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Abstract—Machine Learning for graphs is nowadays a re-
search topic of consolidated relevance. Common approaches
in the field typically resort to complex deep neural network
architectures and demanding training algorithms, highlighting
the need for more efficient solutions. The class of Reservoir
Computing (RC) models can play an important role in this
context, enabling to develop fruitful graph embeddings through
untrained recursive architectures. In this paper, we study pro-
gressive simplifications to the design strategy of RC neural
networks for graphs. Our core proposal is based on shaping
the organization of the hidden neurons to follow a ring topol-
ogy. Experimental results on graph classification tasks indicate
that ring-reservoirs architectures enable particularly effective
network configurations, showing consistent advantages in terms
of predictive performance.

Index Terms—Graph Neural Networks, Graph Classification,
Reservoir Computing, Reservoir Topology

I. INTRODUCTION

Graph processing is assuming a central role in the devel-
opment of the basic Machine Learning (ML) research [1].
Indeed, the possibility to consider the relationships among
the singular samples in form of graphs and networks allows
to overcome the limitations of models for flat domains, i.e.
with fixed-size sample representations (fixed-length vectors)
for the input data. As such, the direct treatment of this kind of
data offers a remarkable opportunity to extend the possibility
of successful application domains in fields that range from
the processing of language structures or molecular data to the
analysis of social or biological networks (just to mention some
noteworthy examples).

The are many trends in the area of processing graph data in
ML with a historical root in models for the adaptive processing
for hierarchical data (rooted trees) [2]–[4], with pioneering
applications to the Cheminformatics domains [5], [6], which
have been progressively extended to a family of models (and
studies) based on the recursive approach. This family includes
a wide range of approaches, from the unsupervised [7] and
generative [8] areas, up to the extension to directed acyclic
graphs [9]. All this models have been characterized by a
recursive definition of the states (embedding) associated to
each node of the input structures that naturally extends the
state transition system of a recurrent neural network (RNN)
for sequential data.

The direct processing of general directed/undirected and
cyclic/acyclic graphs have been introduced following two basic

approaches. The first one is based on a direct extension of the
recursive neural networks, introduced by the Graph Neural
Network (GNN) [10] and then for the Reservoir Computing
framework by the Graph Echo State Network (GESN) [11].
Such approach uses a recursive model where the cyclic de-
pendencies among states of the recursive transition system are
allowed and treated by imposing constraints on the resulting
dynamical system (resorting to a contractive dynamics to
assure the convergence to a fixed-point representation for the
state of each vertex of a graph). As a result, the fixed point
of the recursive/dynamical system is exploited to represent (or
embed) the input graphs. Once the states have been computed
for all graph vertices, iterating the state transition function until
convergence, the graph embedding values can be projected
to the model output (readout), which is implemented as a
standard layer of trained neural units. The diffusion of the
context for each node of the graph is also guided by the
iterations used to reach the stable point of the state values.

Differently from the recursive models, the other line for
graphs (coeval with the recursive approaches) is to exploit the
idea of stacking feed-forward layers of neural units to manage
the mutual dependencies among state values that can occur in
cyclic and/or undirected graphs. The multi-layer construction
allows the context information to be diffused for the state of
each input node in a compositional way. This line of research,
based on a spatial approache, has been further developed under
the general term of convolutional neural network (CNN) for
graphs by many authors after the 2015 [12]–[16].

Finally, a further class of approaches that deserved to be
mentioned (and that we will consider in our experimental part)
is given by kernel methods for graphs [17]–[21].

Since the processing of complex types of data comes at the
cost of a high computational demand, another trend concerns
the efficiency issue. For the case of sequences and trees, the
Reservoir Computing (RC) paradigm [22], in particular in the
form of the so-called Echo State Network (ESN) [23], provides
an approach for the efficient modeling of recurrent/recursive
models [24]. Such paradigm is based on the use of fixed
(randomized) values of the recurrent weights under stability
conditions of the dynamical system (Echo State Property -
ESP) [23], while the output units (readout) are the only trained
part of the model. This line has been extended both to graph
processing (i.e. the already mentioned GESN) and to deep
architectures for trees [25] and graphs [26].
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In this paper we follow the lines for efficient processing
through RC approaches, with the aim to investigate on the
effect of the neural network topology for processing graphs
data. In particular, the proposed approach exploits the study
on minimum complexity ESN for sequential data introduced
in [27], in which the connections between the recurrent neu-
rons of architecture follow a specific (ring shaped) topology
and the stochastic elements (randomization in the recurrent
weights initialization) are progressively eliminated, acting in
accordance with specific deterministic rules. As a result, each
instance of the model is fully described only by the value of
a few hyper-parameters. The extension to graph domains lead
us to introduce a new approach for graph processing by RC
neural networks based on ring architectures.

Beside the investigation end, our proposal aims to introduce
practical advantages in terms of a rational and simplified
setting of the GESN, allowing also the user to increase the
number of trials during the model cross-validation phase
without increasing the computation time, or, in other words, to
extend the exploration of the hyper-parameters space, which,
in turns, increases the possibility to refine the application
performance.

The rest of this paper is structured as follows. In Section
II we give the basics of RC for graph processing. Then, in
Section III we introduce the new proposed architectures, while
in Section IV we analyze the results on different benchmarks at
the state-of-the-art in the field of neural networks for graphs,
also analyzing the effect of the architecture with respect to
the number of units and the computation resource. Finally, in
Section V we draw our conclusions.

II. RESERVOIR COMPUTING FOR GRAPHS

Preliminaries on graphs. In this paper we focus on the
problem of classifying undirected graph structures. A graph
g is represented by the couple g = (Vg, Eg), where Vg
denotes the set of vertices and Eg is the set of edges. The
number of vertices in g is indicated by Ng . The connectivity
structure among the vertices of g is compactly represented
by its adjacency matrix Ag , which is a square (in our case
symmetric) Ng ×Ng matrix whose (i, j) element is always 0
unless there is an edge connecting vertex i to vertex j. The
neighborhood of each vertex v ∈ Vg is the set of vertices that
are adjacent to v, denoted as N (v) = {v′ ∈ Vg|(v, v′) ∈ Eg}.
The maximum among the sizes of the neighborhoods defines
the degree k. We consider vertex-labelled graphs, where an
input label (i.e. a feature vector) is assigned to each vertex.
Here we use the notation u(v) to indicate the input label
attached to vertex v. To ease the notation, in the the rest of
the paper we drop the subscript g whenever the reference to
the graph in question is unambiguous.
Graph Echo State Networks. Reservoir Computing (RC) [22]
is a popular design paradigm for efficiently trained dynamical
neural models, extended to process graph structures with the
introduction of the Graph Echo State Network (GESN) in [11].

Architecturally, a GESN is composed by a hidden layer of
recursive non-linear neurons, the reservoir, that implements

the graph embedding process, followed by a simple linear
feed-forward readout layer that computes the output. Crucially,
and differently from conventional recurrent graph neural net-
work approaches [10], the weights on the hidden (reservoir)
layer’s connections are left untrained after initialization, and
only the parameters of the readout are subject to training.

We use NI , NH and NO to respectively indicate the
number of input, hidden (i.e., reservoir) and readout units. The
reservoir’s neurons encode each vertex v of an input graph into
a state representation (i.e., an internal neural embedding) by
means of a state transition function defined as follows1:

x(v) = tanh
(
V u(v) +

∑
v′∈N (v)

W x(v′)
)
, (1)

where x(v) ∈ RNR is the state computed for vertex v,
u(v) ∈ RNI is the input label (i.e., the input feature vector)
attached to vertex v, V ∈ RNH×NI is the input weight matrix,
W ∈ RNH×NH is the reservoir recurrent weight matrix, and
tanh indicates the element-wise application of the hyperbolic
tangent non-linearity. As described by (1), the state for each
vertex v depends on both its input features, modulated by the
weights in V, and on the set of states computed for the vertices
in the neighborhood of v, modulated by the weights in W. In
line with RC for time-series, the reservoir neurons are sparsely
and randomly connected among each other. This implies that
W is instantiated as a sparse matrix, hence speeding-up the
state transition computation, which scales linearly with the
number of reservoir neurons, with the degree and with the
number of vertices [26]. The reservoir recurrent structure and
the state transition computation (applied to a vertex in the
input graph) are graphically illustrated in Fig. 1.

The operation of the reservoir on an entire input graph can
be collectively represented in the (more compact) form:

X = tanh(VU + WXA), (2)

where U ∈ RNI×N and X ∈ RNH×N column-wise collect
respectively the input labels and states for all the N vertices
in the given input graph, and A is the adjacency matrix.
Interestingly, (2) can be studied as the function driving the
dynamics of an input-driven non-linear dynamical system,
where the role of exciting (external) input information is
played by both U and A (that depend on the graph to which
the reservoir system is applied). Existence and uniqueness
of solutions of (2), i.e. of the graph embedding computed
by the reservoir, can be guaranteed by imposing a stability
property named Graph Embedding Stability (GES) [26]. A
necessary condition for the GES consists in scaling the ef-
fective spectral radius, i.e. ρ = ρ(W) k, to a value smaller
than 1, where k denotes the degree of the set of graphs
under consideration and ρ(W) is the largest eigenvalue of
W in modulus [26]. The reservoir parameters in matrix W
can then be randomly initialized from a uniform distribution
over [−1, 1], and then re-scaled to meet the ρ < 1 condition.
Analogously, weights in the input matrix V are randomly

1We drop the bias terms in the equations for the ease of notation.
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Fig. 1. GESN: sparse reservoir recurrent structure (a), and its application to graph encoding (b).

initialized from a uniform distribution over [−ω, ω], where ω is
an input-scaling parameter that determines the strength of the
input influence in driving the reservoir dynamics. The values
of ρ and ω are treated as hyper-parameters. Given an input
graph, (2) is then iterated until convergence2 to the unique
fixed point of the corresponding dynamical system. Such a
fixed point in the reservoir state space depends on the specific
input graph (through matrices U and A) and represents its
developed (neural) embedding. In practice, the dynamical
graph embedding process is stopped whenever the Euclidean
distance between the states in successive iterations of (2) goes
below a threshold ε, or a maximum number of iterations ν has
been reached. After initialization, the weights in both V and
W are left untrained, hence the striking efficiency advantage
with respect to the approach in [10], where stability is not
imposed by construction at initialization, but rather obtained
by a possibly long and costly constrained training process.

The output computation is performed by a readout layer,
that linearly combines the representations developed for each
vertex of an input graph. The readout computation can be
described as follows:

y(g) = Wo

∑
v∈Vg

x(v), (3)

where Wo ∈ RNO×NH is the readout weight matrix that is
adjusted on a set of training samples. Note that the readout
operation in (2) includes the application of a global sum-
pooling (or aggregation) operator before the linear combi-
nation. Training of Wo is performed in closed-form using
Tikhonov regularization as in classical RC approaches [22].

III. RING RESERVOIRS FOR GRAPHS

Given the untrained and randomized approach to the design
of network’s dynamics, a commonly arising question in the RC
field is how to create “better” reservoirs than just random ones.
To keep the computational advantage of untrained recurrent

2Typically, the reservoir is initialized to a zero state for each vertex in the
graph, although any initial condition in the state space would be just as good
due to the uniqueness of the solution of (2).

connections, a possible way to address this question consists in
trying to optimize the architecture of the reservoir beforehand.
One interesting concept emerged in the literature on dynamical
neural models for time-series processing is orthogonality of
recurrence matrices. In the temporal domain, this kind of
recurrence systems are known to be naturally biased towards
having improved memorization skills [28]. Although several
ways exist to “orthogonalize” a dynamical neural model (see,
e.g., [29], [30]), a particularly effective approach is to impose
a ring-constrained pattern of connectivity among the recurrent
neurons in order to connect them to form a cycle. A number
of studies in the context of time-series processing highlighted
several advantages of such ring constrained topologies, e.g. in
terms of enriched quality of developed representations [31],
improved memory and predictive performance [27], [30]. For
the first time in literature, in this paper we investigate the
effects of this type of constrained architectures in the field
of neural networks for graph processing. We introduce the
following two new models that progressively simplify the
construction of RC networks for graphs.
Graph Ring-Reservoir Network (GRN) – Connections
among reservoir neurons are organized according to a ring
topology, where each neuron propagates its activation to the
successive one and is fed by the previous one in the cycle.
The resulting reservoir weight matrix W has the shape of a
permutation matrix P, where all entries are 0, except on the
subdiagonal and on the top-right corner, i.e.:

P =


0 0 . . . 1
1 0 . . . 0
...

. . . . . .
...

0 . . . 1 0

 , W = λ P. (4)

All the non-zero weights in W are set to the same value of λ,
which directly controls ρ(W) and hence can be used to tune
the effective spectral radius of the reservoir system through
the relation ρ = λ k. The resulting state transition function in
(2) is simplified as follows:

X = tanh(V U + λPXA). (5)
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Fig. 2. MGN: ring-shaped topology of the reservoir (a), and its application to graph encoding (b). The same reservoir topology is used in GRN.

Notice that the effects of stochasticity in the construction of
the reservoir are partially removed. The recurrent reservoir
weights are indeed set in a deterministic way, and the content
of matrix W is fully described by just one number (i.e., the
spectral radius). Randomization enters the network’s design
solely as regards the setup of the input weight matrix V.
Minimal Graph Network (MGN) – The reservoir weight
matrix W is ring-shaped as in the case of GRN. In addition,
we impose an architectural simplification also to the input
weight matrix V. Specifically, all the input weights are set to
the same absolute value ω, while the signs of the weights are
chosen deterministically similarly to [27], which introduced
the idea of “minimal complexity” in recurrent architectures.
We construct a sign weight matrix Π of the same size as V.
Following the (aperiodic) decimal expansion of the irrational
number π, we row-wise generate the entries in Π using the
value −1 if the corresponding digit of π is smaller than 5, and
the value +1 otherwise. Accordingly, we have that V = ωΠ,
and the reservoir state transition function in (2) is further
simplified as follows:

X = tanh(ωΠ U + λPXA). (6)

Fig. 2 illustrates the simplified reservoir architecture and the
state computation in MGN networks. Note that the same ring
reservoir topology is used also for GRN.
Interestingly, the reservoir of MGN is constructed in a fully
deterministic fashion, and any aspect of randomization in
its setup has been eliminated. The reservoir system is now
completely described by just 2 numbers, i.e., the input scaling
parameter ω and the spectral radius ρ. The network initializa-
tion process is thereby greatly simplified, reducing its degrees
of freedom - in comparison to the case of GESN - by a factor
that scales with the reservoir size NH .
For both GRN and MGN, the readout operation and training
is the same as already described for GESN in Section II.

IV. EXPERIMENTS

We perform an experimental evaluation of the proposed
GRN and MGN models, by assessing their predictive per-
formance on several graph classification benchmarks. Our

analysis is performed comparatively to both GESN (through
our experiments) and state-of-the-art neural networks and
kernel methods for graphs (through literature results).

Datasets. We take into consideration 6 graph classification
datasets (publicly available online [32]). Two of them, MU-
TAG [33] and NCI1 [34], come from the cheminformatics
domain, where each input graph is used as representation
of a chemical compound: each vertex stands for an atom
of the molecule, and edges between vertices represent bonds
between atoms. In the case of MUTAG, the dataset contains
nitroaromatic compounds and the target classification repre-
sents mutagenicity on Salmonella typhimurium. In the case
of NCI1, the dataset is relative to anti-cancer screens where
the chemicals are assessed as positive or negative to cell lung
cancer. For both MUTAG and NCI1, each vertex has an input
label representing the corresponding atom type, encoded by
a one-hot-encoding scheme into a vector of 0/1 elements.
The other datasets that we use come from the social network
analysis domain and are introduced in [18]. Two of them,
i.e., IMDB-BINARY (IMDB-2) and IMDB-MULTI (IMDB-
m), are datasets of movie collaboration, where each graph
represents the ego network of an actor/actress and the target
classification pertains the movie genre (2 for IMDB-2, 3 for
IMDB-m). Then, we consider the REDDIT (binary) dataset,
where each input graph represents an online discussion thread
to be classified in one of 2 possible types of discussions.
The last dataset that we use is COLLAB, a collection of
graphs representing the ego-networks of researchers, classified
according to their areas of research. For all the social network
benchmarks, there is no label attached to each vertex in the
input graphs, and we use a fixed (uni-dimensional) 1 value as
input label for each vertex. For all binary classification prob-
lems we encoded the target class as a value in {−1,+1}. For
multi-class classification benchmarks each target is represented
through a -1/+1 one-hot-encoding of the corresponding class.
Table I shows a summary of datasets information.

Experimental Settings. We conducted experiments with
GRN, MGN and GESN. For all the considered RC networks
we used dense input weight matrices V and sparse reservoir



Dataset # graphs # vertices (tot) # vertices (avg) # classes

MUTAG 188 3371 17.9 2
IMDB-b 1000 19773 19.8 2
IMDB-m 1500 19502 13.0 3
REDDIT 2000 859254 429.6 2
NCI1 4110 122747 29.9 2
COLLAB 5000 372474 74.5 3

TABLE I
SUMMARY OF DATASETS INFORMATION.

weight matrices W. For a fair comparison among the consid-
ered RC models, in the case of GESN we used a sparse pattern
of connectivity such that each reservoir neuron is connected
to only 1 other reservoir neuron. In this way, the degree of
reservoir sparsity is comparable in all the considered settings,
with the crucial difference that in GRN and GRN such sparsity
is not randomized but rather structured following the ring
topology described in Section III. As regards the stop con-
ditions for the dynamical graph embedding process, we used
a convergence threshold of ε = 10−3, and a maximum number
of iterations ν = 50. The hyper-parameters ω and ρ were ex-
plored by random search, i.e., generating a number of C = 50
random reservoir configurations where ω and ρ were sampled
from a uniform distribution on (0, 1). For every reservoir
configuration, the Tikhonov regularizer for the readout training
was explored in a log-scale grid {10−10, 10−9, . . . , 105}. We
ran experiments considering progressively larger reservoirs,
with NH in the range {5, 10, 30, 50} for MUTAG, IMDB-2,
IMDB-m, and REDDIT, and in the range {50, 100, 300, 500}
for NCI1 and COLLAB.

To account for randomization in the initialization of the
reservoir, for each of the C reservoir configurations we instan-
tiated a number of R = 50 repetitions (i.e., reservoir guesses),
averaging the error on such repetitions. The total number of
generated networks is then equal to C × R. Note that for
the MGN model the reservoir initialization process is fully
deterministic and there is no need to average the performance
on multiple repetitions. We thereby considered two possible
experimental settings for MGN hyper-parameters search: one
“complete” and one “reduced”. In the complete setting we
put on par the total effort in the hyper-parameter search, and
generated the same total number of reservoir networks as for
the other models. In this case, the experiments with MGN span
a total number of C×R possible configurations. In the reduced
setting, we put on par the number of explored configurations,
and limit ourselves to considering a total number of C MGN
networks. In this case, the hyper-parameter search for MGN
is R times faster than those for GRN and GESN.

The output class for binary classification tasks was com-
puted by applying the readout equation (3), followed by the
sign function to discretize the output in {−1,+1}. For multi-
class classification tasks, for each graph the output class was
assigned in correspondence of the readout unit with the highest
activation. We computed the performance in terms of accuracy,
following a stratified 10-fold cross validation scheme. The

values of the hyper-parameters were chosen on each fold by
model selection (individually for each model), using a nested
level of stratified 10-fold cross validation.
Results. We first analyzed the behavior of the proposed
approaches at the increase of the reservoir network size. To
this end, we computed the performance achieved by each
model, optimizing the hyper-parameters individually for each
possible number of reservoir neurons. The results are shown in
Fig. 3, in which we report the validation accuracy achieved by
GRN and MGN (under both complete and reduced settings)
in comparison to GESN. Fig. 3 indicates a clear general trend,
with both GRN and MGN having higher accuracy than GESN
consistently for all reservoir sizes on all tasks. In particular,
the performance gap is evidently wider in the case of MGN.
Interestingly, despite the architectural simplifications, minimal
ring-shaped reservoirs show a higher fitting potential. Already
under reduced search settings, MGN has higher performance
than GESN and GRN (with almost on par results on COL-
LAB). Under complete search settings, MGN beats all other
models, showing an effective enhancement in the exploration
of the RC hyper-parameters space. Remarkably, on 4 over 6
tasks, the performance of the smallest MGN (complete) is in
line or even better than the performance of the largest (10
times bigger) GESN.

We then analyze the overall generalization performance of
the proposed architectures by individually optimizing (through
model selection) the hyper-parameters of each RC model,
taking collectively into account all the possible reservoir sizes.
The achieved test accuracies are reported in Tab. II. In the same
table, we report the performance achieved by a significant
selection of state-of-the-art ML models for graph classification
from the literature. In particular, we considered the following
graph neural networks: Fast and Deep Graph Neural Network
(FDGNN) [26], a recently introduced deep RC approach for
graphs, Deep Graph Convolutional Neural Network (DGCNN)
[12], Parametric Graph Convolution DGCNN (PGC-DGCNN)
[13], DiffPool [37], Edge-Conditioned Convolution network
(ECC) [38], Graph Isomorphism Network (GIN) [16] Graph-
SAGE [39], Graph Neural Network [10] and Relational Neural
Network [40]. We also considered a number of kernel methods
for graphs, including Graphlet Kernel (GK) [17], Deep GK
(DGK), Weisfeiler-Lehman Kernel (WL) [21], and Propaga-
tion Kernel (PK) [20]. Results for these models are quoted
from the literature references indicated in the table, where
the experimental settings for model selection were as close
as possible to be rigorous as ours (the only exception is the
result of DGCNN on REDDIT, which is taken from [35]).

Tab. II confirms the already observed general trend of ring-
constrained RC networks variants beating standard GESN.
Specifically, both GRN and MGN (in each of the search
settings) outperform GESN on 5 out of 6 tasks. A remarkable
case is given by the largest dataset, i.e., COLLAB, where
the performance boost is particularly evident (up to more
than 2% of accuracy). We find it particularly intriguing that
the observed accuracy improvement is obtained by just by
imposing a specific (and rather simple) structure to the ar-



Fig. 3. Validation accuracy or RC models for graph classification for increasing reservoir size. Results are averaged (and std computed) on the outer 10 folds.

MUTAG IMDB-2 IMDB-m REDDIT NCI1 COLLAB

MGN (complete) 87.8(±6.3) 72.7(±3.2) 49.5(±2.2) 87.7(±1.7) 78.8(±2.3) 74.5(±1.4)

MGN (reduced) 88.3(±5.6) 72.0(±3.6) 50.2(±2.0) 88.1(±1.8) 77.6(±2.4) 74.1(±1.3)

GRN 88.4(±7.6) 71.7(±2.8) 50.5(±1.4) 87.6(±1.4) 78.2(±2.2) 73.8(±1.4)

GESN 88.2(±6.3) 71.7(±3.6) 48.7(±2.1) 87.5(±1.1) 77.8(±2.0) 72.1(±1.6)

FDGNN [26] 88.5(±3.8) 72.4(±3.6) 50.0(±1.3) 89.5(±2.2) 77.8(±1.6) 74.4(±1.0)

DGCNN [12] 85.8(±1.7) 70.0(±0.9) 47.8(±0.9) 77.1(±2.9) 74.4(±0.5) 73.8(±0.5)

PGC-DGCNN [13] 87.2(±1.4) 71.6(±1.2) 47.3(±1.4) − 76.1(±0.7) 75.0(±0.6)

DiffPool [35] − 68.3(±6.1) 45.1(±3.2) 76.6(±2.4) 76.9(±1.9) 67.7(±1.9)

ECC [35] − 67.8(±4.8) 44.8(±3.1) − 76.2(±1.4) −
GIN [35] − 66.8(±3.9) 42.2(±4.6) 87.0(±4.4) 80.0(±1.4) 75.9(±1.9)

GraphSAGE [35] − 69.9(±4.6) 47.7(±3.6) 86.1(±2.0) 76.0(±1.8) 71.6(±1.5)

GNN [36] 80.5(±0.8) − − − − −
RelNN [36] 87.8(±2.5) − − − − −
GK [18] 81.4(±1.7) 65.9(±1.0) 43.9(±0.4) 77.3(±0.2) 62.5(±0.3) 72.8(±0.6)

DGK [18] 82.7(±1.5) 67.0(±0.6) 44.6(±0.5) 78.0(±0.4) 62.5(±0.3) 73.1(±0.3)

WL [12] 84.1(±1.9) − − − 84.5(±0.5) −
PK [12] 76.0(±2.7) − − − 82.5(±0.5) −

TABLE II
TEST ACCURACY OF RC MODELS FOR GRAPH CLASSIFICATION (COMPARED TO LITERATURE METHODS). RESULTS ARE AVERAGED (AND STD

COMPUTED) ON THE OUTER 10 FOLDS. THE BEST OVERALL ACCURACY ON EACH TASK IS HIGHLIGHTED IN BOLD FONT.

chitectural setup of the network. In the case of MGN this
architectural effect is combined with the already noted ability
to search the hyper-parameters space more extensively. Results
of ring reservoir networks compare well also with literature
results. In this regard, notice that while literature works on
deep learning for graphs often imply complex end-to-end fully
trained multi-layered architectures with several thousands of
trainable weights, our results here were achieved with very
simple (single-layered) recursive untrained architectures, and
entail a maximum number of trained weights of 501 for NCI1
and COLLAB, and of 51 for all the other tasks. Despite this,
our proposed models establish new sate-of-the-art results on

IMDB-2 and IMDB-m. On MUTAG, REDDIT and COLLAB
our achieved performances are very close to the highest ones
in literature, while on NCI1 - where WL and PK kernels score
best - the obtained accuracy is not far from the best performing
neural network (GIN). Finally, looking also at the accuracy of
FDGNN, we find it interesting to point out that on 4 out of 6
tasks, the highest accuracy is achieved by a model in the RC
class (either in a shallow, or deep architectural setting).

V. CONCLUSIONS

We have studied simple RC architectures for graph process-
ing where the hidden recurrent neurons are constrained to a



ring topology. The introduced simplifications allowed us to
progressively reduce, up to eliminate, the aspects of stochas-
ticity in the initialization of reservoir networks for graphs.
Our experimental analysis indicated that such “minimal” RC
architectures enable an effective exploration of the hyper-
parameters, often leading to an improved performance. The
provided results also pointed out that despite their simplicity,
ring-reservoir neural networks are particularly effective in
graph classification benchmarks, reaching a performance that
is comparable to (and sometimes even better than) that of
several more complex ML models for graphs.

The evidences illustrated in this paper naturally support fu-
ture research investigations, aiming at extending the observed
advantages of constrained reservoir architectures both to the
construction of more effective deep RC models and to the
design of more efficient learning algorithms for trained neural
networks for graphs.
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[29] I. Farkaš, R. Bosák, and P. Gergel’, “Computational analysis of memory
capacity in echo state networks,” Neural Networks, vol. 83, pp. 109–120,
2016.

[30] T. Strauss, W. Wustlich, and R. Labahn, “Design strategies for weight
matrices of echo state networks,” Neural computation, vol. 24, no. 12,
pp. 3246–3276, 2012.

[31] P. Tino, “Dynamical systems as temporal feature spaces,” arXiv preprint
arXiv:1907.06382, 2019.

[32] K. Kersting, N. M. Kriege, C. Morris, P. Mutzel, and M. Neumann,
“Benchmark data sets for graph kernels,” 2016. [Online]. Available:
http://graphkernels.cs.tu-dortmund.de

[33] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman,
and C. Hansch, “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. correlation with molecular orbital
energies and hydrophobicity,” Journal of medicinal chemistry, vol. 34,
no. 2, pp. 786–797, 1991.

[34] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,” Knowledge
and Information Systems, vol. 14, no. 3, pp. 347–375, 2008.

[35] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison
of graph neural networks for graph classification,” in International
Conference on Learning Representations, 2020.

[36] W. Uwents, G. Monfardini, H. Blockeel, M. Gori, and F. Scarselli,
“Neural networks for relational learning: an experimental comparison,”
Machine Learning, vol. 82, no. 3, pp. 315–349, 2011.

[37] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Advances in Neural Information Processing Systems, 2018, pp. 4800–
4810.

[38] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters
in convolutional neural networks on graphs,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 3693–
3702.

[39] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in neural information processing
systems, 2017, pp. 1024–1034.

[40] H. Blockeel and M. Bruynooghe, “Aggregation versus selection bias,
and relational neural networks,” in IJCAI-2003 Workshop on Learning
Statistical Models from Relational Data, SRL-2003, Acapulco, Mexico,
2003.

http://graphkernels.cs.tu-dortmund.de

	I Introduction
	II Reservoir Computing for Graphs
	III Ring Reservoirs for Graphs
	IV Experiments
	V Conclusions
	References

