118 research outputs found

    ИНТЕЛЛЕКТУАЛЬНЫЙ числовым программным ДЛЯ MIMD-компьютер

    Get PDF
    For most scientific and engineering problems simulated on computers the solving of problems of the computational mathematics with approximately given initial data constitutes an intermediate or a final stage. Basic problems of the computational mathematics include the investigating and solving of linear algebraic systems, evaluating of eigenvalues and eigenvectors of matrices, the solving of systems of non-linear equations, numerical integration of initial- value problems for systems of ordinary differential equations.Для більшості наукових та інженерних задач моделювання на ЕОМ рішення задач обчислювальної математики з наближено заданими вихідними даними складає проміжний або остаточний етап. Основні проблеми обчислювальної математики відносяться дослідження і рішення лінійних алгебраїчних систем оцінки власних значень і власних векторів матриць, рішення систем нелінійних рівнянь, чисельного інтегрування початково задач для систем звичайних диференціальних рівнянь.Для большинства научных и инженерных задач моделирования на ЭВМ решение задач вычислительной математики с приближенно заданным исходным данным составляет промежуточный или окончательный этап. Основные проблемы вычислительной математики относятся исследования и решения линейных алгебраических систем оценки собственных значений и собственных векторов матриц, решение систем нелинейных уравнений, численного интегрирования начально задач для систем обыкновенных дифференциальных уравнений

    A framework for hull form reverse engineering and geometry integration into numerical simulations

    Get PDF
    The thesis presents a ship hull form specific reverse engineering and CAD integration framework. The reverse engineering part proposes three alternative suitable reconstruction approaches namely curves network, direct surface fitting, and triangulated surface reconstruction. The CAD integration part includes surface healing, region identification, and domain preparation strategies which used to adapt the CAD model to downstream application requirements. In general, the developed framework bridges a point cloud and a CAD model obtained from IGES and STL file into downstream applications

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    3D Shape Modeling Using High Level Descriptors

    Get PDF

    3-D surface modelling of the human body and 3-D surface anthropometry

    Get PDF
    This thesis investigates three-dimensional (3-D) surface modelling of the human body and 3-D surface anthropometry. These are two separate, but closely related, areas. 3-D surface modelling is an essential technology for representing and describing the surface shape of an object on a computer. 3-D surface modelling of the human body has wide applications in engineering design, work space simulation, the clothing industry, medicine, biomechanics and animation. These applications require increasingly realistic surface models of the human body. 3-D surface anthropometry is a new interdisciplinary subject. It is defined in this thesis as the art, science, and technology of acquiring, modelling and interrogating 3-D surface data of the human body. [Continues.

    Enabling technology for non-rigid registration during image-guided neurosurgery

    Get PDF
    In the context of image processing, non-rigid registration is an operation that attempts to align two or more images using spatially varying transformations. Non-rigid registration finds application in medical image processing to account for the deformations in the soft tissues of the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential to assist in locating critical brain structures and improve identification of the tumor boundary. Robust non-rigid registration methods combine estimation of tissue displacement based on image intensities with the spatial regularization using biomechanical models of brain deformation. In practice, the use of such registration methods during neurosurgery is complicated by a number of issues: construction of the biomechanical model used in the registration from the image data, high computational demands of the application, and difficulties in assessing the registration results. In this dissertation we develop methods and tools that address some of these challenges, and provide components essential for the intra-operative application of a previously validated physics-based non-rigid registration method.;First, we study the problem of image-to-mesh conversion, which is required for constructing biomechanical model of the brain used during registration. We develop and analyze a number of methods suitable for solving this problem, and evaluate them using application-specific quantitative metrics. Second, we develop a high-performance implementation of the non-rigid registration algorithm and study the use of geographically distributed Grid resources for speculative registration computations. Using the high-performance implementation running on the remote computing resources we are able to deliver the results of registration within the time constraints of the neurosurgery. Finally, we present a method that estimates local alignment error between the two images of the same subject. We assess the utility of this method using multiple sources of ground truth to evaluate its potential to support speculative computations of non-rigid registration

    State Estimation with Model Reduction and Shape Variability. Application to biomedical problems

    Get PDF
    We develop a mathematical and numerical framework to solve state estimation problems for applications that present variations in the shape of the spatial domain. This situation arises typically in a biomedical context where inverse problems are posed on certain organs or portions of the body which inevitably involve morphological variations. If one wants to provide fast reconstruction methods, the algorithms must take into account the geometric variability. We develop and analyze a method which allows to take this variability into account without needing any a priori knowledge on a parametrization of the geometrical variations. For this, we rely on morphometric techniques involving Multidimensional Scaling, and couple them with reconstruction algorithms that make use of reduced model spaces pre-computed on a database of geometries. We prove the potential of the method on a synthetic test problem inspired from the reconstruction of blood flows and quantities of medical interest with Doppler ultrasound imaging
    corecore