
JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 1

Mapping Temporal Variables into the NeuCube for
Improved Pattern Recognition, Predictive Modelling

and Understanding of Stream Data
Enmei Tu, Nikola Kasabov, Fellow, IEEE, and Jie Yang

Abstract—This paper proposes a new method for an optimized
mapping of temporal variables, describing a temporal stream
data, into the recently proposed NeuCube spiking neural network
architecture. This optimized mapping extends the use of the
NeuCube, which was initially designed for spatiotemporal brain
data, to work on arbitrary stream data and to achieve a better
accuracy of temporal pattern recognition, a better and earlier
event prediction and a better understanding of complex temporal
stream data through visualization of the NeuCube connectivity.
The effect of the new mapping is demonstrated on three bench
mark problems. The first one is early prediction of patient sleep
stage event from temporal physiological data. The second one is
pattern recognition of dynamic temporal patterns of traffic in the
Bay Area of California and the last one is the Challenge 2012
contest data set. In all cases the use of the proposed mapping
leads to an improved accuracy of pattern recognition and event
prediction and a better understanding of the data when compared
to traditional machine learning techniques or spiking neural
network reservoirs with arbitrary mapping of the variables.

Index Terms—NeuCube architecture, spiking neural network,
early event prediction, spatiotemporal data

I. INTRODUCTION

TEMPORAL data have been collected in various fields,
such as brain science, ecology, geophysics, social sci-

ences. Temporal data may contain complex temporal patterns
that would need to be learned and extracted in a compu-
tational model. In some cases, the variables describing the
temporal data have spatial attributes, e.g. the 3D location of
the channels in EEG data [1] and the patterns that need to
be learned become spatiotemporal. Learning dynamic patterns
from temporal and spatiotemporal data is challenging task as
the temporal features may manifest complex interaction that
also may change dynamically over time. The time-windows
of important temporal or spatiotemporal patterns may change
over time which is seldom covered by traditional machine
learning methods such as regression techniques, support vector
machines (SVM) or multi-layer perceptrons (MLP).

Many recurrent models have been proposed to learn spa-
tiotemporal relationship from signal, such as the recursive self-
organizing network models [2, 3], recurrent neural network
[4, 5]. Recently NeuCube [1, 6] has been proposed to capture
time and space characteristics of spatiotemporal brain data in

Enmei Tu and Jie Yang are with the Institute of Image Processing and
Pattern Recognition, Shanghai Jiao Tong University.

Nikola Kasabov is with the Knowledge Engineering and Discovery Re-
search Institute, Auckland University of Technology.

This manuscript is submitted to Special issue on Neurodynamic Systems
for Optimization and Applications

a spiking neural network (SNN) architecture. The NeuCube
architecture consists of: input data encoding module, that
encodes multivariable continuous temporal stream data into
spike trains; a 3D recurrent SNN cube (SNNcube) where input
data is mapped and learned in an unsupervised mode; a SNN
classifier that learns in a supervised mode to classify spa-
tiotemporal patterns of the SNNcube activities that represent
patterns from the input data. The effectiveness and superiority
of NeuCube to model brain data (such as EEG) has been
demonstrated in previous works. [7] studies the modelling
ability of NeuCube for electroencephalography (EEG) spa-
tiotemporal data measuring complex cognitive brain processes.
In [8] NeuCube is used for modelling and recognition of
complex EEG spatiotemporal data related to both physical and
intentional (imagined) movements. [9, 10] presents the results
of using NeuCube to classify/cluster fMRI data and [11] uses
NeuCube for the analysis of EEG data recorded from a person
affected by Absence Epileptic. [12] studies how NeuCube can
help understand brain functional changes in a better way.

While in these studies, NeuCube is used to model brain
data and the features are manually mapped into the system
according to the spatial location where the signals are sampled
from, in this paper we present a fully automatic input map-
ping method based on graph matching technique that enables
NeuCube to model any spatiotemporal data and leads to better
spatiotemporal pattern recognition, early event prediction and
model visualization and understanding.

The main contributions of this paper are as follows:
• We propose a new graph matching algorithm to optimize

the mapping of the input features (variables) of arbitrary
temporal stream data into a 3D SNNcube with the goal to
achieve a better pattern recognition accuracy, an earlier
event prediction from temporal data and a better under-
standing of the data through model visualization.

• We proposed a graph based semi-supervised learning
algorithm to automatically analyse the neuronal cluster
structure inside the trained SNNcube and develop vari-
ous dynamic functions for visualization of the neuronal
activity states and synaptic evolving progress during
learning process and we prove the convergence of the
new algorithm.

• We present two algorithms, spike density correlation and
maximum spike coincidence, for spike trains similarity
measure that can be used in the graph matching algorithm
for two commonly encountered types of spike trains:
bipolar spike trains and unipolar spike trains.

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 2

• We introduce an Adaptive Threshold Based (ATB) en-
coding algorithm by using mean and standard deviation
information of the signal gradient to calculate its thresh-
old and thus make ATB self-adaptive to signal changes.

• We develop an optimization component using genetic
algorithm that can automatically optimize all NeuCube
parameters in once and thus enable users to find optimal
parameters’ value easily and achieve good results.

The remainder of this paper is organized as follows. Section
2 describes the NeuCube architecture. Section 3 proposes a
new method for the optimization of the mapping of the input
temporal features into the SNNcube. Experiments on three
benchmark data sets are reported in Section 4, followed by
conclusions and discussions in Section 5.

II. THE NEUCUBE ARCHITECTURE

The main parts of NeuCube are: input encoding module; a
three-dimensional recurrent SNN reservoir/cube (SNNcube);
an evolving SNN classifier. Fig. 1 shows the block diagram
of the NeuCube architecture. The SNNcube is a scalable
module. Its size is controlled by three parameters: nx, ny
andnz , representing the neuron number along x, y and z axes,
respectively. The total number of neurons in the SNNcube is
N = nx × ny × nz . As a first implementation here, we use a
probabilistic leaky integrate and fire model (LIFM) [13].

Fig. 1. A simplified representation of the NeuCube architecture [1, 6]. Spike
trains (left) are fed to the SNNcube and the neuron firing states vectors of
the SNNcube are used to train a SNN classifier.

The encoding module converts continuous data streams into
discrete spike trains, suitable to be processed in the SNNcube,
because spike neural networks can only process discrete spike
trains. After encoding, the information contained in original
continuous signal is transformed into forms of spikes.

The NeuCube is trained in a two-stage learning process. The
first stage is unsupervised learning that makes the SNNcube
learn spatiotemporal relations from the input data by adjusting
the connection weights in SNNcube. The second stage is
supervised learning that aims at learning the class information
associated with each training spatiotemporal sample.

To be more specific, the unsupervised learning stage is
intended to encode hidden spatiotemporal relationships from
the input data into neuronal connection weights. According
to the Hebbian learning rule, if the interaction between two
neurons is persistent, then the connection between them will
be strengthened. In particular, we train the SNNcube using
spike-timing dependent synaptic plasticity (STDP) learning
rule [14]: if neuron j fires before neuron i, then the connection
weight from neuron j to neuron i will increase and, if the
spikes are in a reverse order, the connection from neuron i to
neuron j will decrease . This ensures that the time difference

in the input spiking trains, which encode the temporal patterns
in the original input signals, will be captured by the neuron
firing state and the unsymmetrical connection weights in the
reservoir.

The second training stage is to train an output classifier
using class label information associated with the training
temporal samples. The dynamic evolving Spike Neural Net-
works (deSNN) [15] is employed here as an output classifier,
because deSNN is computationally efficient and emphasizes
the importance of both first spikes arriving at the neuronal
inputs (observed in biological systems [16]) and the following
spikes (which in some stream data are more informative).

Once a NeuCube model is trained, all connection weights
in the SNNcube and in the output classification layer are
established. These connections and weights can change based
on further training (adaptation), because the evolvable charac-
teristic of the architecture.

III. A METHOD FOR AN OPTIMAL MAPPING OF
TEMPORAL INPUT VARIABLES INTO A 3D SNNCUBE

BASED ON THE GRAPH MATCHING ALGORITHM

A. A method for mapping input temporal variables into a 3D
SNNcube based on graph matching optimisation algorithm

Given a particular spatiotemporal data set, it is important to
optimise the mapping of the data into the 3D SNNcube for an
optimal learning a better understanding of the spatiotemporal
patterns in the data. For some spatiotemporal data, such as
brain EEG, there is prior information about the location of
each channel (input feature) and this information can be
readily utilized for mapping the EEG temporal signal into
the SNNcube [6]. But for other common applications such as
climate temporal data, we do not have such spatial mapping
information. And the way temporal data is mapped into the
SNNcube would significantly impact the results. Here we
introduce a new method to map temporal variables into the
SNNcube for a better pattern recognition, a better and earlier
event prediction and a better visualisation of the model to
explain the data.

Suppose there are s temporal samples in the data set,
measured through v temporal variables and the observed time
length of each sample is t. We first choose randomly v input
neurons from the SNNcube. Then we map the variables into
the SNNcube following the principle: input variables/features
that, after the input data transformation into spike trains,
represent highly correlated spike trains are mapped to nearby
input neurons. Because high correlation indicates that the
variables are likely to be more time dependent with each
other, and this relationship should also be reflected in the
connectivity of the 3D SNNcube. Spatially close neurons in
the SNNcube will capture in their connections more temporal
interactions between the input variables mapped into these
neurons. The principle of mapping similar input vectors into
topologically close neurons is known from the SOM [17], but
in SOM these are static vectors and the similarity is measured
by the Euclidean distance. Now, we address the problem of
mapping temporal sequences, rather than static vectors, into a
3D SNN.

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 3

Specifically, we construct two weighted graphs: the input
neuron similarity graph (NSG) and the time series/signals
similarity graph (SSG). In the NSG, the input neurons spatial
3D coordinates are denoted by VNSG = {(xi, yi, zi)|i = 1..v}
and the graph edges are determined in the following way: each
input neuron is connected to its k nearest input neurons and
the edges are weighted by the inverse of the Euclidean distance
between them.

In the SSG, we denote the spike train corresponding to the
feature i as

si =

Ni∑
k=1

δ(t− tk) (1)

where δ(t) is the Dirac delta function. The set of spike trains
corresponding to all the features is VSSG = {si|i = 1..v} and
it forms the graph vertex set. The graph edges are constructed
in this way: each spike density function is connected to its k
highest correlated neighbours and the edges are weighted by
the similarity between them. Measuring the similarity between
spike trains is an important problem in neural science and have
been studied for a long history [18, 19]. Here we propose
two simple but effective spike trains similarity measuring
algorithms for two most commonly encountered spike train
types, respectively. The first one is spike density correlation,
which is suitable for measuring unipolar spike trains with two
state (firing or unfiring). This kind of spike train is commonly
observed in glutamatergic neurons and produced by some
spike encoding algorithms such as Bens Spiker Algorithm
(BSA) [20]. The other one is maximum spike coincidence,
which is suitable for measuring bipolar spike trains with three
state (excitatory, rest or inhibitory). This kind of spike train is
commonly produced by serotonergic neurons, as well as some
encoding algorithms such as address event representation [21].

1) spike density correlation: Given a unipolar spike train
si, we first use kernel density estimation method to estimate
its spike density function by

pi(t) =
1

Ni
Kh(t) ∗

Ni∑
k=1

δ(t− tk) =
1

Nih

Ni∑
k=1

K(
t− tk
h

) (2)

where ∗ is the function convolution operator and K(t) is
a kernel function, with kernel bandwith h. Fig. 2 displays
the spike density estimation result. Thereafter, the similarity

Fig. 2. Spike density estimation result.

between spike train si and sj is defined as the Pearson’s linear

correlation coefficient

ω(si, sj) =
E [(X − µX) (Y − µY)]

σXσY
(3)

where µX and σX are the mean and the standard deviation of
X , respectively. E is the expectation. Here X and Y are the
random variables corresponding to si and sj , respectively.

2) maximum spike coincidence: Given two bipolar spike
trains si and sj , we define the similarity between them as the
maximal number of spikes that coincide while one spike train
moves over the other spike train

ω(si, sj) = max
τ

Ni∑
k=1

I
(
si(k), sτj (k)

)
(4)

where sτi is the result of translating si with τ time unit, i.e.

si =

Ni∑
k=1

δ(t− τ − tk) (5)

Note that while τ is negative, si is translated backward and
while τ is positive, si is translated forward, as illustrated in
Fig. 3. I(x, y) is the indicator function, equal to 1 if x = y
and 0 elsewhere.

Fig. 3. The process of computing maximum spike coincidence.

After construction of NSG and SSG graphs, we adopt the
graph matching technique, which is a powerful tool to solve
mapping problems and has been widely used in computer vi-
sion and pattern recognition, to determine an optimal mapping
between the two weighted graphs under the mapping rule. For
these two graphs, we can compute their adjacency matrices,
written as An and As. The graph matching method is aimed to
find out a permutation matrix P that minimizes the following
objective function:

min
P
||An − PAsPT ||2F (6)

where || · ||F denotes the Frobenius matrix norm. Solving this
problem exactly is known to be an NP hard problem due to
its combinatorial optimization property. Many algorithms have
been proposed to find an approximated solution.

Among these algorithms the Factor Graph Matching (FGM)
algorithm [22] has been demonstrated to produce state-of-art
results. So here we utilize the FGM algorithm to solve the
SSG to NSG matching problem in equation (6). Suppose in
NSG the sum of graph edge weights of an vertex, say vertex
iNSG ∈ VNSG, to all other vertices is d(iNSG), and, similarly,
in SSG the sum of graph edge weights of vertex iSSG ∈ VSSG
to all other vertices is c(iSSG), then the difference between
the normalized weight sum d̃(iNSG) and c̃(iSSG) reflects
the similarity of the positions of iNSG and iSSG in the
corresponding graphs, where d̃(iNSG) (and similarly c̃(iSSG))
is the normalized weight sum of vertex iNSG that is obtained

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 4

by dividing d(iNSG) by the largest weight sum in graph NSG.
So we define the vertex similarity as:

exp
(
−|d̃(iNSG)− c̃(iSSG)|2/2σ2

n

)
; iNSG, iSSG = 1...v

(7)
and the edge similarity:

exp
(
−|aNSGij − aSSGkl |2/2σ2

e

)
; i, j, k, l = 1...v (8)

where: aNSGij , aSSGkl are graph edge weights in NSG and SSG,
respectively; σn and σe are parameters to control the affinity
between neurons and edges, respectively. Table I gives the
algorithm procedure.

TABLE I
GRAPH MATCHING BASED INPUT MAPPING ALGORITHM

Step

1 Input spike trains and input mapping neurons
2 Construct graphs NSG using Euclidean distance
3 Construct graphs SSG using equation (3) or (4)
4 Compute vertex similarity using equation (7)
5 Compute edge similarity using equation (8)
6 Solve problem (6) by Factor Graph Matching

Fig. 4 shows matching results for an exemplar temporal data
represented by 14 features (this is actually the case study data
from experiment 1, presented in section 4 in [23]). The left
graph is the input NSG and the right graph is SSG. We can
see that after matching, highly correlated features are mapped
to nearby input neurons.

Fig. 4. An input mapping result obtained by the proposed method for
exemplar temporal data.

B. The optimal input mapping enables early and accurate
event prediction from temporal data

In many applications, such as pest population outbreak
prevention, natural disaster warning and financial crisis fore-
casting, it is important to know the risk of event occurrence
as early as possible in order to take some actions to prevent it
or make adjustment in time, rather than waiting for the whole
pattern of temporal data to be entered into the model. The
main challenge in the early event prediction task is that the
time length of the recall samples should be smaller than that of
training samples, because training samples are collected in the
past and all the data are already known. This is illustrated in
Fig. 5. Traditional data modeling methods, such as SVM, kNN,
and MLP, are no longer applicable for early event prediction
task, because they require prediction sample and training
samples to have same time length. Furthermore, traditional
methods also cannot model both the close interaction and

Fig. 5. A temporal data model used for early event prediction

interrelationship between time and space components of the
spatiotemporal data.

In contrast, NeuCube with the proposed new mapping
method would enable a better early event prediction, as the
connectivity of a trained SNNcube would reflect on the tem-
poral relationship in the temporal data. As a result, if part of
a new sample is presented, this would fire a chain of activities
in the SNNcube based on the established connections. To be
more specific, let us consider mapping four features A, B,
C and D into a two dimensional SNNcube1. Assuming that
feature A is more correlated with feature B than with others,
but feature A is a more dominant (important) feature than
feature B, e.g. feature A could be Sun Radiation and feature B
could be temperature as in the Aphids study in [23]. Similarly,
assuming feature C is more correlated with feature D, but
feature D is a more dominant feature than feature C. The result
of optimal graph mapping are given in Fig. 6 (a). The highly
correlated features are mapped nearby while less correlated
features are mapped far away. Recall that STDP learning rule
adjusts synaptic weight between nearby neurons according
to their firing time difference. During training process, the
neurons around feature A will have more interaction with
neurons around feature B than with other features, and these
interactions cause unsymmetrical weight adjustment according
to STDP rule. After training, the connection patterns between
neurons around these two features will encode the temporal
characteristics in the training spike trains, hence the temporal
relationship in original signals.

During testing phase, once similar temporal pattern appears,
early firing is triggered and then propagated in a neuron
population (hence a firing chain of a neuron cluster) before
full data are presented, i.e. the neurons and their connections
form a functional cluster which becomes selective to the
spatiotemporal pattern and tend to fire at the start of the
signal pattern. As demonstrated by [24, 25], LIF neurons
equipped with STDP learning rule can learn unsupervisedly
an arbitrary spatiotemporal pattern embedded in complex
background spike trains and when its preferred spike sequence
appears, the neuron can emit a spike very early at the start of
the pattern. Biologically, the population firing in the SNNcube
chain-fire phenomenon was observed in zebra finches HVC
area to control the precise temporal structure in birdsong [26],
in which the neural activity is propagated in chain network
to form the basic clock of the song rhythm. In the SNNcube
we have also observed a similar chain-fire phenomenon while
spike trains are presented to the network. These features endow
the SNNcube with a powerful potential to encode complex

1Recall that the size of a three dimensional SNNcube is N = nx×ny×nz .
Two dimensional SNNcube is a special case where nz = 1.

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 5

spatiotemporal patterns contained in the input spike trains used
for training and to respond early to the presence of a specific
spatiotemporal pattern in a recall/prediction mode. This is
especially important when a result is the consequence of
several highly correlated key factors, as further demonstrated
by the study of Stroke occurrence [27]2. This phenomenon is
similar to that of associative memories in Hopfield networks
[28], but here we deal with temporal patterns rather than with
static input vectors.

(a) (b) (c)

Fig. 6. Different spatial pattern of input mapping. Colored circles are input
neurons and black dots are normal neurons. The color indicates correlation
and shape size indicates dominance.

In contrast, Fig. 6 (b) and (c) display the non-optimal
mapping, where uncorrelated features are mapped together.
The neurons around uncorrelated features can hardly learn the
original signal temporal relationship, because nearby neurons
are presented with less even non-correlated signals. The in-
teractions between these nearby neurons can be much lower
and do not capture any meaningful temporal correlation. As
a result, while new samples are partially presented during
testing, similar temporal pattern as contained in training sam-
ples cannot be detected correctly, as will be demonstrated by
experimental results in Section IV.

C. The optimal input mapping enables better network struc-
ture analysis and visualization and a better data understanding

After it is trained, the SNNcube has captured spatial and
temporal relationships from the temporal data. It is helpful to
know how the neurons in the SNNcube are related to the input
features and what patterns the SNNcube have learned from
the input signals. This information is important to understand
the model and the temporal data set [12]. While in previous
work the neuronal clusters are manually labeled according
to the synaptic weights and this costs plenty of time and is
less accurate, we propose the following algorithm to unveil
SNNcube structure through automatically analysing neuronal
clusters in the SNNcube.

The neurons in the cube are indexed from 1 to N according
to ascendent order of their x, y and z coordinates. We mark the
input neurons as the information source in the SNNcube and
define a source matrix Fsrc ∈ RN×v as follows: if neuron
i is the input neuron of variable j, then the entry (i, j) of
Fsrc is 1, otherwise is 0. The affinity matrix A ∈ RN×N of
the SNNcube is defined in the following way: the entry (i, j)
of A is the total spike amount transmitted between neuron i
and neuron j. Note that more spike means stronger interaction
and more information shared between the neurons. Then the

2http://www.kedri.aut.ac.nz/neucube/stroke

ratio of information for each neuron received from the input
information sources is computed by the following algorithm:

1) Compute S = D−1/2AD−1/2

2) Evaluate F̃ = IrateSF̃ + (I − Irate)Fsrc to converge
3) Normalize F = G−1F̃

I is the identity matrix and Irate is a diagonal matrix
defining the propagation rates on different directions. D and
G are also diagonal matrices with Dii =

∑N
j=1Aij and

Gii =
∑N
j=1 F̃ij , i = 1, 2, ..., N , respectively. In the first

iteration F̃ = Fsrc. Step 1 computes the normalized adjacency
matrix which can fully encode the connection information of
SNNcube by a square matrix, according to network theory
[29]. Step 2 propagates information from input neurons to
other neurons in an iterative way. The main principle behind
the algorithm is that information (or activation) is propagated
in the network and the propagation process is dominated by
the network structure. Imagining that each input neuron is a
source and has some kind of information (i.e. electricity, fluid
matters etc.), but the information type possessed by different
input neuron is different (i.e. different ions or different liquid).
The information is propagated from sources to other neurons
in each iteration and the propagation amount is proportional
to the connection weight between each pair of neurons. At
the beginning only the input neurons (the sources) have the
information and other neurons don’t have any information.
As the propagation process continues, all neurons receive
some information from one or more input neurons and the
information amount corresponding to different input neurons is
different. The amount of a particular type of information (from
the corresponding input neuron) received by a neuron reflects
the intimation relationship of this neuron with that input
source neuron. The more amount of information it received,
the closer it is with that input neuron. Finally according to
network theory when the whole network reaches to a stable
state, entry Fij represents the relative information amount
neuron i received from input neuron j [30, 31]. Finally step 3
normalizes the information amount corresponding to different
input neurons and this facilitates to classify neurons into
different input clusters by k = arg max

i=1..v
Fij , j = 1...N , where

v is the number of input neuron and N is the number of
total neurons in SNNcube. Matrix F is the basis of extracting
neuronal clusters.

The propagation factor matrix Irate controls the conver-
gence of the propagation algorithm and the amount of the in-
formation being propagated to other neurons in the SNNcube.
Here Irate is computed by (Irate)ii = exp

(
−d̄2i /2σ2

)
, where

d̄i is the mean affinity value between a neuron and its 8 neigh-
boring neurons, so that the information propagation between
strongly connected neurons is large while the information
propagated through weakly connected neurons is small.

We now show the propagation algorithm converges. Because
Irate is a diagonal matrix and (Irate)ii = exp

(
−d̄2i /2σ2

)
<

1, the spectral radius of Irate is ρ (Irate) < 1. After the ith
iteration, we have

F̃ (i) = AscFsrc +Anb(I − Irate)Fsrc (9)

where Asc = (IrateS)
i−1 and Anb =

∑i
k=0 (IrateS)

k,

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 6

representing the information amount acquired from sources
and neighborhood, respectively. Let P = D−1A be the random
walk matrix on the graph. Then for the spectral radius of P we
have ρ(P) ≤ ‖P‖∞ ≤ 1. Because S = D1/2PD−1/2, S is
similar to P , so ρ(S) = ρ(P) ≤ 1. Since the spectral radius
ρ(Irate) < 1, and ρ(AB) ≤ ρ(A)ρ(B), so ρ(IrateS) < 1.
Therefore lim

i→∞
Asc = 0, lim

i→∞
Anb = (I − IrateS)

−1 and

F ∗ = lim
i→∞

F̃ (i) = (I − IrateS)
−1

(I − Irate)Fsrc (10)

It is worth mentioning that Step 2 can also be replaced by
equation (10). But since the matrix A is highly sparse, it will
be much more efficient to evaluate the equation in Step 2 than
to invert a matrix in equation (10), regarding to both space and
time comsumption3. Another advantage of using Step 2 is that
during iterative process, it is more interesting and intuitive to
observe how the information is propagated in the SNNcube,
rather than jumping directly to the resultant clusters view given
by equation (10).

Fig. 7 left plot shows the network structure after unsu-
pervised training for the study of Aphids data presented in
our previous work [23]. The big solid dots represent input
neurons and other neurons are labeled in the same intensity
as the input neuron from which it receives most spikes. The
unconnected dots mean no spike arrived at that neuron. On Fig.
7 right, the top pane is spike number for each variable after
encoding and the bottom pane is the neuron number belonging
to each input variable cluster. From this figure we can see
the consistency between the input signal spike train and the
SNNcube structure. Note that variable 11 (solar radiation) is
emphasized in the SNNCube that suggests a greater impact
of the solar radiation on the aphid number. This was observed
also in a other work [32]. This is very different from traditional
methods such SVM which have been used for same tasks
but without offering facilities to trace the learning processes
for the sake of data understanding. It is worth mentioning
that the spatial pattern of the input mapping, e.g. in Fig.
4, is embedded in the source matrix Fsrc and has a direct
influence on the visualization results and the interpretation of
the results. These mapping and visualization are demonstrated
to be useful for high level cause - results interpretation in some
studied, such as EEG signal study for identifying differences
between people with opiate addiction and those undertaking
substitution treatment for opiate addiction [12] and the fMRI
data study for brain activity while subjects are presented with
different pictures4. It is important to note that while in [12]
the input mapping and neuronal clustering were performed
by hand, the proposed graph mapping and structure analysis
algorithm enable all these to be finished automatically.

IV. EXPERIMENTAL RESULTS ON THREE CASE STUDY
PROBLEMS

In this section we present three case studies to demonstrate
the validity of the proposed architecture for both early even

3Note that IrateS is a highly sparse matrix which keeps constant during
iterations and Step 2 usually converges after several iterations.

4http://www.kedri.aut.ac.nz/neucube/fmri.

Fig. 7. Left: Neuronal clusters in SNNcube after unsupervised training; Right:
input spike number of each feature (top) and neuronal connections of each
input neuron (bottom).

prediction based on temporal data and spatiotemporal pattern
recognition. The first case study is conducted on a benchmark
physiological data set SantaFe5 to demonstrate the ability of
the proposed method to classification temporal data and to
make early event prediction. We demonstrate the validity of the
mapping method for early event prediction. The second case
study is conducted on a spatiotemporal data set PEMS, which
can be downloaded from California Department of Transporta-
tion PEMS website6, to perform pattern recognition, in which
each feature is sampled from a fixed location. We demonstrate
that the proposed mapping in section 3 improves the accuracy
of spatiotemporal pattern recognition. The third case study is
carried on a contest physiological data set Challenge 20127

to demonstrate the superiority of the proposed graph mapping
over randomly mapping .

While in [1, 6, 33] address event representation (AER)
encoding with fixed threshold is used and the threshold has
to be tuned manually each time for each feature individually,
here we introduce a self-adaptive bi-directional thresholding
method, Adaptive Threshold Based (ATB) encoding algorithm.
ATB is simply self-adaptive to all features: for an input time
series/signal f(t), we calculate the mean m and standard
deviation s of the gradient df/dt, then the threshold is set
to m + αs, where α is a parameter controlling the spiking
rate after encoding. After this, we obtain a positive spike train
which encodes the segments in the time series with increasing
signal and a negative spike train, which encodes the segments
of decreasing signal.

Because NeuCube system is a complex system and contains
many tunable parameters, manually tuning these parameters
might be time consumption for a non-experienced user. We
have implemented a Genetic Algorithm (GA) optimization
component to optimize all the system parameters at once in
a k-fold cross validation way with respect to a data set. The
objective function of the GA is the overall validation error
rate. We use the optimization component to simultaneously
optimize 7 key parameters of the NeuCube system in Table II.
After optimization, GA outputs the optimal parameters’ value

5http://www.physionet.org/physiobank/database/santa-fe/
6http://pems.dot.ca.gov
7http://physionet.org/challenge/2012/#rules-and-dates

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 7

that attained the smallest cross validation error rate.

TABLE II
PARAMETERS TO BE INCLUDED IN THE OPTIMIZATION PROCESS

Parameter Meaning Value range

Spike Threshold Threshold of ATB encoding [0.1, 0.9]
Firing Threshold LIF neuron firing threshold [0.01, 0.8]

STDP Rate The learning rate in STDP algorithm [0.001, 0.5]
Refractory Time Refractory time after firing [2, 9]

Mod Modulation factor in [15] [0.00001,0.5]
Drift Synaptic drift parameter in [15] [0.1, 0.95]
K Number of nearest neighbors in deSNN [1, 10]

Baseline algorithms consist of: Multiply Linear Regres-
sion (MLR) is simple, extensively studied and can achieve
relative stable result in many applications; Support Vector
Machine (SVM) is probably the most widely used and has
been demonstrated to be successful in various applications;
Multilayer Perceptron (MLP) is a classic neural network model
and has advantages in processing multivariate data; k Nearest
Neighbors (kNN) and weighted k Nearest Neighbors (wkNN)
[34] are among the most popular classification algorithms [35]
and especially while processing high-dimension data; finally,
Global Alignment Kernel (GAK) [36] is a recently developed
method to process time series and can achieve the state-
of-art results in many applications. So there are 6 baseline
algorithms8: MLR, SVM, MLP, kNN, wkNN and GAK.

Because baseline algorithms process static vectors, we pre-
pared their data set in the following way. We concatenated each
temporal variables one after another to form a long feature
vector for each sample, as shown in Fig. 8. Since baseline

Fig. 8. Convert spatiotemporal data to static vector for baseline algorithms.

algorithms have very few tunable parameters (one or two
parameters), the parameters are tuned in a grid search method.
This process is simple and quick, usually just a few steps to
locate the optimal value of the parameters.

A. Predict events by classifying time series data based on
physiologic signals

In this case study we conduct experiments for complex
physiologic time series classification on SantaFe dataset. The
dataset contains three physiologic features: heart rate (HR),
respiration force (RF, chest volume) and blood oxygen (BO).
Each of the feature was measured twice in one second and
the measurement lasted 5 hours. The aim of this case study is
to predict the sleep stage of a patient by using the collected
physiologic signals. There are three sleeping stages: awake,

8The first three methods are implemented in NeuCom system:
http://www.kedri.aut.ac.nz/areas-of-expertise/data-mining-and-decision-
support-systems/neucom. kNN and wkNN are implemented based on
MATLAB knnsearch function. GAK is available at: http://www.iip.ist.i.kyoto-
u.ac.jp/member/cuturi/GA.html

sleep and waking, and the sleep stages are read from EEG
signals by neurologist.

The original dataset contains 34000 data points for each
feature (approximate 4.7 hours long) and 103 sleep stage
labels, and the sleep stage labeling interval varies from 60
seconds to 4600 seconds. Each label indicates a different sleep
stage happening at that moment, i.e. whenever the patient
transits from one sleep stage to another different sleep stage,
a corresponding label is assigned at that time. So the signals
recorded during the labeling interval reflect the happening
process of the next sleep stage. Consequently by classifying
these temporal data into different classes, we actually predict
the next sleep stage of the patient. In this case study we
only use the labeling data with 60 seconds time interval to
make sure the feature length is same for every sample for
fair comparison, because traditional methods (such as SVM)
cannot process data which have uneven feature length between
samples. In this case we use a 10 × 10 × 10 SNNcube9 and
deSNN network with a weighted kNN classifier as the output
layer [15]. We build a 60 × 3 × 42 data matrix, where 60 is
the time length of each signal, and 3 is the feature number
and 42 is the sample number.

Fig. 9 left pane gives the mapping result found by the
proposed input mapping algorithm. It can be seen that the
respiration force is mapped between blood oxygen and heart
rate, but it is much closer to heart rate. This indicates the
respiration signal more correlates with heart rate than blood
oxygen. This result is consistent with the actual observation
described in the three major research questions, which are
raised on the dataset website 10. This is also further demon-
strated by Fig. 9 right plot, in which we can see clearly that
the connections between respiration force and heart rate are
much denser than connections in other places. This indicates
that the interaction between respiration force and heart rate is
more active and much stronger than other parts. Therefore, the
temporal relationship in the original data is fully captured by
the connections in the SNNCube after training.

Fig. 9. Left: input Mapping for SantaFe dataset (Y-Z plane of the SNNcube).
Right: synaptic connections after training (Blue connections have positive
weight and red connections have negative weight).

Fig. 10 shows four consecutive snapshots of the instan-
taneous firing state of the neurons during training process.

9Currently we determine the reservoir size by trying several different
ones. But as a general rule, the larger the reservoir is, the more powerful
computational ability the reservoir has and thus the more complex patterns the
model can learn and recognize. However, a larger reservoir consumes longer
time and more memory space and needs more training data for training.

10How do the evolution of the heart rate, the respiration rate, and the blood
oxygen concentration affect each other? (A correlation between breathing and
the heart rate, called respiratory sinus arrhythmia, is almost always observed.)

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 8

Squares are input neurons (Purple means that a positive spike
is input at this moment. Cyan means negative spike and yellow
means no spike). Red dots are firing neurons and black dots are
unfiring neurons. Note that the firing neuronal cluster grows
from small to large and the propagation of the spike states
(hence the information the spike carried) has a trajectory in
the SNNcube. While the meaning of the firing pattern and
spreading trajectory, how they reveal the significance of the
SNNcube modelling ability are questions to be answered, the
study of these is out of the scope of this paper and we leave
them in our future papers.

(a) (b)

(c) (d)

Fig. 10. Firing state spreading in the SNNcube during training stage. From
(a) to (d) four consecutive frames are displayed.

Figure 11 shows the evolving process of the connections
during different time in the training stage. From this we
can see how the connections between different neurons are
created dynamically as the spike trains input to the reser-
voir. At the beginning, the connections in the reservoir are
sparse and nearly randomly distributed 11(a). As the training
process continues, some new connections appear around each
input neuron, but blood oxygen input neuron does not have
interaction with the other two input neurons 11(b). At the
last half training process, more connections are created and
the interaction between each pair of input neurons increases,
especially for blood oxygen 11(c)-(d). The synaptic weight
evolving process is tightly connected with the physiological
signal trend in Fig. 12, from which we can see clearly the
correlation between blood oxygen and the other two signals in
the last half signal segment. It is worth mentioning that while
previous method to study the SantaFe dataset mainly focused
on analysis of the nonlinear dynamics of the respiration, heart
rate and blood pressure [37, 38], they can hardly provide such
an intuitive and direct way to observe the dynamics of the
signals, and hence the interaction between the physiological
signals during a sleep stage.

We designed two experiments on this data set to show the
predictive ability of NeuCube with different mapping and how
early the model can predict sleep stage using part of the data.
In these experiments, we trained NeuCubes of both random
mapping and graph mapping using 100% of the time length

(a) (b)

(c) (d)

Fig. 11. Connection evolving process during training stage.

Fig. 12. The physiological signals in SantaFe dataset (Courtesy from [39]).

samples (60 seconds), but temporal data of only 75% and 50%
of the time length of the samples was used to predict the sleep
stage.

Experimental results of early event prediction are in Table
III. In order to comparing the impact of testing time length
upon accuracy, we also include the result of full time length
in the second column. NeuCube(R) is random mapping and
NeuCube(G) is graph mapping.

TABLE III
EARLY PREDICTION ACCURACY OF SANTAFE DATASET (%)

Accuracy of each training and testing time length (sec)

60 45 30
(full) (early)

MLR 42.50 32.29 32.29

SVM 43.75 22.29 28.96

MLP 38.96 39.17 26.25

kNN 35.85 38.75 32.08

wkNN 48.45 48.13 25.83

GAK 45.21 40.07 38.43

NeuCube(R) 51.62 43.5 35.12

NeuCube(G) 67.74 63.06 51.61

From these results we can see that NeuCube(G) can perform
better for early event prediction. In contrast the performance
of NeuCube(R) for early prediction is much lower, because
SNNcube with randomly mapping fails to acquire the temporal
pattern in the data for early firing during testing stage. Further-

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 9

more, a realistic early event prediction should be that as the
time length of observed data increases, the prediction accuracy
will also increase. But from table III we can see that as the
time length of training data increases, traditional modeling
methods do not necessarily produce better results (some even
worsen), because they cannot model the whole spatiotemporal
relationship in the prediction task. They can only model a
certain time segment. Temporal data typically exhibits complex
interrelationship and interaction among different features and
traditional methods are proposed to process static vector data
and thus they can hardly model the complex relationship
contained in temporal data. The GAK and wkNN can produce
better results, but their accuracies are still much lower than
that of NeuCube. Because NeuCube is trained on the whole
spatiotemporal relationship in the data, even a small amount
of input data can trigger spiking activities in the SNNcube that
will correspond to the learned full temporal pattern resulting
in a better prediction.

B. Spatiotemporal pattern recognition based on spatiotempo-
ral data

In this case study we consider a benchmark traffic status
classification problem of spatiotemporal data from the PEMS
database. In freeways, vehicle flow is monitored by traffic
sensors with fixed spatial locations and the data collected
by these sensors exhibit spatial and temporal characteristics.
Discovering spatial-temporal patterns can be very meaningful
for traffic management and a city traffic plan.

The study area is San Francisco bay area which is shown
in Fig. 13. There are thousands of sensors distributed over
the road network and the sensors distribution is indicated
in right plot of Fig 13, in which each black dot represents
a monitoring sensor. These sensors monitor lane occupation
rate 24-hourly every day. Measurements are taken every 10
minutes and normalized between [0 1], where 0 means no car
occupation and 1 means full occupation of the lane in the
monitoring region. So there are 144 (24x6) data points per
day. In this case study we collect traffic data over a period
of 15 months and thus, after removing public holidays and
sensor maintenance days, there are 440 days to be classified.
We did some preprocessing of the data: (1) we removed the

Fig. 13. Left: map of the study area (From Google map). Right: a re-
constructed topology of the traffic sensor network (Each black dot inside
represents a sensor.

data of outlier sensors from the data set, e.g. sensors producing
always 1 or 0 in 24 hours and sensors flip from 0 to 1 or
1 to 0 suddenly; (2) nearby sensors that produce almost the
same data sequence are combined into one sensor; (3) the total

occupation rate of each sensor is calculated as a sum of all
measurements over 440 days; (4) 50 sensors corresponding to
the largest occupation rate are selected as the final features
(variables) to represent the data set. Fig. 14 shows samples of
the spatial and temporal distribution of the traffic status of the
road network from Monday to Thursday.

Fig. 14. The spatial and temporal patterns of the sample traffic data from
Monday to Thursday

In this case study we construct a 15×15×15 reservoir. Fig.
15 shows the final input mapping result found by the graph
matching algorithm. We can see the similar connection pattern
between the two graphs.

Fig. 15. The final input mapping result used in this case study. Left: input
neuron similarity graph (the number beside each vertex is the input neuron
ID); right: input feature similarity graph (the number beside each vertex is
the traffic sensor ID).

Fig. 16. Neuron firing state of the reservoir. Bars from top to bottom
correspond to Monday to Sunday.

Fig. 16 shows the overall neuron firing state matrix of the
SNNcube corresponding to the four data samples, from top to
bottom Monday till Thursday. In each figure, the horizontal
axis is neuron ID and the vertical axis is time tick, from 0 at
the top to 144 at the bottom. One should note that while in the
plot it seems the firing state matrix is very dense, it is actually
very sparse. Take the Thursday (the fourth one) as an example.
There are 20416 firing entries and the firing state matrix size is
486000 (144×3375, where 3375 is the total neuron number in
the SNNcube), so the firing entries is about 4.20%. We can see
that these sparse firing matrices have different patterns related
to the input data. Meanwhile, since the size of the SNNcube
can be specified according to the problem, the SNNcube with
highly sparse firing rate has a great power to encode input

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 10

signals and patterns, and thus it can potentially model any
complex spatial and temporal relationship.

After obtaining the firing state matrix of each sample, we
transmit them to the output deSNN layer [15], which creates
an output neuron for each sample and connects the output
neuron to each neuron in the SNNcube. Then the weights of
the connections are established by Rank Order (RO) learning
rule [16]. For a testing sample, its class label is determined
by comparing its output neuron weights with those training
samples’ output neuron weights, which are established at
training stage, using the weighted kNN rule [34]. In Table IV,
we compared the 2-fold cross validation experimental result
between NeuCube and baseline algorithms: MLR, SVM, MLP,
kNN, wkNN and Global Alignment Kernels (GAK) [36].

TABLE IV
COMPARATIVE ACCURACY OF SPATIOTEMPORAL PATTERN

CLASSIFICATION (%)

MLR SVM MLP kNN wkNN GAK NeuCube

Param. - d:2 n:100 k:10 k:10 σ:5 -

Acc. 56.82 43.86 68.18 66.82 71.36 72.27 75.23

The parameters’ values used in the classical machine learn-
ing methods are: d- degree of polynomial kernel; n - number
of neurons in the hidden layer of MLP; k- number of nearest
neighbors in kNN and wkNN; σ- Gaussian kernel width.
From these results we can see that the proposed NeuCube
model achieves better classification results. This is because
traditional machine learning methods are designed to process
static vector data, and they have limited ability to model
spatially correlated and temporally varied data. Meanwhile,
MLR, SVM and MLP also show disadvantages while model-
ing high-dimensionql data (e.g. there are 7200 features in each
sample of this case study). kNN and wkNN have been widely
used in high-dimension data processing, such as document
classification, because they can approximately reconstruct the
underlying manifold whose dimension is usually much lower
than its ambient space and thus they can produce better
results than MLR and SVM. While the recently proposed
GAK algorithm is shown to be very efficient and effective
in processing time series, its performance is still lower than
that of NeuCube. It should be mentioned that although in this
case study classifying weekday traffic patterns does not have
an obvious application situation now, this PEMS database has
been established as a benchmark data set to test an algorithm’s
ability for spatiotemporal data processing [36, 40].

C. Comparison of random input mapping and graph input
mapping method for Physionet data classification

To fully evaluate the effect of input mapping, compari-
son experiments are conduced on both Challenge 2012 and
SantaFe data sets. Different from SantaFe data set described
in Section IV-A, Challenge 2012 is a more complex and
challenging data set. The goal of Challenge 2012 data is to
predict mortality of 4000 Intensive Care Unit (ICU) patients
using their 37 physiological signals (see Table V) which are
measured at irregular time interval within total time length

being 48 hours. The irregularity of the measurement time
interval and the complexity of the physiological signal make
this prediction task highly challenging.

We first apply the following pre-processing procedure to the
Challenge 2012:
• Patient selection. The original data contains records of

12000 ICU patients and the records are divided into
two parts, training set A with 4000 patients’ records
and testing set B with 8000 patients’ records. Because
testing set B doesn’t contain mortality state and thus we
cannot calculate exactly its classification accuracy, we
just conduct experiments on training set A. Some of the
patients only have several measurements, for example due
to an early in-hospital death. So we select the patients
who have more than 40 records from set A and this results
into a subset contains 3470 patients.

• Feature selection. The original data contain some features
which have too few measurements during the observation
period to enable effective temporal encoding, such as
the TropT and TropI features are only measured several
times during 48 hours. We first calculate the overall
measurement amount of every feature and then select
those feature with a average measurements more than 5.
As a result the 12 features are used in the experiments,
as listed in Table V.

TABLE V
PHYSIOLOGICAL SIGNALS IN CHALLENGE 2012 DATA

Feature Meaning Unit

DiasABP Invasive diastolic arterial blood pressure mmHg
GCS Glasgow Coma Score (3-15) -
HR Heart rate bpm

MAP Invasive mean arterial blood pressure mmHg
NIDiasABP Non-invasive diastolic arterial blood pressure mmHg

NIMAP Non-invasive mean arterial blood pressure mmHg
NISysABP Non-invasive systolic arterial blood pressure mmHg
RespRate Respiration rate bpm
SysABP Invasive systolic arterial blood pressure mmHg

Temp Temperature ◦C
Urine Urine output mL

Weight - kg

Fig. 17. Mean and standard deviation of the first four selected features for
in-hospital death and survival patients.From left to right: DiasABP, GCS, HR,
MAP. Note how similar the signals of the two classes are.

Figure 17 displays the mean and standard deviation of the
first four selected features for the two classes. From these
figures we can see that the physiological signals corresponding
to the two classes have very similar tends and the difference
is almost indistinguishable to human eyes [41].

The comparison experiments are conducted in the follow-
ing way. The GA optimization component is running with
two modes: one is randomly mapping and the other mode
is graph matching mapping. The optimized parameters are
listed in Table II. GA parameters are: generation number: 16,

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 11

population size: 50, crossover function: scattered, crossover
fraction: 0.2, selection function: roulette, elite count 5. The
results Challenge 2012 and SantaFe are shown in Fig. 18, in
which horizontal axis represents GA generation and vertical
axis represents error rate (fitness value of GA). From these

Fig. 18. Error rate of random mapping and graph mapping on Challenge2012
data set (left) and SantaFe data set (right).

results we can see that the graph matching can achieve
lower error rate than randomly mapping. As the generation
number increases, we can see more clearly decreasing trend
for graph based mapping, while the trend of random mapping
curve is not so obvious and has greater fluctuation. It has to
be mentioned that while the fitness value of GA algorithm
decreases monotonically for optimizing deterministic system,
it usually has fluctuation and does not always decrease for
stochastic system. Because in a stochastic system even the
system parameters are same, different initial states may yield
different results. This is the reason why the error rate (fitness
value of GA) in our NeuCube system dose not monotonically
decrease.

To further compare the performance, Fig. 19 displays the
mean error rate and standard deviation of error rate of the 10
times running on Challenge 2012. From these results we can
see the performance of graph based mapping method is more
effective and stable, regarding to the lower mean error rate
and the smaller standard deviation.

Fig. 19. Mean (left) and standard deviation (right) of error rate of random
mapping and graph based mapping in GA parameter optimization for Chal-
lenge2012 data set.

Since Challenge 2012 is a contest data set that highly
challenges traditional classification algorithms, it might be
interesting to compare the performance of NeuCbe with tra-
ditional methods. The results are shown in Table VI. Note
the highest accuracy of baseline algorithms is 51.6% from
GAK, but the NeuCube can achieve 76.95%, a significant
improvement to state-of-art results. The optimal values of
the parameters given by GA that attain this result are: Spike
Threshold - 0.800, Firing Threshold - 0.500, STDP Rate -
0.073, Refractory Time - 6, Mod - 0.687, Drift - 0.095.

TABLE VI
COMPARATIVE ACCURACY OF SPATIOTEMPORAL PATTERN

CLASSIFICATION (%)

MLR SVM MLP kNN wkNN GAK NeuCube

Param. - d:2 n:40 k:6 k:6 σ:5 -

Acc. 47.31 46.81 51.3 49.3 49.3 51.6 76.95

V. CONCLUSIONS

In this paper we proposed a new mapping method to
map spatiotemporal input variables into a 3D spiking neu-
ral network architecture called NeuCube that enable Neu-
Cube models any spatiotemporal data. The weighted undirect
graph matching technique is adopted here so that similar
input variables based on their temporal similarity are mapped
into spatially closer neurons. The closer the neurons in the
SNNcube are, the more temporal relationships they learn
from data. This automatic optimal mapping algorithm greatly
reduces the work load for a user to find out the optimal
mapping by hand in previous system and can yield better
results regarding to spatiotemporal pattern recognition and
early event prediction. A comparison study of the proposed
mapping and randomly mapping has been conducted on a
popular contest physiological data set Challenge 2012 and the
results demonstrated the superiority of the proposed method
over randomly mapping method.

To have a better understanding of the SNNcube model
and the data modelled in it, we also proposed an algorithm
based on network activation spreading to automatically reveal
neuronal clusters, which in previous system were also deter-
mined by hand according to the learnt connection weights
[12] and thus costed lots of time. The algorithm can divide
the SNNcube into different neuronal clusters based on either
the spike amount communication or the connection weight
between neurons. These neuronal clusters can help us to better
understand the learning mechanism and the modelling ability
of the SNNCube, as well as the data.

It should be mentioned that due to the scalability of the
SNNcube, NeuCube is a deep architecture and it has the
potential to model any complex spatiotemporal data. Our
future work includes:
• Improvement of the mapping method for complex tem-

poral and spatial data, including spatiotemporal data with
moving spatial coordinates;

• Extension to including semi-supervised learning ability
into the NeuCube model because semi-supervised learn-
ing has been demonstrated in various applications to be
useful [42–44] and is one of the basic ability of human
neural system [45];

• Statistical analysis of the firing pattern and spreading tra-
jectory in SNNcube with mining algorithms [46] and how
they reveal the significance of the SNNcube modelling
ability;

• More experiments on other ecological-, environmental-
, financial- and business temporal data with large scale
SNNcube to further explore the deep modelling and
deep prediction capability of the proposed NeuCube on

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 12

complex spatiotemporal data.

ACKNOWLEDGMENT

This work was funded by Education New Zealand and the
Tripartite project between Auckland University of Technology,
New Zealand, Shanghai Jiaotong University (East China) and
Xinjiang University (West China) China. The work was initi-
ated in the Knowledge Engineering and Discovery Research
Institute (KEDRI) during the visit of Enmei Tu in KEDRI
and continued in the Shanghai JiaoTong University (SJTU) in
a collaborative way. KEDRI and SJTU partially funded this
work. This work is partly supported by NSFC China (No:
61273258) and Ph.D. Programs Foundation of Ministry of
Education of China (No.20120073110018).

REFERENCES

[1] N. K. Kasabov, “Neucube: A spiking neural network
architecture for mapping, learning and understanding of
spatio-temporal brain data,” Neural Networks, vol. 52,
pp. 62–76, 2014.

[2] T. Voegtlin, “Recursive self-organizing maps,” Neural
Networks, vol. 15, no. 8, pp. 979–991, 2002.

[3] B. Hammer, A. Micheli, A. Sperduti, and M. Strickert,
“Recursive self-organizing network models,” Neural Net-
works, vol. 17, no. 8, pp. 1061–1085, 2004.

[4] T. Mikolov, S. Kombrink, L. Burget, J. H. Černockỳ, and
S. Khudanpur, “Extensions of recurrent neural network
language model,” in Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2011 IEEE International Conference
on. IEEE, 2011, pp. 5528–5531.

[5] I. Sutskever, J. Martens, and G. E. Hinton, “Generating
text with recurrent neural networks,” in Proceedings of
the 28th International Conference on Machine Learning
(ICML-11), 2011, pp. 1017–1024.

[6] N. Kasabov, “Neucube evospike architecture for spatio-
temporal modelling and pattern recognition of brain
signals,” in Artificial Neural Networks in Pattern Recog-
nition. Springer, 2012, pp. 225–243.

[7] N. Kasabov and E. Capecci, “Spiking neural network
methodology for modelling, classification and under-
standing of eeg data measuring cognitive processes,”
Information Sciences, vol. 294, pp. 565–575, 2015.

[8] D. Taylor, N. Scott, N. Kasabov, E. Capecci, E. Tu,
N. Saywell, Y. Chen, J. Hu, and Z.-G. Hou, “Feasibility
of neucube snn architecture for detecting motor execution
and motor intention for use in bciapplications,” in Neural
Networks (IJCNN), 2014 International Joint Conference
on. IEEE, 2014, pp. 3221–3225.

[9] M. G. Doborjeh, E. Capecci, and N. Kasabov, “Clas-
sification and segmentation of fmri brain data with a
neucube evolving spiking neural network model,” in
Evolving and Autonomous Learning Systems (EALS),
2014 IEEE Symposium on. IEEE, 2014, pp. 73–80.

[10] M. G. Doborjeh and N. Kasabov, “Dynamic 3d clustering
of spatio-temporal brain data in the neucube spiking
neural network architecture on a case study of fmri data,”

in Neural Information Processing. Springer, 2015, pp.
191–198.

[11] E. Capecci, J. I. Espinosa-Ramos, N. Mammone,
N. Kasabov, J. Duun-Henriksen, T. W. Kjaer, M. Cam-
polo, F. La Foresta, and F. C. Morabito, “Modelling
absence epilepsy seizure data in the neucube evolving
spiking neural network architecture,” in Neural Networks
(IJCNN), 2015 International Joint Conference on. IEEE,
2015, pp. 1–8.

[12] E. Capecci, N. Kasabov, and G. Y. Wang, “Analysis of
connectivity in neucube spiking neural network models
trained on eeg data for the understanding of functional
changes in the brain: A case study on opiate dependence
treatment,” Neural Networks, vol. 68, pp. 62–77, 2015.

[13] N. Kasabov, “To spike or not to spike: A probabilistic
spiking neuron model,” Neural Networks, vol. 23, no. 1,
pp. 16–19, 2010.

[14] S. Song, K. D. Miller, and L. F. Abbott, “Competitive
hebbian learning through spike-timing-dependent synap-
tic plasticity,” Nature neuroscience, vol. 3, no. 9, pp. 919–
926, 2000.

[15] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri,
“Dynamic evolving spiking neural networks for on-line
spatio-and spectro-temporal pattern recognition,” Neural
Networks, vol. 41, pp. 188–201, 2013.

[16] S. Thorpe and J. Gautrais, “Rank order coding,” Compu-
tational Neuroscience, pp. 113–118, 1998.

[17] T. Kohonen and S.-O. Maps, “Springer series in infor-
mation sciences,” Self-organizing maps, vol. 30, 1995.

[18] M. C. van Rossum, “A novel spike distance,” Neural
Computation, vol. 13, no. 4, pp. 751–763, 2001.

[19] J. Dauwels, F. Vialatte, T. Weber, and A. Cichocki, “On
similarity measures for spike trains,” Advances in Neuro-
Information Processing, pp. 177–185, 2009.

[20] B. Schrauwen and J. Van Campenhout, “Bsa, a fast and
accurate spike train encoding scheme,” in Proceedings
of the international joint conference on neural networks,
vol. 4. IEEE Piscataway, NJ, 2003, pp. 2825–2830.

[21] K. Dhoble, N. Nuntalid, G. Indiveri, and N. Kasabov,
“On-line spatiotemporal pattern recognition with evolv-
ing spiking neural networks utilising address event rep-
resentation, rank oder-and temporal spike learning,” in In
Proc. WCCI 2012. Citeseer, 2012.

[22] F. Zhou and F. De la Torre, “Factorized graph matching,”
in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 2012, pp. 127–134.

[23] E. Tu, N. Kasabov, M. Othman, Y. Li, S. Worner,
J. Yang, and Z. Jia, “Neucube (st) for spatio-temporal
data predictive modelling with a case study on ecological
data,” in Neural Networks (IJCNN), 2014 International
Joint Conference on. IEEE, 2014, pp. 638–645.

[24] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike
timing dependent plasticity finds the start of repeating
patterns in continuous spike trains,” PloS one, vol. 3,
no. 1, p. e1377, 2008.

[25] ——, “Competitive stdp-based spike pattern learning,”
Neural computation, vol. 21, no. 5, pp. 1259–1276, 2009.

[26] Y. Ikegaya, G. Aaron, R. Cossart, D. Aronov, I. Lampl,

JOURNAL OF IEEE TRANS. ON NNLS SPECIAL ISSUE ON NEURODYNAMIC SYSTEMS FOR OPTIMIZATION AND APPLICATIONS 13

D. Ferster, and R. Yuste, “Synfire chains and cortical
songs: temporal modules of cortical activity,” Science,
vol. 304, no. 5670, pp. 559–564, 2004.

[27] M. Othman, “Spatial-temporal data modelling and pro-
cessing for personalised decision support,” Ph.D. disser-
tation, Auckland University of Technology, 2015.

[28] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities,” Pro-
ceedings of the national academy of sciences, vol. 79,
no. 8, pp. 2554–2558, 1982.

[29] F. R. Chung, Spectral graph theory. American Mathe-
matical Soc., 1997, vol. 92.

[30] J. Shrager, T. Hogg, and B. A. Huberman, “Observation
of phase transitions in spreading activation networks,”
Science, vol. 236, no. 4805, pp. 1092–1094, 1987.

[31] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf, “Learning with local and global con-
sistency,” Advances in neural information processing
systems, vol. 16, no. 16, pp. 321–328, 2004.

[32] S. Worner, G. Lankin, S. Samarasinghe, D. Teulon,
S. Zydenbos et al., “Improving prediction of aphid flights
by temporal analysis of input data for an artificial neural
network,” New Zealand Plant Protection, pp. 312–316,
2002.

[33] N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang,
R. Krishnamurthi, M. Othman, and P. Parmar, “Evolv-
ing spiking neural networks for personalised modelling,
classification and prediction of spatio-temporal patterns
with a case study on stroke,” Neurocomputing, vol. 134,
pp. 269–279, 2014.

[34] K. Hechenbichler and K. Schliep, “Weighted k-nearest-
neighbor techniques and ordinal classification,” 2004.

[35] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang,
H. Motoda, G. J. McLachlan, A. Ng, B. Liu, S. Y. Philip
et al., “Top 10 algorithms in data mining,” Knowledge
and Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[36] M. Cuturi, “Fast global alignment kernels,” in Proceed-
ings of the 28th International Conference on Machine
Learning (ICML-11), 2011, pp. 929–936.

[37] M. Korürek and A. Nizam, “Clustering mit–bih arrhyth-
mias with ant colony optimization using time domain
and pca compressed wavelet coefficients,” Digital Signal
Processing, vol. 20, no. 4, pp. 1050–1060, 2010.

[38] M. Engin, “Ecg beat classification using neuro-fuzzy
network,” Pattern Recognition Letters, vol. 25, no. 15,
pp. 1715–1722, 2004.

[39] Y. Ichimaru and G. Moody, “Development of polysomno-
graphic database on cd-rom,” Psychiatry and Clinical
Neurosciences, vol. 53, no. 2, pp. 175–177, 1999.

[40] A. Skabardonis, P. Varaiya, and K. Petty, “Measuring
recurrent and nonrecurrent traffic congestion,” Trans-
portation Research Record: Journal of the Transportation
Research Board, no. 1856, pp. 118–124, 2003.

[41] M. T. Bahadori, D. Kale, Y. Fan, and Y. Liu, “Functional
subspace clustering with application to time series,” in
Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015, pp. 228–237.

[42] E. Tu, J. Yang, J. Fang, Z. Jia, and N. Kasabov, “An

experimental comparison of semi-supervised learning
algorithms for multispectral image classification,” Pho-
togrammetric Engineering & Remote Sensing, vol. 79,
no. 4, pp. 347–357, 2013.

[43] S. Li, Z. Wang, G. Zhou, and S. Y. M. Lee, “Semi-
supervised learning for imbalanced sentiment classifi-
cation,” Proceedings-International Joint Conference on
Artificial Intelligence, vol. 22, no. 3, p. 1826, 2011.

[44] E. Tu, J. Yang, N. Kasabov, and Y. Zhang, “Posterior
distribution learning (pdl): A novel supervised learning
framework using unlabeled samples to improve classifi-
cation performance,” Neurocomputing, vol. 157, pp. 173–
186, 2015.

[45] B. R. Gibson, T. T. Rogers, and X. Zhu, “Human semi-
supervised learning,” Topics in cognitive science, vol. 5,
no. 1, pp. 132–172, 2013.

[46] E. Tu, L. Cao, J. Yang, and N. Kasabov, “A novel graph-
based k-means for nonlinear manifold clustering and
representative selection,” Neurocomputing, vol. 143, pp.
109–122, 2014.

Enmei Tu was born in Anhui, China. He re-
ceived his B.Sc. degree and M.Sc. degree from
University of Electronic Science and Technology of
China (UESTC) in 2007 and 2010, respectively and
PhD degree from the Institute of Image Process-
ing and Pattern Recognition, Shanghai Jiao Tong
University, China in 2014. He is now a research
fellow in Roll-Royce@NTU Corporate Laboratory
at Nanyang Technological University. His research
interests are machine learning, computer vision and
neural information processing.

Nikola Kasabov is a Fellow of the Royal Society
of New Zealand, the New Zealand Computer Society
and the Institute of Electrical and Electronic Engi-
neers (IEEE). He is the founding Director and the
Chief Scientist of the Knowledge Engineering and
Discovery Research Centre (KEDRI) and Personal
Chair of Knowledge Engineering in the School of
Computing and Mathematical Sciences at AUT. His
main interests are in the areas of: computational
intelligence, neuro-computing, bioinformatics, neu-
roinformatics, speech and image processing, novel

methods for data mining and knowledge discovery. He has published over 450
works in international journals and conferences, as well as books/chapters.

Jie Yang received a bachelors degree and a masters
degree in Shanghai Jiao Tong University in 1985
and 1988, respectively. In 1994, he received Ph.D.
in University of Hamburg, Germany. Now he is
the Professor and Director of Institute of Image
Processing and Pattern recognition in Shanghai Jiao
Tong University. He is the principal investigator of
more than 30 nation and ministry scientific research
projects, including two national 973 research plan
projects, three national 863 research plan projects,
three national nature fundation projects, five inter-

national cooperative projects with France, Korea, Japan, New Zealand. He
has published more than 5 hundreds of articles in national or international
academic journals and conferences.

