
ings (ci.pn.ppx, cj.pm.ppy) between properties of port pn and properties of pm The
meaning of a matching (ci.pn.ppx, cj.pm.ppy) is that the value of a provided property
ci.pn.ppx shall be extracted after each period, possibly transmitted to the location of
cj and finally injected to the required property cj.pm.ppy, or the other way round,
if ppy is provided and ppx is required (referred to as the direction of the matching
or data flow). The matchings are used enable independent naming of properties in
two connected components, so they don’t need to use the same ‘language’, but can
call the properties according to the vocabulary used in the corresponding domain or
discipline. On both sides of a valid connector there must be exactly one matching
for each required property with a provided property of the same type. Depending
on the direction of a matching, we write a matching (ci.pn.ppx, cj.pm.ppy) as

ci.pn.ppx → cj.pm.ppy, if the data flow is from ppx to ppy, (3.3)

ci.pn.ppx ← cj.pm.ppy, else. (3.4)

A distributed embedded application (eApp) is given by a set swcs of component
instances, a set conns of valid connectors within swcs, where each required property
is matched at most once, the global cycle period in microseconds, and a constraint on
the worst-case reaction time wcrt in microseconds as specified in listing 3.10:

class eApp | swcs: Set{Object}, conns: Set{Object}, period: Nat, wcrt: Nat .

LISTING 3.10: Definition of distributed embedded applications.

This way an eApp puts together all the application-layer pieces of a distributed
control system. It has a set of component instances, where each instance has one task,
the period of which must be set to the global period of the eApp. Obviously, the tasks’
WCET wcets must be smaller than the period of the eApp. The component instances’
ports are wired with connectors, so that inter-component communication is already
defined on a logical level. The wrct parameter of an eApp constrains the worst-case
reaction time of the final distributed control system from sensors to actuators. While
further schedulability analysis depends on the deployment, we can already make a
first feasibility analysis of the worst-case reaction time: Due to the logical execution
time paradigm, each processing of an input property by a task will take exactly the
time of one period. The worst-case communication time of a connector between
co-located component instances is zero (due to the zero execution time assumption
of the cycle turnover). Hence, a lower bound of the worst-case reaction time can
be calculated from the number of tasks involved in the dataflow from sensors to
actuators. We have to find the longest path from an input property to an output
property in the dataflow graph (the construction of which is described in section 3.3);
if the path passes n tasks, then the minimum possible worst-case reaction time of the
eApp is (2+ n) · period (plus two periods because of the sampled inputs and outputs),
and we can check if it is smaller than wcrt. After the deployment, we can take into
account the real communication and sampling times.

Example 3. The software part of the onBtnSwitch example is a distributed embedded appli-
cation as defined in listing 3.11.

56
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

op led-v1 : -> Object .
eq led-v1 = < ’led-v1:SWC | meta : "LED Controller" "1.0",

ports: < ’ledPort:SwPort | provIf: empty, reqIf: bool ’switchCmd |-> 150000>,
< ’ledOut:SwPort | provIf: bool ’ledState |-> 50000, reqIf: empty >,

task: < ’setLed:Task | fields: empty, wcet: 10000 >,
kind: groundState(100) > .

op onBtnSwitchEApp : -> Object .
eq onBtnSwitchEApp = < ’onBtnSwitchEApp:eApp |

swcs : btn-v1, led-v1,
conns: < ’btnLedCon:Connector |

ports : (’btn-v1.’btnPort, ’led-v1.’ledPort),
matching : ’risingFlank --> ’switchCmd >,

period: 50000, wcrt: 250000 > .

LISTING 3.11: An eApp for the onBtnSwitch example system including the definition
of the LED Controller1.0. The Button Controller1.0 from example 1 ist used via the
btn-v1 operation. A connector connects two ports of the two components, so
the risingFlank output of btn-v1 is used as input for led-v1. The global period is
50 ms and a worst-case reaction time requirement of 250 ms is specified, which is
satisfiable, because two tasks are involved in the dataflow: (2·2)·50 ms < 250 ms.

These definitions make up a minimal viable model of distributed embedded ap-
plications for the purpose of this thesis: We study simplified and evolvable third-
party integration of distributed embedded applications towards the extreme of con-
tinuous updates during full operation despite end-to-end real-time requirements.
Obviously, it is not the most comprehensive application model and has potential for
various future extensions. For example, components are not defined composition-
ally, but they are composed in a flat manner. Additionally, each component only has
one task. The ports only support properties, but no operations or events. Both task
execution and inter-component communication are aligned in an isochronous global
cycle. And finally, the non-functional specification is fairly minimal, e.g. we speci-
fiy only a global worst-case reaction time constraint instead of more fine grained
bounds. However, the model is still comprehensive, as we have to take these dis-
tributed embedded applications all the way to the execution environment in sub-
sequent model fragments to finally analyze the non-functional behavior and to de-
scribe and perform even compatibility-breaking reconfigurations without downtime
(or at least with deterministic temporary quality degradation). Therefore, the syn-
tactic and semantic simplicity of distributed embedded applications is a feature, as
it allows us to model the complete chain.

3.1.3 System Models and Topologies

This section is on the hardware part of distributed control systems and on how the
involved MCUs are connected with each other by means of communication media
and to equipment by means of I/O ports. Thus we first introduce a model of MCUs,
the MCU description3, which is used to model an MCU’s hardware components.
Then network topologies of such MCUs can be described, which make up a dis-
tributed system to which distributed embedded applications can be deployed.

An MCU desciption is given by its unique identifier and the hardware compo-
nents installed on the board (see listing 3.12 and figure 3.3). The hardware compo-
nents are either network ports (currently only ethernet ports) or I/O ports (currently
only general-purpose input/output ports (GPIOs)). For network ports a natural

3“MCU description” is our original wording from the master’s thesis [Tel15], which is more self-
explaining, as it describes an MCU. In intermediary work we referred to this model element as
“board” [TSK18].

3.1. Design-Time Model 57

class IoPort | swPort: Object . --- the I/O interface as SwPort
class NetworkPort | bps: Nat .
classes HwComponent EthPort GPIO .
subclasses GPIO < IoPort < HwComponent .
subclasses EthPort < NetworkPort < HwComponent .

class McuDescription | hwComponents: Set{Object} .

LISTING 3.12: MCUs defined by the set of installed hardware components.

FIGURE 3.3: The MCU description model in UML. An MCU consists of two types
of hardware components: I/O ports for accessing equipment and network ports

for communication with other MCUs.

number bps must specify the bits per second of guaranteed bidirectional through-
put the network port is capable of. For I/O ports a software port must be specified,
which defines the API through which software components can access the equip-
ment by means of the execution environment. In an engineering tool, this API would
not be freely specified, but it would be selected and configured according to a pre-
defined set of I/O interfaces associated with corresponding hardware component
types on an MCU. Due to the limited scope of this specification, we keep the I/O
model simple and only define GPIO inputs and outputs, which are accessible via
one (required or provided) boolean property for digital I/Os or one (required or
provided) integer property for numeric-valued I/Os, as shown in the following ex-
ample. It is up to future work to define more complete sets of I/O interfaces and to
enable these interfaces in a generic way as we did for GPIOs4.

Example 4. The MCU IOT2040 can be modelled as as shown in listing 3.13.
op IOT2040 : -> Object .
eq IOT2040 = < ’IOT2040:McuDescription | hwComponents:

< ’gpio13:GPIO | swPort: <’usrLed:SwPort| provIf: bool ’ledOut |-> 10000, reqIf: empty> >,
< ’gpio63:GPIO | swPort: <’usrBtn:SwPort| provIf: empty, reqIf: bool ’btnIn |-> 10000> >,
< ’eth0:EthPort | bps: 10000000 >, --- 10 Mbit/s
< ’eth1:EthPort | bps: 10000000 > > .

LISTING 3.13: The SIMATIC IOT2040 modeled with its two ethernet ports, the user
button and the user led.

In more compact algebraic notation the I/O interfaces are:

gpio13 ↦→ ◁ledOut10ms
bool and (3.5)

gpio63 ↦→ ▷btnIn10ms
bool . (3.6)

The LED output in example 4 is accessible as a provided property with the QQid
gpio13.usrLed.ledOut and the button input as a required property gpio63.usrBtn.btnIn
(however, as I/O ports only have one property in this thesis, we sometimes omit
the port or the property). The runtime handles these interfaces as delegation ports,

4AUTOSAR is a good example for how complex this problem actually is. For example, consider the
specifications for I/O Hardware Abstraction [AUT19b] and ECU Configuration [AUT19a].

58
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

i.e., the values are forwarded between the I/O ports and possibly mapped ports of
locally installed software components. This is described more detailed in the sub-
sequent section on deployments. Now that we have MCU descriptions, we can use
them to define nodes and the network topology between them. This is effectively a
bidirectional graph of nodes, where edges are given by network connections. Dis-
tributed embedded applications are deployed to such topologies with minimal ad-
ditional effort and with no manual system configuration required after design-time.
class NetIf | port: Qid, ipAddr: String, macAddr: String .
class Node | mcu: Object, netIfs: Set{Object} .

LISTING 3.14: Definition of nodes and network interfaces.

Listing 3.14 defines nodes and network interfaces. A network interface is de-
scribed by a hardware component identifier (of an ethernet port of the correspond-
ing MCU), a system-unique IP address, and a unique MAC address. IP addresses
and MAC addresses are denoted in their usual octet-notation (e.g. “192.168.200.1”
and “de-ad-be-ef-fe-ed”). This minimal platform-specific information is added at
this point to keep all required information together in one pragmatic model of the
nodes and the topology. While it is not important during modeling, it is essential
for configuration of the nodes, later-on. To add support for different communication
media and ports (CAN, Wi-Fi, ...), specific description types must be added in future
as well as additional types of network connections. Network interfaces are used in
the definition of nodes, as also shown in listing 3.14. A node description is given by
the node identifier, the MCU description mcu, and a set netIf of network interface
descriptions for the network ports of mcu. The nodes are meant to be instances of
MCUs, but it is more compact to put the MCU description into the node description
and prune the MCU description to the relevant hardware components. For instance,
if we don’t use all CPU pins on a specific node, we only include the used GPIOs in
the corresponding node description. Thus we may use two different MCU descrip-
tions for two nodes of the same MCU type, which has the benefit that we can reduce
the size of the resulting runtime image. There must be at most one network interface
description for each network port of the MCU.
class NetConn |

netIfs: Set{QQid}, --- two NetIfs (node1.if, node2.if)
bps: Nat. --- bidirectional throughput

LISTING 3.15: Definition of network connections.

A network connection between two network interfaces of different nodes can be
specified as shown in listing 3.15. A network connection is described by a system-
unique network connection identifier, the qualified identifiers of the two conneted
network interfaces, and the bidirectionally guaranteed throughput bps. Such a net-
work connection description specifies that there exists a direct network connection
between the Ethernet ports associated with the network interfaces (via their port
field). Note: To keep the model comprehensive we don’t include special model
elements for network-only nodes (switches or routers) in between. However, we
will have to configure both ARP and IP statically to avoid discovery protocols. The
easiest solution is to model them using node descriptions without mapping soft-
ware components to them. In this way we have the information for configuring
routes and firewalls, but we need special treatment for the network behavior, as
usually each hop costs one period transmission time due to the logical execution
time model. Hence, for configuration purposes, we need the topology as defined
below including network-only nodes, and for all other purposes (such as simulating
or reconfiguring a deployed distributed embedded application) we use a “flattened”

3.1. Design-Time Model 59

view of the topology, which does not include network-only nodes and replaces in-
direct network connetions node1↔switch1↔node2 with direct network connections
node1↔node2. For network configuration and feasibility analysis, the bps parameter
of network connections is used, which specifies a lower bound of the bidirectional
throughput. It must consider the throughput of the two Ethernet ports, but also re-
flect abstractions such as flattening the network topology as described beforehand.
In the scope of this thesis we do not handle network errors, but consider the through-
put as-is and instantly issue errors if network messages are missing. We strongly
suggest that either the platform or software components should be extended to de-
tect and compensate transient network faults.

class Topology |
nodes: Set{Object}, --- Nodes
conns: Set{Object}. --- NetConns

LISTING 3.16: Specification of network topology descriptions.

Finally, we put together the pieces by specifying network topologies (see list-
ing 3.16). A network topology is described by a set nodes of node descriptions (Node
objects) and a set conns of network connections between the nodes (NetConn objects).
A network topology description is a bidirectional graph between nodes, which is in-
duced by network connections. We have already elaborated on network-only nodes
beforehand. At this point it is worth mentioning that the network topology in-
cludes the engineering system, for instance, because software components need to
be downloaded during reconfigurations as described in chapter 4. The following ex-
ample for the onBtnSwitch system includes such an engineering system and network
connections for administration communication.

Example 5. Listing 3.17 defines a (flattened) network topology description for onBtnSwitch
consisting of two IOT2040 MCUs and one engineering system connected via Ethernet (see
figure 3.4). Each of the three nodes node1, node2 and the engineering system ES is con-
nected to each other node. The two ‘real’ nodes node1 and node2 are connected via their eth1
interfaces, which is the only connection of the plant network. They are connected to the en-
gineering system via their eth0 interfaces, which belong to the administration network. This
topology is used throughout the rest of this thesis if not stated otherwise.

op twoIOT2000s : -> Object .
eq twoIOT2000s = < ’twoIOT2000s:Topology |

nodes :
< ’node1:Node | mcu: IOT2040, netIfs:

< ’eth0:NetIf | port: ’eth0, ipAddr: "192.168.200.1", macAddr: "af-fe-af-fe-af-fe" >,
< ’eth1:NetIf | port: ’eth1, ipAddr: "192.168.1.1", macAddr: "01-23-45-67-89-ab" > >,

< ’node2:Node | mcu: IOT2040, netIfs:
< ’eth0:NetIf | port: ’eth0, ipAddr: "192.168.200.2", macAddr: "de-ad-be-ef-fe-ed" >,
< ’eth1:NetIf | port: ’eth1, ipAddr: "192.168.2.1", macAddr: "aa-bb-cc-dd-ee-ff" > >,

< ’ES:Node | mcu: ZBook, netIfs:
< ’eth0:NetIf | port: ’eth0, ipAddr: "192.168.200.100", macAddr: "fe-dc-ba-98-76-54" > >,

conns :
< ’con1 : NetConn | netIfs: ’node1.’eth1, ’node2.’eth1, bps: 1000000 >
< ’admConn1:NetConn | netIfs: ’node1.’eth0, ’ES.’eth0, bps: 1000000 >
< ’admConn2:NetConn | netIfs: ’node2.’eth0, ’ES.’eth0, bps: 1000000 > > .

LISTING 3.17: A network topology consisting of two IOT2040-based nodes and an
engineering system. Each network connection has 1 Mbit/s set as bidirectionally

guaranteed throughput

60
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.4: An UML diagram of the network topology twoIOT2000s.

3.1.4 Deployment Descriptions

After modeling a distributed embedded application and a network topology, a map-
ping between these two independent models can be defined – the deployment de-
sciption. We have to distinguish between the deployment description as such and
the process of deploying the distributed embedded application to the distributed
system. The deployment as procedure is a reconfiguration and not covered in this
section. This section describes the deployment description as such. It maps software
to hardware and thus defines the desired system configuration (which can be ob-
tained by reconfiguring accordingly, depending on the initial system configuration).

class Mesg | size: Nat .
class LocalMesg | size: Nat, node : Qid .
class NetMesg | size: Nat, sender: Qid, receiver: Qid, path: List{Qid}.
subclasses LocalMesg NetMesg < Mesg .

class ComSpec | msgs: Set{Object} . --- Mesg objects

LISTING 3.18: A communication specification defines the set of messages in the
distributed system. There are node-local messages and ‘real’ network messages.

Listing 3.18 shows the Maude definition of communication specifications. A
communication specification defines a set of messages for a network topology. It is
defined during the deployment step to describe the physical communication needs
in the network topology, complementing the logical communication needs specified
by the connectors of the eApp. An abstract message (Mesg) only declares its size,
i.e., the maximum number of bits to transport during a period. There are local mes-
sages (LocalMesg), which additionally have a node parameter. Local messages are
used for inter-component communication of co-located components (which run on
the same node). Additionally, there are network messages (NetMesg), which declare
the sender and receiver nodes and a path within the network topology from the sender
to the receiver. The path is given by an ordered list of network connection identifiers,
where consecutive network connections start/end at network interfaces of the same
node. Network messages are transmitted periodically, but only take one hop per
period to simplify the schedulability analysis as descibed later in this section and in
section 3.3.
class Deployment | eApp: Qid, topo: Qid, com: Qid,

swcMap : Map{Qid,Qid}, comMap: Map{PropConn,Qid}, ioMap: Map{QQid,Qid}.

LISTING 3.19: Deployment descriptions consist of a component mapping, a
communication mapping and an I/O mapping for running a specific distributed

embedded application on a specific network topology.

3.1. Design-Time Model 61

A deployment description (see listing 3.19) for a specific distributed embedded
application eApp and network topology topo consists of a SWC mapping swcMap,
a communication specification com, a communication mapping comMap, and an
I/O mapping ioMap. In essence, the deployment description maps three kinds of
software-related elements (from a distributed embedded application) to correspond-
ing elements related to hardware and network (from a network topology descrip-
tion): The SWC mapping assigns a node in topo to each component in eApp. The
communication mapping assigns a message from com to each matching, so that each
matching ci.pn.ppx → cj.pm.ppy of the connectors in the eApp is assigned a message
the path of which starts at ci and ends at cj as of the SWC mapping. The injective I/O
mapping (i.e., I/Os are accessed exclusively) assigns a local I/O port node.io to each
unmapped software port c.p of the eApp (the I/O port io is local if c is deployed to
that node). The three mappings have following meaning and implications:

The SWC mapping assigns a node to each software component of a distributed em-
bedded application. The software components shall be installed to and exe-
cuted on the assigned node. It will consume resoure shares from that node
(especially CPU, Memory, Network) in competition with other co-located soft-
ware components. Thus we have to make sure, that each node has enough
computing resources to host the assigned software components.

The communication mapping assigns (network) messages to each matching of
each connector of a distributed embedded application. While a connector is
a logical communication channel which declares a data flow between pro-
vided and required properties, (network) messages specifiy the real communi-
cation channel as path in the network topology through which the properties
are transmitted from sender to receiver, including possible intermediary hops.
Multiple matchings can be assigned to the same network message, as long as
they need to be transported across the same path and as long the message’s
bit size is sufficient. However, network messages are unidirectional, thus two
network messages are needed to cover bi-directional connectors. To decrease
the reconfiguration effort, only matchings of the same connector are assigned
the same network message. Effectively, provided properties are extracted af-
ter each cycle, transmitted to the receiving software component and injected at
deterministic instants (as described in the runtime model).

The I/O mapping assigns I/O ports to unmapped software ports of a distributed
embedded application. Each I/O port of a node can only be assigned to one
port of the software components it hosts according to the SWC mapping. The
I/O port’s software port (its API) and the assigned software component’s port
must be identical (apart from renaming). As we currently only support GPIOs,
the software component’s port must have exactly one required (for inputs) or
provided (for outputs) property of the same type as declared in the I/O port.
Required properties will be taken from the driver (ensuring the declared max-
imum age) and provided to the software component before each cycle. Pro-
vided properties are extracted from the software component after each cycle
and forwarded to the driver.

Example 6. Listing 3.20 defines a communication specification and a deployment descrip-
tion for the onBtnSwitch example system (see figure 3.5), i.e., a deployment of the dis-
tributed embedded application from example 3 and the network topology from example 5. The
Button Controller btn-v1 is deployed to node1 and the LED Controller led-v1 is deployed to
node2. The unmapped ports btn-v1.btnIn and led-v1.ledOut are mapped to I/O ports of the

62
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.5: An UML diagram of the deployment onBtnSwDep.

corresponding nodes. The matching between the risingFlank output and the switchCmd in-
put is mapped to the network message msg1, the path of which goes from node1 to node2 (via
the network connection con1). For each network connection an additional network message
for platform-level communication in both directions is specified, the quota of which depends
on the parameter MsgAdmin.

op comSpec : -> Object .
eq comSpec = < ’comSpec:ComSpec | msgs :

< ’msg1:NetMesg | size: 1, sender: ’node1, receiver: ’node2, path: ’con1 >,
--- admin communication towards the nodes
< ’es2node1:NetMesg | size: MsgAdmin, sender: ’ES, receiver: ’node1, path: ’admConn1 >,
< ’es2node2:NetMesg | size: MsgAdmin, sender: ’ES, receiver: ’node2, path: ’admConn2 >,
--- admin feedback towards ES
< ’node1-2es:NetMesg | size: MsgAdmin, sender: ’node1, receiver: ’ES, path: ’admConn1 >,
< ’node2-2es:NetMesg | size: MsgAdmin, sender: ’node2, receiver: ’ES, path: ’admConn2 >,
--- reconf agent messages P2P
< ’node1-2node2:NetMesg | size: MsgAdmin, sender: ’node1, receiver: ’node2, path: ’con1 >,
< ’node2-2node1:NetMesg | size: MsgAdmin, sender: ’node2, receiver: ’node1, path: ’con1 >

> .

op onBtnSwDep : -> Object .
eq onBtnSwDep = < ’onBtnSwDep:Deployment |

eApp: ’onBtnSwitchEApp, topo: ’twoIOT2000s, com: ’comSpec,
swcMap: ’btn-v1 |-> ’node1, ’led-v1 |-> ’node2,
comMap: ’btn-v1.’btnPort.’risingFlank --> ’led-v1.’ledPort.’switchCmd |-> ’msg1,
ioMap: ’btn-v1.’btnIn |-> ’gpio63, ’led-v1.’ledOut |-> ’gpio13 > .

LISTING 3.20: A communication specification and deployment description for the
onBtnSwitch example system.

As a minor difference to the engineering methodology published in [TSK18], the
communication specification is no longer a part of the system description, but in-
stead defined during deployment. The main reason for this change is that the set of
messages needed depends on the needs of the specific deployment and thus must
be defined during the design of the deployment. Additionally, the communication
specification is software-defined and subject to dynamic reconfigurations without
modifying the network topology as such. Finally, we suggest that – in a future ex-
tension of the approach – it should be possible to generate a valid deployment au-
tomatically (including the set of messages). Another aspect of the communication
specification is its level of abstraction. We chose a high level of abstraction to make
this model extensible by future refinements. In the definition and the explanation
above we only stated that the messages are sent and received at deterministic in-
stants, but did not further elaborate on priorities and timeslices. We will do this in
the following. Again, the primary aim of this thesis is to keep third-party integra-
tion as simple as possible, while fulfilling hard end-to-end real-time requirements.
Thus, the most simplistic approach was chosen, which perfectly fits to the globally
synchronous fixed logical execution time: Each network connection ("hop") of a mes-
sage exactly costs one cycle, as the message is released just before a new cycle, trans-
mitted during the cycle and further processed after the cycle is completed. Thus,
the effective communication time is deterministic without assigning time-slices: It

3.1. Design-Time Model 63

is equal to the path length times the period. We can therefore transmit network
packets at arbitrary times during a cycle, which can be achieved with "any" proto-
col and without further protocol-specific configuration. In the real-time container
architecture described in section 5, this is achieved via traffic shaping, i.e., applying
bandwidth control to network messages. Consequently, we can use standard udp/ip
communication to implement this model for the scope of this thesis (instead of deal-
ing with industrial, real-time-capable busses and protocols). On the other hand, this
approach also introduces huge communication times, depending on the period and
the deployment. In future approaches, additional, protocol- and medium-specific
pieces of information could be added to the communication specification to achieve
shorter communication times. These approaches should also consider how we can
relax the task scheduling model so that messages known to arrive earlier can be pro-
cessed earlier, while still keeping the deployment procedure as simple as possible.

ops AdminTime BgTime Ovhd MsgAdmin : -> Nat [ctor] .

LISTING 3.21: Platform-specific system parameters. These need to be
specified/configured to check the feasibility of a deployment.

Finally, the feasibility of a deployment description depends on following addi-
tional, platform-specific system configuration parameters declared in listing 3.21:

• AdminTime (WCETadm), the configured CPU quota for the administration phase
in microseconds per period (also written as WCETadm, because the quota
should be as least as big as the WCET of the administration phase),

• BgTime (Qbg), the execution time assigned to background workers in microsec-
onds per period,

• Ovhd (Omsg), the protocol overhead in bits per message,
• MsgAdmin (Madm), the configured network quota for platform-level communi-

cation in bits per period per connection.

These parameters specify details of the runtime, including platform-specific aspects,
which must be provided partly to configure the runtime and partly for feasibility
analysis. Thus, we declare and briefly explain these parameters here, though they
are tethered to the runtime model, the reconfiguration model, and the platform-
specific real-time container architecture as specified in the subsequent sections and
chapters. The administration phase is the time between two cycles, in which the
platform extracts outputs from the components, injects inputs and triggers the next
cycle. Conventionally, this cycle turnover is performed under ZET assumption. In
our approach, additional reconfiguration operations are performed and we must en-
sure that there is enough time for them, before starting reconfigurations. Therefore,
WCETadm specifies the amount of time reserved for the cycle turnover. Additionally,
Qbg is reserved for time-consuming reconfiguration operations in background (e.g.
starting a new component). Only the rest of the period (period−WCETadm − Qbg)
can be assigned to components’ tasks. For the communication, there are two addi-
tional parameters. The protocol overhead Omsg is an upper bound of the per-message
overhead (e.g. caused by headers). Throughout this thesis each property is sent via a
dedicated message, so the message overhead is only caused once per period. How-
ever, if a message is used for n properties, then an overhead of n×Omsg is caused.
This must be considered in the feasibility calculation (see section 3.3). Finally, Madm
is the amount of network bandwidth to reserve for platform-level communication

64
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

(including reconfiguration-related communication such as downloads). This band-
width is reserved bidirectionally on each network connection. When not stated oth-
erwise, the system configuration parameters are:

WCETadm = 10 ms, (3.7)
Qbg = 5 ms, (3.8)

Omsg = 432 bit (UDP 8 B, IPv4 20 B, MAC 18 B, Eth 8 B), (3.9)
Madm = 5000 bit (PTP ≈ 1000, coordination ≈ 2000). (3.10)

3.2 Runtime Model

The runtime model is basically an executable refinement of the design-time model.
Figure 3.6 shows an overiew of the runtime model (the colors indicate how it cor-
responds to the design-time model). It consists of a green layer for application ex-
ecution within containers, a grey system layer for scheduling, I/Os and network-
ing and a blue layer in-between for the system execution management by an agent.
Each software component is executed within an application container on the corre-
sponding node. The additional background container is used for the reconfiguration
purposes described in chapter 4. The agent is installed on each node and mediates
between the application and system layer. This ensures that the distributed em-
bedded application operates as modeled in the deployment description and that it
is reconfigurable. The system layer provides execution and communication means
which are shared by applications. To make sure that these are available to the de-
manded extent we must (besides only accepting feasible deployments) enforce both
the functional and the non-functional interface of each software component: Enforc-
ing the resource limits of each app ensures that the remaining share is available to
the others. For instance, network connections are used for inter-component commu-
nication as well as inter-agent communication and must be bandwidth controlled
along the route of a message. The rest of this section specifies the three layers.

3.2.1 Application Containers

Application containers are the sphere of influence for software components: They
isolate a component so that it cannot communicate with the outside of the con-
tainer in ways not actively enabled by the agent. Of course communication with
other components and equipment is needed and can be achieved with shared mem-
ory, network communication, I/O interfaces and other inter-process communication
means. In this model, communication can only be achived implicitly by reading
and writing properties, which have been mapped to messages or I/O ports. The
platform-specific model has to define how this is implemented for the desired tech-
nologies (e.g. UDP communication). Additionally, the isolation has to ensure the
non-functional interface, especially w.r.t. CPU time, network bandwidth and mem-
ory. Following architectural properties of the application container specification are
important not only to ensure the functional and non-functional consistency of a de-
ployment, but also to enable the reconfiguration concept (cf. [TK19a]):

• Sender and receiver don’t know each other: The communication relationships
defined in the deployment description are not created by the components
themselves.

• No hidden communication channels: Communication attempts beyond the de-
fined mappings do not reach the outside/inside.

3.2. Runtime Model 65

FIGURE 3.6: A schematic architectural overview of the runtime model. It consists of
an application layer for component execution within dedicated containers, a system
layer for scheduling, I/Os and networking and a management layer in-between for
running the system accordingly on each node by means of an agent and accompa-
nying containerized background workers. The design-time model is brought to
operation statically via the agent configuration and/or dynamically via reconfigu-

ration plans (reconfiguration is treated in chapter 4).

• Resource control: Shared resources such as network bandwidth and CPU
quota are provided and limited as modeled, so deadlines are kept.

• Fixed logical execution time: A task can calculate its outputs from the inputs at
any time until the deadline – inputs and outputs are decoupled from outside
during a cycle.

Listing 3.22 shows the essential definitions of application containers (without
reconfiguration aspects). A container has following states (CState): When newly
created but not started or initialized it is new. After starting and initializing the
container it is in sleep state. It is important that in sleep state the container is not only
running but also the component inside is initialized and ready to perform a cycle.
After triggering, the container is in wait state until it is assigned to a CPU and thus
going to run state. It is possible to preempt containers during cycles, but the effects
of context switches (e.g. time to restore, cache misses, etc.) are beyond the scope
of this thesis. Thus, the proposed model assumes these effects are reflected by the
WCETs of the tasks. As soon as the task completes or the container’s quota expires,
the container goes to over state and then back to sleep state when it has been removed
from the CPU. Finally, after stopping the container, it goes to stop and can then be
removed from the system.

Besides the state, a container has a clock field which measures the runtime re-
ceived in the current cycle, a wcet field for the assigned CPU quota per cycle and a
counter field which is incremented after each completed cycle. Additionally, a con-
tainer has a job field, which is needed for reconfiguration purposes and described

66
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

later. Finally, a container has an rte field to hold all objects and messages needed by
the task or job for its execution. For instance, a software component can store state
information at this location. However, for hosting software components the AppCon-
tainer subclass is used, which has additional fields and a specialized behavior for
this purpose. The meta field stores the versioned component type identifier of the
component. AppContainers inherit three fields from ComputingContext, which map
properties to values and are used to store the current valuations of input properties
(inputs), of output properties (outputs), and of internal state properties (memory). The
input and output properties are qualified by the port name. Finally, an AppContainer
has a communication mapping field comM, which mapps qualified input and output
properties to a message or I/O identifier (in the following, only message mappings
are described, but the same applies to I/O mapped properties).

The behavior of (application) containers is defined by rules, which process spe-
cific messages, and by the mte and timeEffect equations, which modify the temporal
behavior according to the system tick rule. An AppContainer c in state sleep updates
the valuation of an input property p.pp mapped to message m to the new value v
after receiving the message reveive(c, p.pp, m, v) (the same applies to I/O mapped
properties). After receiving an activate(c) message the container c changes the state
from sleep to wait and resets its clock. Should the clock become equal to the wcet before
the task or job running in the container is completed, the container runs out of CPU
quota and changes to the over state to release the CPU. An mte equation ensures
that time can only progress until the quota of a running container expires setting
mte = wcet− clock. Otherwise, a completed task or job releases the CPU voluntarily
by setting the container to over as in the [task] rule. This rule also modifies the out-
put properties or the internal state of the container as of the implementation of the
component; it is given by an equation for the doTask operation, which matches the
versioned component type identifier meta (see section 3.1.1). A container in over state
immediately transitions to sleep, increments the counter and sends a done(c) message.
This is enforced by another mte equation, which forbids progression of time if a con-
tainer is in over state setting mte = 0. An output property p.pp is extracted from a
container c by sending a getOutputCmd(c, p.pp, m) command message, which is re-
sponded by a c, m, v message containing the current valuation v of the requested
output property, if it is mapped to message m in comM. Finally, timeEffect equations
are defined so progression of time leads to aging of property valuations and if a
container is in run state (i.e., it is assigned to a CPU) then its clock is updated, too.

ops new sleep wait run over stop : -> CState [ctor].
class Container | state:CState, clock:Time, wcet:Time, counter:Nat, job:Object, rte:Config.
class AppContainer | meta:VCid, comM:Map{QQid,Qid}.
subclasses AppContainer < Container ComputingContext.

rl[receive] receive(C,P,M,V) <C:AppContainer| sleep, comM[P]=M, inputs[TY P]=V’)>
=> <C:AppContainer| inputs[TY P]=V)>.

rl[activate] activate(C) <C:Container| sleep, clock:T> => <C:Container| wait, clock:0>.
crl[quota] <C:Container| run, wcet:T, clock:T> => <C:Container| over> if not completed(<C|>).
rl[done]: <C:Container|over> => <C:Container| sleep, counter++ > done(C).
rl[send]: getOutputCmd(C,P,M) <C:AppContainer| sleep, comM[P]=M, outputs[TY P]=V >

=> <C:AppContainer|> send(C,M,V).
rl[task]: < SCRM:AppContainer | run, meta:NAME VERSION, job:NOP, wcet:US, clock:US >

=> doTask(NAME VERSION, < SCRM:AppContainer | over >) .

eq mte(<C:Container| run, job:_, clock:T, wcet:T’>) = T’ - T.
eq mte(<C:Container| over>) = 0.
eq timeEffect(<C:Container| run, job:_, clock:T>, T’) = <C:Container| clock:T+T’>.
eq timeEffect(<C:AppContainer| inputs:I, outputs:O, memory:M>, T’)

= Container.timeEffect(<C| inputs:aged(I,T’), outputs:aged(O,T’), memory:aged(M,T’)>, T’).

LISTING 3.22: The specification of application containers in Maude (without
reconfiguration).

3.2. Runtime Model 67

Example 7. Listing 3.23 shows an example of such an AppContainer for the Button Con-
troller in the onBtnSwitch system. The state is set to new, the wcet is set to 10 ms, the
counter and clock are at zero (so, this container has not performed a cycle, yet), and no job
or rte objects are set. The three properties are all set to the default boolean valuation, which
is false and has an initial age of 0 us. After being set to run state the [task] rule applies the
doTask equation asociated with this container (through its meta information) when the clock
reaches the value of wcet (i.e., after running for wcet microseconds). The equation (defined
in listing 3.8) sets the risingFlank output to true iff. the current button input is set and has
not been set in the previous cycle. The rest of the container execution is handled from outside
by actively extracting outputs, injecting inputs and triggering the task at specific instants.

eq btn-v1 = <"btn-v1":AppContainer | meta: "Button Controller" "1.0",
state: sleep, clock: 0, wcet: 10000, counter: 0, job: NOP, rte: none,
comM: "btnPort"."risingFlank" |-> "msg1", "btnIn"."btnState" |-> "gpio63",
memory: bool "btnStatePrev" |-> vBool(false,0),
inputs: bool "btnIn"."btnState" |-> vBool(false,0)
outputs: bool "btnPort"."risingFlank" |-> vBool(false,0) > .

LISTING 3.23: An application container for the Button Controller 1.0.

3.2.2 System Layer (CPU, Network and I/O)

Distributed embedded applications need resources and capabilities provided by the
system layer in this model: They need CPU time for program execution, network
communication to exchange information within and across nodes, and access to
I/Os to control a technical process in the real world using sensors and actuators.
This section specifies the system layer as such. It is managed by and shared with the
system execution management layer described in the next section.

CPU Scheduling

Listing 3.24 shows the essential parts of the CPU scheduling specification in Maude.
The CPU scheduling model heavily relies on the behavior of containers described
before and thus the system layer part can be kept simple. Each Scheduler can assign
at most one container to the CPU and set it to the run state. The currently running
container is stored in the current field and the set of waiting containers is stored in
the waiting field. A container c can be added to the scheduler’s waiting set via the
[enqueue] rule by sending a sched(c) message. Whenever no container is running
and the waiting set is not empty, an arbitrary container from the waiting set is set to
run state by the [run] rule (which is ensured by setting mte = 0 in this case). When
receiving a done(c) message the [release] rule removes the current container c from
the CPU. In essence, containers can be added to the waiting set and the Scheduler sets
them to running; then the container itself observes the CPU bandwidth according to
its quota configuration and sends the done message in time. Thus, no further logic is
needed in this model to handle CPU allocation.

However, the Scheduler is a potential extension point towards more fine grained
task scheduling during cycles if needed by future extensions (at the cost of more
complex deployment modeling). For example, priorities or sub-period time slices
could be introduced to achieve shorter end-to-end processing times from sensors to
actuators to overcome the latencies caused by the logical execution time approach.
No such violation / extension of the architectural concept is specified in this thesis,
though, because the primary concern is to keep the component integration as simple
as possible. For this purpose we only have two virtual priorities in this concept: The

68
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

system execution management is running with primary priority (except for back-
ground jobs), while application-layer components run with secondary priority and
share the CPU time during each cycle. These priorities are not implemented using a
scheduler, but by activating and running application-layer components only when
the system execution manangement is done. This is done by splitting each cycle into
two phases using the [enqueue] rule: The administration phase, in which the the
system execution management is performed while no container is running or wait-
ing, and the execution phase, in which no system execution management (except
background jobs) are perfomed and the tasks of the application-layer components
execute within containers. The execution phase is started by enqueueing the con-
tainers and the administration phase starts isochonuously after each period is over.
This behavior is modeled outside the system layer in the subsequent section.

class Scheduler | current: Oid, waiting: Set{Qid} .
msg sched : Qid -> Msg . --- container

rl [enqueue] : sched(C) < S:Scheduler | waiting: CS > => < S:Scheduler | waiting: C,CS > .
rl [run]: < C:Container | state: wait > < S:Scheduler | current: null, waiting: C,CS >

=> < C:Container | state: run > < S:Scheduler | current: C, waiting: CS > .
rl [release] : done(C) < S:Scheduler | current: C > => < S:Scheduler | current: null > .

eq mte(< S:Scheduler | current: null, waiting: C,CS >) = 0 .
eq mte(< S:Scheduler | >) = INF [owise] .

LISTING 3.24: The specification of CPU scheduling in Maude.

Network Scheduling and Routing

The system layer provides means to manage and use network communication ac-
cording to the architectural concept: The primary concerns are to decouple senders
and receivers, to make the temporal behavior of network communication determin-
istic at minimal integration effort, and to make the distributed real-time system re-
configurable during operation. To support these goals it is manageable from outside
of containers whether a specific message is allowed at all, what path a message takes,
and how much quota ("network bandwidth") is allocated to a message per period.
Using these means the system execution management layer can (re-)configure the
network communication as needed to realize a specific deployment of a distributed
embedded application.

Listing 3.25 contains the essential specification of the network runtime model
(cf. figure 3.7). Each network connection runtime model (NetConR) coordinates
the transmission of network packets (Packet) between connected network interfaces
(NetIfR). A network connection is an abstract representation of a shared medium
used by connected network interfaces to move data between them with an appro-
priate protocol on top so only one network packet is transmitted at a time. The
runtime model of a network connection inherits the set of connected network in-
terfaces (netIfs) and the configured guaranteed bidirectional throughput (bps) from
the design-time model (see section 3.1.3). For the purpose of transmission coor-
dination a NetConR additionally holds the identifier of the currently transmitted
Packet (if any) in the pkt field and for each of the network interfaces the informa-
tion, whether or not they currently have packets to send. Whenever no packet is
currently being transmitted and an associated interface has a packet to send with
quota left, the transmission is started immediately (enforced by an mte equation)
by the [next] rule (i.e., an arbitrary packet ready to send is picked). A Packet has a
value field for the payload, from and to fields which identifiy the sending and receiv-
ing network interfaces (by node and interface identifiers), and two dynamic fields
txRestTime and active. The txRestTime is initialized according to the size of the Packet

3.2. Runtime Model 69

FIGURE 3.7: A schematic overview of the network runtime model. On the send-
ing node a network packet is created via the [tx] rule. The packets are stored in a
socket buffer and enqueued in the queueing discipline (Qdisc) depending on the
network message (determining the path and quota). Transmission can be started/-
continued as soon as the medium becomes free and the packet is at the head of a
queue with quota left. An arbitrary Qdisc is chosen from one of the network inter-
faces. Tranmission is paused by the [netQuota] rule if the quota expires. Otherwise
it completes as time passes, depending on the network connection’s throughput
and on the packet size. Finally, the [rcv] rule makes the packet contents available
as receive message on the receiving node without involving Qdiscs and buffering.

and the troughput of the NetConR so that it contains the number of microseconds
needed for the transmission on that medium. The active flag is set whenever the
network packet is currently being transmitted. Whenever time passes (through the
tick rule), the txRestTime of an active packet is adapted, so that the transmission of
the packet is completed when txRestTime = 0. In this case, the [rcv] rule moves the
network packet from the sending interface to the receiving one (potentially updat-
ing the txReady map through a done message, if the sending interface does not have
further packets with quota to send). Alternatively, the transmission of a packet can
be preempted by the [netQuota] rule, if the quota expires.

To implement this behavior, a network interface has a list of peer network in-
terfaces, a socket buffer for storing network packets to send, and for each outgoing
message a queueing discipline (Qdisc) for bandwidth control of associated packets.
Additionally the bps field for the throughput and an active flag for whether the in-
terface is enabled are used. The network interface runtime model also inherits the
design-time model fields port, ipAddr and macAddr, which are not needed in this
platform-independent runtime model, though. A value V can be sent as network
message M via network interface I on the corresponding node using a tx(I, M, V)
message. In the [tx] rule a new Packet is then added to the socket buffer skbuf and
enqueued to the Qdisc associated with network message M. A Qdisc has a mesg field,
in which it stores the associated network message identifier. Additionally, a Qdisc
has an active flag for whether one of its packets is currently being transmitted, a
quota and a used field for the configured and the used quota, and a queue field for
storing the identifiers of network packets to send (FIFO). Whenever one of a Qdisc’s
network packets is currently being transmitted, it is set to active, so the used field is
updated if time passes. If used = quota, then no quota is left for this network message
and an mte equation forbids further progression of time until the transmission of the
network packet was preempted. Qdiscs can be created and deleted on the node of
the corresponding network interface I using a setMsgQuota(I, M, N.I′, S) message,
where M is the network message identifier, N.I′ is the peer, and S is the "size", i.e.
the quota to reserve for this network message. If S = 0, then the Qdisc is removed.
Finally, network interfaces can be activated and deactivated on the corresponding

70
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

node using activate(I) and deactivate(I) messages. The [act] rule processes the ac-
tivation message by resetting the used fields of all of the interface’s Qdiscs, setting
active = true and sending a ready message to the network connections, for which
it has network packets in its socket buffer (if any). The [deact] rule in turn sets
active = false for the network interface and sends done messages to all correspond-
ing network connections to indicate that this interface does not want to send further
network packets.

Summing it up, by configuring Qdiscs at network interfaces for each message
both the routes and the quota of messages can be configured. This way the system
execution management layer can control which messages are allowed, what path
they take and how much network bandwidth they can use per cycle. This ensures
that there are no hidden channels between software components and that sender/re-
ceiver relationships are defined from outside of containers. Additionally, the band-
width control ensures that components (including system execution management
components) do not take away network time from each other. The system execution
management layer has to add observance of the logical execution time paradigm, so
that each message is released and transmitted in a deterministic time window. For
the scope of this thesis, this deterministic transmission time window is one cycle for
properties or multiple cycles for larger messages (such as downloading new con-
tainer images). The cycle alignment is achieved by resetting the quota and releasing
messages during cycle turnover as described later in section 3.2.3. However, this
network runtime model (with details such as Qdiscs) is also intended as a base for
future work towards sub-period time slices or priority-based traffic shaping (again,
for shortening the end-to-end reaction time at the cost of higher integration effort).

I/O Abstraction

Distributed embedded applications interact with a technical process using sensors
and actuators. This equipment is installed on the nodes of the distributed system as
modeled by the topology. As described in section 3.1.3, only GPIOs are supported
at the moment. Therefore, sensors and actuators are accessible via GpioDrivers as
modeled in listing 3.26. A GpioDriver has a node field and a gpio field (e.g. node1
and gpio13) to identify the controlled I/O. Additionally, the value field models the
current value, which is handled depending on the I/O type. In the abstract model
presented here only two kinds of I/Os are distinguished: GpioInputDrivers for sen-
sors and GpioOutputDrivers for actuators. The current value can be retrieved from
a sensor by sending a measure(IO) message to the GpioInputDriver responsible for
the corresponding IO. The [measure] rule answers this message with a input(IO, V)
message containing the current value V. The [rand] rule can set a random input
value at any time and is provided as an example showing how a sensor’s value can
be manipulated using rules: specific field behaviors and measurements (including
faults) can be modeled by rules which modify the GpioInputDrivers’ values accord-
ingly, e.g. based on a model of the technical process and its effect on the sensor val-
ues (i.e., simulation), or based on a specific sequence of values (i.e., testing). Finally,
a GPIO output can be set to the value V by sending an output(IO, V) message to the
corresponding GpioOutputDriver, which is consumed by the [output] rule. Again,
the effect of this output on the technical process by the behavior of the controlled
actuator can be modeled by rules which modify the model of the technical process
accordingly. However, the scope of this thesis ends at the I/Os, so the model of the
technical process is just mentioned as a hint on how to extend this approach towards
simulation scenarios (see also section 3.3).

3.2. Runtime Model 71

class Packet | active: Bool, value: Val, from: QQid, to: QQid, txRestTime: Time.
class Qdisc | active: Bool, mesg: Qid, quota: Time, used: Time, queue: List{Qid}.
class NetIfR | active: Bool, bps: Nat, peers: Map{Qid,QQid}, qdiscs: Conf, skbuf: Conf.
class NetConR | pkt:Qid, txReady:Map{QQid,Bool}.
subclass NetIfR < NetIf. subclass NetConR < NetConn.

rl[createQ]: setMsgQuota(I,M,N.I,S) <I:NetIfR|> => <I:NetIfR| peers[M]=N.I,
qdiscs += <Qdisc| mesg:M, active:false, quota:S+Ovhd, used:0, queue:nil> >.

rl[rmQ]: setMsgQuota(I,M,N.I,0) <I:NetIfR| peers[M]=N.I, qdiscs: QS <Q:Qdisc|mesg:M> >
=> <I:NetIfR| peers[M]=_, qdiscs:QS> .

rl[rdy]: txReady(N.I,N2.I2) <NC:NetConR| ifs: N.I, N2.I2> => <NC:NetConR| txReady[N.I]=y>.
rl[done]: noTx(N.I,N2.I2) <NC:NetConR| ifs: N.I, N2.I2> => <NC:NetConR| txReady[N.I]=y>.
rl[act]: <N:NodeR| rte: activate(I) <I:NetIfR| active:false, peers:PS, qdiscs:QS > R>

=> <N:NodeR| rte: <I:NetIfR| active:true, qdiscs: resetQuota(QS) > REST> ready?(N.I,PS,QS).
rl[deact]: <N:NodeR| rte: deactivate(I) <I:NetIfR| peers:PS, active:true> REST>

=> <N:NodeR| rte: <I:NetIfR| active:false> REST> done(N.I,PS) .
rl[tx]: tx(I,M,V) <I:NetIfR| bps:BPS, peers[M]=N2.I2, qs: QS <Q:Qdisc|mesg:M> >

=> <I:NetIfR| qs: QS <Q:Qdisc| queue+=genId(I,M)>, skbuf +=
<genId(I,M):Packet| inactive, value:V, from:N.I, to:N2.I2, txRestTime:txTime(V,BPS)> >.

crl[next]: if T > T’ then <NetConR| pkt:_, netIfs:N.I,N2.I2, txReady[N.I]=y>
<N:NodeR|rte: R <I:NetIfR| skb:<P:Pkt|to:N2.I2>PS, qs:<Qdisc|quota:T,used:T’,queue:P L> QS> >
=> <NetConR| pkt:P> <N:NodeR|rte: R <I:NetIfR| skb:<P:Pkt| act:y>PS, qs:<Qdisc|act:y> QS> >.

rl[rcv]: <NC:NetConR| pkt:P, ifs: N.I,N2.I2> <N2:NodeR| rte: <I2:NetIfR|> R2 >
<N:NodeR|rte:R<I:NetIfR| qs:QS<Q:Qdisc|P L,mesg:M>, skb:B<P:Pkt|txrTime:0,value:V,to:N2.I2>>>
=> <NC:NetConR| pkt:_> <N2:NodeRtm| rte: rcv(I2,M,V) <I2:NetIfR|> R2> done?(N.I,N2.I2,...)
<N:NodeR| rte: txDone(I,M,V) <I:NetIfR| qs: QS <Q:Qdisc|inactive,L>, skbuf:B> R>.

rl[netQuota]: <NC:NetConR| pkt:P> <N:NodeR| rte: R <I:NetIfR| peers:PS,
qs: QS <Q:Qdisc| P L, mesg:M, quota:T, used:T>, skb: B <P:Pkt| txRestTime:T’, to:N2.I2>> R>

=> <NC:NetConR| pkt:_> done?(N.I,N2.I2,...)
<N:NodeR| rte: <I:NetIfR| qs: QS <Q:Qdisc|inactive>, skb: B <P:Pkt|inactive>> >.

eq mte(<NC:NetConR| pkt:_, txReady[N.I]=true, M>) = 0 .
eq mte(<I:NetIfR| qdiscs: QS <Q:Qdisc| active, quota:T, used:T’, queue:P L>,

skbuf: BUF <P:Packet| active, txRestTime: T’’>>) = min(T monus T’, T’’) .
eq timeEffect(<I:NetIfR| qdiscs:QS, skbuf:BUF>, T)

= <I:NetIfR| qdiscs:timeEffect(QS,T), skbuf:timeEffect(BUF,T) > .
eq timeEffect(<Q:Qdisc| active, used:T’>, T) = <Q:Qdisc| used:T’+T> .
eq timeEffect(<P:Packet| inactive, value:V>,T) = <P:Packet| value:aged(V,T)> .
eq timeEffect(<P:Packet| active, value:V, txRestTime:T’>,T)

= <P:Packet| value:aged(V,T), txRestTime:T’-T>.

LISTING 3.25: The model of network scheduling and routing.

3.2.3 System Execution Management (Agent)

A real-time container agent (agent) on each node manages the system execution by
(re-) configuration of and mediation between the application layer and the system
layer. The agent actively controls the use of system layer resources and functionality
by software components from the application layer: Which I/Os are accessible and
what network messages are allowed? How much CPU time and network quota is
allowed? At which instant is information exchanged between software components
and their environment? These aspects must be controled by the agent to provide the
required computation and communication resources while at the same time restrict-
ing them to the declared extent as of the functional and non-functional interfaces of
the software components. In this way the agent can enforce the logical execution

class GpioDriver | node: Qid, gpio: Qid, value: Val .
classes GpioInputDriver GpioOutputDriver .
subclasses GpioInputDriver GpioOutputDriver < GpioDriver .

rl [measure]: measure(IO) <I:GpioInputDriver| gpio: IO, value: V>
=> <I:GpioInputDriver|> input(IO,new(V)) .

rl [output]: output(IO,V’) <O:GpioOutputDriver| gpio: IO, value: V>
=> <O:GpioOutputDriver| value: V’> .

crl [rand]: if type(V) = type(V’) then
<I:GpioInputDriver| node: N, gpio: IO, value: V>
=> <I:GpioInputDriver| value: new(V’)> [nonexec] .

LISTING 3.26: The abstract specification of the I/O subsystem in Maude.

72
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

time paradigm, which is the key concept for temporal decoupling of the software
components. The agent utilizes the means provided by the system layer by con-
figuring containers and network interfaces (especially queuing disciplines) accord-
ing to the deployed distributed embedded application. For the timing control, the
agent periodically extracts outputs, injects inputs and triggers tasks of the running
software components at specific times. This together simplifies the integration (see
section 3.1) and the feasibility analysis (see section 3.3) compared to priority- and
timeslice-based real-time systems. This section specifies the system execution man-
agement by the agent for a fixed set of software components. The reconfiguration
extensions are specified separately in section 4.1.

sort AgentState. ops init beforeOutputs doOutputs betweenIO doInputs afterInputs adminDone exec
: -> AgentState [ctor] .

class Agent | node: Qid, state: AgentState, period: Nat, clock: Time, counter: Nat,
swcs: Set{Qid}, iMap|oMap: Map{QQid,Qid}, iChk|oChk: Map{QQid,Bool},
ifs: Set{Qid}, local: Set{Qid}, egress: Map{Qid,Qid}, ingress: Map{Qid,Qid},
sensors|actuators: Set{Qid}, downloads: Conf, storage: Map{Prop,Val}
rcp: RcPlan, bgm: Map{RcStep,Qid}, bgc: Qid, ES: Qid, iSync|oSync: Map{Qid,Qid}, sHops: Nat.

rl[init]: <A:Agent| init> => <A:Agent| beforeOutputs, clock:0, counter:0>.
crl[beforeOutputs]: if !mustRc(beforeOutputs,N,PLAN) then

<A:Agent| beforeOutputs, oMap:PM, counter:N, rcp:PLAN> => mvBarriers(PM) <A:Agent|doOutputs>.
rl[sendAdm]: sendAdmin(N,V) <A:Agent| oSync[N]=M, egress[M]=I> => tx(I,M,V)<A:Agent|>.
rl[send2tx]: send(C,M,V) <A:Agent| doOutputs, egress[M]=I, oMap[C.P.PP]=M, oChk[C.P.PP]=f>

=> tx(I,M,V) <A:Agent| oChk[C.P.PP]=true>.
rl[send2out]: send(C,O,V) <A:Agent| doOutputs, oMap[C.P.PP]=O, oChk[C.P.PP]=f, actuators:O,OS>

=> output(O,V) <A:Agent| oChk[C.P.PP]=true>.
rl[send2bridge]: send(C,M,V) <A:Agent| doOutputs, oMap[C.P.PP]=M, oChk[C.P.PP]=f, local:M,MS>

=> bridge(M,V) <A:Agent|oChk[C.P.PP]=top>.
crl[oOk]: if ok(M) then <A:Agent| doOutputs, oChk:M> => <A:Agent| betweenIO, oChk:unset(M)>.
crl[betweenIO]: if !mustRc(betweenIO,N,PLAN) then

<A:Agent| betweenIO, sensors:IOS, inputMap:IM, counter:N, rcp:PLAN>
=> triggerSensors(IOS,IM) <A:Agent| doInputs>.

rl[rcv2swc]: rcv(I,M,V) <A:Agent|doInputs, ifs[I], ingress[M]=I, iMap[C.P.PP]=M, !iChk[C.P.PP]>
=> receive(C,P.PP,M,V) <A:Agent| iChk[C.P.PP]=true>.

rl[bridge2swc]: bridge(M,V) <A:Agent| doInputs, local:M,MS, iMap[C.P.PP]=M, iChk[C.P.PP]=f>
=> receive(C,P.PP,M,V) <A:Agent| iChk[C.P.PP]=true>.

rl[in2swc]: input(I,V) <A:Agent| doInputs, iMap[C.P.PP]=I, iChk[C.P.PP]=false>
=> receive(C,P.PP,I,V) <A:Agent| iChk[C.P.PP]=true>.

crl[iOk]: if ok(M) then <A:Agent| doInputs, iChk:M> => <A:Agent| afterInputs, iChk:unset(M)>.
crl[drop]: if !MAP[M] then rcv(I,M,V) <A:Agent| afterInputs, iSync:MAP> => <A:Agent|>.
crl[afterInputs]: if !mustRc(afterInputs,N,PLAN) then

<A:Agent| afterInputs, counter:N, rcp:PLAN> => <A:Agent| adminDone>.
crl[setupCycle]: if T == AdminTime then <A:Agent|adminDone, clock:T, bgs:BGM, swcs:CS, ifs:IFS>

=> trigger(CS) triggerBg(BGM) activate(IFS) <A:Agent| exec>.
crl [cycleOver]: if T == P then <A:Agent| exec, clock:T, period:P, counter:N, ifs:IFS>

=> <A:Agent| beforeOutProc, clock:0, counter:N++> deactivate(IFS).
eq mte(<A:Agent| exec, clock:US, period:P>) = P monus US.
eq mte(<A:Agent| adminDone, clock:US>) = AdminTime monus US.
ceq mte(<A:Agent| S, clock:US, rcp:PLAN>) = min(AdminTime-US,mte(PLAN)) if isRcHook(S).
eq mte(<A:Agent|>) = 0 [owise].
eq timeEffect(<A:Agent| clock:US, rcp:PLAN, storage:S>,US’)

= <A:Agent| clock:US+US’, rcp:timeEffect(PLAN,US’), storage:aged(S,US’)>.
crl[tick]: {SYSTEM} => {timeEffect(SYSTEM,T)} in time T if T<=mte(SYSTEM) [nonexec].

LISTING 3.27: System execution management in Maude (without reconfiguration).

Listing 3.27 shows the compactified Maude specification of the system execution
management layer without reconfiguration. The Agent class and the correspond-
ing rules define the data structures and the behavior needed to manage one node
(identified by the node field) in the distributed system according to a specific de-
ployment. All Agents (one on each node) have the same period (equal to the period
of the distributed embedded application). The clock field measures the time passed
since starting the current cycle. The agents run their cyclic logic isochronuously in
the same frequency and in the same time windows, assuming their clocks are com-
pletely synchronous. Additionally, the agent’s counter field is incremented after each

3.2. Runtime Model 73

cycle and must be synchronous for reconfiguration timing across nodes.
The agent stores the (current) configuration information in following fields. The

swcs field holds the software components that need to be triggered on that node
when starting a new cycle. The iMap and oMap fields map the local software com-
ponents’ properties to messages or I/Os according to the deployment description,
where iMap contains the entries for input properties and oMap for output proper-
ties. The iChk and oChk map the same input and output properties to boolean flags
to track whether or not a property has been sent or received in the current cycle.
In addition to these application-related fields the following system-related fields are
used. The ifs field holds references to the network interfaces on the node. The ingress,
egress and local fields represent an abstract network configuration (i.e., firewall and
routing). The ingress map associates allowed incoming network messages with the
corresponding network interfaces. Similarly, the egress field maps allowed outgoing
network messages to the network interfaces (thus granting and routing messages).
Granted local messages are identified by the local set. The sensors and actuators
fields refer to used GPIOs, where sensors are for input-providing I/Os (via GpioInput-
Drivers) and actuators for output-consuming I/Os (via GpioOutputDrivers). The fol-
lowing fields are primarily needed for reconfiguration purposes specified later and
only mentioned here for completeness. Newly downloaded container images are
stored under downloads and the storage contains captured property values. The rcp
field contains the current reconfiguration plan and the bgm map tracks the currently
ongoing reconfiguration steps associated with the containers they are executed in (if
any). The bgc refers to an additional container on each node in which background
operations of the system execution management are performed (e.g. downloads).
For inter-agent synchronization across nodes the iSync and oSync fields map nodes
to incoming and outgoing messages so that the Agents know how they can reach each
other. This includes communication with the engineering system ES, an additional
node from which updates are pulled. Finally, the sHops field holds the maximum
number of hops (i.e., cycles) to other agents and is used for coordination timing.

The Agent manages the system execution by walking through its AgentStates each
cycle performing the corresponding actions according to the configuration informa-
tion. For now this configuration is static, i.e., it is derived from a deployment de-
scription and not modified during system execution. Before starting the first cycle
the Agent is in the init state. Then both the clock and counter of the Agent are set
to zero by the [init] rule and the Agent goes to the beforeOutputs state. This state
is the starting point for each new cycle and one of three reconfiguration hooks, in
which reconfiguration steps may be performed according to the current reconfig-
uration plan rcp. If the reconfiguration plan does not require any further action
in this hook, the rule [beforeOutputs] starts the output processing phase. Other-
wise, reconfiguration steps have to be triggered before the rule applies (which is de-
scribed in section 4.1). When starting the output processing phase the Agent sends
getOutputCmd(C, P.PP, O) command messages to the corresponding containers C for
each output mapping C.P.PP ↦→ O in the oMap, where O refers to an I/O or a mes-
sage. This is also referred to as ‘moving the barrier’ later in this thesis (hence, the
mvBarriers operation), because in the platform-specific implementation the outputs
are kept back by a barrier mechanism (see section 5). However, the platform-specific
model must consider the output mapping to trigger the output extraction in the ap-
propriate way. The Agent then stays in the doOutputs state until all expected outputs
have been provided by the containers and processed by the agent. This is tracked
in the oMap field for each property. The containers respond to the getOutputCom-
mand with a send(C, O, V) message as described before. Depending on the output

74
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

mapping O, one of the rules [send2tx] for network messages, [send2out] for GPIO-
mapped outputs, and [send2bridge] for local messages handles the output accord-
ingly. If O is a network message mapped to network interface I in the egress field,
then the [send2tx] rule creates a tx(I, O, V) message, so that the value V is transmit-
ted to the receiver via network communication. If a Qdisc is configured for message
O with enough quota for V, then the network interface will transmit the value over
the corresponding connection as soon as it is activated and the medium becomes free
(as described before). Similarly, the [send2out] rule hands the value V to the corre-
ponding GpioOutputDriver via a output(O, V) message in case of an output mapping
to O ∈ actuators. As third and final possibility the [send2bridge] rule converts a
send(C, O, V) message to a bridge(O, V) message, if the output is mapped to a local
message O ∈ local. Local messages are not enqueued in a Qdisc in this model and
can be injected to the receiving container directly in a later stage. As soon as all oChk
flags are set, the [oOk] rule resets them to false and changes the state to betweenIO
(between input and output processing).

This state is the second reconfiguration hook and the logical cycle turnover. After
all reconfiguration operations planned for this hook are done, the [betweenIO] rule
starts the input processing phase triggering all GpioInputDrivers for I/Os I ∈ sensors
with measure(I) messages and setting the state to doInputs. Like outputs, inputs are
processed according to three different kinds of input mappings C.P.PP ↦→ I ∈ iMap:
The [rcv2swc] rule applies to network messages, the [in2swc] rule to GPIO-mapped
input properties, and the [bridge2swc] rule to local messages. These two rules cor-
respond to what is referred to as ‘moving the barrier’ for inputs in section 5. The
[rcv2swc] rule processes network messages rcv(I, M, V) received at network inter-
face I since the last input processing phase by handing them to container C via a
receive(C.P.PP, M, V) message according to the input mapping, if M ↦→ I ∈ ingress.
The [bridge2swc] rule converts bridge(M, V) messages on that node to receive mes-
sages in the same way for local messages M ∈ local. And finally, the [in2swc] rule
takes an input(I, V) message from sensor I (sent in response to the measure messages)
and passes the value V to the mapped container via a receive message according to
the input mapping. Each of the three input processing rules also maintains the iChk
field to keep track of which expected inputs have been provided. After all expected
inputs are set in iChk the [iOk] rule ends the input processing phase resetting iChk
and setting the Agent to the afterInputs state. This is the third and last reconfiguration
hook. Besides performing planned reconfiguration operations, all non-expected in-
put messages are actively dropped by the [drop] rule). If no further reconfiguration
operation has to be performed in this hook, the [afterInputs] rule sets the agent’s
state to adminDone. While the Agent is in this state, an mte equation allows pro-
gression of (slack) time until the reserved time AdminTime has passed. Besides this,
time can only pass during the administration phase during reconfiguration oper-
ations as described later in this chapter – all other system execution management
operations are performed under ZET assumption. When clock = AdminTime the [se-
tupCycle] rule applies, which starts the execution phase of the current cycle: The
state changes to exec and activate messages are sent to the containers C ∈ swcs (and
step ↦→ C ∈ bgm in case of ongoing reconfigurations) and to the network interfaces
I ∈ ifs. Another mte equation now allows progression of time until the period is
over, i.e., until clock = period. During this time, the activated software components
perform a cycle within their container and the network messages released during the
output processing phase are transmitted. When the period is over the cycle is com-
pleted by the [cycleOver] rule, which deactivates the network interfaces, resets the
Agent’s clock, increments the cycle counter and finally resets the state to beforeOutputs,

3.3. Model Consistency 75

FIGURE 3.8: An UML overview of the runtime model for the onBtnSwitch example
system. It consists of a green layer for application execution within containers,
a yellow system layer for scheduling, I/Os and networking and a red layer in-

between for the system execution management by an agent on each node.

which starts the next administration phase of the Agent.

Example 8. Figure 3.8 shows an overiew of a runtime model instantiation for the
onBtnSwitch example system. It consists of a green layer for application execution within
containers, a yellow system layer for scheduling, I/Os and networking and a red layer in-
between for the system execution management by an agent. The Button Controller and the
LED Controller components are executed within application containers on the correspond-
ing nodes. The additional background container is used for reconfiguration purposes, which
is beyond the scope of this chapter. The agent is installed on each node and actively processes
inputs and outputs of the two components during each cycle turnover in addition to trigger-
ing the cycles synchronously on each node. The engineering system node ES is connected
to each node via dedicated network connections, even though it is not needed for now, as
its pupose is to support rollout of dynamic reconfigurations. Figure 3.9 shows a behavioral
overview of the runtime model for one cycle on node1 as timing diagram. Figure 3.10 shows
a schematic timing diagram for the overall runtime model.

In this way the Agents put together the application layer and the sytem layer on
their nodes to run the distributed real-time system according to the logical execu-
tion time paradigm. Consequently, the timing of data processing and transmission
chains is deterministic from sensors to actuators without any application-specific
configuration of priorities or time-slices and thus without the need to consider spe-
cial scheduling algorithms (regarding both CPU and network). The model leads to
temporal decoupling of software components, which not only decreases the inte-
gration effort during design-time, but also enables the reconfiguration concept de-
scribed in chapter 4.

3.3 Model Consistency

The formal specification primarily serves as a platform-independent description of
the concept, but it also enables formal analysis to a certain extent: While the transi-
tion system resulting from this specification is too complex to run reachability anal-
ysis even for the simple onBtnSwitch example, we can still use the model to describe
the consistency criteria in a precise way. We elaborate how to validate the consis-
tency and feasibility of a distributed control system given an instance of the design-
time model described in section 3.1. As one of the primary goals of this model is to

76
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.9: A behavioral overview of the runtime model at the example of one cy-
cle on node1 of the onBtnSwitch example system. The agent periodically extracts the
Button Controller’s risingFlank output by moving the barrier, which is enqueued for
transmission at network interface eth1. Then the agent injects the current state of the
button from gpio63 via the associated GpioInputDriver. Finally, the agent starts the
execution phase by triggering the Button Controller, the background worker within
the BgContainer bgc, and the network interfaces. The containers retrieve execution
time by the cpu0 Scheduler one after another up to their configured quota. No recon-

figuration is performed within the reconfiguration hooks or in background.

decouple engineering steps related to the different model fragments it is important
to validate the fragments independently as far as possible in addition to checking
the final system: We have to validate software component descriptions, distributed
embedded applications, MCU descriptions, network topologies and deployment de-
scriptions. Some consistency aspects are already ensured by the structure of the
model, others have to be considered and calculated in addition. This section walks
through the different aspects of consistency regarding structural and dataflow con-
straints as well as non-functional requirements. The consistency checks should be
done as part of the engineering steps related to the corresponding model fragments
and as a final overall check to ensure the consistency and feasibility of a system.
For consideration and calculation we can use design-time information as well as an
instantiation of the runtime model for the given deployment description. To give a
coherent overview of the consistency and feasibility we also point out related prop-
erties and constraints already embodied in the meta model and described before.
Consistency and feasibility regarding reconfigurations are treated in section 4.2.

3.3.1 Pre-Deployment Model Fragments

Versioned Component Types Regarding the correctness of a versioned compo-
nent type the primary concern is to validate that the declared information indeed
reflects the real implementation. This applies to the communication interface, the
task declaration and the state interface. Each input and output of the communica-
tion interface must be declared with the correct type (determining the bit size) and
timing interface (i.e., maxAge or refreshmentPeriod). The task declaration must specify
an upper bound of the WCET. This is obviously essential for calculating the feasibil-
ity w.r.t. CPU time. Besides that, the requested period must conform to the needs
of the control algorithm, because the algorithm might include assumptions on the
control timing. The internal state declared by the task is used in this model to de-
scribe the task implementation and state transfer operations. For platform-specific
models at least the size of the declared internal state must be correct to over-estimate

3.3. Model Consistency 77

FIGURE 3.10: A schematic timing diagram of the effective behavior of the
onBtnSwitch runtime model. The agents on both nodes synchronously perform the
administration phase, which includes processing of the containers’ inputs and out-
puts. Then they synchronously trigger the execution phase, in which the software
components perform their tasks (i.e., the ButtonController btn-v1 on node1 and the
LED Controller led-v1 on node2) and in which network messages are transmitted (i.e.,

msg1 from node1 to node2 with the risingFlank output of btn-v1).

the memory needs of the component. Finally, the state kind of the component (state-
less, ground state, implicit state) must be correct, too, including the worst-case size
of the persisted state (possibly in addition to the internal state) and the WCET for
dumping and loading if needed. These pieces of information are used in later vali-
dation steps to ensure that a given application or deployment is feasible. However,
while testing and/or checking this information is important, the scope of our model
is on the platform description. As the model only uses a functional representation of
the component implementation, it is too abstract to validate the interface. Thus, the
component developer has to ensure that this information correctly reflects the com-
ponent (e.g. by testing and profiling). Of course, a certain amount of distrust against
the correctness of the component interface remains, not only because it is declared
by third-party developers, but also because they are based on statistics while there
may still be bugs or security issues. Therefore, instead of completely relying on test-
ing or proof-checking components, our platform concept enforces the component
interface, i.e., the architecture enforces that the component cannot reach the outside
of its container in illegal ways or use more resources than declared. Beyond that
it would be an interesting question for further work how we can encourage com-
ponent providers to offer high-quality components along with correct component
descriptions, e.g. through incentives within the business model, visible ratings or
guidance and governance processes. All this is only possible in the context of indus-
trial control systems, if we can avoid that a low-quality component can cause serious
harm at runtime. This is one of the major aims of the proposed platform concept.

Distributed Embedded Applications Validation of a distributed embedded appli-
cation can be done by the application designer independently from a certain de-
ployment based on the component interfaces. Consistency aspects related to inter-
face compatibility are already ensured by the meta model as described in the cor-
responding section 3.1.2: Valid connectors between the component instances’ ports
provide exactly one compatible matching for each required property of the ports
(while provided properties may be matched by multiple connectors), where com-
patibility means that the types and the periods of the matched properties are equal.
The refreshmentPeriod of the provided property and the requested period of the pro-
cessing task (as of the task declaration of the component with the required property
of the matching) must be equal, so that each value is processed within one cycle.

78
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

For the scope of this thesis this period must also be equal to the distributed em-
bedded application’s global cycle period, because multiple cycles per global period
are not yet supported. Note that earlier in [TSK18] we proposed that multiple val-
ues should be produced and consumed within one cycle according to the quotient
period/refreshmentPeriod. In this formal specification, this is instead achieved explic-
itly via the property’s type using a structure with multiple values. If the connec-
tors and periods are valid, then we can move on and analyze the feasibility of the
distributed embedded application. Of course, the WCETs of all instantiated com-
ponents’ tasks must be smaller than or equal to the global cycle period of the dis-
tributed embedded application. As described in section 3.1.2, we can already make
a first feasibility check regarding the worst-case reaction time of the distributed
embedded application independently from the deployment based on the dataflow
graph. The dataflow graph is spanned between input properties and output prop-
erties (properties as nodes). A directed edge is added between the required and the
provided properties of the same component, because the component’s task calcu-
lates the outputs from the inputs. Due to the LET paradigm this takes one period,
which is set as these edges’ weights. Additionally, for each matching defined by
the connectors there is a directed edge from the provided to the required property,
because the output is transmitted and provided as input. As we do not know the
deployment, yet, the worst-case communication time can be any multiple of the pe-
riod, including zero in case of co-located components. Thus, we can underestimate
the weight of such an edge with zero for this feasibility check. Finally, there are also
unmapped properties, which are going to be mapped to I/Os of the MCUs. As long
as this mapping is not done, we do not know the sampling rate. The LET paradigm
assumes that drivers take no time and produce/consume the inputs and outputs just
during the cycle turnover, however, the period between two samples adds to the re-
action time in worst-case, depending on the timing. Thus we can underestimate the
additional reaction time with zero or alternatively estimate it by assuming that the
sample rate is set according to the distributed embedded applications period. Conse-
quently, the minimum possible worst-case reaction time of a distributed embedded
application is n× period, where n is the longest path within the dataflow graph from
an input property to an output property. If this is already greater than the declared
worst-case reaction time, then the distributed embedded application is not feasible
at all. In this case components need to be merged to be able to do more work within
one cycle, the period of which must be increased possibly. Alternatively, the applica-
tion designer can check if at least the paths critical for the reaction time requirement
are short enough (e.g. only check paths starting at unmapped input properties, if
only reactions to real measurements are time-critical). If the application is feasible
the application designer can additionally consider if (2 + n)period is still within the
required reaction time to check whether the I/O timing is going to be an issue (this
is a platform-specific concern, though). However, this is only a first architectural
feasibility check and must be resharpened later for the concrete deployment with
the real sample rates and communication times.

Example 9. The dataflow graph for the distributed embedded application of the onBtnSwitch
example system is shown in figure 3.11. The longest path starts at the input property of the
Button Controller, which is processed by the task within one period of time (50 ms) and
leads to the risingFlank output property. This is then transmitted to the LED Controller
(underestimating the communication time with zero). This input is processed within another
period of time and results in the output property ledState, where the path ends. The path has
two tasks in it, each with a fixed logical execution time of 50 ms, plus two additional periods

3.3. Model Consistency 79

FIGURE 3.11: The dataflow graph for the distributed embedded application of
onBtnSwitch. For processing within tasks, 100 ms are needed. Depending on the
sampling rates, up to 100 ms might be added to the reaction time. Thus, if the two
components are deployed to the same node, the worst-case reaction time is 200 ms.

in worst case depending on the sampling of the button input and the LED output, so the
minimum assumable worst-case reaction time is 4× 50 ms = 200 ms < 250 ms = wcrt,
i.e., the distributed embedded application is feasible, but we only have one period margin for
inter-component communication.

Besides model consistency and feasibility, the functional correctness of a dis-
tributed embedded application is a major concern. While this is not the focus of
this thesis, testing and verification of the application logic is possible based on the
runtime model. For simulated tests and for model checking, the application designer
does not only need the modeled distributed embedded application, but also one or
more test deployments (just like at least a virtual test target would be needed for
real testing). For instance, each component could be deployed to a dedicated node
or all components to the same node. The testing and verification of a distributed
embedded application can then be done using the runtime model as described later
for the deployments.

MCU Descriptions and Network Topologies The system model is the basis for
ensuring the availability of the hardware capabilities required by the distributed
control system. The correctness of MCU descriptions is essential, because they spec-
ify the relevant properties of the installed hardware components (network ports,
GPIOs). The key points are the throughput of the network ports and the I/O in-
terfaces. The throughput must be a lower bound of the number of bits that can be
transmitted via this hardware component bi-directionally. This model assumes that
a deterministic network scheduling method is used (e.g. Time-Division Multiple
Access (TDMA), Time-Sensitive Networking (TSN), . . .). In this case the through-
put can be taken directly from the hardware properties as no time is wasted. This
work does not describe the use of such a method, though. If the real throughput
is non-deterministic (e.g. due to network congestion) we proposed to reduce the
declared throughput to a value the probability of which is sufficient for the pur-
pose of the specific use case [TSK18]. Please note that this is not only intended to
be an intermediate solution until determinism is introduced to the platform and the
communication specification: Non-deterministic communication technologies such
as TCP over WLAN do have beneficial properties for low-criticality real-time com-
munication and should be supported side-by-side with deterministic approaches in
future. The appraoch of this thesis is to take the throughput as is, instead of intro-
ducing a statistical information, because this model is much simpler to analyze. In
case of non-deterministic network technologies the system architect thus has to spec-
ify a valid throughput based on long-term measurements considering the required
reliability. The LET paradigm makes the system resilient against delayed network
messages as long as they arrive yet within the right cycle. Within the limited scope

80
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

of this thesis we proposed (see section 3.2.3) that the agent handles the still remain-
ing possibility of delayed network messages by checking the arrival of all expected
network messages during input processing and issueing a system stop in case of a
fault. Due to these considerations and given the outlook that future conceptual ex-
tensions could introduce even more resilience to the different layers and improve
the fault reaction, we decided to use a hard throughput bound.

For the I/O ports of an MCU description the system architect has to provide a
valid software port, i.e., which only has one interface with one property and cor-
rectly describes the data type, the direction (input or output) and the sample rate
of the signal associated with the GPIO. These values are used later to check the
compatibility of I/O mappings and the end-to-end reaction time. As for the com-
ponent interface, the MCU interface is given to the model check as input and must
be correct (garbage in garbage out). Thus, the only aspect we can check here is that
each software port only has one interface with one single property. The model was
designed with the goal in mind that the MCU provider can create a description of
the installed hardware components together with an interface of the board support
package, so that the agent can handle I/Os in a generic way based on the map-
ping and more complex driver logic happens in the application layer. However, the
GPIOs are configured (‘programmed’) via the I/O port for the specific application,
so the system architect must ensure that the I/O ports match the real capabilities
of the hardware and the board support package, especially w.r.t. value ranges and
sample rates. This can be achieved by deploying and monitoring an identification
application embedded in a small physical test setup using signal generators for the
inputs and oscilloscopes for inspecting the outputs.

Given valid MCU descriptions the system architect specifies the nodes and the
network topology. The correctness of the modeled information is crucial, because it
is used as basis for ensuring consistency and feasibility of a deployment description.
It is among the goals of the topology description to enable an automatic setup of
each node by the agents w.r.t. system configuration – still the system architect has to
model the real topology correctly. Regarding the nodes, obviously the node identi-
fiers must be unique, as well as their network interface descriptions’ address infor-
mation. It is crucial that the address information is correct (e.g. MAC addresses cor-
respond to the real hardware). Regarding the IP addresses (as we only support IP)
the addresses not only need to be unique, but also the routing must be considered.
It is beyond the scope of this model to cover this aspect completely, but basically the
system architect has to assign IP addresses properly so that the network interfaces
connected with each other via a network connection in the topology are in the same
subnet. This should be done at least as a good practice, even though in the proto-
type described in chapter 5 we configure routes statically to avoid discovery proto-
cols (which also increases control) and thus would not need subnet consistency. The
bidirectionally guaranteed throughput bpscon of each network connection con must
be lower than or equal to the throughput declared by the corresponding network in-
terfaces. As described in 3.1.3 this throughput must also reflect abstractions from the
real network topology such as flattening (i.e., omitting switches between the nodes).
Obviously, it is essential that the real network interfaces are connected as modeled
apart from flattening. The system architect must also make sure that the engineering
system node exists in the model and that each node is reachable by each other node
(via a path through the topology graph). This task could be supported by future
extensions towards topology testing, e.g. by a dedicated agent mode or by running
dedicated distributed embedded applications. Note that the modeled connections

3.3. Model Consistency 81

FIGURE 3.12: Graphical view of the WCET constraint: Can all tasks deployed to
one node be completed within each period in addition to the administration phase

and the background container?

to the engineering system not necessarily need to exist thoughout the complete sys-
tem lifetime: Engineering connections are primarily used to deploy and trigger a
reconfiguration plan and to perform a download (for the scope of this thesis). This
can also be done by sequentially connecting to each node (which might not only
be necessary in an industrial system), as long as synchronization steps are used ac-
cordingly and each node except the engineering system can continuously reach each
other to send notifications and state transfer messages to each other.

3.3.2 Deployment Descriptions

Given a consistent distributed embedded application and network topology, the de-
ployment description together with the definition of the system configuration pa-
rameters is the final integration step. We analyze consistency and feasibility of the
deployment description. Additionally, we check the reactivity, i.e., whether the re-
action time achieved by the dataflow from sensors to actuators fulfills the temporal
requirements. Finally, we elaborate on how to use the runtime model for testing and
verification.

Consistency and Feasibility Given the distributed embedded application eApp
and the network topology topo, we analyze the consistency and feasibility of a de-
ployment description, i.e., of a SWC mapping swcMap, a communication specifica-
tion com, a communication mapping comMap and an I/O mapping ioMap. The SWC
mapping must map each component of the distributed embedded application to a
node. For each node n we then have to check the feasibility of the deployment w.r.t.
CPU time (see figure 3.12). This can be calculated from the global period p of the
distributed embedded application, the WCET of the administration phase ea, the
background container’s quota Qbg and the application containers’ quota, which are
equal to the WCETs of the mapped components’ tasks:

ea + Qbg + ∑
c ↦→n∈ swcMap

wcet(c) ≤ p

This is basically equal to the formula proposed in [TSK18], except that meanwhile
reconfiguration has been added to the concept. Reconfiguration steps are either per-
formed directly by the agent under ZET assumption within ea (which we have to
check as described in section 4.2) or in the background container within Qbg. Be-
sides the normal cyclic administration phase, the remaining CPU is thus shared by
the application containers and the background container according to their quota.

Regarding the communication specification each network message m must have
an acyclic path of existing network connections from the sender node to the receiver
node. The modeled messages cover both application-level and platform-level com-
munication including communication needed during reconfiguration. For platform-
level communication two default network messages with a minimum size of Madm

82
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.13: Graphical view of the throughput constraint: Can all messages allo-
cated to one network connection be transmitted within a period besides the quota

reserved for system execution management in both directions?

must be specified for each network connection (one for both directions) in addition
to the messages needed for the connectors. The messages’ bit sizes (plus protocol
overhead) lead to a corresponding per-cycle quota of the throughput being allocated
along the path for each message. We check the feasibility of a communication speci-
fication by ensuring that each network connection provides enough throughput for
the allocated traffic given the period p and the per-message protocol overhead Omsg.
Let Mcon be the set of all network messages m ∈ com the paths of which contain
network connection con. Then the bidirectionally guaranteed throughput bpscon of
network connection con is sufficient for the specified set of messages if following
inequality holds (see figure 3.13):

∑
m∈Mcon

(size(m) + Omsg) ≤
bpscon

⌈1 000 000p⌉

On the right-hand side the throughput of the network connection is con-
verted from bits per second to bits per period. Compared to the original pro-
posal in [TSK18] this formula is slightly reduced on the left-hand side, because
the platform-communication is now part of com. Thus in essence we only sum up
the declared worst-case network traffic and compare it to the guaranteed through-
put. Regarding the communication mapping we then only have to ensure that in-
deed each matching ci.pn.ppx → cj.pm.ppy defined by connectors in the distributed
embedded application is assigned to an appropriate message and no message is
over-used (by allocating more bits to it than its size). A message m is appro-
priate if its size is less than or equal to the bit size of the property’s type (i.e.,
size(type(ci.pn.ppx)) ≤ size(m)) and if its path starts and ends at the nodes where
the sending and receiving components are deployed to by swcMap.

The I/O mapping ioMap must provide each unmapped port of the distributed
embedded application with a compatible I/O port. While unused outputs could
also be ignored or discarded depending on the technology (e.g. consider /dev/null
in Linux) this stronger constraint ensures that no port is forgotten during engineer-
ing. The compatibility of I/O mappings is defined differently from the compatibility
of connectors, because I/O ports are more like delegation ports (i.e., with same di-
rections of information flow), so the idea is more to describe the API of the I/O
access (in addition to instructing the agent). Thus, the software ports of the compo-
nent and the I/O port must be Liskov-compatible: The types must be equal (for the
scope of this thesis) and the sample rates offered by the I/O port must be at least
as high as demanded. For GPIO outputs one provided property is declared with a
refreshmentPeriod. In case of a GPIO input one required property is declared with a
maxAge. The sample rate is sufficient if the I/O port’s maxAge or refreshmenPeriod is
lower than or equal to the software port’s counterpart. Please note that in [TSK18]
we proposed that the sample rates should be equal and that multiple values per
cycle should be consumed or provided if the sample rate is higher than the task’s
frequency. Instead we allow the I/O interface to be faster, so we say it is valid to

3.3. Model Consistency 83

get a more recent input value than required and the output value is applied faster
than required. The output is thus kept on the pin as long as it is not changed by
the application. However, input data available at a pin might get lost if the sample
rate of the corresponding required property is to low. In this case, we propose that
the solution should not be that the platform collects multiple values (as proposed
earlier), but that the frequency of the task should be adapted (and thus, as of now,
the period of the distributed embedded application). The reason for this decision
is that collection of multiple values is only one form of input pre-processing, which
should be done on application-level as it is often important for the control logic.
The restriction that the global period of the distributed embedded application has
to be adapted to the highest required sample rate will hopefully be overcome by fu-
ture work towards sub-period cycles as enabled by Giotto [HHK03] (this approach
uses task frequencies which declare how often a task must run per mode period –
dynamic reconfiguration is not described, though).

Reactivity After we have checked that the model is correct and feasible we have to
finally ensure that the reactivity is sufficient. Therefore we can resharpen the calcula-
tion done for the distributed embedded application based on the concrete sampling
rates and communication timing resulting from the deployment description. One
analytical way to check this independently from the implementation and runtime
model is to take the dataflow graph (similar to the one constructed for distributed
embedded applications) and enrich it with the communication and I/O timing in-
formation: The nodes of the graph are the required and provided properties (in-
cluding I/O ports). For each software component there is a directed edge from all
its required properties to all its provided properties. The weight is the fixed log-
ical execution time in which the components’ tasks calculate the outputs from the
inputs, i.e., the period of the distributed embedded application. For each match-
ing of each connector there is a directed edge from the provided property to the
connected required property. The weight of such an edge depends on the commu-
nication mapping comMap and the communication specification com. If com maps
the connector ci.pn.ppx → cj.pm.ppy to message m then the length of the path of
message m determines the number of hops (and thus, cycles) needed for the trans-
mission. The weight of the edge is then p · length(path) with period p. Note that
the weight is zero for local messages, because the path is empty in this case. Fi-
nally, we add an edge for each I/O mapping entry as follows. For each mapping of
an input property ▷ci.pn.ppx to an I/O nk.ι there is a directed edge from the quali-
fied I/O port’s property ▷nk.ι.ppι to the software component’s property ▷ci.pn.ppx.
For each mapping of an output property ◁ci.pn.ppx to an I/O nk.ι there is a directed
edge in the other way, from the software component’s property ◁ci.pn.ppx to the I/O
ports’ property ◁nk.ι.ppι. The weights of these I/O edges can be set to the maxAge
and refreshmentPeriod declared by the I/O port to analyze the reaction time between
measurements and effects. Alternatively the weights of inputs edges can be set to
the period p of the distributed embedded application to analyze the time between
possible measurable events in the technical process and the reaction. The worst-case
reaction time of the distributed control system is equal to the length of the longest
path from a required I/O property to a provided I/O property within its dataflow
graph. The deployment description is feasible, if this is less than or equal to the
required worst-case reaction time of the distributed embedded application. It is of
course a possible future direction to allow for more fine-grained reaction time con-
straints, e.g. requirements per pairs of inputs and outputs. However, we have post-
poned such possibilities and concentrated on the goal to once achieve a complete

84
Chapter 3. A Component Model for Modular and Evolvable Distributed

Embedded Applications

FIGURE 3.14: The dataflow graph for the deployment description of onBtnSwitch.
For processing within tasks, 100 ms are still needed (cf. example 9). However, we
now know the sample rates for the button input and the LED output as well as the
communication time needed for connector con1 (which is one period, because it is
mapped to msg1, which takes one hop from node1 to node2). Thus, the reaction time
between measurement and output is 170 ms. The worst-case reaction time between

measurable events and the reaction is 210 ms.

breakthrough from a decoupled design-time model down to an executable and re-
configurable distributed control system. Also note that the scope of this thesis does
not cover how supervisory control or more general how access to and by external
systems should be done. If everything is done by application- or platform-level
components by nodes within the system scope, then of course the proposed model
can be used to analyze the feasibility completely. Some aspects (such as monitoring
or ‘thinking’) might be done via an external system in future, for which a gateway
component within the system scope provides the necessary controlled connectivity.
Consistency and feasibility of these aspects have to be considered by future work,
because integration with external systems might result in non-functional concerns
and consistency requirements beyond the current model.

Example 10. The dataflow graph for the deployment description of the onBtnSwitch example
system is shown in figure 3.14. The longest path starts at the provided property btnIn of
gpio63 and goes on to the I/O-mapped input property of the Button Controller. The maxAge
of 10 ms or the period of 50 ms can be set as weight, depending on the desired metric. The
input is processed by the Button Controller within one period of time (50 ms) and leads to the
risingFlank output property. This is then transmitted to the LED Controller during the next
execution phase (i.e., within additional 50 ms). This input is processed within another period
of time and results in the output property ledState, which is finally set as output within
10 ms according to the refreshmentPeriod declared by gpio13. The worst-case reaction time
is 170 ms or 210 ms (depending on the chosen metric), i.e., the deployment fulfills the wcrt
constraint of the distributed embedded application.

Test and Verification We finally point out the possibility to test and verify the
behavior of the distributed control system using the runtime model. The runtime
model results from the design-time model by instantiating the derived runtime
model elements with their initial states (empty queues, default values etc.). This
Maude model can be used to simulate the system, so that the trace can be looked at
by the engineer to get a better understanding of the dataflow timing. For instance,
one cycle (50 ms) of the onBtnSwitch system can be simulated by running a timed
rewrite of the initial configuration:

(trew {onBtnSwitch} in time <= 50000 .)

Each rule application prints a log message containing the relevant runtime infor-
mation, so the engineer can see an overview of what would happen in the simulated
trace. Of course, the built-in Maude features for tracing could be used, too, but the
runtime model is quite big and many rules are applied during runtime simulation,

3.3. Model Consistency 85

so the unfiltered output is too verbose (i.e., millions of lines for a few cycles). The
most basic check enabled by the model is to check if the rewrite even reaches the
given time. If it does not, then the mte function (which specifies the maximum time
elapse allowed for the current configuration) inhibits further progression of time.
The deadlocked configuration can be inspected by the engineer to identify which
model element is affected and why exactly no further progress is allowed (e.g. a
software component did not complete its task within the cycle, an input or output is
missing or too old, an acknowledge is missing, . . .). Such conditions are not reach-
able normally, if the design-time model was validated as described before. However,
this approach is a simple alternative and can also be used to inspect reconfigurations,
where such problems can occur as described later in section 4.2. The functional be-
havior can be tested and verified, too, even though this is beyond the scope of this
thesis. A test case can be given explicitly as a sequence of values for the I/O-mapped
input properties and a sequence of expected output values (or ranges). A more elab-
orated approach is could be specifying a simulation model of the environment in
which the system is embedded (see also our reference to S# [HLR16] in section 2.3.1).
Such a model adds objects and rules representing the sensors, actuators and the tech-
nical environment, which take the outputs from the GpioOutputDrivers of the nodes
and modify the values of the GpioInputDrivers to simulate the interaction of the sys-
tem with the technical process. Then a test case can be given by setting up situa-
tions in the simulation and monitoring the relevant conditions of the model during
a simulated run of the system (i.e., running a timed rewrite and check the simula-
tion model). In theory it would also be possible to use TCTL formulas as shown in
listing 3.28 to check the reactivity or the reachability of hazards, thoug this is com-
putationally expensive even for the small onBtnSwitch example system due to the
complexity of our runtime platform specification.

--- definition of the proposition maxAgeViolation
op maxAgeViolation : -> Prop [ctor] .
eq { <N:NodeRTM| rte: <C:AppContainer| inputs: (TY P.PP |-> V),M > RTECONF > REST }

|= maxAgeViolation = age(V) > maxAge(C.P.PP) .

--- model checking, that the proposition cannot become true within 1s of simulation
(mc {onBtnSwitch} |=t [] ~ maxAgeViolation in time <= 1000000 .)

LISTING 3.28: Model checking example for whether a state is reachable within 1 sec
in which any property’s value becomes older than its demanded maxAge.

87

Chapter 4

Reconfiguration of Distributed
Embedded Applications during
Operation

Running distributed embedded applications can be reconfigured during operation
using reconfiguration plans, if they comply with the base model specified in chap-
ter 3. The base model already provides some enabling features such as the general
isochronous behavior, the reconfiguration hook rules and the structures for recon-
figuration plans. This makes it possible to separate the reconfiguration model into
the reconfiguration extensions described in this chapter. Using these means, the
complete deployment can be modified synchronously across nodes during opera-
tion – including state transfer. However, not every required reconfiguration can be
achieved without quality degradation. Thus, this chapter also addresses the difficult
question: How can we define and analyze consistency, feasibility and quality degra-
dation of a distributed control system during such intrusive reconfigurations? Fi-
nally, this chapter provides reconfiguration timing templates, which use the features
of the reconfiguration extensions to solve some classes of reconfiguration problems.
These templates are not only illustrating examples for the reconfiguration approach,
but they also give guidance on how to apply the complex reconfiguration concept at
least for the cases for which we have found an abstract or general solution so far.

4.1 Model Extensions for Reconfiguration

The reconfiguration model consists of the structural definition of reconfiguration
plans and a specification of the reconfiguration effect caused by such plans. Ideally,
a valid reconfiguration plan would be generated from two deployment descriptions
automatically to define a transition from the current deployment to the new one.
While section 4.3 provides template solutions for some classes of reconfigurations,
no general solution has been found so far. Therefore, reconfiguration plans are at
the same time the design-time and the runtime model of reconfigurations for the
scope of this thesis, i.e., an engineer has to specify reconfiguration plans for desired
reconfigurations instead of only modifying the deployment description.

A reconfiguration plan is a sequence of reconfiguration steps to be executed one
after another at deterministic instants on a specific node, while the system is in nor-
mal operation. Figure 4.1 shows an overview of the reconfiguration steps specified
in this section. Besides steps for inter-agent coordination, most reconfiguration steps
correspond to a specific part of the deployment description (component mapping,
communication mapping and I/O mapping). For instance, we can add or remove a

88
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.1: The defined reconfiguration step kinds in UML. There are coordina-
tion steps for inter-node coordination, lifecycle steps for container management in
background, and three kinds of modification steps for time-critical modifications
of a running distributed embedded application. Each kind has a specific behavior

largely defined by the operations mustRc, rcTriggerEffect and rcCompleteEffect.

FIGURE 4.2: Overview of the basic phases of a reconfiguration. The reconfiguration
is prepared in background (e.g. downloading and starting new containers). Then
the involved nodes notify each other to synchronously perform the time-critical
modifications (e.g. activating tasks, transferring state, . . .). Finally, the reconfigura-

tion is finalized in background (e.g. stopping old containers).

component mapping using the restructuring step addSwc to enable or disable trigger-
ing of the task of a component. To realize concrete reconfigurations, reconfiguration
steps are deployed to each involved node as needed to transition from one deploy-
ment description to another one during full operation. Full operation means: There
are no broken data processing and transmission chains, so the system maintains its
integrity and reactivity. If reactivity is reduced at all, then it is only a deterministic
temporal degradation, e.g. a component is blocked only for a deterministic number
of cycles. This determinism is necessary for the design-time decision whether a re-
configuration is possible in the context of a given technical process (see section 4.2).
To achieve this, the two primary aims of the proposed reconfiguration concept are
(cf. figure 4.2):

• Prepare as much as possible in background before performing time-critical re-
configuration steps and postpone finalization work

• Avoid inter-node coordination during time-critical reconfiguration phases by
performing modification steps at deterministic instants

4.1. Model Extensions for Reconfiguration 89

ops beforeOutputs betweenIO afterInputs : -> RcHook [ctor].
ops todo ongoing blocked done : -> RcStepState [ctor].
class RcStep | node:Qid, state:RcStepState, eta:Time.
sort RcPlan < List{RcStepObj}.
op mustRc : RcHook Nat RcPlan -> Bool .
op rcTriggerEffect : RcStepObj Configuration -> Configuration [frozen (2)] .
op rcCompleteEffect : RcStepObj Configuration -> Configuration [frozen (2)] .
crl [trigger]: if mustRc(toHook(STATE),CYCLE,<S:RcStep|>) then

<N:NodeR| rte: <A:Agent| state:STATE, counter:CYCLE, rcp: <S:RcStep|todo>PLAN > REST>
=> <N:NodeR| rte: rcTriggerEffect(<S:RcStep|>,<A:Agent|rcp:PLAN> REST)> .

LISTING 4.1: The base definitions for reconfiguration steps in Maude.

Listing 4.1 shows the base definitions for reconfiguration plans. The enumeration
RcHook defines the three cyclic reconfiguration hooks (corresponding to AgentStates),
in which reconfiguration steps can be triggered: either before output processing (be-
foreOutputs), between input and output processing (betweenIO), or after input pro-
cessing (afterInputs). These hooks are essential for the timing of reconfiguration
steps, because the system is ’frozen’ in three different quiescent states: Before out-
put processing all outputs have been calculated, but not been extracted from the
containers. Between input and output processing, all outputs have been extracted
and all input messages have been received, but not been injected, yet. After input
processing, all inputs and outputs have been processed, but the tasks have not been
triggered, yet. Therefore, the steps have to be performed in the right hook of the right
cycle depending on the step kind and reconfiguration. All reconfiguration steps in-
herit from the base class RcStep. The enumeration RcStepState defines four states of
a reconfiguration step from todo (the step has not been triggered) over ongoing (it
has been triggered, but is not completed) and blocked (it is ongoing, but cannot be
continued at the moment) and done (the reconfiguration has been completed). The
other common fields of reconfiguration steps are the node on which the correspond-
ing Agent has to trigger or execute it and the eta field (‘estimated time of arrival’).
The eta field is initialized with the WCET of the step and runs down as the step is
executed (i.e., if time passes while state = ongoing) due to a timeEffect equation. A
reconfiguration plan (RcPlan) is a list of RcStep objects. The behavior of the agent is
being hooked into (cf. figure 4.3) using following operations in the style of the visitor
pattern: The mustRc operation is used by the Agent in reconfiguration hook rules to
find out whether the current RcPlan set in its rcp field requires immediate action. The
Agent does not proceed with its non-reconfiguration logic as long as mustRc(h, n, rcp)
evaluates to true given the hook h (i.e., the Agent’s state), the cycle counter n and the
current rcp (as of the condition of the rules [beforeOutputs], [betweenIO] and [after-
Inputs] defined in listing 3.27). Only the head element of the reconfiguration plan is
considered. If a reconfiguration step does apply, two additional operations become
relevant: The rcTriggerEffect(step, conf) operation is used to trigger an applicable Rc-
Step if the step is todo. The rcCompleteEffect(step, conf) operation applies the specific
reconfiguration effect of the step to the given model fragment conf, if the step is done.
For most RcSteps the generic [trigger] rule applies the effect of triggering the recon-
figuration step. The corresponding rcTriggerEffect equations usually mark the steps
as ongoing and add them to the head of the rcp, again, leading to subsequent re-
configuration actions defined by the rcCompleteEffect. Which objects (including the
reconfiguration plan itself) and messages are created, modified or deleted during
triggering and completion of a reconfiguration step as well as when this is done
depends on the kind of the step.

In the rest of this section, we describe the specification of each reconfiguration
step kind in three groups: Coordination steps (for inter-agent synchronization),

90
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.3: An overview of the reconfiguration hook activity performed by the
agents on each node three times per cycle (beforeOutputs, betweenIO, afterInputs).
The agent checks if the first step in its reconfiguration plan rcp requires action and
performs it. If the step is done, the next step is considered immediately. Otherwise

it blocks subsequent steps, e.g. until a corresponding response is received.

lifecycle steps (for container management) and modification steps (for time-critical
modifications of running distributed embedded applications). In addition to the
structure of the step kinds, the specifications contain rules and equations related
to the operations mustRc, rcTriggerEffect and rcCompleteEffect. To improve the read-
ability of reconfiguration plans at design-time, convenience constructor functions
are defined as well for each kind of reconfiguration step. These constructure func-
tions are also referred to as (pseudo) reconfiguration plan description language (Rc-
Plan DSL) during this thesis. Predecessors of the RcPlan DSL were already used
in [TK19a] and [TK19b]. For this formal specification, these constructor functions
hide the details not needed during reconfiguration plan design, i.e., fields which can
be initialized to default values (such as todo for the state field). Especially defaulting
inherited fields based on the step kind can compactify the notation of reconfigura-
tion plans. The RcPlan DSL is also used to further compactify the specification for
this thesis, even when it does not reduce to matching RcStep objects (which is often
the case when it is used on the left-hand side of equations and rules). Note that
the evaluation prototype described in chapter 5 takes reconfiguration plans as input
based on an implementation of this RcPlan DSL.

4.1.1 Reconfiguration Coordination

Coordination steps are used to control the timing of subsequent reconfiguration
steps. Specific combinations of coordination steps can be used to achieve syn-
chronous reconfiguration on multiple nodes, i.e., to perform reconfiguration steps
temporally aligned across nodes. The coordination steps defined in listing 4.2 are
(cf. synchronization steps in [TK19a]):

notify: Send a notification with timing information to another node.
wait: Wait for a notification from another node.
waitForCycle: Wait until a specific absolute cycle (e.g. start-up sequences).
waitCycles: Wait for a given number of cycles (e.g. intermediary waiting periods).

The latter two coordination steps are single-node steps to delay reconfiguration plan
execution to a later cycle. The reconfiguration step waitForCycle(c, k) blocks subse-
quent reconfiguration steps until cycle c is reached as of the Agent’s counter. In cycle c
the mustRc equation evaluates to true, so the rcTiggerEffect equation for WaitCycleStep
is applied to the rte configuration on the corresponding node. This only modifies
the rcp of the Agent using the planSetAbsCycles(c,rcp) operation, which changes the
timing information of modification steps as described later, so that they are now
aligned to the current cycle c. When a reconfiguration step waitCycles(c′, k) becomes

4.1. Model Extensions for Reconfiguration 91

class CoStep | sync:Nat.
class NotifyStep | whom:Qid. class WaitCycleStep | cycle:Nat.
class WaitStep | for:Qid. class WaitCyclesStep | cycles:Nat.
subclasses NotifyStep WaitStep WaitCycleStep WaitCyclesStep < CoStep < RcStep .

eq notify(N,K) = <NotifyStep| todo, node:_, eta:0, whom:N, sync:K>.
eq wait(N,K) = <WaitStep| todo, node:_, eta:0, for:N, sync:K>.
eq waitForCycle(C,K) = <WaitCycleStep| todo, node:_, eta:0, cycle:C, sync:K>.
eq waitCycles(C,K) = <WaitCyclesStep| todo, node:_, eta:0, cycles:C, sync:K>.

eq mustRc(beforeOutputs,C,<S:NotifyStep|> P) = true.
eq mustRc(H,C,<S:WaitCyclesStep|> P) = true.
eq mustRc(H,C,<S:WaitCycleStep| cycle:CC> P) = C >= CC.

eq rcTriggerEffect(<S:NotifyStep| node:N, whom:N2, sync:K>,
<A:Agent| node:N,counter:C, rcp:P, oSync[N2]=M, egress[M]=I, sHops:H> REST)
= tx(I,M,vNfy(N,K,cc(C,H),size(vNfy)) <A:Agent| rcp:waitForCycle(cc(C,H),K) P> REST.

rl[rcvNfy]: <A:Agent| afterInputs, ifs:I,IFS, iSync[M]=N’, rcp:wait(N’,K) P> REST
rcv(I,M,vNfy(N2,K,C,S)) => <A:Agent| rcp:waitForCycle(C,K) P> REST.

eq rcTriggerEffect(<S:WaitCyclesStep| node:N, cycles:O, sync:K>, <A:Agent| counter:C, rcp:P> R)
= <A:Agent| rcp:waitForCycle(C+O,K) P> R.

eq rcTriggerEffect(<S:WaitCycleStep|>, <A:Agent| counter:N, rcp:P> REST)
= <A:Agent| rcp:planSetAbsCycles(N,P)> REST.

LISTING 4.2: The definition of coordination steps in Maude.

the head of the reconfiguration plan during a hook in cycle c, the corresponding
rcTriggerEffect equation immediately (mustRc is always true) replaces the step with a
waitForCycle(c + c′, k) step, so subsequent reconfiguration steps are not performed
until cycle c + c′ is reached. Thus, the cycle field of WaitCycleSteps is the absolute
continuation cycle while the cycles field of WaitCyclesSteps is relative. The absolute
variant is used by the relative one, but also by notify and wait.

The multi-node coordination steps notify and wait determine a common con-
tinuation cycle cc on two or more nodes. The mechanism uses the fact that all
Agents run the cycles isochronously with fully aligned clocks and cycle counters and
that sHops × period is an upper bound of the worst-case communication time be-
tween Agents. The basic synchronization protocol is arranged by deploying the step
notify(n2, k) on node n1 and wait(n1, k) on node n2. Due to the first mustRc equa-
tion, a NotifyStep is triggered as soon as the agent reaches the reconfiguration hook
beforeOutputs, i.e., at the start of the next (or the current) administration phase, be-
fore outputs are released from the containers. This hook is fixed to keep the timing
of this platform-independent concept independent from whether the concrete plat-
form implementation keeps back all outgoing network messages (including inter-
agent communication) released after the output processing phase. The correpond-
ing rcTriggerEffect calculates the common continuation cycle cc = counter+ sHops+ 1
and waits for it by adding waitForCycle(cc, k) to the head of the reconfiguration
plan. Additionally, cc and the synchronization point identifier k are sent to n2 via
the network message m according to the outgoing synchronization mapping (i.e.,
n2 ↦→ m ∈ oSync). Inter-agent messages are transmitted over the mapped network
interface i during execution phases like properties (i.e., bandwidth controlled and
hop-by-hop), so the notification is received by n2 before the continuation cycle cc,
if sHops is greater than or equal to the number of hops between n1 and n2 on the
path of m. Unlike most reconfiguration steps, the wait(n1, k) step is triggered on
n2 by a dedicated rule [rcvNfy] because the trigger condition is not only a specific
cycle and hook, but receiving a notification message for synchronization point k.
The rule replaces the WaitStep with a waitForCycle(cc, k) according to the content of
the received notification. In this model it is important that the notification informa-
tion is still available, in case the Agent on n2 has received it before reaching the wait
step in its reconfiguration plan. The notification is processed in the reconfiguration

92
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.4: A schematic timing diagram of a possible run of the two-way hand-
shake. The reconfiguration step at the head of the plan is shown for both nodes
over time. After node1 completes the previous steps, it reaches the notify step. In
the next hook beforeOutputs it sends the continuation cycle number cc1 to node2 and
waits for it. As node2 is still busy it stores this information and only process it after
the previous steps in cycle t + 5p (after cc1). Thus, wait is immediately replaced
by waitForCycle(cc1), which immediately completes, so the notify step becomes the
next step. The second continuation cycle number cc2 is sent to node1, which already
waits for the notification since cc1. Then both nodes wait for cc2 and then continue

synchronously with subsequent reconfiguration steps.

hook afterInputs, i.e., at the end of the administration phase, after the input mes-
sages were processed. Again, this hook is chosen to keep the protocol deterministic
in case platform-specific implementations only release incoming network messages
(including inter-agent communication) during input processing. The result of this
basic synchronization protocol is that none of both nodes will continue before cc,
especially that n2 does not continue before n1: When n2 reaches the wait step in cy-
cle c < cc before the notification arrives, both nodes will continue synchronously in
the continuation cycle cc (because both use waitForCycle(cc,k)). Otherwise, when n2
reaches the wait step in a later cycle c >= cc, it continues immediately, but n1 has
already continued earlier in cycle cc.

This basic synchronization protocol can be used to let multiple nodes continue
synchronously. For two nodes a two-way handshake is needed (see figure 4.4): Node
n1 performs [notify(n2, k), wait(n2, k′)] and n2 performs [wait(n1, k), notify(n1, k′)].
Using such a two-way handshake it is guaranteed that both nodes continuously pro-
ceed with subsequent reconfiguration steps: None of the nodes will continue with
their second steps before reaching the continuation cycle of the first synchronization
point k, so n2 sends the notification for the continuation cycle of the second synchro-
nization point k′ while n1 already awaits it (which, as described before, leads to syn-
chronous continuation). For more than two nodes this handshake can be extended
by letting one node nm wait for notifications from all involved nodes and then notify
them in turn (a two-phase multi-way handshake). For the multi-way handshake, a
multicast notification is needed on nm, which does not wait between the notifications
in the second phase but sends them all in the same cycle. Finally, each coordination
step is associated with a synchronization point identifier k. For notify and wait this
is used to identify synchronization points across nodes. The main intention of the
synchronization points is to enable future extensions towards concurrent reconfigu-
rations, which might associate modification steps with synchronization points (cur-
rently, only the most recent synchronization point is used for timing as described in
section 4.1.3).

4.1. Model Extensions for Reconfiguration 93

4.1.2 Container Lifecycle Management

Each software component instance is executed in its own container. During dynamic
reconfigurations, the containers need to be managed therefore, which is done by
the lifecycle steps specified in this section. Following lifecycle steps are defined in
listing 4.3 (cf. background steps in [TK19a]):

download: Create a new component instance from a container image.
start: Start a container to prepare a new component for activation.
stop: Stop a container after the component has been deactivated.
destroy: Destroy a stopped container.

class LcStep | swc:Qid.
class DownloadStep | meta:VCid. class StartStep | quota:Nat.
class DestroyStep. class StopStep.
subclasses DownloadStep StartStep StopStep DestroyStep < LcStep < RcStep .

class DlReq | meta:VCid. class Image | meta:VCid, proto:SwcObject.
subclasses DlReq Image < Serializable | size:NzNat.

eq download(V,C) = <"dl-{C}":DownloadStep| todo, node:_, eta:rand(), swc:C, meta:V>.
eq start(C,T) = <"start-{C}":StartStep| todo, node:_, eta:rand(), swc:C, quota:T>.
eq stop(C) = <"stop-{C}":StopStep| todo, node:_, eta:rand(), swc:C>.
eq destroy(C) = <"destroy-{C}":DestroyStep| todo, node:_, eta:rand(), swc:C>.

eq mustRc(betweenIO,N, <S:LcStep|todo> REST) = true .
eq rcTriggerEffect(download(V,C), <A:Agent| ES:E, oSync[E]=M, egress[M]=I, bgc:B, rcp:P> REST)
= tx(I,M,<DlReq|meta:V,size:MA>) <A:Agent| bgm[<S|>]=B, rcp:<S|ongoing> P> REST.

eq rcTriggerEffect(start(C,0), <A:Agent| dl:<C:SWC|>D ,bgc:B, rcp:P> REST)
= new(<C:SWC|>) job(B,<S:StartStep|>) <A:Agent| bgm[<S|>]=B, rcp:<S|ongoing> P> REST.

eq rcTriggerEffect(<S:LcStep|>, <A:Agent| bgc:B, rcp:P> REST)
= job(B,<S:LcStep|>) <A:Agent| bgm[<S|>]=B, rcp:<S:LcStep|ongoing> P> REST [owise].

rl [lcDoneMsg]: <N:NodeR| jobDone(<S:LcStep|>) <A:Agent| rcp:<S:LcStep|> P> REST>
=> <N:NodeR| rcCompleteEffect(<S:LcStep|>, <A:Agent| rcp:<S:LcStep|done> P> REST)>.

rl [lcComplete]: <A:Agent| betweenIO, bgm[<S:LcStep|>]=B, rcp:<S:LcStep|done> P>
=> <A:Agent| rcp:P, rm(bgm,<S|>)>.

rl [txImage]: rcv(I,M,<DownloadRequest| meta:V>) <A:Agent| iSync[N]=M, oSync[N]=M2,
egress[M2]=I2, dl:<Image|meta:V> REST> => <A:Agent|> tx(I2,N,M2,<Image|>)).

rl [rcv2dl]: rcv(I,M,<Image|meta:V,proto:<SWC|>) <A:Agent| rcp:download(V,C) P, dl:REST>
=> <A:Agent| rcp:<DownloadStep| done> P, dl:clone(C,<SWC|>) REST>.

eq rcCompleteEffect(start(C,0), <C:AppContainer| new> REST) = <C:AppContainer| sleep> REST.
eq rcCompleteEffect(stop(C), <C:AppContainer| sleep> REST) = <C:AppContainer| stop> REST.
eq rcCompleteEffect(destroy(C), <C:AppContainer| stop> REST) = REST .

LISTING 4.3: The definition of lifecycle steps in Maude.

The four lifecycle steps are derived from LcStep, which has the instance identifier
swc of the corresponding software component in addition to the base attributes of
the root base class RcStep. The lifecycle of a container c is normally controlled us-
ing the steps download(meta, c), start(c, quota), stop(c) and destroy(c) (in this order).
These steps are always executed in background, i.e., the steps are triggered during
the reconfiguration hooks, but their execution is done while the system continues to
operate. All reconfiguration steps (except download, dump, and load) which need to be
performed in background are executed in an additional, non-application container
of type BgContainer, which is specified in listing 4.4 (see figure 4.5). A BgContainer
is a normal Container with slightly different behavior. A Container has a job field,
which is only used for reconfiguration steps. Via the [bgNew] rule a job(c, step)
message can be used to trigger the execution of a reconfiguration step within the
Container c. The step is set to ongoing and due to the timeEffect equation its eta runs
down as time passes when the Container is in run state (i.e., running on the CPU).
When the eta has run down to zero, the [bgDone] rule immediately removes the job,
sends a jobDone(step) message and goes to the over state to release the CPU. If the
Container’s quota expires before the step is completed it is preempted by the [quota]

94
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.5: A schematic timing diagram of a lifecycle step performed in
background. The agent triggers lifecycle steps by sending a job message to
the BgContainer. Then the reconfiguration step’s eta runs down whenever the
BgContainer gets CPU time according to its quota. The step stays at the head of
the agent’s list and blocks subsequent steps until the BgContainer answers with a

jobDone message. Meanwhile, the AppContainers are run and managed normally.

rule and continued in the next cycle. This basic behavior of Containers also enables
execution of the specific RcSteps dump and load in AppContainers with slightly dif-
ferent completion behavior as described later. However, the jobDone message indi-
cates completion of an LcStep in the BgContainer and is consumed by the Agent in
the [lcDoneMsg] rule. Triggering and checking the status of lifecycle steps is done
once per cycle in the hook betweenIO as of the mustRc equation. Only after the step
is completed and the reconfiguration effect was applied using the rcCompleteEffect
operation or step-specific rules, subsequent steps will be considered (e.g. CoSteps to
create a synchronization point).

class BgContainer < Container.
rl [bgNop]: <B:BgContainer| run, job:_> => <B:BgContainer| over>.
rl [bgNew]: job(C, <S:RcStep| todo>) <C:Container|> => <C| job:<S:RcStep| ongoing> >.
rl [bgDone]: <B:BgContainer| job:<S:RcStep| ongoing, eta:0> >

=> <B:BgContainer| over, job:_> jobDone(<S:RcStep|>).
eq mte(<B:BgContainer| run, job:_>) = 0 .
eq timeEffect(<C:Container| run, job:<S:RcStep| ongoing, eta:N>, clock:T>, dT)

= <C:Container| job:<S:RcStep| eta:N-dT>, clock:T+dT>.

LISTING 4.4: Maude specification for performing RcSteps as background jobs.

A new container is downloaded and instantiated using a download(meta, c) step,
where the meta information (i.e., the versioned component identifier) needs to
be given in addition to the instance identifier c. The rcTriggerEffect equation for
DownloadSteps sets the step to ongoing and sends a download request message DlReq
containing the meta information to the engineering system ES via the configured
inter-agent message. Only Serializable objects can be transmitted over network, be-
cause the size information is needed for network scheduling. The size of DlReq objects
is over-estimated with the agent’s quota Madm and thus needs one cycle for transmis-
sion to ES. The agent on the engineering system answers the request by sending the
corresponding container image at the configured quota as specified by the [txImage]
rule. The Image also contains the meta information, which is equal to the meta infor-
mation from the download request. Additionally, the proto information is contained,
which holds a prototype object of the software component model, i.e., an SWC ob-
ject describing the component interface (see section 3.1.1). The size field inherited
from the Serializable class specifies the bit size of the Image and also determines the
transmission duration. When the software component is received in an Image, the
[rcv2dl] rule stores it under downloads setting the instance identifier c and mark-
ing the DownloadStep as done. The step then blocks subsequent RcSteps of the plan
until the [lcComplete] rule removes it from the plan and from the map of ongoing
background steps in the next betweenIO hook (depending on the platform-specific
model it would be a valid alternative that the jobDone message is only consumed

4.1. Model Extensions for Reconfiguration 95

betweenIO). This way the container image is pulled from the component repository
in background. For example, download(LED Controller1.0, led1.0

1) creates a new soft-
ware component instance led1.0

1 on the corresponding node based on the container
image LED Controller1.0. The duration of a DownloadStep is determined basically by
the Image’s size and the configured quota reserved for inter-agent communication be-
tween the node and the engineering system: The request is sent during one cycle
and answered with the image in ⌈size/quota⌉more cycles. However, this calculation
is only informational and the reconfiguration plan should use CoSteps after lifecycle
steps to synchronize reconfigurations across nodes, if needed (e.g. consider future
extensions towards downloading from an external source).

The downloaded software component can be started in a new AppContainer c in
background using a start(c, quota) step, where the allocated CPU bandwidth can be
modified using the quota attribute. The rcTriggerEffect for StartSteps sends a job mes-
sage to the background container and creates the AppContainer instance from the
downloaded meta information. The container is set to state new with initial property
valuations for inputs, outputs and memory according to the component interface. The
communication mapping comM is left empty so the component is completely iso-
lated in the container, initially. After receiving the jobDone message from the back-
ground container, the rcCompleteEffect is applied immediately by the [lcDoneMsg],
which changes the state of the AppContainer from new to sleep and marks the step as
done. The step is removed by the [lcComplete] rule in the next betweenIO hook (mod-
eling that the agent notices the changed container state at that time). If zero is given
as quota, the CPU bandwidth is left defaulted to the software compontent’s WCET
taken from the downloaded Image’s meta information. For instance, start(led1.0

1 , 0)
starts the container of led1.0

1 in background configuring a CPU bandwidth of e/p, if
e ∈ N is the WCET of the task of led1.0

1 and p ∈ N is the period of the running
distributed embedded application. A non-zero quota can be given, which sets the
bandwidth accordingly. Tasks running in such an application container may take
multiple cycles until completion if quota < wcet. This feature is needed for update
package components as described later in chapter 4.3. It is important to note that
starting a container does not yet impact the running distributed embedded appli-
cation: Though the container is running, the task of the component is not triggered
and inputs and outputs are not processed without subsequent reconfiguration steps
described in the next section. The containerization of both the reconfiguration step
and the component ensures that no side effects besides initialization and resource
allocation are possible, until further reconfiguration steps enable them. A main re-
quirement for platform implementations is that this isolation must be enforced by
the containerization independently from whether software component implementa-
tions adhere to their declared interfaces, therefore.

Finally, containers are stopped and destroyed given the component identifier c
in the similar way using a generic rcTriggerEffect rule for LcSteps, which sends the
step to the background container as a job message and marks it as ongoing. After
the background container has received enough CPU time according to its quota so
that the RcStep’s eta has run down to zero, the jobDone message is issued and leads
to the corresponding rcCompleteEffect due to the [lcDoneMsg] rule. A stop(c) step
has the reconfiguration effect that the container changes its state from sleep to stop.
A destroy(c) step has the effect that the AppContainer c is removed from the node.

96
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.6: A schematic timing diagram of how modification steps are triggered
and executed. On the left-hand side, the reconfiguration plans for both nodes are
shown. Both nodes wait for the same cycle cc (e.g. after performing the synchro-
nization protocol). On node1 three modification steps are performed under ZET
assumption, i.e., directly within the reconfiguration hooks in the specified relative
cycles. On node2 the first step is performed in background within a container. It

does not block the subsequent steps even while it is still ongoing.

4.1.3 Transitioning between Applications

Modification steps are reconfiguration steps which modify the running system to
effectively transition from the deployed distributed embedded application to an-
other one. Three different groups of modification steps are specified in this sec-
tion: restructuring steps, handover steps and interception steps. They have es-
sential commonalities abstracted in the base class ModStep (see listing 4.5). In ear-
lier work, ModSteps were referred to as real-time steps, bounded background steps,
and bounded in-component steps, depending on how they were triggered and exe-
cuted [TK19a; TK19b]. The different modification steps are now grouped by their re-
configuration purpose, because they are more common and also because most steps
can be triggered and executed in multiple anyways. For instance, in [TK19b] there
were two versions of extracting state from a container – the real-time step extract
and the bounded background step extractBg. Now there is only one kind of han-
dover step for extraction, the execution mode of which is configurable like for most
other ModSteps. Therefore, we decided that it is clearer to use reconfiguration com-
monalities for grouping rather than operational ones (which also lead to duplicates).
In the example of the extract step, its commonality with other handover steps is that
they refer to the state of a software component (see later in this section).

class ModStep | cycle:Nat, abs:Bool, hook:RcHook, zet:Bool.
subclass ModStep < RcStep.

eq mustRc(H,N,<S:ModStep| hook:H, cycle:N, abs:true> P) = true.
eq rcTriggerEffect(<S:ModStep| zet:true>, <A:Agent| rcp:P> REST)

= <A:Agent| rcp:<S:ModStep|ongoing> P> REST.
eq rcTriggerEffect(<S:ModStep| zet:false>, <A:Agent| bgc:B> REST)

= job(B,<S:ModStep|>) <A:Agent| bgm[<S:ModStep|>]=B> REST [owise].
rl [zetDone]: <N:NodeR| <A:Agent| rcp:<S:ModStep| ongoing, eta:0, zet:true> P> REST>

=> <N:NodeR| rcCompleteEffect(<S:ModStep|>, <A:Agent| rcp:P> REST)>.
rl [modBgDoneMsg]: <N:NodeR| jobDone(<S:ModStep|>) <A:Agent| bgm[<S:ModStep]=B> REST>

=> <N:NodeR| rcCompleteEffect(<S:ModStep|>, <A:Agent| rm(bgm,<S|>) > REST)>.

eq mte(<S:ModStep| ongoing, zet:true, eta:T> P) = T.
eq timeEffect(<S:ModStep| ongoing, zet:true, eta:T> P, T’) = <S:ModStep| eta:T-T’> P.

LISTING 4.5: General definitions for modification steps in Maude.

ModSteps need to be performed in strictly deterministic temporal alignment rel-
ative to each other – possibly across nodes. Only then we can maintain data pro-
cessing and transmission chains throughout the reconfiguration. To make this pos-
sible, the timing of triggering modification steps is determined from their fields as
follows (see figure 4.6): First, the cycle field is given, which is interpreted either as
absolute or relative cycle number depending on abs. If abs is true, then the step is

4.1. Model Extensions for Reconfiguration 97

triggered in the reconfiguration hook hook during the administration phase of the
given cycle. This is achieved by comparing the cycle with the given counter value of
the Agent in the mustRc equation. Else, if abs is false, then the cycle is interpreted rel-
ative to the most recent synchronization point resulting from previous coordination
steps. To achieve this behavior the relative cycles are converted to absolute ones by
WaitCycleSteps (which are implicitly used by all CoSteps as described before). For
instance, a modification step with abs = false, cycle = m and hook = betweenIO af-
ter a synchronization step waitForCycle(n) is triggered in the reconfiguration hook
betweenIO of the absolute cycle n + m (m cycles after the most recent synchroniza-
tion point’s continuation cycle n). Besides the timing of the triggering, it is essential
whether the modification step can be executed directly in the reconfiguration hook
under ZET assumption or the step must be executed in background. Therefore, two
rcTriggerEffect equations are defined in listing 4.5 depending on the zet field. If zet is
true, then the step is set to ongoing and prepended to the plan again. The timeEffect
counts down the eta field of the step as time passes until eta = 0. Then the recon-
figuration effect is applied still within the hook by the generic [zetDone] rule using
the rcCompleteEffect operation, which is defined differently for each kind of ModStep.
Thus, in the ZET case the modification step is executed and removed ’immediately’
(within the reconfiguration hook), while the distributed embedded application is
quiescent. Instead, if zet is false then the step is still triggered at the same time, but
it is not executed and completed within that reconfiguration hook. In this case, the
second rcTriggerEffect equation matches, so the agent sends a job message to the spe-
cific container, which has to execute the modification step in background. For most
steps, this is the BgContainer running on each node, referred to by the agent’s bgc field
(which is also used for lifecycle steps). Only two steps need to be performed (and
implemented, cf. section 3.1.1) by software components within their AppContainers,
i.e., dumping and loading state in an application-specific data format. The other
exception only mentioned here is the transmit step, which is ‘backgrounded’ using
the bandwidth control mechanism of the network specification. However, when
triggering a ModStep for execution in background, the agent moves the step from
the reconfiguration plan to the bgm map of pending reconfiguration steps (mapping
it to the responsible container). The container reports completion of the step (i.e.,
that eta has run down to zero) via a jobDone message as described before (cf. list-
ing 4.4 and figure 4.5). The agent processes the jobDone message by applying the
step-specific rcCompleteEffect and removing the step from the bgm map as specified
in the [modBgDoneMsg] rule. In contrast to lifecycle steps, modification steps do
not block subsequent reconfiguration steps while they are running in background.
Further modifications can be performed instantly or in later hooks and cycles, even
if a modification step is still ongoing or blocked on the same node. The number of cy-
cles needed until a backgrounded ModStep is completed is deterministic given its eta
and the responsible container’s quota: The step is completed within n = ⌈eta/quota⌉
cycles after triggering (if not, it is an error condition). The reconfiguration effect is
available at this point, e.g. after triggering a state transfer in cycle c0 the state can
be loaded by a subsequent modification step in cycle = c0 + n. Obviously, this cal-
culation of the temporal bounds applies only if steps are not triggered in parallel
within the same container. It is a design-time responsibility to check the feasibility
of the reconfiguration step timing and the consistency of the reconfiguration effects
(see section 4.2). In the remaining section, the three kinds of modification steps are
specified - restructuring steps, handover steps, and interception steps.

98
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

Restructuring Steps

Restructuring steps change the structure of a running distributed embedded appli-
cation. The structure is basically given by a distributed embedded application’s de-
ployment, though each Agent has its own node-local view. Especially during recon-
figurations the aggregate of these views does not always yield a valid deployment.
Following restructuring steps are defined to modify the SWC mapping, the commu-
nication mapping, and the I/O mapping during operation (see listing 4.6):

addSwc/rmSwc: modify the SWC mapping (start or stop triggering a task).
addMsg/rmMsg: modify the communication specification (add/remove a message).
addCom/rmCom: modify the communication mapping (add/remove a matching).
addIO/rmIO: modify the I/O mapping (enable/disable I/O-mapped property).

class RsStep. ops abs rel _: Nat -> CycleSpec [ctor].
ops in out: -> Direction [ctor]. ops local ingress egress: -> MsgKind [ctor].
classes AddSwcStep RmSwcStep | swc: Qid.
classes AddComStep RmComStep | dir: Direction, prop: QQid, mesg: Qid.
classes AddMsgStep RmMsgStep | m: Qid, kind: MsgKind, size: Nat, route: Qid, peer: QQid.
classes AddIomStep RmIomStep | dir: Direction, prop: QQid, io: Qid.
subclasses AddSwcStep RmSwcStep [...] RmIomStep < RsStep < ModStep.

eq addSwc(C,rel N,H) = <AddSwcStep| todo, eta:T, cycle:N, -abs, hook:H, zet, swc:C >.
eq addCom(D,C.P.PP,M,rel N,H) = <AddComStep| todo, node:_, eta:T,

cycle:N, -abs, hook:H, zet, dir:D, prop:C.P.PP, m:M >.
eq addMsg(K,M,S,I,P,rel N,H) = <AddMsgStep| todo, node:_, eta:T,

cycle:N, abs:false, hook:H, zet:true, kind:K, m:M, size:S, route:I, peer:P >.
eq addIO(D,C.P.PP,IO,rel N,H) = <AddIomStep| todo, node:_, eta:T,

cycle:N, -abs, hook:H, zet, dir:D, prop:C.P.PP, io:IO >.

eq rcCompleteEffect(addSwc(C), <A:Agent| swcs:CS > REST) = <A:Agent| swcs:C,CS> REST.
eq rcCompleteEffect(addCom(in,C.P.PP,M), <A:Agent|> <C:AppContainer|> REST)

= <A:Agent| iMap[C.P.PP]=M, iChk[C.P.PP]=f> <C:AppContainer| comM[P.PP]=M> REST.
eq rcCompleteEffect(addCom(out,C.P.PP,M), <A:Agent|> <C:AppContainer|> REST)

= <A:Agent| oMap[C.P.PP]=M, oChk[C.P.PP]=f> <C:AppContainer| comM[P.PP]=M> REST.
eq rcCompleteEffect(addIO(in,C.P.PP,IO), <A:Agent|> <C:AppContainer|> REST)

= <A:Agent| iMap[C.P.PP]=IO, iChk[C.P.PP]=f> <C:AppContainer| comM[P.PP]=IO> REST.
eq rcCompleteEffect(addIO(out,C.P.PP,IO), <A:Agent|> <C:AppContainer|> REST)

= <A:Agent| oMap[C.P.PP]=IO, oChk[C.P.PP]=f> <C:AppContainer| comM[P.PP]=IO> REST.
eq rcCompleteEffect(addMsg(local,m), <A:Agent|> REST) = <A:Agent| local+=M> REST.
eq rcCompleteEffect(addMsg(egress, m:M, size:N, route:I, peer:N2.I2), <A:Agent|> REST)

= <A:Agent| egress[M]=I> setMsgQuota(I,M,N2.I2,N) REST.
eq rcCompleteEffect(addMsg(ingress, m:M, size:N, route:I), <A:Agent|> REST)

= <A:Agent |ingress[M]=I> REST.

LISTING 4.6: The restructuring steps in Maude. The variants for absolute timing
and the counterparts for removing are defined similarly but left out for brevity.

The sort CycleSpec is defined to make the timing of the modification steps more read-
able. Each of the constructor functions has a CycleSpec argument and sets both the
cycle and abs accordingly. If abs(N) is given, then abs is set to true and if rel(N) is
given, then abs is set to false. Only constructor functions for the relative variant are
provided in listing 4.6. N is the value for cycle, which is consequently interpreted as
absolute cycle number or relative to the most recent synchronization point. For all re-
structuring steps zet is set to true and eta is set to a constant value of T = 1 ms, which
represents the WCET of any kind of RsStep (the value of this constant is platform-
specific, though). While restructuring steps could be performed in background, they
should be performed in ZET mode to leverage the temporary quiescence guaranteed
during reconfiguration hooks. Restructuring during full operation is only possible if
not ‘to many’ reconfiguration steps need to be done in the same cycle turnover. This
can be checked as described in section 4.2.

4.1. Model Extensions for Reconfiguration 99

FIGURE 4.7: An overview of which parts of the system structure are modified by
the defined restructuring steps at the example of the onBtnSwitch deployment.

Figure 4.7 shows an overview of the RsSteps. There are two restructuring steps
to modify the SWC mapping: addSwc(C, s, h) enables the task of software compo-
nent C at the time specified by the CycleSpec c and the RcHook h; the inverse step
rmSwc(C, s, h) deactivates the task. As the add/remove pairs of restructuring have
the exact same fields and the inverse rcCompleteEffect, only the definitions for adding
are provided in listing 4.6. The corresponding rcCompleteEffect equations are applied
by the generic [zetDone] rule for ModSteps with zet = true as soon after eta expires
as described before. The equation for AddSwcSteps adds C to the Agent’s swcs field,
whereas the equation for RmSwcSteps removes it. Only activated tasks (of compo-
nents in the swcs list) are triggered in the [setupCycle] rule of the Agent before each
execution phase and compute values for their output properties from the values of
their input properties. The component’s container must have been started before via
start(C), so that the component is already initialized and ready to work. The input
properties of C are wired beforehand using the corresponding restructuring steps,
so that the task receives fresh values. To modify the communication specification
two more restructuring steps are defined. A new message can be configured using
addMsg(k, m, size, devroute, devpeer, c, h). The MsgKind k ∈ {local, ingress, egress} speci-
fies whether the message is a local message (sender and receiver are deployed to
the same node) or a network message – ingress is for incoming network messages
and egress for outgoing network messages. The new message’s identifier is m and
the network bandwidth to allocate is defined by size. Additionally, two network in-
terface identifiers devroute and devpeer are needed. For local messages, both devices
are the same and refer to a local virtual interface, e.g. br0. For network messages,
devroute is the local network interface through which the message is sent (for egress) or
received (for ingress) and devpeer is the identifier of the remote network interface. This
information is needed for configuring routing, traffic shaping and firewall – in this
model represented by the iMap, oMap and the local fields of the Agent, the comM field
of the Containers and the qdiscs field of network interfaces. The message is added by
creating an entry in the corresponding field of the Agent (i.e., ingress, egress, local).
Additionally, quota must be reserved for egress messages by sending a setMsgQuota
command message to the network interface. A message can be removed from the
communication specification via a rmMsg step using the same parameters; while in
theory the message identifier would be sufficient, we avoid as much logic during
time-critical reconfigurations as possible, so the parameters are included. The re-
moval is implemented in the analog way by removing the corresponding message
mappings. For egress messages the Qdisc quota is de-allocated via a setMsgQuota
command message.

Using addCom(d, p, m, c, h) and addIO(d, p, ι, c, h), properties of started compo-
nents can be mapped to existing messages or I/Os. Direction d ∈ {in, out} defines

100
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

whether the property is sent (out) or received (in). The qualified identifier p = C.P.pp
identifies the property pp of the component C’s port P, while m identifies the mes-
sage. The Container’s comM field is then modified accordingly by the coresponding
rcCompleteEffect equations to configure whether and as which property messages and
I/Os are available inside. Using addCom a local communication mapping is created
in comM to realize one side of a matching (sender or receiver of the property). If
d = in, then the Agent’s iMap and iChk fields are modified in addition so that incom-
ing network messages for m are expected and accepted. If k = out, then the Agent’s
oMap for outgoing network messages is modified in addition, so that the Container
may send such messages. In this platform-independent model this mechanism is
independent from whether the message is local or a network message. For exam-
ple, the step addCom(out, btn1.0

1 .btnPort.◁risingFlank50ms
bool , m1, 3, beforeOutputs) adds a

communication mapping, so the Boolean output property risingFlank of the button
controller btn1.0

1 is periodically extracted and sent via message m1 starting in the
output processing phase of the third cycle after the previous synchronization point.
This is ensured because the Agent’s input and output processing rules include the
existence of the specified mapping entries. A communication mapping is removed
using rmCom with the same parameters and stops processing of a property. Finally
addIO adds an I/O mapping in a similar way: property p = C.P.pp can be mapped
to a GPIO ι of the local node using addIO(d, p, ι, c, h) – again with Direction d, Cycle-
Spec c and RcHook h. Using an I/O mapping an output property can be added for
extraction and passing of the value from the software component C to the output ι,
or conversely, for injecting the value from an input ι to a software component via the
given input property. This is achieved by the mappings due to the definition of the
[betweenIO], [in2swc] and [send2out] rules of the Agent, which trigger and process
inputs and outputs accordingly. Again, I/O mappings can be removed using rmIO
with the same parameters.

Handover Steps

Handover steps perform state transfer actions, which set up the internal states (see
section 3.1.1) of new components using state information from running or removed
components. This is often needed to maintain application consistency during re-
configurations, but it costs time. As we also want to maintain the reactivity of the
embedded application we cannot block exhaustively to ensure consistency, though.
This again leads to the problem that the states of the involved components and the
transferred state snapshot might drift and become obsolete (i.e., the state of a run-
ning component changes concurrently to the transfer). Hence, the state transfer
is time-cricital in two ways: 1) It must be performed in deterministic time so that
the reconfiguration timing across nodes works without further coordination steps in
time-critical reconfiguration phases. 2) It must be fast so that we can avoid blocking
and state drift to maintain both reactivity and consistency – whenever possible, state
transfer must be done in ZET mode. In addition to timing problems, we still have
to isolate application-specific logic needed for state serialization and transformation
using containers to avoid uncontrolled functional and non-functional behavior. All
these aspects were considered during the definition of the component model so that
consistent reconfigurations (including state transfer) can be achieved with minimal
temporary degradation of the system’s reactivity. Basic enablers for the handover
concept are the ModStep concept, the different state kinds (stateless, ground state,
implicit state), and declaration of the worst-case size of the state information (see

4.1. Model Extensions for Reconfiguration 101

FIGURE 4.8: An overview of the defined handover steps. Basically, each step
‘moves’ state information between different state representations and locations.

section 3.1.1). The handover steps defined in the following (see listing 4.7 and fig-
ure 4.8) play a key role in enabling time-critical state transfers during operation of
distributed embedded applications in the context of the other goals:

dump: Let a component externalize its internal state.
transfer: Directly copy state information from one component to another one.
extract: Save the state of a component.
transmit: Send state information to another node.
inject: Pass state information to a component.
load: Let a component load injected state information.

The steps transfer, extract, transmit and inject operate on persisted externalized
state information objects of type StateDump. The structure of the state information is
given by an application-specific subtype, but it must be Serializable, i.e., it must have
a size field. In case of ground-state-components the state must be a StateDump object
within the Container, which is accepted and actualized by the component in every cy-
cle (see section 3.1.1). The worst-case size of the dumped state artifact is declared by
the component in its state kind declaration. The ground state can be copied or sent to
compatible ground-state-components directly with these four handover steps. Us-
ing dump and load, components with implicit state kind can be prompted to once
produce/consume such a StateDump, so the state transfer can then be performed in
the same structure-agnositic way.

The handover step dump(C, d, eta, c, hook) can be used to let component C dump
its internal state to a StateDump object d within its container. This operation must
be implemented by components with implicit-state kind. With the inverse step
load(C, d, eta, c, hook) a StateDump d available inside of the container can be loaded
to the internal state of component C. The WCET eta of the dump and load opera-
tions are declared by the component in its state kind declaration. The CycleSpec c
and the hook specify the instant in which the steps are triggered. For dump and load
the zet flag is always false, i.e., these two steps can only be performed in background.
The dedicated rcTriggerEffect equation with the isSwcStep condition applies, which
sends a job message to the corresponding AppContainer C instead of the BgContainer.
Thus, dump and load steps are processed within the container of the corresponding
component. As the container’s quota is then used for these steps, the component’s
task must be deactivated using rmSwc, before. An AppContainer, which is not in the
agent’s swcs list, but in the set bgm of ongoing reconfiguration steps is still activated
in the [setupCycle] rule by the triggerBg operation. The AppContainer gets CPU time
during the subsequent cycles as of its quota until the eta of the reconfiguration step
has run down to zero as of the timeEffect equation defined in listing 4.4. Then the
[dmDone] rule for dump or the [ldDone] rule for load applies the effect of dumping

102
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

class HoStep | swc: Qid, id: Qid. class StateDump < Serializable.
classes DumpStep LoadStep. classes ExtractStep InjectStep | ref: Qid.
class TransferStep | to: Qid, as: Qid. class TransmitStep | to: Qid.
subclasses DumpStep LoadStep ExtractStep InjectStep TransferStep TransmitStep

< HoStep < ModStep.

eq dump(C,D,E,rel N,H) = <DumpStep| todo, eta:E, cycle:N, -abs, hook:H, -zet, swc:C,id:D>.
eq load(C,D,E,rel N,H) = <LoadStep| todo, eta:E, cycle:N, -abs, hook:H, -zet, swc:C, id:D>.
eq extract(C,D,D2,Z,E,rel N,H) =

<ExtractStep| todo, node:_, eta:E, cycle:N, -abs, hook:H, zet:Z, swc:C, id:D, ref:D2>.
eq inject(D2,C,D,Z,E,rel N,H) =

<InjectStep| todo, node:_, eta:E, cycle:N, -abs, hook:H, zet:Z, swc:C, id:D, ref:D2>.
eq transfer(C,D,C2,D2,Z,E,rel N,H) =

<TransferStep| todo, node:_, eta:E, cycle:N, -abs, hook:H, zet:Z, swc:C, id:D, to:C2, as:D2>.
eq transmit(C,D,NO,E,rel N,H) =

<TransmitStep| todo, node:_, eta:E, cycle:N, -abs, hook:H, -zet, swc:C, id:D, to:NO>.

ceq if isSwcStep(<S|>) then rcTriggerEffect(<S:HoStep| swc:C, -zet>, <A:Agent| bgm> REST)
= job(C,<S|>) <A:Agent| bgm[<S|>]=C > REST.

rl[dmDone]: <C:AppContainer| meta:V, memory:M, job:dump(ongoing,id:D,eta:0), rte:REST>
=> <C:AppContainer| over, job:_, rte:REST doDump(V,D,M)> jobDone(<DumpStep|>).

rl[ldDone]:<C:AppContainer| meta:V, job:load(ongoing,id:D,eta:0), rte:<D:StateDump|> REST>
=> <C:AppContainer| over, job:_, memory:doLoad(V,<D|>) > jobDone(<LoadStep|>).

eq rcCompleteEffect(<S:DumpStep|>, <A:Agent|> REST) = <A:Agent|> REST.
eq rcCompleteEffect(<S:LoadStep|>, <A:Agent|> REST) = <A:Agent|> REST.

eq rcCompleteEffect(extract(swc:C, id:D, ref:S), <C:AppContainer| rte:<D:StateDump|>> REST)
= <C:AppContainer|> clone(S,<D:StateDump|>) REST.

eq rcCompleteEffect(inject(swc:C, id:D, ref:S), <S:StateDump|> <C:AppContainer| rte:R1 > REST)
= <C:AppContainer| rte: writeDump(clone(D,<S:StateDump|>), R1) > REST.

eq rcCompleteEffect(transfer(swc:C, id:D, to:C’, as:S),
<C:AppContainer| rte:<D:StateDump|> R1> <C’:AppContainer|rte:R2> REST)
= <C:AppContainer|> <C’:AppContainer| rte: writeDump(clone(S, <D:StateDump|>), R2)> REST.

eq rcTriggerEffect(transmit(swc:C, id:D, to:N), <A:Agent|oSync[N]=M, egress[M]=I, bgc:B> REST)
= <A:Agent| bgm[<S|>]=B> tx(I,M,getState(C,D,R)) awaitTx(I,M,getState(C,D,R))) REST.

rl[transmitDone]: <N:NodeR| txDone(I,M,<D:StateDump|>) awaitTx(I,M,<D:StateDump|>)
<A:Agent| egress[M]=I, bgm[<S:TransmitStep|id:D>]=B > REST>
=> <N:NodeR| rcCompleteEffect(<S:TransmitStep|>, <A:Agent| rm(bgm,S)> REST)>.

eq rcCompleteEffect(<S:TransmitStep| swc:null, id:D>, <D:StateDump|> REST) = REST.
eq rcCompleteEffect(<S:TransmitStep| swc:C>, REST) = REST [owise].
rl [acceptState]: rcv(I,M,<D:StateDump|>) <A:Agent| iSync[M]=N, ingress[M]=I >

=> <A:Agent|> <D:StateDump|>.

LISTING 4.7: The definition of handover steps in Maude.

or loading and sends a jobDone message to the agent. The agent then removes the
steps from the bgm map as specified in the [modBgDoneMsg] rule (see listing 4.5) ap-
plying the corresponding rcCompleteEffect equations for dump and load – as the effect
has already been applied before, these generic operations do not change anything
more. Dumping is done by applying the doDump operation to the internal state of
the component, i.e., the memory of the container, which creates StateDump d in the
container’s rte. The dump operation is component-specific, so each component with
internal state has to define an equation for doDump which matches the unique ver-
sioned component type identifier set in the meta field. Loading is achieved similarly
by applying the component-specific doLoad equation, which sets the valuations of
the memory according to the contents of the given StateDump d taken from the con-
tainer’s rte. Of course, the structure of d must be understood by C’s doLoad opera-
tion, so d must have been provided by a compatible component. There is no specific
handover step for transforming a StateDump. Instead, an update package compo-
nent can be deployed temporarily to transform the state information if needed as
proposed in [TK19b]. The temporal bounds of dump and load can be calculated as
described beforehand based on the quota of the container. Per default the quota is
configured according to the task’s wcet, i.e., the StateDump d is ready/processed af-
ter n = ⌈eta/wcet⌉ cycles.

A StateDump d can be copied from the rte of container C1 to the rte of a co-located

4.1. Model Extensions for Reconfiguration 103

container C2 as dt using transfer(C1, d, C2, dt, zet, eta, c, h). As for most modification
steps, if zet is true, then the step is performed in ZET mode directly within the
reconfiguration hook h in the cycle determined by c. Otherwise, the step is only
triggered at that time and performed in the BgContainer. This is specified by the
generic ModStep triggering equations. In ZET mode the components are quiescent
due to execution within the reconfiguration hook. In background mode it must be
ensured during design of the reconfiguration plan that C1 does not modify d and
C2 does not use dt before the step’s temporal bound expires. For example, this is
the case, if C1 is blocked or has implicit-state kind and C2 is only activated after the
tranferral. To estimate eta, the worst-case state size s is needed (as declared by the
providing component) in addition to the available memory I/O quota blkio1: The
estimated execution time is s/blkio. If performed in background, the step completes
within n = ⌈s/blkiobg⌉ cycles, with the background workers memory I/O quota
blkiobg. Finally, this bound is projected to the background worker’s CPU quota Qbg
by setting eta = n × Qbg. However, independently of how the step is triggered,
the corresponding rcCompleteEffect for transfer is applied to create the copy of the
StateDump as soon as eta expires either due to the [zetDone] rule or the [modBg-
DoneMsg]. To further avoid blocking and to enable more complex state transfers a
“split” of the transfer step is defined: The handover step extract(C, d, dC, zet, eta, c, h)
copies the StateDump d from the rte of container C to the outside inaccessible to com-
ponents and renames it to dC to avoid potential name conflicts. The opposite step
inject(dC, C, d, zet, eta, c, h) copies StateDump dC from the node-local outside to the rte
of container C and renames it to d. For both steps the same rules and considerations
for triggering, completion and runtime bounds apply.

Finally, the transfer step transmits a StateDump object to another node. This step
is always executed in background (i.e., its zet is always false). Though this step is
performed in the BgContainer, its triggering, execution and completion is modeled
differently to achieve compatibility with the network model. There are two variants
of the step, depending on the swc field: If it is set, then the StateDump is taken from
the corresponding container’s rte. Otherwise, it is taken from the node-local storage
(e.g. after extraction from a container). This is done by the getState(C, d, R) opera-
tion used in the rcTriggerEffect equation for transmit (R contains the container C and
the StateDump d – either within or outside of C). Instead of sending a job message
to the BgContainer, the Agent directly triggers the asynchronous transmission via a
tx(i, m, <d:StateDump|>) message. The network message m is taken as configured
in oSync for inter-node communication with the node specified in the to field of the
TransmitStep. The network interface i is configured in egress for routing traffic re-
lated to network message m. In addition to the tx message, a corrsponding awaitTx
message is created to mark a continuation of the procedure after successful transmis-
sion. After the network model has transmitted the StateDump during the next cycles
according to the quota configured for the Qdisc of m the network model creates a
transmission acknowledge message txDone on the sending node as of the [rcv] rule,
which is not discarded due to the awaitTx marker message. This is used as trigger
for the [transmitDone] rule, which completes the step by removing it from the bgm
map of ongoing reconfiguration steps. Additionally, the StateDump d is removed,
if it was taken from the node-local storage. Otherwise, no further rcCompleteEffect
is defined. On the receiving node, the StateDump d arrives at the same time within
a rcv(i′, m, <d|>) message. The [acceptState] rule accepts and stores the d in the

1Memory I/O is not modeled in the scope of this thesis, but a model similar to the CPU bandwidth
control is assumed. Therefore, eta and the quota are used to abstract from memory scheduling and its
effect on resource utilization.

104
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.9: An overview of the defined interception steps. All required and pro-
vided properties can be captured and replayed each cycle during specific hooks.

node-local storage inaccessible to containers if an incoming network message m at
network interface i′ is configured in ingress and iSync directs m to the agent. To calcu-
late the temporal bounds of the transmit step the worst-case size s of the StateDump
is used as declared by the providing component. Additionally, the quota Madm per
period and the protocol overhead Oadm are needed (see section 3.1.4). The network
connection transmits s + Oadm bits with Madm bits per period (enforced by the quota
for m), so the transmission bound is n = ⌈(s + Oadm)/Madm⌉ cycles. Thus, the eta
field of the TransferStep must be set to n×Qbg in order to project n to the background
worker’s assigned execution time Qbg. The eta field is not used for simulation of the
TransferStep’s temporal behavior because the network model uses the quota and size.
However, the eta field must still reflect the temporal bounds of this kind of reconfig-
uration step, too, because it is used for checking reconfigurations (see section 4.2)2.

Interception Steps

Interception steps manipulate property valuations of running containers, i.e., inputs
and outputs of components. This is needed to fix broken data processing and trans-
mission chains in case of blocked components. In this platform-independent model
it is irrelevant whether a property is mapped to a message or to an I/O. In the
platform-specific realization, properties may need to be manipulated differently de-
pending on their mapping. Following interception steps are defined (see listing 4.8
and figure 4.9):

capture: Store the current valuation of the specified property.
replay: Manipulate the valuation of the selected property.

The two interception steps capture and replay have two additional fields inher-
ited from IntStep (besides the other ModStep fields): p refers to a qualified prop-
erty and id holds a unique capture reference. The steps inherit the basic behavior
for triggering, execution, and completion from ModSteps, but they can only be per-
formed in ZET mode. Hence, the constructor functions for capture and replay set
zet = true. The effects are specified by two rcCompleteEffect equations per step,
which match depending on whether the corresponding property is an input or an
output. The interception step capture(p, ref, c, h) stores the current valuation of the
qualified property p = C.P.pp in the storage of the node-local agent. Reference ref
is used to retrieve the value later. RcHook h and CycleSpec c determine the timing of
the step. When executed, the current valuation is taken from the inputs or outputs

2Even though this calculation would be done by engineering tools, a more comprehensible bounds-
indication should cover all the relevant resources (e.g. CPU, network, and memory). For the scope of
this thesis we project all resources to eta, though.

4.2. Reconfiguration Consistency 105

class IntStep | p:QQid, id:Qid.
classes CaptureStep ReplayStep < IntStep < ModStep .

eq capture(C.P.PP,I,rel N,H)
= <CaptureStep| todo, node:_, eta:T, cycle:N, -abs, hook:H, zet, p:C.P.PP, id:I>.

eq replay(C.P.PP,I,rel N,H)
= <ReplayStep| todo, node:_, eta:T, cycle:N, -abs, hook:H, zet, p:C.P.PP, id:I>.

eq rcCompleteEffect(capture(C.P.PP,I), <A:Agent|> <C:AppContainer| inputs[TY P.PP]=V > REST)
= <A:Agent| storage[TY I]=V > <C:AppContainer|> REST.

eq rcCompleteEffect(capture(C.P.PP,I), <A:Agent|> <C:AppContainer| outputs[TY P.PP]=V > REST)
= <A:Agent| storage[TY I]=V > <C:AppContainer|> REST.

eq rcCompleteEffect(replay(C.P.PP,I),
<A:Agent| storage[TY I]=V > <C:AppContainer| inputs[TY P.PP] > REST)

= <A:Agent| iChk[C.P.PP]=y > <C:AppContainer| inputs[TY P.PP]=V > REST.
eq rcCompleteEffect(replay(C.P.PP,I),

<A:Agent| storage[TY I]=V > <C:AppContainer| outputs[TY P.PP] > REST)
= <A:Agent|> <C:AppContainer| outputs[TY P.PP]=V > REST.

LISTING 4.8: The definition of interception steps in Maude.

map of container C. The inverse operation replay(p, ref, c, h) sets or overwrites the
current valuation of the property p to the stored value referenced by ref. For exam-
ple, the button controller’s rising flank output can be captured and replayed with
one cycle offset using capture(◁btn-v1.btnPort.risingFlank, flank, 0, beforeOutputs) fol-
lowed by replay(◁btn-v1.btnPort.risingFlank, flank, 1, beforeOutputs). Output proper-
ties should be captured and replayed in the hook beforeOutputs. This ensures that
the captured output is the one resulting from the previous task execution in case of
a capture step. In case of a replay step, this ensures that the replayed output is ex-
tracted during the subsequent output processing phase directly following the hook
beforeOutputs. Input properties should be replayed in the hook betweenIO and cap-
tured afterInputs. Replaying in the hook betweenIO ensures that the replayed input
is not missed during input processing (because it is marked as received/provided
in iChk) and that the input is available within the container in the subsequent exe-
cution phase. Capturing in the hook afterInputs ensures that the most recent input
values are available within the container. However, please note that these hooks
are required in this platform-independent model, only. Depending on the platform-
specific implementation of capturing and replaying properties it might be necessary
to place interception steps in different hooks. In this case, the hooks must be given
in the platform-independent form to check the reconfiguration consistency as de-
scribed in section 4.2. Finally, we propose that replay steps should only be used to
fix broken chains, i.e., to provide values which are expected to miss (e.g. because
of blocking). For other use cases such as testing and fault injection we suggest to
define additional steps in future (e.g. drop, override, . . .), which enable detection of
erroneously missing inputs and outputs, for instance.

4.2 Reconfiguration Consistency

After specifying the individual reconfiguration step kinds the question arises: How
do we define and check the consistency and feasibility of reconfiguration plans?
During reconfiguration execution, the model transitions from the old/current to the
new deployment version in a transactional manner instead of an instant switch-over.
Thus, the runtime states on the different nodes do not continuously yield a valid
deployment in terms of section 3.3. Moreover, the consistency criteria must be re-
laxed sometimes to enable certain reconfigurations with state transfer – we refer to
this as temporary quality degradation (cf. [TK19b]). The reconfiguration consistency
checks described in the following must use a different, more operational definition

106
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

of correctness and feasibility, therefore. For this purpose, a valid (as of section 3.3)
design-time model (distributed embedded application, topology, deployment) and
a corresponding instantiation of the runtime model are needed with one (potentially
empty) reconfiguration plan for each node. Using the approaches described in this
section an engineer can then systematically analyze whether the composed recon-
figuration plan is valid. However, this analysis does not always result in a yes/no
decision: Especially for the design of reconfigurations which include state trans-
fer a structured quantitative analysis of the resulting quality degradation is needed.
Given this information the engineer can compare alternative reconfiguration plans
and decide which one best fulfills the potentially conflicting goals of ensuring con-
sistency, feasibility and reactivity during reconfigurations.

4.2.1 Correctness and Feasibility

The first task is to ensure that the modeled reconfiguration steps are correct. Regard-
ing the non-functional interface, the correctness of the eta field of modification steps
is critical. For restructuring steps (e.g. addSwc) and interception steps (e.g. capture)
these are platform- and MCU-specific constants that need to be identified once for
a concrete board using repeated measurements with different benchmark deploy-
ments. The durations of handover steps depend on the step kind and field values.
This was described in section 4.1 and is only briefly summarized here. The eta field
for dump and load must be at least equal to the declared values in the state interface
of the corresponding component. The steps dump and load are only supported by
components with implicit-state kind. The eta of the ‘copy’ operations extract, transfer
and inject depend on the worst-case size s (taken from the component’s state inter-
face) and the available I/O quota – if zet = true then the agent’s quota is used for the
step, or otherwise the quota of the background worker. Both must be overestimated
by platform-specific tables, which map state sizes and quota to WCETs. Additional
platform-specific throughput tables are needed to overestimate the eta of transmit
steps. This depends on the state size, the configured network bandwidth Madm and
also, on the CPU quota Qbg of the background worker. Examples for such measure-
ments can be found in Section 6.1.3 and in [TK19b]. The eta fields of the lifecycle
steps are not critical: They are aligned using coordination steps, so the eta field is
only used for simulation purposes and to estimate the duration of the reconfigura-
tion. Coordination steps are assumed to take no time (ZET assumption).

For the remaining analysis we assume that the eta information is set in this way
and, thus, correctly reflects the execution time of the steps. We can then achieve a
well-defined temporal behavior of multi-node reconfigurations with following basic
rules for reconfiguration plans: After each block of lifecycle steps there must be a
block of coordination steps on all nodes which shall synchronously run a block of
modification steps afterwards. The coordination steps must be defined according
to the synchronization protocol, if multiple nodes are involved. Otherwise, an ab-
solute or relative single-node coordination step must be specified before a block of
modification steps. Absolute offsets (i.e., waitForCycle and <ModStep| abs: true>) are
only allowed at the beginning of the reconfiguration plan, i.e., before lifecycle steps
or synchronization protocol steps are used. As lifecycle steps are performed one
after another in the background container and due to the subsequent coordination,
their durations are irrelevant for the consistency of the reconfiguration. To handle
their non-deterministic timing, we group synchronous blocks of lifecycle steps and
of modification steps and sort the blocks by their preceding synchronization point.
Blocks of reconfiguration steps happen synchronously on the involved nodes if they

4.2. Reconfiguration Consistency 107

FIGURE 4.10: An illustration of synchronous and parallel blocks of reconfigura-
tion steps. Blocks are synchronous if they have absolute cycle timing or if they are
aligned using the handshake. Only synchronous blocks of modification steps can

consistently create reconfiguration effects, which impact other nodes.

are placed directly after a handshake (synchronization protocol) or start at the same
time due to their absolute cycle offsets. All other blocks are timed relative to the
synchronous blocks, but without any further guarantee of timing, i.e., the blocks are
partially ordered. Figure 4.10 shows an overview of the partial ordering of tempo-
rally unaligned blocks relative to the synchronous blocks.

The logical consistency of the reconfiguration plans now basically depends on
whether the reconfiguration steps fit to the runtime situation at the time of their
planned execution. Note that the different aspects described in the following are
already incorporated in the model in section 4.1, but not all consistency require-
ments are explicitly tethered with the reconfiguration steps (e.g. schedulability
when adding a component). To ensure the consistency of the distributed embedded
application during temporally independent blocks of reconfiguration steps, such
blocks must not create an externally visible reconfiguration effect. Therefore, only
backwards-compatible modifications are allowed in such blocks, i.e., changes w.r.t.
network-mapped properties are inhibited except for adding receivers of already ex-
isting messages. For example, no coordination across nodes is needed, when a run-
ning software component can be replaced with a completely compatible new ver-
sion without downtime. But if the new component version uses different types for
network-mapped properties (i.e., properties required or provided by components
running on other nodes), then such a reconfiguration cannot be done in temporally
independent blocks of modification steps – most likely it would lead to incompat-
ible communication partners. To check whether the reconfiguration steps fit to the
runtime situation at the corresponding time, we have to lock-step walk through the
reconfiguration plans and ensure that the current runtime model fulfills the require-
ments of the specific reconfiguration steps. For lifecycle steps the following basic
consistency requirements (i.e., preconditions) apply (see section 4.1.2):

• download(meta, c): An image for meta exists in the component repository and
no component instance c exists on the node.

• start(c, quota): No container for c is running, yet. The quota becomes relevant,
when the component is activated (see addSwc).

• stop(c): The container for c is running, and there is no active task or ongoing
reconfiguration of c.

• destroy(c): The container for c exists and is stopped.

For modification steps some general consistency requirements must be met, first.
If zet is false, then the job is sent either to the background container or to the corre-
sponding app container (in case of dump and load). There must not be an active task

108
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

or another ongoing reconfiguration step in the corresponding container between the
time of triggering a modification step and the time it is completed. This restric-
tion ensures that the temporal bounds of the reconfiguration steps can be calculated
from the container’s quota and the step’s eta, only. As described before, such a mod-
ification step then completes and provides the corresponding reconfiguration effect
within n cycles, n = ⌈eta/quota⌉. While this leads to bounded time, it does not utilize
the temporary quiescence during reconfiguration hooks. Thus, only handover steps
may be performed in background (with additional constraints as described below).
For restructuring steps and interception steps the reconfiguration plan description
language ensures this by setting zet = true. These steps are then performed within
the administration phase, so we have to ensure that not too many steps are planned
for each cycle. Subsequent modification steps within the reconfiguration plan of one
node are planned for the same cycle, if their cycle attribute is equal. This is inde-
pendent from abs and hook. For each sequence of modification steps planned for
the same cycle, the subset of modification steps with zet = true are contemporary –
they are executed during the same administration phase on the same node. For each
such set RCzet of contemporary reconfiguration steps, the sum of the steps’ eta must
be less than or equal to the allocated time for the adminitration phase WCETadm:

∑
step∈RCzet

eta(step) ≤ WCETadm

Provided that these general requirements are met, following specific consistency
requirements (i.e., preconditions) apply to the modification steps. For better read-
ability we only include the parameters important for the reconfiguration effect. Note
that these preconditions are incorporated in Maude rules and equations in section 4.1
and can be checked by simulation as described later in this section.

• addSwc(c): Component instance c is deactivated but its container is running
and there is enough free CPU space for its quota on the corresponding node.

• rmSwc(c): Component instance c is activated.
• addMsg(k, m, size, devroute, devpeer): No message m exists. The two devices

devroute and devpeer exist. In case of a local message (k = local) both must be
equal and refer to a network interface of the local node (in the agent’s ifs set).
Otherwise (k ∈ {ingress, egress}) only devroute is a local network interface, while
devpeer must be a network interface directly connected to devroute. There must
be enough bi-directionally guaranteed bandwidth left on the corresponding
network connection.

• rmMsg(k, m, size, devroute, devpeer): Message m must exist on the local node and
must not be used by a communication mapping.

• addCom(d, p, m): The property p and message m exist, m’s size is sufficient for
the additional property, and its kind matches the direction d and the interface
of p (required/provided). No such mapping exists, yet.

• rmCom(d, p, m): Such a communication mapping exists.
• addIO(d, p, ι): No I/O mapping exists for ι and the software ports match.
• rmIO(d, p, ι): Such an I/O mapping exists.
• dump(c, d): Component instance c is deactivated, but its container is running.

No other reconfiguration step is performed by c as of the bgm of the agent.
• load(c, d): Like dump, but additionally, the StateDump artifact d must exist

within the container of c.

4.2. Reconfiguration Consistency 109

• transfer(c1, d1, c2, d2): Containers for component instances c1 and c2 must exist
(but can be stopped or running). The StateDump artifact d must exist within
the container of c1.

• extract(c, d, dc): The container for c must exist with StateDump artifact d inside.
• inject(dc, c, d): The container for c must exist and StateDump d must exist in the

node-local storage.
• transmit(c, d, n): If d ̸= null then a StateDump d must exist within the container

c. Otherwise d must exist in the node-local storage. There must be a valid oSync
message for inter-agent communication with node n on the sending node and
an iSync message on the receiving node, as well as on intermediary nodes.

• capture(c.p.pp, r, h): The container for component instance c with port p and
property pp must be running. If pp is a provided property, then the reconfig-
uration hook h should be set to beforeOutputs or betweenIO (platform-specific).
In this case c must have been active in the previous cycle. If it is a required
property, then h should be afterInputs or betwenIO (platform-specific).

• replay(c.p.pp, r, h): Like for capture, c and pp must exist. If pp is a provided prop-
erty, then h should be beforeOutputs or betweenIO. If it is a required property,
then h should be betweenIO or afterInputs. After replaying a required property,
c should be activated to use the value. Provided properties should only be re-
played when c had been deactivated in the previous cycle. A captured value
for r with the appropriate type for pp must exist within the node-local storage.

To ensure that the state artifacts required by handover steps will exist at the
scheduled time, we have to consider the timing within each synchronous block of
modification steps. For implicit-state components, dump must be completed (as of
its temporal bound) before the StateDump can be moved using extract, transfer or
transmit. This basically applies to all chains of handover steps which gradually
‘move’ a state. For instance, a transmit step must be completed before the transmit-
ted StateDump can be injected to the component on the receiving node. Additionally,
we have to consider the dataflow consistency of the evolving distributed embedded
application. During the reconfiguration, each activated software component must
continuously receive new (w.r.t. maxAge) input values for their required properties
(either from a sensor, from another component, or via a replay). All provided proper-
ties mapped to an actuator or message must also hold their refreshmentPeriod (either
by the activated task or via a replay).

All these consistency aspects can simply be validated by simulation using
Maude: The pre-conditions of the reconfiguration steps are specified in the corre-
ponding rules, so the rules only match when the pre-conditions are fulfilled. Addi-
tionally, the model is constructed using mte functions so that time cannot pass if an
applicable rule must be applied (as of its trigger condition specified by mustRc). This
also applies to CPU and network scheduling as well as to system management tasks
beyond reconfiguration steps during the administration phase. Thus, we can check
the consistency and feasibility of a reconfiguration plan and of the resulting new de-
ployment with a simulated run of the reconfiguration. If the simulation hangs at any
time because progression of time is inhibited, then the reconfiguration plan or the
new system are inconsistent or not feasible. The engineer can then inspect the trace
of the simulation and check the agent states and find out what prevents further pro-
gression of time. If the agent hangs in a reconfiguration hook, then because the step
at the head of the node-local reconfiguration plan must be applied, but its precondi-
tion is not fulfilled. If the agent hangs in input or output processing, then an input
or output is missing or duplicated, which can be seen in the iChk and oChk maps. In

110
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

this case the engineer can check the trace or the resulting runtime model configura-
tion to break down this issue. For instance, the reason for a missing output probably
is that the corresponding task did not complete its cycle (e.g. because it was not ac-
tivated, because the container was started with too little quota, because the state was
inconsistent, . . .). An input can be missing if the message could not be transmitted
in time or because no corresponding mapping was created. All these issues can be
revealed by a hanging simulated run, either because the reconfiguration would not
be completed or the resulting system would not work. Thus, a reconfiguration plan
and the resulting deployment are consistent and feasible if the simulation reaches
the end of the reconfiguration plan and then successfully completes one end-to-end
simulation (i.e., covering the resulting distributed control system’s wcrt). Please note
that this consistency check only covers the functional and non-functional aspects of
the distributed control system itself; the technical process requirements are beyond
the scope of this thesis (e.g. reachability of hazards).

4.2.2 Quality Degradation

Two kinds of temporary quality degradation of the distributed control system
may be needed to achieve consistency of the dataflow while performing a time-
consuming state transfer:

• Delayed reaction: The worst-case reaction time from measured inputs to cal-
culated outputs might temporarily exceed the wcrt limit specified by the dis-
tributed embedded application.

• Temporary blindness: Measurable events in the technical process could be
missed due to temporary blocking.

Quality degradation is possible even when the reconfiguration plan is consis-
tent and feasible as defined before. It could be completely avoided by inhibiting
reconfiguration plans, which would (temporarily) break data processing and trans-
mission chains (i.e., which remove I/O mappings, modify a path from sensors to
actuators, or patch a path with capture and replay). However, this would make many
distributed control systems non-reconfigurable because state transfer can take time.
Therefore, we describe how to analyze the reactivity during reconfigurations using
the evolving dataflow graph (EDFG). An engineer can then decide whether the re-
sulting temporarily degraded reactivity is acceptable. We construct the dataflow
graph by sweeping through system execution during a synchronous block of recon-
figuration steps time at specific instants, i.e., in reconfiguration hooks (when recon-
figuration steps are triggered or completed) and between them (when the model is
well-defined). Thus, there are six instants in each cycle in which we add nodes and
edges to the dataflow graph: Before output processing, during output processing,
between output and input processing, during input processing, after input process-
ing and during execution. The graph construction procedure described below starts
before output processing at the synchronization point in relative cycle n = 0 and
sweeps through the six instants of all cycles until the reconfiguration block is com-
pleted. During reconfiguration hooks we add nodes and edges for the dataflow
caused by the applicable handover steps and interception steps. During output pro-
cessing, input processing and execution, we add nodes and edges for the dataflow
caused by the system execution itself according to the current runtime model at the
given instants. All nodes are labelled with the cycle to distinguish between cyclic
data points at different times. Additionally, edges are weighted with time, so the
path lengths from sensors to actuators represent the current reaction times.

4.2. Reconfiguration Consistency 111

FIGURE 4.11: Schematic visualization of the nodes (cf. table 4.1) and edges poten-
tially added to the evolving dataflow graph during construction.

node description

c.Sn the combined state of component c at the beginning of cycle n (including
ground state and internal state)

c.dn state dump d of/for implicit-state component c created/available in cycle n
N.dn

c extracted state dump d of component c available on node N in cycle n
▷mn

N network message m received on node N for processing in cycle n
◁mn

N network message m sent from node N in cycle n
mn

N local message m on node N in sent and received in cycle turnover n
▷c.p.ppn input for required property pp of component c, port p in cycle n
◁c.p.ppn output for provided property pp of component c, port p, available in cycle n

(i.e., calculated in cycle n− 1)
rn

N capture entry created/available on node N in cycle n
sn

N input of sensor s on node N in cycle n
an

N output for actuator a on node N in cycle n

TABLE 4.1: Short description of the nodes within the evolving dataflow graph.

Figure 4.11 shows a schematic overview of the nodes and edges in the evolving
dataflow graph. The nodes and edges related to the normal application dataflow are
basically equal to the non-evolvable dataflow graph described in section 3.3. How-
ever, the nodes are labelled with the cycle and the nodes and edges are only inserted
conditionally, i.e., depending on the state of the runtime model at the correspond-
ing instants. We are constructing the graph for a synchronous block of modification
steps during system execution. If this block is at the absolute cycle n = 0 then we
add nodes for the initial inputs, outputs, and states (in fact, a start-up reconfigu-
ration must be employed as described in section 4.3.4). Otherwise, the data from
the previous cycles is available and we add them to the initial graph for the rel-
ative cycle n = 0: For each stateful component c we add a state node c.S0 for its
initial state resulting from the previous execution phase. For each input message
m ↦→ I ∈ ingress on MCU N we add a reception node ▷m0

N representing the data re-
ceived during the previous execution phase. For each provided property ◁c.p.pp of
a component c ∈ swcs we add an output node ◁c.p.pp0 representing the task outputs
from the previous execution phase. After initializing the graph in this way, we add

112
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

the application dataflow according to the actual model states, as they are subject to
change by modification steps. In each output processing phase, we add nodes and
edges for the active output mappings in oMap. We add a new bridge node mn

N for
each provided property ◁c.p.pp, which is mapped to a local message m ∈ local on
MCU N in cycle n. We represent the dataflow of by an edge from the output node
◁c.p.ppn to the bridge node mn

N with weight 0. Similarly, we add a new sending node
◁mn

N for each provided property ◁c.p.pp, which is mapped to an outgoing network
message m ↦→ I ∈ egress on MCU N. The dataflow is represented by an edge from
output node ◁c.p.ppn to sending node ◁mn

N with weight 0. For each provided prop-
erty ◁c.p.pp mapped to an actuator a ∈ actuators in cycle n we add an actuator node
an

N and an edge from output node ◁c.p.ppn to an
N . The weight of such an edge is set

to the refreshmentPeriod declared by the I/O port. In the input processing phases,
we add nodes and edges for the active input mappings in iMap. For each required
property ▷c.p.pp mapped to a sensor s ∈ sensors in cycle n we add a sensor node sn

N
for the sensor input, an input node ▷c.p.ppn for the component input and a dataflow
edge from sensor node sn

N to input node ▷c.p.ppn. The weight of such an edge is set
to the maxAge declared by the I/O port. We add a new input node ▷c.p.ppn for each
required property ▷c.p.pp mapped to a local message m ∈ local on MCU N in cycle
n. The dataflow of the local message is represented by an edge from bridge node mn

N
to input node ▷c.p.ppn with weight 0. Similarly, we add a new input node ▷c.p.ppn

for each required property ▷c.p.pp mapped to a network message m ↦→ I ∈ ingress
on MCU N. The dataflow is modeled by an edge from reception node ▷mn

N to input
node ▷c.p.ppn with weight 0. In the execution phase of cycle n, we represent the
dataflow for the calculation in each active task by adding following elements. We
add output nodes ◁c.p.ppn+1 to represent the output data of each provided property
of each component c ∈ swcs. Then for each pair of required and provided proper-
ties of an active component c ∈ swcs we add an edge from input node ▷c.pa.ppi

n to
output node ◁c.pb.ppj

n+1 to model the dataflow caused by calculating the outputs
from the inputs. If component c has declared a ground state or an implicit state,
then we add a state node c.Sn+1 and dataflow edges from the ‘old’ state node c.Sn to
the ‘new’ state node c.Sn+1 as well as edges from input nodes ▷c.pa.ppi

n to the ‘new’
state node c.Sn+1 and from the ‘old’ state node c.Sn to each output node ◁c.pb.ppj

n+1.
All these edges have weight period because the calculation takes one period of locical
execution time. If a stateful component is deactivated, then we only add an “aging”
edge from the ‘old’ state node c.Sn to the ‘new’ state node c.Sn+1 with weight period.
Additionally, we add nodes and edges for the network communication during the
execution phase. For each activated hop from MCU N1 to N2 of each network mes-
sage m we add a reception node ▷mn+1

N2
and a dataflow edge from sending node

◁mn
N1

to reception node ▷mn+1
N2

. Such a hop is activated during an execution phase
if the agent on Ni has m in its egress map, the agent on N2 has m in its ingress map,
and both maps point to directly connected network interfaces (they are consecutive
in m’s path). This is the case if m has already existed or has been added with addMsg
(not been removed) on both nodes before that execution phase. As the transmission
takes one cycle of logical execution time, the weight of this edge is also set to period.

Besides the normal application data flow, there is additional dataflow caused by
handover steps and interception steps. For each capture(c.p.pp, r) step applied in cy-
cle n we add a capture node rn for the capture entry. If pp is a provided property,
then we add an edge from output node ◁c.p.ppn to capture node rn. If it is a required
property, then we add an edge from input node ▷c.p.ppn to capture node rn. The
weight of such an edge is 0. For this analysis, capture steps for provided properties
must be placed before output processing and capture steps for required properties

4.2. Reconfiguration Consistency 113

must be placed after input processing, even if platform-specific realizations require
different hooks as described before. For a replay(c.p.pp, r) step we add an edge from
capture node rn with weight 0. If it is a provided property, then the dataflow edge
goes to output node ◁c.p.ppn. As the component must be deactivated in this case it
is ensured that this node is only reachable via the replay edge. If a required property
is replayed, then the edge goes to input node ▷c.p.ppn. Again, this node must be
reachable via the replay edge, only, which in this case is ensured if there is no active
mapping for that input during input processing in cycle n. Next, we consider the
handover steps. For each transfer(c1, d1, c2, d2) step triggered in cycle n we add an
edge from the ‘current’ dump node c1.dn

1 of implicit-state component c1 to the ‘fu-
ture’ dump node c2.dn+k

2 of implicit-state component c2 (representing the StateDump
d2 of component c2 in cycle n + k). The parameter k depends on how long the step
takes. If zet is true, then we set k = 0, because the step is completed within the re-
configuration hook in cycle n. Otherwise we set k = ⌈eta/quota⌉, which is the bound
as described before. This models the property that the transferred state is available
for c2 after the step completed in background k cycles later. Therefore, the weight of
such an edge is k · period. This applies to the following steps, too, whenever k is used.
If c1 is a component with ground state kind, then the transfer edge starts from state
node c1.Sn instead of dump node c1.d1, because in this case the StateDump belongs
to the ground state. For the same reason, if c2 is a component with ground state
kind, then the transfer edge goes to the ‘future’ state node c2.Sn+k instead of dump
node c2.dn+k

2 . For each extract(c, d, dc) step on node N in cycle n we add a new dump
node N.dn+k

c and an edge from the ‘current’ dump node c.dn to the ‘future’ dump
node N.dn+k

c . Again, if c has ground state kind, then the edge starts from state node
c.Sn instead of dump node c.dn. For each inject(dc, c, d) step on node N in cycle n
we create a ‘future’ dump node c.dn+k for the injected StateDump in cycle n + k and
add an edge from the ‘current’ dump node N.dn

c to the ‘future’ dump node c.dn+k.
If component c is a ground state component, then the edge goes to the component’s
‘future’ state node c.Sn+k instead of a dump node c.dn+k. For each transmit(c, d, N2)
step on node N1 in cycle n we create an edge from the ‘current’ dump node c.dn

(or the extracted dump node N1.dn, if c = null) to a new dump node N2.dn+k repre-
senting the ‘future’ dump available on the receiving MCU N2. Again, if c is a ground
state component, then the edge starts at its ground state node c.Sn instead of a dump
node c.dn. For each dump(c, d) step we create an edge from c’s (internal) state node
c.Sn (resulting from cycle n− 1) to the ‘future’ dump node c.dn+k. In turn, for each
load(c, d) step we add an edge from the dump node c.dn to c’s ‘future’ (internal) state
node c.Sn+k in cycle n + k. In case a ground state or implicit state of component
c is modified by load, inject or transfer, no “aging” edges are created from the state
nodes c.Sn over c.Sn+i to c.Sn+k during the execution of the step, because the state is
overridden. Finally, for each dump node dn and each capture node rn we add ‘copy’
nodes dn+1 and rn+1 at the end of each cycle and “aging” edges between them with
weight period. Finally, note that this graph construction ignores the possibility that
state objects with the same name can be created multiple times. For this analysis, re-
configuration plans must thus be transformed by renaming state dumps and capture
entries so that each of them is only written once.

The resulting evolving dataflow graph can be used to quantify the quality
degradation: The worst-case reaction time can be calculated for each cycle by taking
the maximum length of the shortest paths from each sensor to each actuator in the
corresponding cycle. The engineer can then see for how many consecutive cycles the
reaction time would be too high (compared with the requirements of the distributed
embedded application) if the reconfiguration causes delayed reaction at all. The

114
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.12: The general platform-independent reconfiguration timing template
for restructuring and interception steps. The most straight-forward timing is to
add everything in the logical cycle turnover (betweenIO) just before the first execu-
tion, and to remove everything in the logical cycle turnover after the last execu-
tion. However, restructuring steps can be placed at three equivalent reconfigura-
tion hooks and in non-equivalent hooks if required for a specific reconfiguration.

duration of temporary blindness can be calculated from the number of consecutive
cycles in which no path exists from a sensor to an actuator. The quality degrada-
tion of a reconfiguration plan could be plotted, for instance, in line charts showing
the reaction time and blindness per each cycle and flow. The visualization of the
evolving dataflow graph itself could look like in figure 4.15 in a simplified form.
Chapter 6.1.2 includes evolving dataflow graphs and quality degradation analyses
for different reconfigurations of the onBtnSwitch system.

4.3 Reconfiguration Blueprints

The reconfiguration model described in the earlier sections is based on rather small
atomic reconfiguration steps. In general, it is a complex task to create a valid recon-
figuration plan for any given scenario without any guidance or systematic approach.
Thus, we provide a few reconfiguration blueprints and approaches to create recon-
figuration plans for selected fundamental scenarios.

4.3. Reconfiguration Blueprints 115

4.3.1 General Reconfiguration Timing Template

We provide a reconfiguration timing template showing how a software component
can be added for exactly one cycle to then remove it again (see Figure 4.12). The
template shows in which cycles and reconfiguration hooks the reconfiguration steps
can be placed in the reconfiguration plan relative to the desired execution cycle to
achieve a consistent reconfiguration. It can be used to create a consistent reconfigu-
ration plan by allocating the add* and rm* steps to corresponding cycles and recon-
figuration hooks for each addition and removal of software components, including
temporary blocking. As of the reconfiguration model, there are three equivalent re-
configuration hooks for restructuring steps, which lead to the same reconfiguration
effect on the distributed embedded application. For addSwc and rmSwc the three
hooks of each cycle are equivalent (if no other step depends on the SWC state), as
the new state becomes effective only at the end of the administration phase, when
the agent triggers the activated tasks. For addCom, rmCom, addIO, and rmIO, the
three hooks between each input processing phase (for inputs) or output processing
phase (for outputs) are equivalent, because the addition or removal of these map-
pings becomes effective only in the next corresponding input or output processing
phase. For addMsg and rmMsg, we would like to achieve the same equivalence, so
that we can add a message just before adding a communication mapping to it, and
remove a message just after removing the last communication mapping from it. The
current model requires the mapping to be present at network transmission time, so
as a current limitation for network messages, only the hook beforeOutputs works for
outputs and afterInputs for inputs. However, this limitation does not apply in the
platform-specific realization described in the subsequent Chapter 5, and we want
to reduce the complexity for reconfiguration designer. Therefore, we describe the
template assuming that all three hooks work equivalently.

The most straight-forward timing from reconfiguration designer perspective is
to put all add* reconfiguration steps in the logical cycle turnover (betweenIO) just be-
fore the cycle in which the component should be running for the first time (cycle 1
here). Of course, the component needs to be started before, which is not covered in
the template, as well as any required coordination steps and handover steps. Simi-
larly, it is most straight-forward from reconfiguration designer perspective to put all
rm* reconfiguration steps in the logical cycle turnover just after the last cycle of the
component (cycle 2 here). This preferred timing is thus highlighted in the template.
However, it may not be straight-forward to support this in the platform-specific net-
work stack. For example, remote inputs would arrive throughout the previous cycle
(see the orange rcv box), before we would schedule addMsg and addCom by the agent.
Still, the packet must be accepted even though no message information has yet been
created for it. After adding the message and mapping and after input processing
(the yellow box), in case only afterwards packets from the previous cycle are further
processed, the message and mapping must still be considered valid for the packet,
even though the packet’s timestamp is earlier than when the message and mapping
were created. Therefore, the platform-specific model must implement a logical add
time, which is not ‘now’ but the logical start time of the desired cycle 0 (indicated
by the green bar on the left). The same three-equivalent-hook model must be ap-
plied to removal, too. For the remote input example, the remove operation is called
only during cycle turnover 2, but must lead to dropping of any inputs for that now-
obsolete message and mapping after the logical removal time of cycle 1 as indicated
by the red bar. If, instead, rmMsg is scheduled afterInputs in cycle 1, depending on
the platform-specific realization, the message information might still be kept in a

116
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.13: Reconfiguration blueprint for updating a single software component
to a compatible new version using the “straight-forward” timing from the timing
template: Both the rm* and add* steps are placed in the turnover between the last

active cycle of the old version and the first active cycle of the new version.

removed state until cycle 2, so that it will exist at transmission time.
A few additional constraints are indicated in the template. Network messages

and corresponding communication mappings must be added and removed so that
the cycles on sender side are at least one cycle earlier than on receiver side due to
the transmission delay (exactly two cycles if the preferred timing is used). This is
elaborated more in section 4.3.3 on updating DAG-style applications. For local mes-
sages, both sender and receiver are mapped to the same message, which is thus only
created and removed once for both. In case capture/replay is used, the correspond-
ing message and communication mapping must be in place. The template shows
the possible instants at which these steps could be used relative to that one-cycle
lifetime of the software component. Capturing of inputs could be done in an earlier
cycle, e.g. cycle 0, to then replay the input just before running the task. This might
be necessary if the input provider is blocked temporarily or already removed. For
the same reasons, it might also be necessary to capture the input which is processed
in the single cycle for replaying it later. It might even be necessary to capture the
input which would be processed just after deactivating the component, e.g. in case
this component is blocked for some reconfiguration consistency reason. Outputs are
captured only after active cycles of the component, and can be replayed later after
removing the component. For these options, the messages and mappings need to be
added and removed at different times as indicated in the template, too.

4.3.2 Minor Component Updates

Figure 4.13 shows a blueprint for the most basic reconfiguration: A compatible up-
date of a single software component without state transfer. In such a case, no time
consuming handover steps are required and no effects on other software compo-
nents need to be considered. Thus, the rm* and add* steps can be allocated to a single

4.3. Reconfiguration Blueprints 117

cycle turnover to replace the software component and all it’s communication rela-
tionships according to the timing template. The agent will trigger the new version
instead of the old version starting from cycle 2 in the figure, due to the rmSwc and
addSwc steps. For I/O-mapped inputs, the agent will still apply the old mapping
during input processing in cycle 1 and apply the new mapping in the input pro-
cessing phase of cycle 2, just after rewiring with rmIO and addIO. The I/O-mapped
outputs of the old version are still valid during output processing in cycle 2, as they
are replaced only afterwards. The new mappings become effective in the output
processing phase of cycle 3. Input properties mapped to local messages are handed
to the old container during input processing in cycle 1. The orange br boxes show
the corresponding bridge messages from the Maude model, which model the packets
while logically in transit between co-located containers. Before the input processing
phase of cycle 2, the communication mapping is changed by rmCom and addCom
steps. If the local messages need to be changed (e.g. quota changes), rmMsg and
addMsg steps must be used at the same time, in addition to reconfiguring the com-
munication partner, too. During the subsequent input processing phase in cycle 2,
the local message outputs from the previous cycle (or replayed messages) are now
handed to the new version as input. For local outputs, the rewiring takes place just
after the last output processing phase for the old version. The outputs are thus still
available as bridge message for co-located receivers during input processing in cycle
2. The first outputs of the new version are produced during cycle 2 and are pro-
cessed according to the new mappings in the output processing phase of cycle 3.
Network-mapped properties are rewired in the same cycle turnover, according to
the timing template. For remote input messages, the rcv Maude message received
during cycle 0 is handed to the old version as input during input processing phase
in cycle 1. After rewiring, the message received during cycle 1 is handed to the new
version in the input processing phase of cycle 2, instead. Finally, the output proper-
ties of the old version, which are mapped to network messages, are released during
the output processing phase in cycle 2 for the last time. They are transmitted to the
receivers’ nodes during cycle 2 (in case the message is reconfigured, note the current
timing limitations of the model explained in section 4.3.1). After rewiring, the out-
put mapping of the new version is first processed during output processing in cycle
3 and sent to the remote receivers.

Thus, it is a consistent reconfiguration which replaces the software component
without changing the structure of the dataflow graph. However, many steps are allo-
cated to one cycle turnover, if there are many inputs and outputs. As reconfiguration
steps take some time (modeled by their WCET, e.g. 1 ms), it might be necessary to
move some of the steps to some of the equivalent reconfiguration hooks in another
cycle so that the agent does not exceed its maximum execution time (indicated by
the grey areas). If the state of the old version must be transferred to the new version,
the blueprint can still be used if we can achieve the state transfer under ZET assump-
tion. This is the case for ground-state components, the ground states of which are
fully compatible, and small enough, so that we can use extract and inject or transfer
in addition to the restructuring steps during the administration phase in cycle 2. See
INDIN-1 in section 6.1.2 for an application example in the onBtnSwitch system. The
blueprint can not be used without adaptations if the state is too large and needs to
be transferred in background, or if the components only have an implicit state which
needs to be processed with dump/load in addition. In this case, a gap between the rm*
and add* steps must be left, in which none of the two versions is active, and in which
the handover steps are performed. For some cases, these gaps can be compensated
or even reduced by further, more complex reconfiguration means (see section 6.1).

118
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

4.3.3 Updating DAG-Style Applications

We describe an approach to consistently update multiple components in distributed
embedded applications, which have a directed acyclic dataflow graph between the
components. This approach can be applied if the structure of the dataflow graph
is preserved, i.e., there exists an isomorphism between the graphs before and af-
ter the update, where the weights of the mapped edges are equal. This is the case
if all components are replaced on the same nodes along with their communication
relationships over the same paths. Minor component updates should be done in
independent synchronous blocks of reconfiguration steps, if possible, as described
in section 4.3.2. If the application structure remains, but the message structure or
semantics change in a non-backwards-compatible way, those communication part-
ners have to be replaced synchronously. Thus, the first step is to identify the dis-
joint subsets of components, which have to be updated synchronously, based on
compatibility-breaking interface changes. For instance, if an output type at a com-
ponent is changed from an integer to a floating-point number, and the receiving
component’s input type is adapted to this change, then these two components must
be updated synchronously. Obviously, these subsets must be merged transitively, so
that if components c1 and c2 must be replaced synchronously, and c2 and c3 must
be replaced synchronously, too, then all three components must belong to the same
synchronous subset {c1, c2, c3}. In the extreme cases, all components of a distributed
embedded application must be replaced synchronously, or all components can be
replaced independently. For each identified subset, we create a synchronous block
of reconfiguration steps in the reconfiguration plans for the corresponding nodes.
Then we plan restructuring steps so that the components are replaced consistently
with the dataflow timing. The replacement for each component ci is initialized ac-
cording to the minor update blueprint: We put all the rm* steps for removing the old
version and all the add* steps for adding the new version in the hook betweenIO in
one cycle nci (equivalent hooks may be chosen for the individual steps at the end, if
needed). Following constraints exist for the replacement offsets nci to consistently
maintain communication relationships during the update:

local messages: the replacement cycle ns for the sending component s must be one
cycle before replacing the receiving component r in cycle nr.

network messages: the replacement cycle ns for the sending component s must be
two cycles before replacing the receiving component r in cycle nr (or: one more
cycle for each additional transmission cycle in case of multiple hops)

To assign replacement offsets to each component, choose a component ci, which has
no message inputs in the subgraph, and assign an initial offset nci = 0. Then for
each receiver cj of a message from the selected node, assign ncj = nci + 1 in case
of local messages, and ncj = nci + 2 in case of network messages (or in general,
ncj = nci + 1 + k for k transmission cycles). Continue with one of the nodes for
which an offset was assigned and which has unhandled receivers or senders. For
its receivers, assign the offsets in the same way. For its senders, assign offsets in
the opposite way, i.e., by reducing the offset by k + 1 for k transmission cycles. This
can be repeated until all components in the weakly connected subgraph have offsets
assigned. Finally, if n is the smallest offset assigned, we add |n| to all offsets nci so
that the first replacements are planned for offset 0 after the synchronization point
(this fixes the case n < 0). Figure 4.14 shows a blueprint for a synchronous recon-
figuration of three software components SWC1, SWC2, and SWC3. The components
SWC1 and SWC2 are co-located on node1 and there is a sender-receiver relationship

4.3. Reconfiguration Blueprints 119

FIGURE 4.14: Reconfiguration blueprint for updating a DAG-style application. The
individual component replacements are done with the minor update blueprint. The

offsets of the replacements are calculated from the communication graph.

SWC1→ SWC2. Component SWC3 is located on node2 and there is a sender-receiver
relationship SWC1 → SWC3. The three components can be updated consistently as
follows, if only the corresponding old and new versions are compatible. Accord-
ing to the rules of the reconfiguration approach, SWC1 is replaced at offset 0 from
the synchronization point. SWC2 is replaced one cycle later in cycle 1 due to the
local message and SWC3 two cycles later due to the network message. Effectively,
the outputs of the old version of SWC1 are processed by the old versions of SWC2
and SWC3 due to the deterministic communication timing. The outputs of the new
version of SWC1 are processed by the new versions of SWC2 and SWC3. As other
communication relationships beyond the synchronous subgraph remain compatible,
they work with any of the versions of SWC1, SWC2, and SWC3.

This approach guarantees a consistent update without quality degradation for
stateless DAG-style distributed embedded applications. If state transfer is required
and the corresponding components have ground state kind, then the same timing
can be used with additional handover steps extract, inject and transfer, if they can be
used under ZET assumption. The timing of the update must be adapted if the state
becomes too large for this (as of the analysis described in section 4.2). Adaptation is
also needed, if one of the steps transmit, dump or load is required or if a state must
be transformed by an update package component. As semi-systematic approach for
this, we propose to start with a reconfiguration plan as of this blueprint and add the
handover steps, which can be done under ZET assumption. Afterwards, the remain-
ing handover steps are added one after another, starting with the first replaced com-
ponents, shifting the replacement offsets of components “behind” according to the
caused delay in the dataflow. When replacements are shifted, inputs are missed and
outputs may be missing at other components, so the shifts must be handled either by
blocking or by patching the broken dataflow with capture/replay or with temporary
update package components. In such cases, the impact on other software compo-
nents beyond the selected subgraph must be considered, too. Figure 4.15 shows an
example, in which the state of SWC1 needs to be dumped, while the remaining steps
to transfer the state to the new versions can be done in the cycle turnovers before ac-
tivating the new versions. We calculate the number of cycles k = ⌈eta/quota⌉ needed
for the dump operation according to the analysis. We then insert this step into the re-
configuration plan and shift the replacement cycles of components “behind” SWC1
by k, recursively. In this case, if dump needs one cycle (k = 1), then the new replace-
ment offset for SWC2 is cycle 2, and cycle 3 for SWC3. Three transfer steps are used
during the replacement cycles under ZET assumption. As SWC1 is blocked while

120
Chapter 4. Reconfiguration of Distributed Embedded Applications during

Operation

FIGURE 4.15: Example for an adaptation of the blueprint to transfer the states: due
to the time-consuming dump step at SWC1, the replacement offsets of SWC2 and

SWC3 are adapted and the broken dataflow is patched with capture and replay.

running the dump step, no output is produced and no input is available in that cy-
cle for SWC2 and SWC3. This broken dataflow is patched with capture and replay
steps in this example. Note that all components may have additional communica-
tion relationships, which must be considered during reconfiguration design, if any
quality-degrading adaptations of the blueprint are required.

4.3.4 Application Start and Stop

The initial start and the final stop of a distributed embedded application are spe-
cial cases of dynamic reconfigurations. When starting the application, it would be
possible that all nodes start their local application containers and then activate them
in the same cycle. This way, however, inputs from other components would not be
available in the first cycle. One way to handle this is to implement the component
in a way which can work around temporarily missing inputs. This might be a good
idea from a robustness perspective, but if this was our general approach for starting,
it would mean that we mandatorily require reconfiguration-related logic within the
component implementation, violating the desired separation of concerns (function-
ality vs. reconfiguration). Additionally, input-triggered tasks would not be possible
in this approach. Another way would be to provide predefined initial inputs from
outside via replay steps. In this approach, we would need an application-specific in-
put, while we want to keep the message contents transparent to the platform. This
could be provided by a captured output from the engineering environment, or could
be captured in an extended container start phase. At the moment, this is not sup-
ported in our approach, and it would also add more complexity and component
interface requirements.

We propose to start a distributed embedded application in the same way in
which it would be updated, only without removing old versions. For DAG-style
components, this can be done according to the blueprint described in section 4.3.3.
In the example shown in figure 4.14, after starting and synchronizing before, we
would add component SWC1 in cycle 0, SWC2 in cycle 1, and SWC3 in cycle 2. Using
this approach, no extra adaptation is needed, and all components get valid inputs
from their first cycles on. The I/O-mapped outputs of the components will not be
provided from the first cycle on, though. As the distributed embedded application
is just starting and has not provided a single output before, it should be acceptable.
The outputs must have been initialized and maintained safely during system start
before activating the components, anyways. If the distributed embedded applica-
tion has any cycles in the communication relationships, then this approach can not

4.3. Reconfiguration Blueprints 121

FIGURE 4.16: Example for starting a non-DAG application. Two co-located compo-
nents SWC1 and SWC2 with circular communication can be started with the DAG-
timing, if SWC1 can temporarily work without the non-arriving input b. The purple

lines show the walk through the graph leading to this timing.

be used in this pure way. We can still solve the cycle by considering which com-
ponent is robust against which missing inputs and for which we can provide initial
inputs from outside. If we initially ignore communication relationships for such in-
puts, because their non-arrival is acceptable, the distributed embedded application
can be transformed to a DAG-style application. For the resulting application we can
define the start sequence as described before, potentially providing outputs from
outside where needed. The ignored communication mapping needs to be added
according to the dataflow. To derive the exact offsets for adding the mappings, we
can think of the application as if the components with missing inputs were split,
so, the part receiving the real input would be added later. Or more precisely, we
seek for a parallel walk through the communication graph, in which we take each
edge (message) exactly once, and all outgoing edges of a visited node (component)
at the same time, so that only ignorable incoming edges are taken later. Each edge
leads to an offset increase of 1 for local messages and n for network messages with
n transmission cycles. When we first visit a component, it is activated and all non-
ignored communication mappings are added at the current offset. If inputs need to
be provided by the agent, the mapping is added at the same time and replay is used.
Otherwise, the communication mappings are added only when the corresponding
edge is used. Figure 4.16 shows an example for such a non-DAG application start.
State transfer is not needed in this sequence, as any initial state is loaded during
container start.

For stopping an application, the same approach could be used in general. How-
ever, if the application does not need to perform any stop control logic, we can just
stop the system at a specific time, which is the current approach. If some stop con-
trol logic is needed, the current model does not provide a means to align the timing
of the stop procedure within the application and the stop reconfiguration. In future
work, some degree of self-reconfigurability could be introduced to enable a stop in-
teraction between the application and the agent.

123

Chapter 5

Evaluation Platform: Real-Time
Container Architecture

We describe a realization of the runtime platform concepts modeled in chapter 3 and
chapter 4: The real-time container architecture. The architecture provides a refer-
ence solution, which executes and reconfigures distributed embedded applications
accordingly. Its main purpose is to show that the platform concepts are feasible,
especially with regard to the underlying goals and assumptions. We developed a
prototypical implementation to realize concrete control systems for demonstration
and evaluation purposes (see chapter 6). The architecture description provided by
this chapter is needed to understand the evaluation setup and results. In earlier
publications, we already described some parts of the architecture in a short and ab-
stract way. [TSK18] provided an overview of the technology stack and the main
routine without reconfiguration. [TK19a] described the initial reconfiguration ex-
tensions (without state transfer) and first measurements based on an older proto-
type. [TK19b] added the pieces related to state transfer. However, due to the strict
format requirements these publications had to fall short of a substantial evaluation
platform description. In this chapter, we therefore provide architectural details on
our prototype as far as they contribute to the understanding of the evaluation.

The structure of this chapter and the structure-related glue phrases are based on
the arc42 template [SH16] for light-weight architecture documentation. We first give
a compact overview of the platform aims (goals, requirements, and scope). Then
we describe the structural and behavioral concepts of the real-time container archi-
tecture from different angles. Finally, we outline relevant aspects of complementing
systems around the distributed control system, which are needed for its develop-
ment and operation.

5.1 Platform Overview

We briefly describe important problem-space aspects of the real-time container ar-
chitecture: Functional and non-functional requirements and scoping.

5.1.1 Introduction and Goals

The real-time container architecture prototype is a runtime platform for distributed
embedded applications, which calculate outputs from inputs in isochronuous tasks
(see figure 5.1). Its main purpose is to demonstrate and evaluate the platform con-
cepts developed within the scope of this thesis. Due to the limited scope, the cur-
rent architecture is only an initial break-through version, which does not address
all industrial requirements (e.g. security, compatibility to certain standards, . . .).

124 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.1: High-level system overview showing the purpose of the real-time con-
tainer architecture. Using our runtime platform, modular and distributed embed-
ded applications control the installed equipment consistently across the nodes. The
software components can be updated during operation by means of reconfigura-
tion plans. Logging and tracing features are provided for testing and evaluation.

However, the architecture addresses the substantial requirements of current and fu-
ture industrial control systems targeted by this thesis (especially isolation, temporal
determinism, and updating during operation). We have designed the platform con-
cepts and the concrete real-time container architecture with the goal that future work
can address more requirements and make the platform suitable for more and more
classes of control systems.

Requirements Overview

Table 5.1 shows an overview of the functional requirements from the end user’s
point of view. The main requirement is the possibility to setup the nodes of a dis-
tributed control system and then configure and run distributed embedded applica-
tions (eApps) on these nodes. For developing, demonstrating and evaluating the
real-time system it is required that the operator can retrace its functional and tem-
poral behavior by means of logging and runtime measurements.

ID Requirement Short Description

M-1 Setup nodes Install and configure the platform (including the
OS) according to the network topology.

M-2 Configure eApp
before operation

Describe an eApp so that the platform can
configure and execute it accordingly. Each node is
provided with a local view on the deployment
(extended by O-4).

M-3 Start and stop eApp Provide a simple method to start and stop an eApp
simultaneously accross nodes. Components may be
pre-installed (extended by O-1).

M-4 Embedded control
by eApp

Run embedded functionality given by an eApp, so
that orchestrated application-layer components can
control the equipment of a distributed system.

M-5 Reconfigure eApp
during operation

Perform dynamic reconfigurations based on
reconfiguration plans as described in chapter 4. The
plans and components may be pre-installed
(extended by O-1 and O-3).

5.1. Platform Overview 125

ID Requirement Short Description

M-6 Logging of platform
and eApp execution

Logs of the platform and eApps are accessible at
least after execution. Log levels are configurable
before start time.

M-7 Measure and report
real-time behavior

After execution of an eApp, measured CPU time
statistics (min, max, average) are available for the
cyclic administration routine, reconfiguration steps
and tasks, as well as drift and slack times.

O-1 Automatically
(pre-)install
components

Components can be pre-installed within M-2 and
M-5 based on an eApp configuration and/or a
reconfiguration plan. Otherwise, they are
downloaded dynamically by download steps.

O-2 Measure resource
consumption

The platform captures usage (min, max, average
per cycle) of CPU, memory and network by
platform- and application-layer components.

O-3 Dynamically roll-out
reconfiguration plan

Reconfiguration plans can be rolled-out during
eApp runtime. The plans are parsed in background
and then executed by the platform.

O-4 Overall deployment
description.

The complete distributed system can be configured
automatically for a specific eApp on a specific
topology from an overall deployment description.

TABLE 5.1: Functional requirements of the real-time container architecture. From a
user’s point of view the platform enables operation of a distributed control system.
M-* features are mandatory to enable the evaluation. The optional O-* features
provide significant improvements, e.g. in engineering efficieny and presentability.

Quality Goals

Table 5.2 shows the most essential quality goals for this evaluation platform. The
platform concepts have been defined to improve modularity, adaptability, reusabil-
ity and engineering efficiency of distributed control systems. However, this section
focuses on concrete quality goals for the real-time container architecture itself. They
result from the top-level goal to evaluate the platform concepts defined in chapter 3
and chapter 4 regarding their suitability for the requirements of real control systems.

ID Quality Short Description

Q-1 Performance The evaluation platform must support eApp periods of
100 ms (regardless of reconfigurations). Periods of 50 ms,
20 ms and even 10 ms are desired. The long-term goal is
1 ms. The platform overhead should be lower than 10 %
regarding CPU, RAM and network consumption per cycle.

Q-2 Time
behavior

The clocks and cycles must be in-sync on each node with
less than 1 ms drift for the complete runtime. All inputs,
outputs, tasks, messages and reconfiguration steps are
triggered and completed according to the defined timing
(see chapters 3 and 4).

126 Chapter 5. Evaluation Platform: Real-Time Container Architecture

ID Quality Short Description

Q-3 Isolation The software components shall be technically isolated, so
that they can only interact with their environment in ways
explicitly enabled (ports, APIs, . . .). It must not be possible
for a component to select or detect the communication
partner. The communication partners must be transparent
to a component – also during reconfigurations. Shared
resources must be restricted to the declared demand (CPU
quota: wcet/period, network quota: msgsize/bpp).

Q-4 Portability The platform must be largely agnostic about the technology
stack used by software components. Input/output handling
and task handling should be based on standard POSIX
features (e.g. sockets, signals, . . .) so that components can
use arbitrary programming platforms (C/C++, . . .) – at
least it should be easy to add support for a platform.
Porting the platform to additional MCU types should
require minimal modifications.

TABLE 5.2: The most essential quality goals of the real-time container architecture.

Stakeholders

This description of the real-time container architecture primarily aims at researchers
from academia and industry, who wish to better understand the platform concepts,
key design decisions, and the evaluation results presented in this thesis. As part of a
thesis it is not meant as material to convince product managers or customers to use
or further develop the platform. Even though we give a comprehensive overview
of the architecture, this is also not a manual for platform developers, users of the
evaluation prototype, or architects of other systems which may want to integrate or
support this platform in future.

5.1.2 Architecture Constraints

When developing a platform in a product context, there are usually many organ-
isational and technical constraints, which limit the architectural freedom. As the
platform concepts described in this thesis are rather novel and to some extent un-
conventional, we had to conduct this research largely decoupled from product de-
velopment. This opened up the design space, but lead to the constraints shown in
table 5.3.

ID Short Description

C-1 An independent prototype is developed instead of working on a product.
C-2 The concepts and evaluation results are published as part of academic

work, even though it is done in collaboration with Siemens.
C-3 The platform should be built on/for open products – favorably by

Siemens. This is a consequence from C-1 and C-2.

TABLE 5.3: Architecture constraints limiting the design space.

5.2. Runtime Platform Architecture 127

FIGURE 5.2: High-level system overview showing the scope of the real-time con-
tainer architecture prototype. The ‘full-stack’ DevOperator creates and rolls out dif-
ferent runtime artifacts and commands to define and run a prototypical distributed

control system.

5.1.3 System Scope and Context

An industrial control system and the runtime platform in particular are surrounded
by multiple other tools, systems and use cases. This includes tools for development
and monitoring, engineering and operation, as well as other control and supervi-
sory control systems. There are industrial standards for each of these interfaces, but
also proprietary and legacy solutions. For the scope of this thesis, we do not con-
sider compatibility with any specific neighboring system. Instead, we define and
integrate neighboring systems as needed (e.g. a development environment, a de-
ployment mechanism, . . .). Regarding the communication with sensors and actua-
tors, we only consider the equipment used during the evaluation (e.g. GPIO-based
field-level control). Thus, there are no obligations by neighboring systems.

Figure 5.2 shows an overview of the evaluation platform’s scope and context.
The prototype DevOperator acts as app developer, system engineer, platform devel-
oper and prototype operator. Using suitable component development systems, the
app developer creates executable software components along with software compo-
nent descriptions. The components are provided in a largely transparent bundle,
the container image. The platform developer uses the platform development system
to create the runtime platform binaries and operating system binaries (in this case
an OS image). The engineering system is used by the engineer to re-/configure the
platform for a specific deployment (see section 3.1.4) of the distributed control sys-
tem. It is also used by the operator to start, stop, and inspect the runtime prototype.
For these purposes, the runtime platform running on each MCU node must com-
municate with the engineering system. During operation, the platform components
on the different nodes setup and run the distributed control system in coordination
with each other. As part of this they manage the lifecycles of application-layer com-
ponents and execute reconfigurations based on given reconfiguration plans.

5.2 Runtime Platform Architecture

We describe the real-time container architecture from the solution-space point of
view. After an overview of the underlying solution concepts, we describe the build-
ing blocks of the real-time container architecture as well as their interactions and
their deployment. Then we elaborate on cross-cutting concerns such as the process

128 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.3: System overview showing the high-level subsystems of the real-time
container architecture prototype. In this section we focus on the details of Node X,

which represents one MCU in the distributed control system.

control, reconfiguration, communication, logging, and building/deployment. This
section focuses on the runtime platform (cf. Node X in figure 5.3). The subsequent
section 5.3 describes complementing subsystems on the engineering system.

5.2.1 Solution Strategy

For the design and implementation of the evaluation platform we made following
fundamental decisions:

Target System: We use SIMATIC IOT2040 devices as target systems and build an
OS image with minimal customizations based on the example image available on-
line [Sie18]. The example image is open and customizable and the yocto build can
easily be run in a build container using the kas tool. The IOT2040 is an edge device,
i.e., it has enough resources to run such a modern platform while it is still compara-
ble to field devices in industry.

Container Runtime: We use Linux containers (LXC) [Can22] as app execution en-
vironment on the target systems – one container per software component. The com-
ponents are deployed in individual, self-contained provisioning packages for func-
tional and non-functional isolation and to decouple their lifecycles. At the time of
this decision, LXC was the best choice regarding maturity, openness, API access, sys-
tem commit, availability on the target system and experience within the team. Other
OCI runtimes without interfering daemons should work as well (e.g. runc).

Orchestrator / Daemon (Agent): On each target system a custom real-time con-
tainer agent (agent) is employed (see section 5.2.2). It re/configures the system and
the application containers in coordination with each other and with the engineer-
ing system according to our runtime concept. The agent is implemented with C++
for best performance of the administration phase – especially of reconfiguration op-
erations. A background worker component is running in a dedicated cgroup for
resource control, but not within the more isolated LXC containers. We do not use
the available container daemons and orchestrators (LXD, Docker, Kubernetes, . . .),
because they do not support our runtime concepts for dynamic orchestration with
end-to-end determinism (especially the LET paradigm, the reconfiguration concept,
and the I/O handling). Some aspects like monitoring and container lifecycle man-
agement (excluding the synchronous reconfiguration) could be managed from those
existing tools in future work, though.

Scheduling: Four logical priorities are distinguished by our prototype: minor, nor-
mal, elevated, critical. The cyclic administration phase is executed by a dedi-
cated process scheduled with the policy SCHED_DEADLINE to ensure isochron-
uous invocation at highest priority (critical). The kernel should be patched and

5.2. Runtime Platform Architecture 129

configured for a fully preemptive kernel (PREEMPT_RT_FULL) to achive minimal
scheduling latency (planned). To run the containerized software components at
SCHED_FIFO, the kernel needs to be configured with RT_GROUP_SCHED enabled.
All application-layer components run at the same priority (normal) and share the re-
sources (CPU, memory, network) according to an agent-configured quota per cycle.
The cyclic task execution is aligned with the isochronuous tick using a sleep/sig-
nal approach: The components wait for a SIGINT signal before starting the next
cycle, which the agent sends to the active components at the end of the administra-
tion phase. This simplifies the scheduling requirements, but has to be done by the
components, actively. The background worker is scheduled like an application-layer
component (normal). The agent’s listener threads run elevated at SCHED_FIFO with
a higher priority than application-layer components and lower than the cyclic ad-
ministration phase. Supporting processes such as remote shells are scheduled at
minor priority (SCHED_NORMAL). If needed, they may be bandwidth-constrained
like the background worker.

Clock/Cycle Synchronization: Clock synchronization is done via Precision Time
Protocol (PTP), which is running on each node at highest priority. Additionally,
the agents align their isochronous administration phases and cycle counters with a
master agent as described in section 5.2.3.

Communication and I/O Mappings: Component communication is possible via
UDP or files (see section 5.2.3). The agent uses firewall techniques such as Network
Address Translation (NAT) to create the communication relationships for UDP. NAT,
network bandwidth control and alignment with the cycles are achived via a custom
‘barrier’ Qdisc. The barrier Qdisc keeps back messages until they are released by the
agent and enough quota is available. For the file-based communication, the agent
reads or writes specific files within the root file system of the components’ contain-
ers during the administration phase in order to move the contents according to the
communication- and I/O-mapping.

Reconfiguration Steps: Reconfiguration steps are implemented according to the
visitor pattern, which makes the agent open for new step kinds (see section 5.2.3).
The reconfiguration steps provide functions which modify the data structures and
the system state accordingly using the agent’s interface (see section 5.2.5).

Real-time Measurement: For measuring specific execution times with minimal
overhead, a custom stopwatch is built into the agent (see section 5.2.5).

Logging: Logging is configurable via rsyslog and via agent options (see sec-
tion 5.2.5). There are three setups: 1) For achieving the best performance, we turn off
rsyslog and any logging (eval). 2) For better insights of the time-critical system be-
havior during development we turn on rsyslog with a local-only configuration and
selected log levels (dev). 3) For collecting and plotting the logs (incuding runtime
statistics) on the engineering system during operation, we additionally configure
rsyslog for log forwarding (demo).

Re/Configuration Files: The agent uses Yaml-based configuration files and recon-
figuration plans given in a text-based RcPlan DSL (see section 5.2.5). This DSL looks
similar to the constructor functions used in chapter 4. The plans are converted to re-
configuration step objects by the background worker using an ANTLR-based parser.

Resource Monitoring: For resource monitoring during development, additional
optional components are used as needed, e.g. a cadvisor container and top.

130 Chapter 5. Evaluation Platform: Real-Time Container Architecture

Setup and Installation: Node setup, installation of the platform and pre-
installation of application-layer components are done by dedicated scripts. For now,
the container images and configuration files need to be created and deployed consis-
tently with the software component and deployment descriptions (see section 5.2.5).

5.2.2 Building Block View

We describe the static decomposition of the system on different levels of abstraction
across the hierarchy along with the important relationships.

MCU Node Overview

Figure 5.4 shows a whitebox overview of the architecture on one MCU. Table 5.4
gives an overview of the depicted building blocks. We use containerization as much
as possible to achieve the desired functional and non-functional isolation. Plat-
form components are trusted and need leveraged access to the system, so they are
put into privileged containers (e.g. they have full visibility of other components).
Application-layer components only get the access they need (UDP ports, I/Os and
files). The real-time container agent (agent) is the central runtime platform compo-
nent. It runs on each node and orchestrates the distributed embedded application
using the barrier component. The barrier hooks deep into the network stack to com-
patibly offer re/configurable firewall features: NAT, bandwidth control, capture/re-
play, and most importantly a certain traffic shaping functionality. Using the barrier’s
traffic shaping functionality, the agent can align the transmission of network packets
with the isochronuous period of the distributed embedded application. To also align
the I/O access with the period, the agent actively conveys the inputs and outputs be-
tween the containers and the drivers during the cycle turnover. The isochronuous
cycle alignment of the agents across nodes depends on the clocks, which are syn-
chronized via PTP using ptp4l [Coc20]. The node and the agent can be administered
from the engineering system based on SSH [YCB+13] (containerization planned). A
containerized background worker component on each node executes reconfigura-
tion steps in background as requested by the agent. The containerization of these
platform components helps to monitor and re/configure the distributed control sys-
tem without interfering with the embedded application. For the same reason, the
platform-layer components and their interfaces with the agent are designed with
the primary purpose to keep time-consuming and unplanned activities away from
the agent as much as possible.

FIGURE 5.4: The components involved on one MCU in the real-time container ar-
chitecture prototype (see table 5.4).

5.2. Runtime Platform Architecture 131

Name Responsibility

SWCs Cyclically compute outputs from their inputs and state.
Real-Time
Container Agent

Cyclically triggers the SWCs’ tasks and handles their inputs and
outputs. Re/configures the node-local components in
coordination with agents on other nodes.

Background
Worker

Performs reconfiguration steps in background, e.g. download a
container image (planned), start a container, . . .

System Logger Configurably handles log messages from the other components
providing high-resolution timestamps (ns).

I/O Drivers for read/write access to installed sensors and actuators.
Barrier Helps the agent to enforce the logical execution time paradigm

for socket communication through traffic shaping and NAT.
ptp4l Continuously synchronizes the system clocks of the nodes.
sshd Provides general administration access for development and

operation purposes via secure shell (SSH).

TABLE 5.4: Short explanations for the components of the runtime platform archi-
tecture overview (see figure 5.4).

Real-Time Container Agent

Figure 5.5 and table 5.5 show the components of the real-time container agent run-
ning on each node. The agents re/configure the system and the application contain-
ers in coordination with each other according to our runtime concept:

• Implement the logical execution time paradigm by processing inputs and out-
puts and triggering tasks at the specified isochronuous instants.

• Execute the required reconfiguration steps at the right times according to a
given reconfiguration plan.

A background worker component is running in an isolated cgroup (called construc-
tion container). It executes time-consuming steps in background on command of
the agent. The bidirectional communication between the agent and the background
worker is done asynchronously via ZeroMQ Pub/Sub [Hin13]. A dedicated listener
thread of the agent receives messages from the background worker. It accepts mes-
sages and puts them into a shared memory location (the agent state). Dispatching
of these messages is mostly done by the agent’s cyclic thread, while it performs the
cyclic administration phase. The same strategy is used for inter-agent communica-
tion, only that this (remote) communication is based on UDP. Consequently, such
messages can be lost. From a robustness perspective, this is a weakness of the pro-
totype, which must be addressed by future work (e.g. by repeating messages in
the synchronization protocol). Note that TCP alone cannot be used to solve this,
because the timing of inter-agent communication is crucial. As managing wrapper
around the mentioned agent components, the agent main component is added. It
can be launched via SSH and may launch remote agents via SSH, if this is config-
ured in the node configuration file (see section 5.2.5). Additionally, the agent main
component is responsible for starting and stopping the other local agent compo-
nents accordingly. The background worker is started as a separate process using
fork. The agent’s cyclic component and the listener are additional threads within
the main process’s context. Finally, the additional barrier component is started by
loading the corresponding kernel module. The agent’s main component stops these

132 Chapter 5. Evaluation Platform: Real-Time Container Architecture

processes and threads either on command or after a configurable timeout by setting
termination flags and sending cancellation signals. For re/configuration purposes,
the agent components communicate with the network stack and the barrier com-
ponent via netlink [SKKK03], a socket-based interface to kernel-space components.
GPIOs are accessed using the file-based sysfs interface [Ker21]: The agent’s cyclic
component copies the file contents between the specific files within the sysfs (under
/sys) and the application containers’ root file system (rootfs). The RAM-only file
system tmpfs is used within the rootfs and in host locations wherever the agent or
any other component works with files in time-critical paths. To trigger a cycle of a
software component, the agent sends the SIGINT signal to all processes within the
corresponding containers’ cgroups. Finally, we describe the communication of the
agent with the engineering system. It is basically implemented via file uploads and
downloads. Before starting the agent, the DevOperator creates the node configura-
tion file and the initial reconfiguration plan file on the target system. These files are
copied to the nodes via deployment scripts which use SCP. Additionally, container
images can be pre-installed via deployment scripts, too. During operation, further
reconfiguration plans can be downloaded to the target system in background. Re-
configuration plans are pushed by the engineering system via SCP, parsed by the
background worker and then added to the agent’s list. The same mechanism can be
used behind the scenes by the update management system described in section 5.3.3.
It is planned that container images can be pulled from a container registry within the
construction container. Table 5.6 shows an overview of the most important interfaces
of the real-time container agent.

FIGURE 5.5: The components of the real-time container agent (see table 5.5).

Name Responsibility

Agent Main Sets up the system and the other agent components and
terminates them according to the node configuration file.

Agent Cyclic Isochronuously performs the administration phase: process
outputs, process inputs, trigger tasks and perform/trigger
reconfiguration steps in-between.

Agent Listener Receives messages from the background worker and from
remote agents and updates the shared agent state accordingly.

5.2. Runtime Platform Architecture 133

Name Responsibility

Background
Worker

Performs reconfiguration-related operations in background:
start/stop components (download planned), transfer state, and
parse reconfiguration plans.

Barrier Helps the agent to enforce the logical execution time paradigm
for socket communication through traffic shaping and NAT.

TABLE 5.5: The components of the real-time container agent (see figure 5.5).

Name Relationship How Short Description

jobs Cyclic→Worker ZeroMQ Worker subscribes to agentpub topic.
results Worker→ Listener ZeroMQ Listener subscribes to bgworkerpub.
sync Cyclic→ Listener UDP Cyclic sends to listener port 31337.
trigger Cyclic→ SWC signal Cyclic sends SIGINT.
move Cyclic→ Barrier netlink Cyclic sends commands to the barrier

module via a NETLINK_ROUTE socket.
io/state Cyclic→ SWC rootfs Cyclic reads/writes the containers’ files.
gpio Cyclic→ I/O sysfs Cyclic reads/writes files under /sys.
pull Worker→ ES undefined Worker pulls container images (planned).
push ES→Worker SCP ES pushes RcPlan DSL files via SCP.

TABLE 5.6: The most important interfaces of the agent.

5.2.3 Runtime View

We describe concrete behavior and interactions of the components described before.
Not all use cases are documented here, because we only elaborate on selected, rep-
resentative scenarios, which are essential for understanding the prototype.

Agent Cyclic Routine

The agent cyclically performs the administration phase to manage the system execu-
tion. In essence, the agent’s duties are to enforce the logical execution time paradigm
and to perform dynamic reconfigurations. We formally specified this runtime behav-
ior in the previous chapters 3 and 4. The basic behavior (without reconfiguration) is
specified in section 3.2.3 and illlustrated by the corresponding figure 3.9. In the for-
mal specification, the agent actively extracts outputs from the application containers
and handles them according to the defined mappings. Then the agent actively injects
the inputs. Afterwards, the agent completes the administration phase by triggering
the active components’ tasks. In addition, there is a reconfiguration hook prior to
each of these sub-phases of the administration phase. The behavior of the agent
within the reconfiguration hooks is specified formally in section 4.1 and illustrated
in corresponding figure 4.3. In the formal specification, the agent checks the current
state of the reconfiguration plan and performs applicable actions as defined by the
corresponding reconfiguration step kind and parameters.

Listings 5.1 and 5.2 show a pseudo code overview of how the evaluation pro-
totype implements this behavior (cf. [TK19a]). The cyclic agent routine is executed
in a dedicated thread running with scheduling policy SCHED_DEADLINE (see system
start later in this section). This makes the cyclic agent routine the highest-priority

134 Chapter 5. Evaluation Platform: Real-Time Container Architecture

op doCycle:
if not healthy():

trigger fault reaction;

rcHook(beforeOutputs);

for each component c
put I/O-mapped outputs of c to driver;
move egress barrier;

rcHook(betweenIO);

for each component c
get I/O-mapped inputs of c from driver;
move ingress barrier;

rcHook(afterInputs);

for each component c:
interrupt processes of c;

LISTING 5.1: The cyclic agent
routine with three rcHook calls.

op rcHook(hook):
if rcPlan.isEmpty()

check new rcPlan;
return;

while !rcPlan.isEmpty()
RcStep step = rcPlan.front();

if step.isDone() // e.g. in background
continue with next step;

// Visitor pattern
if step.doesApply(Agent.this, hook)

step.apply(Agent.this);

if step.isDone()
continue with next step;

else
break; // e.g. continue later

LISTING 5.2: The reconfiguration
hook operation.

workload in the system and activates it at configurable isochronuous instants. Ad-
ditionally, these instants are aligned across nodes due to the system start routine
and continuous clock synchronization via PTP. All agents also have the same cycle
counter throughout the complete system lifetime. When activated by the scheduler,
the doCycle operation of the agent is called (see listing 5.1). The agent first checks the
health of the distributed embedded application by checking specific files _start and
_end within the container of each activated software component. The components
append the current timestamps to these files when starting and completing each cy-
cle. The agent uses these timestamps to gather runtime statistics via the stopwatch
component, but also to detect whether the components successfully complete their
tasks. Currently, this is only a monitoring feature and a placeholder for more mature
health checks and fault reactions to be enabled in future. After the health check, the
first reconfiguration hook is reached, which is implemented by the rcHook function
(see listing 5.2). In this hook, the agent may take additional actions at corresponding
times based on the reconfiguration plan. As indicated by the pseudo code, the agent
checks whether a new reconfiguration plan is available whenever the current recon-
figuration plan is empty. If this is the case, the new reconfiguration plan is parsed in
background as a supporting pseudo reconfiguration step. In a subsequent cycle, the
new plan is available as list of parsed RcStep objects and replaces the empty list. Each
RcStep kind specified formally in section 4.1 is implemented in a dedicated class de-
rived from RcStep in the same hierarchy as modeled in Maude (see figure 4.1). The
agent behavior is extended by each step kind according to the Visitor pattern: The
steps implement two functions doesApply and apply, which both take the agent as one
of the parameters. The doesApply function defines the timing (e.g. returns true if the
hook and cycle match the offset of a modification step) and the apply function per-
forms the step-specific reconfiguration actions (e.g. create a firewall rule, insert an
SwcInfo object in the list of active components, send a job message to the background
worker via a corresponding agent function, . . .). The Visitor pattern separates the re-
configuration aspects from the basic functionality of the agent and keeps the agent
extensible for new kinds of reconfiguration steps.

For output processing and then input processing (with a second rcHook call in

5.2. Runtime Platform Architecture 135

between), the agent goes through its list of software components. For each GPIO-
mapped output property of a component the agent reads the contents of a spe-
cific file within the container. Then the agent passes the file’s contents to the cor-
responding driver by writing to the corresponding sysfs files. GPIO-mapped in-
puts are processed in the inverse manner: The agent retrieves the current sensor
value from sysfs and writes it into a specific file within the container. The corre-
sponding sysfs files are mirrored to the container in a way which makes it possi-
ble to use the MRAA library [Cor18] within containers without access to the real
sysfs. Communication-mapped inputs and outputs are not processed individually.
Instead, the agent sends a move command message to the barrier qdisc instances
via netlink. The barrier module within the network stack then adapts the times-
tamp associated with the given ingress or egress barrier and releases all buffered
network packets with an older timestamp. Message traversal between components
is described more in detail later. The input processing phase is followed by a third
reconfiguration hook. Finally, the agent triggers the next cycle by sending an in-
terrupt (the SIGINT signal) to all processes within the containers of all active soft-
ware components. These processes are known from the containers’ cgroup files
/sys/fs/cgroup/cpu/lxc/<swc>/cgroup.procs. To align their cycles with this trig-
ger, the software components have to comply with the behavior described in the
following section.

Cyclic Task Execution

Software components are implemented, built, and deployed independently – the
deployment unit is an OCI container image together with an LXC configuration file.
An arbitrary programming platform can be used for component implementation
(C/C++, Python, JavaScript, . . .) as long as the resulting container is self-contained
and it implements the following behavior. Figure 5.6 illustrates this behavior regard-
ing the cyclic task execution of a ground-state component.

FIGURE 5.6: The cyclic task execution of a ground-state component.

A software component has one task which cyclically computes outputs from in-
puts. After initializing and before each cycle, the software component waits for a
SIGINT signal by the agent (e.g. using sleep or a comparable function, depending on
the implementation platform). Then the software component reads the inputs from
the corresponding files (for I/O-mapped inputs) and from the corresponding UDP
messages (for inter-component communication). If the component does have at least
one UDP-based input, it can also ignore the signal and instead only wait for the ar-
rival of the inputs. As the agent moves the ingress barrier of the container during
input processing before sending the signal, UDP inputs can arrive before the signal,
in theory. Most likely, UDP inputs arrive in the container after the signal, with a
minimal delay caused by parallel delivery of UDP packets at the beginning of each

136 Chapter 5. Evaluation Platform: Real-Time Container Architecture

cycle. Thus, the software component must join parallel input triggers before begin-
ning the task cycle itself: The signal and UDP packets must be taken in arbitrary
order regardless of intra-component multi-threading (e.g. if multiple listeners poll
for the different UDP inputs). If the component does not have UDP-based inputs, the
agent’s signal is the only input trigger. The component implementation should not
use time triggers to achieve a periodic execution, except if this is compatible with the
signal- and UDP-based task triggering. After receiving all expected input triggers,
the component writes the current timestamp to the _start file and computes outputs
and its new state based on the current state and on its inputs. If it is a ground-state
component, the state must be loaded from the component-specific state files in each
cycle and only after receiving the signal from the agent. At arbitrary instants during
task execution, the component can send UDP outputs and update the contents of the
files related to I/O-mapped outputs and the ground state. Due to the container and
the egress barrier the outputs are not visible to the outside of the component before
the next administration phase. After each completed cycle, the software component
updates its ground state (if applicable), writes the timestamp to the _end file within
its container and waits for the next signal by the agent. An additional heart beat
file _heart is used during initialization to indicate readiness of the component in
two steps. First, after the component is initialized, so the agent can enable real-time
priority for the container, and second, when the component successfully requested
real-time priority and is ready for the first cycle. As long as the agent does not send
a signal or move the ingress barrier, the component must not start another cycle.
The agent can stop the container after the last completed cycle using the SIGTERM
and SIGKILL signals. In addition to normal cyclic task operation, components can
implement the dump/load API: The agent can then alternatively send a dump or
load command to the container via a dedicated UDP port if this is supported by the
component (i.e., in case of an implicit-state component). In this case, the component
dumps or loads its internal state from or to the corresponding state files within its
container. This can take multiple cycles without any additional triggering by the
agent. During dump and load operations, no task triggers are provided by the agent
and the software component should not compute outputs from inputs. Only then
the complete quota of the container is used for dump/load and the state does not
drift while being processed.

Message Traversal between Software Components

Figure 5.7 shows how UDP is used for inter-component communication in compli-
ance with the logical execution time paradigm. The diagram shows two container-
ized software components deployed to different nodes. Component SWC1 is the
sender of an output message received by component SWC2 as input. SWC1 sends
the UDP packet with the computed contents after the agent on node1 triggers cycle
n via a signal. The packet is enqueued in the egress barrier installed as the qdisc of
the container’s virtual ethernet adapter eth0. In the output processing phase of cycle
n+1 the agent moves this barrier, so the packet is released from the queue. Through
a NAT rule in the egress barrier it is ensured that the packet is transmitted to node2
according to the communication mapping. The egress barrier also ensures that only
the configured number of bits per period are released. The packet is transmitted
during the execution phase of cycle n+1, redirected from eth1 to ifb0 by a mirred
filter and enqueued in the ingress barrier installed as the qdisc of ifb0. The agent on
node2 moves this barrier in the input processing phase of cycle n+2, so the packet is
released and redirected by another NAT rule at the ingress barrier to the container’s

5.2. Runtime Platform Architecture 137

virtual ethernet adapter eth0 via its pair device vethY. The packet is finally received
while in parallel the agent triggers SWC2 by sending the SIGINT signal and the UDP
packet is processed by SWC2 during cycle n+2. If SWC2 was co-located with SWC1
on node1, then the UDP packet would be enqueued to the ingress barrier on node1
within the same cycle in which it is released – in this example cycle n+1. The steps
5-7 in the activity diagram then happen one cycle earlier, so the packet is processed
by SWC2 during the execution phase of cycle n+1. Thus, this implementation is
compatible with the behavior modeled in the formal specification in section 3.2.2.

FIGURE 5.7: Schematic activity diagram showing how inter-component communi-
cation is conducted step by step.

Start Software Component in Background

We describe the interaction between the agent and the background worker at the
example of a start step. Three agent threads are involved (see figure 5.8): The agent
cyclic routine, the background worker, and the agent listener. The agent cyclic rou-
tine initiates the interaction during a reconfiguration hook in the administration
phase, if the next reconfiguration step is a StartStep. The apply function of this step
sends a start command containing the container name, its IP address, and the start
command to the background worker via a method of the agent. This command mes-
sage is transmitted to the background worker via the agentpub topic using ZeroMQ
ipc, i.e., via POSIX message queues. While the agent and the software components
continue their normal operation, the background worker receives the StartStep dur-
ing the next execution phase. Consequently, the background worker sets up and
starts the specified container: It configures tha ARP tables (to avoid ARP requests),
installs an egress barrier at the virtual ethernet pair device of the container and then
starts the software component using the given command. Then the background
worker waits until the software component indicates successful initialization via the
heartbeat file. Afterwards, the background worker assigns real-time quota to the
container and sends a SIGINT signal to the component. The component requests
real-time priority and indicates readiness via the heartbeat file, again. Finally, the
background worker sends a done message to the agent listener via the bgworkerpub
topic using ZeroMQ and waits for the next command message. The done message
also contains information about the newly started container such as the index of the
newly created eth0 network interface of the container. The agent listener updates
the agent’s data structure and marks the StartStep as done. The agent cyclic routine
recognizes the successful completion of this reconfiguration step during the next re-
configuration hook and continues with subsequent reconfiguration steps.

138 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.8: Sequence diagram of the interaction between the agent’s cyclic routine,
the background worker and the agent listener to start a container in background.

System Start

The distributed control system can be started by executing the real-time container
agent binary on the master node via SSH. Prior to this, all nodes have to be con-
figured and booted accordingly and the clocks must already be synchronized via
PTP to below 1 ms master offset. The agent first loads the agent configuration file
/etc/rtca/agent-config.yml. The first configuration item is the log level, which
the agent sets as configured. Then it detaches from the console using the daemonize
function (to reduce network traffic). Then the agent sets up its ZeroMQ topics for
communication with the background worker. The agent also initializes the I/Os as
needed. Afterwards, the agent parses the reconfiguration plan from the file refered
to by the configuration. If the agent is configured as master, it now starts the real-
time container agent binary on the slave nodes via SSH. Then the agent sets up the
system environment. In this step the agent loads the kernel module for the barrier
qdisc, initializes the netlink communication with the kernel’s network stack and en-
sures that the custom RTCA_BARRIER family is supported (i.e., that the agent runs on
a supported system).

The agent starts the agent listener in a new POSIX thread, which opens an ad-
min communication port and starts polling incoming intra- and inter-agent mes-
sages (UDP packets and ZeroMQ messages). The agent forks the background
worker, which moves to a dedicated cgroup, sets up its ZeroMQ topics, and then
starts processing incoming command messages. If the agent (back in the main pro-
cess/thread) is configured as master, it waits so that the agents on the slave nodes
are passed this point of initialization. The agent starts another POSIX thread for the
cyclic routine. To setup isochronuous cycles across nodes, this process first waits
for the next full second of the system clock using gettimeofday and usleep. Then
it switches the scheduling policy to SCHED_DEADLINE with the configured parame-
ters period, runtime and deadline. Afterwards, the agents synchronize across nodes to
identify a global first cycle: The master’s cyclic routine sends a start time message to
all slaves. All cyclic routines wait for the first cycle in which the start time is reached
and then synchronously switch to the system execution mode. To make this work,

5.2. Runtime Platform Architecture 139

the agents’ periods must be set to a fraction or multiple of a second, as this is cur-
rently the only supported time grid. In the system execution phase, the agent’s cyclic
routine performs the administration phase in each cycle as specified beforehand. In
the first cycle, no software component is running, yet. The distributed embedded
application now needs to be initialized according to the previously parsed recon-
figuration plan. In general, the initialization plan should start all components, then
synchronize across nodes and finally create the mappings and activate the compo-
nents (see the blueprint described in section 4.3.4). While the created processes and
threads continue to operate the distributed embedded application, the agent’s main
thread waits for triggers to stop the system. Currently, a fixed system execution du-
ration can be configured. Alternatively, the main thread stops the system in case a
termination request is issued by the DevOperator (effectively, a SIGTERM signal).

5.2.4 Deployment View

We describe the technical infrastructure used to execute the distributed control sys-
tem and the mapping of building blocks to that infrastructure elements. This view
only shows the decomposition on a single node, which are relevant for the multi-
node aspects. We do not specify a concrete deployment, but rather a deployment
and topology scheme, which must be instantiated for application use cases.

Network Topology

Figure 5.9 shows a topology with two MCU nodes and an engineering system node.
In general, the network topologies should consist of one engineering system and at
least one MCU. On the engineering node, all complementing engineering and mon-
itoring subsystems are deployed (see section 5.3), most of them running in Docker
containers (e.g. container registry, development container, log collector, SSH client,
dashboard server, update management server, . . .). The distributed embedded ap-
plication is running on the MCU nodes, only. We use SIMATIC IOT2040 MCUs,
which have an x86-based System-on-a-Chip (SoC) with 400 MHz and 1 GB RAM.
The root file system is provided by industrial-grade SDHC microSD cards with
32 GB. Besides diverse other interfaces, the IOT2040 has two ethernet adapters with
10 MBit/s: eth0 and eth1. Each MCU node is reachable from each other (directly or
indirectly) via eth1, the plant network for inter-agent and inter-component commu-
nication. The plant network is important for our platform concept: Components
must not be able to define communication relationships without communication
mappings from outside their containers and we must be able to bandwidth-control
the messages and reconfigure the routing/orchestration. The following network
scheme helps to make this possible in our evaluation platform.

The plant network has the network ID 192.168.0.0/16 and the network interface
eth1 is assigned the IP address 192.168.n.1, where n is the numeric identifier of the
MCU node (e.g. node1 has 192.168.1.1). Within each node, the LXC-based containers
are assigned IP addresses starting from 192.168.n.100 upwards (e.g. the first con-
tainer on node1 gets 192.168.1.100, the second one gets 192.168.1.101, . . .). These IP
addresses are assigned to the container’s virtual ethernet adapter eth0 (which is in
another network namespace than the host’s eth0). Outside the containers, the outer
interfaces of the veth pair device are enslaved to a virtual network bridge lxcbr0 on
each node, which have the IP addresses 192.168.n.2. The routes are configured so
that all outgoing traffic from within a container and all incoming packets to local

140 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.9: The network topology used if not stated otherwise: Two SIMATIC
IOT2040 MCU nodes are connected via ethernet over their eth1 interfaces. The con-
tainers on each node are reachable via a virtual network bridge lxcbr0. The master
MCU node1 is connected with the engineering system over its eth0 interface and

acts as gateway for administration communication with node2.

containers are sent via this local bridge as gateway. Such incoming packets are redi-
rected from eth1 and the outer veth devices to ifb0 based on their destination IP
address 192.168.n.2. On other nodes and outside of the containers, all traffic with
destination subnet 192.168.n.0/24 is sent via gateway 192.168.n.1. Note that our net-
working concept is complemented by the barrier qdiscs installed at the veth pair de-
vices of the containers and at ifb0: These qdiscs additionally apply NAT rules, which
modify the destination of the packets according to the communication mapping, and
shape the traffic accordingly (logical execution time and bandwidth control). Thus,
a packet’s destination is modified by the egress qdisc to the address of the target
node’s lxcbr0, and by the ingress qdisc to the address of the target container’s eth0.

Apart from the plant network, we use a separated administration network for
communication between the engineering system and the MCU nodes. During engi-
neering and configuration time and at least for starting the distributed control sys-
tem, the engineering system must be connected to at least one MCU node, e.g. the
master node. For monitoring the system and for triggering reconfigurations during
operation, the connection is needed as well. The administration network has the
ID 192.168.200.0/24 and the MCU nodes are assigned the IP addresses 192.168.200.n,
with the nodes’ numeric identifiers n. The engineering system has the IP address
192.168.200.100. Depending on the exact network topology of the use case, each
MCU node can be connected directly or indirectly – either via a switched adminis-
tration network or using SSH forwarding over the plant network. During system
operation the SSH bandwidth of the plant network must be throttled. Thus, the
variant with a completely separated, switched administration network to all nodes
is faster. However, the indirect approach does not only require less hardware, but it
also enables administration via a single direct connection to one of the MCU nodes,
only. When not stated otherwise, we use the indirect approach.

Plant Network Communication

Figure 5.10 shows the required plant network communication from the different
layers of the distributed control system. On system level, the PTP messages must

5.2. Runtime Platform Architecture 141

be exchanged between the MCU nodes at highest priority, while SSH-based com-
munication (starting slaves, downloading container images, . . .) should be strictly
bandwidth-constrained (planned). On the platform-level, UDP-based inter-agent
communication for the coordination steps and start-up synchronization is needed
rarely and on low volume but at high priority. Finally, the software components of
the application layer must communicate periodically with application-specific vol-
ume and paths within the plant network. This is implemented by following traf-
fic control concept: All application-specific communication is bandwidth-controlled
by the barrier qdiscs. The inter-agent communication related to coordination steps
and PTP are sent via unrestricted qdiscs. All other communication is enqueued to
Hierarchical Token Bucket (HTB) qdiscs, which throttle the throughput down to a
configurable quota (planned). The background worker is throttled down by a ded-
icated qdisc (planned) so that potentially ongoing monitoring communication does
not take away quota needed for time-critical state transfer operations. In this way
we can ensure that there is enough quota for the inter-component and inter-agent
communication. Note that this prototype does not use time slices, yet, which leads
to a higher probability that UDP messages are lost.

FIGURE 5.10: Remote communication over the plant network between two MCU
nodes: The Ethernet connection is basically shared by PTP and SSH in the system
layer, inter-agent communication in the platform layer based on UDP, SSH and SCP,

and UDP-based inter-component communication in the application layer.

5.2.5 Cross-cutting Concepts

We describe noticable additional aspects of the evaluation prototype, which cut
across the previous views and affect multiple parts of the system. To understand
the concept realization and evaluation results following aspects are most relevant:
How components, distributed control systems and reconfigurations are modeled (in
terms of description and configuration) and how the different reconfiguration steps
are implemented. While configuration might seem to be an unimportant side topic,
note that this is how the evaluation platform can be adapted to run a specific dis-
tributed control system. This aspect is crucial for our concepts, because – while all
the technical means are needed as basis and enablers – the platform configuration
is where we can finally leverage simplified integration, reuse, and reconfigurabil-
ity. Conceptually, the component description and configuration files are the link
between the design-time model and the runtime model. They provide an extract of
the design-time model information, so that the nodes and components can be con-
figured and operated accordingly at runtime. In the current prototype, these files are
not yet generated from a higher-level design-time model on the engineering system.
Instead, the DevOperator must create them accordingly on the corresponding nodes
and even run some setup commands manually.

142 Chapter 5. Evaluation Platform: Real-Time Container Architecture

Container Configuration

For each software component instance, an appropriate LXC configuration file is
needed on the corresponding node to configure the application container. Listing 5.3
shows a partial example for the ButtonController on node1 in the onBtnSwitch exam-
ple system. It refers to the rootfs folder (usually next to the configuration file), which
contains the executables and all auxilliary files of a component. The quota per fixed
period are configured as required by the component (e.g. by its wcet) – however, this
needs to be done by the background worker to control the instant at which real-time
priority is available (and these settings are not supported at least by the used LXC
version). Via the LXC configuration, a virtual ethernet pair device is partially con-
figured as described before in section 5.2.4. The remaining network configuration
aspects are done programmatically by the agent at reconfiguration time according
to the information within the reconfiguration plan (especially static ARP configura-
tion and barrier qdisc configuration). Note that the container configuration should
be done automatically by the agent at reconfiguration time, too. It is done manu-
ally (which is laborious and error prone) only because this has not been automated,
yet. When automating this in future, at least following two aspects must be con-
sidered: First, while most of the configuration entries can be seen as standard boil-
erplate, there are some differences depending on the programming platform (e.g.
python), so platform-specific templates are needed. Second, the configuration gen-
eration must be done in background.
/var/lib/lxc/button-v1/config
lxc.rootfs = /var/lib/lxc/button-v1/rootfs
lxc.rootfs.backend = dir
lxc.haltsignal = SIGUSR1
lxc.rebootsignal = SIGTERM
lxc.utsname = button

#lxc.prlimit.rtprio = 42 # set by bg worker
#lxc.cgroup.cpu.cpu.rt_period_us = 50000 # set by bg worker
#lxc.cgroup.cpu.cpu.rt_runtime_us = 10000 # set by bg worker

lxc.network.name = eth0
lxc.network.type = veth
lxc.network.link = lxcbr0
lxc.network.hwaddr = 00:16:3e:3a:01:01
lxc.network.ipv4 = 192.168.1.100/24
lxc.network.ipv4.gateway = 192.168.1.2

...

LISTING 5.3: Partial LXC configuration file for the ButtonController’s container.

Agent Configuration

Listing 5.4 shows an agent configuration file for adjusting the agent’s execution. Us-
ing the *logLevel entries the agent’s and the barrier’s log levels can be set according
to the syslog standard [Ger09] (e.g. 7 or LOG_DEBUG corresponds to debug-level mes-
sages). A termination trigger can be configured using the agentRuntimeSeconds entry:
In the given example the agent terminates system execution after 90 seconds. The
scheduling of the agent’s cyclic routine can be configured via three entries, which
correspond to the parameters of the SCHED_DEADLINE scheduling policy: period_ms
sets the duration of a cycle, runtime_ms sets the quota available for this routine per
period, and deadline_ms sets a deadline within the period. In this case, the agent
is configured for a 100 ms cycle with 10 ms reserved for the administration phase.
Though we want the deadline to be 10 ms after each isochronuous period begin
according to the runtime, we still set it to the full period to avoid any shifting of
the isochronuous ticks by the “replenishment” behavior of the scheduler. These

5.2. Runtime Platform Architecture 143

configurations should be set equally for all agents across nodes. Besides other,
minor configuration options not shown in this listing, the final relevant entry is
nodeConfigFilePath, which holds configuration options for a specific node in a spe-
cific network topology.

agent-config.yml
logLevel: 7
barrierLogLevel: 4
agentRuntimeSeconds: 90

sched_deadline:
period_ms: 100
runtime_ms: 10
deadline_ms: 100

nodeConfigFilePath: "node.yml"

LISTING 5.4: Essential parts of an agent configuration file.

Listing 5.5 and listing 5.6 show the node configuration files for the two nodes in
the onBtnSwitch example system. The nodeId entry sets the numeric identifier of the
node and implicitly its hostname. The agent on node1 is configured as master with
node2 in its list of slaves and the agent on node2 is configured as slave with node1
as its master. Consequently, the agent on node1 will start the agent on node2 and
determine the system start time. For configuring the network, the agent needs the
information about the node’s plant network IP adress and the IP adress of the virtual
ethernet bridge for the containers. Additional settings including agent-managed
GPIOs can be configured. Finally, a reconfiguration plan can be referred to via the
initialRcPlanFile. The agent loads the reconfiguration plan before system execution
and starts applying the steps in the first cycle. Only via such a reconfiguration plan,
the agent can be instructed to automatically launch a specific set of components at
system start time. If no initialization plan is specified, the agent idles until it stops
due to a termination trigger or until a dynamic reconfiguration plan is provided by
the engineering system. Thus, the agents are configured for a specific deployment
of a distributed embedded application via reconfiguration plans (see next section).

node1.yml
nodeId: 1
role: "master"
slaves: ["node2"]

eth1:
ip: 192.168.1.1

lxcbr0:
ip: 192.168.1.2

...

initialRcPlanFile: "start-obs.node1.rcplan"

LISTING 5.5: A master node
configuration file for node1.

node2.yml
nodeId: 2
role: "slave"
master: "node1"

eth1:
ip: 192.168.2.1

lxcbr0:
ip: 192.168.2.2

...

initialRcPlanFile: "start-obs.node2.rcplan"

LISTING 5.6: A slave configuration
file for node2.

Reconfiguration Plan Description Language (RcPlan DSL)

The agent can parse reconfiguration plans from an RcPlan DSL input using an Rc-
Plan Parser component. In essence each line in an RcPlan DSL file defines a reconfig-
uration step. Listing 5.7 and listing 5.8 show initialization reconfiguration plans for
the onBtnSwitch example system. They are referenced by the node configuration files
described before. The plans correspond to the reconfiguration blueprint for starting
a distributed embedded application (see section 4.3.4): After the application con-
tainers have been started, the two nodes perform a two-way handshake. Then they
synchronously start triggering the new components and processing their inputs and

144 Chapter 5. Evaluation Platform: Real-Time Container Architecture

start-obs.node1.rcplan
start "button-v1" "192.168.1.101" "button-client 2000" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addSwc "button-v1"
addGPIO "button-v1" "btnIn" "in" "63"
addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

LISTING 5.7: A reconfiguration plan to start the ButtonController component on
node1 installed as container button-v1.

start-obs.node2.rcplan
start "blink-v1" "192.168.2.100" "blink-server 2000" quota 10000

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

LISTING 5.8: A reconfiguration plan to start the LedController component on node2
installed as container blink-v1.

outputs along the dataflow of the distributed embedded application. The examples
show that the step definitions in the RcPlan DSL are similar to the constructor func-
tions in the formal specification in section 4.1.

RcPlan DSL files can be provided via the initialRcPlanFile configuration item at
system start time or dynamically from the engineering system. If the plan is pro-
vided at system start time, it is parsed during agent initialization prior to the first
cycle. Otherwise, this is done in background by the background worker on com-
mand by the agent cyclic routine like a reconfiguration step. The agent sends the
command if there is a new reconfiguration plan and the current reconfiguration plan
is done (see listing 5.2). After parsing, the background worker sends the parsed re-
configuration step objects to the agent listener one by one to minimize interference
with the embedded application. The agent listener appends the steps to a temporary
list, which becomes the reconfiguration plan after all steps have been appended. The
swap is done in the agent’s cyclic routine, so, no locking is needed for this procedure.

Reconfiguration Step Implementation

Table 5.7 describes how the reconfiguration steps are implemented in the evaluation
platform. Most steps directly comply with the formal specification in section 4.1. For
evaluation purposes, two additional steps loop and endLoop were added, so that we
can repeat reconfiguration plans (e.g. upgrade and downgrade multiple times) to
gather runtime statistics.

Step Implementation

loop Clears the rcLoopPlan list of reconfiguration steps and sets the
loopCount. While the loopCount is non-zero, all completed steps until
the end step are pushed to the rcLoopPlan list, except steps with the once
flag set (endLoop and waitForCycle).

5.2. Runtime Platform Architecture 145

Step Implementation

endLoop Decreases the rcLoopCount and if it is greater than zero it resets the
steps in the rcLoopPlan list (e.g. mark them as todo) and pushes them
back to the rcPlan list, effectively starting a new iteration.

notify Calculates a continuation cycle number cc, sends it to the agent listener
on the specified node via UDP and inserts an absolute wait step.

wait
(notify)

Looks up a matching synchronization message in the syncPoints list of
the agent. The message is pushed to this list by the agent listener after
reception. If the message is found, it is removed, an absolute wait step
is inserted, and the step is marked as done.

wait (abs) Marks itself as done as soon as the agent’s cycle counter matches.
wait (rel) Replaces itself with an absolute wait step based on the agent’s cycle.
download
(planned)

Sends a download command message (containing the image name and
the container name) to the background worker. The background
worker pulls the image from the container registry (not implemented,
e.g. tarball via wget, podman pull . . .) and sends a done message. The
agent listener marks the step as done.

start Sends a start command message (containing the container name, the IP
address the command to execute, and the quota) to the background
worker. The background worker sets up the required tmpfs-based
mount folders (e.g. the fake sysfs), starts the container via lxc-start,
waits until the container state is RUNNING and the heartbeat file
exists. Then it sets up the network namespace, statically configures
link-layer routing via lxc-attach and arp, and installs the egress barrier
qdisc at the inner veth device via tc. The worker assigns real-time
quota via the container’s cgroup files and signals SIGINT to the
container’s processes. When the heartbeat file is recreated by the
component, the worker finally sends a done message (containing the
indices of the veth pair device). The agent listener updates the
component state and marks the step as done.

stop Sends a stop command message (containing the container name) to the
background worker. The background worker destroys the egress
barrier instance, cleans up the namespace, and stops the container via
lxc-stop. After the container state changes to STOPPED the worker
sends a done message. The agent listener updates the component state
and marks the step as done.

destroy
(planned)

Sends a destroy command message (containing the container name) to
the background worker. The worker destroys the container via
lxc-destroy and sends a done message. The agent listener clears the
component record and marks the step as done.

addSwc Marks the component in the swcs list as RUNNING so it is triggered.
rmSwc Marks the component in swcs list as BLOCKED so it is not triggered.
addCom Creates a NAT rule at the right barrier via libnl and adds the property

to the component in the swcs list so the barrier is moved. The agent can
also set a logical addTime if needed (see section 4.3).

rmCom Deletes the NAT rule and the property from the barrier and swcs list. If
needed, the rule is only marked as deleted by setting the logical
rmTime (see section 4.3).

addMsg Stores the message info in the msgs list (used by addCom and rmCom).
rmMsg Deletes the message info.

146 Chapter 5. Evaluation Platform: Real-Time Container Architecture

Step Implementation

addIO Adds the I/O mapping information to the component entry in swcs so
it is processed. The agent must be pre-configured for the I/O.

rmIO Removes the I/O mapping information from the component entry.
extract Copies the file content from a container to the host using C++ iostream.

If zet flag is set, this is done directly within the reconfiguration hook.
Otherwise, the agent moves the step to the bgStep list (so it does not
block further steps) and sends an extract command message
(containing the container name and paths) to the background worker,
who copies the file and sends a done message.

transfer Copies the file content from one container to another one like extract.
inject Copies the file content from the host to a container like extract.
transmit Moves the step to the bgStep list and sends a transmit command

message (containing the container name and path, node and remote
path) to the background worker. The worker sends the file info and
contents to the agent port on the given node via UDP and sends back a
done message. The agent listener on the remote node creates the file on
reception. A redesign is planned to reuse existing solutions, but RCP
and SCP took too long for sending a small state within a single period.

dump Moves the step to the bgStep list and sends a dump command message
(containing a path within the container) to the component. The
component creates a dump file from its internal state without
additional triggers using the container’s quota (the task must be
blocked during this time) and sends back a done message.

load Like dump, but instead of dumping to the file, the component updates
its internal state from the given state file.

capture Depends on the mapping: For an I/O-mapped property, the I/O file
content is copied from the container to a file in the host. For a
communication-mapped property, a capture command is sent to the
barrier (containing at least the container name, the source/destination
port number, and a capture name). The barrier creates a capture entry
and will store clones of the matching network packets at dequeue time.
To stop capturing, the agent sends a stopCapture command at the start
of the next period. The agent sets a drop flag for inputs if the
component is blocked, so matching packets are captured and dropped.

replay Reverse operation of capture: For I/O-mapped properties, this copies
the contents from the referenced file to the I/O file within the
container. For communication-mapped properties, this sends a replay
command to the barrier, which enqueues clones of the captured
packets updating their timestamps.

TABLE 5.7: How the reconfiguration steps are implemented in the prototype.

Logging and Tracing

We describe how the prototype addresses the functional requirements M-6 (logging
of platform and eApp execution), M-7 (measure and report real-time behavior), and
O-2 (measure resource consumption). These features are essential for development,
demonstration and evaluation of the platform. However, as they influence the sys-
tem’s performance and temporal behavior, logging and tracing must be tailored to

5.2. Runtime Platform Architecture 147

the needs of a run.
The platform and application components provide human-readable log mes-

sages for debugging and parsable log information for the system monitoring dash-
board. An optional rsyslog daemon is running on each node. The agent sends log
messages to this daemon using syslog.h, i.e., via the standard unix domain socket
/dev/log. As described before, the log level is configurable at system start time via
the agent configuration file. The agent sets its own log level programmatically via
the setlogmask function. The barrier uses printk to log to the kernel log. The agent
sends the configured barrier log level to the barrier via netlink. The containerized
components log to stdout, which is redirected to a logfile configured by the agent
via the -L option of the lxc-start command. The log levels of an eApp or individual
components are not (yet) configurable via the agent configuration file, but the com-
ponent binaries support a --silent flag, which can be added to the start command
in the reconfiguration plan. The DevOperator can use the rsyslog configuration file
to define how log messages (from socket and/or file input) should be handled. De-
pending on the configuration, log messages may be collected locally under /etc/rtca/
and remotely on the engineering system. Log forwarding is needed for the system
monitoring dashboard and for the update management system. Table 5.8 shows the
logging setups used for different run types.

setup log forwarding log levels

dev as needed DEBUG
demo everything INFO
eval disabled ERROR

TABLE 5.8: Overview of the different logging setups.

For measuring the real-time behavior of the system, we use an additional stop-
watch component within the agent. The stopwatch measures the wall times needed
for specific code sections. It has a fixed reserved memory (i.e., numbers of measure-
ment series), which is allocated before the benchmarking. For one measurement,
the start and stop methods of the stopwatch must be called with the measurement
bucket identifier. The stopwatch then gathers two timestamps using gettimeofday and
stores them for later. Alternatively, the timestamps can be given by the caller, which
the agent does on behalf of the software components during the health check. The
statistics (count and duration min/max/sum_squared) are updated continuously
from the individual measurements and reported as part of the termination proce-
dure of the agent. This way they are automatically persisted locally and optionally
forwarded to the engineering system (logging of individual measurements is too
costly, though). If extended statistics are requested, the stopwatch also maintains
statistics for the drift from given start times and slack time to given deadlines. This
way the stopwatch measures the execution times of the administration phase steps
(health check, rcHook beforeOutputs, input processing, . . .), of the different recon-
figuration step kinds (addCom, rmCom, addMsg, rmMsg, . . .), and of the software
components’ tasks. We plan to extend the agent with resource monitoring features
to get a high resolution at lowest impact. For instance, we want to use the stopwatch
to measure the CPU time used for the different buckets, too. As long as this is not
fully implemented, tracing of resources can only be done with general tools built
into our custom Linux image. As an example: We use top [War20] to measure CPU
time and memory usage of the different processes. However, the resolution of top is
100 ms and there is no possibility to align it with the cycle.

148 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.11: Overview of the engineering system components used to develop
and operate distributed control systems using our prototypical runtime platform.

5.3 Complementing Systems

We describe the engineering system components complementing the runtime plat-
form in the real-time container architecture (see figure 5.11). Engineering system
components are also important for the proper execution of distributed control sys-
tems (besides the runtime platform itself): During development and engineering, we
have to ensure that model and implementation are correct and feasible (as described
in sections 3.3 and 4.2), while leveraging simplified integration. At operation time,
the engineering system components offer visibility and control over the distributed
control system and provide reconfiguration plans and container images to the nodes.
While these aspects are of highest importance for an industrial-grade platform, this
prototype only provides a minimum viable engineering system: Instead of integrat-
ing with common engineering and SCADA systems, we prefer more pragmatic solu-
tions to be able to conduct the evaluation and to demonstrate the platform behavior.

5.3.1 Application Development Environment

The application development environment is a subsystem on the engineering sys-
tem used to implement, build and package software components and to create dis-
tributed embedded applications from them. It is thus also the place for debugging,
testing, simulation and verification. Our main prototyping efforts were located in
the runtime platform layer and not in the application layer. Thus, the current proto-
type does not provide sophisticated solutions for all of the mentioned engineering
tasks. However, this description gives an understanding of our work and indicates
the potential of our platform architecture while pointing out what is really covered
in the prototypical realization.

Code Development: For developing both software components and platform com-
ponents we used Visual Studio Code with the Remote Containers extension and
language-specific development extensions (C/C++, Python). With these extensions
and an appropriate development container, software components can be imple-
mented on various programming platforms. For example, for C/C++ components
we used an Ubuntu-based Docker container with our yocto-based cross-build SDK
installed (GCC, GDB . . .).

Testing and Debugging: For black-box testing and debugging of software compo-
nents and eApps they must be executed on the real target system. To make this pos-
sible within a development container we will have to solve the simulation of I/Os,
the dependence of the runtime platform on the barrier kernel module or porting of

5.3. Complementing Systems 149

the barrier, and real-time scheduling within the development container. Lacking a
virtual runtime system it is difficult to debug the code by stepping through it: Even if
it was possible to pause the platform and all software components on a node consis-
tently with the real-time scheduling – in the real environment this disrupts the sys-
tem’s timing and thus its embedded functionality. Instead, we often used the debug
log messages created on the target system to locate bugs in the code. Of course, unit
tests can be done on the engineering system with language-specific means within
the scope of a component to test individual functions or classes. Usually, compo-
nents were developed without the runtime platform at first and then containerized
and used in a single-node test deployment to test the interplay with the platform
and equipment after integration with other components.

Simulation: The DevOperator can simulate the reactivity and the functional behav-
ior of a distributed control system using Maude as described in section 3.3. For this
task we also used Visual Studio Code and the Remote Containers extension together
with the Maude extension (for basic syntax highlighting) and a Docker container
with the Maude executables and our Maude model installed. To simulate concrete
systems and reconfigurations, the models of the concrete application, the reconfigu-
ration plan and the environment of the system are needed in addition to our runtime
model. The formal simulation does not fully replace execution of the real code with
simulated I/Os. However, the real-time system can be simulated accurately under
the assumption that the temporal bounds and component implementations were
modeled correctly.

Verification: Using the Maude model and the proposed dataflow graphs we can
formally analyze the correctness, feasibility, reactivity, and functional behavior of a
system as described in sections 3.3 and 4.2. Note that most of these analyses target
the structure of the model, only, because the state space of our model is too large
to run an LTL or TCTL model check in Maude in practice. The dataflow graph
construction and analysis must be done manually as of today – it is not automatically
constructed from the Maude model or configuration files.

Packaging: After successfully building a software component it needs to be packed
as a container image compatible with LXC. For this purpose, we use Docker: A
component-specific Dockerfile describes the container image (i.e., installation of
dependencies, cross-building with our Yocto SDK, adding configuration files, . . .).
Building and exporting it results in an OCI-compatible container image supported
by LXC on the target. Alternatively, simple components were also cross-built and
uploaded to the rootfs of a new container on the target created with lxc-create and
the busybox template, for example. In all variants, the corresponding LXC configu-
ration file is needed in addition. At the moment, it is not generated and thus needs
to be provided in addition. It must be consistent with the deployment (e.g. the IP
address), which should be solved by a generative approach in future.

5.3.2 System Monitoring Dashboard

For testing and demonstration purposes, we developed a system monitoring dash-
board based on the Elastic stack (Elasticsearch, Logstash, Kibana). Figure 5.12 shows
the basic architecture of this engineering system component. The rsyslog service
running on each MCU node forwards specific log messages to the engineering sys-
tem. Then the log messages are processed by a Logstash instance, which detects key-
value-pairs and adds them to the JSON objects representing the messages. These

150 Chapter 5. Evaluation Platform: Real-Time Container Architecture

FIGURE 5.12: High-level architecture of the system monitoring dashboard and the
log dataflow from the embedded system via the rsyslog service through the Elastic

stack components to the browser-based dashboard application.

objects are then stored in the Elasticsearch document database. Finally, Kibana is
used via a web browser to explore the logs using custom queries and to create and
view visualizations for them. Following visualizations were defined to visualize the
temporal behavior during a run of the prototype:

• The wall times (y-axis) needed for the different agent steps per cycle (x-axis)
as stacked bar charts (see figure 5.13).

• The wall times of the reconfiguration steps per cycle (x-axis) as stacked bar
charts. This also shows the absolute cycle numbers in which reconfigurations
were performed.

• The drift of the real cycle start times from the scheduled cycle start times in
milliseconds (y-axis) for each cycle (x-axis). This is primarily a platform devel-
opment metric and should always be close to zero if no error occurs.

These metrics show the temporal behavior of the runtime platform, but not
the application behavior. Application-specific visualizations could be added to the
dashboards as needed, e.g. to show the inputs and outputs of the system over time.
To gather such data, the applications must create log messages in the key-value for-
mat and their log messages must be configured for forwarding. Especially in demon-
stration use cases, such metrics can show that (or whether) the distributed control
system continuously works during dynamic reconfigurations. Obviously, 3D simu-
lations of the technical process controlled by the distributed embedded application
would greatly improve such demonstrations. However, these visualizations were
only conceptual or prototypical at most and will need to be worked on in future. For
development purposes, we used different command line monitoring tools via SSH
depending on the area of interest. The information from these tools should be added
to future monitoring extensions, too, for example:

• Monitor container states: watch -n1 lxc-ls -f

• Monitor full agent log, including component health and reconfiguration
progress: tail -f /etc/rtca/agent.log

• Monitor barrier via kernel log: dmesg -w

5.3. Complementing Systems 151

FIGURE 5.13: Screenshot of the system monitoring dashboard.

5.3.3 Update Management System

Today, launching a distributed control system and triggering reconfigurations is only
possible via command line. The agent is started on the master node via SSH and
pulls up the distributed control system according to the configuration. During op-
eration, reconfigurations can be triggered by sending reconfiguration plans to the
agents via a ZeroMQ interface, for which we have a small Node.js based client tool.
To make this more operator-friendly and less error-prone, we are working on an
update management system. We briefly outline our ideas to show how reconfigu-
ration complexity could be hidden from the DevOperator. According to the current
design, the update management system is basically a wrapper around the SSH so-
lution. First, it will need to show monitoring information such as whether it is run-
ning, the reconfiguration progress, and the state of the software components on the
different nodes. The states could be queried from the Elasticsearch component of
the system monitoring dashboard (see section 5.3.2). On top of that, the embedded
system and independent deployment units need to be started, stopped and updated
via corresponding UI widgets. In an event-based system, newly started software
components would dynamically find their communication partners via pub/sub, so
Kubernetes could be used, for instance. In the RTCA prototype, however, the dy-
namic wiring of the containers is more complicated (but also: under control and
time deterministic). Thus, the UI features for starting, stopping, and updating must
somehow lead to corresponding reconfiguration plans being pushed to the MCU
nodes instead of simple commands. For some reconfiguration scenarios covered by
a blueprint (see chapter 4.3), those plans could be generated automatically, e.g. for
updating individual components in a backwards-compatible way. However, we can
not derive consistent and reactive reconfiguration procedures for all update scenar-
ios, yet (consider state transfer leading to quality degradation). For more complex
changes to a running control system, manually designed reconfiguration plans will
be required. Section 4.2 elaborated on how such plans can be analysed regarding
consistency and reactivity. Features for this analysis should be integrated in the
update management system, too, because the DevOperator will sometimes need to
make a trade-off between consistency, reactivity, and evolvability.

153

Chapter 6

Evaluation of the Platform
Concepts and Prototype

Figure 6.1 shows how we evaluated our modeling and runtime platform concepts
using our Maude model (see chapters 3 and 4) and our platform prototype (see
chapter 5). On top of the platform we modeled and implemented the onBtnSwitch
example system and the CubeBot system. The onBtnSwitch system is a minimum vi-
able distributed control system first described in [TSK18]. Its simplicity minimizes
the application-specific efforts needed to model and implement it. We used it during
platform specification and implementation, as a running example, and for platform
evaluation. For this evaluation we used the onBtnSwitch system in different variants
and reconfiguration scenarios to gather runtime statistics about the platform. These
measurements indicate whether the platform concepts can be used in presence of
given requirements (e.g. period, reaction time . . .). Additionally, we performed a
complete round trip from model to running code for the onBtnSwitch system – in-
cluding reconfigurations. In this complete case study we can compare the simulated
system behavior with the real system behavior to identify whether the model is use-
ful to describe and analyze the real system.

The CubeBot system [HLL+22] is a smart factory showcase system, which has
more complexity within the application and uses more complex equipment. This
adresses the question whether our engineering and runtime concepts are suitable
for a realistic distributed embedded application. Primarily, we were interested to
see and show whether and to which extent more realistic technolgies expected in
modern automation can be used in compliance with our runtime concepts. Addi-
tionally, we evaluated whether the different engineering steps were decoupled as
proposed in chapter 3. The case study includes a reconfiguration scenario to also
evaluate the feasibility of our reconfiguration concepts for a realistic system. Thus,
the two case studies complement each other: Gathering runtime statistics and com-
paring the real system with the simulation was done with the onBtnSwitch system.
The suitability of our engineering and runtime concepts for real distributed control
systems was evaluated with the more challenging CubeBot case study.

6.1 Case Study: onBtnSwitch

The onBtnSwitch system was already introduced in section 1.2, as it was used as run-
ning example throughout this thesis. In essence, when a button on the first node
is pressed (rising flank), then the state of an LED on the second node should be
inverted (on/off). Many fragments of the corresponding model were used to illus-
trate the formal specification in the chapters 3 and 4. Thus, we only give a com-
pact overview of the model and implementation for the different variants of the

154 Chapter 6. Evaluation of the Platform Concepts and Prototype

FIGURE 6.1: Schematic overview of the evaluation.

FIGURE 6.2: Diagram of the abstract deployment for onBtnSwitch (cf. Section 3.1.4).

onBtnSwitch system and of its reconfiguration. Then we compare the model-based
simulation and the real execution of the prototype for the different variants. Af-
terwards we describe and evaluate the non-funtional properties of the prototype,
which we measured in a benchmarking variant of the onBtnSwitch system.

6.1.1 Model and Implementation Summary

For testing and evaluation purposes we defined different variants of the onBtnSwitch
system and used them together with different reconfiguration plans. Table 6.1 shows
an overview of the relevant setups for this thesis. The setups result from instantiat-
ing the different varation points of the onBtnSwitch system. One important varation
point is the selection of the component variants. The button controller and LED con-
troller are modeled and implemented with state kinds stateless, ground state and
implicit state. For the stateless variants we reuse the component implementations
from the implicit-state variants and simply discard their state during reconfigura-
tions. Each variant exists in two equivalent versions 1.0 and 2.0. The distributed
embedded application can combine each button controller with each LED controller.
However, from the 36 variants not all are relevant as starting configurations, as most
often both components are initially used in their version 1.0. If both components
have the same state kinds, these variants of the distributed embedded application
are called stateless, ground and implicit. In addition, we use a mixed starting con-
figuration, in which we use the components in their version 1.0, but with different
state kinds (button controller with implicit state, LED controller with ground state).
Besides the component variants, different variants of the topology and deployment
are possible. In this evaluation we only use the two-node topology with the corre-
sponding deployments (see Figure 6.2).

6.1. Case Study: onBtnSwitch 155

Setup Variant Reconfiguration

ICSA stateless* update both components without state transfer
INDIN-1 ground update button controller with ground state transfer
INDIN-2 implicit update LED controller with dump/load and

capture/replay
INDIN-3 mixed consistently add second LED controller on node1

using state anticipation
Benchmark mixed repeatedly update and downgrade both components

so that all reconfiguration steps are used many times

TABLE 6.1: How the different variants of onBtnSwitch are used in combination with
reconfiguration plans. *The ICSA setup reuses the implicit-state implementations.

Besides the (initial) system variants, the reconfiguration plans are important for
the different setups. In this evaluation, we do not trigger the reconfigurations dur-
ing runtime. Instead, we provide initialization plans which contain both the initial
steps required to launch the distributed embedded application and then the instruc-
tions for the “dynamic” reconfiguration. Table 6.1 shows five reconfiguration se-
tups based on the four static system variants. The ICSA setup uses the stateless
variant and updates both components synchronously without state transfer. This
setup is based on the original proposal in [TK19a] and its name refers to the cor-
responding conference. The setup INDIN-1 is based on the ground-state variant of
onBtnSwitch, while INDIN-2 uses the implicit-state variant and INDIN-3 uses the
mixed variant. Together with the corresponding reconfigurations, these setups are
based on the original proposal in [TK19b] (the names refer to the corresponding con-
ference, too). INDIN-1 updates only the button controller transfering its ground state
from the old version to the new one during a cycle turnover without blocking. In
INDIN-2 the LED controller is updated. This time, the implicit-state variant is used,
so dump/load is needed to transfer the state, which requires some blocking. To
patch the broken dataflow during the bounded downtime, the reconfiguration plan
also contains capture/replay steps. The more complex setup INDIN-3 demonstrates
how update package components can be used for state transformation. A second
LED controller is added on node1, so that button presses invert the LEDs of both
nodes. To ensure that the LED states are consistent while reducing the amount of
temporary blindness, the reconfiguration plan uses the aggregator-anticipator pat-
tern. Finally, the Benchmark setup is based on the mixed-state variant of onBtnSwitch.
The reconfiguration plan uses loop/endLoop to repeatedly update and downgrade
the onBtnSwitch system. As its purpose is to gather runtime statistics for the agent
and all reconfiguration steps, we do not use the most straight-forward plan to per-
form the “continuous updates”. Instead, we add some unnessessary steps in be-
tween, so that we can measure runtime statistics for all reconfiguration step kinds.
The design-time model is almost completly specified in section 3.1 and not repeated
here. The reconfiguration plans are based on the templates described in section 4.3.
Appendix A provides the full reconfiguration plans used in each of the setups.

6.1.2 Comparison of Simulation and Prototype

We describe the behavior of the distributed control system for each of the setups
(excluding Benchmark). We compare the expected behavior according to the model-
based analysis and simulation with the real behavior of the running prototype. The
focus of this evaluation is to answer whether the prototype properly fulfills M-4

156 Chapter 6. Evaluation of the Platform Concepts and Prototype

(embedded control by eApp) and M-5 (reconfigure eApp during operation): Do the
agent and software components behave according to the formal specification at least
to the extent that the real prototype can be analyzed using the model? To answer
this question, we compared the simulated execution from the model with the real
execution using the simulation trace and the RTCA log. We checked if the same re-
configuration plans could be used in both the model and the prototype to achieve
the same system behavior and point out minor differences. For each of these setups
we visualize the EDFG and analyze the quality degradation caused by the reconfig-
urations as described in section 4.2. We describe how the reconfiguration plans can
be constructed systematically using the concepts from the blueprints in section 4.3
and case-specific considerations. A general utility of the model is indicated as we
can systematically construct and analyze the reconfigurations using the EDFG anal-
ysis and successfully run it in the prototype. Special care has to be taken, though, to
work around minor differences between the model and implementation.

ICSA

Figure 6.3 visualizes the EDFG and reconfiguration steps of the ICSA setup. The full
reconfiguration plan can be found in listings A.3 and A.4. A full reconfiguration plan
with alternative “straight-forward” timing can be found in listings A.1 and A.2. The
alternative timing is indicated by the faded duplicated steps in figure 6.3. Besides
a few minor differences, the ICSA reconfiguration is an instantiation of the DAG-
blueprint described in section 4.3.3. The initial start reconfiguration in the plans
instantiate the start blueprint described in section 4.3.4. During the “dynamic” re-
configuration part, the button controller btn-v1 is replaced by the new version btn-v2
at cycle offset 0 via the rmSwc and addSwc steps. At the same time, the button input is
re-mapped via the rmIO and addIO steps. No state transfer is performed in the ICSA
setup, so the implicit state btnPrev, in which the component internally stores the in-
formation, whether the button was pressed before, is lost. If the button was kept
pressed during the switch, then btn-v2 would report a wrong risingFlank as output.
The risingFlank output is rewired in the reconfiguration hook before output process-
ing at cycle offset 1 on node1 using rmCom, rmMsg, addMsg, and addCom steps. The
re-creation of the network message is required if the quota must be adapted to a
changing interface, for instance. The last risingFlank from btn-v1 appears on node2
during execution phase of cycle offset 0 and is handed to the old LED controller
version led-v1 for the last time in the input processing phase in cycle offset 1. After
input processing, the communication is reconfigured on node2, so that subsequent
risingFlanks (from btn-v2) are processed by led-v2. The first message from btn-v2 is
created during cycle offset 0, released and transmitted to node2, and must be pro-
cessed by led-v2 from cycle 2 on. Thus, led-v2 replaces led-v1 in cycle offset 2 due to
the rmSwc and addSwc steps, together with the I/O-rewiring.

This reconfiguration plan works both in the Maude simulation and the RTCA
prototype. The last end-to-end dataflow of the old system version is highlighted in
orange, and the first dataflow of the new system version in green. No downtime
of the system is introduced in terms of temporary blindness, because in all cycles
during the reconfiguration there exists a path from the button sensor to the LED
actuator. Additionally, the reaction time of the system is maintained, because the
lengths of the shortest paths from the sensor to the actuator is constantly at three
periods (excluding I/O sampling delays). In theory, the consistency of the em-
bedded application is at risk by the missing state transfer, if the button is pressed
during the update. The reconfiguration designer may decide that in this case the

6.1. Case Study: onBtnSwitch 157

FIGURE 6.3: Combined visualization of an excerpt of the EDFG and the recon-
figuration for onBtnSwitch in the ICSA setup. Both components are updated syn-

chronously without state transfer.

impact is low, if the fault is recognizable and the button can just be pressed once
more without a damage. In figure 6.3 some alternative timing options are shown for
the communication-related restructuring steps. They correspond to the “straight-
forward” timing of the individual component replacements in the minor update
blueprint (see section 4.3.2). According to our evaluation runs, this timing works
in the prototype, too. However, in our current formal specification, each network
message must exist at transmission time, so only the highlighted reconfiguration
works in the Maude simulation. This is fixed in the implementation by using the
logical step execution time instead of the real execution time.

INDIN-1

Figure 6.4 visualizes the EDFG and reconfiguration steps of the INDIN-1 setup. The
full reconfiguration plan can be found in listings A.5 and A.6. This reconfiguration
example uses the “straight-forward” timing of the minor update blueprint (see sec-
tion 4.3.2) to update the button controller with state transfer. All modification steps
are placed in one cycle turnover at cycle offset 0. This requires that the ground state
of the button controller is compatible in both versions and small enough, so that
it can be transfered under ZET assumption. Additionally, the risingFlank output is
kept compatible, so that the network message and the LED controller do not need to
be reconfigured. This reconfiguration plan works in both the Maude simulation and
the RTCA prototype. The last end-to-end dataflow of the old system version and
the first dataflow of the new system version are highlighted, again. Additionally,
the dataflow caused by the state transfer is highlighted. There is no downtime dur-
ing the update, as there is always a path from the button input to the LED output.
Due to the state transfer, the consistency of the system is maintained in addition.
As the state transfer is performed under ZET assumption using the ground state
and the transfer step, the reconfiguration does not cause an impact on the reaction
time. Based on the INDIN-1 example the ICSA update from the previous section
can be extended easily to include a state transfer without causing downtime: If both
components have a ground state which can be transfered under ZET assumption,

158 Chapter 6. Evaluation of the Platform Concepts and Prototype

FIGURE 6.4: Combined visualization of an excerpt of the EDFG and the reconfigu-
ration for onBtnSwitch in the INDIN-1 setup. The button controller is replaced with

state transfer without downtime.

then the transfer step would be used in cycle 0 for the button controller and in cycle
offset 2 for the LED controller.

INDIN-2

Figure 6.5 visualizes the EDFG and reconfiguration steps of the INDIN-2 setup. The
full reconfiguration plan can be found in listings A.7 and A.8. In this reconfigu-
ration, the LED controller on node2 is updated and its implicit state is transferred
in three cycles. The red highlighted dataflow shows the last fully working end-
to-end data processing and transmission chain of the old system version. The old
LED controller version led-v1 is deactivated in cycle offset 0. As the communication
mapping for the remote input is removed from the LED controller on node2 at cycle
offset 0, subsequent risingFlank messages from the button controller are dropped.
This is transparent to node1 and thus no reconfiguration step is assigned to node1. As
the LED controllers have implicit state, at least the time-consuming dump and load
steps are required to transfer the state. In addition, we also run the transfer step in
the background worker instead of running it under ZET assumption. The dumped
LED state would be small enough, but this example demonstrates the transferral in
background and the impact on the reconfiguration timing. The duration of each of
the three handover steps can be calculated from the modeled state size, quota and
WCET, or directly from measurements. For the transfer step we can model an eta
of 2 ms based on the measurements from the benchmark setup (see subsequent sec-
tion 6.1.3). Thus, this step takes one period of logical time, if the background worker
gets at least 2 ms of CPU quota per period. Memory quota is not covered in the pro-
totype. The eta of the dump and load steps can be modeled with 3 ms based on the
benchmark measurements. Due to the quota of 10 ms of the containers, these steps
fit into one cycle, too. The resulting timing of the dataflow for the state transfer is
highlighted in dark purple. As the dump step is triggered in cycle offset 0 and com-
pleted by led-v1 during one period, the dumped state is ready for the transfer step in
offset 1. The tranferal is completed by the background worker within one period, so
the state dump is available for loading at cycle offset 2. The load step is triggered and
completed in cycle offset 2, so the new LED controller version is ready to work with
the transferred and loaded implicit state at cycle offset 3. Due to this state transfer,
we thus need three cycle between deactivating led-v1 in cycle 0 and activating led-v2

6.1. Case Study: onBtnSwitch 159

FIGURE 6.5: Combined visualization of an excerpt of the EDFG and the reconfig-
uration for onBtnSwitch in the INDIN-2 setup. The LED controller is replaced with

state transfer including dump/load and capture/replay.

in cycle 3. The first end-to-end dataflow of the new system version is highlighted in
green. Finally, we assume that the LED output must be provided every cycle, but
there are three cycles in which none of the two versions is working. Thus, we use
a capture step in cycle offset 0 in the hook beforeOutputs to save the last output of
the old version. This output is replayed three times during the subsequent cycles to
refresh the output during the transition phase. The dataflow resulting from the in-
terception steps is highlighted in blue. The rmIO step is performed in cycle 3, which
is later than the deactivation of led-v1 because the output mapping must be present
at replay time. The lighter rmCom and addCom steps shows the alternative timing
required by the formal model, in case a reconfiguration of the network message was
required, as in the ICSA setup. However, as this is not the case in this setup, the
“straight-forward” timing works both in the formal model and the prototype.

This reconfiguration causes a temporary quality degradation of the onBtnSwitch
system as follows. The blocking approach introduces three cycles of temporary
blindness, as there is no path from the button input in cycles -2, -1 and 0 to the
LED output. The reaction time is temporarily degraded due to the increasing age
of the captured LED output. The normal reaction time is three periods (excluding
I/O sampling delays). The path length from the button input to the LED output is
4 periods in cycle offset 1, 5 periods in cycle offset 2, and then reaches a maximum
of 6 periods in cycle offset 3. The reaction time is back at 3 periods for the LED out-
put in cycle offset 4, again. With a period of 50 ms, this means that for 150 ms any
risingFlank would be ignored by the LED controller. In general, this could lead to
an inconsistent state of the distributed system, e.g. if there were multiple recievers
of the risingFlank which would need to have an aligned knowledge about button
presses. In this examle, the system operator and reconfiguration designer could de-
cide that this is acceptable, because it is unlikely and recoverable as the user would
recognize that the press was missed and could fix this by pressing the button again.
However, additional measures beyond the platform scope should be considered, e.g.
to inform users that an update is ongoing and how to deal with it.

INDIN-3

Figure 6.6 visualizes the EDFG and reconfiguration steps of the INDIN-3 setup. The
full reconfiguration plan can be found in listings A.9 and A.10. After this reconfigu-
ration, a second instance led-2 of the LED controller is running on node1 in addition
to led-1 on node2 (see green components). Both LEDs must be turned on and off con-
sistently when the button is pressed. Therefore, the state of the old instance must be

160 Chapter 6. Evaluation of the Platform Concepts and Prototype

FIGURE 6.6: Combined, partial visualization of the EDFG and the reconfigura-
tion of onBtnSwitch in the INDIN-3 setup. A second LED controller is launched on
node1. To ensure consistent states of the two LED controller instances at minimal
downtime, state transfer and aggregator/anticipator update package components

(agg/ant) are used.

transferred to the new instance. This is achieved by first using an extract step under
ZET assumption at offset 1 to save the ground state of led-1. Immediately afterwards
a transmit step can be used to send the extracted state to node1. The transferal can
be assigned an eta of 5 ms based on the benchmark measurements (see section 6.1.3).
Thus, the state can be transferred within one cycle of the background worker. This
state could be injected to led-2 at offset 2 under ZET assumption to let the new in-
stance start at cycle 2 without any downtime. However, without further measures, if
a rising flank of the button occurs during the reconfiguration then the new instance
could get an obsolete LED state, because it was extracted before the old instance re-
ceived the switch command and before the new instance is activated. Consequently,
there are 100 ms (offsets -1 and 0, excluding I/O sampling delays) in which the but-
ton can be pressed so that the LEDs will have inverted states. This is a situation in
which it is better to miss a button input than to have inconsistent system state, as
the user can fix the miss by pressing again. The generic solution would be to use
transitive blocking during the problematic time span. In this approach, we could
determine the required blocking as follows. We would add led-2 in cycle 2 using the
state of led-1 extracted after cycle 0. Based on that dataflow graph, the switch com-
mand would be based on the button input from cycle 1, and the LED state is based
on the button input from cycle -2. The blocking approach is to ensure that led-1 will
not get the button input information from cycles -1 and 0, too. This can be achieved
by blocking led-1 at cycle offsets 1 and 2, i.e., two cycles of temporary blindness.
In general, if we do not know more about the behavior of the button controller, we
should block the whole chain from the sensor input to the actuator outputs along
the dataflow graph. In this case, we would block btn at cycle offsets -1 and 0, too.

However, we can use the purple aggregator/anticipator components to achive
a consistent update at shorter downtime. The aggregator component agg is added
at cycle offset 0 and removed at offset 2. Its flank input is mapped to the btn com-
ponent’s risingFlank output using addMsg and two addCom steps – one for mapping
the output to the message, and one for mapping the message to the input. The
risingFlank output is thus mapped to two messages and multicasted to two compo-
nents. The agg component receives both risingFlank inputs resulting from the button
inputs from cycle -1 and 0, which will be seen by led-1, but not by led-2. It counts the

6.1. Case Study: onBtnSwitch 161

positive risingFlank inputs and stores the count in its flankCount ground state. At cy-
cle offset 2, the state is transfered to the anticipator component ant in addition to the
LED state received from node2. The ant component determines the anticipated state
of the LED controller based on the fact that two button presses would eliminate each
other. The resulting anticipated LED state is produced as ground state and can be
transferred to led-2 in the subsequent cycle 3. Using this aggregator/anticipator pat-
tern we can avoid the temporary blindness for the missed button inputs from cycle
-1 and 0. However, due to the anticipator component, we introduce a new blindness
of one cycle, which we have to fix. In this dataflow, the led-2 component receives the
risingFlank input resulting from the button input at cycle 2, and an anticipated LED
state for the button input from cycles until cycle 0. Thus, the button input from cycle
1 must be discarded by blocking btn during cycle 1 and led-2 during cycle 3 due to
the communication delay using the shown restructuring steps. Finally, we fix the
resulting lack of an LED output using capture at cycle offset 3 and replay in cycle 4.
This setup works both in the model and the prototype. Significant efforts within the
barrier qdisc where required to implement multicasting consistently with the logi-
cal execution time and reconfiguration approach, but it works and shows that the
concepts are feasible even for UDP on Linux. For wiring the aggregator, a working
alternative timing of addMsg and addCom is shown, which better corresponds to the
“straight-forward” timing. During the blocking of btn, the temporary removal of the
communication mapping can be omitted to reduce the number of reconfiguration
steps especially in cycle turnover at offset 2. The original publication in [TK19b] was
based on an earlier model version in which the removal of communication mappings
were assumed implied with rmSwc. In the current model, the steps must be present,
or the agent will not proceed the simulation due to the missing output. However,
the prototype allows communication mappings to be unused, as the agent does not
check if a packet is present or not. Instead, a component can send and receive any
number of packets until the cycle quota is exceeded and enforced by the barrier.

Some of the important data processing and transmission chains are highlighted,
again. The orange dataflow shows the last end-to-end path in the old system ver-
sion. The green dataflow shows the first normal end-to-end paths in the new system
version, now with a multicast to the two LED controllers. The blue and the dark
purple dataflow is highlighted as it leads to consistency between the ground states
and thus the LED outputs marked with the red dashed lines. Using this approach,
the temporary blindness is reduced to one cycle only, compared to the two cycles
in the blocking approach. If the state transmission took longer, then the savings
would become even bigger, as the aggregation can be pro-longed arbitrarily. The
aggregator/anticipator approach induces a temporary blindness, which depends on
the WCET and quota of the anticipator component. The blocking approach induces
temporary blindness, which depends on the state transmission duration. In this ex-
ample, as the anticipation can be done in one cycle it is always better than generic
blocking in terms of quality degradation. However, this example also raises the
question how to handle such “Doppler effect” kinds of reconfiguration problems in
general (as we transfer the state in the opposite direction of the dataflow). Regard-
ing the reaction time, a minor quality degradation is caused by the capture/replay
phase. The LED output on node2 in cycle 4 results from the button input in cycle 0,
so the reaction time is 4 periods at that time instead of the usual 3 periods (excluding
I/O sampling delays). After activating led-2 in cycle 3, the LED output on node1 is
provided from cycle 4 on with a reaction time of 2 periods. The shorter reaction time
regarding the LED output on node1 results from the logically instant local communi-
cation between btn and led-2 in contrast to the remote communication with led-1.

162 Chapter 6. Evaluation of the Platform Concepts and Prototype

6.1.3 Runtime Measurements

We used the Benchmark setup to gather runtime statistics on the agent phases (Ta-
ble 6.2) and the reconfiguration steps (Table 6.3). The full reconfiguration plan can
be found in listings A.11, A.12, A.13 and A.14. We ran this setup with the reconfigu-
ration loop for 24 hours. At termination time, the agent had run 863 978 cycles and
8812 full reconfiguration loops on node1, and 863 945 cycles and 8811 full reconfigu-
ration loops on node2, each loop including a synchronous upgrade and downgrade
of both software components and taking approximately 9.8 s. The difference in the
numbers of cycles and loops are caused by the initialization behavior prior to the
system execution mode (see Section 5.2.3) and the slightly different shutdown time-
outs. The divergent sample sizes of the reconfiguration step statistics are addition-
ally caused by the number of occurences of the different steps in the reconfiguration
plans for the two nodes. This is because we had to include each reconfiguration step
at least once, while keeping the continuous reconfiguration conistent. For instance,
we did not use the dump step on node2, because the LED controller was configured
as ground-state component. The stopwatch component (see Section 5.2.5) was used
to measure the runtime statistics based on a start time and an end time for each
measurement. The statistics include at least the minimum, maximum, average, and
standard deviation of the wall time duration. For some selected measurement hooks,
slack and drift statistics were gathered, too, with slack being the time left until the
deadline, and drift being the time between the earliest possible start and the real
start of the measurement.

agent phase min max avg std min max avg std
(node1) (node2)

health check 0.018 3.160 1.646 0.244 0.019 3.170 1.614 0.376
before outputs 0.013 1.673 0.116 0.301 0.015 4.245 0.145 0.396
output processing 0.011 1.162 0.482 0.137 0.013 1.571 0.938 0.129
between I/O 0.011 3.470 0.122 0.397 0.011 3.786 0.100 0.393
input processing 0.454 2.233 1.628 0.297 0.440 1.270 0.541 0.103
after inputs 0.012 1.441 0.027 0.117 0.012 1.393 0.055 0.185
trigger 0.018 0.545 0.258 0.061 0.019 0.923 0.283 0.114

sum (no rc) 0.501 7.100 4.014 - 0.491 6.934 3.376 -
sum 0.512 13.684 4.279 - 0.529 16.358 3.676 -

agent overall 0.770 7.448 4.525 0.540 0.708 7.576 3.924 0.686
agent drift 0.446 1.444 0.517 0.028 0.463 1.291 0.528 0.026
agent slack 12.002 18.685 14.959 0.544 11.865 18.792 15.548 0.692

TABLE 6.2: The non-functional behavior of the agent w.r.t. its execution time per
cycle in milliseconds, based on a 24 h benchmark run at 100 ms period with 20 ms

periodic agent deadline (863 978 cycles on node1, 863 945 on node2).

Table 6.2 shows the statistics for the different agent phase stages and the overall
statistics of the administration phase. In the following we first describe the non-
reconfiguration stages, then the reconfiguration hooks, and finally the overall agent
statistics. The health check took up to 3.170 ms, with an average wall time duration
of around 1.6 ms and a standard deviation of 0.244 on node1 and 0.376 on node2. The
minimum duration of 0.018 ms was probably measured in cycles in which no soft-
ware component was in running state, e.g. during system start, which should also
apply to the other stages. The output processing phase took up to 1.162 ms (average
0.482 ms) on node1 for the networked-mapped output of the button controller. On
node2 with the GPIO-mapped output of the LED controller, the output processing

6.1. Case Study: onBtnSwitch 163

phase took up to 1.571 ms (average 0.938 ms). Thus, GPIO output processing took
0.456 ms longer on average and 0.409 ms in worst-case. However, note that the net-
work output processing only includes the move operation at the barrier qdisc, but
not enqueue, peek and dequeue operations. The input processing phase took up
to 2.233 ms (average 1.628 ms) on node1 for the GPIO-mapped input of the button
controller. On node2 with the network-mapped input of the LED controller, the in-
put processing phase took up to 1.270 ms (average 0.541 ms). Again, GPIO input
processing took longer both in worst case and on average. Unlike the other stages,
the input processing phaes had a noticable minimum duration of 0.440 ms. This is
because the single ingress barrier at ifb0 is moved regardless of whether there is a
network-mapped input. This can also explain why the input processing took longer
on average and in worst-case. The trigger stage took up to 0.545 ms on node1 (aver-
age 0.258 ms) and 0.923 ms on node2 (average 0.283 ms).

The statistics for the complete administration phase (including reconfigurations)
can be found in the rows “agent overall”, “agent drift”, and “agent slack”. They
were taken from the start and end times of each administration phase with the drift
as the difference between the start time and the logical execution time in the cur-
rent cycle letc = let0 + period ∗ c and the slack time between the end time and the
agent’s deadline of 20 ms from letc. On node1 the agent’s administration phase took
between 0.770−7.448 ms (average 4.525 ms, standard deviation 0.540). The maxi-
mum on node2 was slightly higher, at 7.576 ms. The moderate difference between
the average and maximum as well as the standard deviation can be explained by
the fact that the reconfiguration plan allocates reconfiguration steps “sparsely” to
cycles and reconfiguration hooks. The drift of the agent (i.e., the scheduling latency)
was between 0.446−1.444 ms, with only few occurences much higher than 0.5 s ac-
cording to the low average and standard deviation. The observed slack times with
respect to the agent’s 20 ms deadline was 11.865−18.792 ms. Thus, the agent contin-
uously kept the isochronous tick and deadline during the 24 hours and even would
have kept a 10 ms deadline. However, in theory and long-term, the spikes of all the
phases could occur in the same cycle. This could lead to a higher overall worst-
case execution time of the agent for the Benchmark system and reconfiguration. To
estimate this, the sums of the agent phase measurements with and without reconfig-
uration hooks are shown in the rows “sum (no rc)” and “sum”. Excluding reconfig-
urations the maximum sum is 7.100 ms. With reconfiguration hook measurements
included, the maximum sum is 16.358 ms. These spikes were not observed during
the experiment, but they can indicate the ceiling of the worst-case execution time.

Table 6.3 shows runtime statistics for different reconfiguration steps. Note that
there are different priorities in our system, as described in Section 5.2.1. Most mea-
surements were done in the agent’s cyclic administration phase at critical priority
(SCHED_DEADLINE). However, some measurements were taken by different pro-
cesses at different priorities, according to the responsibilities within the architecture:

• Steps “rcv agent msg” and “rcv response’ were done by the agent listener com-
ponent at elevated priorty (SCHED_FIFO at priority 99) to take messages from
the remote agent or the background worker.

• The steps marked with “(bg)” were done by the background worker at normal
priority (SCHED_FIFO at priority 42).

• Dump and load were done by the corresponding application components with
normal priority, too.

The loop step was done 8813 times on node1 and endLoop was done 8812 times.
Thus, at termination time after 24 h the reconfiguration plan was in the middle of the

164 Chapter 6. Evaluation of the Platform Concepts and Prototype

step n min max avg std n min max avg std
(node1) (node2)

loop 8813 0.022 0.028 0.025 0.001 8812 0.022 0.028 0.025 0.001
endLoop 8812 0.110 0.131 0.124 0.003 8811 0.115 0.228 0.127 0.003
notify 17625 0.739 1.099 0.757 0.033 17625 0.735 3.979 0.757 0.041
rcv agent msg 26436 0.093 1.039 0.303 0.293 17626 0.093 0.305 0.105 0.008
wait 70499 0.018 0.063 0.024 0.005 70497 0.019 0.606 0.024 0.006
send cmd 79310 0.166 0.955 0.406 0.203 61683 0.167 1.534 0.259 0.089
rcv response 35250 0.174 6.226 0.295 0.304 35248 0.174 5.104 0.283 0.128

start (in sec) 17626 2.451 2.879 2.616 0.089 17625 2.451 2.877 2.588 0.077
stop (in sec) 17624 0.822 0.864 0.844 0.007 17623 0.736 1.198 0.840 0.007

addSwc 17625 0.017 0.043 0.019 0.001 17624 0.027 0.112 0.030 0.001
rmSwc 17624 0.025 0.393 0.028 0.003 17623 0.019 0.237 0.020 0.002
addCom 26437 0.809 0.939 0.839 0.011 17624 0.769 1.203 0.799 0.015
rmCom 26436 0.744 1.195 0.808 0.057 35247 0.683 1.191 0.729 0.022
addMsg 17625 0.040 0.066 0.045 0.003 17624 0.037 0.349 0.044 0.011
rmMsg 17624 0.033 0.125 0.037 0.001 17624 0.032 0.455 0.036 0.003
addIO 17625 1.253 1.435 1.295 0.014 17624 1.257 1.619 1.388 0.095
rmIO 17624 0.029 0.052 0.040 0.009 17623 0.036 0.139 0.042 0.005

extract (ag) 8812 0.905 1.058 0.924 0.008 0 - - - -
transfer (ag) 0 - - - - 8811 0.942 1.295 0.963 0.014
inject (ag) 8812 0.879 1.035 0.901 0.009 0 - - - -

extract (bg) 0 - - - - 8812 0.982 2.369 1.039 0.072
transfer (bg) 8812 0.975 1.894 1.028 0.036 0 - - - -
inject (bg) 0 - - - - 8812 0.935 2.181 0.960 0.045
transmit (bg) 0 - - - - 8811 1.432 4.457 1.494 0.087

dump btn-v1 8812 1.350 2.238 1.371 0.042 0 - - - -
dump btn-v2 8812 1.348 2.220 1.375 0.065 0 - - - -
load btn-v1 8812 1.479 1.902 1.550 0.028 0 - - - -
load btn-v2 8812 1.461 2.433 1.543 0.053 0 - - - -

capture (io) 8812 0.964 1.249 0.981 0.008 17623 0.952 1.315 0.975 0.013
replay (io) 8812 0.915 1.318 0.936 0.011 44057 1.032 1.459 1.077 0.036
capture (net) 8812 0.434 0.564 0.449 0.008 8812 0.424 0.579 0.453 0.006
stop capt (net) 8812 0.353 0.389 0.367 0.005 8812 0.328 0.462 0.342 0.008
replay (net) 8812 0.382 0.418 0.394 0.005 8812 0.371 0.609 0.385 0.010

TABLE 6.3: The execution times of the reconfiguration steps in milliseconds (sec-
onds for start and stop) as measured during the same 24 h run. The agent had
20 ms/100 ms runtime, and the background worker had 40 % real-time CPU quota.

loop. On node2, one loop less was started and completed. The runtime statistics of
the loop step are identical for both nodes: It took between 0.022−0.028 ms, 0.025 ms
on average. The endLoop step took between 0.110−0.228 ms, on average 0.124 ms
on node1 and 0.127 ms on node2. The notification step was done 17 625 times on both
nodes. It took 0.757 ms on both nodes on average, but on node2 a much higher spike
of 3.979 ms occurred compared to the 1.099 ms maximum measured on node1. It is
the highest single measurement for reconfiguration operations executed at critical
priority. As notification steps are executed in the before output processing, it must
have caused the higher spikes there, too (see Table 6.2). The row “rcv agent msg”
is a measurement series for when the agent listener processes messages from other
agents. At the moment this includes notification messages, transmit messages, and
the start time message. The agent listener on node1 processed 26 436 messages from
node2 (17 625 notification messages and 8811 transmit messages). It took between
0.093−1.039 ms, 0.303 ms on average. The agent listener on node2 processed only

6.1. Case Study: onBtnSwitch 165

17 626 messages from node2 (17 625 notification messages and the start time message,
as node2 is configured as slave). Here it only took between 0.093−305 ms, 0.105 ms
on average. Thus we can assume that the transmit messages require more process-
ing time than the notification messages, which makes sense because the transmitted
state must be written to a new file in the state storage, whereas the notification mes-
sage only leeds to agent-internal value changes. The wait step was executed 70 499
times on node1 and 70 497 times on node2 (approximately eight cycles per loop). As
this series covers all three wait step kinds (wait for notification, wait for cycle, wait
cycles) it is much closer than expected. However, the wait steps are guarded by
their doesApply() function, so they are most often only applied and measured once
per instance. The wait steps took only 0.024 ms on average on both nodes with a low
standard deviation of 0.005−0.006, but a maximum of 0.606 ms on node2. The row
“send cmd” is a measurement series for when the agent sends a command to the
background worker (start, stop, extract, inject, transfer, and transmit) or to a soft-
ware component (dump, load). The rows “rcv response” eceive response is a series
for when the agent listener receives a message from the background worker in reply
to a command (start or stop step completed). On node1 the agent sent 79 310 com-
mand messages: 8812 commands for each of transfer, dump v1, dump v2, load v1,
and load v2, plus 17 626 start commands and 17 624 stop commands (two for each
loop and one more start during initialization and probably an additional start after
which the run terminated). Sending these commands took between 0.166−0.955 ms,
0.406 ms on average. On node2 the agent sent only 61 683 command messages: 8811
transfer, 8811 transmit, 8812 extract, 8812 inject, plus 17 625 start and 17 623 stop
commands. Sending these commands took between 0.167−1.534 ms, 0.259 ms on
average. Executing the commands extract, transfer, and inject in background took
between 0.897−2.369 ms, close around 1 ms on average. If extract, transfer and in-
ject are directly executed by the agent (rows with “(ag)”), they take about the same
time on average, but with much lower spikes only up to 1.295 ms due to the higher
priority. Transmit commands in background took longer, between 1.432−4.457 ms,
1.494 ms on average. Dump and load commands by the software components took
between 1.348−2.433 ms, close to the lower bound on average. Start and stop com-
mands in background took much longer, and are given in seconds. To start the but-
ton controller (container start, component initialization, configuration by the agent)
took between 2.451−2.879 s. To start the LED controller took between 2.451−2.877 s.
Stopping the software components took between 0.736−1.198 s. Thus, start took
between 25-29 cycles at the configured period of 100 ms, while stop took between
8-12 cycles. The response messages were processed by that agent listener within
0.283−0.295 ms on average, but with a few spikes the maximum of which being at
6.226 ms. This was the largest spike within the agent listener and could be caused
by the administration phase interrupting the agent listener just after reception of a
response message.

The restructuring steps were measured at least 17 623 times, because each up-
grade and each downgrade in each loop replace all structural elements to removing
the previous software component and adding the new one. The steps addCom and
rmCom were measured once more per loop on node1, because the upgrade part of
the reconfiguration plan temporarily adds the communication mapping for the re-
play step. On node2, rmCom was measured two times more than addCom, because
removing a remote network-mapped input in the after input processing leads to
two rmCom steps: One for marking the step as deleted at the barrier qdisc and one
in the subsequent cycle to really delete the mapping (see section 5.2.5). The four

166 Chapter 6. Evaluation of the Platform Concepts and Prototype

reconfiguration step kinds addSwc, rmSwc, addMsg, and rmMsg only lead to agent-
internal changes to modify its state and behavior, and thus take only short time:
Adding a software component took up to 0.112 ms, but most often much less, with
0.019−0.030 ms on average and a standard deviation of 0.001. Removing a software
component took about the same time on average, but with spikes up to 0.393 ms.
Adding and removing a message took between 0.036−0.045 ms on average. There
were only few spikes according to the standard deviations of 0.001−0.011, but on
node2 they were up to 0.455 ms, while on node1 the maximum was only at 0.125ms.
To change I/O mappings and communication mappings, the agent must interact
with the system, which takes longer. For addCom and rmCom we measured dura-
tions between 0.683-1.203 ms, with averages around 0.8ms and standard deviations
below 0.06. In this time the agent sends one or more command messages to the
barrier to manipulate the mapping information, also using the message information
known by the agent from previous addMsg steps, and waits for a positive reply. As
already stated above, two separate rmCom steps are used in case the mapping info
must be preserved after deletion for one more execution phase. For addIO to add a
GPIO mapping we measured durations between 1.253−1.619 ms. Adding the LED
output on node2 took a bit longer than the button input on node1 both on average and
at maximum, and seems to have more spikes, according to the standard deviation of
0.095 compared to only 0.014. Finally, the interception steps were measured, devided
by type of the output (network-mapped or GPIO-mapped). To capture the GPIO-
mapped button input on node1 took almost the same time as the GPIO-mapped LED
output on node2, with minimum and average durations close to 1 ms, and spikes of
1.315 ms at maximum. This is expected as both are just files on a tmpfs mounted
within the containers handled in the same way. The replay steps for GPIO-mapped
properties were in the same time range, too, even though “replay (io)” durations
were more than 0.1 ms higher on node2 at minimum, maximum, and on average.
Note that on node2 there were more captures and more replays for the LED as the
benchmark reconfiguration plan blocks the LED controller more often than the but-
ton controller. Sending and processing capture commands to and by the barrier took
between 0.424−0.579 ms, 0.45 ms on average, with only a small difference between
the egress barrier on node1 and the ingress barrier on node2. To send and process
stop capture commands (which is always done in the subsequent cycle after a cap-
ture command) took 0.34−0.37 ms on average. A maximum of 0.462 ms was mea-
sured on node2. Replay steps for network-mapped properties took 0.382−0.418 ms
for egress on node1 and 0.371−0.609 ms for ingress on node2. The spikes on node2
might be really higher (not only because of the sample sizes of only 8812) due to
the different handling of input and output packets at replay time regarding header
manipulation. They are also handled differently at capture time, which however is
when the packets are dequeued, not when the capture command is processed.

Table 6.4 shows the runtime statistics for the containerized tasks and handover
steps of the software components. On the left-hand side, the statistics for the regu-
lar task executions are shown. The “old version” (here called “led-v1”) of the LED
controller ran 453 191 cycles, and the “new version” ran 36 664 cycles (all reconfigu-
ration loops combined). The button controller ran 453 222 cycles in the “old version”,
and 367 853 cycles in the “new version”. The different numbers of cycles result from
the imbalanced reconfiguration plan, which runs the “old” distributed application
components more often and blocks some components more than others, and from
the already mentioned termination shift. In the 719 855 task executions of the two
(identical) versions, the LED controller took beetween 1.624−4.132 ms, 1.68 ms on
average. The button controller ran 811 075 task executions in total and took between

6.1. Case Study: onBtnSwitch 167

series n min max avg std

led-v1
(task)

time 453191 1.624 4.132 1.681 0.101
drift 453191 4.998 8.666 5.295 0.390
slack 453191 88.639 93.356 93.024 0.449

led-v2
(task)

time 366664 1.624 3.897 1.680 0.100
drift 366664 4.999 9.880 5.355 0.549
slack 366664 87.236 93.343 92.965 0.614

btn-v1
(task)

time 453222 0.927 2.555 0.965 0.066
drift 453222 5.177 8.708 5.517 0.461
slack 453222 90.090 93.872 93.518 0.482

btn-v2
(task)

time 357853 0.935 2.397 0.968 0.068
drift 357853 5.191 7.954 5.507 0.387
slack 357853 90.309 93.859 93.525 0.408

series n min max avg std

btn-v1
(dump)

time 8812 1.350 2.238 1.371 0.042
drift 8812 6.686 8.014 6.810 0.085
slack 8812 90.421 91.947 91.818 0.095

btn-v1
(load)

time 8812 1.479 1.902 1.550 0.028
drift 8812 3.158 3.937 3.217 0.044
slack 8812 94.504 95.348 95.233 0.052

btn-v2
(dump)

time 8812 1.348 2.220 1.375 0.065
drift 8812 4.991 6.208 5.071 0.050
slack 8812 92.425 93.640 93.554 0.082

btn-v2
(load)

time 8812 1.461 2.433 1.543 0.053
drift 8812 7.983 9.366 8.120 0.090
slack 8812 88.951 90.533 90.337 0.105

TABLE 6.4: The runtime statistics of the software components (time in in millisec-
onds) in the 24 h benchmark run.

0.927−2.555 ms, 0.97 ms on average. As the implementations are very similar, it can
be assumed that much of this difference is caused by the ground-state handling of
the LED controller (read state from file at start, write state at the end). The drift
(the latency between the measured start time and the logical cycle start time) of the
LED controller was at least 4.998 ms, and took up to 9.880 ms, with an average of
approximately 5.3−5.4 ms. The drift of the button controller had a higher minimum
of 5.191 ms, and a higher average of 5.5 ms, but a lower maximum of 8.708 ms. A
reason for this could be that the LED controller is input triggered, while the button
controller is only triggered by the agent. Thus, the drift of the button controller is
primarily caused by the duration of the administration phase at the end of which
the agent triggers the task. The LED controller might be triggered earlier by moving
the ingress barrier during input processing, but the handling of the input packets
could sometimes take longer in the kernel. Another reason might be that the agent
on node1 simply took longer on average, while the agent on node2 had more and
slightly higher peeks, as described earlier. The slack time for software components
is the time left between the measured end time of the task execution and the logical
start time of the next cycle. In theory, for each cycle and thus for the averages it must
hold that drift + time + slack = period. Only for the series “btn-v1 (dump)”, the sum
is 99.999 ms instead of 100 ms, which is probably caused by a floating-point error.
The slack time of the LED controller was between 87.236−93.356 ms, 93.0 ms on av-
erage. The button controller left more time on the clock, between 90.090−93.872 ms,
93.5 ms on average.

On the right-hand side of Table 6.4, the measurements for dump and load
are shown. Only the button controller versions ran with implicit state and exe-
cuted these handover steps once per loop in the reconfiguration plan. Dumping
the state took between 1.348−2.238 ms, on average 1.4 ms. Loading took between
1.461−2.433 ms, on average 1.5 ms. The higher load times may not be significant or
could be caused by temporal correlations in the reconfiguration plan. For instance,
during the downgrade part, the load step is performed by btn-v1 on node1 in the
same cycle in which node2 transmits the LED controller’s state (offset 2 from synchro-
nization point 6). Consequently, the load step is executed in the button controller’s
container with normal priority, while the agent listener may in parallel already re-
ceive the state with elevated priority. The drift and slack statistics look even more

168 Chapter 6. Evaluation of the Platform Concepts and Prototype

correlated to other steps in the reconfiguration plan. While the drift of the load op-
eration for btn-v1 was in the lowest range of 3.158−3.937 ms, for btn-v2 the drift of
the load operation was in the highest range of 7.983−9.366 ms. An explanation for
this is that the agent has five reconfiguration steps scheduled for the cycle turnover
leading to loading by btn-v2, while only the load step (i.e., sending the command)
is scheduled for the cycle turnover before loading by btn-v1. The slack time left by
dump and load operations was between 88.951−94.504 ms, which is in a similar
range as for the regular tasks.

The benchmark run indicates that the non-functional requirements Q-1 and Q-2
(see Section 5.1.1) may be feasible. All tasks and reconfiguration steps completed in
time and it looks like this setup could have run at a much shorter period than the
obligatory 100 ms: The longest period of 12.764 ms was observed on node2, because
the administration phase and the execution phase together left the shortest slack
time of 87.236 ms as measured for led-v2. However, there are additional time-critical
tasks such as reconfiguration steps in background, which took up to 4.457 ms, and
the agent listener, which took up to 5.104 ms for a single operation. Additionally,
PTP, the network stack, the I/O drivers and the kernel in general need execution
time, and parallel software components might interfere with each other. So, it must
be evaluated for each specific application and deployment how much shorter peri-
ods the current prototype can run stably. This evaluation already shows that signifi-
cant optimization efforts will be required to reach the stretched goal of 10 ms periods.
The long-term goal of 1 ms periods does not seem feasible with this technology stack
(hardware, kernel, . . .).

6.2 Case Study: CubeBot

The CubeBot system is a small smart factory showcase system. Its structure is sim-
ilar to te structure of onBtnSwitch, but it uses more realistic interface and runtime
technologies. Thus, this case study shows that the platform concepts can be used
in more challenging smart factory application scenarios. A similar system called
CamSys was originally described in [TK19a] as a running example. Meanwhile, we
have redesigned the system and implemented the necessary platform extensions and
application components as also described in [HLL+22]. We give a brief overview of
the CubeBot system and describe its design and implementation. Then, we describe
the configuration and operation of the CubeBot system including its reconfiguration.

6.2.1 System Overview

Figure 6.7 shows the technical context of the CubeBot system. A robot takes red and
green cubes from a pick area and puts them to one of two place areas to sort them
by their colors. There are two versions of this system: A semi-automated and a
fully-automated version. During operation of the system, we want to apply our dy-
namic reconfiguration approach to upgrade from the semi-automated to the fully-
automated version. In the semi-automated version, a human worker has to use a
button to tell the robot in which of the two place areas the cubes should be placed.
Per default the robot continuously picks a cube (or void if no cube is at the pick
area) and puts it to the red place area. By pressing the button at picking time, the
worker can let the robot put the current cube to the green area. Such a system could
be useful for instance if the cubes were heavy, hot, or toxic so that the pick-and-
place task must be done by the robot, while the decision is done by the worker. In

6.2. Case Study: CubeBot 169

FIGURE 6.7: The CubeBot system: A robot sorts cubes by their colors based on input
from a worker or from an optical recognition component.

the fully-automated version, a camera view on the pick area is used to automati-
cally detect cubes at the pick area and to recognize their color. In this version, the
CubeBot can sort the cubes by their colors without a human in the loop. In a real
plant there might be some logistic system which automatically moves workpieces
to the pick area, where the workpieces are sorted for further processing (e.g. reject
workpieces). Additionally, some supervisory control features might be embraced
so that wrong decisions by the system could be detected and fixed by a worker. In
this showcase system the cubes are put to the pick area by a human, and besides
that, the button is the only other means to change the system behavior. To also
demonstrate the distributed nature of our system architecture and reconfiguration
approach, we are installing the equipment at two controllers and require that the
control logic should be provided by application components on both nodes. Even
with this limited scope, the CubeBot system shows the direction of potential applica-
tion fields for the real-time container architecture. In a more advanced smart factory,
there might be dozens of CubeBot systems, which could perform time-critical collab-
orations based on distributed embedded applications.

6.2.2 Design and Implementation

The CubeBot system was designed and implemented during a two-months full-time
project of three software engineering master students. Figure 6.8 shows the rough
project outline. The real-time container architecture concepts and platform proto-
type were given as well as the onBtnSwitch example application. During an initial
onboarding and pre-project phase of two weeks, the students got to know the ar-
chitectural and operational details. The CubeBot system was defined in a few brain-
storming sessions as a refinement of the original CamBot system and the idea to make
a gesture-controlled robot using an already available Lynxmotion 4DOF robotic arm
and a usual office webcam. Therefore, the handling of this robot and its serial inter-
face was also part of the pre-project, as well as handling of USB cameras on Linux-
based systems. Afterwards, we defined the distributed embedded application and
the deployment of the CubeBot, which is very similar to the onBtnSwitch system. Fig-
ure 6.9 shows the detailed architecture for the fully-automated version, which uses a
cube detector component for the cube recognition and a robot controller component
for sending appropriate commands to the robot. Note that at project execution time,
an input barrier was placed at each container instead of one shared barrier at the
ifb0 interface (that was before we supported receiver-side multicasting etc.).

170 Chapter 6. Evaluation of the Platform Concepts and Prototype

FIGURE 6.8: Overview of the CubeBot project showing the rough activities done to
design and implement the system.

FIGURE 6.9: Detailed architecture of the CubeBot system.

The COVID-19 situation enforced a highly separated engineering workflow for
the different required design and implementation steps. One separate work stream
was the design and development of the camera extensions for the real-time con-
tainer architecture. First of all, the yocto-based Linux image was adapted to offer
the video features. The camera input is periodically fetched from the video device
by an additional camera worker process and written to a new image file with the
current timestamp in a folder accessible in the cube detector’s container. At input
processing time, the agent updates a symlink within this folder, so that it points to
the latest image at that time. In this implementation, the cube detector process could
also access older and newer images available in that folder. However, if the compo-
nent only uses the symlink, this design fulfills the logical execution time paradigm,
as the input image is “frozen” during the cycle. This design has the benefit that the
input image does not need to be copied – especially not within the time-critical input
processing phase. Additionally, the timing with the camera worker is decoupled, so
that we do not need any locking and can read the camera in a best-effort manner. The
reconfiguration plan description language was extended by new addCam and rmCam
steps, which the agent implements by creating the corresponding folders. The cam-
era worker is started when the agent launches, which was not made re/configurable
in the limited scope of the project. A separated activity was the implementation of
the stateless cube detector component, which takes a PNG image as input and sends
a JSON object with the classification of the image via UDP as output. The classi-
fication to red, green and nothing is done via a TensorFlow Lite model generated

6.2. Case Study: CubeBot 171

from a keras-based convolutional neural network (CNN) trained with 8716 test im-
ages. Thus, this work included the definition of the model with Python, the creation
of labelled images, the definition of the training procedure and the generation of
the C code with TensorFlow Lite, and finally wrapping this executable model in the
cube detector component to implement the cyclic classification task. Additionally,
a couple of red and green plastic cubes were produced with 3D printers in a maker
space at Siemens. The cubes and the CubeBot hardware setup were already needed
to create the test images for the training.

Another separate work item was the development of the serial extensions for
the real-time container architecture. The Lynxmotion robot has a serial interface,
which can be used via a TTY device in Linux. It is a bi-directional interface, where
we can send command messages (paths, waypoints, . . .) and request messages (lo-
cation, . . .), some of which are answered by the robot. Thus, the robot is not only
an actuator, but also a sensor in a way. One option to handle this would have been
to model the robot as two or more I/Os, some of which being inputs and some
of which being outputs. Instead, we extended the I/O model, so that also in-out
types of equipment are supported, one of which being the additional serial inter-
face. When a corresponding container is started and the I/O mapping is created,
the agent also installs pseudoterminal (PTY) devices in the container. For this the re-
configuration plan description language was extended once more by new addSerial
and rmSerial steps. During output processing, the agent reads from the container’s
PTY and writes everything to the real TTY mapped to it. During input processing,
the agent reads from the real TTY and writes everything to the container’s PTY. This
way, the application component can use the normal serial library, and at the same
time, inputs and outputs are both “frozen” during the exectution phase in compli-
ance to the logical execution time paradigm. Due to the serial extensions, the LSS
python library from Lynxmotion can be used within the container. Thus, the robot
controller component could be developed independently using this library. First,
the robot was assembled and mounted to a fixed working area. Then the pick and
place commands were defined and tested with the robot without the real-time con-
tainer architecture integration. For development independently from the robot (e.g.
at home), a simple robot simulation component was developed, which mimicks the
serial interface of the robot. Finally, the robot control sequence was wrapped in a
Python-based software component, to comply with the cyclic task model. For the
component-internal design, the state pattern was used. In each cycle, the compo-
nent state is read from a file, then any inputs are read and the internal knowledge
about the cubes and the robot location is updated depending on the inputs and the
passed time (calculated from the configured period and a cycle counter). If the cur-
rent situation (component state, robot state, cube info) requires any action in terms
of a command or request, then such output messages are created via the LSS python
library and the component state is updated.

After approximately two weeks, the software components where ready in a first
version, so the CubeBot integration phase started. The hardware setup was already
done before to create images for the cube detector training and to define and test the
coordinates for the robot instructions. The reconfiguration plans for the two nodes
were defined and the build and deployment scripts for the integrated project were
created. The integrated project pulls all required components from git, builds the
components and container images. Afterwards, the exported container images are
uploaded to the target nodes and the agents are configured for the CubeBot system.
As an additional demonstration feature, the unused button of the other node could
be used to start a timeboxed system run. This was achieved via a small script, which

172 Chapter 6. Evaluation of the Platform Concepts and Prototype

continuously reads the button, and if pressed, the agent is started in its current con-
figuration. After the initial integration, the component development activities con-
tinued in an iterative way, so that also the integrated system was developed itera-
tively. Approximately 60 % of the work was done individually at home, and 40 %
on-site in the office at the demonstrator. Thus, we estimate that the integration effort
was approximately 40 % and up to 60 % were spent in parallelizable and potentially
reusable work items. Within the two months the CubeBot system was successfully
developed and presented at Siemens and at the University of Augsburg.

6.2.3 Configuration and Operation

We describe the final configuration of the real-time container architecture for the suc-
cessful execution of the CubeBot system. This includes the agent configuration files,
the container configuration files and the reconfiguration plans. Listing 6.1 shows
the agent configuration file for node1. The configuration of node2 is equal except
that a different node configuration file is referenced. The global period was set to
500 ms and the agent runtime was set to 50 ms. This was necessary because the cube
detector component took up to 300 ms of execution time and the periods must be
aligned with each full second in our current prototype due to the initial cycle align-
ment method (see section 5.2.3). Due to the long period, the agent log level could be
set to 7 (debug) to get a full picture of the system execution. A termination trigger
of 180 seconds was configured, so there was enough time for demonstrating both
versions (semi- and fully-automated) and the seamless reconfiguration. Both node1
and node2 were configured as in the onBtnSwitch system regarding IP addresses and
master/slave roles, so we omit the node configuration files.

logLevel: 7
agentRuntimeSeconds: 180

nodeConfigFilePath: "/etc/rtca/robot-deployment/node1.yml"

sched_deadline:
period_ms: 500
runtime_ms: 50
deadline_ms: 500

LISTING 6.1: Agent configuration for the CubeBot system.

Listing 6.2 shows the configuration of the cube (color) detector’s application
container ccd. The ccd container is configured for running on node1 with its IP
address of 192.168.1.101 and the gateway configured to the local virtual bridge
lxcbr0. A TTY and a pseudo TTY device are configured (even though the pseudo
TTY device is not needed for the cube detector component). Finally, we mount the
/etc/rtca/input/webcam folder into the container. This is where at execution time
the camera worker places the webcam images and the agent maintains a symlink
according to the camera I/O mapping. A maximum log level is configured for LXC
(this is not the application log level, but for the container runtime itself). The re-
maining configuration items are left unchanged from the busybox template.

Listing 6.3 shows an extract of the robot controller’s application container robot.
This component is configured to run on node2 with the IP address 192.168.2.100 and
the gateway configured to lxcbr0 on node2. The robot controller does need a PTY,
which is enabled in the configuration by the corresponding pts and mount entries.
The standard mount configuration for lib is commented out, as the robot container is
built with a python executable inside. Listings 6.4 and 6.5 show the reconfiguration
plans for the CubeBot system and the reconfiguration scenario. On node1 an adapted

6.2. Case Study: CubeBot 173

lxc.loglevel = TRACE
lxc.logfile = ccd.log

lxc.network.type = veth
lxc.network.hwaddr = 00:16:3e:3a:01:02
lxc.network.flags = up
lxc.network.link = lxcbr0
lxc.network.name = eth0
lxc.network.ipv4 = 192.168.1.101/24
lxc.network.ipv4.gateway = 192.168.1.2

lxc.rootfs = /var/lib/lxc/ccd/rootfs
lxc.rootfs.backend = dir
lxc.haltsignal = SIGUSR1
lxc.rebootsignal = SIGTERM
lxc.utsname = ccd
lxc.tty = 1
lxc.pts = 1
lxc.cap.drop = sys_module mac_admin mac_override sys_time

lxc.mount.auto = cgroup:mixed proc:mixed sys:mixed
lxc.mount.entry = shm /dev/shm tmpfs defaults 0 0
lxc.mount.entry = /lib lib none ro,bind 0 0
lxc.mount.entry = /usr/lib usr/lib none ro,bind 0 0
lxc.mount.entry = /sys/kernel/security sys/kernel/security none ro,bind,optional 0 0
lxc.mount.entry = /etc/rtca/input/webcam etc/rtca/input/webcam none ro,bind 0 0

LISTING 6.2: LXC configuration file for the cube (color) detector’s container ccd.

lxc.loglevel = TRACE
lxc.logfile = robot.log

lxc.network.type = veth
lxc.network.hwaddr = 00:16:3e:3a:02:01
lxc.network.flags = up
lxc.network.link = lxcbr0
lxc.network.name = eth0
lxc.network.ipv4 = 192.168.2.100/24
lxc.network.ipv4.gateway = 192.168.2.2

lxc.rootfs = /var/lib/lxc/robot/rootfs
lxc.rootfs.backend = dir
lxc.haltsignal = SIGUSR1
lxc.rebootsignal = SIGTERM
lxc.utsname = robot
lxc.tty = 1
lxc.pts = 1
lxc.cap.drop = sys_module mac_admin mac_override sys_time

lxc.mount.auto = cgroup:mixed proc:mixed sys:mixed
lxc.mount.entry = shm /dev/shm tmpfs defaults 0 0
standard mount commented out to not override python executable
lxc.mount.entry = /lib lib none ro,bind 0 0
lxc.mount.entry = /usr/lib usr/lib none ro,bind 0 0
lxc.mount.entry = /sys/kernel/security sys/kernel/security none ro,bind,optional 0 0
lxc.mount.entry = /dev/pts host-pts none rw,bind 0 0
lxc.mount.entry = /var/lib/lxc/robot/rootfs/dev dev none rw,bind 0 0

LISTING 6.3: LXC configuration file for the robot controller’s container robot.

174 Chapter 6. Evaluation of the Platform Concepts and Prototype

version of the button controller is started first, i.e., the system starts in the semi-
automated version. The adapted version is implemented with Python and sends
JSON outputs indicating the cube color (default red, green while button is pressed)
instead of the risingFlank. Thus, it is compatible with the robot controller on node2
and can be replaced by the cube detector without modifying the robot controller.
The robot controller is started on node2 in the robot container using the addSerial
step. This way it can communicate with the robot plugged at USB0 indirectly via
an agent-managed pseudo TTY configured with baude rate 19 200. Immediately af-
ter the initialization reconfiguration, the ccd container is started on node1 with the
cube detector component inside. After the component is ready and 50seconds have
passed, the replacement is performed by the second block of modification steps in-
cluding addCam. The addCam step makes the camera images available to the inside of
the container as symlink called frame.jpg. Additionally, the communication mapping
is modified, so that the color detector’s output are now mapped to msg1 to reach the
robot controller. From this point on, the fully-automated version of the CubeBot sys-
tem is running, so the camera input is used to gather and send cube information to
the robot controller.
start "button-robot" "192.168.1.103" "/usr/local/bin/python3 /usr/src/app/py-src/main.py"

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "button-robot"
addGPIO "button-robot" "inputButton" "in" "63"
addCom "button-robot" "com2" udp src "*:2000" dst "*:2000" via "msg1"

’dynamic’ reconfiguration plan

start "ccd" "192.168.1.101" "ccd 2>&1"

syncPoint 3 wait 50

offset 1:
afterInputs:

rmCom "button-robot" "com2" "msg1"
addCom "ccd" "com1" udp src "*:2000" dst "*:2000" via "msg1"

offset 2:
betweenIO:

rmGPIO "button-robot" "inputButton"
rmSwc "button-robot"
addSwc "ccd"
addCam "ccd" "/frame.jpg"

stop "button-robot"

LISTING 6.4: A reconfiguration plan to start an adapted button controller
component on node1 installed as container button-robot. After 50 s it is replaced

by the cube detector component ccd.

start "robot" "192.168.2.100" "/usr/local/bin/python3 /usr/src/app/py-src/main.py"

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 0:
betweenIO:

addSwc "robot"
addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "robot" "com1" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addSerial "robot" "robotSerial" "/dev/ttyUSB0" "19200"

LISTING 6.5: A reconfiguration plan to start the robot controller component on
node2 installed as container robot.

With these configuration and reconfiguration files, we operated the CubeBot
showcase system as follows. After pressing the button on node2, the system started

6.2. Case Study: CubeBot 175

and initilly ran in the semi-automated version for three pick-and-place routines of
the robot controller. During the semi-automated phase, we placed a red cube in the
pick area, which was put to the red place area by the robot. Then we placed a green
cube to the pick area and kept the button on node1 pressed, so the robot put it to
the green place area. Afterwards, we let the robot do one routine without a cube
to demonstrate that it is unaware of whether or not there are cubes. Shortly before
the next routine would start, the system was reconfigured to the fully-automated
version, which only starts a pick-and-place routine if a cube is detected. Due to the
50 s reconfiguration timing, the update took place during this empty routine, so the
robot stopped at the pick area waiting for a cube. We then waited for a few seconds
to demonstrate that the fully-automated version is now active and aware that there
is no cube. Afterwards we put some red and green cubes to the pick area one-by-one.
They were detected and their color was classified accurately, so the corresponding
information was sent to the robot and it picked and placed the cubes to the right
place area. In rare cases it took longer to detect a green cube, but in essence the
classification worked reliably for the showcase at the end of the project. However,
we did not integrate a monitoring system into the demonstrator setup. Thus, a lot
of explanation was required to tell the audience what was going on and that this is
the expected behavior. We are working on improving the observability, especially
during the reconfiguration transition. Hopefully, this will also help to move the fo-
cus to the platform concepts rather than the neural network. While we wanted to
show that such a technology can be used in the real-time container architecture, the
CNN-based application component got too much attraction given our clear target to
innovate on the platform level.

177

Chapter 7

Conclusion

This thesis presented our concepts for modular and dynamically reconfigurable dis-
tributed embedded applications. In the introduction in chapter 1 we motivated the
need for such concepts by technically enabling smart factories and industrial ecosys-
tem scenarios. Therein, modern IT technology will need to move closer to the tech-
nical process, where the control platform needs to maintain determinism, though,
so that end-to-end reactivity can be included in the process planning dependably.
Additionally, we need to dynamically reconfigure distributed embedded applica-
tions due to the use of IT technologies, cloud connectivity, and CPPS adaptation
scenarios, while frequent downtime is to be avoided due to cost and also technical
reasons. Dynamic reconfigurations should be possible during full operation, i.e.,
without stopping production, and without the platform being asked to understand
the technical process, e.g. to organize production steps so that there are idle times, or
wait for such idle times (if any). The reason for this is that a separation of concerns is
desired between the distributed embedded application architecture and its dynamic
reconfiguration on one hand and the technical process and the organization of the
equipment on the other hand. This way any higher-level control concept could fully
benefit from our runtime platform concepts transparently and become dynamically
reconfigurable. We conclude this thesis by reflecting our key results and pointing
out future directions.

7.1 Summary and Discussion

In chapter 2 we described architectural foundations and existing technical ap-
proaches to industrial control systems. Essential foundations for this thesis include
MDE and CBSE, as such concepts from the engineering side strongly contribute
to achieving decoupling and deterministic temporal behavior at runtime. At the
same time, MDE and CBSE are also targets that are to be technically enabled by our
runtime platform concepts for modular and dynamically reconfigurable distributed
control systems. We also gave an overview of different architecture styles in dis-
tributed systems: while many dynamic concepts rely on service-oriented request/re-
ply communication or event-based publisher/subscriber relationships, our platform
concept is based on strictly cyclic sender-receiver communication. We do not allow
the applications to dynamically create communication relationships, but strictly or-
chestrate components from outside, transparently to components. This way we can
better achieve end-to-end determinism through static analyis and enforcement (also
of timing) at runtime including dynamic reconfigurations, as they are completely
in the hand of the runtime platform and we know the exact timing apriory. This
is also supported by the time-triggered, isochronous nature of our platform, as we
elaborated on when we described different fundamental approaches to industrial

178 Chapter 7. Conclusion

control systems. There are RTOS-based systems along with the problems of schedu-
lability of dependent tasks and coping with priorities, semaphores, and the general
complexity resulting from application logic influencing the schedule, for instance
through events. Besides the bounded execution time (BET) abstraction provided by
RTOSs, the zero-execution-time (ZET) and logical execution time (LET) abstractions
exist [KS12]. The LET paradigm is the best abstraction regarding temporal decou-
pling, i.e., the separation of the concerns of functional control and temporal control,
leading to easier integration of distributed (when also applied to communiction)
control systems throughout all phases, including dynamic integration at runtime.
Thus, the LET paradigm is an essential foundation for our concepts. We also de-
scribed concrete existing approches to distributed control systems. An important
related platform is AUTOSAR, which on the engineering side is very close to our
concepts in its classic variant, but not as close on the runtime side, not even in its
adaptive variant. Modern IT technologies and dynamic reconfiguration are not sup-
ported by AUTOSAR classic (not even easy configuration), while AUTOSAR adap-
tive does not address end-to-end determinism. We mentioned existing approaches
to close these gaps, for example the recent adoption of the LET paradigm in AU-
TOSAR and the reactor-based solution DEAR [MGLC20] for AUTOSAR adaptive.
We explained that reactors may be the event-style sibling to the time-triggered LET
concepts and thus to our deterministic aproaches, but that dynamic reconfigura-
tion without downtime is still missing, and that we believe our deterministic con-
cepts better support static analysis. We also gave an overview of related approaches
in avionics, for example a harmonization of safety-certified parts on ARINC 653
with POSIX-based IT-style application parts based on hypervisor extensions in AR-
INC 653 [BS20]. Of course, we also elaborated on existing technogies in automation
domains, where we point out the importance of reconfigurable manufacturing sys-
tems [KS10], and why we focus on the aspect of reconfiguring the lower-level con-
trol software (not the hardware or the higher-level control). If the reader expected an
overview on multi-agent systems and the like, we refer to literature cited in the intro-
duction, as self-reconfiguration had to stay beyond the scope of this thesis. We gave
an overview of widely used automation technologies such as the IEC 61499 standard
for distributed function block diagrams and OPC UA. There is an approach for live
updates in PLCs in Cetratus [MM21] based on a switch between primary and sec-
ondary “containers” of functionality and including state transferal between them.
The I/O virtualization in Cetratus is similar to our concepts, as we also only provide
indirect, managed I/O access to the application layer components. However, the
approach only updates one local PLC application and does not address distributed
dependencies and timing. We highlighted a recent IEC 61499-based approach for dy-
namic reconfiguration of distributed control systems by Prenzel et al. [PP17], which
uses sequences of meta operations available in IEC 61499 in combination with the
process update features provided by their Erlang OTP-based implementation. While
the extended concept meanwhile even offers rollbacks in case of failures [PHS22], we
argued that their approach can cause significant downtime, when function blocks
on multiple devices must be suspended during the switch. We also gave a detailed
description of embedded Linux, which we built our prototype on. We explain avail-
able kernel features which help to achieve hard real-time (especially regarding CPU
and network) for distributed, containerized application components in addition to
further means that we propose in our concepts. Finally, we described related and
foundational formal methods for the specification and analysis of real-time systems
and of dynamic reconfiguration. We gave an overview of timed extensions of ex-
isting formal frameworks, highlighting timed Kripke structures [LÁÖ15]. They are

7.1. Summary and Discussion 179

used for timed CTL model checking of timed rewrite specifications with Real-Time
Maude [Ölv14], which we use to formally specify our concepts. The exisiting for-
mal frameworks for dynamic reconfiguration often ignore real-time requirements,
do not target distributed systems, or introduce downtime. Examples for this are the
quiescence-based approach by Kamer and Magee [KM90] and the tranquility ap-
proach by Vandewoude [VEBD07]. They are still essential concepts and relied on
in recent approaches to reconfiguring distributed control systems (with some down-
time, though), as by Prenzel and Steinhorst [PS21]. Hammer [Ham09] proposed
reconfiguration plans and state transferal in a formal specification based on Maude,
which was highly influencial for this thesis, though it does not consider real-time
systems. Summing up, besides our work and the work by Prenzel et al., distributed
real-time systems are usually only updated during operation when the new versions
are backwards-compatible.

Thus, there is a clear gap in the existing work regarding the research scope de-
fined in section 1.1, which we addressed by our concepts. In chapter 3 we describe a
formal framework for decoupled component-based software engineering for dis-
tributed control systems based on Real-Time Maude. The first part of the framework
is a design-time model (see section 3.1), the fragments of which need to be instanti-
ated by the different actors to define a distributed control system. The basis is a soft-
ware component model, which includes ports with required and provided proper-
ties, one periodic task, and state declaration (with optional state transfer operations
dump and load), and version information. It is important for later integration steps
that also non-functional aspects are modeled, in this case the period and WCET of
the task (and state transfer operations, if supported), the supported sample rates or
required maximum ages of properties and their sizes (based on their types), and the
size limit for the state. Of course, this is a minimal component model compared to
others, for example the MARTE component model [OMG19] or the QoS features in
DDS [OMG15a]. However, we had to keep this model minimal for the scope of this
work to achieve a break-through in later phases, especially regarding the reconfigu-
ration extensions. Further features such as multiple tasks or request/reply interfaces
along with more non-functional aspects including the maximum number of paral-
lel requests would make the component model more powerful, but also introduce
complexity to the integration concepts. Besides the component description, a com-
ponent implementation is needed as an independent model fragment, so this can be
provided afterwards to implement a component interface, or a description could be
created for an existing implementation. The implementation is used for the model-
based simulation with Maude, only – it is not intended to generate executable code
from it for any given target platform. Based on software component descriptions,
distributed embedded applications can be modeled by connecting required and pro-
vided properties via their ports. This happens before defining the deployment, simi-
lar to the VFB concepts in AUTOSAR [AUT15]. For this, the network topology of the
involved MCUs and the MCUs themselves are modeled independently. The model
of an MCU includes information about the network ports and I/O ports along with
non-functional model information of the throughput of the network ports. Like the
software component model, this is a minimalistic model that needs extension in fu-
ture, but serves as basis for demonstrating the decoupled engineering aspects. The
network topology instantiates those MCUs as nodes, connects their network ports
via network connection model information, and defines additional non-functional
information, in this case a lower bound of the bi-directionally guaranteed through-
put. The final design step is to instantiate the deployment model. It maps com-
ponents to nodes, unmapped properties to I/O ports of the nodes, and connectors

180 Chapter 7. Conclusion

between ports to messages (which themselves are part of the deployment descrip-
tion, too). Thus, each modeling step is quite simple, but still leads to deterministic
end-to-end behavior of the distributed control system. For analyzing the feasibil-
ity of a given deployment, a few configuration parameters of the runtime model
required, such as the reserved time for the agent. The analysis and simulation of a
given distributed control system is possible based on a second part of our framework
– our runtime model (see section 3.2). For each software component, an application
container will be spawned as their sphere of incluence. Containers compete for the
system resources CPU and network. When set to running by the scheduler model,
runtime up to the modeled WCET or the end of the cycle is used to perform the com-
ponent’s task (or state transfer operation), but not more. The inputs and outputs of a
software component declared by its ports are available within the container, but can
not be shared or communicated with other components or hardware I/Os. An addi-
tional agent is modeled, which runs on each node to provide inputs and handle the
outputs during the synchronous cycle turnover on behalf of the components accord-
ing to the deployment description, for example, create a network message contain-
ing the current value of an output. Finally, the runtime model also includes a model
of the network behavior, which is similar to the CPU behavior in that messages are
competing for transmission time (depending on their sizes) on the medium. Due
to the management by the agent, both CPU and network consumption are done ac-
cording to the LET time paradigm, which leads to end-to-end deterministic behavior
without further time slices smaller than the global period. This enables formal anal-
ysis to a certain extent as described in section 3.3. Besides statically checking the
compatibilities of connected software and I/O ports, end-to-end feasibility can be
estimated even without the deployment using a dataflowgraph of a distributed em-
bedded application. After the deployment is defined, this analysis can be refined,
in addition to checking that there is enough CPU and network capacity for the al-
located tasks and messages. This also takes into account the runtime configuration
parameters, such as the configured maximum agent runtime. We also describe how
to identify further inconsistencies by running a simulation with Maude, and even
how to model check a given distributed embedded application also using the com-
ponent implementation models and Real-Time Maude, e.g. whether a maximum age
constraint of a property can be violated by the architecture. For functionally testing
a distributed embedded application in a given deployment, a model of the environ-
ment is needed in addition. All in all, this chapter showed how easy integration over
all phases is possible, but that the required platform concepts for this are complex
even with this simple model and without dynamic reconfiguration.

This framework is extended in chapter 4, so that such distributed control systems
can be reconfigured during full operation. In three cyclic reconfiguration hooks, the
agent checks the top-most reconfiguration step in its node-specific reconfiguration
plan and applies corresponding actions if any. We specified various reconfiguration
steps which must be combined by a reconfiguration planner to solve a concrete re-
configuration problem. To completely avoid downtime or at least deterministically
limit the amount of blocking, we propose and enable following basic reconfiguration
schema. Prepare time-critical reconfigurations in background, i.e., by downloading
and starting components (download and start) to be added to the distributed em-
bedded application in dedicated application containers (for instance, new compo-
nent versions). Such steps are executed in a containerized worker component of the
agent at the same priority as application components. Then let all agents involved
in a time-critical block of reconfiguration steps agree on a synchronous continua-
tion cycle via the proposed synchronization protocol using the coordination steps

7.1. Summary and Discussion 181

(notify and wait). The waiting does not block any agent or application parts, but only
modifies their behavior in reconfiguration hooks by deferring subsequent reconfig-
uration steps until that common cycle. At predefined cycle offsets from that continu-
ation cycle, perform the time-critical transition from the old application and deploy-
ment to the new one synchronously across nodes using corresponding modification
steps. The most essential restructuring steps can change the set of active components
(addSwc and rmSwc), their communication with each other (addCom, rmCom, addMsg,
rmMsg) and their access to I/Os (addIO and rmIO). To achieve state transfer between
containers, even remote containers, we provide a number of handover steps to han-
dle ground state transfer (extract, transfer, transmit, inject) and on-demand dumping
and loading of a component’s internal task state via the corresponpding optional
state transfer operations of the components (dump and load). As handover steps can
take time if the state is big and/or application components are involved (also in
transforming the state), the background worker may be asked to perform handover
steps in bounded time (by setting zet to false) and we also provide interception steps
to fix potentially broken dataflow timing by saving inputs and outputs and replay-
ing them at later times (capture and replay). After a synchronous block of reconfigu-
ration steps, clean up the old components by stopping and deleting their containers
(stop and delete) and/or prepare for the next synchronous block.

Obviously, transitioning between applications is the most complex aspect of this
approach, as the timing of the reconfiguration steps needs to be aligned so that the
end-to-end dataflow from sensors to actuators will be consistent at all times. Ad-
ditionally, we must not exceed the limits of the resources at any times throughout
the reconfiguration, including the runtime requirements of the agent. Thus, we elab-
orate on the definition and checking of reconfiguration consistency in section 4.2.
However, while we describe how to calculate the feasibility and check the consis-
tency manually, it is much easier to use a simulation run of the reconfiguration in
Real-Time Maude. The simulation will only reach the end of the reconfiguration
plan if it is consistent and feasible, as the rules of our model automatically inhibit
progression of the system and time, for instance if a component should be added
while it is not running, or when a task does not complete its cycle because there
is no more CPU time. Thus, a reconfiguration plan is consistent and feasible from
platform perspective if and only if the simulation reaches the end of the plan and
complete one end-to-end simulation of the resulting distributed embedded applica-
tion. In addition, we also elaborated on the definition and analysis of the quality
degradation caused by a reconfiguration plan with regard to delayed reactions and
temporary blindness of the system. For this we proposed the evolving dataflow
graph, which is constructed for a given deployment and reconfiguration plan and
models each cyclic datapoint and their flow in terms of calculations, transmission,
and aging. Its edges are labeled with durations, so that the worst-case reaction time
of a system can be defined dynamically as the maximum length of the shortest paths
from each sensor to each reachable actuator in the corresponding cycle. Temporary
blindness can be defined dynamically as the number of consecutive cycles in which
no path exists from a sensor to an actuator. Based on this definition and analysis
method, an engineer can see and quantify if there would be a quality degradation
and decide whether it is acceptable considering the requireements of the distributed
control system and the benefits of the dynamic reconfiguration.

Besides this method for analyzing reconfiguration plans, we also proposed re-
configuration blueprints in section 4.3 that help to systematically create consistent
reconfiguration plans for some scenarios. The general reconfiguration timing tem-
plate shows how modification steps can be or should be timed relative to addition

182 Chapter 7. Conclusion

and removal of a software component. If possible, all add* steps should be done in
the hook betweenIO just before the first active cycle, and all rm* steps should be done
betweenIO just after the last active cycle. Thus, a minor component update can be
done by putting all rm* steps related to the old version and all add* steps related
to the new version into the same cycle turnover. If state transfer is required, we
describe how to add the state transfer steps in various cases, the easiest being a com-
patible transfer of a small enough ground state using the transfer step in the same
cycle turnover under ZET assumption (if the state is small, the agent can do this
within its cyclic reservation, too). Using this basic reconfiguration blueprint, recon-
figurations can be achieved without downtime even in case of distributed breaking
changes, by synchronously removing and adding components on multiple nodes
along the dataflow from sensors through components to actuators. Currently, we
only solved this for DAG-style applications and when there is no state or the state
is small enough and cyclically maintaind as ground state. However, for starting and
stopping applications – even non-DAG applications – we also elaborate on a pos-
sibilty to reconfigure cyclic applications. By considering which components are ro-
bust against which missing inputs and for which we can provide initial inputs from
outside, we can sometimes transform it to a DAG-style application. This approach
requires additional knowledge about the application components, though, which is
currently not part of our model.

Chapter 5 describes the real-time container architecture, a reference implemen-
tation of our runtime platorm concepts on Linux, which additionally enables the use
of modern IT technolgies. The structure of this chapter is based on the arc42 template
for light-weight architecture documentation, which starts with an overview of func-
tional and non-functional requirements. In essence, the platform should enable dy-
namic orchestration of distributed embedded applications by reconfiguration plans
as formally specified in the earlier chapters. As it is an evalutation and demostration
prototype, it must also include monitoring and tracing features, especially to gather
runtime statistics about the platform and application. The most important qual-
ity goals were performance (to achieve 10-100 ms periods), compliant synchronous
LET-based real-time behavior (distributed drift less than 1 ms), functional and non-
functional isolation of components, and portability (regarding different MCU types
and support for different technology stacks of application components). Compat-
ibility with specific neighboring systems was excluded from the platform scope,
e.g. certain industrial standards for configuration. The central part was the solu-
tion space, were we described the architecture of the runtime platform. The core
solution strategy was to use containers on Linux to enforce the isolation of IT-based
components and an additional agent to care for the dynamic orchestration according
to reconfiguration plans. Existing orchestrators such as kubernetes do not solve this
in a time-deterministic way. We described how to still achieve real-time behavior, in-
cluding configuration of Linux for both PREEMT_RT_FULL (fully preemptive ker-
nel) and RT_GROUP_SCHED (hierarchical real-time scheduling for containers), the
use of Linux scheduling policies and priorities (SCHED_DEADLINE for the agent,
SCHED_FIFO for the remaining components of the platform and application, except
minor priority processes such as ssh), clock and cycle synchronization with PTP and
agent functionality, and communication and I/O management by the agent (includ-
ing the use of a barrier Qdisc at the container boarders). The architecture description
also provides details on the cyclic agent route, i.e., how input and output processing
are done, how the agent triggers the components, and how reconfiguration plans
are handled. We described the cyclic task behavior by software components, for
which a few restrictions exist so it can work on the real-time container architecture,

7.1. Summary and Discussion 183

for example, cyclically waiting for a signal from the agent. One of the most com-
plex and unique components of our platform is the barrier Qdisc, which cares for
traffic shaping and dynamic orchestration as configured by the agent. It helps to
enforce the LET paradigm for UDP communication transparently to applications,
redirects and multi-casts packets according to configured rules, and supports the re-
configuration steps addMsg/rmMsg, addCom/rmCom, capture and replay during the
cycle turnover. We explained how this leads to model-compliant traversal of UDP
packets between application components. The description also contains details on
how the system and individual components are started, which are essential platform
tasks. The agent and the containers can be configured by different text-based files.
The background worker component of the agent includes a reconfiguration plan
parser, so that human-readable, text-based reconfiguration plans can be handed to
the agent at runtime. The reconfiguration plan description language (RcPlan DSL)
is very similar to the constructor functions for reconfiguration steps in the formal
specification in section 4.1. This is important for trusting that the model “faithfully
reflects reality” [Gur94], and thus for trusting the simulation-based reconfiguration
consistency analysis from section 4.2. The implementations of each reconfiguration
step are described – most of them are straight-forward realizations of the modeled
behavior in the given architecture, which may have been surprising to the reader.
Of course, there are many implementation-specific details not covered in this thesis,
but which had to be solved by our runtime platform and were rarely trivial. The
prototype description concluded with an overview of complementing systems for
development and operation, including the application developement environment,
a system monitoring dashboard based on the “ELK” stack, and an update manag-
ment system. Some complementing systems were still under construction, but this
section shows some first concepts and prototpes how the runtime platform can be
integrated with neighboring systems, which is a major task for the future.

In the evaluation in chapter 6 we analysed the feasibility of our engineering and
runtime platform concepts using two case studies. The first step for the evaluation
was already provided by the definition and implementation of the real-time con-
tainer architecture, as this is needed to show that the formally specified platform
concepts can be realized, especially regarding the requirements of synchronous ex-
ecution on all nodes, LET compliance by applications with IT technologies such as
Linux containers and UDP, the ZET assumption for application management and re-
configuration steps, and of course applicability of the reconfiguration steps in a real
platform. The feasibility of these model assumptions is the basis for the dynamic
orchestration concepts that technically enable the MDE and CBSE vision. For evalu-
ating these aspects, we conducted our first case study based on the onBtnSwitch
system. We described different setups of this system some of which were pub-
lished in earlier versions: ICSA [TK19a], INDIN-1–3 [TK19b], and Benchmark (not
published earlier). The setups use different variants of the components as starting
configurations (stateless, ground, implicit, and mixed) and different reconfiguration
plans (no state transfer, ground state transfer, state transfer with dump/load, state
transformation, and a benchmark upgrade/downgrade loop which uses all steps
many times). The ICSA and INDIN setups were modeled and implemented, and
we compare the simulation and the real execution in detail. From this comparison
we conclude that the prototype implements the modeled platform concepts at least
to the extent required by the given setups. That includes synchronous execution
across nodes, concurrently starting new containers in background, synchronizing
across nodes and then performing time critical modifications before shutting down
the old containers in background. In the ICSA setup, a synchronous update of two

184 Chapter 7. Conclusion

distributed components is successfully done without downtime, but also without
state transfer. In the INDIN-1 setup, the ground state of the button controller is
successfully transferred during the update without downtime. In the more com-
plex INIDN-2 setup, we successfully transfer the implicit state of the LED controller,
which participates in the reconfiguration via the dump and load steps, and we addi-
tionally used capture and replay during the three cycles of downtime required for this
state transfer. The INDIN-3 setup was the most complex comparison, but it was also
successfully achieved by the prototype. This reconfiguration required multicasting
of the risingFlank to temporary update package components and remote state trans-
feral via transmit in addition to further reconfiguration steps. As calculated from the
model, the quality is degraded for one cycle, only, in which the system has a reac-
tion time of four cycles instead of three, and a temporary blindness to the button
input is caused for one cycle. To achieve this low-quality degradation despite the
remote state transferal, we proposed the aggregator/anticipator pattern [TK19b].
However, we raised the question how “Doppler effect” kinds of reconfiguration
problems (where we transfer the state in the opposite direction of the dataflow) can
be handled in general. The Benchmark reconfiguration was executed for 24 hours,
performing approximately 864 000 cycles with period 100 ms and 8811 full reconfig-
uration loops. The time-critical cyclic agent routing required a maximum runtime of
7.6 ms, including reconfiguration steps. Together with the maximum observed drift
of 1.5 ms, we can conclude that this prototype leaves over 90 % of the cycle to the
application in this setup, and that much shorter periods seem feasible. We also con-
cluded that significant optimization efforts will be required to reach 10 ms periods,
and that 1 ms periods do not seem feasible with this technology stack. The runtime
statistics were much more detailed, though, so they can now be used as indicator
for parameterizing the WCETs (eta) of the different step kinds in the model to im-
prove the simulation accuracy reagarding the feasibility of a reconfiguration plan.
However, we also admitted that these are only preliminary numbers and must be
measured for each concrete application, deployment, and reconfiguration plan, as
there may be interferences depending on the application types.

In the second case study, the smart factory showcase system CubeBot, we were
using more realistic interface and runtime technologies. Additionally, this case study
also challenged the CBSE side of our concepts, where our goals were to develop the
different application components and required I/O extensions in decoupled activi-
ties by different persons. The system was successfully developed within two months
by three students und architectural guidance. A large portion of the work was re-
quired for the design and implementation of the I/O extensions required to control
the equipment according to the platform model (especially isolation, LET, and recon-
figuration). For accessing a USB webcam, the camera extensions were introduced to
the real-time container architecture prototype. When the camera is added to a con-
tainer using addCam (a specialized version of addIO), the best-effort camera images
taken by an additional worker component of the agent are cyclically made accessible
to the corresponding container as a frozen symlink. For accessing a robotic arm, the
serial extensions were introduced. When a serial interface is added to a container
using addSerial (another version of addIO), the agent creates a pair of pseudotermi-
nals, one of which is accessible within the container, and copies in the two direc-
tions during input and output processing. Besides an architectural refactoring of the
agent, the two extensions were designed and implemented indepenently, and are
now available in the prototype. The essential application components were the cube
color detector and the robot controller. Both components were developed indepe-
nently using different programming languages (C++ and Python) and the required

7.2. Future Directions 185

frameworks (Tensorflow lite and the Lynxmotion LSS library). Then they were con-
tainerized and provided as component for the real-time container architecture. Af-
terwards, they were integrated by defining a reconfiguration plan for instantiating
the corresponding containers on the respective nodes. The only coupled activities
during component development were the API definition between the two compo-
nents – a small YML schema for the UDP payload describing the color of the cube –
and between the I/O extensions of the platform prototype. Overall, approximately
40 % of the project time was required for the integration efforts (hardware, platform,
interfaces) and up to 60 % were spent in parallelizable and potentially reusable work
items such as developing a component. Thus, the CubeBot case study showed that
the real-time container architecture and the underlying platform concepts are feasi-
ble for smart factory technologies and can decouple engineering activities.

All in all, the RTCA is a novel architectural concept towards technically enabling
ecosystem scenarios in distributed control systems. The main parts of this thesis are
the formal specification and analyzis concepts of a runtime platform and their re-
alization on Linux. The application layer parts of the two case studies were much
smaller compared to the amount of effort spent in the platform layer. Nevertheless,
we were able to draw conclusions that indicate the feasibility of our concepts and ar-
chitecture. Future work on the maturity and practical applicability of this promising
technology will be required as described in the next section.

7.2 Future Directions

Our novel concepts for modular and dynamically reconfigurable distributed em-
bedded applications will need future work to fully achieve the goals of technically
enabling smart factories and industrial ecosystem scenarios. We start with future
directions more related to the platform-independent conceptual level of our model.
Then we also point out directions more related to the platform-specific level of our
prototype. It is a fluent transition, though, as our prototype very closely complies
with the model. In the hope to induce much research to finally achieve the ultimate
vision, we give a rather comprehensive overview of future directions.

Fundamental concepts

More sophisticated component model: We worked with a minimal component
model and minimal non-functional model aspects in our mission to carry this
model over all engineering phases until the runtime and dynamic reconfig-
uration. It is thus an obvious direction to now lift our end-to-end concepts
to a more sophisticated component model, potentially based on an industrial
standard (e.g. IEC 61499, MARTE, . . .). Such a model might for instance
support additional communication styles, task models, and non-functional as-
pects. While events could lead to less determinism (depending on the real-
ization on the different platform layers), request/reply communication would
challange the reconfiguration concepts. Another direction is support for mul-
tiple tasks of a component, and different periods of tasks, which may make
integration and dynamic integration more complex, and also platform imple-
mentation. Support for more non-functional aspects might be added such as
declaratively modifying communication requirements with “exactly once” and
“at least once” modifiers and similar concepts.

186 Chapter 7. Conclusion

More sophisticated system model: We also worked with a minimal system model
for the same reasons. In future, the hardware and topology model fragments
might need enrichment to better solve hardware heterogeneity problems and
support more realistic variety in the network topology. This could include
adding more hardware information (e.g. CPU architecture), but also support
for more protocols and I/O types. This richer information might be used for
model-based platform generation with Yocto, for instance.

Reliability/safety by declaration: As already indicated for the inter-component
communication, future work could in general improve the reliability and
safety of distributed control systems based on declaratively activatable plat-
form features to be added. Such features could include automatic replication
and voting, measures for network reliability such as redundancy, component
SDK features for fault tolerant behavior (e.g. send twice), integration with
hardware means for more reliability such as a watchdog, and fault handling
during reconfiguration (e.g. rollback in-time). Those features and the corre-
sponding fault analysis should be included in the formal specification so that
the reachability of hazards can be quantified.

Self-reconfiguration: An application-platform-interface for requesting self-
reconfigurations or at least for incluencing reconfigurations should be added.
Currently, the reconfiguration timing cannot be modified by the application,
which helps to separate the concerns of process control and runtime man-
agement. However, it might be required in many cases that the embedded
application can temporarily prevent reconfigurations during critical condi-
tions of the technical process, for example. Towards better integrating with
common multi-agent systems architectures, it might be required that a privi-
leged application component can use a meta interface to analyze and adapt the
distributed embedded application by our reconfiguration means, e.g. to install
a new skill, or to build ad-hoc ensembles for real-time collaboration. However,
our concepts also create an opportunity for a new adaptability architecture
that should be considered in future: That larger-context adaptations of CPPSs
are managed by reconfigurations from outside of the distributed embedded
applications with more computing power, so that also constrained CPPS can
be better utilized.

Reconfiguration plan generation: Currently, the reconfiguration plans are pro-
vided to our runtime platform. While we provided blueprints for some
cases and analysis methods for checking reconfiguration plans, reconfigura-
tion planning remains a complex task. Future concepts might simplify this
task for the other cases by providing blueprints and even automatically deriv-
ing plans from more abstract reconfiguration targets.

Concrete prototype improvements

Pull containers: The download step was modeled, but not yet implemented. This
should be done in future, as well as integrating a container registry and con-
sidering quality gateways. At least checksums and origin should be checked.
These concepts should at least be harmonized with the model and not influ-
ence the distributed control quality.

7.2. Future Directions 187

More sophisticated applications and technologies: The evaluation case studies
were rather small compared to real industrial control systems in factory au-
tomation. An evaluation case study with more components and nodes should
be defined and implemented. Moreover, more frameworks should be inte-
grated within different reference application components to show how they
can be used within the real-time container architecture. This includes alterna-
tive execution platforms (e.g. Node-RED, WebAssembly, but also classic run-
times for function block diagrams), middleware (DDS, OPC UA FX, ROS, . . . –
some will require TCP, support for which will be difficult) and hardware and
I/O technologies (GPU, for instance). Does the real-time container architec-
ture need to be integrated with such technologies or can they simply be used
within application components? Do some technologies maybe at least require
the possibility for nesting runtime responsibilities?

Scalability: The prototype and some of the underlying concepts might need to be
more scalable regarding the number of nodes, components, connections, and
RAM. For instance, we think that the synchronization protocol might need
multicast-notifications or even more advanced means for the case that a huge
number of nodes need to be synchronized with potential inter-leaving of syn-
chronous reconfigurations. Also, the scalability of our multi-casting and re-
configuration features within the barrier Qdisc may need to be analyzed and
improved.

Performance and maturity: The prototype’s performance and maturity is rather
low, which may leave doubts about the applicability of the architecture in gen-
eral. To improve on this, several improvements should be considered, such
as using the PREEMPT_RT patches for less OS latency, improving the perfor-
mance of reconfiguration steps, and offering more performant means for local
inter-component communication. More widely used container runtimes and
orchestrators might be integrated, e.g. docker and kubernetes, but how to use
our re/configuration concepts, then?

Robustness: The current system is not robust against deadline misses of the agent,
application components, reconfiguration steps and messages. We need to
add concepts towards more stability and/or recovery of the platform. This
includes the drift caused by the Linux scheduler when the agent does not
progress fast enough and has more reservation left than time until the dead-
line. Another issue is the reliability of the UDP-based inter-agent communi-
cation, which can lead to misses of critical notifications such as the start time.
Also, we may need improvements in container and network technologies to-
wards more strict isolation and bandwidth guarantees.

Linux evolution: The current OS image was forked years ago and is outdated, while
our customizations will need to be ported to more recent verions. To minimize
such efforts in future, the platform should be based on a long-term maintained
Linux distribution that enables integration and customization with minimal
risk and effort of obsoletion. It should provide means to update the OS- and
platform-layer without or with minimal downtime, too. New concepts may be
required to achieve full-stack updates without downtime.

Reconfiguration speed: Our concepts avoid or at least minimize downtime during
dynamic reconfigurations, but the preparation and cleaning can take “arbi-
trarily” long. The speed of preparation in background could be improved by

188 Chapter 7. Conclusion

assigning all unused resources to the worker, or using a pool of parallel work-
ers, or by reusing pre-launched elements such as virtual ethernet pair devices
and barrier Qdisc instances. Such concepts will make the architecture and re-
configurations more complex, but might be required in application scenarios,
for instance, to adapt a robot’s skill set fast enough on-demand.

Engineering and operation tools: The engineering side was addressed in the for-
mal framework in this thesis to support decoupling and late integration, but
the prototype did not well support these concepts. Future directions should
better support the developers and operators. DSL-based validators and gen-
erators could reduce complexity via abstraction and automation and reduce
the gap between the formal model and prototype. New IDE tools could sup-
port the DevOperators by low-code design and dataflow graph visualization.
A reconfiguration plan design tool could support in graphical instantiation of
reconfiguration templates, visualize a plan’s EDFG and the quality degrada-
tion, and maybe even derive plans automatically from a “diff” for some cases.
Standard cases such as minor component updates could be supported easily
by clicking in an update management system or may even support automatic
updates. It is not only a usability and configuration management question,
though, as we did not solve all reconfiguration problems generically in this
thesis. For development and test, integration concepts for (3D) simulations of
digital twins with virtual targets for distributed embedded applications would
help. Here the problem of simulation time versus real-time must be solved.
Finally, improvement on data acquisition and monitoring may be required,
as we currently only support remote syslog, which is verbose and has a high
and non-deterministic impact on the CPU and network. Additionally, AR/VR-
based monitoring tools might be considered in future, which also call for re-
configurability with regard to data acquisition, too.

Security: Unfortunately, we had to exclude security from the scope of this thesis.
However, it is clear that security enhancements will be needed in all layers.
We already mentioned the inter-agent communication and downloads, which
at least requires authentication and integrity checking. Future work should
also consider the security of the barrier Qdisc, as this is an essential component
within the network stack in the kernel space.

Ecosystem features: In fulfilling the vision of an ecosystem of reusable industrial
components and applications, a marketplace will be required. This will in-
clude licensing and billing aspects, which may require some features within
the runtime platform, for instance license checking, intellectual property pro-
tection, and dynamic usage tracking per components. This may be particularly
challenging in offline environments.

All in all, we want to apply our concepts to more applications and technolo-
gies and make them more usable and applicable. This will hopefully contribute to
the smart factory visions of software-defined manufacturing and production as a
service. However, non-technical advances will be required, too [BNO+21]. Finally,
application scenarios for distributed control systems in other domains might benefit
from our concepts as well.

189

Appendix A

Evaluation Reconfiguration Plans

We provide some of the reconfiguration plans used in the evaluation. For ICSA we
provide two variants, one which has the “straight-forward” timing, and one which
has the originally proposed timing. Corresponding variants exist for all these plans
due to the “three-hook equivalence” of restructuring steps, but are omitted.

an executable ICSA RcPlan DSL file for node1
the most ’straight-forward’ timing: rewire everything betweenIO at switch time

initialization plan

#download "Button Controller" "1.0" "button-v1"
start "button-v1" "192.168.1.101" "button-client 2000" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addSwc "button-v1"
addGPIO "button-v1" "btnIn" "in" "63"
addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

’dynamic’ reconfiguration plan

download "Button Controller" "2.0" "button-v2"
start "button-v2" "192.168.1.104" "button-client 2000" quota 10000

syncPoint 3 notify "node2"
syncPoint 4 wait "node2"

offset 0:
betweenIO:

rmGPIO "button-v1" "btnIn"
rmSwc "button-v1"
rmCom "button-v1" "risingFlank" "msg1"
rmMsg "msg1"
addSwc "button-v2"
addGPIO "button-v2" "btnIn" "in" "63"
addMsg "msg2" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v2" "risingFlank" udp src "*:2000" dst "*:2000" via "msg2"

stop "button-v1"
destroy "button-v1"

LISTING A.1: Reconfiguration plan for the ICSA setup on node1.

190 Appendix A. Evaluation Reconfiguration Plans

an executable ICSA RcPlan DSL file for node2
the most ’straight-forward’ timing: rewire everything betweenIO at switch time

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000"

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

download "LED Controller" "2.0" "blink-v2"
start "blink-v2" "192.168.2.103" "blink-server 2000"

syncPoint 3 wait "node1"
syncPoint 4 notify "node1"

offset 2:
betweenIO:

rmCom "blink-v1" "risingFlank" "msg1"
rmMsg "msg1"
rmGPIO "blink-v1" "ledOut"
rmSwc "blink-v1"
addMsg "msg2" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v2" "risingFlank" udp src "*:2000" dst "192.168.2.103:2000" from "msg2"
addSwc "blink-v2"
addGPIO "blink-v2" "ledOut" "out" "7"

stop "blink-v1"
destroy "blink-v2"

LISTING A.2: Reconfiguration plan for the ICSA setup on node1.

Appendix A. Evaluation Reconfiguration Plans 191

an executable ICSA RcPlan DSL file for node1
as published (but for onBtnSwitch, not CamSys)

initialization plan

#download "Button Controller" "1.0" "button-v1"
start "button-v1" "192.168.1.101" "button-client 2000" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addSwc "button-v1"
addGPIO "button-v1" "btnIn" "in" "63"

offset 1:
beforeOutputs:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

’dynamic’ reconfiguration plan

download "Button Controller" "2.0" "button-v2"
start "button-v2" "192.168.1.104" "button-client 2000" quota 10000

syncPoint 3 notify "node2"
syncPoint 4 wait "node2"

offset 0:
betweenIO:

rmGPIO "button-v1" "btnIn"
rmSwc "button-v1"
addSwc "button-v2"
addGPIO "button-v2" "btnIn" "in" "63"
rmCom "button-v1" "risingFlank" "msg1"
rmMsg "msg1"
addMsg "msg2" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v2" "risingFlank" udp src "*:2000" dst "*:2000" via "msg2"

stop "button-v1"
destroy "button-v1"

LISTING A.3: Reconfiguration plan for the ICSA setup on node1 (timing as
published originally).

192 Appendix A. Evaluation Reconfiguration Plans

an executable ICSA RcPlan DSL file for node2

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000" quota 10000
syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 1:
afterInputs:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"

offset 2:
betweenIO:

addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

download "LED Controller" "2.0" "blink-v2"
start "blink-v2" "192.168.2.103" "blink-server 2000" quota 10000

syncPoint 3 wait "node1"
syncPoint 4 notify "node1"

offset 1:
afterInputs:

rmCom "blink-v1" "risingFlank" "msg1"
rmMsg "msg1"
addMsg "msg2" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v2" "risingFlank" udp src "*:2000" dst "192.168.2.103:2000" from "msg2"

offset 2:
betweenIO:

rmGPIO "blink-v1" "ledOut"
rmSwc "blink-v1"
addSwc "blink-v2"
addGPIO "blink-v2" "ledOut" "out" "7"

stop "blink-v1"
destroy "blink-v2"

LISTING A.4: Reconfiguration plan for the INDIN-1 setup on node2.

Appendix A. Evaluation Reconfiguration Plans 193

an executable INDIN-1 (=example 1) RcPlan DSL file for node1
hooks as published

initialization plan

download "Button Controller" "1.0" "button-v1"
start "button-v1" "192.168.1.101" "button-client 2000 --ground" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "button-v1"
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
addGPIO "button-v1" "btnIn" "in" "63"

’dynamic’ reconfiguration plan

download "Button Controller" "2.0" "button-v2"
start "button-v2" "192.168.1.104" "button-client 2000 --ground" quota 10000

syncPoint 3 wait 1

offset 0:
betweenIO:

rmGPIO "button-v1" "btnIn"
rmSwc "button-v1"
rmCom "button-v1" "risingFlank" "msg1"
transfer "button-v1" "btnStatePrev" "button-v2" "btnStatePrev"
addSwc "button-v2"
addCom "button-v2" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
addGPIO "button-v2" "btnIn" "in" "63"

stop "button-v1"
destroy "button-v1"

LISTING A.5: Reconfiguration plan for the INDIN-1 setup on node1.

an executable INDIN-1 (=example 1) RcPlan DSL file for node2
reconfiguration only on node1

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000" quota 10000

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "blink-v1"
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

done

LISTING A.6: Reconfiguration plan for the INDIN-1 setup on node2.

194 Appendix A. Evaluation Reconfiguration Plans

an executable indin-2 RcPlan DSL file for node1
original published timing

initialization plan

download "Button Controller" "1.0" "button-v1"
start "button-v1" "192.168.1.101" "button-client 2000" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "button-v1"
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
addGPIO "button-v1" "btnIn" "in" "63"

’dynamic’ reconfiguration plan

done -- the rest happens on node2

LISTING A.7: Reconfiguration plan for the INDIN-2 setup on node1.

Appendix A. Evaluation Reconfiguration Plans 195

an executable indin-2 RcPlan DSL file for node2
original published timing

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000" quota 10000

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "blink-v1"
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

download "LED Controller" "2.0" "blink-v2"
start "blink-v2" "192.168.2.103" "blink-server 2000" quota 10000

syncPoint 3 wait 1

offset 0:
beforeOutputs:

capture "blink-v1" "ledOut" "ledReplay"
betweenIO:

rmCom "blink-v1" "risingFlank" "msg1"
rmSwc "blink-v1"
dump "blink-v1" "/etc/rtca/tmp/ledStateDump"

offset 1:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
betweenIO:

transferBg "blink-v1" "/etc/rtca/tmp/ledStateDump" "blink-v2" "/etc/rtca/tmp/
ledStateDump"

offset 2:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
load "blink-v2" "/etc/rtca/tmp/ledStateDump"

offset 3:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
betweenIO:

rmGPIO "blink-v1" "ledOut"
addSwc "blink-v2"
addCom "blink-v2" "risingFlank" udp src "*:2000" dst "192.168.2.103:2000" from "msg1"
addGPIO "blink-v2" "ledOut" "out" "7"

stop "blink-v1"
#destroy "blink-v1"

LISTING A.8: Reconfiguration plan for the INDIN-2 setup on node2.

196 Appendix A. Evaluation Reconfiguration Plans

an executable INDIN-3 RcPlan DSL file for node1
timing as originally published

initialization plan

start "button-v1" "192.168.1.101" "button-client 2000" quota 10000
syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "button-v1"
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
addGPIO "button-v1" "btnIn" "in" "63"

’dynamic’ reconfiguration plan

download "LED Controller" "1.0" "blink-v1"
download "Aggregator" "1.0" "agg"
download "Anticipator" "1.0" "ant"

start "blink-v1" "192.168.1.100" "blink-server 2000 --ground" quota 10000
start "agg" "192.168.1.106" "agg 2000" quota 5000
start "ant" "192.168.1.107" "ant" quota 30000

syncPoint 3 notify "node2"
syncPoint 4 wait "node2"

offset 0:
beforeOutputs:

addMsg "localMsg1" sender "192.168.1.2" receiver "192.168.1.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "localMsg1"
addSwc "agg"
addCom "agg" "risingFlank" udp src "*:2000" dst "192.168.1.106:2000" from "localMsg1"

offset 1:
betweenIO:

rmGPIO "button-v1" "btnIn"
rmSwc "button-v1"

these two remove steps below where assumed implied with rmSwc at publication time, but needed
explicitly meanwhile

the other option is to remove the addCom steps for button-v1 below at offset 2 when adding
button-v1, again

while this is functional, an output might be expected by a stricter agent/barrier (not
implemented, yet)

rmCom "button-v1" "risingFlank" "localMsg1"
rmCom "button-v1" "risingFlank" "msg1"
offset 2:

betweenIO:
rmCom "agg" "risingFlank" "localMsg1"
rmSwc "agg"
transfer "agg" "flankCount" "ant" "flankCount"
inject "ledStateDump" "ant" "ledState";
addSwc "ant"
addGPIO "button-v1" "btnIn" "in" "63"
addSwc "button-v1"

on the following two additional addCom steps, see comment above at offset 1
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "localMsg1"
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
the following com mapping is one cycle earlier than required, an input might be expected by a

stricter agent/barrier (not implemented, yet)
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.1.100:2000" from "

localMsg1"
offset 3:

betweenIO:
transfer "ant" "ledState" "blink-v1" "ledStatePrev"
rmSwc "ant"
addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

this would be a better place for above addCom, but kept to stick to the published plan
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.1.100:2000" from "

localMsg1"

stop "agg"
stop "ant"
#destroy "agg"
#destroy "ant"

LISTING A.9: Reconfiguration plan for the INDIN-3 setup on node1.

Appendix A. Evaluation Reconfiguration Plans 197

an executable INDIN-3 RcPlan DSL file for node2
timing as originally published

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000 --ground" quota 10000
syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addSwc "blink-v1"
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

syncPoint 3 wait "node1"
syncPoint 4 notify "node1"

offset 1:
betweenIO:

extract "blink-v1" "ledStatePrev" "ledStateDump"
transmitBg "" "ledStateDump" "node1" "ledStateDump"

offset 2:
afterInputs:

rmCom "blink-v1" "risingFlank" "msg1"
offset 3:

beforeOutputs:
capture "blink-v1" "ledOut" "ledReplay"

betweenIO:
rmSwc "blink-v1"

afterInputs:
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"

offset 4:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
betweenIO:

addSwc "blink-v1"

LISTING A.10: Reconfiguration plan for the INDIN-3 setup on node2.

198 Appendix A. Evaluation Reconfiguration Plans

an executable benchmarking RcPlan DSL file for node1
we repeatedly update and downgrade the eApp, doing some ’unnecessary’ steps, too, for

gathering runtime statistics

initialization plan

start "button-v1" "192.168.1.101" "button-client 2000 --silent" quota 10000

syncPoint 1 wait "node2"
syncPoint 2 notify "node2"

offset 0:
betweenIO:

addSwc "button-v1"
addGPIO "button-v1" "btnIn" "in" "63"
addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

’dynamic’ reconfiguration plan

loop 1000000

#
upgrade
#

start "button-v2" "192.168.1.104" "button-client 2000 --silent" quota 10000

syncPoint 3 notify "node2"
syncPoint 4 wait "node2"

offset 0:
afterInputs:

capture "button-v1" "btnIn" "btnReplay"

offset 1:
beforeOutputs:

capture "button-v1" "risingFlank" "flankReplay"
betweenIO:

replay "button-v1" "btnIn" "btnReplay"
rmGPIO "button-v1" "btnIn"
rmSwc "button-v1"

dump "button-v1" "/etc/rtca/tmp/btnStateDump"

offset 2:
beforeOutputs:

rmCom "button-v1" "risingFlank" "msg1"
rmMsg "msg1"

betweenIO:
extract "button-v1" "/etc/rtca/tmp/btnStateDump" "btnStateDump"
inject "btnStateDump" "button-v2" "/etc/rtca/tmp/btnStateDump"
load "button-v2" "/etc/rtca/tmp/btnStateDump"

offset 3:
beforeOutputs:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"
replay "button-v1" "risingFlank" "flankReplay"

offset 4:
beforeOutputs:

rmCom "button-v1" "risingFlank" "msg1"
betweenIO:

addSwc "button-v2"
addGPIO "button-v2" "btnIn" "in" "63"

offset 5:
beforeOutputs:

addCom "button-v2" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

stop "button-v1"
#destroy "button-v1"

LISTING A.11: Reconfiguration plan for the Benchmark setup on node1 (initialization
and upgrade part).

Appendix A. Evaluation Reconfiguration Plans 199

#
downgrade
#

start "button-v1" "192.168.1.101" "button-client 2000 --silent" quota 10000

syncPoint 5 notify "node2"
syncPoint 6 wait "node2"

offset 0:
betweenIO:

rmGPIO "button-v2" "btnIn"
rmSwc "button-v2"
dump "button-v2" "/etc/rtca/tmp/btnStateDump"

offset 1:
beforeOutputs:

rmCom "button-v2" "risingFlank" "msg1"
rmMsg "msg1"

betweenIO:
transferBg "button-v2" "/etc/rtca/tmp/btnStateDump" "button-v1" "/etc/rtca/tmp/

btnStateDump"

offset 2:
betweenIO:

load "button-v1" "/etc/rtca/tmp/btnStateDump"

offset 3:
betweenIO:

addSwc "button-v1"
addGPIO "button-v1" "btnIn" "in" "63"

offset 4:
beforeOutputs:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "button-v1" "risingFlank" udp src "*:2000" dst "*:2000" via "msg1"

stop "button-v2"
#destroy "button-v2"

endLoop syncPoint 3 wait 10

LISTING A.12: Reconfiguration plan for the Benchmark setup on node1 (downgrade
part).

200 Appendix A. Evaluation Reconfiguration Plans

an executable benchmarking RcPlan DSL file for node2
with looping reconfigurations for gathering runtime statistics

initialization plan

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000 --ground --silent" quota 10000

syncPoint 1 notify "node1"
syncPoint 2 wait "node1"

offset 2:
betweenIO:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"
addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

’dynamic’ reconfiguration plan

loop 1000000

#
upgrade
#

start "blink-v2" "192.168.2.103" "blink-server 2000 --ground --silent" quota 10000

syncPoint 3 wait "node1"
syncPoint 4 notify "node1"

offset 2:
afterInputs:

rmCom "blink-v1" "risingFlank" "msg1"
rmMsg "msg1"

offset 3:
beforeOutputs:

capture "blink-v1" "ledOut" "ledReplay"
betweenIO:

rmSwc "blink-v1"
extractBg "blink-v1" "/etc/rtca/tmp/ledStatePrev" "ledStateDump"

afterInputs:
addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v2" "risingFlank" udp src "*:2000" dst "192.168.2.103:2000" from "msg1"

offset 4:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
betweenIO:

injectBg "ledStateDump" "blink-v2" "/etc/rtca/tmp/ledStatePrev"
capture "blink-v2" "risingFlank" "flankReplay"

offset 5:
beforeOutputs:

replay "blink-v1" "ledOut" "ledReplay"
betweenIO:

rmGPIO "blink-v1" "ledOut"
addSwc "blink-v2"
addGPIO "blink-v2" "ledOut" "out" "7"
replay "blink-v2" "risingFlank" "flankReplay"

stop "blink-v1"
#destroy "blink-v1"

LISTING A.13: Reconfiguration plan for the Benchmark setup on node2 (initialization
and upgrade part).

Appendix A. Evaluation Reconfiguration Plans 201

#
downgrade
#

download "LED Controller" "1.0" "blink-v1"
start "blink-v1" "192.168.2.100" "blink-server 2000 --ground --silent" quota 10000

syncPoint 5 wait "node1"
syncPoint 6 notify "node1"

offset 1:
afterInputs:

rmCom "blink-v2" "risingFlank" "msg1"
rmMsg "msg1"

offset 2:
beforeOutputs:

capture "blink-v2" "ledOut" "ledReplay"
betweenIO:

rmSwc "blink-v2"
transfer "blink-v2" "/etc/rtca/tmp/ledStatePrev" "blink-v1" "/etc/rtca/tmp/ledStatePrev

"
transmitBg "blink-v2" "/etc/rtca/tmp/ledStatePrev" "node1" "ledNode2StateDump"

offset 3:
beforeOutputs:

replay "blink-v2" "ledOut" "ledReplay"

offset 4:
beforeOutputs:

replay "blink-v2" "ledOut" "ledReplay"
afterInputs:

addMsg "msg1" sender "192.168.1.2" receiver "192.168.2.2" quota 10000
addCom "blink-v1" "risingFlank" udp src "*:2000" dst "192.168.2.100:2000" from "msg1"

offset 5:
beforeOutputs:

replay "blink-v2" "ledOut" "ledReplay"
betweenIO:

rmGPIO "blink-v2" "ledOut"
addSwc "blink-v1"
addGPIO "blink-v1" "ledOut" "out" "7"

stop "blink-v2"
#destroy "blink-v2"

endLoop syncPoint 3 wait 10

LISTING A.14: Reconfiguration plan for the Benchmark setup on node2 (downgrade
part).

203

Bibliography

[AB04] Luca Abeni and Giorgio Buttazzo. Resource reservation in dynamic real-time systems. In:
Real-Time Systems 27.2 (2004), pp. 123–167.

[AB98] Alia Atlas and Azer Bestavros. Statistical rate monotonic scheduling. In: Proceedings
19th IEEE Real-Time Systems Symposium (Cat. No. 98CB36279). IEEE. 1998, pp. 123–
132.

[ABGP05] Colin Atkinson, Christian Bunse, Hans-Gerhard Gross, and Christian Peper.
Component-based software development for embedded systems: an overview of current re-
search trends. In: Springer, 2005. Chap. Component-based software development for
embedded systems: an introduction, pp. 1–7.

[ABH+97] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. Partial-order reduction in symbolic state space exploration. In: International
Conference on Computer Aided Verification. Springer. 1997, pp. 340–351.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking for real-time systems.
In: Proceedings Fifth Annual IEEE Symposium on Logic in Computer Science. IEEE.
1990, pp. 414–425.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. In: Theoretical computer
science 126.2 (1994), pp. 183–235.

[Art22] Artop User Group. ARText - An AUTOSAR Textual Language Framework. Internet:
https://www.artop.org/artext/ [Aug 06, 2022]. Artop User Group, 2022.

[Ass13] EAST-ADL Association. EAST-ADL Domain Model Specification. Specification 2.1.12.
Internet: https://www.east- adl.info/Specification/V2.1.12/EAST- ADL-
Specification_V2.1.12.pdf [Aug 09, 2022]. EAST-ADL Association, 2013.

[AUT15] AUTOSAR. Virtual Functional Bus. Specification 4.2.2. Internet: https : / / www .
autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_
VFB.pdf [Aug 09, 2022]. AUTOSAR, 2015.

[AUT16] AUTOSAR. Classic Platform - Specification of RTE Software. Specification R19-11. Inter-
net: https://www.autosar.org/fileadmin/user_upload/standards/classic/19-
11/AUTOSAR_SWS_RTE.pdf [Aug 09, 2022]. AUTOSAR, 2016.

[AUT19a] AUTOSAR. Classic Platform - Specification of ECU Configuration. Specification R19-
11. Internet: https://www.autosar.org/fileadmin/user_upload/standards/
classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf [Aug 09, 2022]. AUTOSAR,
2019.

[AUT19b] AUTOSAR. Classic Platform - Specification of I/O Hardware Abstraction. Specification
R19-11. Internet: https://www.autosar.org/fileadmin/user_upload/standards/
classic/19- 11/AUTOSAR_SWS_IOHardwareAbstraction.pdf [Aug 09, 2022]. AU-
TOSAR, 2019.

[AUT19c] AUTOSAR. Classic Platform - Specification of Timing Extensions. Specification R19-11. In-
ternet: https://www.autosar.org/fileadmin/user_upload/standards/classic/
19-11/AUTOSAR_TPS_TimingExtensions.pdf [Aug 09, 2022]. AUTOSAR, 2019.

[AUT21a] AUTOSAR. Adaptive Platform - Specification of Communication Management. Specifica-
tion R21-11. Internet: https : / / www . autosar . org / fileadmin / user _ upload /
standards/adaptive/21-11/AUTOSAR_SWS_CommunicationManagement.pdf [Aug
09, 2022]. AUTOSAR, 2021.

[AUT21b] AUTOSAR. Adaptive Platform - Specification of Execution Management. Specification
R21-11. Internet: https://www.autosar.org/fileadmin/user_upload/standards/
adaptive/21- 11/AUTOSAR_SWS_ExecutionManagement.pdf [Aug 09, 2022]. AU-
TOSAR, 2021.

https://www.artop.org/artext/
https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
https://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-2/AUTOSAR_EXP_VFB.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_ECUConfiguration.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_IOHardwareAbstraction.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_SWS_IOHardwareAbstraction.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/19-11/AUTOSAR_TPS_TimingExtensions.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/21-11/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/21-11/AUTOSAR_SWS_CommunicationManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/21-11/AUTOSAR_SWS_ExecutionManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/21-11/AUTOSAR_SWS_ExecutionManagement.pdf

204 Bibliography

[Bar88] Liskov Barbara. Data abstraction and hierarchy. In: ACM SIGPLAN Notices 23.5 (1988),
pp. 17–34.

[BBK+21] Wolfgang Böhm, Manfred Broy, Cornel Klein, Klaus Pohl, Bernhard Rumpe, and Se-
bastian Schröck. Model-based engineering of collaborative embedded systems: Extensions of
the spes methodology. Springer Nature, 2021.

[BCK03] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice. Second.
Addison-Wesley Professional, 2003.

[BCPP20] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio. Grand
challenges in model-driven engineering: an analysis of the state of the research. In: Software
and Systems Modeling 19.1 (2020), pp. 5–13.

[BD13] Alan Burns and Robert Davis. Mixed criticality systems-a review. In: Department of
Computer Science, University of York, Tech. Rep (2013), pp. 1–69.

[BD18] Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of
automotive applications using the LET paradigm. In: 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2018, pp. 240–250.

[BD91] Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent sys-
tems using time Petri nets. In: IEEE transactions on software engineering 17.3 (1991),
p. 259.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In: For-
mal methods for the design of real-time systems (2004), pp. 200–236.

[Ber00] Gérard Berry. The foundations of Esterel. In: Proof, language, and interaction: essays in
honour of Robin Milner. The MIT Press, 2000, pp. 425–454.

[Bir14] Sarah Lynn Bird. Optimizing resource allocations for dynamic interactive applications. PhD
thesis. University of California, Berkeley, 2014.

[Blo83] Toby Bloom. Dynamic module replacement in a distributed programming system. PhD the-
sis. Massachusetts Institute of Technology, 1983.

[BNO+21] Arne Broering, Christoph Niedermeier, Ioana Olaru, Ulrich Schöpp, Kilian Telschig,
and Michael Villnow. Toward embodied intelligence: Smart things on the rise. In: IEEE
Computer 54.7 (2021), pp. 57–68.

[Bol15] William Bolton. Programmable logic controllers. 6th. Newnes, 2015.

[BS20] Gedare Bloom and Joel Sherrill. Harmonizing ARINC 653 and realtime POSIX for confor-
mance to the FACE technical standard. In: 2020 IEEE 23rd International Symposium on
Real-Time Distributed Computing (ISORC). IEEE. 2020, pp. 98–105.

[BSG18] Gedare Bloom, Joel Sherrill, and Gary Gilliland. Aligning Deos and RTEMS with the
FACE safety base operating system profile. In: ACM SIGBED Review 15.1 (2018), pp. 15–
21.

[Can22] Canonical Ltd. LXC introduction. Internet: https : / / linuxcontainers . org / lxc/
[Aug 09, 2022]. 2022.

[CCM+03] Paul Caspi, Adrian Curic, Aude Maignan, Christos Sofronis, Stavros Tripakis, and
Peter Niebert. From Simulink to SCADE/Lustre to TTA: a layered approach for distributed
embedded applications. In: ACM Sigplan Notices 38.7 (2003), pp. 153–162.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln,
Narciso Martí-Oliet, José Meseguer, and Carolyn Talcott. All about Maude -A high-
performance logical framework: How to specify, program, and verify systems in rewriting
logic. Springer, 2007.

[CDE+16] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick Lincoln, Nar-
ciso Martí-Oliet, José Meseguer, and Carolyn Talcott. Maude Manual (Version 2.7.1). In-
ternet: http://maude.cs.illinois.edu/w/images/e/e0/Maude-2.7.1-manual.pdf
[Aug 09, 2022]. 2016.

[CFJ+10] Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, Ramin Tavakoli K., Yian-
nis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg, David Servat, Martin Törn-
gren, and Matthias Weber. The EAST-ADL architecture description language for automo-
tive embedded software. In: Model-Based Engineering of Embedded Real-Time Systems.
Springer. 2010, pp. 297–307.

https://linuxcontainers.org/lxc/
http://maude.cs.illinois.edu/w/images/e/e0/Maude-2.7.1-manual.pdf

Bibliography 205

[Cha17] Ramaswamy Chandramouli. Security assurance requirements for linux application con-
tainer deployments. NIST Interagency/Internal Report (NISTIR) 8176. US Department
of Commerce, National Institute of Standards and Technology, 2017.

[Coc20] Richard Cochran. Linux Programmer’s Manual: ptp4l - PTP Boundary/Ordinary Clock.
Internet: https://linux.die.net/man/8/ptp4l [Aug 09, 2022]. The Linux Kernel
Organization, 2020.

[Cor09] Jonathan Corbet. Seccomp and sandboxing. Internet: https://lwn.net/Articles/
332974/ [Aug 09, 2022]. 2009.

[Cor18] Intel Corporation. libmraa - Low level skeleton library for communication on GNU/Linux
platforms. Internet: https://iotdk.intel.com/docs/master/mraa/ [Aug 09, 2022].
Intel Corporation, 2018.

[Crn05] Ivica Crnkovic. Component-based software engineering for embedded systems. In: Proceed-
ings of the 27th international conference on Software engineering. 2005, pp. 712–713.

[CS21] Luís Carvalho and João Costa Seco. Deep semantic versioning for evolution and variability.
In: 23rd International Symposium on Principles and Practice of Declarative Program-
ming (PPDP). ACM, 2021, pp. 1–13.

[DDPV21] Dmitrii Drozdov, Victor Dubinin, Sandeep Patil, and Valeriy Vyatkin. A formal model
of IEC 61499-based industrial automation architecture supporting time-aware computations.
In: IEEE Open Journal of the Industrial Electronics Society 2 (2021), pp. 169–183.

[Dij82] Edsger W. Dijkstra. Selected Writings on Computing: A personal Perspective. In: Selected
Writings on Computing: A personal Perspective. New York, NY: Springer New York,
1982. Chap. On the Role of Scientific Thought, pp. 60–66.

[DKJ18] Ali Dorri, Salil S. Kanhere, and Raja Jurdak. Multi-agent systems: A survey. In: IEEE
Access 6 (2018), pp. 28573–28593.

[DS95] Jim Davies and Steve Schneider. A brief history of Timed CSP. In: Theoretical Computer
Science 138.2 (1995), pp. 243–271.

[DV07] Victor Dubinin and Valeriy Vyatkin. On definition of a formal model for IEC 61499 func-
tion blocks. In: EURASIP Journal on Embedded Systems 2008 (2007), pp. 1–10.

[EAG18] Rolf Ernst, Leonie Ahrendts, and Kai-Björn Gemlau. System level LET: Mastering cause-
effect chains in distributed systems. In: IECON 2018-44th Annual Conference of the IEEE
Industrial Electronics Society. IEEE. 2018, pp. 4084–4089.

[EBJ+22] Herve Eychenne, Marc Boucher, Martin Josefsson, Jozsef Kadlecsik, Patrick McHardy,
James Morris, Harald Welte, and Rusty Russel. iptables/ip6tables — administration tool
for IPv4/IPv6 packet filtering and NAT. Internet: https://ipset.netfilter.org/
iptables.man.html [Aug 08, 2022]. The Linux Kernel Organization, 2022.

[EK10] Drew Eckhardt and Michael Kerrisk. Linux Programmer’s Manual: getrlimit, setrlimit,
prlimit - get/set resource limits. Internet: https://man7.org/linux/man-pages/man2/
getrlimit.2.html [May 28, 2022]. The Linux Kernel Organization, 2010.

[Eri96] Kelvin T. Erickson. Programmable logic controllers. In: IEEE Potentials 15.1 (1996),
pp. 14–17.

[Fab76] Robert S. Fabry. How to design a system in which modules can be changed on the fly. In: Pro-
ceedings of the 2nd International Conference on Software engineering (ICSE). IEEE
Computer Society Press, 1976, pp. 470–476.

[FKST23] Joachim Fröhlich, Steffen Klepke, Christoph Stückjürgen, and Kilian Telschig. Seam-
less Upgrade: Upgrade functions executing on a control system. In: Proceedings of the 27th
European Conference on Pattern Languages of Programs (EuroPLoP). ACM, 2023.

[FOSS20] Albert Fleischmann, Stefan Oppl, Werner Schmidt, and Christian Stary. Contextual
process digitalization: changing perspectives–design thinking–value-led design. Springer
Nature, 2020.

[Ger09] Rainer Gerhards. RFC 5424 - the syslog protocol. Standard. Internet: https://www.rfc-
editor.org/rfc/rfc5424 [Aug 09, 2022]. IETF, Network Working Group, 2009.

[GKC+15] Raul Gorcitz, Emilien Kofman, Thomas Carle, Dumitru Potop-Butucaru, and Robert
de Simone. On the scalability of constraint solving for static/off-line real-time scheduling.
In: International Conference on Formal Modeling and Analysis of Timed Systems.
Springer. 2015, pp. 108–123.

https://linux.die.net/man/8/ptp4l
https://lwn.net/Articles/332974/
https://lwn.net/Articles/332974/
https://iotdk.intel.com/docs/master/mraa/
https://ipset.netfilter.org/iptables.man.html
https://ipset.netfilter.org/iptables.man.html
https://man7.org/linux/man-pages/man2/getrlimit.2.html
https://man7.org/linux/man-pages/man2/getrlimit.2.html
https://www.rfc-editor.org/rfc/rfc5424
https://www.rfc-editor.org/rfc/rfc5424

206 Bibliography

[GPR06] Volker Gruhn, Daniel Pieper, and Carsten Röttgers. MDA®: Effektives Software-
Engineering mit UML2® und EclipseTM. Springer, 2006.

[Gur94] Yuri Gurevich. Evolving Algebras. In: Proceedings of the IFIP 13th World Computer
Congress. Vol. 1. North Holland, 1994, pp. 423–427.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In: Specification and Validation
Methods. Ed. by Egon Börger. Oxford University Press, 1995, pp. 231–243.

[GWC15] Thomas Gaska, Chris Watkin, and Yu Chen. Integrated modular avionics-past, present,
and future. In: IEEE Aerospace and Electronic Systems Magazine 30.9 (2015), pp. 12–
23.

[Ham09] Moritz Hammer. How to touch a running system: Reconfiguration of stateful components.
PhD thesis. Ludwig-Maximilians-Universität München, 2009.

[HCRP91] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The syn-
chronous data flow programming language LUSTRE. In: Proc. IEEE 79.9 (1991), pp. 1305–
1320.

[HDK+17] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst.
Communication centric design in complex automotive embedded systems. In: 29th Eu-
romicro Conference on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017, 10:1–10:20.

[HGM+22] Bert Hubert, Thomas Graf, Gregory Maxwell, Remco van Mook, Martijn van Ooster-
hout, Paul B. Schröder, Jasper Spaans, and Pedro Larroy. Linux Advanced Routing &
Traffic Control HOWTO. Internet: https://lartc.org/howto/ [Aug 08, 2022]. Bert
Hubert, 2022.

[HHK03] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language for
embedded programming. In: Proc. IEEE 91.1 (2003), pp. 84–99.

[Hin13] Pieter Hintjens. ZeroMQ: messaging for many applications. Internet: https://zguide.
zeromq.org/ [Aug 09, 2022]. O’Reilly Media, Inc., 2013.

[HK21] Serge Hallyn and Michael Kerrisk. Linux Programmer’s Manual: cgroups - Linux Control
Groups. Internet: http://man7.org/linux/man-pages/man7/cgroups.7.html [Aug
09, 2022]. The Linux Kernel Organization, 2021.

[HKMM02] Thomas A Henzinger, Christoph M Kirsch, Rupak Majumdar, and Slobodan Matic.
Time-safety checking for embedded programs. In: EMSOFT. Vol. 2. Springer. 2002, pp. 76–
92.

[HKMS09] Thomas A. Henzinger, Christoph M Kirsch, Eduardo R. B. Marques, and Ana
Sokolova. Distributed, modular HTL. In: 30th IEEE Real-Time Systems Symp. IEEE,
2009, pp. 171–180.

[HLL+22] Joseph Hirsch, Marius Lichtblau, Marian Lingsch Rosenfeld, Kilian Telschig, and
Alexander Knapp. Cube Bot – A Smart Factory Showcase for the Real-Time Container
Architecture. In: 2022 IEEE International Conference on Industrial Informatics (IN-
DIN’22). IEEE. 2022.

[HLR16] Axel Habermaier, Johannes Leupolz, and Wolfgang Reif. Unified simulation, visualiza-
tion, and formal analysis of safety-critical systems with. In: Critical Systems: Formal Meth-
ods and Automated Verification. Springer, 2016, pp. 150–167.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes. In: Communica-
tions of the ACM 21.8 (1978), pp. 666–677.

[HR83] Theo Haerder and Andreas Reuter. Principles of Transaction-oriented Database Recovery.
In: ACM Comput. Surv. 15.4 (1983), pp. 287–317.

[HW04] Gregor Hohpe and Bobby Woolf. Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley Professional, 2004.

[ICS17] ICS. IEEE 1003.1 - IEEE Standard for Information Technology - Portable Operating System
Interface (POSIX(R)) Base Specifications. Standard. IEEE Computer Society, 2017.

[ICS18] ICS. IEEE 802.1Q - IEEE Standard for Local and Metropolitan Area Networks - Bridges and
Bridged Networks. Standard. IEEE Computer Society, 2018.

[IEC12] IEC. IEC 61499-1:2012. Function blocks - Part 1: Architecture. Standard. International
Electrotechnical Commission, 2012.

https://lartc.org/howto/
https://zguide.zeromq.org/
https://zguide.zeromq.org/
http://man7.org/linux/man-pages/man7/cgroups.7.html

Bibliography 207

[IEC13] IEC. IEC 61131-3:2013 - Programmable controllers - Part 3: Programming languages. Stan-
dard. International Electrotechnical Commission, 2013.

[IEC20] TS EN IEC. IEC 62769-103-4:202 - Field Device Integration (FDI) - Part 103-4: Profiles -
PROFINET. Standard. International Electrotechnical Commission, 2020.

[IMS19] IMS. IEEE 1588 - IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems. Standard. IEEE Instrumentation and Mea-
surement Society, 2019.

[ISO05a] ISO. ISO 17356-3:2005 - Road vehicles - Open interface for embedded automotive applications
- Part 3: OSEK/VDX Operating System (OS). Standard. ISO/TC 22 Straßenfahrzeuge,
2005.

[ISO05b] ISO. ISO 17356-4:2005 - Road vehicles - Open interface for embedded automotive applications
- Part 4: OSEK/VDX Communication (COM). Standard. ISO/TC 22 Straßenfahrzeuge,
2005.

[ISO13] ISO/IEC. IEC 62264-1:2013. Enterprise-control system integration – Part 1: Models and
terminology. Standard. CENELEC Europäisches Komitee für Elektrotechnische Nor-
mung, 2013.

[ISO18] ISO/IEC. ISO/IEC 9899:2018 - Information technology – Programming languages – C.
Standard. International Organization for Standardization, 2018.

[ISO19] ISO/IEC. IEC 15909-1:2019. Systems and software engineering — High-level Petri nets —
Part 1: Concepts, definitions and graphical notation. Standard. International Electrotech-
nical Commission, 2019.

[ISO20] ISO/IEC. IEC 62541-1:2020. OPC unified architecture - Part 1: Overview and concepts.
Standard. International Electrotechnical Commission, 2020.

[Jan10] Stephan Janisch. Behaviour and refinement of port-based components with synchronous and
asynchronous communication. PhD thesis. Ludwig-Maximilians-Universität München,
2010.

[Jan19] Jan Engelhardt. Packet flow in Netfilter and General Networking. [Internet: https://de.
wikipedia.org/wiki/Datei:Netfilter-packet-flow.svg [Aug 08, 2022]. 2019.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. In: IEEE
Computer 36.1 (2003), pp. 41–50.

[Ker02] Michael Kerrisk. Linux Programmer’s Manual: capabilities - overview of Linux capabilities.
Internet: https://man7.org/linux/man-pages/man7/capabilities.7.html [Aug
09, 2022]. The Linux Kernel Organization, 2002.

[Ker16] Michael Kerrisk. Linux Programmer’s Manual: tmpfs - a virtual memory filesystem. In-
ternet: https://man7.org/linux/man-pages/man5/tmpfs.5.html [June 06, 2022]. The
Linux Kernel Organization, 2016.

[Ker21] Michael Kerrisk. Linux Programmer’s Manual: sysfs - a filesystem for exporting kernel ob-
jects. Internet: https://man7.org/linux/man-pages/man5/sysfs.5.html [Aug 09,
2022]. The Linux Kernel Organization, 2021.

[KLMS11] Christoph M. Kirsch, Luis Lopes, Eduardo R.B. Marques, and Ana Sokolova. Runtime
programming through model-preserving, scalable runtime patches. In: 2011 Eleventh Inter-
national Conference on Application of Concurrency to System Design. IEEE, 2011,
pp. 77–86.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic change manage-
ment. In: IEEE Transactions on software engineering 16.11 (1990), pp. 1293–1306.

[Kop11] Hermann Kopetz. Real-Time Systems. Second. Springer, 2011.

[KS10] Yoram Koren and Moshe Shpitalni. Design of reconfigurable manufacturing systems. In:
Journal of manufacturing systems 29.4 (2010), pp. 130–141.

[KS12] Christoph M Kirsch and Ana Sokolova. The logical execution time paradigm. In: Ad-
vances in Real-Time Systems. Springer, 2012, pp. 103–120.

[KZL+22] Michael Kerrisk, Peter Zijlstra, Juri Lelli, Tom Bjorkholm, Markus Kuhn, and David
A. Wheeler. Linux Programmer’s Manual: sched - overview of CPU scheduling. Internet:
http://man7.org/linux/man-pages/man7/sched.7.html [Aug 09, 2022]. The Linux
Kernel Organization, 2022.

https://de.wikipedia.org/wiki/Datei:Netfilter-packet-flow.svg
https://de.wikipedia.org/wiki/Datei:Netfilter-packet-flow.svg
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man5/sysfs.5.html
http://man7.org/linux/man-pages/man7/sched.7.html

208 Bibliography

[LÁÖ15] Daniela Lepri, Erika Ábrahám, and Peter Csaba Ölveczky. Sound and complete timed
CTL model checking of timed Kripke structures and real-time rewrite theories. In: Science of
Computer Programming 99 (2015), pp. 128–192.

[Lee21] Edward A Lee. Determinism. In: ACM Transactions on Embedded Computing Systems
(TECS) 20.5 (2021), pp. 1–34.

[LL73] Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. In: Journal of the ACM (JACM) 20.1 (1973), pp. 46–61.

[LMC+20] Nuno Lopes, Rolando Martins, Manuel Eduardo Correia, Sérgio Serrano, and Fran-
cisco Nunes. Container Hardening Through Automated Seccomp Profiling. In: Proceed-
ings of the 2020 6th International Workshop on Container Technologies and Container
Clouds. 2020, pp. 31–36.

[LMS02] François Laroussinie, Nicolas Markey, and Philippe Schnoebelen. On model checking
durational Kripke structures. In: International Conference on Foundations of Software
Science and Computation Structures. Springer. 2002, pp. 264–279.

[LS19] Yannis Lilis and Anthony Savidis. A survey of metaprogramming languages. In: ACM
Computing Surveys (CSUR) 52.6 (2019), pp. 1–39.

[LSD89] John Lehoczky, Lui Sha, and Yuqin Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In: RTSS. Vol. 89. 1989, pp. 166–171.

[MBW+18] Somayeh Malakuti, Jürgen Bock, Michael Weser, Pierre Venet, Patrick Zimmermann,
Mathias Wiegand, Julian Grothoff, Constantin Wagner, and Andreas Bayha. Challenges
in skill-based engineering of industrial automation systems. In: 2018 IEEE 23rd Interna-
tional Conference on Emerging Technologies and Factory Automation (ETFA). Vol. 1.
IEEE. 2018, pp. 67–74.

[Mea55] George H Mealy. A method for synthesizing sequential circuits. In: The Bell System Tech-
nical Journal 34.5 (1955), pp. 1045–1079.

[Mer14] Dirk Merkel. Docker: Lightweight Linux containers for consistent development and deploy-
ment. In: Linux Journal 239 (2014).

[Mes92] José Meseguer. Conditional rewriting logic as a unified model of concurrency. In: Theoreti-
cal computer science 96.1 (1992), pp. 73–155.

[MF76] P Merlin and DJ Faber. Recoverability of communication protocols. In: IEEE Transactions
on Communication 24.9 (1976), pp. 1036–1043.

[MGLC20] Christian Menard, Andrés Goens, Marten Lohstroh, and Jeronimo Castrillon. Achiev-
ing determinism in adaptive AUTOSAR. In: 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE. 2020, pp. 822–827.

[MM21] Imanol Mugarza and Juan Carlos Mugarza. Cetratus: Live updates in urogrammable logic
controllers. In: 2021 IEEE International Workshop of Electronics, Control, Measure-
ment, Signals and their application to Mechatronics (ECMSM). IEEE. 2021, pp. 1–7.

[Mon14] László Monostori. Cyber-physical production systems: Roots, expectations and R&D chal-
lenges. In: Procedia CIRP 17 (2014), pp. 9–13.

[MT00] Nenad Medvidovic and Richard N Taylor. A classification and comparison framework for
software architecture description languages. In: IEEE Transactions on software engineer-
ing 26.1 (2000), pp. 70–93.

[MZ16] Pieter J. Mosterman and Justyna Zander. Cyber-physical systems challenges: a needs anal-
ysis for collaborating embedded software systems. In: Software and Systems Modeling
(SoSyM) 15 (2016), pp. 5–16.

[OD08] Ernst-Rüdiger Olderog and Henning Dierks. Real-time systems: formal specification and
automatic verification. Cambridge University Press, 2008.

[OEHK07] Roman Obermaisser, Christian El-Salloum, Bernhard Huber, and Hermann Kopetz.
Modeling and verification of distributed real-time systems using periodic finite state machines.
In: Computer Systems Science and Engineering 22.6 (2007), p. 333.

[Old98] E-R Olderog. Formal methods in real-time systems. In: Proceeding. 10th EUROMICRO
Workshop on Real-Time Systems (Cat. No. 98EX168). IEEE. 1998, pp. 254–263.

[Ölv14] Peter Csaba Ölveczky. Real-Time Maude and its applications. In: International Workshop
on Rewriting Logic and its Applications. Springer. 2014, pp. 42–79.

Bibliography 209

[ÖM02] Peter Csaba Ölveczky and José Meseguer. Specification of real-time and hybrid systems
in rewriting logic. In: Theoretical Computer Science 285.2 (2002), pp. 359–405.

[ÖM07] Peter Csaba Ölveczky and José Meseguer. Semantics and pragmatics of Real-Time Maude.
In: Higher-order and symbolic computation 20.1-2 (2007), pp. 161–196.

[OMG12] OMG. Common Object Request Broker Architecture (CORBA). Specification 3.3. Internet:
https://www.omg.org/spec/CORBA/3.3/ [Aug 09, 2022]. Object Management Group,
Inc, 2012.

[OMG14] OMG. Model Driven Architecture (MDA) – MDA Guide rev. 2.0. Specification 2.0. Inter-
net: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf [Aug 09, 2022].
Object Managment Group, 2014.

[OMG15a] OMG. OMG Data Distribution Service (DDS). Specification 1.4. Internet: https://www.
omg.org/spec/DDS/1.4/PDF [Aug 09, 2022]. Object Management Group, Inc, 2015.

[OMG15b] OMG. OMG Unified Modeling Language (UML). Specification 2.5. Internet: http://
www.omg.org/spec/UML/2.5/PDF/ [Aug 09, 2022]. Object Management Group, Inc,
2015.

[OMG16] OMG. OMG Meta Object Facility (MOF) Core Specification. Specification 2.5.1. Internet:
https://www.omg.org/spec/MOF/2.5.1/PDF [Aug 09, 2022]. Object Management
Group, 2016.

[OMG19] OMG. UML Profile for Modeling and Analysis of Real-time and Embedded Systems
(MARTE). Specification 1.2. Internet: https://www.omg.org/spec/MARTE/1.2/PDF
[Aug 09, 2022]. Object Managment Group, 2019.

[PHS22] Laurin Prenzel, Simon Hofmann, and Sebastian Steinhorst. Rollback Sequences for Dy-
namic Reconfiguration of IEC 61499. In: 2022 IEEE International Conference on Indus-
trial Informatics (INDIN’22, in press). IEEE. 2022.

[Pla19] André Platzer. The logical path to autonomous cyber-physical systems. In: International
Conference on Quantitative Evaluation of Systems. Springer. 2019, pp. 25–33.

[PP17] Laurin Prenzel and Julien Provost. Dynamic software updating of IEC 61499 implementa-
tion using Erlang runtime system. In: IFAC-PapersOnLine 50.1 (2017), pp. 12416–12421.

[Pre13] Tom Preston-Werner. Semantic Versioning 2.0.0. Internet: https://semver.org/ [Aug
09, 2022]. 2013.

[Pri08] Paul J Prisaznuk. ARINC 653 role in integrated modular avionics (IMA). In: 2008 IEEE/A-
IAA 27th Digital Avionics Systems Conference. IEEE. 2008, 1–E.

[PS21] Laurin Prenzel and Sebastian Steinhorst. Automated Dependency Resolution for Dynamic
Reconfiguration of IEC 61499. In: 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). IEEE. 2021, pp. 1–8.

[PV14] Marco Panunzio and Tullio Vardanega. A component-based process with separation of
concerns for the development of embedded real-time software systems. In: Journal of Systems
and Software 96 (2014), pp. 105–121.

[Ram73] Chander Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets.
PhD thesis. Massachusetts Institute of technology, 1973.

[RH95] Mathias Rausch and H-M Hanisch. Net condition/event systems with multiple condition
outputs. In: Proceedings 1995 INRIA/IEEE Symposium on Emerging Technologies
and Factory Automation. ETFA’95. Vol. 1. IEEE. 1995, pp. 592–600.

[RMF19] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The real-time linux
kernel: A survey on preempt_rt. In: ACM Computing Surveys (CSUR) 52.1 (2019), pp. 1–
36.

[Rot06] Arnon Rotem-Gal-Oz. Fallacies of distributed computing explained. Internet: https://
www.se.rit.edu/~se442/doc/fallacies.pdf [Aug 09, 2022]. 2006.

[SAS+09] Lui Sha, Abdullah Al-Nayeem, Mu Sun, Jose Meseguer, and Peter Csaba Olveczky.
PALS: Physically asynchronous logically synchronous systems. In: Illinois Research and
Tech Reports - Computer Science (2009). Internet: https://www.ideals.illinois.
edu/items/11944 [Aug 09, 2022].

[SCC+20] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and Josep Torrellas.
Draco: Architectural and operating system support for system call security. In: 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE.
2020, pp. 42–57.

https://www.omg.org/spec/CORBA/3.3/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf
https://www.omg.org/spec/DDS/1.4/PDF
https://www.omg.org/spec/DDS/1.4/PDF
http://www.omg.org/spec/UML/2.5/PDF/
http://www.omg.org/spec/UML/2.5/PDF/
https://www.omg.org/spec/MOF/2.5.1/PDF
https://www.omg.org/spec/MARTE/1.2/PDF
https://semver.org/
https://www.se.rit.edu/~se442/doc/fallacies.pdf
https://www.se.rit.edu/~se442/doc/fallacies.pdf
https://www.ideals.illinois.edu/items/11944
https://www.ideals.illinois.edu/items/11944

210 Bibliography

[Sch06] Douglas C. Schmidt. Model-driven engineering. In: IEEE Computer 39.2 (2006), p. 25.

[SDWB17] Philipp Schleiss, Christian Drabek, Gereon Weiss, and Bernhard Bauer. Generic man-
agement of availability in fail-operational automotive systems. In: International Conference
on Computer Safety, Reliability, and Security. Springer. 2017, pp. 179–194.

[SH16] Gernot Starke and Peter Hruschka. arc42. Internet: http://arc42.org [Aug 09 2022]].
2016.

[Sie18] Siemens AG. SIMATIC IOT2000 Yocto board support package. Internet: https : / /
github.com/siemens/meta-iot2000 [Aug 09, 2022]. 2018.

[SKKK03] Jamal H. Salim, Hormuzd M. Khosravi, Andi Kleen, and Alexey Kuznetsov. RFC 3549
– Linux Netlink as an IP Services Protocol. Specification. Internet: https://www.rfc-
editor.org/info/rfc3549 [Aug 09, 2022]. The Internet Society, Network Working
Group, 2003.

[SRG96] Lui Sha, Ragunathan Rajkumar, and Michael Gagliardi. Evolving dependable real-time
systems. In: IEEE Aerospace Applications Conf. Vol. 1. 1996, pp. 335–346.

[SS16] Tim Stock and Günther Seliger. Opportunities of sustainable manufacturing in industry
4.0. In: Procedia CIRP 40 (2016), pp. 536–541.

[SVZ13] Christoph Sünder, Valeriy Vyatkin, and Alois Zoitl. Formal verification of downtimeless
system evolution in embedded automation controllers. In: ACM Transactions on Embedded
Computing Systems (TECS) 12.1 (2013), pp. 1–17.

[Szy98] Clemens Szyperski. Component Software: Beyond Object-oriented Programming.
Addison-Wesley, 1998.

[Tel15] Kilian Telschig. Domänenspezifische Modelle zur Entwicklung generischer Automa-
tisierungstechnik. Master’s Thesis. [Unpublished thesis]. University of Augsburg, 2015.

[Tha09] Sabu M Thampi. Introduction to distributed systems. In: arXiv preprint (2009). Internet:
https://arxiv.org/abs/0911.4395 [Aug 09, 2022].

[Tho22] Derek Thomas. Evolution of edge control. In: Control Engineering 69.1 (2022), pp. 17–20.

[TK17] Kilian Telschig and Alexander Knapp. Towards safe dynamic updates of distributed embed-
ded applications in factory automation. In: 22nd IEEE Intl. Conf. Emerging Technologies
and Factory Automation (ETFA). IEEE, 2017.

[TK19a] Kilian Telschig and Alexander Knapp. Synchronous Reconfiguration of Distributed Em-
bedded Applications During Operation. In: 2019 IEEE International Conference on Soft-
ware Architecture (ICSA). IEEE. 2019, pp. 121–130.

[TK19b] Kilian Telschig and Alexander Knapp. Time-Critical State Transfer during Operation of
Distributed Embedded Applications. In: 2019 IEEE 17th International Conference on In-
dustrial Informatics (INDIN). Vol. 1. IEEE. 2019, pp. 516–523.

[TKG16] Christos Tsigkanos, Timo Kehrer, and Carlo Ghezzi. Architecting dynamic cyber-physical
spaces. In: Computing 98.10 (2016), pp. 1011–1040.

[TMM01] Lauren A Tewksbury, Louise E Moser, and Peter M Melliar-Smith. Live upgrades of
CORBA applications using object replication. In: Proceedings IEEE International Confer-
ence on Software Maintenance. ICSM 2001. IEEE. 2001, pp. 488–497.

[TSK18] Kilian Telschig, Andreas Schönberger, and Alexander Knapp. A Real-Time Container
Architecture for Dependable Distributed Embedded Applications. In: 2018 IEEE 14th In-
ternational Conference on Automation Science and Engineering (CASE). IEEE, 2018,
pp. 1367–1374.

[TSS+16] Kilian Telschig, Nikolai Schöffel, Klaus-Benedikt Schultis, Christoph Elsner, and
Alexander Knapp. SECO patterns: Architectural decision support in software ecosystems.
In: 2016 1st International Workshop on decision Making in Software ARCHitecture
(MARCH). IEEE. 2016, pp. 38–44.

[VEBD07] Yves Vandewoude, Peter Ebraert, Yolande Berbers, and Theo D’Hondt. Tranquility: A
low disruptive alternative to quiescence for ensuring safe dynamic updates. In: IEEE Trans.
Softw. Eng. 33.12 (Dec. 2007), pp. 856–868.

[VT17] Maarten Van Steen and Andrew S. Tanenbaum. Distributed systems. Third. Also pub-
lished at distributed-systems.net [Aug 09, 2022]. CreateSpace Independent Pub-
lishing Platform, 2017.

http://arc42.org
https://github.com/siemens/meta-iot2000
https://github.com/siemens/meta-iot2000
https://www.rfc-editor.org/info/rfc3549
https://www.rfc-editor.org/info/rfc3549
https://arxiv.org/abs/0911.4395
distributed-systems.net

Bibliography 211

[War20] Warner, Jim and Small, Craig and Cahalan, Albert. Linux Programmer’s Manual: top -
display Linux processes. Internet: https://manpages.ubuntu.com/manpages/xenial/
man1/top.1.html [Aug 09, 2022]. The Ubuntu Manpage Repository, 2020.

[WCM+02] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and Greg Kroah-
Hartman. Linux security module framework. In: Ottawa Linux Symposium. Vol. 8032.
Citeseer. 2002, pp. 6–16.

[WFP07] Murray Woodside, Greg Franks, and Dorina C Petriu. The future of software performance
engineering. In: Future of Software Engineering (FOSE’07). IEEE. 2007, pp. 171–187.

[Wil13] H. Paul Williams. Model building in mathematical programming. John Wiley & Sons,
2013.

[Wil15] Ryan Williams. PLCs vs. PACs vs. IPCs. In: Control Engineering 62.11 (2015), pp. 34–36.

[WK17] Eric W. Biederman and Michael Kerrisk. Linux Programmer’s Manual: namespaces -
overview of Linux namespaces. Internet: https://man7.org/linux/man-pages/man7/
namespaces.7.html [Aug 09, 2022]. The Linux Kernel Organization, 2017.

[Woo09] Michael Wooldridge. An introduction to multiagent systems. John wiley & sons, 2009.

[WRO09] Michael Wahler, Stefan Richter, and Manuel Oriol. Dynamic software updates for real-
time systems. In: Proceedings of the 2nd International Workshop on Hot Topics in Soft-
ware Upgrades. ACM, 2009, pp. 1–6.

[XCG+21] Lei Xu, Lin Chen, Zhimin Gao, Hiram Moya, and Weidong Shi. Reshaping the Land-
scape of the Future: Software-Defined Manufacturing. In: Computer 54.7 (2021), pp. 27–
36.

[YCB+13] Tatu Ylonen, Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt,
and Dug Song. Linux Programmer’s Manual: sshd - OpenSSH SSH daemon. Internet:
https://linux.die.net/man/8/sshd [Dec 22, 2020]. The Linux Kernel Organi-
zation, 2013.

[ZHD05] Wei Zhang, Wolfgang A Halang, and Christian Dietrich. Specification and Verification
of Applications based on Function Blocks. In: Component-Based Software Development
for Embedded Systems. Springer, 2005.

[ZHLL18] Lin Zhao, Feng He, Ershuai Li, and Jun Lu. Comparison of time sensitive networking
(TSN) and TTEthernet. In: 2018 IEEE/AIAA 37th Digital Avionics Systems Conference
(DASC). IEEE. 2018, pp. 1–7.

[Zim80] Hubert Zimmermann. OSI reference model-the ISO model of architecture for open systems
interconnection. In: IEEE Transactions on communications 28.4 (1980), pp. 425–432.

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners of requirements engineering. In:
ACM transactions on Software Engineering and Methodology (TOSEM) 6.1 (1997),
pp. 1–30.

[ZLMV10] Alois Zoitl, Wilfried Lepuschitz, Munir Merdan, and Mathieu Vallée. A real-time recon-
figuration infrastructure for distributed embedded control systems. In: Emerging Technolo-
gies and Factory Automation (ETFA), 2010 IEEE Conference on. IEEE. 2010, pp. 1–
8.

https://manpages.ubuntu.com/manpages/xenial/man1/top.1.html
https://manpages.ubuntu.com/manpages/xenial/man1/top.1.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://man7.org/linux/man-pages/man7/namespaces.7.html
https://linux.die.net/man/8/sshd

	Introduction
	Research Scope and Contribution
	Running Example: The onBtnSwitch System
	Thesis Structure

	Foundations and Related Approaches
	Architecture Principles
	Model-Driven Engineering (MDE)
	Component-Based Software Engineering (CBSE)
	Distributed Systems

	Industrial Control Systems
	Real-Time Computer Systems
	Distributed Control and Communication Technologies
	Embedded Linux

	Formal Methods
	Timed Evolving Algebras
	Term Rewriting
	Component Frameworks for Dynamic Reconfiguration

	A Component Model for Modular and Evolvable Distributed Embedded Applications
	Design-Time Model
	Software Components
	Distributed Embedded Applications
	System Models and Topologies
	Deployment Descriptions

	Runtime Model
	Application Containers
	System Layer (CPU, Network and I/O)
	System Execution Management (Agent)

	Model Consistency
	Pre-Deployment Model Fragments
	Deployment Descriptions

	Reconfiguration of Distributed Embedded Applications during Operation
	Model Extensions for Reconfiguration
	Reconfiguration Coordination
	Container Lifecycle Management
	Transitioning between Applications

	Reconfiguration Consistency
	Correctness and Feasibility
	Quality Degradation

	Reconfiguration Blueprints
	General Reconfiguration Timing Template
	Minor Component Updates
	Updating DAG-Style Applications
	Application Start and Stop

	Evaluation Platform: Real-Time Container Architecture
	Platform Overview
	Introduction and Goals
	Architecture Constraints
	System Scope and Context

	Runtime Platform Architecture
	Solution Strategy
	Building Block View
	Runtime View
	Deployment View
	Cross-cutting Concepts

	Complementing Systems
	Application Development Environment
	System Monitoring Dashboard
	Update Management System

	Evaluation of the Platform Concepts and Prototype
	Case Study: onBtnSwitch
	Model and Implementation Summary
	Comparison of Simulation and Prototype
	Runtime Measurements

	Case Study: CubeBot
	System Overview
	Design and Implementation
	Configuration and Operation

	Conclusion
	Summary and Discussion
	Future Directions

	Evaluation Reconfiguration Plans
	Bibliography

