23 research outputs found

    Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling, and understanding of stream data.

    Get PDF
    This paper proposes a new method for an optimized mapping of temporal variables, describing a temporal stream data, into the recently proposed NeuCube spiking neural network architecture. This optimized mapping extends the use of the NeuCube, which was initially designed for spatiotemporal brain data, to work on arbitrary stream data and to achieve a better accuracy of temporal pattern recognition, a better and earlier event prediction and a better understanding of complex temporal stream data through visualization of the NeuCube connectivity. The effect of the new mapping is demonstrated on three bench mark problems. The first one is early prediction of patient sleep stage event from temporal physiological data. The second one is pattern recognition of dynamic temporal patterns of traffic in the Bay Area of California and the last one is the Challenge 2012 contest data set. In all cases the use of the proposed mapping leads to an improved accuracy of pattern recognition and event prediction and a better understanding of the data when compared to traditional machine learning techniques or spiking neural network reservoirs with arbitrary mapping of the variables.Comment: Accepted by IEEE TNNL

    Sleep Spindle Detection by Using Merge Neural Gas

    Get PDF
    In this paper the Merge Neural Gas (MNG) model is applied to detect sleep spindles in EEG. Features are extracted from windows of the EEG by using short time Fourier transform. The total power spectrum is computed in six frequency bands and used as input to the MNG network. The results show that MNG outperforms simple neural gas in correctly detecting sleep spindles. In addition the temporal quantization results as well as sleep trajectories are visualized on two-dimensional maps by using the OVING projection method

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    A news-based financial time series discretization

    Get PDF
    In this paper a new method for financial time series discretization that allows to take into account qualitative features about financial indicators is proposed. Qualitative features are extracted from financial news web sites and they are inserted into the learning phase of a recursive Self Organizing Map by means of a suitable parameter derived from statistical analysis of document collections. A postprocessing phase based on unsupervised clustering by U-Matrix method leads to the actual discretization of the time series. A real case application to a stock closing price series reveals that the inclusion of qualitative features leads to a more compact discretization of the series. This could be useful if a compact coding of the series is sought, for example in the preprocessing phase of a forecasting methodology

    Ring Reservoir Neural Networks for Graphs

    Get PDF
    Machine Learning for graphs is nowadays a research topic of consolidated relevance. Common approaches in the field typically resort to complex deep neural network architectures and demanding training algorithms, highlighting the need for more efficient solutions. The class of Reservoir Computing (RC) models can play an important role in this context, enabling to develop fruitful graph embeddings through untrained recursive architectures. In this paper, we study progressive simplifications to the design strategy of RC neural networks for graphs. Our core proposal is based on shaping the organization of the hidden neurons to follow a ring topology. Experimental results on graph classification tasks indicate that ring-reservoirs architectures enable particularly effective network configurations, showing consistent advantages in terms of predictive performance

    The application of dynamic self-organised multilayer network inspired by the Immune Algorithm for weather signals forecast

    Get PDF
    Neural network architecture called Dynamic Self-organised Multilayer Network Inspired by the Immune Algorithm is proposed for the prediction of weather signals. Two sets of experiments have been implemented. The simulation results showed slight improvement achieved by the proposed network when using the average results of 30 simulations. For the second set of experiments, the simulation results indicated that there is no significant improvement over the first set of experiments. Since clustering methods have been widely used in different applications of data mining, the adaption of unsupervised learning in the proposed network might serve these different applications, for example, medical diagnostics and pattern recognition for big data. The structure of the proposed network can be modified for clustering tasks by changing the back-propagation algorithm in the output layer. This can extend the application of the proposed network to scientifically analyse different types of big data

    Sleep Spindle Detection by Using Merge Neural Gas

    Get PDF
    In this paper the Merge Neural Gas (MNG) model is applied to detect sleep spindles in EEG. Features are extracted from windows of the EEG by using short time Fourier transform. The total power spectrum is computed in six frequency bands and used as input to the MNG network. The results show that MNG outperforms simple neural gas in correctly detecting sleep spindles. In addition the temporal quantization results as well as sleep trajectories are visualized on two-dimensional maps by using the OVING projection method

    Multiplex visibility graphs to investigate recurrent neural network dynamics

    Get PDF
    Source at https://doi.org/10.1038/srep44037 .A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods
    corecore