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Summary

The goal of this Ph.D. project is to investigate and improve the methods for describing
the surface of 3D objects, with focus on modeling geometric texture on surfaces. Sur-
face modeling being a large field of research, the work done during this project con-
centrated around a few smaller areas corresponding to the research papers presented
here.

One of those areas is formulating surface priors by utilizing local surface properties. A
well defined prior can, in a Bayesian framework, assist many common task in geometry
processing, like denoising, object recovery, object matching and classification. Some
of the priors described here are defined on the main entities of the triangular mesh,
vertices, edges and faces. Other priors are defined on small planar patches, denoted
surfels.

Another area of research deals with textures which cannot be described by height fields,
for example biological features like thorns, bark and scales. Presented here is a simple
method for easy modeling, transferring and editing that kind of texture. The method is
an extension of the height-field texture, but incorporates an additional tilt of the height
field.

Related to modeling non-heightfield textures, a part of my work involved developing
feature-aware resizing of models with complex surfaces consisting of underlying shape
and a distinctive texture detail. The aim was to deform an object while preserving the
shape and size of the features.
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Resumé

Målet med dette ph.d.-projekt er at undersøge og forbedre metoder til beskrivelse af 3D
objekter med fokus på modellering af geometrisk tekstur på overflader. Overflademod-
ellering er et stort forskningsområde, hvor arbejdet i dette projekt er fokuseret på de
emner, som er inkluderet i de videnskabelige artikler, der præsenteres i afhandlingen.

Et af disse områder er formuleringen af overflade-priors på baggrund af lokale over-
fladekarakteristika. En god defineret prior kan, i et Bayesiansk framework, danne
grundlag for løsning af mange problemer i geometribehandling for eksempel støjfjernelse,
objektdannelse, objektsammenligning samt klassifikation. Nogle af de priors, som er
beskrevet her, er defineret på hovedelementerne i triangular meshes, nemlig verticies,
kanter og flader. Andre priors er defineret på små plane overflader, såkaldte surfels.

Et andet forskningsområde beskæftiger sig med tekstur, som ikke kan beskrives med
højdefelter, for eksempel biologiske elementer som torne, bark og skæl. Her præsen-
teres en simpel metode for at gøre det let at modellere, overføre og editere denne slags
tekstur. Metoden er en udvidelse af højdefeltstekstur, men indeholder en ekstra drejn-
ing af højdefeltet.

I relation til modellering af ikke-højdefeltstekstur har en del af mit arbejde drejet sig
om udvikling af metoder til ændring af objekters størrelse, hvor der tages hensyn til
lokale karakteristika. Dette er gjort på modeller med komplekse overflader bestående
af en grundlæggende form med teksturdetaljer. Målet var at deformere et objekt og
samtidig opretholde formen og størrelsen af lokale karakteristika.
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CHAPTER 1

Introduction

It happens sometimes that the person sitting next to me at random social event is not
satisfied with the vague answer about doing research in the field of geometry process-
ing, and insists on knowing what is it exactly I am working with. While contemplating
the response I will inevitably slide my fingertips over the surface of some object in
reach, the smooth side of the glass, the woven fabric of the tablecloth1, the bumpy skin
of the orange. This reaction is due to the focus of my research. I spend most of my time
modeling surfaces, locating features on the surface, representing details on the surface,
or removing noise from the surface.

When I was planning my Ph.D. project together with my advisors, we agreed on fo-
cusing on statistical properties of 3D surfaces. We envisioned a system for surface
characterization, for example to describe whether a scanned surface is bumpy, piece-
wise smooth, rough, or hairy. We also envisioned a system, which could synthesize
for example bumpiness on surfaces. Conversely, undesired noisiness could be removed
from other surfaces. The applications of such systems are various, and some are listed
in Section 2.2. To pursue our idea, we decided to define a set of shape descriptors
pertaining to local surface properties. Those descriptors were to be used for improving
the current methods for processing 3D geometry.

1The process of manufacturing textiles with complex patterns, such as brocade and damask, was revo-
lutionized by the 1801 invention of the Jacquard loom, the first machine controlled by punched cards with
stored instructions. Jacquard’s invention had a deep influence on Charles Babbage who planned to use
punched cards in his Analytical engine. In that respect, Joseph Marie Jacquard is viewed by some authors as
a precursor of modern computing science [40].
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Instead of developing a methodology for surface characterization, my research was
directed towards a few problems within geometry, where currently proposed solutions
still leave something to be desired.

The first problem deals with representing, editing and transferring geometric texture.
Later we will give an in-depth description of geometric texture, but in short it can be
described as a small deformation of a surface. Conventional methods for modeling
3D object consider the shape (geometry) and the texture. The texture is traditionally
color information mapped to the shape, adding visual complexity while maintaining
geometric simplicity. However, the appearance of the surface is often influenced by
the small perturbation of geometry, sometimes causing the above approach to produce
less pleasing results. With recent advances in scanning devices and graphic cards, we
can acquire and visualize the true surface of complex models, including small geomet-
ric detail. Still, the methods dealing with such models seldom attempt to distinguish
between an underlying shape and a superimposed small-scale geometry. Making this
distinction may be valuable in some cases and it may allow modeling the appearances
beyond the capabilities of the common methods. A part of my work went into devel-
oping such approach.

The second problem also deals with the distinction between an underlying shape and
a small-scale variation. The shape of the 3D models obtained by scanning is generally
corrupted by measuring noise. Methods for denoising geometry are various, and many
aim at generality. However, particular information about the scanned object can be
utilized in the denoising process. This opens a possibility for including model selection
in the geometry acquisition process. Some of the existing regularization methods fit
global shape primitives to the data, but methods utilizing local surface properties are
still few. For example, priors for piecewise smooth surfaces and piecewise quadratic
surfaces have not yet been fully developed. A line of my work went into formulating
surface priors.

1.1 Thesis Overview and Contributions

The main contributions of this thesis are concentrated around the included research
papers. In the papers from Chapter 6 and Chapter 7 we present two original methods
for defining priors for piecewise smooth surfaces. The methods are related, yet they
operate on different geometry entities. The first method defines Markov random field
(MRF) on mesh vertices, while the other uses MRF on a novel surfel-based surface
representation. Both priors have been used for recovering man-made objects from
noisy data.

Research paper brought in Chapter 8 introduces an innovative way of representing geo-
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metric texture, which cannot be handled by height fields. This is achieved by introduc-
ing a height field tilt. The approach is simple and dynamic, allowing for easy texture
editing, animation and transfer.

Additional contribution include an unpublished manuscript from Chapter 9, were we
present a method for feature preserving geometry deformation. Furthermore, Sec-
tion 5.2 contains a novel solution of a problem relating to Phong-type normal fields,
which also has not been published.

Issues which extended the scope of the research papers, but are relevant to their content,
are presented in more detail in separate chapters. We touch upon the statistical side of
the surface modeling and introduce MRF in Chapter 4, while Chapter 5 brings a more
in-depth analysis of a few smaller topics from discrete differential geometry.

Following the introductory chapter, and before material directly relating to included re-
search papers, the Chapters 2 and 3 have the purpose of putting my work in perspective
and introducing some basic concepts from the thesis.
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CHAPTER 2

Motivation and Application

Multimedia has seen three waves so far: sound, images and video. We had digital
sound in the 70’s, digital images in the 80’s and the digital video in the 90’s [123]. With
the modern equipment available at affordable prices everybody can access, record and
share music, photographs and video. The amount of digital media created, processed
and stored is growing at an incredible pace with applications spanning from business
to art. Looking in the future, we could be witnessing the arrival of the fourth wave of
digital multimedia: 3D geometry.

The motivation for the development in the direction of 3D is not hard to understand.
It is easy to imagine that, had it been possible, there is an audience for an application
like a “Virtual tour through our house” with the capability to create and store the 3D
model of one’s home. Many would surely appreciate the possibility to see 3D models
on furniture shop webpage, check out how the new sofa would look in their living
room, and interactively change the appearance between leather and textile. There are
certainly proud parents wanting 3D models of their children, game enthusiasts in need
for realistic avatars, and plastic surgeons who would benefit from knowing the effect
of the next cut.

However, not even a typical computer scientist will have an application to display some
most common formats for storing 3D models. Where is the bottleneck? The answer
probably lays in a combination of a tedious acquisition and limited editing possibilities.
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Figure 2.1: A model of the stone pillars featuring both the wallpaper and geomet-
ric texture. The left image shows only wallpaper texture applied to the two pilars
(note the smooth outline of the columns), the middle image displays only the ge-
ometric component of the texture. The final model with both the wallpaper and
geometric texture is shown on the right. Images courtesy of Ethereal 3D, http:
//www.ethereal3d.com/.

As for acquisition of the 3D geometry, the recent advances are manifold. For medical
diagnostic, for example, huge amounts of 3D data can be quickly acquired. Both high
end and low end 3D scanners are being developed at a rapid pace and example sources
of geometry range from sculptures of Michelangelo [87] to the products used in reverse
engineering. Still, the path from the process of scanning to the finished model is not
automated. Producing even a simple 3D scan involves a lot of work done “by hand”.
Furthermore, the present methods for improving and modifying 3D geometry are often
far from intuitive, and their use requires a lot of experience.

Methods capable on handling geometry in an intuitive way are certainly welcome.
Ability to describe 3D objects by referring to the properties which correspond to our
intuition might be used for developing such methods. Here we think of properties like:
piecewise planar, smooth with edges, highly symmetrical, periodic structure, roughly
circular, etc. A portion of such properties relates to the quality of the surface, which
we identify as geometric texture.

2.1 Geometric Texture

The focus of 3D modeling has traditionally been on simple geometry, which was easy
to represent and visualize within the modest hardware limit. Methods developed so far
usually deal with the underlying shape of a 3D object [27], making the supplementary
field of geometric texture less understood part of 3D modeling. With the modern scan-
ning devices being able to capture an increasingly sharp level of detail and with the
modern graphic cards being able to display millions of triangles in real time, we can
acquire and visualize the true surface of complex models, including small geometric

http://www.ethereal3d.com/
http://www.ethereal3d.com/
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Figure 2.2: Another model featuring both the wallpaper and the geometric texture.
Here we have wallpaper (left) and the geometric (center) component of the brickwork
texture from two different angles. The figures on right show the model featuring both
textures.
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detail.

Methods dealing with geometric texture started appearing recently [18, 26, 85, 167],
but with just few ongoing projects there is plenty of opportunity for contributing with
useful insight.

Approaches vary and the terminology has not fully settled in yet. In this section we
present our view on geometric texture and its modeling. For an operative definition of
geometric texture we propose the following.

Geometric texture is a small scale deformation of the coarse shape, ob-
tained from the relation:

3D object
geometry =

coarse
shape +

geometric
texture . (2.1)

The distinction between the shape and the geometric texture is not obvious for all ob-
jects. Still, many object from our surroundings fit well in our model, which allow us to
use the above definition for practical purposes. In a similar way image texture term is
operatively used, while lacking the precise definition.

Another important distinction to point to is a distinction between the geometric texture
and the texture in conventional meaning of the word. Traditionally, the word texture
would refer to color information on the image or the surface, this is here refer to as
flat, 2D or wallpaper texture. See Figure 2.1 and Figure 2.2 for models containing both
types of texture.

To exemplify those distinctions let us consider modeling a wooden plank. The shape
of a plank is roughly a rectangular box, flat and elongated. To make this shape appear
more realistic, we might apply color to it, and even make the color reflect the look of
the wood, by e.g. transferring a photograph of a wooden surface onto our box. This
would probably be a reasonably good model. However, the grooves due to the wood
grain and growth rings would be missing from the surface. Here we think of the sur-
face appearance which can be captured by molding (negative impression) and casting
(positive) the object. This part of the wood appearance can be captured by camera, but
cannot fully represented by photograph, see Figure 2.3.

The last quality of wood appearance is what we, throughout this thesis, refer to as
geometric or 3D texture. Geometric texture carries only the information about the
geometry of the surface. Unaccompanied by color information, it will not be used for
realistic modeling. However, when combined with the color information, geometric
texture can improve the existing modeling methods.
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Figure 2.3: The visual appearance of the surface containing only the geometric tex-
ture can change dramatically under changing illumination conditions. Depicted here is
geometric texture of a brickwork model.

Texturing an object of a more demanding shape, e.g. a wooden bowl, is more compli-
cated. To stress a fact that we generally consider complex underlying shapes, we use
the term texture on surfaces, both when talking about geometric and flat texture.

Despite the distinctions, all types of texture share some properties common for all types
of texture. Those properties, useful for texture characterization, are a small scale and a
repetitive (stochastic or regular) nature. Thanks to the common points it is sometimes
possible to handle the 3D texture by adapting already developed 2D methods. Further-
more, texture properties help distinguishing between shape and geometric texture.

2.1.1 Shape and Texture

In case of geometric texture, all the texture information in contained in the geometry of
the object. For triangle meshes the texture information is contained in the 3D positions
and arrangement of the mesh vertices. This information is interlaced with the shape
information and not directly obtainable. Decoupling shape and texture is not a trivial
task.

The model in Expression 2.1 implies that finding a shape of an object is also determines
its geometric texture, and vice versa. Consequently, when working with geometric
texture, we need to know what the underlying shape is, in order to remove it. There are
different ways of doing so, depending on the situation and the problem at hand. The
properties of the geometric texture can often be used as a guide. The most important
guide is a scale.

Geometric texture is a feature of the object, which is defined on a scale much smaller
than the shape. Alternatively, we might say that texture corresponds to hight frequen-
cies while shape corresponds to low frequencies. For some objects it is rather obvious
what the scale is. For other objects, the distinction is less clear or even impossible to
make. Sometimes the distinction depends on the particular application, see Figure 2.4.
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Figure 2.4: Texture is generally defined at a certain scale. On the left we have a geo-
metric texture of a brick wall, containing 5 faces. The right two images displays two
different levels of zoom, where the last image displays a rough geometric texture of a
single brick. This illustrates how the appearance of the geometric texture greatly with
scale.

Removing high frequency geometric variation will leave only the shape of the object.
Therefore, we often used mesh smoothing to approximate the underlying shape. The
geometric texture can be obtained as the difference between the smooth shape and the
original surface. Choice of the smoothing method and the way of finding a difference
between two surfaces can greatly influence the final result, see Figure 2.5.

Using the repetitive nature of the texture to make a separate it from the shape and
the texture has not been employed in our work. A method we used a few times is
directly defining the underlying shape of certain objects. For example, when analyzing
geometric texture of a tree bark, we might define the shape of the wood log as a cylinder.
The the 3D bark texture can then be obtained as the difference between the cylindrical
shape and the original (e.g. scanned) object.

2.1.2 Topology

Adding geometric texture might change the topology of the model. Examples include
weaved fabrics or netting. In this project we worked under assumption that the geomet-
ric texture does not change the topology of the object. In other words, we considered
only the geometric texture where each texture sample has the topology of the disk.

Consequently, the models we worked with had a simple topology. Most our models
have the topology of the sphere. Some experiments were preformed on surfaces of disk
topology, and in a few examples we use water-tight models of higher genus.
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Figure 2.5: If we define the geometric texture as the difference between the underlying
smooth shape and the textured shape, the choice of the smoothing method will influ-
ence the appearance of the geometric texture. In the top row some common smoothing
schemes are applied to a brickwork geometric texture: anisotropic smoothing, two lev-
els of laplacian smoothing, and aggressive averaging. The difference between the orig-
inal and smoothed versions are shown in the bottom row. The difference is changing
dramatically with the smoothing method.
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Figure 2.6: Some of the objects found in nature, with the surface which can not easily
be modeled by the existing texture based methods. Examples include bark, thorns and
scales. Due to their complex geometry, these features are difficult to model as a texture
on the surface.

2.1.3 Geometric Texture Examples

Examples illustrating the concept outlined in Expression 2.1 are numerous and we
already mentioned some. The round shape and the bumpy texture of the orange, the
round shape and the smooth texture of the apple, the pear-like shape and the bumpy
texture of the avocado, the cylindric shapes and bark texture of wood logs, the round
shape of the basket and its weaved texture etc. Some of the objects listed here meet our
working assumptions, and some do not.

Figure 2.6 and Figure 2.7 show examples of natural and man- made objects featuring
a complex geometric texture, challenging to model. The first figure depicts object
of simple (flat or spherical) topology, but with a complex geometry. The geometric
texture of such surfaces cannot be modeled as using current texture modeling methods.
Later, we demonstrate a method for representing, editing and transferring such types
of geometric texture. The other figure shows objects where the geometric texture has
a topological complex element. Those objects are beyond the assumptions we made in
this work.

Early in the project we realized that fruit features variety of geometric textures. To
preform the statistical analysis of fruit texture we made 3D scans of different fruit.
Those examples will be shown later.

2.2 Applications

With some of the applications already mention, we present here a more comprehensive,
but still ad hoc, list of example problems and applications, which could benefit from a
framework for modeling geometric texture on surfaces.
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Figure 2.7: More examples of objects with the geometric texture challenging to model
in 3D. Those include netting, chain mail and rattan. Despite being highly regular these
textures have complex topology displaying holes and interweaving parts. This makes
it difficult to represent the geometric detail as texture superimposed on the base shape.

Noise removal. All scanners inevitably introduce noise during a geometry acquisition
process. Knowing the statistical properties of the noise could be instrumental in
removing it.

Model acquisition. Surface and texture descriptors are used to formulate surface pri-
ors guiding the acquisition process. Such descriptors can also be used after ac-
quisition to aid the selection or enforcement of specific representation, for exam-
ple when converting the model into a NURBS (non-uniform rational B-spline)
surface [114].

Acquisition etc. Effective acquisition systems have a slew of uses: Content Creation:
bringing real world objects into games and virtual reality systems. In many cases,
reverse engineering is used to convert physical models to compact geometry rep-
resentations (such as NURBS) suitable for CAD (computer-aided design) sys-
tems. Validation: an acquired model can be used to test whether a product is
within specifications. Finally, products which need to be tailored to individuals
(e.g. hearing aids, dental prostheses) may be constructed from scans of anatomi-
cal impressions.

Mesh smoothing. Smoothing the geometry of the meshes while preserving the pa-
rametrization is an example of suitable smoothing application. Feature-aware
smoothing can also benefit from the well defined surface priors.

Entertainment. There is never enough realism in the entertainment industry. In both
film and video games realistic texture plays an important role, for example the
film Monsters, Inc. (2001), is known as the first full-length CGI (computer gen-
erated images) movie to attempt realistic fur animation.

Hole filling. Most scanning techniques result in models containing holes due to occlu-
sions, shiny or transparent surfaces, or simply because the bottom of the object
is on the ground. The problem of filling a hole with a surface patch, which not
only conforms to the boundary, but also has the desired texture quality, is not
fully solved [91, 126]. With the help of texture descriptors, it will be possible to
synthesize texture based on the surface sample from the neighborhood.
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Object recognition and classification. Adding geometric texture in a recognition/clas-
sification framework would yield more expressive and better feature vectors for
statistical inference. Object recognition is a major problem within computer vi-
sion, and a couple of examples of its use include robot navigation and biometric
identification.

Shape-texture swap. Applying the texture of one object (e.g. an orange) to the shape
of another object (e.g. an apple) is an application interesting for CAD and could
easily be achieved by the use of texture descriptors.

Mesh merging. A local surface descriptor is needed for furthering the analysis of
when and how well two independent surfaces can be merged. Mesh merging
is an integral part of many reverse engineering systems.

Medical modeling. Geometric texture information (e.g. about the surface of an organ)
might be a valuable help in segmentation of medical volumetric data or even in
diagnostics.

2.3 Data

Examples of geometry acquisition systems include scanners for medical imaging, like
magnetic resonance, computed tomography and ultrasonograpy. Common to those
methods is their ability to produce volumetric data, which often needs to be segmented
in order to obtain 3D shape models.

Time of flight cameras [76] create images with distance data. Those cameras measure
the time it takes a light wave to travel a distance from the object to the sensor. Other
systems include stereo camera [116] where the depth measurement is acquired by solv-
ing the correspondence problem, and structured light camera [122] where the scene is
illuminated by light pattern, allowing for scanning of the entire field of view at once.
Scanners most commonly used when making a 3D model of the physical objects are
laser scanners [87] where a laser point sweeps the object and scans one point at a time.

The purpose of 3D scanner is usually to produce a point cloud – a set of samples from
the surface of the object. (The exception are the volumetric techniques.) Dense point
clouds can be used directly for measurement and visualization [60, 105]. However, in
most cases it is desirable to reconstruct the 3D model as either polygonal 3D model or
NURBS [114] surface model. NURBS models use a set of curved patches to model the
surface. In this thesis we used only surfaces represented as polygonal meshes.

Polygonal mesh shape representation has certain advantages. Modern graphic cards can
render a steadily increasing number of polygons in real time, and the natural output of



2.3 Data 15

many scanning devices is often a polygonal mesh. On the down side, polygonal mesh
is a piecewise planar approximation and it might require many polygons to represent a
smooth non-planar surface.

Throughout this thesis we use a triangle mesh to represent a surface. We also assume
a surface to be manifold, i.e. a small neighborhood of every point of the surface is
topologically equivalent to a disk.

When developing algorithms on triangular meshes there are a couple of issues to bear
in mind. The first is the irregularity of the mesh representation. Vertices may have
different valencies (the number of one-ring neighbors) and the edges can vary in length.
The second thing to bear in mind is the way the polygonal meshes are stored. The
data structure used in this project, is a GEL [10] implementation of the halfedge data
structure [7, 96]. Halfedge representation has the functionality that allows the user to
locally move from one entity of the mesh to the next, for example from a vertex to all
of its outgoing edges.

The amount of 3D data accessible online for research purposes is sufficient for de-
velopment and testing of geometry processing algorithms. However, the majority of
available models are man-made and not suitable for developing models on geometric
texture. The real-life scans detailed enough to include geometric texture are often big
in size and harder to find.

For undertaking this work we had access to a couple data sources of our own, among
others a 3D laser scanner and a structured light scanner. To make a data set of fruit
geometric texture, see Figure 2.8, we used laser scanner from DTU Mathematics, as it
is suitable for scanning small objects. The structured light scanner rig at DTU Infor-
matics [1] was used for scanning larger scenes, and in particular when we needed test
models for object reconstruction based on surface priors, see Figure 2.9.
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Figure 2.8: Scans of fruit obtained using a laser 3D scanner. Left to right: a tangerine, a
strawberry, a lychee, an avocado and a melon. In the top row photographs with a close-
up on the fruits textured surface. In the bottom row renderings of the scanned fruit.
Larger fruit was scanned in a low resolution (1◦× 1mm, for radial and vertical reso-
lution), with only a small patch of texture scanned in high resolution (0.2◦×0.2mm).
Strawberry and lychee scans are full high-resolution scans. The fruit scans are an excel-
lent source of geometric texture. To begin with, the distinction between the base shape
and the texture is quite obvious, with the texture covering all of the shape. Further-
more, fruit surface has an irregular texture with a high level of self similarity, making
it usable for statistical analysis. Lastly, there is a big variety of different fruit textures,
which we humans can easily relate to.
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Figure 2.9: A structured light scan of a cardboard box. On top a point cloud recon-
struction of the raw data, a point cloud after segmenting the box and removing the
background, and a triangulation of the data. In the bottom row a set of photographs of
the box during the scanning. The scan suffers from scanning artifacts due to the print
on the box. The density of the reconstructed points varies greatly across the surface,
with large empty patches on the top side of the box.
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CHAPTER 3

Related Work

The research with focus on geometric texture leans heavily on few well developed
fields. First, there is a huge body of literature providing a statistical framework for
analysis and synthesis of image textures. A similar framework for texture on surfaces is
also growing. The latter relates to the approaches for surface parametrization, including
advanced techniques dealing with the appearance of geometric texture. Influence of
lightning has also been investigated.

Furthermore, geometry processing contributes with developed algorithms for acquisi-
tion, reconstruction, analysis and a manipulation of 3D models. The issues of hole
filling, surface completion, shape deformation and mesh denoising are closely related
to the concept of geometric texture. Finally, there are links to various other research
fields. We can mention computer graphics and realistic rendering, scanners and acqui-
sition, computational geometry and geometric problems.

In this chapter we present the methods which were used as a source of inspiration when
considering problems relating to geometric texture. Quite a few are image-based: many
2D based techniques can be generalized to 3D, and texture is not an exception.

The concepts from differential geometry, tools crucial for the project, have not been in-
cluded in this chapter. Instead, a selection of geometry-based topics constitutes Chap-
ter 5.
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3.1 Image Texture

Flat 2D image texture can be used to aid common image analysis tasks as segmentation
and classification [165]. The most relevant for us is the process of texture synthesis,
where the aim is to construct a large textured image from a small sample of the texture.

The methods can roughly be divided into pixel-based synthesis and patch-based syn-
thesis. Pixel-based methods build the texture one pixel at a time, by efficiently finding
matching neighborhoods and copying pixels. Some of the successful algorithms from
this group include [37], a Markov random fields based method, and a closely related
method [153] where explicit sampling is avoided by using tree-structured vector quan-
tization, resulting in a fast and efficient texture synthesis.

Analogies framework for images and curves [66, 67], infers a relationship between a
filtered and an unfiltered sample, and then applies it to the new image. This can also be
used for pixel-wise texture synthesis, if the initial sample input consists of a textured
and a not textured image. A model presented in [169, 168] employs a parametric
method, where a statistical models of the image content is constructed and used for
sampling a content of a synthesized texture image.

Patch based texture synthesis methods are stitching together small patches of existing
images. The best know algorithms from this group include [36], which can also be
applied for texture transfer, and [84] where graph cuts are used to enhance the smooth-
ness across the seams between texture patches. In [83] an entire texture is progressively
refined to match its quality with respect to a given sample.

Related to texture synthesis it the problem of hole filling and image inpainting [28,
102], where the aim is to reconstruct the missing or damaged parts of the image.

3.2 Texture on Surfaces

Adding color or surface texture to 3D models is often done using texture mapping[124],
where an textured image is mapped onto a shape creating visually pleasing result with-
out introducing more triangles. Finding a suitable parametrization is a key issue for
texture mapping.

In parallel, a variety of methods for simulating the appearance of small geometry defor-
mations on the surfaces have appeared, for example bump mapping [20, 108], normal
mapping [65], and displacement mapping [103, 148]. Along those lines, we can con-
sider general types of texture, which include not only color, but also displacement and
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Figure 3.1: A texture synthesis algorithm can be used to add geometric texture to a
model in form of displacement. In this example, taken from [162], a texture from the
sample on the left is synthesized over a surface with a given orientation field, middle.
The image on the right shows texture mapping and displacement mapping with the
same texture.

transparency. Synthesis of such texture can add the geometric detail to the shape via
height map images, see Figure 3.1.

The methods [143, 154, 162] synthesize the 2D texture directly on an irregular mesh
using neighborhood sampling, which is also done in multi-scale fashion in [129].

Another line of research is concerned with the visual appearance of the 3D texture, as
if taking a photograph of a surface under different lightning conditions. The depen-
dency of texture on viewing and illumination directions was formalized by means of
bidirectional texture function [43, 142]. An interaction between the light, the surface,
and the texture image has been studied in [117].

3.3 Geometric Texture

A solid texture in 3D was considered by [107], examples are block of wood or marble.
The texture here is still not geometric, but a color information in a space. A first attempt
to capture the volume around the surface of an object was presented in [74], where the
concept of textels (arrays holding visual properties of surface) was introduced.

Texture representing true geometric detail, used to render complex scenes, was intro-
duced in the work [110], which was later extended with procedural geometry mod-
eling [111]. The method for mesh-based creation of geometric textures on arbitrary
meshes, applicable to e.g. scales or thorns was presented in [45]. They simulated natu-
ral cellular development for the placement phase of the individual texture elements.
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The articles most relevant in relation to the work presented here include:

Multiresolution Hierarchies on Unstructured Triangle Meshes [79]. A geometry pro-
cessing article, together with a previous work [78] proposes a multiresolutional
approach to meshing, where a mesh is decomposing into a hierarchy of differ-
ently detailed approximations. It involves both the topological hierarchy and the
geometric hierarchy and uses the notions of global shape and surface detail.

Mesh Quilting for Geometric Texture Synthesis [167]. Presents an algorithm for syn-
thesis of a true geometric texture. A 3D texture sample is deformed, stitched and
patched inside the thin shell around an arbitrary base surface, see Figure 3.2.
Both the input geometry, input texture and output geometry are represented by
triangle meshes. This method allows the design of woven materials in a similar
way as [109].

Context-based Surface Completion [126]. A Cut-and-paste approach to hole filling
by applying small patches taken from a given surface. Patches are described
using a signature (feature vector), matched to fit the hole and mutually aligned
using rigid and nonrigid transformation.

Geometric Texture Synthesis by Example [18]. A method which operates on volu-
metric models. It fits into the analogies framework, so it uses three surfaces: a
plane and textured sample to define what the texture is, and one surface where
the texture is to be applied. Neighborhood feature vectors are built for each voxel
in surface pairs. Feature vectors are matched to build the surface in multiscale
sweeping fashion, see Figure 3.3.

Geometric Texture Synthesis and Transfer via Geometry Images [85]. An alterna-
tive method based on representing both the sample model and the input model as
a geometry image, i.e. remeshing the surface into a completely regular structure,
as in [61]. Geometric texture is defined as a small scale deformation vector field.
The approach assumes that the underlying geometric surface is smooth relative
to the scale of details. Texture is extracted by smoothing and differencing.

Of other recent approaches, we can mention [89], which produces textured objects by
tiling the surface based on statistical distribution of features. Another tiling method,
using regular tiles, is proposed in [39]. A related task of adding geometry detail to
surfaces is solved by cut-and-paste approach in [19].

Surface inpainting and hole filling are relevant topics, since many scanned models
contain holes due to occlusions. In [145] a surface is represented as zero level-set
and closed using partial differential equations. A method for automatic 3D surface
completion [13] first patches the hole, and then attempts modeling it to match the
neighborhood. A method from [97] uses a volumetric diffusion to build a watertight
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Figure 3.2: Mesh quilting in action: bunny model decorated with two typical geometric
textures, tubular weave and chain mail structure. Texture samples are deformed and
stitched in a shell around the model. Image taken from [167].

model. Method for patching holes in polygonal meshes proposed in [100] transforms
and solves the problem in the 2D domain.

3.4 Image Detail

Besides texture, an image or a surface can contain small geometric detail. It is generally
desirable to preserve the appearance of detail during deformation. Methods for content
aware image retargeting [125] address this problem. The aim is to adapt images to dif-
ferent aspect ratios, where simple scaling and cropping provide unsatisfactory results,
see Figure 3.4.

Methods for retargeting images can be divided in two groups, depending on how the ac-
tual resizing is performed. Discrete approaches, such as seam carving [9, 121], remove
seams of pixels from images while preserving media content using dynamic program-
ming. If graph cuts are used the method can be applied to video retargeting [120]. The
continues solutions [52, 150] optimize the warping (see Figure 3.5) from the source to
target and distribute the deformation into less important parts of the image. The method
from [52] has the capability of dealing with more elaborate spatial deformations, like
fitting a square image into a circular frame. Continues methods can be generalized for
video retargeting [159, 166, 149].
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Figure 3.3: Bunny given a spiky armor and bunny with through-holes, the results of
texture synthesis on volumetric models from [18].

Figure 3.4: Comparing aspect ratio change. On far left an original image in landscape
orientation, which is to be fitted in a portrait orientation of the frame. The possibilities
include (from left to right) an image resized using seam removals, directionally scaling
(squeezing) the image and cropping the image. Taken from [9].

Figure 3.5: Feature preserving stretching using warping method from [52]. On left the
original image and a given feature map. A stretched image in the middle, mapping
preserves the shape of the features at the expense of the background, as visualized by
the warping mesh on right.
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Figure 3.6: Resizing the camera model, we want the lens of the camera to stay cylin-
drical in shape. Far left: The original model. Left to right: A directionally scaled
model, model resized using shape preserving algorithm, model resized using a non-
homogeneous resizing. Taken from [82].

3.5 Detail on Surfaces

Very recently, a small number of methods has been proposed for deforming 3D geom-
etry in a way which preserves detail. Those works include:

Non-homogeneous resizing of complex models [82]. A seminal work in the fields of
content aware geometry manipulation. Method is limited man-made models con-
sisting of multiple components. A vulnerability of each component is estimated
in different directions. Vulnerable parts are embedded in a protective volumetric
grid to suppress distortion, see Figure 3.6.

Content-aware model resizing based on surface deformation [147]. The directional
sensitivity is estimated in a manner similar to [82], but it does not need the aux-
iliary grid. The mesh is deformed directly according to local sensibility.

Anisotropic resizing of model with geometric textures [26]. A method for a related
problem of resizing textured objects while preserving the texture appearance.
The geometric texture is first stripped of the object and a texture-shape model is
anisotropicaly resized. The texture is then re-applied to the shape.

iWIRES: An analyze-and-edit approach to shape manipulation [53]. The underly-
ing idea is that the shape can be described using a small number of 1D structures
– wires. The individual and mutual properties of wires are analyzed and pre-
served during deformation.

Of other relevant papers we can mention [118], which uses weighting in a linear vari-
ational deformation mechanism for controlling rigidity of deforming parts. More gen-
eral, but relevant approaches are the as rigid as possible deformations [131, 132] and
variational surface deformations [24].
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CHAPTER 4

Surface Priors

One of the goals of this project was a development of surface priors, which can be
used when taking the Bayesian approach to shape modeling. A prior is a term that
models our knowledge about an uncertain quantity before any data has been taken into
account. In the context of geometry processing, a Bayesian framework can be used for
reconstructing the shape from scanned data. In that situation a prior term relates to our
knowledge about the properties of the surface.

For example, if we know that the object we are about to model has a smooth surface
with sharp edges, it would be an advantage to use this knowledge in a reconstruction.
If we, on the other hand, have a scan of a sculpture with prominent chisel marks, a
prior which allows for small indentations would be more appropriate for recapturing
the shape (unless we want to remove the chisel marks). In other words, a prior helps
you get what you expect to find.

A surface prior should be paired with a likelihood, which relates to our knowledge
about the data acquisition process, i.e. how close we believe the measured point is to
the true surface. Likelihood is used to model our knowledge about the nature of the
noise introduced by the scanner (e.g. precision for a certain direction), or information
about the geometry of scanning process, see Figure 4.1.

A big advantage of a Bayesian framework is that prior and likelihood are modeled
separately, making the approach more flexible than monolithic schemes. This allows
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Figure 4.1: A sketch of a Bayesian surface reconstruction. We assume the model where
an underlying object has been corrupted by noise during the scanning process. When
reconstructing the the shape, we want to utilize both our knowledge about the object
(prior knowledge), and our knowledge about the scanning process (likelihood).

extending the shape acquisition process with a model selection function. It would
mean a step away from the automatic methods, but also a step towards the more desir-
able result. Apart from data acquisition, surface priors could be instrumental in object
classification and recognition.

To define our prior knowledge about the surface we used a Markov random field
(MRF). MRF is gives us a joint probability of a ceratin configuration, expressed in
terms of some desired local configuration properties.

The content of this chapter is a condensed introduction to the theory and the terminol-
ogy of the MRF and Bayesian methods, exemplified on a few typical applications.

4.1 Bayes Rule

The Bayesian framework has been used in numerous works on images [90, 158], es-
pecially on medical data [17]. Recently, the approach has been applied to surface re-
construction [33, 70]. Methods that infer priors from the database of shapes have also
begun to emerge [51, 81, 106].

Bayes statistics is a theory widely used for estimation and decision making. According
to Bayes therory, when both the prior and the likelihood are known, the best that can
be estimated is the posterior probability. Posterior probability P( f |d) of the hypothesis
f given the observation d is evaluated using the Bayes rule

P( f |d) = P(d| f )P( f )
P(d)

, (4.1)

where P( f ) is the prior probability of hypothesis f , P(d| f ) a likelihood function of f
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for a fixed d, see also Figure 4.2. P(d) is the evidence, which is constant for a given
observation and the Bayes rule can be written as

P( f |d) ∝ P(d| f )P( f ) . (4.2)

In the maximum a-posteriori (MAP) solutions, as a special case in the Bayes frame-
work, only the most probable estimate is of interest. The optimal MAP solution f̂ is
obtained by maximizing the posterior probability

f̂ = argmax
f

P( f |d) = argmax
f

P(d| f )P( f ) . (4.3)

An important modeling step in finding a MAP solutions is to derive the posterior dis-
tribution. In our case, the prior was obtained using MRF, yielding widely used MAP-
MRF framework. Finding the solution using the MAP-MRF approach involves two
steps. First, prior and likelihood models have to be chosen, with the parameters spec-
ified manually or automatically. Secondly, an optimization algorithm for finding the
MAP solutions needs to be chosen, where the main issues are the quality and the ef-
ficiency. In the following two sections we discuss the modeling and the optimization
step.

4.2 Markov Random Fields

Surface priors can be defined in many ways, global or local. We investigated the
path where we use the local properties of the surface to define the prior. MRF the-
ory [90, 158] provides a convenient and consistent way of modeling local dependen-
cies. Despite its applicability for geometry modeling it has been used only for a small
number geometry related problems [86, 157].

The concept of a MRF came from attempts to generalize a specific model named af-
ter the German physicist Ernst Ising [77]. Ising tried to explain certain empirically
observed facts about ferromagnetic materials. He considered a sequence of points on
a line. At each point there is a small dipole, which at any moment is in one of the
two positions up or down, and the position of all dipoles constitutes a configuration.
One of the objectives was to define a probability measure on the set of all possible
configurations.

To achieve that, each configuration was assigned an energy U given as a sum of dipole
interactions. Ising made the assumption that only interaction between neighboring
dipoles needs to be accounted for. The probability of a certain configuration was then
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Figure 4.2: Schematic illustration of Bayes rule. Is it a lemon or a tennis ball on
the very blurry image in the top row? We want to find the answer by comparing the
posterior for two hypotheses: ‘a lemon’ and ‘a tennis ball’. The first of the two Bayes
rules in the middle expresses the posterior probability for the hypothesis ‘a lemon’,
given the blurry image. Posterior depends on three terms: the evidence ‘How probable
is it to capture the blurry image?’ which is constant for all hypotheses, the likelihood
‘How probable is it that my camera would capture the blurry image had it been the
lemon?’ and the prior ‘How probable is it that I was capturing a lemon?’. Second,
Bayes rule gives the posterior probability for the hypothesis ‘a ball’, given the blurry
image. The prior knowledge about whether the image was taken at a fruit shop or at
a tennis court can significantly influence the posterior probabilities. The decision is
made by choosing the hypothesis with the highest posterior. The bottom row provides
a hint of an answer for a curious reader.
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defined proportional to e−
1
T U , where T is the temperature. A probability measure of

such form is called a Gibbs measure.

This simple model has since been found applicable to number of other physical and
biological systems such as gases, binary alloys, cell structures, flocking birds or beating
heart cells.

In a more general setting, MRF deals with random processes defined on a discrete set
of sites [90]. Each site from a set S = {1, . . . ,n} can be assigned a label from a discrete
or continuous set of labels, defining a labeling (or a configuration) f = { f1, . . . , fn}. A
labeling of a set of sites is a realization of the random field.

Spatial dependencies between sites is vital for MRF. Sites need to have a neighborhood
system, which also defines the set of cliques. A neighborhood system is any symmetric
binary relation over the set, and the cliques are subsets of sites that are all neighbors to
one another. Neighbors of a site i are denoted Ni, and a set of cliques is denoted C

The Markov property of the field

P( fi| fS−{i}) = P( fi| fNi) , (4.4)

requires that the probability of a site i being assigned label fi given the labeling of all
the other sites S−{i} is dependent only on the labeling of the neighboring sites Ni. In
other words, only neighboring sites interact with eachother.

MRFs are equivalent to the Gibbs Random Fields [62], which provides a joint proba-
bility of a labeling f in the simple form

P( f ) ∝ e−
1
T U( f ) , (4.5)

where T is the temperature (corresponding to randomness) and the energy

U( f ) = ∑
c∈C

Uc( f ) , (4.6)

is a sum of clique potentials Uc over all possible cliques c ∈ C . The value of Uc( f )
depends on the local labeling (configuration) on the clique c.

P( f ) measures the probability of the occurrence of a particular configuration. The
configurations with lower energy are more probable. The temperature controls the
sharpness of the distribution – when it is high all configurations tend to be equally
probable, while near zero temperature the probability distribution concentrates around
the global energy minima.

Markov-Gibbs equivalence provides a simple way of obtaining the joint probability
P( f ) by specifying the clique potential functions Uc( f ). Clique potential functions
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should be chosen depending on the desired system behavior, encoding a priori knowl-
edge about interactions between labels. Choosing the forms and parameters of the
potential functions is a major topic in MRF modeling.

Returning to the Bayes framework, the likelihood P(d| f ) can often also be expressed
in terms of likelihood energy

P(d| f ) ∝ e−U(d| f ) , (4.7)

leading to the posterior probability

P( f |d) ∝ e−U( f |d)e−U( f ) . (4.8)

This allows us to write the Bayes rule in terms of energy as

U( f |d) =U(d| f )+U( f ) , (4.9)

where U( f |d) is the posterior energy consisting of the likelihood term and the prior
term. The MAP estimate is then equivalently found by minimizing the posterior energy
function

f̂ = argmin
f

U( f |d) . (4.10)

In conclusion methods based on MRF deal with labeling the set of sites to minimize
the sum of clique potentials.

4.3 Optimization

After modeling the two central terms in the Bayesian framework, the prior term and
the likelihood term, we can calculate the energy of a given label configuration. The
remaining problem is to find the optimal configuration, that of the minimal energy.
There exists a variety of local and global energy minimization methods for MRF. This
section touches upon optimization and introduces a few method used in this thesis.

In the last few years, MRF based methods have had a renaissance, due to the new opti-
mization algorithms such as graph cuts and loopy belief propagation [138]. However,
those methods are limited to labeling with a discrete set of labels, and have therefore
not been applicable for MRF based mesh smoothing where we we use continuous 3D
labels.

Therefore,we had to recur to older and less efficient but more general algorithms as
iterative conditional modes (ICM) [16], conjugate gradient [128] and simulated an-
nealing [12]. These approaches utilize the Markov property, which states that the local
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energy is defined using only a neighborhood. Consequently, it is easy to compute the
change in joint energy, resulting from a change of a single label. The two approaches,
used in this thesis, are ICM and simulated annealing with Metropolis sampler.

4.3.1 Iterated Conditional Modes

ICM optimization is an iterative scheme, which repeatedly visits all the sites in a cer-
tain order. A site is assigned the label, which is a local maximum likelihood estimate
(giving the largest decrease in energy function), assuming that the other labels remain
unchanged. This process is repeated until some convergence criterium has been met.
Due to its greedy strategy, ICM can be sensitive to the initial estimate, especially in
high dimensional spaces with non-convex energies. If applicable, it is possible to use
the data term as initial estimator.

The order in which the vertices are visited might influence the result [15]. This issue
is sidestepped if we always use labels from previous iteration, and update all labels at
once. This might be problematic in terms of convergence, but have worked well for our
purposes.

4.3.2 Metropolis Sampler

The Metropolis sampler is a random sampling algorithm, which generates a sequence
of configurations from a probability distribution using a Monte Carlo procedure.

At each step, a new configuration f ′ is chosen by randomly changing only one label of
the old configuration f . The new configuration is accepted according to the Metropolis
criterion: replace f by f ′ with probability p = min{1,P( f ′)/P( f )}, where P is the
given Gibbs distribution.

Metropolis criterion assures that the new configuration will be accepted as soon as it
has a higher probability. Still, even with a smaller probability the new configuration
has a chance of being accepted, depending on the ratio P( f ′)/P( f ). This allows the
algorithm to leave the local energy minima.

Looking at the Metropolis criterion for accepting a less probable configuration, and
using Gibbs distribution we obtain the following probability of acceptance

p =
P( f ′)
P( f )

= e−
1
T (U( f ′)−U( f )) , (4.11)
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where U is the potential of the configuration. This is a function of the energy difference
and the temperature T .

To investigate the role of the temperature T , we look at the case when

∆U =U( f ′)−U( f )> 0 (4.12)

which means that the new configuration results in a higher energy.

For a limit of T → ∞ the probability of accepting the new configuration

p = e−
1
T ∆U (4.13)

approaches 1, and the Metropolis sampler reduces to the random sampler, accepting
any new configuration regardless of its energy. But as T falls, p also falls, and for
T → 0 it approaches 0, so no increases in the energy are accepted, and the algorithm
turns greedy.

To summarize, if T is large, many “bad” moves are accepted, and a large part of con-
figuration space is accessed, while for small T mostly “good” moves are accepted and
the sequence of samples will converge towards the local energy minimum. It is this
property that allows the use of the Metropolis sampling as the optimization method.

4.3.3 Simulated Annealing

Simulated annealing is a stochastic optimization algorithm that simulates the physical
annealing process of melting and then slowly cooling to achieve the optimal energy
configuration.

A random search method, such as Metropolis sampler, is used to locate the next con-
figuration, but this is controlled by the temperature, T . In the simulated annealing
scheme the T is initially high and then gradually decreased, to minimize the risk of the
algorithm being trapped in local energy minima.

High initial temperature allows a large part of the configuration space to be exam-
ined. Gradually decreasing the temperature limits the amount of allowed “bad” moves,
slowly reducing the part of the configuration space that gets examined.

For a particular logarithmic cooling scheme it is proven that the system converges to
minimal energy [57]. This scheme is unfortunately too slow for practical applications,
but other cooling schemes also produce good results.
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4.4 MRF on Images and Triangle Meshes

Typical use of MRF in image analysis problems are image restoration and smoothing,
where the image pixels take the role of the sites, and labels are continuous or discrete
pixel values. A labeling would then be any assignment of pixel values to pixels. Among
all labelings, only a small number of them is a suitable solution and maybe just a few
are optimal in terms of a certain criterion.

Similarly, an edge detection in an image could be posed as assigning a label from a set
{edge, non-edge} either to image pixels or to the space between the pixels. Indeed,
a foundation for the use of MRF in image analysis problems is found in an algorithm
for restoration of piecewise smooth images using a combination of a gray-level MRF
process and edge MRF processes [57].

Sites on a lattice are considered spatially regular (e.g. image pixels or volume voxels).
The sets of sites that do not present spatial regularity are considered irregular. In this
theses, we deal with irregular sets of sites, defined on mesh entities, vertices, edges and
faces.

The biggest challenge in formulating MRF on triangle mesh is dealing with its irreg-
ularity. A vertex can have a different number of adjacent vertices, and an edge can
have a different number of adjacent edges. Furthermore, the one-ring around vertices
can have significantly different geometry, varying both in scale and regularity. As a
result, for example, one can not directly compare the potentials corresponding to two
vertices.
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CHAPTER 5

Technical Parts

This chapter brings a few technical details, which are relevant for various parts of the
project. The topics covered are all somehow related to discrete differential geome-
try [59] and taking derivatives on the mesh.

To begin with, there is a section about approximations of the Laplacian on the mesh [88].
The Laplacian has been used in a couple of contexts, both approximated with the um-
brella operator and with mean curvature normal. When smoothing a textured object to
obtain a base shape, as in Chapter 8, moving a vertex in the direction opposite of the
mean curvature normal will lead to a smoother surface. Another use of the Laplacian
and Laplacian coordinates is in the context of Laplacian surface editing [92] used in
Chapter 9.

Section 5.2 brings our contribution to a problem of projecting a point to a triangle mesh,
which arouse when calculating the distance between a textured surface and a smooth
base shape. With a triangle mesh not having a continues normal field, this is not as triv-
ial a problem as it might look. One of the solutions found in the literature [21, 79, 146]
had the properties we desired, but the final step in finding the projection was solved by
iterative optimization. We have constructed an analytic solution to the problem, which
not only is more efficient and more accurate, but also finds all solutions to chose from.
This is a part of a framework for texture analysis based on a histograms of height fields,
and has not yet been published.
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The third section of this chapter discusses discrete 1-forms, which are used extensively
in the research paper brought in Chapter 8. The last section is a small introduction to
parametrization, with a method for computing the intrinsic conformal parametrization
also used in Chapter 8.

For the smooth counterpart of the concepts discussed here, we refer to classical books
on differential geometry, e.g. [35], or a book stressing intuitive understanding [80]. The
latter is also includes a discussion on shape models and their use.

In this chapter we consider only triangle meshes. A triangle mesh M consists of a
geometric and a topological component. The topology of the mesh can be represented
by a set of n vertices

V = {v1,v2, . . . ,vn ,} (5.1)

and a set of triangular faces F , where each triangle fi jk = (vi,v j,vk) specifies its three
vertices from V . However, it is often more efficient to represent the connectivity of the
triangle mesh in terms of edges and/or neighborhoods. To denote edges we use E for
the set of edges, and ei j for an edge (if there is one) connecting vertices vi and v j. To
denote the 1-ring neighbors of the vertex vi we define Ni as a set of all the indices j
such that there exists an edge ei j between vi and v j.

The geometric embedding of a triangle mesh into R3 is specified by associating a 3D
position xi to each vertex vi ∈V , so that each face fi jk ∈ F actually represents a triangle
in 3D space, specified by its three vertex positions. Sometimes we will refer to vertex
vi at the position xi as the vertex xi, especially in the cases where the geometry of the
mesh does not change.

5.1 Discrete Laplacian

Discrete Laplace operators on triangular meshes are used in a broad range of ge-
ometry processing applications, including mesh smoothing [42], deformation [130],
parametrization [47], remeshing [136], optimization [99], and compression [95]. There
is a variety of discretizations of Laplace operator proposed in the literature, since dif-
ferent applications often require different properties of the Laplacian [151, 160].

Laplace operator (or Laplacian) is a second-order differential operator, defined as the
divergence of the gradient. For functions defined in Euclidean spaces and using Carte-
sian coordinates we can think of the Laplacian as a sum of second order derivatives.
To give and example, for a function f : R2 → R defined on a xy-plane, the Laplace
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fi−1, j−1 fi−1, j fi−1, j+1

fi, j−1 fi, j fi, j+1

fi+1, j+1fi+1, jfi+1, j−1
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1

Figure 5.1: The kernels for discrete differential operators on images, deduced using
discrete differential quotients. On far left a 3-by-3 patch of an image in xy plane. From
left to right the (nonzero-parts) of the kernels used for following differentials: ∂ f/∂x,
∂ 2 f/∂x2 and ∂ 2 f/∂x2 +∂ 2 f/∂y2. The last kernel is an example of the discretization
of the Laplace operator, which can be interpreted as a sum of differences between the
central pixel value and the its nearest neighbors.

operator, in this setting denoted with the symbol ∆, is given by

∆ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 . (5.2)

The discretization of Laplacian for the functions defined on a regular rectangular grid
(as for example images) is given as the sum of the second derivatives, and calculated
as sum of differences over the nearest neighbors of the central pixel, see Figure 5.1.
The Laplacian is closely related to the averaging filter, and can as such be used for
smoothing the image – we can change the pixel value with the value closer to the
average of the first neighbors. In a similar way, the Laplacian of the triangle mesh can
be used for mesh smoothing, as we show below.

The generalization of the Laplacian, which operates on functions defined on Rieman-
nian manifolds (manifolds with intrinsic notion of distance) in Euclidean space goes
by the name of a Laplace-Beltrami operator [35]. It is again defined as the divergence
of the gradient of a scalar function, but this time taking the intrinsic surface metric into
account.

With triangle meshes being the discretization of 2D surfaces (manifolds) embedded in
3D space, we can look for the discretization of the Laplace-Beltrami operator.

Considering a triangular surface mesh M , a discrete Laplace-Beltrami operator on M
is defined by its linear action on vertex-based functions. For a function f , taking the
value fi on the vertex vi, the Laplacian L f of the function f at the vertex vi is defined
by

(L f )i =
n

∑
j=1

wi j( f j− fi) . (5.3)

The coefficients wi j, which define the coefficient matrix [wi j], encode the properties
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of the Laplacian. Generally, non-zero weights are associated to mesh edges, and we
have wi j = 0 if vertices vi and v j do not share an edge. The summation is therefore
performed only over the neighborhood Ni.

In applications one often requires certain structural properties of discrete Laplacian,
leading to a large and diverse pool of discrete versions. In this section we define two
discretization, the purely combinatorial umbrella operator and the Laplacian based on
the mean curvature normal. We used these extensively, both for mesh smoothing and
for encoding surface details when editing a mesh [93]. The Laplacian-based applica-
tions are described towards the end of the section.

Both for the umbrella operator and for the mean curvature normal, we are typically
concerned about the Laplacian of the surface on the surface, i.e. the vertex-based func-
tions that the Laplacian operates on are the coordinates xi = (xi,yi,zi) of the vertices
vi. This reduces Equation (5.3) to

(L x)i =
n

∑
j=1

wi j(x j−xi) , (5.4)

which is the form we will generally use in the remainder of the section. For the same
reasons, we sometimes refer to the Laplacian (or the Laplacian coordinates) of the
vertex vi, which is Laplacian of the mesh itself, and we denote it by

L (xi) = (L x)i . (5.5)

Because of its linearity, we can compute the Laplacian of the whole mesh at once (i.e.
compute Laplace coordinates for all vertices), in a single matrix multiplication. Written
using a matrix notation this is

L (X) = LX , (5.6)

where n-by-3 matrix X contains x, y and z coordinates of all the vertices in the mesh,
and n-by-n Laplacian matrix L contains coefficients wi j as off-diagonals entries, and
the summations−∑

n
j=1 wi j as the i-th entry on the main diagonal. In case of normalized

discretizations of Laplacian, like the umbrella operator, which is to be defined below,
this reduces to

L = [wi j]− I . (5.7)

5.1.1 Umbrella Operator

The umbrella operator is a purely combinatorial Laplacian [164], depending only on
mesh connectivity and ignoring the geometry. It is defined as

L (xi) =
1
di

∑
j∈Ni

x j−xi , (5.8)
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Figure 5.2: An example of a small triangle mesh and its associated Laplacian matrix
L, for the Laplacian defined as in Equation (5.8).

where di = |Ni| denotes the valency or the degree of the vertex vi, i.e. the number of
its one-ring neighbors.

Defined like this, the Laplacian at the vertex vi is a vector joining the vertex vi with
the average of its neighbors, see Figure 5.3, left. This bears resemblance to the 2D
Laplacian kernel from the Figure 5.1, with the normalized coefficients (to eliminate the
effect of changing valency). Smoothing of the mesh can now be obtained by moving a
vertex in the direction of the average of its neighbors.

Figure 5.2 shows an example of a triangle mesh and its associated Laplacian matrix L,
where the Laplacian is discretized by the umbrella operator.

The umbrella operator is a good approximation of the Laplacian on very regular meshes,
where all edges are of approximately the same length, and all angles approximately
equal [78]. That is far from being the case for most meshes. However, the umbrella
operator will suffice (and even show desired properties) for certain applications, as
described later.

5.1.2 Mean Curvature Normal

Geometric discretizations of the Laplacian have better approximation qualities. One of
the desired properties in the context of mesh denoising is that the Laplacian vanishes
if the mesh is flat. This is to avoid the tangential drifting of vertices over the surface
when smoothing the mesh, which is undesirable in many applications.

The Laplacian relates closely to the mean curvature normal. Actually, an approxima-
tion of mean curvature normal leads to a discretization of the Laplacian. This dis-
cretization has a desirable property that it vanishes if the 1-ring is flat.
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If we again consider continuous and smooth surfaces, the mean curvature in the point
p is zero if its principal curvatures are equal and opposite. This can occur if the surface
is flat or has a saddle point in p. In both cases, any perturbation to the surface at p will
increase its area. For that reason the notion of mean curvature is closely related to the
notion of minimal surface, i.e. a surface of a minimal area, given the boundaries. A
physical example of a minimal surfaces is the soap film suspended on a wire frame.

Consider a small patch around a point p. We can look at the surface area A as a function
of the coordinates of the point p. This would be a scalar function over R3 and has a
well defined gradient ∇A. The mean curvature normal H at a point p is then defined as
the following limit:

2H = lim
A→0

∇A
A

. (5.9)

To derive the discrete version of mean curvature normal, one has to select a small area
around a vertex [31, 115]. It is natural to choose the area of the 1-ring. By Ai we will
denote the areas of triangles adjacent to the vertex vi. Through differentiation this leads
to the discrete expression for the mean curvature normal at vertex vi as

H =
1
2

∇Ai

Ai
=

1
4Ai

∑
j∈Ni

(cotαi j + cotβi j)(xi−x j) , (5.10)

where and αi j and βi j are angles at the vertices opposite the edge ei j, as depicted in
Figure 5.3, right.

It is now possible to write the Laplacian based on the mean curvature normal, and often
referred to as the cotangent weights Laplacian, as

L (xi) =
1

4Ai
∑

j∈Ni

(cotαi j + cotβi j)(x j−xi) . (5.11)

A Laplacian based on the cotangent formula is also computationally efficient, since we
do not to explicitly use trigonometrical functions. The cotangent of the angle between
two vectors can be calculated using dot and cross products, see Figure 5.4.

Depending on an application, one can also choose to use a normalized version of this
Laplacian. Note however that if angles are larger than the right angle, the cotangent
weight can be negative, which is not a desired property.

5.1.3 Implicit Mesh Smoothing

As mentioned, the Laplacian can be used for geometry denoising. A simple method
of smoothing is when the vertex is moved towards the average of its neighbors. Gen-
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Figure 5.3: On the left an umbrella operator evaluated as a vector joining the vertex at
position xi to the average of its neighbors. The origin of the name is obvious from the
illustration. On the right the angles used for weighting the contribution of the edge ei j
to the mean curvature normal of the top vertex.

x j xk

xi

u
α

cotα =
‖u−x j‖
‖u−xi‖

‖u−x j‖=−
ei j · e jk

‖e jk‖

‖u−xi‖=
2Ai jk

‖e jk‖





cotα =−ei j · e jk

2Ai jk

=− ei j · e jk

‖ei j× e jk‖

Figure 5.4: Cotangents of an angle can be expressed in terms of dot and cross products
of the triangle edges. The illustration above verifies this on an example, which uses
a definition of the cotangents, projection via a dot product, a hight-base expression of
a triangle area and a cross product expression of a triangle area. We use the notation
ei j = x j−xi for the triangle edges as vectors.
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erally, using any discretization of the Laplacian. The vertex should make a series of
infinitesimally small movements in the direction of the Laplacian, and the Laplacian
should be re-evaluated all the time. This diffusion process is approximated by choosing
a smoothing step size λ and repeatedly making moves

xn+1
i = xn

i +λL (xn
i ) , (5.12)

where the superscripts indicate two consecutive iterations.

When using the umbrella operator as the Laplacian for smoothing the surface, the shape
of the object will change substantially. Even in the flat parts of the mesh, the vertices
will drift over the surface resulting in a more regular parameterizations. Using mean
curvature normal will not introduce tangential vertex drift, but it still leads to a shrink-
age of the mesh.

Iterative smoothing move can be applied to all vertices at once. Expressed in a matrix
form and using the notation introduced in Equation (5.6) this is

Xn+1 = (I+λL)Xn , (5.13)

where Xn and Xn+1 denote the 3-by-n matrices containing vertex positions xn
i and

xn+1
i for two consecutive iterations.

Such an explicit iterative mesh smoothing is easy to implement, but not without limi-
tations. The smoothing step λ needs to be small in respect to the mesh edge length in
order to satisfy the stability criterion. Otherwise, the move in the Laplacian direction
might overshoot and result in ripples and oscillations. This can be a significant problem
when smoothing large meshes with small details, where hundreds of iterations might
be needed to obtain a noticeable smoothing.

However, instead of using an explicit (forward Euler) method and moving the mesh
in the direction of the Laplacian evaluated at the point before taking the step, we can
apply the implicit (backward Euler) method and move the mesh so that it arrives to
the new position from the (negative) direction of the Laplacian. This means that we
(implicitly) approximate the Laplacian using the new mesh, and not (explicitly) using
an old mesh. As we do not know the position of a new mesh before taking a step, we
formulate the solution implicitly and obtain the new positions by solving a system of
linear equations. The advantage of backward methods is that they often show more
stability and a larger approximation step can be used [156].

Using implicit mesh smoothing [31] we can obtain significant smoothing by increasing
the value λ , but solving the linear system

(I−λL)Xn+1 = Xn , (5.14)
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Figure 5.5: The intuition and the geometrical view of the forward and backward Euler
method. The unknown function y(x) given by the differential equation dy

dx =−0.5y and
the starting point y(0) = 3.9 approximated using the forward (left) and the backward
(right) Euler method. With the forward method we are taking steps in the tangential
direction evaluated at the point we are leaving. With the backward method we compute
the new position such that we arrive from the tangential direction evaluated.

is the price to pay. Fortunately, this system can be solved efficiently thanks to the
sparsity of the matrix L. The number of non-zero elements in i-th line of the L is
di +1, corresponding to the vertex i and its di neighbors.

5.1.4 Laplacian Surface Editing

Laplacian surface editing is based on representing each vertex vi of the mesh by its
Laplacian coordinates

δi = L (xi) . (5.15)

Laplacian coordinates measure the deviation of a vertex from the average (or similarly
defined linear combination) of its neighbors and therefore capture local detail of the
surface, which is what we like to preserve while deforming the mesh.

If the n-by-3 matrix
D = LX (5.16)

containing the Laplacian coordinates δi of all the vertices is given, can we uniquely
restore the mesh geometry, i.e the absolute coordinates of all vertices? The immediate
answer is no, because the Laplacian is translation invariant. If we translate all the
vertices of the mesh by a vector, the Laplacian coordinates will not change, leading to
a whole family of meshes having the same Laplacian coordinates.
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Restoring the mesh corresponds to finding the solution to the system

LX̂ = D , (5.17)

where X̂ denotes the n-by-3 matrix containing coordinates of the restored mesh. This
solution is not unique, the matrix L is singular (all of its rows sum to 0), and more
constrains are needed to resolve the translational degree of freedom.

For example, in case of the combinatorial umbrella operator, the rank of the matrix L
is

rank(L) = n− k , (5.18)

where k is the number of connected components in the mesh [41]. To obtain the unique
solution we need to provide a single spatial constraint for each of the connected com-
ponents. Basically, we need to place one vertex of each connected component; the
positions of other vertices are then deduced from the Laplacian coordinates.

Usually we place more than just one constraint on a spatial location of vertices. Ad-
ditional constrains are used to control the shape of the surface when performing mesh
deformation. To put a soft constraint on the position of the vertex vi we add the (three
– one for each coordinate) equations

wix̂i = wici (5.19)

to the system in Equation (5.17), where ci is the desired location of a vertex vi and
wi > 0 is the weight we assign to the constraint. The resulting system is solved in the
least-squares sense.

A common approach is to fix a spatial position of certain surface patches, handles,
which are used to guide the mesh deformation. Handles are manipulated by the user
during a modeling session. The positions of the other, free vertices are solved by fitting
the Laplacian coordinates to preserve the details of the surface.

If we assume the handle vertices to be indexed as the first m vertices of the mesh, and
their desired spatial position contained in the m-by-3 matrix C, the linear system for
recovering the coordinates x̂i of a deformed mesh is

[
L

W 0m,n−m

]
X̂ =

[
D

WC

]
. (5.20)

A diagonal matrix W contains weighting factors wi which can be used to tweak the
importance of the position constrains, and solution is found in n-by-3 matrix X̂. To
sum up, the basic idea of the modeling framework is to preserve differential properties
of the original geometry in the least squares sense and to also satisfy additional spatial
(modeling) constraints in the least squares sense.
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Laplacian representation is invariant to translation, but not similarity invariant. Local
surface detail is preserved if parts of the surface are translated, but changes with rota-
tions and scales. This can lead to distorted orientation and size of the surface details.
There are several ways of dealing with similarity transformations, which we focus on
next.

5.1.4.1 Incorporating Similarity Transformations

The main idea of making the Laplacian surface editing capable of handling the situa-
tions, which includes rotation and scale is to assign each vertex vi an individual trans-
formation Ti. Transformation Ti should account for the rotation (and possibly isotropic
scale) of the small patch of surface around the vertex vi, which could occur with se-
vere deformation of the mesh. Those transformations are used to transform each local
Laplacian δi.

Laplacian surface editing is obtained by solving the system in Equation (5.17) in the
least squares sense. The deformed geometry X̂ is thus defined by

X̂ = argmin
X′

(
n

∑
i=1
‖δi− ∑

j∈Ni

1
di
(x′j−x′i)‖2 +

m

∑
i=i
‖ci−x′i‖2

)
, (5.21)

where an umbrella operator is used as a Laplacian, but another discretization of Lapla-
cian could be used instead. Incorporating individual transformations results in a slightly
modified functional

X̂ = argmin
X′

(
n

∑
i=1
‖Ti δi− ∑

j∈Ni

1
di
(x′j−x′i)‖2 +

m

∑
i=1
‖ci−x′i‖2

)
. (5.22)

The part Ti δi is contained in a right-hand side of a linear system corresponding to
Equation (5.17), allowing us to efficiently find the solutions while changing the local
transformations can be changed.

Different approaches of obtaining Ti have been proposed. For example, a few transfor-
mations can be defined by a user and interpolated over the surface using the topological
distance [163].

Alternatively [93], the transformations can be approximated by first applying a rough
deformation to the mesh by computing the membrane solution X̃, i.e. a solution where
the upper part of the linear system of Equation (5.20) becomes

LX̃ = 0 . (5.23)
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Transformations Ti are then found locally by fitting the original 1-ring of the vertex vi
(i.e. the vertices xk, for k ∈ {i}∪Ni) and the newly reconstructed one

Ti = argmin
T ′i

∑
k∈{i}∪Ni

‖T ′i xk− x̃k‖2 . (5.24)

The system in Equation (5.22) can now be solved using the approximated transforma-
tions.

Lastly [133], the appropriate transformation Ti for each vertex can be computed based
on the eventual new configuration of vertices X̂. Solving for X̂ implies being able to
find Ti as in Equation (5.24), and if coefficients of Ti are a linear function in X̂, then we
can solve Equation (5.22), without explicitly finding Ti.

An large body of literature about Laplacian modeling emerged over the recent years.
Still, only in Appendix B of [2] were we able to find an explicit description on how to
form the system matrix in order to solve Equation (5.22), without explicitly finding Ti.

5.2 Phong-type Normals

Having the base shape and the textured model, the texture is defined as the difference
between the two. That, however is still not uniquely defined as we can calculate the
difference between two surfaces in a variety of ways. One of the simple solutions to the
problem is to maintain the mesh topology while obtaining the base shape and use vertex
correspondence to define the mesh difference. This will work well when the smoothing
algorithm used for obtaining the shape does not introduce substantial tangential drift.

If the aim is to encode the surface detail in respect to a base shape of an arbitrary topol-
ogy, we need to find a suitable way of computing the difference between an arbitrary
point p (e.g. a vertex of the textured object) and a base shape represented as a triangle
mesh.

A simple solution is to project p to the surface using normal vectors of the triangular
faces. However, the orthogonal prisms spanned by triangles of the mesh translated in
the normal direction do not completely cover the vicinity of the mesh, see Figure 5.6,
left. For a point in the area not covered by the normal field we would either have to
find a projection point with negative barycentric coordinates [63], or allow associating
it (and all the others in the same uncovered wedge or pyramid) with the nearest edge
or vertex. On the other hand, a point can be projected to more than one face, but that is
not a big problem, as we always can chose the shortest projection distance.
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Figure 5.6: The advantage of Phong-like normal field illustrated in 2D. A piecewise
constant normal field (left) in not fully covering the vicinity of the mesh. A continues
Phong-like normal field (right) solves that problem.

5.2.1 Phong Detail Representation

A better solution is to use Phong like normal field used in [146] and [79]. As in Phong
shading [113] the idea is to linearly interpolate a normal vector across the surface of a
polygon. Using it in the context of obtaining a difference vectors to encode surface de-
tail is in [21] called the Phong detail representation. This results in a continues normal
field, achieved by linearly blending vertex normals, see Figure 5.6, right. Normals at
vertices can be estimated using e.g. angle weighting [11].

Phong detail representation leads to the interesting problem, which was solved in the
literature using iterative optimization, while we suggest an analytical solution. The
work presented here is a part of an initial investigation in geometric texture. We char-
acterized and synthesized texture by matching histograms which contain height-field
information. Despite moderate success, the results of synthesis were inferior to those
of other existing algorithms, and we abandoned the approach.

5.2.2 Problem Statement

Given a point p and a triangle (A,B,C) with vertices in points a, b and c and with
the associated normal vectors na, nb and nc we want to find a point q in the triangle,
such that the difference vector p−q lies along a Phong-type normal nq at point q, see
Figure 5.7.

It is easy to verify the existence of cases where the solution is not in the triangle (take
e.g. a case of vertex normals forming a pyramid, and p lying outside its volume), and
also that q is not unique (take e.g. a situation where two of the vertex normals point
to p). We will not discuss the existence and uniqueness of the solution now, since the
analytic method presented below gives a general form of a solution.
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Figure 5.7: The setting for a Phong-normals problem. Given a triangle, with the nor-
mals defined at vertices and linearly interpolated across the triangle, find the projection
of an any point p to the triangle.

5.2.3 Iterative Solution

We start by presenting the solution given in [79].

Expressing q and nq in barycentric coordinates u+ v+w = 1 yields

q = ua+ vb+wc , (5.25)
nq = una + vnb +wnc . (5.26)

Parallelism of the difference vector and the normal is expressed as vanishing cross
product

(p−q)×nq = 0 . (5.27)

This leads to the bivariate quadratic function

F : R2→ R3 ,

F(u,v) = (p−ua+ vb+(1−u− v)c)× (una + vnb +(1−u− v)nc) , (5.28)

and the solution of our problem is equivalent to finding the parameter value (u,v) such
that F(u,v) = 0.

Using the distributive property of the cross product we obtain

F(u,v) = d0 +udu + vdv +u2duu +uvduv + v2dvv , (5.29)
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where

d0 = (p− c)×nc , (5.30)
du = (c−a)×nc +(p− c)× (na−nc) , (5.31)
dv = (c−b)×nc +(p−b)× (nb−nc) , (5.32)

duu = (c−a)× (na−nc) , (5.33)
duv = (c−a)× (nb−nc)+(c−b)× (na−nc) , (5.34)
dvv = (c−b)× (nb−nc) . (5.35)

The solution of the above system is found in [79] and [21] by several iterations of
Newton’s method, minimizing the function

f (u,v) = ‖F(u,v)‖2
2 . (5.36)

The gradient and the Hessian of function f are

∇ f (u,v) = 2 [Fu Fv]
T F , (5.37)

∇
2 f (u,v) = 2

(
[Fu Fv]

T [Fu Fv]+

[
Fuu Fuv
Fuv Fvv

]T [ F 0
0 F

])
, (5.38)

with partial derivatives of function F(u,v) given as following 3×1 vectors

Fu = du +2uduu +uduv , (5.39)
Fv = dv +uduv +2vdvv , (5.40)

Fuu = 2duu , (5.41)
Fuv = duv , (5.42)
Fvv = 2dvv . (5.43)

Starting e.g. in the barycenter of the triangle (u0,v0) = (1/3,1/3), the optimization is
achieved by solving

∇
2 f (u,v)h =−∇ f (u,v) (5.44)

and updating

(ui+1,vi+1) = (ui,vi)+h (5.45)

in each iterative step.
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5.2.4 Analytical Solution

We notice1 that point p is at a certain distance d from the point q

p = q+dnq . (5.46)

Expressing both q and nq in barycentric coordinates leads to

p = ua+ vb+wc+duna +dvnb +dwnc

= u(a+dna)+ v(b+dnb)+w(c+dnc) .
(5.47)

This shows that point p has barycentric coordinates (u,v,w) in a triangle defined by
shifted vertices ad = a+dna, bd = b+dnb and cd = c+dnc.

The fact that p is in the plane of the shifted triangle we write as

nd
T (p− cd) = 0 , (5.48)

where nd is the direction of the plane normal

nd = (ad− cd)× (bd− cd) . (5.49)

This is a cubic equation in d

r3d3 + r2d2 + r1d + r0 = 0 (5.50)

with coefficients

r3 = − [na,nb,nc] , (5.51)

r2 = pT (na×nb +nb×nc +nc×na)

−
(
[a,nb,nc]+ [b,nc,na]+ [c,na,nb]

)
, (5.52)

r1 = pT (a× (nb−nc)+b× (nc−na)+ c× (na−nb)
)

−
(
[na,b,c]+ [nb,c,a]+ [nc,a,b]

)
, (5.53)

r0 = pT (a×b+b× c+ c×a)− [a,b,c] , (5.54)

with [ , , ] denoting a scalar triple product

[x,y,z] = xT (y× z) . (5.55)

1A big thanks to Ante Turudić for valuable suggestions leading to this solution



5.2 Phong-type Normals 53

When calculating the projections of many points to triangle mesh, the three vectors and
the four scalars from the expression for coefficients ri that are not depending on p, can
be pre-computed for every mesh triangle.

Each real root di of the cubic equation corresponds to a candidate base point qi in the
plane of the triangle (a,b,c). A cubic equation has between one and three real roots (in
most applications we can assume one or three), so there is always a candidate solution.
It remains to check whether candidate points qi fall within the triangle or outside of it.
Starting with the smallest absolute root we calculate the barycentric coordinates

u =
tbbtpa− tabtpb

taatbb− t2
ab

, (5.56)

v =
taatpb− tabtpa

taatbb− t2
ab

, (5.57)

w = 1−u− v , (5.58)

where

taa = (ad− cd)
T (ad− cd) , (5.59)

tbb = (bd− cd)
T (bd− cd) , (5.60)

tab = (ad− cd)
T (bd− cd) , (5.61)

tpa = (p− cd)
T (ad− cd) , (5.62)

tpb = (p− cd)
T (bd− cd) . (5.63)

A case where ad, bd and cd form a degenerate triangle (line or a point) is not considered.

5.2.5 Advantages of Analytical Solution

The proposed analytical solution proves the existence of up to three distinct candidate
solutions qi in the plane of the triangle, and any of these can be inside or outside the
triangle.

Our experiments prove the analytical solution to be more efficient and more accurate
then the optimization based method. Furthermore, there are cases where the optimiza-
tion based method gives an unwanted result. The objective function has three distinct
minima (see Figure 5.8), and there is no guarantee that the desired solution will be
reached. It happens that Newton’s method moves towards an outside candidate solu-
tion, even when an inside solution exists. It also happens that optimization gets stuck
between the solutions.
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Figure 5.8: An example of a situation where the analytical solution to Phong normals
problem has a clear advantage over the iterative. On the left a situation where all three
candidate solutions lie close to the triangle, and the optimization algorithm might move
towards the solution which is outside, or get stuck between the solution. On the right
an energy landscape of a similar situation is shown.
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5.3 Discrete k-Forms

The exterior calculus of differential forms (first introduced in [25]) allows one to ex-
press differential and integral equations on smooth and curved spaces in a consistent
manner, not depending on coordinates. Building blocks of the exterior calculus are
differential forms, and operators that act on these. A differential form is, informally,
a quantity that can be integrated. In particular, a k-form can be integrated on a k-
dimensional region.

An important operation on differential forms is the exterior derivative, which extends
the notion of the differential of a function to differential forms. The basic operations
of vector calculus, divergence, gradient and curl, are special cases of, or have close
relationships to, the exterior derivative. Likewise, the fundamental theorem of calcu-
lus, and the theorems of Green and Stokes are expressed as a special case of a the
generalized Stokes’ theorem.

Discrete exterior calculus is an extension of the exterior calculus to simplicial com-
plexes [69], including triangle meshes embedded in R3. It provides the discretization
of relevant operators such as divergence, curl and gradient in form of simple sparse ma-
trices acting on intrinsic (coordinate-free) coefficients defined on vertices, edges and
triangles. More relevant to us, a central idea in discrete exterior calculus is to repre-
sent different fields trough measurements (coefficient) on mesh entities, using discrete
k-forms. In other words, the discrete exterior calculus replaces the smooth space by
a mesh, which in this case contains the list of oriented cells, incidence matrices, and
metric information.

Generalized Stokes’ theorem can be used to define discrete exterior derivative and dis-
crete k-forms. Put in another way, the discrete counterpart to the notion of differential
forms is found by demanding that Stokes’ theorem holds.

All versions of Stokes theorem turn an integral over a k-dimensional set into a boundary
integral, i.e. over the set of dimension k− 1. For that purpose, we consider mesh
entities and their boundaries. The boundary of the edge are the two incident vertices,
the boundary of the face are the three incident edges. (The boundary of the tetrahedron
are the triangular faces, etc.) We use ∂σ to denote the boundary of a simplex σ .

In addition, we use d to denote an exterior derivative, a mapping from k-forms into
(k+1)-forms. If ω is a k-form on a simplex, then we define dω as an unique (k+1)-
form such that the Stokes’ theorem holds.

Written in terms of forms, the generalized Stokes’ theorem becomes simple. It states
that the exterior derivative d applied to arbitrary form ω is evaluated on arbitrary sim-
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plex (e.g. triangle of edge) as ∫

σ
dω =

∫

∂σ
ω . (5.64)

Assuming for example that ω is a 0-form defined at vertices. According to generalized
Stokes’ theorem, evaluating dω on an edge ei j is equivalent to evaluating ω on edge
boundaries (vertices) as ω(v j)−ω(vi). Consequently, the value of the 1-form dω is
known only in an integral sense, as a value on an edge.

In this section we restrict the discussion to discrete k-forms on triangle meshes (k =
0, 1, 2). We focus on discrete 1-forms, which are used in Chapter 8 where we define
a tangent field on the mesh surface. Discrete 1-forms provide an intrinsic, coordinate-
free approach of representing the tangential field. A more in-depth coverage of the
approach can be found in [29] and [44]2. Another main ingredient for performing the
reconstruction of the discrete data is the piecewise linear interpolators.

5.3.1 Discrete 1-Forms

Discrete k-form maps an (oriented) k-cells to a real value, which represents a measure-
ment of a certain field. A 0-form ω0 represents a scalar function, which is defined
trough its value ci on vertices

ci = ω
0(vi) . (5.65)

The coefficient ci is the value of a scalar function at position xi belonging to vertex
vi. An example of such function can be a vertex-defined color or height field. The
approaches using 0-forms for modeling and editing are based on the Laplace operator.

A discrete 2-form ω2 is a function represented by its density ci jk on mesh triangles

ci jk =
∫

fi jk

ω2 . (5.66)

The integration of the 2-formω2 is performed on a 2-simplex, i.e. an area of the triangle
face fi jk. For example, discrete 2-forms can be used to represent the flux or vorticity of
a vector field.

Most relevant to us, a 1-formω1 represents a vector field defined trough its line integral
over mesh edges

ci j =
∫

ei j

ω1 . (5.67)

2Thanks to Mathieu Desbrun for patiently answering my many questions about 1-forms, and to Matthew
Fisher for providing the code which verified the answers.
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The line integral of a vector field is along the segment belonging to the edge ei j. This
implies that we are able to encode a tangent field using one scalar ci j per mesh edge
ei j.

The coefficient ci j will change sign when the direction of integration changes. The
orientation of the edges therefore needs to be fixed, event though it is initially arbitrary.
For the remainder of this section we will consider the orientations of edges to be fixed.
Furthermore, with ei j we will denote an edge ei j as a vector. In other words

ei j = x j−xi , (5.68)

where xi and x j are, as before, the spatial positions of mesh vertices. We will also refer
to vector ei j as the edge ei j.

Let us illustrate the advantages of this approach. Let us assume that we have a triangle
mesh, and two (continuous) fields defined everywhere on it. The one field is a scalar
field, carrying, for example, a color information. The other field is a tangent vector
field, carrying, for example an information about the texture direction. We want to
discretize those two fields on the mesh, and store them in an efficient manner. We want
to be able to translate, rotate and possibly even deform the mesh, without having to
worry about our field representation. We might also want to be able to easily transfer
our two fields from the mesh to another surface.

As for the scalar field, an easy solution is to sample the values of the scalar field at
the vertex positions and save them as a list of scalar values associated with vertices.
Obviously, we will be able to reconstruct the scalar field by using some interpolation
method, also after transforming and deforming the mesh. The quality of reconstruction
will depend on the sampling density. In a similar manner, we will be able to transfer
the field to another surface.

As for the tangent vector field, the situation is more complex. Unlike the normal direc-
tion, which can always be estimated on a surface, there is no canonical way of storing
the tangential displacement. Clearly, if we store the field using Cartesian coordinates,
we need to transform them together with the mesh, i.e. when performing a rotation. We
might, for instance, choose one outgoing edge for each mesh vertex, and use it (together
with normal direction) as a basis of a locally defined system. We might also define the
local basis by looking at the partial derivative of a map from parameter domain to the
surface. Unfortunately, these obvious methods require either an ordering of the edges,
or an added parametrization, and the representation of tangent field may suffer from
artifacts accordingly.

On the other hand, we might represent the tangent field t as a discrete 1-form. For each
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mesh edge ei j we compute a field coefficient

ci j =
∫

ei j

t ·ds , (5.69)

where the line integration occurs over the edge ei j. Coefficients ci j form a discretization
of the tangent field t over the mesh. As we will show next, we can reconstruct the
tangent field t from this set of edge-based scalars.

Since we represented the tangent field with scalars stored on mesh entities (here edges),
we can transform the mesh without thinking about the coefficients ci j. In short, the
representation of tangent field using discrete 1-forms is intrinsic to mesh or coordinate
free.

5.3.2 Interpolation of Discrete Forms

Discrete k-forms are defined to have a value at discrete mesh entities. This represen-
tation not sufficient if there is a demand for evaluating a k-form in the rest of space.
For example, we might want to evaluate the tangent field t at the mesh vertex or at a
point belonging to a triangle face. To obtain a value of the discrete k-form at an ar-
bitrary point we interpolate the discrete k-forms using piecewise linear interpolation
functions.

For discrete 0-forms (data at vertices), we use the usual vertex-based linear interpo-
lation, often referred to as the hat function φv = {φi|vi ∈ V}. The basis function φi
associated with vertex vi has a full support at the vertex vi, goes linearly to zero in the
one-ring neighborhood of vi, and has zero support at any other vertex v j 6= v j.

Within a triangle, the basic functions of the adjacent vertices are the barycentric coor-
dinates. In other words, at the point with barycentric coordinates αi, α j, αk (associated
to vertices vi, v j and vk respectively) and within the face fi jk, the basic function φi is

φi(αi,α j,αk) = αi . (5.70)

For discrete 1-forms (data at edges), the appropriate interpolators φe = {φi j|ei j ∈ E}
are given by Whitney elements, used first in [155]. Whitney element associated with
an edge ei j between vi and v j is defined as

φi j = φidφ j−φ jdφi , (5.71)

where the differential operator d in this case corresponds to the gradient of the scalar
field.
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Figure 5.9: A way of visualizing interpolators for 0-forms and 1-forms. Top: Visu-
alization of the three interpolation support functions for 0-forms, corresponding to the
three vertices. Bottom: Visualization of the three interpolation support functions for
1-forms, corresponding to the three edges.

Within the triangle fi jk the function φi is decreasing linearly from the value 1 at the
vertex vi, to the value 0 at the edge e jk. Consequently, within the triangle fi jk gradient
dφi is a constant vector field orthogonal to the edge e jk. To determine the slope of the
gradient we notice that the decrease from value 1 to 0 occurs over the distance between
vi and e jk. This distance (the height of triangle measured from the corner vi) can be
expressed in terms of the triangle area Ai jk and the edge length ‖e jk‖. This altogether
leads to the expression for the gradient of the function φi as

dφi =
1

2Ai jk
e⊥jk , (5.72)

where with e⊥jk we denote the edge e jk as a vector, and rotated for π/2 in the plane of
the face fi jk.

Using the same argument to determine dφ j, we arrive to the following expression for
linear interpolation support function at the point within the triangle, and given by its
barycentric coordinates

φi j(αi,α j,αk) =
1

2Ai jk
(αie⊥ki−α je⊥jk) . (5.73)

Figure 5.9 shows a way of visualizing the interpolator functions for 0-forms and 1-
forms.
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Let us verify that the linear interpolator φi j given by Equation (5.71) does indeed have
a full support on the edge ei j and zero support on all other edges. In other words, we
expect the line integral

∫
ekl

φi j to be 1 if ekl = ei j (or -1 for the opposite orientation) and
0 for any other edge.

We first consider one of the remaining triangle edges e jk. At that edge we have φi = 0,
from the definition of the support function φi (or by noticing that φi are barycentric
coordinates corresponding to vertex vi). Since φi does not change along the edge e jk,
the differential dφ j also vanishes along that edge (the gradient is orthogonal to the line
of integration). Therefore we have

∫

e jk

φi j = 0 . (5.74)

By similar line of reasoning, we can see that φi j has zero support on all edges other
than ei j.

It remains to show that φi j has a full support on the edge ei j, i.e. that the line integral∫
ei j

φi j is 1. We start by noticing that on edge ei j we have φi+φ j = 1, from the definition
of the 0-form interpolator. Now, on edge ei j we have

φi j = φid(1−φi)− (1−φi)dφi =−dφi . (5.75)

Since φi changes linearly from 1 to 0 along the edge ei j, we have
∫

ei j

φi j =−
∫ φi=0

φi=1
dφi = 1 . (5.76)

We have defined a correct basis for interpolating discrete 1-forms.

To sum up, if we use the discrete 1-forms to represent a tangent field t on a triangle
mesh, we can reconstruct the tangent field from the ci j coefficients using linear inter-
polation. For a point inside a triangle fi jk, with the barycentric coordinates αi, α j and
αk, corresponding to vertices vi, v j and vk the reconstructed value of the field t is

t(αi,α j,αk) =
1

2Ai jk
((ckiαk− ci jα j)e⊥jk +(ci jαi− c jkαk)e⊥ki +(c jkα j− ckiαi)e⊥i j) ,

(5.77)
where we still with ⊥ denote π/2 rotation of the edges (as 3D vectors) in the plane of
the triangle fi jk, and where Ai jk is the area of the triangle fi jk.

If we want to reconstruct the field t at vertices, we start by computing the contribution
of a single face fi jk using Equation (5.77), and then average the face contributions from
all incident triangles. The contribution of one face fi jk to the field at the vertex xi (i.e.
point with barycentric coordinates 1,0,0 corresponding to vertices vi, v j, vk) is

ti jk(xi) =
1

2Ai jk
(ci je⊥ki− ckie⊥i j) , (5.78)
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vi v j

vk

t

c′i j

c′kic′′ki

c′′i j

θ

θ

θ

The lengths of the projections c′i j and c′ki are
obtainable from field coefficients ci j and cki

c′i j =
t · ei j

‖ei j‖
=

ci j

‖ei j‖
,

c′ki =−
t · eki

‖eki‖
=− cki

‖eki‖
.

For two right-angled triangles we conclude

c′′i j =
1

sinθ
c′i j , c′′ki =

1
sinθ

c′ki .

The vector t can be expressed as a sum

t = c′′i j
e⊥ki

‖eki‖
+ c′′ki

e⊥i j

‖ei j‖

=
ci je⊥ki− ckie⊥i j

sinθ‖ei j‖‖eki‖

=
1

2Ai jk
(ci je⊥ki− ckie⊥i j) .

Figure 5.10: If t is an unknown vector, and the only available information about t are
the lengths of its projections c′i j and c′ki on the two triangle sides, can we express t in
terms of c′i j and c′ki and triangle edges? The result can be beneficial for understanding
Equation (5.78) if we consider the a constant vector field t.

Averaging those face contributions from all incident triangles thus provides a single 3D
vector t per vertex of the mesh. In brief, we have

t(xi) =
1
di

∑
j,k∈Ni
fi jk∈F

ti jk(xi) =
1

2di
∑

j,k∈Ni
fi jk∈F

1
Ai jk

(ci je⊥ki− ckie⊥i j) , (5.79)

where the summation covers the 1-ring neighborhood Ni of the vertex vi, and di denotes
vertex valency.

A way of understanding Equation (5.78) is provided in a Figure 5.10 where we consider
a constant field t. In that case, we can think of coefficients ci j as the projections of the
tangent field t on the edge vectors, scaled by the edge length. Having the projections of
t on two edges, we can geometrically construct t. This argument can be used as a hint
for getting some intuition about Equation (5.78).
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5.3.3 Least Squares 1-Form Assignment

If we start with the tangent field defined on the mesh vertices, a good estimate of ci j
for an edge ei j would be the average of the field values at vertices xi and x j

ci j =
1
2
(t(xi)+ t(x j)) · ei j . (5.80)

On the other side, if we have start with the tangent field defined by the edge coefficients
ci j, the field reconstruction at vertices involves using Equation (5.78) for computing the
contribution of incident each face and averaging face contributions.

However, if we attempt to close the circle (e.g. start with t defined on vertices, obtain
ci j by averaging two vertex contributions, and finally reconstruct t at vertices using
Equation (5.78)) we will not get back to the original field values. The reason for this
loss lies in successive averaging. We perform averaging both when computing ci j and
when reconstructing the field. This averaging results in a smoothing of the tangential
field.

However, in case of tangent field coefficients, we can ensure the best reconstruction
result if we do not start from the ci j estimated by averaging, but instead calculate these
coefficients globally. We obtain ci j by a global fit, fixing them so that they do result in
the original tangent field when reconstructed. We achieve that by setting up a system
of linear equations and solving it in a least squares fashion [58].

The linear system is set up by stacking the n equations (one for each vertex) of the form
in Equation (5.79). Each vertex contributes with three Cartesian coordinates, resulting
with in total 3n equations. The unknowns are the field coefficients ci j, and there are m
of them, one for each mesh edge. A final linear system looks like




Px

Py

Pz


c =




tx

ty

tz


 , (5.81)

where the unknown coefficients ci j are stabled in a m-by-1 vector c, and the 3n-by-1
vector on the right hand side contains x, y, and z coordinates of the tangential field at
mesh vertices. Matrices Px, Py and Pz are three n-by-m matrices which depend only on
the topology and geometry of the mesh, not on the tangent field. The element Px

i j of the
n-by-m matrix Px is non-zero only if the vertex vi is incident to the edge ei j, so there
are di non-zero elements in the i-th row of the matrix.

The non-zero elements of Px
i j are given by

Px
i j =

1
2di

(
1

Ai jk
(e⊥ki)

x− 1
Ail j

(e⊥il )
x
)

. (5.82)
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The two summands of Px
i j correspond to the two faces fi jk and fil j incident to the edge

ei j. Accordingly, we have triangle areas Ai jk and Ail j, and the edges rotated in the
planes of the corresponding faces. The superscript x indicates that only the x Cartesian
coordinates of edge vectors contributes to the Px matrix. The other two coordinates
contribute to Py and Pz in the same manner.

The resulting system of equations has 3n equations with m unknowns. For meshes
of a small genus, this is just slightly overdetermined linear system, and least squares
solution gives a good representation of a tangent field.

5.4 Parametrization

Parametrization is one of the central issues in graphics. Parametrization refers to the
correspondence between a surface and a plane trough a function or mapping.

Parametrization generally involves some distortion. To illustrate that we can consider
the most well-known mapping problem, the cartographic projection.

The surface of the Earth, roughly spherical shape, can not be mapped to a plane without
stretching or tearing.3 Some of the desired properties measured on the Earth’s surfaces
(distance, angle, area, shape) will not be preserved. The cartographic projection should
be determined to suit the purpose of the map in the best way. A well know Mercator
projection is an example of a conformal (angle preserving) mapping [35].

The topology of the surface plays also an important role. Mapping a whole spherical
surface, as Earth’s, to s plane inevitably involves cutting, usually along a meridian.
Since only surfaces with disc topology can be mapped to a plane, any spherical surface
needs to be either opened or divided into smaller pieces. For shapes with more compli-
cated geometry, finding an optimal cut presents a problem in itself, which is not of an
interest here. We focus on parameterizing surfaces which are already of disk topology.

In computer graphics, parametrization of a 3D mesh amounts to assigning each vertex
a pair of coordinates refereing to its position in the parametrization plane. Among
other applications, this facilitates texture mapping, which can dramatically enhance
visual richness of 3D surfaces. Despite numerous existing parametrization techniques,
to map the texture onto an arbitrary surface with the only acceptable distortions is still
a tedious job.

As mentioned above, flattening smooth surfaces will generally involve distortion (un-

3A consequence of Carl Friedrich Gauss’s 1828 Theorema Egregium, Remarkable Theorem, stating that
the Gaussian curvature is invariant under local isometry.
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less the surface is developable and already has zero Gaussian curvature, as for example
a cylinder or a cone) and we have to chose the desired property, which we want to
preserve. We are limited even further when parameterizing a triangle mesh, due to it’s
discrete nature. For example, wanting to preserve angles between triangle edges means
being allowed to scale each triangle independent of others. However, as triangles share
edges, we can not apply the different local scale. Consequently, not even a single de-
sired property, as conformality, can be fully preserved when parameterizing triangle
mesh. The solution is to chose the desired property and minimize the corresponding
distortion.

One of the methods yielding good theoretical and practical result on parametrization
of triangulated surfaces, and the one used in this project, is presented in [30]. It intro-
duces a family of admissible distortion measures as a linear combination of two discrete
distortions: angle distortion and area distortion. The resulting admissible parametriza-
tion is therefore a combination of discrete conformal parametrization (minimizing an-
gle distortion) and discrete authalic parametrization (minimizing area distortion). In
both cases, the discrete distortion measures results in quadratic energy, and computing
parametrization reduces to solving a sparse linear system.

We will here, in accordance with notation from Section 5.1, by xi = (xi,yi,zi) denote
the coordinates of the vertices in the triangle mesh M . The parameter domain is a
2D mesh U having the same topology (connectivity) as M , with coordinates of the
vertices denoted by ui = (ui,vi). Parametrizing a mesh means providing a piecewise
linear mapping between those meshes, such as

ψ : M →U ,

xi→ ui, i = 1, . . . ,n . (5.83)

To measure the distortion of the parametrization ψ , we look at energy needed to distort
meshes M and U one into another, i.e. the energy needed to flatten a mesh using a
given parametrization. For a given distortion measure we are interested in finding such
a parametrization that the distortion is minimal.

Since our mesh has a disk topology, we can chose to impose different boundary condi-
tions (e.g. pinning the boundary vertices to a circle), or allowing the boundary vertices
to move and further reduce the distortion.

If we strive for conformal parametrization, Dirichlet energy [115]

EA = ∑
ei j∈E

(cotαi j + cotβi j)‖ui−u j‖2 , (5.84)

should be used as a distortion measure. The summation goes over all edges, with
‖ui−u j‖ being the lengths of edges in parameter domain, and the angles αi j and βi j
are angles opposite to the ei j on the original 3D mesh as in Figure 5.11.
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Figure 5.11: A 3D 1-ring of the original mesh and its associated flattened version in
the parametrization domain.

Since this energy is quadratic, differentiating Equation (5.84) with respect to ui results
in a simple system of linear equations. This system has a unique solution, which is
easier to compute once we fix the boundaries in the parameter domain. The solution is
a harmonic mapping, and in this case it is as conformal as possible.

The linear equation for a optimal position of the internal vertex ui is

∂EA

∂ui
= ∑

j∈Ni

(cotαi j + cotβi j)‖u j−ui‖= 0 . (5.85)

As for the boundary vertex, fixing its positions corresponds to extending the system
with equations

ui = bi, (5.86)

where bi are the coordinates where the boundary vertex is placed in the parameter
domain.

We can now write a sparse linear system, which leads to a discrete conformal parametriza-
tion of the mesh. We assume the mesh vertices to be indexed in such a way that
the first k vertices are internal vertices and the remaining n− k are boundary vertices.
The boundary conditions bi are stored in a (n− k)-by-2 matrix B, and the final mesh
parametrization is found in the n-by-2 matrix U containing the 2D parametrization co-
ordinates. The system to solve is

[
M

0n−k,k In−k,n−k

]
U =

[
0
B

]
, (5.87)

where M is a sparse k-by-n matrix containing the cotangent coefficients from Equa-
tion (5.85). The elements Mi j of the matrix M are given by

Mi j =





cotαi j + cotβi j, j ∈Ni
−∑k∈Ni(cotαik + cotβik), j = i
0 otherwise

. (5.88)
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A similar linear system for finding the discrete authalic parameterization can be ob-
tained by minimizing the energy related to the integral of the Gaussian curvature [30].
Additionally, moving the boundaries can further improve the parametrization. And fi-
nally, a natural parameterization with optimal boundary can also be be found by solving
a linear system.



CHAPTER 6
Markov Random Fields on

Triangular Meshes

This chapter contains an article [3] presented at WSCG 2010 – The 18th
International Conference on Computer Graphics, Visualization and Com-
puter Vision, Plzen, 1-4 February 2010. Here is a slightly changed and
extended version of the article text.

Vedrana Andersen, Technical University of Denmark
Henrik Aanæs, Technical University of Denmark

Andreas Bærentzen, Technical University of Denmark
Mads Nielsen, University of Copenhagen

Abstract. In this paper we propose a novel anisotropic smoothing scheme
based on Markov random fields (MRF). Our scheme is formulated as two
coupled processes. A vertex process is used to smooth the mesh by dis-
placing the vertices according to a MRF smoothness prior, while an inde-
pendent edge process labels mesh edges according to a feature detecting
prior. Since we should not smooth across a sharp feature, we use edge
labels to control the vertex process. In a Bayesian framework, MRF priors
are combined with the likelihood function related to the mesh formation
method. The output of our algorithm is a piecewise smooth mesh with
explicit labeling of edges belonging to the sharp features.
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6.1 Introduction

Markov random fields (MRF) have been used extensively for solving image analysis
problems at all levels. The local property of MRF makes them very convenient for
modeling dependencies of image pixels, and the MRF-Gibbs equivalence theorem pro-
vides a joint probability in a simple form, making MRF theory useful for statistical
image analysis. While some examples are mentioned below, MRF have rarely been
used for mesh processing [86]. One reason could be that MRF are usually defined on
regular grids, but this is by no means required.

In this paper we demonstrate that feature preserving mesh smoothing may conveniently
be cast in terms of MRF theory. Using this theory we can explicitly model our knowl-
edge of properties of the surface (prior knowledge, e.g. how smooth the surface should
be, which sharp features should it contain) and our knowledge of the noise (likelihood,
e.g. how far do we believe the measured position of a vertex is likely to be from the
true position). The central element of the MRF formulation is that we use Bayes rule to
express the probability of any mesh configuration by defining its of prior and likelihood
independently. This division of responsibilities often turns out to be a benefit.

For instance, a big advantage of the MRF formulation is that we can use the likelihood
to keep the mesh fairly close to the input, avoiding the shrinkage associated with many
other schemes. Unlike [68] we do not obtain a hard constraint, but meshes far from the
input can be made arbitrarily unlikely by choosing an appropriate likelihood function.

We investigate the use of MRF for formulating priors on 3D surfaces in a number of
different ways. The smoothness prior encodes the belief that a smooth surface (ac-
cording to some fairness criterion) is more probable than a noisy surface. In particular,
we show how we can use one MRF to perform explicit labeling of edges according to
how sharp they are, and another MRF to find optimal vertex positions according to the
smoothness prior. Using our edge labeling from the first MRF to control the vertex
smoothing, we are able to recapture very subtle sharp features on the noisy mesh.

6.2 Related Work

Mesh-smoothing algorithms have a long history in the field of geometry processing
since the early work of [140], which demonstrated the connection between various
explicit linear methods using the so called umbrella operator and low pass filtering.
In [31] a discrete Laplace Beltrami operator was introduced and the connection be-
tween smoothing and mean curvature flow was explained. Both techniques are effi-
cient, but fail to distinguish the noise from the features of the underlying object.



6.2 Related Work 69

To address this problem, anisotropic diffusion [32] and diffusion smoothing of the
normal field [139] were proposed. The results are impressive, but the computation
complexity puts a limit on the size of the model. More efficient methods were also
developed, such as non-iterative feature-preserving smoothing [72] based on robust
statistics, and an adaptation of bilateral filtering to surface meshes [46].

Another feature preserving smoothing method, fuzzy vector median smoothing [127],
is a two-step smoothing procedure. In the first step face normals are smoothed using a
robust method, which employs distance to median normal as smoothing weight. In the
next step vertex positions are updated accordingly. More recently a Bayesian approach
was proposed [34] . This method uses a smoothness prior and the conjugate gradient
method for optimization. It is feature-preserving, but without an explicit feature de-
tection scheme. Similar to [34], we use a Bayesian approach, but unlike that method
we obtain feature preservation by explicitly detecting the set of chosen features. Our
method is also more flexible, allowing us to use a variety of priors and likelihood po-
tentials.

An integral part of our method is detection of sharp features. This has been addressed
in [8] for recovering feature edges. This method is based on the dual process of sharp-
ening and straightening feature edges. Vertex-based feature detection using an exten-
sion of the fundamental quadric is utilized in a smoothing method described by [71].

Comprehensive study on the use of MRF theory for solving image analysis problems
can be found in the books [90, 158]. MRF theory is convenient for addressing the
problem of piecewise smooth structures. In [57] a foundation for the use of MRF
in image analysis problems is presented in an algorithm for restoration of piecewise
smooth images, where gray-level and line processes are used. Another application of
MRF for problems involving reconstruction of piecewise smooth structures is [33],
where high-resolution range-sensing images are reconstructed using weights obtained
from a regular image.

There are some previous examples of using MRF theory to 3D meshes, but the applica-
tions are somewhat different. In [157] MRF are used in the context of surface sculpting
with the deformation of the surface controlled by MRF potentials modeling elasticity
and plasticity. MRF was also used for mesh analysis and segmentation in [86].

In our work we investigate the possibility of formulating surface priors in terms of
MRF, and use those priors for reconstructing the surface from the noisy date. Unlike
most other mesh smoothing algorithms, our approach does not only preserve sharp
ridge features, but also explicitly detects the ridges.

The method described here is not automatic and requires an estimation of a consider-
able set of parameters. However, this provides a great control over the performance of
the priors.
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6.3 Mesh Smoothing using MRF

Markov random fields is a powerful framework for expressing statistical models orig-
inating in computational physics, and it has proven highly successful in image analy-
sis [90, 158]. A MRF is, essentially, a set of sites with associated labels and a well
defined neighborhood structure. The role of a site can be given to any image or a mesh
entity: a site can be a pixel, a mesh vertex, an edge, etc. The labels are the values which
we wish to assign to the sites, e.g. pixel color, vertex position or edge label. A brief
introduction to general MRF theory is given in Subsection 4.2.

By assigning labels to sites, we obtain a certain configuration, or labeling. For exam-
ple, any 256-by-256 image is a labeling of a 256-by-256 pixel grid. Using MRF we can
formulate our knowledge about the labeling problem at hand, and compute the proba-
bility of any configuration. This probability measure can than be used as an objective
function when we wish to find the optimal configuration.

It is a central idea in MRF theory that the label at a given site must only depend on the
labels of its neighbors. This framework lends itself well to mesh based surfaces, where
the neighborhood of a vertex can be naturally defined via its connecting edges.

Apart from a well developed mathematical framework one of the main advantages of
MRF is that its Markovianity (local property) makes is quite clear what the objective
function locally aims at achieving. By minimizing the objective function, we obtain a
global effect based on locally defined interactions.

Exponential distributions are often used when formulating the global objective func-
tion. The joint probability distribution function of given configuration f is given by

P( f ) ∝ e−
1
T ∑U( f ) , (6.1)

where the U( f ) can be seen as local energy terms (or potentials) defined on neigh-
borhoods, also called cliques. The term T is a temperature term corresponding to the
randomness (spread) of the distribution, but has no influence on the global maximum.
The summation adds up all locally defined potentials into a global energy term. In
order to find the most likely configuration f , we need to obtain

f̂ = argmin
f

∑U( f ) . (6.2)

As said, in our proposed framework, we wish to smooth a given mesh M consisting
of n vertices V = {vi, i = 1, . . . ,n}. The topology (connectivity) of a mesh carries the
information about how the vertices are connected by edges, and how do vertices form
the triangle faces. By ei j ∈ E we will denote the edge (if there is one) between vertices
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vi and v j. The triangle face which has vertices vi, v j and vk at corners is denoted by
fi jk. The geometry of the mesh is fully described by the positions (3D coordinates) of
all of its vertices. We will use xi to denote the spatial coordinates of a vertex vi.

To obtain the smoothing of the mesh, we move mesh vertices, and maintain the connec-
tivity. Therefore, a configuration f which we want to evaluate using a MRF framework
(as in Equation (6.2)) is a mesh geometry X = {x1, . . . ,xn}, i.e. the spatial positions of
the n mesh vertices. In brief, we formulate a MRF in such a way that the mesh vertices
are MRF sites, and the spatial positions of mesh vertices are MRF labels.

When the aim is to optimize for smoothness, MRF probability in Equation (6.1) should
be high for meshes which fulfill a certain (locally defined) smoothness criterium. This
smoothness probability (the prior term) expresses how probable a surface is a priori, i.e.
without making reference to the data. The smoothness prior is formulated by defining
potentials in Equation (6.2) which penalize (local) lack of smoothness. We denote such
smoothness potentials with US.

However, what we want is a smoothed version of the input mesh, not just any smooth
surface. Some of the potentials in Equation (6.2) are thus data (likelihood) terms pe-
nalizing the displacement of the vertices in the smoothed mesh relative to the original
mesh. The likelihood potentials are denoted UL.

The optimal (smoothed) mesh is then defined as vertex configuration X̂ = {x̂1, . . . , x̂n}
which maximizes the joint probability, i.e. minimizes the sum of penalty potentials

X̂ = argmin
X

(
∑US(X)+∑UL(X)

)
, (6.3)

where US are (locally defined) smoothness potentials, and UL are (also locally defined)
likelihood potentials.

The summation sign again indicates that we add up locally defined potentials into a
global energy term. The penalizing potentials can be defined over different kinds of
neighborhoods (e.g. one-rings around a vertex, two adjacent triangles, etc.) and the
summation adds up all the contributions. The neighborhoods for the likelihood and for
the smoothness term do not need to be the same – to evaluate smoothness we generally
require a larger area of the surface.

The Markovian property of MRF is imposed by using the neighborhood systems de-
fined in terms of the mesh topology. In a case of a big neighborhood (e.g. two-ring of
vertices) vertices can be neighbors in MRF sense without being connected. Conversely,
in case of a small neighborhood (a single vertex) connected vertices are not neighbors.
Throughout the text we will use the term connected or adjacent when referring to mesh
topology. The term neighbors is used in a MRF context.
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To recapitulate our approach so far, we will define the energy of the mesh configuration
as a function of vertex coordinates. The energy consists of a likelihood term and a
smoothness term. In our mesh smoothing scheme, the vertex positions will be adjusted
to minimize the chosen energy function.

In the following, we start modeling by defining likelihood potential so that it reflects
our knowledge of the mesh creation process. Afterwards we define the smoothness
potential in such a way that it allows the for the surface to be piecewise smooth. Lastly
we will discuss the optimization method.

6.3.1 Likelihood

We want the output of the smoothing to relate to the input mesh, which has an un-
derlying true surface corrupted by the noise of the data-acquisition device. Assuming
isotropic and Gaussian measurement noise we choose to define the likelihood energy
contribution of the vertex vi as

U i
L(X) = α‖x0

i −xi‖2 , (6.4)

where x0
i and xi denote the initial and the current position of the vertex vi. The constant

α is used as the weight determining how much faith one has in the data. In other
words, α is a factor we can use to weight between our demand for smoothness, and our
demand that the output mesh lies close to the input mesh.

The likelihood term from Equation (6.3) is now defined as

∑UL(X) = ∑
vi∈V

U i
L(X) . (6.5)

Our model is flexible and gives a possibility of plugging in a different likelihood func-
tion, e.g. a volume preserving likelihood function or likelihood utilizing some specific
knowledge about data acquisition process. We worked mostly with synthetic data, and
the focus was on modeling the smoothness prior. Therefore, only the likelihood in the
form of Equation (6.4) has been used.

Furthermore, as we were investigating the effect of the smoothness prior, we choose
a low value for the likelihood weight α in most of the experiments we conducted.
Generally, the value of α = 0.1 produced a good result, and that value was used in all
final experiments.
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6.3.2 Smoothing Potential

Alongside the data term we have a priori terms expressing our assumptions about how
a smoothed mesh should look. Firstly, we have a pure smoothing potential. This po-
tential is a penalty function based on the difference between the normals of a pair of
adjacent faces. Expressed in a term of a 4-vertex clique (a set of 4 vertices which are
all neighbors one to another, see Figure 6.1, left), this potential is

U i jkl
S (X) = ρ

(
‖ni jk−n jlk‖

)
, (6.6)

where ni jk and n jlk are the normals of the two adjacent faces fi jk and f jlk, which in turn
are the functions of vertex positions xi, x j, xk and xl . Function ρ(y) is a smoothing
function which needs to be monotonically increasing on an interval [0,1].

The choice of the smoothing function ρ(y) used in Equation (6.6) greatly influences
the feature preserving property of the smoothing. If we, on the one side, use the square
function ρ(y) = y2, the resulting potential is an over-smoothing quadratic potential
developed by [137]. On the other side, choosing to use ρ(y) = y results in a feature
preserving square root potential1 developed by [34].

In our smoothing scheme, feature preservation will be handled by the explicit edge la-
beling. This allows us to use the aggressive (quadratic) potential for smooth regions,
without being troubled with the loss of sharp features. The resulting smoothness po-
tential is therefore

U i jkl
S (X) = ‖ni jk−n jlk‖2 . (6.7)

Defining the smoothness as in terms of the difference between face normals determines
the neighborhood system for vertices. The suitable MRF neighborhood is defined as
follows: two different vertices are neighbors if they belong to the adjacent faces, see
Figure 6.1, right. Therefore, the MRF neighborhood system defined on the set of mesh
vertices utilizes mesh connectivity, but is not identical to mesh neighborhood system.
One could say that MRF neighborhood is larger than mesh neighborhood, since MRF
neighbors do not need to be immediately adjacent in a triangle mesh.

The smoothing energy from Equation (6.3) is for now defined as

∑US(X) = ∑
4−clique

(vi,v j ,vk,vl)

U i jkl
S (X) . (6.8)

We will subsequently extend this term with the edge labeling process. Note that the
summation over 4-cliques of vertices in a form (vi,v j,vk,vl) is equivalent the the sum-
mation over mesh edges e jk ∈ E, see Figure6.1.

1The square-root potential is the root of the quadratic potential. The names of potentials, adopted directly
from the original nomenclature, can be misleading.
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vi

vk

vl

v j

vi

Figure 6.1: Left: A collection of 4 vertices (a 4-clique), comprising two adjacent faces,
fi jk and f jlk. This is the smallest entity for evaluating the smoothness of the mesh. The
neighborhood structure on right is a union of all 4-cliques , where vi is one of the
vertices. Right: A neighborhood structure for the smoothness prior. The neighbors
of the vertex vi are marked red. When we move vertex vi, we only need to know the
coordinates of the neighboring vertices to calculate the change in the joint smoothness
potential.

ei j e jk

θi jk

vi

v j

vk
ei j

Figure 6.2: Left: A pair of edges. The support for the edges ei j and e jk depends on
the size of the angle θi jk. Right: A neighborhood structure for the edge support. The
neighbors of the edge ei j are marked red. Neighboring edges support each other if they
lie along the same line.
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6.3.3 Edge Labeling

When smoothing man made objects, the presence of ridge features in the result is a part
of our a priori expectation. We include this expectation in our MRF model by labeling
mesh edges as being ridge edges or not. This edge labeling is an integral part of the
smoothing process.

Edge label εi j is a number from the interval [0,1] which indicates how probable it is
that the edge ei j is a part of a sharp ridge feature. Those labels will later be used
to introduce discontinuities in the smoothing process. In the following, we consider
the mesh geometry X to be constant, and the edge labeling being a feature detection
process on a mesh. The resulting labeling configuration ε is a set of labels for all edges
ε = {εi j, ei j ∈ E}, where the high numbers correspond to features.

We define edge labeling as a MRF process based of two terms, edge sharpness term
and the neighborhood support term. The sharpness therm UE1 considers only a single
edge, while the neighborhood support term UE2 considers the cliques of two adjacent
edges.

As regards edge sharpness, each mesh edge has two adjacent faces, which meet at a
certain angle. The angle between the normals of the two faces is called the dihedral
edge. Therefore, we can assign a dihedral angle to every (non-boundary) edge, and we
denote the dihedral angle of the edge ei j with φi j.

The larger the dihedral angle φi j is, the more probable it is that the edge ei j lies along
the surface ridge. The contribution of the edge ei j to the first term of the edge labeling
is thus given by

U i j
E1(ε) = (φ0−φi j)εi j , (6.9)

where φ0 is a ridge sharpness threshold, and εi j is the label assigned to the edge ei j.

The second term of the edge labeling is the neighborhood support, i.e. the presence of
other ridge edges along the same ridge line. We assign a support energy to all connected
pairs of edges (2-cliques of edges), see Figure 6.2. A measure of parallelism between
the edges is used in the formulation of the support potential, and the contribution of the
edges (ei j,e jk) is given by

U i jk
E2 (ε) =−cos(θi jk)εi jεik , (6.10)

where θi jk is the angle between the (directed) edges ei j and e jk, and εi j and ε jk are the
labels assigned to ei j and e jk. As a result of this formulation, feature edges lying on a
straight line will have a maximum support, the orthogonal edges do not support each
other, and feature edges meeting at a sharp angle are discouraged.
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We denote the joint labeling potential as a sum of sharpness and neighborhood support

∑UE(ε) = ∑
ei∈E

U i
E1(ε)+

1
2 ∑

2−clique
(ei j ,e jk)

U i jk
E2 (ε) . (6.11)

The edge labeling optimization aims at finding the edge labeling configuration ε̂ , which
minimizes these two potentials

ε̂ = argmin
ε ∑UE(ε) . (6.12)

We experimented with weighting between the two terms UE1 and UE2, and concluded
that weighting support energy with 1/2 works well for most cases. It is important to
notice here that the angles θ in Equation (6.9) are given in radians in our implemen-
tation. The sharpness threshold θ0 had a strong influence on labeling result. To detect
right angle ridges, a threshold corresponding to approximately 90◦ is appropriate. To
detect subtle edges one has to carefully adjust the sharpness threshold.

6.3.4 The Coupled Model

The smoothing potential and the edge labeling are coupled in a feature preserving
scheme, which smoothes the mesh, but not over the edges labeled as sharp. This is
obtained by using edge labels εi j as weights for the smoothing potential. If the prob-
ability of the edge ei j lying on a ridge is big (i.e. εi j is close to 1), we reduce the
corresponding potential, which penalizes difference between normals of neighboring
faces. The smoothness potential is now, for the 4-cliques of vertices as in Figure 6.1

U i jkl
S (X ,ε) = (1− ε jk)‖ni jk−n jlk‖2 . (6.13)

The edges which are labeled as sharp with will not contribute to the smoothness poten-
tial, and the smoothed surface will be allowed to form a ridge along those edges.

The smoothness energy is now a function of both vertex positions X and the edge labels
ε . We can note that this function has a minimum for an edge labeling εi j = 1, ∀ei j ∈ E,
i.e. all edges are feature edges and the smoothing is not required.

To find optimal solutions which are piecewise smooth surfaces, we need to consider
the combination of the smoothness potentials and edge labeling potentials, with the
two terms weighted against each other. Instead of optimizing for both smoothness and
edge labeling simultaneously, we have considered them consecutively. Given the mesh
geometry X we would first find an optimal edge labeling ε̂ using Equation (6.12). After
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that we would find the optimal geometry X̂ by evaluating the smoothness potential for
the fixed edge labels

∑US(X , ε̂) = ∑
4−clique

(vi,v j ,vk,vl)

U i jkl
S (X ,ε) , (6.14)

and minimizing for smoothness and likelihood

X̂ = argmin
X

(
∑US(X , ε̂)+∑UL(X)

)
. (6.15)

This yields good results and sidesteps the issue of weighting between smoothness and
edge labeling potentials.

To conclude the modeling part, we have formulated the energy of a given configura-
tion (geometry and edge labeling) as a sum of three terms: the (weighted) likelihood
term, smoothing potential, and the edge labeling potential, which in turn consists of
the edge sharpness term and neighborhood support term. To find the piecewise smooth
mesh we need to find an optimal labeling, and adjust vertex positions to minimize the
smoothness and likelihood energy.

6.3.5 Optimization

At present we use the Metropolis sampler [158] with simulated annealing for opti-
mization, i.e. computing a solution to Equation (6.12) and Equation (6.15). This is a
somewhat cumbersome but flexible method, allowing for a widespread experimenta-
tion with different objective functions. The clear advantage of this approach is that we
do not make any assumptions about the potentials.

The Metropolis sampler is a random sampling algorithm, which generates a sequence
of configurations from a probability distribution using a Monte Carlo procedure. The
sampling scheme consists of randomly choosing a new label for a single site, and re-
placing the old label with a probability controlled by the current temperature T . For
an initially high temperature, the new configuration can be accepted even if it has a
smaller probability that the old one. This allows the algorithm to leave local energy
minima. The temperature then gradually decreases and the system converges.

In our case, a new label is either a new vertex position (randomly sampled in the vicin-
ity of the present position), or a new edge label for the ridge detection. As already
mentioned, instead of optimizing simultaneously over all defined potentials, we have
in each iteration of the optimization process first detected the feature edges (consid-
ering vertex positions to be fixed), and than displaced the vertices (considering edge
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labels to be fixed). This has made it possible to adjust the optimization parameters for
the two processes separately.

We have obtained the best results when the temperature for the vertex smoothing
quickly decays towards zero. As for edge labeling, we have experienced that the sys-
tem benefits from the higher temperatures, where it can more freely change between
the different labeling configurations, especially for very noisy meshes. This indicates
a presence of local minima which are very sensitive to the changing geometry.

More specialized and efficient algorithms have been developed for many kind of MRF
problems e.g. via filtering, belief propagation and graph cuts (in case of discrete labels).
After showing that MRF is a good formulation of the mesh smoothing problem, the
search for faster optimization method is part of our ongoing work.

As for the smoothing part, a good performance of simulated annealing at zero temper-
ature indicates that a greedy iterations-based methods, like iterated conditional modes,
might provide sufficiently good results in a more efficient way. Furthermore, in a re-
lated method [34], but without edge labeling, a conjugate gradient technique for nonlin-
ear functions was used with great success. As edge labeling only involves weighting,
it seems to be possible to include it in the formulation. Using the direct methods as
sparse Cholesky factorization would require linearizing the solution, and might put a
limit to the size of the model, which should be handled in a practical setting.

As for the feature detection part, the scalar labels and the simpler energies make it a
less demanding optimization problem. We have experimented with different formula-
tion, including a direct formulation. However, this did not yield better results. More
interestingly, the feature detection part might be formulated as a discrete MRF, with
the edge labels being {edge,no-edge}. This would make it possible to use some of
the new and efficient optimization methods, e.g. those based on graph cuts or belief
propagation.

6.4 Results

The results of our experiments prove the feasibility and versatility of using MRF on
triangular meshes. Explicit edge labeling when smoothing models with sharp ridge
features is shown it the Figure 6.3. In an initial noisy mesh it is impossible to detect
feature edges based only on the local information. However, our algorithm converges
to a configuration where all the ridges get correctly labeled and even the subtle feature
edges get detected. Correct edge labeling allows us to choose an aggressive smoothing
prior and obtain results superior to those which using only a single feature preserving
prior, as demonstrated shown in Figure 6.4. Note that, unlike the fuzzy vector me-
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Figure 6.3: Smoothing fandisk model using our feature preserving method with ex-
plicit edge labelling. Left: Fandisk model corrupted with the Gaussian noise. Edges
are initially labelled based only on the sharpness of the dihedral angle. Right: The
resulting smooth mesh and the resulting edge labelling. Parameters used: data weight
α = 0.1, sharpness threshold φ0 = 40◦, vertex process temperature Tv = 0, edge process
temperature TE = 0.05.

dian smoothing (which is generally very successful in preserving edges and smooth
regions), our method detects and preserves a subtle ridge in the front of the model, and
is partly preserving a disappearing ridge close to models back. The most other smooth-
ing methods will either miss those subtle ridges, or will not remove the low frequency
noise.

6.5 Discussion

We have shown one formulation of MRF on triangle meshes. Alternative formula-
tions are manyfold, some of which we also investigated. Instead of labeling vertices
with spatial positions, vertex labels can also be used to classify vertices into smooth
segments. Furthermore, vertex labels could be used to detect features, classifying the
vertices into those that are part of the smooth surface, those that are on a ridge and
vertices that are corners, in a manner similar to [86]. MRF can also be defined on mesh
faces, either for segmentation or aligning face normals.

Having enough prior knowledge of the problem at hand, we can tailor the surface po-
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Figure 6.4: Smoothing fandisk model using the different feature preserving methods.
Top row: Original model and the model corrupted with the Gaussian noise. The two
subtle ridges are circled in the original model. Middle row: Results of fuzzy vector
median smoothing and MRF smoothing using only the feature preserving square root
potential. Bottom row: Results of MRF smoothing using the quadratic potential and
the explicit edge labelling. Note the preserved subtle ridges.
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Figure 6.5: Obtaining curvature clamping by providing curvature information to edge
detection process. Left: Initial mesh. Right: The result of clamping the curvature to
discourage the concave sharp ridges.

tentials to obtain the desired result. By including the curvature information in the edge
labeling process we can detect only certain ridges, while skipping the others. Hereby
we obtain a curvature clamping behavior, which is mentioned in [22] and is the focus
of the recent article [38], see Figure 6.5. Extending the size of the vertex neighborhood
it is possible to formulate the prior for piecewise quadratic surfaces and also model the
ridge behavior more precisely.

To demonstrate the great flexibility and versatility of the MRF formulation we include
another example of mesh smoothing. Inspired by a two-step smoothing method [127],
we used MRF to obtain the smooth normal field, which is then used for reconstruct-
ing vertex positions. Now we have the mesh faces as the sites of the MRF, with the
MRF labels being the normal direction of the faces. The vertex update step is taken
directly from [127], which in turn uses a method developed by [141] where the system
of equations gets solved in a least squares sense to obtain the vertex positions update.

One of the important differences between the vertex based smoothing and face based
smoothing is the possibility to perform smoothing of the normals without changing the
geometry of the mesh, which makes this approach more effective. The disadvantage is
that it is not so straightforward to include displacement-based likelihood function. The
results of using this method can be seen seen in Figure 6.6.
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Figure 6.6: Smoothing a noisy cube using the face and the edge processes. Left:
A synthetic cube corrupted with Gaussian noise with the initial normal field and the
initial edge labeling. Right: The resulting mesh, with the smooth normal field and the
resulting edge labeling.
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Surfel Based Geometry
Reconstruction

This chapter contains an article [4] presented at TPCG 2010 – The 8th
Theory and Practice of Computer Graphics Conference, Sheffield, 6-8
September 2010. Here is a slightly changed and extended version of the
article text.

Vedrana Andersen, Technical University of Denmark
Henrik Aanæs, Technical University of Denmark

Andreas Bærentzen, Technical University of Denmark

Abstract. We propose a method for retrieving a piecewise smooth sur-
face from noisy data. In data acquired by a scanning process, sampled
points are almost never on the discontinuities, e.g. ridges, which aggra-
vates reconstruction of sharp features. Our method sidesteps this issue by
representing a surface as a collection of small planar patches, called sur-
fels, associated with each data point. Our method is based on a Markov
random field (MRF) formulation of a surface prior, with the surface repre-
sented as a collection of small planar patches, the surfels, associated with
each data point. The main advantage of using surfels is that we avoid treat-
ing data points as vertices. MRF formulation of the surface prior allows
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us to separately model the likelihood (related to the mesh formation pro-
cess) and the local surface properties. We chose to model the smoothness
by considering two terms: the parallelism between neighboring surfels,
and their overlap. We have demonstrated the feasibility of this approach
on both synthetic and scanned data. In both cases sharp features were
precisely located and planar regions smoothed.

7.1 Introduction

In this paper, we propose a novel anisotropic method for smoothing noisy data. We
represent the surface using small planar patches, the surfels, associated with each data
point. This allows us to easily define a surface prior based on Markov random fields
(MRFs).

Markov random fields have been used extensively for solving image analysis problems
at all levels. While some examples are mentioned below, MRFs have rarely been used
for mesh processing. The central element of the MRF formulation is that we use Bayes’
rule to express the probability of a given field (in this case a surface) as the product of a
likelihood and a prior. Likelihood relates to our knowledge of the noise (e.g. how much
noise a scanner introduces), while the prior relates to our knowledge of the properties
of the surface (e.g. how smooth a surface should be).

Representing a surface using surfels has some clear advantages. To begin with, surfel
representation corresponds well to the data creation process, as each sampled point
corresponds to the scanner detecting the objects surface, and is rarely, if never, the
point on the sharp feature. By using surfels we also avoid the problems of dealing with
sometimes arbitrary triangulation, where the mesh edges correspond poorly with the
sharp features on the surface.

For example, our earlier approach (Chapter 6) finds the sharp surface ridges among the
existing mesh edges. Consequently, it will achieve the best result when the vertices of
the mesh coincide (or can be moved to coincide) with the sharp features of the mesh.
This assumption holds for the noisy meshes which are produced by adding noise to
smooth, synthetic models. However, the situation is much different when working with
the data created by a scanning process. The points detected by the scanner always
represent a small but finite surface patch, and are rarely (if ever) on the tips of the sharp
ridges. Therefore, the above assumption is almost never met with scanned data.
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7.2 Related Work

A very important task in geometric processing, and a main way of generating 3D con-
tent, is the estimation of 3D shape or geometry from observations. In many cases mesh
smoothing is needed to reduce noise in the data, resulting in a variety of proposed al-
gorithms, from the early isotropic [31, 140], over anisotropic [32, 139], and efficient
feature preserving [34, 46, 72] methods.

The most popular approach is curvature minimization based smoothing. However, this
is not suitable in all cases. An example is man made environments where the geometry
often is piecewise planar. This nature does not correspond well with curvature min-
imization, since the curvature is high (in principle infinite) at the corners. A way of
addressing this problem is to find the most dominant planar directions in the data and
constraining the data to this [48, 49]. Another way of fitting the shape primitives can
be carried out using a variational approach along the lines of work of [27, 161]

To allow for piecewise smooth surfaces using a local approach, a number of smooth-
ing schemes employ smoothing of the normal and then reconstructing the point lo-
cation [127, 135]. The main drawback of most of the proposed methods is that they
depend on having samples on discontinuities, or try to migrate vertices to the sharp
features.

Our work addresses the issue of expecting vertices to be on the feature edges. We
abolish this assumption by considering data points to be small surface patches, called
surfels. Surfels (surface elements with no connectivity information) have been intro-
duced in [112] as primitives for rendering, in an extension of point rendering [60].
We propose using surfels for 3D surface estimation using a MRF [90] formulation of
a piecewise planar prior. A similar approach has been tried [3], but only directly on
mesh vertices.

The dual mesh approach, which we apply, is used in [101] in the context of optimizing
isosurface polygonization. They obtain impressive results in recovering sharp features,
which indicates the advantage of using duals.

Comprehensive studies on MRF theory for solving image analysis problems can be
found in books by [90] and [158]. MRF theory is particulary convenient for address-
ing the problem of piecewise smooth structures. In [57] a foundation for the use of
MRF in image analysis problems is presented in an algorithm for a resting piecewise
smooth images, where gray-level process and line process are used. Some of the other
applications of MRFs for problems involving reconstruction of piecewise smooth struc-
tures include [33], where high-resolution range-sensing images are reconstructed using
weights obtained from a regular image. In [64] a coupled MRF is used for locating
grids with possible cracks in the structure. In [134] a stereo matching problem is ad-
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dressed by three coupled MRFs modeling piecewise smoothness and occlusion.

MRF theory to has recently been used on 3D geometry in a few different applications.
Examples include a surface sculpting approach [157] where MRF potentials modeling
elasticity and plasticity control the deformation of the surface. MRF was also used for
mesh analysis and segmentation in [86], point cloud reconstruction in [70], and surface
reconstruction based on distance fields in [104].

7.3 Markov Random Field Theory

MRF is a powerful framework for expressing statistical models. The framework origi-
nates in computational physics and has proven highly successful in image analysis. A
MRF is, essentially, a random process which labels a set of sites. Sites (entities which
will be assigned a label) have a well defined neighborhood structure. The labels are the
values, which we wish to assign according to some rules. Labels can be pixel colors
which are assigned to pixel positions, vertex positions which will be assigned to mesh
vertices (as in Chapter 6) or surfel parameters (as we will elaborate in a next Section).
It is a central idea in MRF theory that the label at a given site must only depend on the
labels of the neighboring sites.

The behavior of the MRF is controlled by potentials defined on neighborhoods. Those
potentials constitute the energy, which is instrumental for MRF based optimization.
One of the main advantages of MRF is that its Markovianity (local property) makes it
clear what the objective function models and what an algorithm aims at achieving.

The mathematical framework of MRF is well developed, and MRF-Gibbs equiva-
lence [62] provides a joint probability distribution function of a MRF labeling in a
simple form. The joint probability of a given configuration f (an assignment of the
labels to MRF sites) is an exponential function of the negative configuration energy

P( f ) =
1
Z

e−
1
T ∑U( f ) , (7.1)

where the U( f ) are potentials defined on neighborhoods, Z is normalization constant,
and T is a temperature – a value relating to the randomness of the field, which we here
consider being a constant. If we are only interested in finding the most likely configu-
ration f , we can disregard constants Z and T . Accordingly, the optimal configuration
f̂

f̂ = argmax
f

P( f ) , (7.2)

can be found as the configuration of minimal energy

f̂ = argmin
f

∑U( f ) . (7.3)
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In our proposed framework, we wish to smooth a set of surfels. To achieve smoothing,
we will provide this set of surfels with locally defined MRF potentials U( f ). Some of
the potential U( f ) will be data (likelihood) terms penalizing the displacement from the
input mesh. Other terms will be prior terms, which express how likely a surface is a
priori.

The input to our method is a triangle mesh. The mesh connectivity is used mainly to
efficiently determine neighbors of each data point. This can, however, be replaced by
the neighboring relation defined via spatial proximity. The method can therefore be
modified to take a point cloud as input. In that case, the neighborhood for a given data
point could be found using e.g. kd-trees [14]. In the reminder of the text, however, we
will refer to data points as vertices.

7.4 Method Overview

Starting from the noisy input mesh, we associate a planar patch (a surfel) to each vertex.
We formulate a smoothness prior by defining two terms, the parallelism term and the
overlap term. Parallelism depends on the orientations of the surfels, while the overlap
depends on the local distance between the surfels. Both terms are weighted to account
for sharp edges, which constitute the the discontinuities between the smooth parts of
the surface.

In the iterative scheme we optimize the parallelism and the overlap between neigh-
boring surfels, while also considering the likelihood term. The weighting is gradually
increased, to precisely detect the sharp edges and to impose smoothness. Finally, we
retrieve the piecewise smooth surface by robustly estimating the intersections between
neighboring surfels.

7.4.1 Surfel Representation

Our surfel based method associates each data point with a small planar patch, a surfel.
In other words, each data point (a vertex) vi with coordinates xi is associated with a
piece of plane (a surfel) si, see Figure 7.1. Surfel si represented by a plane normal ni
and a distance ai from the origin

si = (ni,ai) . (7.4)

All points r lying on a surfel si satisfy the plane equation

ni · r = ai , (7.5)
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Figure 7.1: . An illustration of our surfel representation. Each data point xi is associated
with a piece of plane, which represents the surface of the underlying object. Surfel
centers ci are the projections of data points xi to surfel planes.

Figure 7.2: An illustration of the overlap potential, but in 2D. For the two neighboring
surfels si and s j we consider the projection of the center ci to the plane of s j, and
vice versa. The lengths of those projections (marked in red) are the terms we want to
minimize in order to achieve the best overlap.
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where ( · ) denotes a scalar product.

Unlike planes, surfels are localized. We define a center ci of the surfel si as the projec-
tion of the data point xi onto the surfel plane

ci = xi− (ni ·x−ai) ·ni . (7.6)

Obviously, if the data point lies on a surfel plane, then the surfel center coincides with
the data point, i.e. ci = xi.

A surfel is a piece of a plane represented by a plane normal and a distance from the
origin.

7.4.2 Surfel Initialization

Surfels are initially positioned in the tangential plane of each data point. When associ-
ating an initial surfel s0

i to a mesh vertex vi with coordinates xi we have

s0
i = (n0

i ,n
0
i ·xi) , (7.7)

where n0
i is some normal estimate at vi.

Our input is a triangle mesh, which made it possible to utilize the mesh connectivity
when estimating the surface normal. We chose to used the area-weighted normal as the
estimation of the normal n0

i . The final optimization result proved robust to initializa-
tion when we experimented with adding a small amount of noise to the initial normal
estimate.

7.4.3 Surfel Optimization

Smoothing of the surfels is done by minimizing the objective function consisting of
three parts: likelihood, parallelism and overlap. Each of those terms is a locally defined
potential, and can be formulated as an energy contribution of a single surfel. The joint
energy (energy for the whole mesh) is a sum of all surfel contributions.

The joint energy gives us a probability measure for every surfel configuration S =
{si, . . . ,sn}, i.e. the parameters of the plane assigned to each data point. Our goal is to
find a set of surfels Ŝ = {ŝi, . . . , ŝn} which minimizes the joint energy.

For simplicity, and because it corresponds well to our optimization scheme, we formu-
late the objective function for a single surfel. In our optimization, we visit every surfel
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and adjust its parameters according to the local objective function. We repeat until the
energy converges, which generally happens after only a few iterations.

7.4.3.1 Likelihood

It is possible to utilize the knowledge about the data acquisition process (e.g. scan-
ner accuracy and geometry) by formulating a suitable likelihood energy. Likelihood
expresses the probability that a given surface is a corrupted version of some other sur-
face.

Since the likelihood was not the focus of our experiments, we assumed the isotropic
Gaussian noise. The contribution of the single surfel si to the likelihood UL is a squared
distance between the surfel plane (ni,ai) and the data point xi

U i
L(S) = (ni ·xi−ai)

2 . (7.8)

7.4.3.2 Parallelism

The other two contributions to the objective function, the parallelism and the overlap,
form a smoothness prior, which expresses how probable (a priori) a given surface is.
The prior encodes the belief that a smooth surface is more probable than a noisy surface.
In MRF framework a prior is defined locally by penalizing the undesired behavior of
the surface.

In the case of our smoothness prior, both the parallelism potential and the overlap
potential penalize the lack of smoothness between a pair of neighboring surfels. Con-
sequently, the energy contribution of a single surfel si accounts for its interaction with
its neighbors s j, j ∈Ni, where Ni denotes indices of the surfels neighboring to si.

Difference in the orientation of two neighboring surfels is penalized by the parallelism
term. For a pair of neighboring surfels (ni,ai) and (n j,a j) the contribution to the
parallelism term is a squared distance between the normals ‖ni−n j‖2.

The parallelism energy corresponding to a surfel si is therefore a sum over all the neigh-
bors

U i
P(S) = ∑

j∈Ni

‖ni−n j‖2 . (7.9)

In our implementation, the summation covers a one-ring around the vertex vi.
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7.4.3.3 Overlap

Parallelism term ensures the smoothness of the normal field, but it will not prevent
the surfels from drifting in the normal direction. The normal drift might introduce
the discontinuity in the surface outlined by surfels. To assure an appropriate overlap
between the neighboring surfels we penalize the local distance between surfels.

First, we define the distance between the surfels si and s j as the distance between the
the center of the surfel si and the plane of the surfel s j

d(si,s j) = (n j · ci−a j) . (7.10)

This surfel distance is not symmetric and for a pair of neighboring surfels we have to
consider both directions. Now, we define the local overlap energy as the sum of squared
surfel distances, see Figure 7.2.

As a result, each surfel si contributes to the overlap energy with

U i
O(S) = ∑

j∈Ni

(
d(si,s j)

2 +d(s j,si)
2) . (7.11)

This term will be weighted and added to the parallelism energy.

7.4.3.4 Angle Based Threshold

Minimizing the prior term as defined above will smooth the surfels. However, we are
interested in retrieving a piecewise smooth surface, and therefore we do not want to
penalize all sharp edges. To allow for the surface to break across sharp ridges we
control the smoothness terms using angle-based thresholding function.

We want to formulate the weighting scheme for a surfel si. We start by considering
the parallelism term for all of the neighbors s j, j ∈Ni. If the pair of surfels is almost
parallel (and the parallelism is almost zero), we want to impose even more smoothness.
However, if the difference between the normals is above a certain threshold we want
to allow the surface to break. Therefore, we want to reduce the contribution of the
smoothness potential arising from surfel pairs, which are far from parallel, in favor of
the other surfels from the neighborhood.

The angle-based weights for all surfel pairs are obtained from the parallelism by means
of a sigmoid function

w(∆n) =
1

1+(∆n
t )

2
, (7.12)
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where t is an angle threshold parameter, for which w(t) = 1
2 .

The weight applied to the interaction between surfels si and s j is now found as

wi j = w(‖ni−n j‖) . (7.13)

Note that it is a square root of the parallelism, which acts as a variable for the sigmoid
function. The behavior of the sigmoid function is illustrated in Figure 7.3, left. The
effect of applying the weights wi j to the parallelism term ‖ni− n j‖ is illustrated in
Figure 7.3, right.

Weights are applied to all the interactions in a one-ring of a surfel, and they control
the contributions of pairwise interactions. The resulting (and final) smoothness energy
corresponding to a surfel si is defined as

U i
S(S) =

1
W ∑

j∈Ni

wi j
(
β‖ni−n j‖2 +d(si,s j)

2 +d(s j,si)
2) , (7.14)

where
W = ∑

j∈Ni

wi j , (7.15)

and β is a constant weight balancing the parallelism and overlap.

Note that we apply the the angle-based weights wi j to the whole smoothness poten-
tial, multiplying both UP and UO terms. This is done because sharp ridges may form
discontinuity in both parallelism and overlap.

After including the likelihood in a model, the resulting energy is

U i(S) =U i
S(S)+αU i

L(S) , (7.16)

with the constant α being a data term weight.

The weights wi j in the Equation (7.14) are also the functions of surfel configuration.
To avoid optimizing attempting to minimize the weights, we apply normalization via
the constant term W . This also makes it easier to determine the size of the data term
weight α . Furthermore, to ensure easier and consistent weighting between the three
terms we defined the unit length to be the same length as the average edge length of the
input mesh.

The sizes of suitable user defined weights α and β were easily found in the experiments
we conducted. The results were visually most pleasing for the α , and the values α = 0.1
and α = 0.01 were typically used. The weight β had to be larger than one, to enhance
the normal smoothing effect. Typically used value is β = 100.
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Figure 7.3: Sigmoid function used to achieve feature preserving behavior of the
smoothness prior. Left: Sigmoid function for the different threshold values, blue corre-
sponds to 125 degrees angle, while the red corresponds to an angle of 5 degrees. Val-
ues on abscissa show changing ‖ni−n j‖ values, the value

√
2 corresponds to the right

angle. Right: The effect of applying weights on the parallelism energy. Parallelism
energy as a function of ‖ni−n j‖ is originally quadratic but changes the behavior when
weights are applied to it. The thresholding values are the same as on left. The black
line shows parallelism energy without weighting. To allow a better comparison in this
illustration, the weighting functions have been scaled to w(2) = 1.

The choice of the angle thresholding parameter t is central for a feature-preserving
behavior of the smoothing. We have applied an adaptive scheme, where we start with a
mid-range parameter, corresponding to the dihedral angle of 45–60◦. The parameter t is
decreased in each iteration down to values of 10–20◦. This sharpness the threshoalding
function, so in the final iterations we effectively fine-polish those parts of the surface,
which are already almost flat. As a result, two neighboring surfels end up being either
almost parallel, or at an angle, which is sufficiently sharp for the thresholding function
to break all smoothing.

The joint energy of a surfel configuration is a summation of the individual contribu-
tions. It can be expressed as summing the terms from Equation (7.16) over all surfels,
i.e. i = 1, . . . ,n. An extra care has to be taken to handle pairwise interactions, which
should not be accounted for twice. Due to our optimization scheme, we do not have to
derive the joint energy.

7.4.3.5 Optimization

Our optimization scheme is an iterated conditional modes (ICM) algorithm. In ev-
ery iteration we sequentially visit each surfel and adjust its parameters. While locally
minimizing the objective function, we consider the other parameters to be constant.
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The parameters of each surfel (the normal ni and the distance from origin αi) are
found using Matlab’s implementation of the sequential quadratic programming algo-
rithm. This allowed us to experiment with a number of different priors without re-
implementing the optimization.

The issue of visiting order is solved by maintaining two configurations. The parameters
of the new configuration are calculated using the old parameters, and updated after all
surfels have been visited.

ICM is a greedy algorithm, and in our experience, for fixed parameters the convergence
is achieved after only a few iterations. When applying the adaptive scheme and chang-
ing the thresholding parameter t we would run a fixed number of iterations, usually
10.

7.4.4 Surface Retrieval

The result of the surfel optimization is a collection of small surface patches. Finding a
suitable and robust method for final retrieval of the surface is still a part of our ongoing
work. To visualize and verify the results we have utilized the initial mesh connectivity.

As we want the final result to reflect the fact that we associate the surface patch to a data
point, directly returning to initial mesh connectivity would be inappropriate. Instead,
we have calculated a dual mesh, associating the dual face with each vertex of the initial
mesh, and a dual vertex to each face of initial mesh. The key element of our approach
is calculating the positions of dual vertices.

Each of the dual vertices, corresponding to the face of the initial mesh, has three neigh-
boring faces and the associated surfels. The position of the dual vertex was calculated
as a robust intersections of the three neighboring surfel planes. We used a quadric error
metrics [54, 55] to find the plane intersection. Error quadrics can be used to minimizes
the squared distance of the point to the set of planes, while keeping track of whether a
single plane is counted multiple times.

7.5 Results

Our method can retrieve piecewise smooth surfaces from rather noisy data. It is also
evident that the sharp features are recovered with great accuracy, and the planar surfaces
are correctly reconstructed. Still we do not impose the general (planar) model to the
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Figure 7.4: The reconstruction of a synthetic cube corrupted by Gaussian noise. Top:
Two renderings of the input mesh and the initial surfel configuration. Bottom: Corre-
sponding renderings of the reconstructed surface and optimized surfel configuration.
Parameters used: data weight α = 0.01, parallelism weight β = 100, angle threshold
t set to exponentially decrease between 45◦ and 10◦. The result was obtained in 10
iterations.

surface. All regularization is achieved based on locally defined potentials, and our
regularization will therefore be a faithful reconstruction of the scanned object.

In Figure 7.4 we show the result of our initial experiments, where we smooth a synthetic
cube corrupted with a Gaussian noise. Our method is intended for regularizing scanned
data. Nonetheless, testing it on a synthetic data with the known underlying shape was
instrumental in determining the good values for the model parameters. We have also
tested our method on a broadly used fandisk object, see Figure 7.5.

To perform test on a real life example, we scanned a squared paper box in a structured
light scanner. The results are shown in Figure 7.6 (note that the ragged ends are the
boundaries of the scan). The recovered geometry exhibits well defined sharp ridges.
The box sides are not perfectly planar, but have been smoothed aggressively. The
method has removed scanning noise, and the large variation in the density of data points
was handled successfully. Figure 7.7 shows another reconstruction of a scanned object,
a model of the mechanical part containing more than a million faces.
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Figure 7.5: The reconstruction of the fandisk model corrupted by the Gaussian noise.
First Line: Input mesh and the initial surfel configuration. Second Line: The corre-
sponding views on the reconstructed surface and the optimized surfel configuration
Third and Fourth Line: A close up of the sharp detail. Parameters used: data weight
α = 0.1, parallelism weight β = 100, angle threshold t set to exponentially decrease
between 45◦ and 20◦. The result was obtained in 10 iterations.
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Figure 7.6: A structured light scan of a cubical model and its reconstruction. Top: Two
renderings of the input mesh (displaying both the irregularly sampled points, scanning
noise and the triangulation artifacts) and the initial surfel configuration. Bottom: The
corresponding renderings of the reconstructed surface and the optimized surfel config-
uration. Note that the ragged edges are scan boundaries. Parameters used: data weight
α = 0.01, parallelism weight β = 1000, angle threshold t set to exponentially decrease
between 60◦ and 20◦. The result was obtained in 5 iterations.

Figure 7.7: A reconstruction of a large scanned model containing more than one mil-
lion faces. A close up on an part of the model is shown, featuring well reconstructed
sharp features. Parameters used: data weight α = 0.0001, parallelism weight β = 100,
angle threshold t set to exponentially decrease between 60◦ and 20◦. The result was
obtained in 15 iterations.
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7.6 Conclusion

We have developed a method for reconstructing piecewise smooth surfaces from scanned
data. Our method uses a surfel representation of surfaces. We assign parameters of the
plane to each of the scanned points, and adjust those parameters according to a smooth-
ness prior. As a result we effectively align small pieces of planar patches to reconstruct
the piecewise smooth geometry.

The main contribution of our method is that we show the advantage of not assum-
ing samples on discontinuities. Using a dual mesh while reconstructing the surface
we again avoid the issue of missing sample points on sharp features. The conducted
experiments demonstrate the potential of our method.

For the future work we envision defining smoothing potentials in such a way that the
three terms, parallelism, overlap and the likelihood are clearly decoupled. Also, an
alternative methods for the final step of reconstructing geometry might prove benefi-
cial. We plan on investigating methods for repairing the geometry from polygon soup
models [73].
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Abstract. We propose a new intrinsic representation of geometric tex-
ture over triangle meshes. Our approach extends the conventional height-
field texture representation by incorporating displacements in the tangen-
tial plane in the form of a normal tilt. This texture representation offers
a good practical compromise between functionality and simplicity: it can
efficiently handle and process geometric texture too complex to be rep-
resented as a height field, without having recourse to full blown mesh
editing algorithms. The height-and-tilt representation proposed here is
fully intrinsic to the mesh, making texture editing and animation (such as
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Figure 8.1: Limitations of the height field representation of the geometric texture. Of
the two textures only the left one can be described as the texture superimposed on the
a shape.

bending or waving) intuitively controllable over arbitrary base mesh. We
also provide simple methods for texture extraction and transfer using our
height-and-field representation.

8.1 Introduction

The advent of laser scanners, structured light scanners, and other modalities for cap-
turing digital 3D models from real objects has resulted in the availability of mesh with
complex geometric details at a wide range of scales. Handling this geometric com-
plexity has brought numerous challenges. In this paper, we address the problem of
representation and editing of the finest level details known as geometric texture. It
is important to distinguish this use of the word texture from texture mapping where
an image is mapped onto a shape via parametrization. In recent years the use of tex-
ture mapping has expanded greatly, and one application of texture mapping is to map
geometric texture onto a smooth base shape by means of height map images. This ap-
proach often performs adequately, but geometric texture such as thorns, scales, bark,
and overhangs simply cannot be described by height fields: a single valued height field
is insufficient for these common types of geometric texture, see Figure 8.1.

Tangential displacements could be included alongside normal (height) displacements.
However, there is no simple canonical basis in which to encode tangent vectors. To
produce a basis one might use the partial derivative of a map from parameter domain to
the surface, or choose one outgoing edge from each vertex. Unfortunately, these obvi-
ous methods are not intrinsic to the shape, requiring either an added parametrization, or
an ordering of the edges, and further editing of the geometric texture may suffer from
artifacts accordingly.

To deal with full 3D texture, researchers have proposed cut-and-paste [126] and example-
based [18] methods, as well as approaches that stretch and fit patches of 3D texture to
create complex geometric textures [167]. These methods are also capable of handling
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Figure 8.2: Examples from our height-and-tilt geometric texture representation. Left:
A lychee fruit scan is modified to wrap the spikes. Middle: Geometric texture ap-
plied after a deformation of the base shape. Right: A synthetic texture over plane is
transferred onto an arbitrary object.

weaved textures, or textures of high topological genus. They do not, however, offer
intrinsic representations of the texture on the surface, but increase the geometric com-
plexity of the object instead, making use of full-blown mesh editing methods [133].

8.1.1 Contributions

We propose an intermediate type of geometric texture representation, compact and
practical, offering a compromise richer than displacement field textures but much sim-
pler than full 3D textures. We will assume that small-scale surface details are easily
separable from the base surface, but are not necessarily representable as height fields
over the base surface. Our representation adds a tilt field to the conventional height-
field texture representation, with this tilt field being stored using one scalar per edge in
a coordinate-free (intrinsic) manner. A resulting height-and-tilt texture model can be
used for extraction, synthesis and transfer of a large family of geometric textures. Ad-
ditionally, we demonstrate that dividing a texture into a height field and a tilt field offers
new and intuitive mesh editing and animation possibilities without the computational
complexity associated with global mesh editing methods, see Figure 8.2.

8.1.2 Related Work

Texture is often an important feature of 3D objects, explaining the abundance and
variety of methods proposed to synthesize texture on surfaces [153, 66, 148]. The
main goal of most texture synthesis algorithms is to synthesize a texture (color, trans-
parency, and/or displacement) onto an arbitrary surface resembling a sample texture
patch [162, 154]. Common to these methods is the limitation to textures represented
by an image or a scalar displacement field.

While height fields defined over surfaces have been used for many years, newer and
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richer representations have only started to appear recently. In [6] for instance, fur was
modeled through the addition of a tangential displacement to rotate a discrete set of hair
strands away from the normal direction. A similar idea based on vector-based terrain
displacement maps to allow for overhangs was also proposed for gaming [98].

Tangent fields have also recently been used to control texture growth directions [119,
94]. A convenient, intrinsic representation of tangent vector fields was even proposed
in [44], along with vector field processing directly through edge value manipulations.

To overcome the limitations of conventional heightfield-based texture representations,
we model geometric texture as a locally tilted height field over the base shape. By
storing the height field as scalars over mesh vertices (i.e. discrete 0-forms [29]), and
storing the tilt field as scalars over mesh edges (i.e. discrete 1-forms), we obtain an
intrinsic, coordinate-free representation of fairly complex geometric textures.

8.2 Background on Tangent Vector Fields as One-Forms

As we make heavy use of representing tangent vector fields as discrete 1-forms, we
briefly review the mathematical foundations proposed in [29, 44]. A discussion on
1-forms which is beyond the scope of a research article is elaborated in Section 5.3.

8.2.1 From Vector Fields to 1-forms

From a vector field defined in the embedding space, one can encode its tangential part
t to a surface mesh by assigning a coefficient ci j to each edge ei j. This coefficient
represents the line integral of the tangent vector field t along the edge. The set of
all these values on edges offers an intrinsic representation (i.e. needing no coordinate
frames) of the tangent vector field.

8.2.2 From 1-forms to Vector Fields

From the edge values, a tangent vector field can be reconstructed using, for instance, a
vertex-based piecewise-linear vector field. The value of the vector field at a vertex is
computed from the coefficients of the incident edges: the contribution of one face fi jk
(see Figure 8.3, left) to the field at the vertex with coordinates xi is

ti jk(xi) =
1

2Ai jk
(ci je⊥ki− ckie⊥i j) , (8.1)
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Figure 8.3: Left: The contribution of the face fi jk to the tangent field at vertex vi.
Right: Piecewise linear interpolation of the tangent field.

where ci j and cki are coefficients on edges ei j and eki respectively, and e⊥i j and e⊥ki are
edges ei j and eki (as 3D vectors) rotated for π/2 in the plane of fi jk, and Ai jk is the
area of the triangle face fi jk. Averaging these contributions from all incident triangles
provides a 3D vector at each vertex of the mesh.

For the derivation of Equation (8.1), see the discussion about Whitney edge basis func-
tions in Subsection 5.3.2 or in [29].

8.2.3 Least-squares One-form Assignment

The averaging process used in the reconstruction makes the encoding of vector fields
by 1-forms lossy: a piecewise-vector field converted into a 1-form may not be exactly
recovered once converted back. To provide the best reconstruction of the field from
edge coefficients, we do not compute the edge coefficients locally, but proceed instead
through a global least squares fit. The set of Equations (8.1) (one for each of the
mesh vertices vi, and averaged over 1-ring neighborhood) constitutes a linear system,
which can be solved for coefficients ci j. We populate the matrices Px, Py and Pz with
those reconstruction elements defined in Equation (8.1), which depend only on the
mesh topology and geometry, not on the tangent vector field. In other words, the three
matrices contain x, y and z coordinates of the rotated edges, scaled with triangle areas
and stored in a way which corresponds to mesh connectivity (the elements of Px are
defined explicitly by Equation (5.82) in Subsection 5.3.3). We then find the vector c
containing the edge coefficients by solving the linear system




Px

Py

Pz


c =




tx

ty

tz


 , (8.2)

where the vectors tx, ty and tz contain the x, y and z coordinates of the input vector field
at vertices. Each vertex contributing three equations while there is only one unknown
per edge, this system is slightly overdetermined (depending on the genus), and solving
it in a least squares fashion yields a very good representation of a tangent vector field
over the triangular mesh with little or no loss.
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8.2.4 Tangent Vector Field Reconstruction

To transfer a tangential field from one mesh to another we need to evaluate the field on
arbitrary point of the mesh surface. We interpolate the field using Whitney edge basis
(see Subsection 5.3.2 for another look on Whitney elements). For a point on the face
fi jk with barycentric coordinates (αi,α j,αk) associated with vertices vi, v j j and vk we
get

t(αi,α j,αk) =
1

2Ai jk

(
(ckiαk− ci jα j)e⊥jk +(ci jαi− c jkαk)e⊥ki +(c jkα j− ckiαi)e⊥i j

)
.

(8.3)
Due to linear interpolation, this is equivalent to evaluating face contribution at the three
vertices (as in Equation (8.1)) and linearly interpolating those three contributions by the
means of barycentric coordinates. This is also illustrated in Figure 8.3, right.

8.3 Texture Representation

In the texture representation proposed here, we make the usual assumption that the
finely-tesselated textured object comes from a smooth base shape, onto which a small-
scale geometric texture is superimposed without affecting the topology of the base
shape. We will first describe how to establish our discrete representation before intro-
ducing applications.

8.3.1 Texture Extraction

Given a finely-tesselated textured object, we must first decide what constitutes geom-
etry (base shape) and what constitutes small-scale texture (displacement from base
shape, see Figure 8.4, left). While this is a notoriously ill-posed problem, many good
practical methods have been proposed. In fact, any approach that proceeds through
a smoothing of the textured surface while minimizing the tangential drift throughout
the process is appropriate in our context. For example, a few steps of mean curva-
ture flow [31] provides a good vertex-to-vertex correspondence between the original
textured surface and a smoother version, used as base shape. For more intricate ge-
ometries, a multiresolution smoothing strategy such as [79] or a spectral approach such
as [144] are preferable (see Figure 8.4, middle). Alternatively, defining or altering the
base shape by hand might be appropriate if specific texture effects are sought after or
if the condition mentioned in Figure. 8.4, left, is significantly violated.

We have, in most cases where texture had to be extracted, used implicit mean curvature



8.3 Texture Representation 105
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vi

ni

Figure 8.4: Left: geometric texture superimposed on objects’s base shape in form of
vector displacements. The points at the intersections of the textured surface and the
base shape have zero displacements. Middle: One way of obtaining the base shape in
case of non-heightfield texture would be to use the multiresolution hierarchies as in [79]
and trace the points through a sufficient number of levels. Right: The displacement d
of the vertex vi can be described in terms of displacement length and the rotation from
the normal vector.

flow smoothing (see Subsection 5.1.2 and Subsection 5.1.3) to obtain the base shape.
In order to extract most of the texture, we needed to apply aggressive smoothing. For
iterative methods, we would decided to stop when the shape of the smoothed object
did not change significantly between iterations. For direct methods, the amount of
smoothing was chosen empirically to match our assumption of the base shape having a
smooth surface.

For cases where we generated geometric texture, the underlying shape was given di-
rectly from the modeling process. In additional examples, we define the base shape and
project the textured geometry to it.

8.3.2 Pseudo-height and Tilt

In the following we assume to have an underlying smooth shape and the textured sur-
face, both represented as triangle meshes. The smooth and the textured mesh have to
have the same topology, and the vertex-to-vertex correspondence between the smooth
and the textured surface has to be given.

8.3.2.1 From Displacements to Heights and Tilts

With a base shape available, the displacement of the vertex vi is defined as

di = xt
i−xs

i , (8.4)

where xs
i is a position of the vertex vi on the base (smoother) shape, and xt

i is the
position of the corresponding vertex on the textured surface (see Figure 8.4, right).
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Storing this displacement as a vector would require either using three coordinates, or
defining and maintaining an explicit two-dimensional local coordinate frame over the
surface. Instead we split the displacement into two fields: a pseudo-height and a tilt,
both of which can be represented in a coordinate-free way based on discrete differential
forms [29], [44].

The pseudo-height field h represents the signed length of the displacement

hi = sign(di ·ni)‖di‖ , (8.5)

where ni is the normal on the surface at xs
i . Our pseudo-height is thus analogous to

a typical height field, with values sampled at vertices then linearly interpolated across
triangles. However we also define a tilt field: this is a vector field that defines the tilt
(rotation) of the displacement direction with respect to the base normal direction. More
precisely, the tilt ti is induced from the displacement d and the base normal ni as

ti =
di

‖di‖
×ni . (8.6)

Notice that the tilt is a vector in the tangent space of the base shape: its direction is the
rotation axis for a rotation that transforms the displacement direction into the normal
direction and the magnitude of the tilt is the sine of the rotation angle. Therefore, we
can encode the tilt using the edge-based discretization reviewed in Section 5.3 and
Section 8.2. We obtain edge-based tilt coefficients ci j from vectors ti by solving the
linear system from Equation (8.2).

In summary, we converted a displacement field into an intrinsic, coordinate-free geo-
metric texture representation

texture =
(
{hi, vi ∈ V},{cij, eij ∈ E}

)
, (8.7)

consisting of two terms, the pseudo-height stored as a single scalar hi per vertex, and
the tilt stored as a single scalar ci j per edge.

Now, we have a full representation of the texture stored as scalars on vertices and edges
of the mesh. We can translate, rotate and transform the mesh without loosing texture
information and without relying on any auxiliary structure, e.g. world coordinates.

Using the tilt instead of the sum of normal and tangential displacement offers an in-
tuitive description of the texture: the height truly represents the magnitude of the dis-
placement, while the tilt indicates the local rotation of the normal field. We will see
that this particular decomposition allows for very simple editing of geometric textures.
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8.3.2.2 Continuity of Height and Tilt

Notice that if the condition explained in Figure 8.4 is satisfied, our height-and-tilt rep-
resentation is continuous: the height field vanishes when the textured surface crosses
the base shape, while the tilt field approaches the same value on both sides of the sur-
face. However, in practice, one cannot exclude the possibility of having some points
that have displacement only in tangential direction, which creates a discontinuity in the
height field. To avoid loosing texture information (the “height” of the tangential drift),
we use a non-zero sign function in our implementation.

8.3.3 Texture Reconstruction

Given a base shape and the height-and-tilt texture representation as described above,
we can easily reconstruct the textured object. For each mesh vertex vi, the tilt field
ti is calculated from the edge coefficients, as explained in Section 8.2. To obtain the
direction of the surface displacement, we then simply rotate the base shape normal ni
around the axis ni× ti by the angle αi satisfying

sinαi = ‖ti‖, cosαi = sign(hi)
√

1−‖ti‖2 . (8.8)

Our height-and-tilt texture can also be transferred from a source shape to a target shape.
We need to define a mapping between the two shapes and sample both the height field
and the target shape. Typically, such a mapping between two shapes uses a small
number of patches as flat as possible [30], and a mapping between each pair of patches
is achieved through, for instance, conformal parametrization of small circular patches.
Once such a mapping has been established, our pseudo-height field can be copied from
source to target through simple resampling (using, e.g., barycentric coordinates). The
tilt can also be transferred efficiently: for each of the target edges, we sample the edge
at a number of locations (5 in our implementation), evaluate the tilt vector field (as
covered in Section 8.2) at these samples from the map we have between the source and
the target, and integrate the dot product of the linearly interpolated vector field over the
edge.

We preformed the experiments by transferring the texture of a single, circular patch.
In our implementation, the circular surface patches were mapped to the same plane,
effectively established mapping between the patches. Discrete conformal parametriza-
tion with fixed boundaries (for details, see the Equation 5.85 in Section 5.4 or [30]) was
used to map each patch to the plane. Figure 8.5 and 8.6 show three examples of trans-
ferring a non-heightfield texture patch to the target mesh by the means of resampling.
Method proved successful for the regularly and finely triangulated surfaces.
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Figure 8.5: The texture of the scanned lychee fruit (edited to achieve the whirl effect,
left) is extracted from the base shape (middle) and transferred to the base shape of the
avocado fruit (right).

Figure 8.6: The synthetical texture (left) transferred to the shape of an avocado (mid-
dle) and to the shape of a lychee fruit (right).
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8.4 Applications

We present two types of applications of our height-and-tilt texture representation. For
editing and animation, the shape of the object is held constant while the texture on the
shape is altered; for deformation and resizing, the shape is deformed and the texture is
simply reapplied to it.

8.4.1 Editing and Animation

Our height-and-tilt texture representation is amenable to a number of simple editing
functions. Height and tilt fields can be modified together or separately, which results
in new possibilities for geometric texture editing and animation. For instance, we can
simulate the effect of spikes swaying on the surface (as if moved by the wind) by
changing the texture fields in time. Figure 8.7 demonstrates a few examples, such as
set tilt, which fixes the tilt of the texture; wrap, which wraps (bends) the texture spikes;
and wiggle, which creates a wave-like effect on the spikes. While these operations may
not be visually relevant on all textures, they are very effective on spiky textures.

8.4.2 Deformations and Resizing

Combined with base shape deformation, our representation can also handle a wide
range of effects. Figure. 8.8 exhibits some of the benefits of our approach, where a
non height-field texture is extracted using a given base shape. The base shape is then
deformed, and the texture can be added back in a realistic way. However, since our
representation is normal-based, it will still exhibit distortion artifacts for severe bend-
ing (i.e. large compared to the scale of the texture). The simplicity of our method
cannot (and in fact, is not designed to) handle very complex shape deformation that
much more costly Laplacian-based editing methods can [23]. Nevertheless, it allevi-
ates the limitations of height-field texture methods while keeping their computational
efficiency. In an another example shown in Figure 8.9 the base shape has been scaled,
but the height-and-tilt texture representation preserves the size and shape of the texture
elements.
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Figure 8.7: An example of simple operations on height-and-tilt fields. Left to right: A
tilt-free texture, set tilt operation, wrap operation and wave operation. Up to down: The
effect on 2D synthetic texture for two different parameters, on 3D synthetic texture, and
on a scan of a lychee fruit for two different directions.
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Figure 8.8: Our texture representation allows us to extract the texture of the tentacle
stick using a (given) base shape. After bending the shape, we can reapply the texture
to the shape. On far right is the result of applying the space deformation directly to the
textured shape. Notice on the enlarged detail that our method does not deform texture
elements.

Figure 8.9: The original tentacle stick and its (given) shape, left up. The shape is then
resized (grown by the factor of 1.5 on right, shrunk to half size on left down) and the
texture is put back on it. Due to the texture elements being represented as heights and
tilts the size and the shape of the tentacles is not significantly affected by resizing.
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8.5 Discussion and Conclusion

We presented a height-and-tilt texture representation to efficiently encode and process
small-scale geometric textures over fine meshes. As an extension of heightfield-based
textures, they share their simplicity (texture editing is achieved only via local compu-
tations) and their intrinsic nature (i.e. they are coordinate-free). Thanks to the added
tilt field, a rich spectrum of geometric textures can be stored, edited, animated, as well
as transferred between surfaces.

One has to bear in mind some of the present limitations of our method. Firstly, we
rely on existing methods to separate texture from geometry. As our notion of texture
is richer than the usual height field approach, it is likely that better methods to provide
base shapes can be derived. Second, since our representation is normal based, the
texture extraction can be sensitive to the smoothness of the base shape. This can be
addressed by additional smoothing of the normal field of the base shape prior to texture
extraction in our implementation. Additionally, storing the tilt in the tangent field may
be, for some applications, inappropriate if the tilt field does not vary smoothly over
the surface. To be more robust to non-smoothly varying tilt fields, we utilize the fact
that tilt field has maximal magnitude one and constrain the least squares system from
Equation (8.2) so that an edge coefficient is not larger than the edge length.

The obvious extension of height-and-tilt texture representation is to synthesize (grow)
geometric texture on arbitrary meshes, possibly using the tilt field to control the direc-
tion of the growth. Another future endeavor could be to investigate whether we can
provide a high fidelity geometric texture with fewer base vertices through field and
surface resampling.

Also note the our texture representation is simple enough that a GPU implementa-
tion would be fairly easy, allowing for real-time animation of objects displaced with
non-heightfield geometric texture or, perhaps more importantly, a system for real time
editing of 3D objects with complex geometric texture.
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Abstract. Model resizing and deformation are commonly used for creat-
ing new 3D models. While deforming the model we often want to locally
preserve some regions, such as textured parts, geometric details or other
prominent features, in order to minimize visual artifacts and distortion.
In this paper we present a method for inhomogeneous geometry resizing
and deformation, which addresses this problem. Our method, based on
the Laplacian surface editing, is guided by a feature map and an arbitrary
geometry transformation. With this simple input we are able to deform a
model while preserving the shape and controlling the size of small surface
details. The work presented is part of an ongoing research, and the pre-
sented results are preliminary, yet promising for automated resizing and
deformation methods.



114 Feature Aware Geometry Resizing

9.1 Introduction

Resizing and deformation of 3D models are desired in many applications. The spatial
deformation will often introduce a number of unwanted visual artifacts. In case of non-
uniform scaling the shape of the prominent features could be deformed, for example
a circular feature might become elliptic. Additionally, an angle between the base sur-
face and protruding feature might change. In many cases, the desired outcome of the
deforming operation is not clearly defined. However, for most 3D models, which have
distinctive features, it is desired preserve them. To give an example, if we directionally
resize a model of a camera, we want the camera lens to remain cylindric in shape.

The feature-preserving deformation proposed here is obtained by assigning different
weights to the vertices and applying Laplacian surface modeling. Weights are provided
by a feature map, and the initial positions of the vertices are provided by an initial
spatial deformation. Feature vertices are weighted to locally preserve the Laplacian
coordinates. Vertices belonging to the background (non-feature) are weighted to allow
the initial spatial transformation. Using this setting and variable weights we can obtain
different levels of feature-preservation. It should be noted that the results presented
here are preliminary and a part of ongoing research. Still we obtain promising results,
especially considering the simplicity of the formulation.

9.2 Related Work

In recent years, the problem of anisotropic image resizing, while fully preserving both
image content and its appearance, has been addressed by a number of authors. This
is the result of an increasing need for fitting the same image content in displays of
different aspect ratios. The seam carving method [9] traces seams with the least amount
of content to automatically resize the image. The operation, often called retargeting,
is now included in Photoshop CS4. Other proposed methods include [150], which use
a global optimization to distribute error to less important parts. Methods that allow
for video retargeting have also been developed [120, 149, 159]. All those methods
are based on the assumption that images contain more-important and less-important
parts [52, 152].

Considering the similar problem of geometry retargeting a number of algorithms has
been proposed in recent years. The seminal work [82] proposes non-homogeneous
resizing limited to complex man-made models consisting of multiple components. A
directional vulnerability of the components is estimated and the model is embedded in a
protective volumetric grid to suppress undesirable distortion. The method in [147] does
not use an auxiliary grid, and deforms the mesh directly. Another approach is presented
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in [26]. First, the geometric texture is stripped of the underlying surface. Then the
texture-free model is anisotropicaly resized and finally the texture is re-applied to it.
An analyze-and-edit method from [53] is based on idea of characterizing the shape by
a small number of 1D structures, iWIRES.

9.3 Problem Analysis

We will initially consider the problem of anisotropic resizing of images and then return
to 3D models. The desired behavior of fitting the object in a frame of a different aspect
ratio often depends on the context. In the case of textured images, i.e. images consisting
mostly of homogeneous texture on a certain scale, some of the obvious options are (see
Figure 9.1) directionally resizing (squeezing/stretching) the image, uniformly resizing
and letterboxing the image, or cropping the image. Obviously, each of the suggested
options has advantages and disadvantages: squeezing/stretching changes the visual ap-
pearance of the texture, letterboxing the image does not utilize the whole picture frame,
while cropping the image leads to the loss of content. The desired outcome can vary
depending on the image use and context.

A featured image can be segmented into a less important background and the distinctive
detail in the foreground, (see Figure 9.2). Here, one has an additional possibility of
using retargeting methods – preserving the foreground and obtaining the change of the
aspect ratio by deforming or removing the background. Besides preserving the shape
of the foreground features, we may or may not require preservation of the scale and
orientation.

To summarize, when fitting the image content into a given frame we have the following
options:

Directional resizing, preserves quantity, looses shape;

Uniform resizing and letterboxing, preserves shape, looses scale, does
not fit the frame ;

Cropping, preserves shape and scale, looses quantity;

Retargeting, preserves quantity and shape, variable scale.

Fitting 3D objects with homogeneous texture into a given frame has similar problems
as images. In this case we cannot utilize the distinction between underlying shape and
superimposed features, see Figure 9.3. However, additional methods are possible for
objects containing distinctive details (see Figure 9.4).

Some of the options when fitting 3D objects into a given frame are:
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Figure 9.1: Fitting a uniformly textured image into a given frame area. Far left:
An original texture which is to be fitted into a square frame. As possible outcomes,
(from left to right), squeezed (directionally scaled), scaled and letterboxed, and cropped
image.

Directional resizing with or without amplitude scaling, preserves quan-
tity, looses shape;

Cropping, preserves shape and scale, looses quantity;

Cropping with amplitude scaling, looses shape, looses quantity;

Retargeting, preserves quantity and shape, variable scale.

Until now the only change of the image or object frame, which we considered, was
directional resizing. However, a similar discussion applies to a broader family of de-
formations. For images we can, for example, look at wrapping the image content into
a circular or skewed frame or bending elongated images. Similar applies to 3D objects,
which can be deformed in even more different ways. Regardless of the deformation
in question, we might be interested in preserving the shape of the prominent features.
Scale preservation can be an additional constraint. Alternatively, resizing the features
might be allowed, both by the different scaling factor for distinct features or by the
same scaling factor. As an example consider a free deformation of the elastic fabric
with buttons sewed on. Regardless of the fabric deformation, we would expect the
buttons to maintain the shape and size.

9.4 Our Approach

We investigated the use of the Laplacian surface editing to achieve the desired, content-
aware deformation. Laplacian surface editing [133] allows for interactive free-form
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Figure 9.2: Fitting an image with details into a given frame area. In the bottom row,
as in Figure 9.1, we have original, squeezed, letterboxed and cropped image. The
additional possibilities, an retargeted image and an retargeted with scaled detail, are
shown in a top row, from left to right

Figure 9.3: Fitting a textured object into a given frame area. Far left: The original
object which is to be fitted into a frame of half the original hight. Possible outcomes
(from left to right): squeezed (directionally resized) object, object squeezed with the
scaled amplitude, cropped object, and an object cropped with scaled amplitude.

Figure 9.4: Fitting an object with details into a given frame area. In the bottom row,
as in Figure 9.3, we have original object, squeezed object, object squeezed with scaled
amplitude, cropped object and object cropped with scaled amplitude. The additional
possibilities, shown in a top row, from left to right are a retargeted object and an object
retargeted with scaled detail.
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deformation, while preserving as much geometric detail as possible. This is done by
encoding each vertex relative to its neighbors and providing a technique, to make the
Laplacian coordinates invariant to rotation and scaling. Vertex positions are found
as the least square solution to a system, which fits the Laplacian coordinates of the
deformed mesh to the Laplacian of the original mesh.

If we apply weights to vertices when solving the LS system, we can control the dis-
tribution of the deformation distortion. High weights assigned to vertices of salient
features would locally preserve the geometric detail of features and distort only less
important parts. The two important components needed for our system correspond to
localizing the features and defining the spatial deformation.

As for localizing the features, we assume that the user provides a feature map, which
marks the parts of the model not to be deformed. In this our method bears a similarity
to feature-aware texturing algorithm proposed in [52]. However, a number of semi-
automatic approaches for generating feature maps are feasible. We have, for example,
successfully obtained the feature map of the tentacle model in Figure 9.5 by thresh-
olding the auto diffusion function [56].Alternative methods for feature localization can
be used, e.g. [50]. The feature map is given as the vertex weights fi from the interval
[0,1], and are, in the simplest setting, from the discrete set {0,1}.

We employed two approaches for spatial deformation. In the case of the simpler model
deformation, like the anisotropic resizing or simple bending, we treated the explicit
space mapping as the input. On the other hand, for deformations requiring a higher
level of user interaction, we have initially deformed the model by applying Laplacian
surface editing and used it as a starting point for further computation. We denote the
initial mesh configuration as the set of vertex positions xi. Initially transformed ver-
tex positions are denoted ci. Using those two configurations we compute the rotation
and scale transformation Ti for each vertex. We do this using a SVD (singular value
decomposition) approach [75].

In order to formulate the energy, which is to be minimized, we define the Laplacian
coordinates (when using an umbrella operator as Laplacian) of a vertex vi as

δi =
1
di

∑
j∈Ni

x j−xi , (9.1)

where di denotes the valency, and Ni the neighborhood of the vertex vi. (For more
discussion on Laplacian surface editing, see 5.1).

We want to minimize weighted combination of the two terms. First, the difference
between transformed original Laplacian coordinates and the resulting Laplacian coor-
dinates. Second, the difference between position constraints and the resulting positions.
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The final minimization is then expressed as

X̂ = argmin
X′

(
n

∑
i=1

fi‖Ti δi− ∑
j∈Ni

1
di
(x′j−x′i)‖2 +w

n

∑
i=1

pi‖ci−x′i‖2

)
. (9.2)

The first part is minimizing the local difference in the shape of the features (i.e. the
difference in Laplacian coordinates) weighted by the feature weights fi and aiming to
align the shape of the resulting features with the initial shape of the features. The sec-
ond part is minimizing the distance to the initially transformed mesh, aiming at aligning
the underlying shape (frame) of the resulting object with the initially transformed ob-
ject. The second part is additionally weighted by a scalar w and the position weights
pi, which simply can be the inverse of the feature weights pi = 1− fi.

If we store all the weights in the 2n-by-2n diagonal matrix W, with the feature weights
fi as the first n diagonal elements, and the scaled position weights (w pi) as the second
n, we have the following linear system

W
[

L
In,n

]
X̂ = W

[
Dt

C

]
. (9.3)

Matrix L is a n-by-n Laplacian matrix (umbrella operator), n-by-3 matrix C contains
the coordinates of the initially transformed mesh (position constrains ci j), while the n-
by-3 matrix Dt contains the transformed Laplacian coordinates δt

i = Ti δi. This clearly
illustrates the simplicity of the approach, as the problem reduces to solving a sparse
linear system.

9.5 Discussion and Results

Despite its simplicity the above approach yields the desired outcome for certain kind of
models. The best results are obtained when the model contains clearly defined protrud-
ing features, as the one in Figure 9.5. Regardless of the nature of the spatial transfor-
mation, the shape of the features and the angle between the features and the underlying
shape will be preserved, as demonstrated in Figure 9.6 and 9.7.

Even this partial match can produce visually appealing results. The part of our ongoing
work is to allow the background to deform more severely and make it possible to fully
preserve the shape of the features. Our aim is to keep this within the simple Laplacian
formulation.
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Figure 9.5: Tentacle stick and its feature map, with the blue background and the red
features. The feature map is obtained by thresholding the values of auto diffusion
function [56].

Figure 9.6: Flattened tentacle stick and the same model flattened and shrunk. In the
middle column is the original space wrap, in the right column the feature preserving
result. Despite strong deformation, our method preserves tentacle size, shape and the
angle in respect to the base.
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Figure 9.7: The same model as in Figure 9.6, but this time deformed so that it in-
cudes bending. Left column is the original model, middle column is the original space
wrap, and right column is the feature-aware bending. In the top, note that the angle
between the tentacles and the base is preserved only for our method. In the bottom,
note preservation of the size and the shape of tentacles.
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CHAPTER 10

Conclusion

Two things were certain when I embarked on this Ph.D. project: the object and the
method. First, we wanted to focus on surfaces. Second, we wanted to use statistical
methods.

Stochastic properties of 2D texture have been used extensively for analysis, synthesis
and classification of images and texture patches. The set of methods dealing with
geometric texture on surfaces is, on the other hand, often based on cutting, deforming
and pasting small geometry patches. At the beginning of this project we envisioned
building a bridge where the statistical methodology meets geometric shape modeling.
And now, after three years, the result is a stone or two in the foundations on each side
of the gap.

On the statistical side, we considered image analysis and looked for the method which
was not yet fully ported to geometry processing. This resulted in using Markov random
fields for defining priors on surfaces. As modeling primitives we used both triangular
mesh entities (Chapter 6) and surfels – small surface patches (Chapter 7). Both ap-
proaches yield promising result, but the latter has a clear advantage when used on data
acquired by scanning. Point clouds, which are the output of a scanning process, consist
of locations where a light ray hits the surface of an object, and are almost never located
on discontinuities like sharp edges and corners. For this reason it is more correct to use
these points as surfels, as opposed to mesh vertices. The next stone on the statistical
side of our project could be a framework for statistical surfel modeling.
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On the geometry side of the project, we tried to think of texture, which could not be
represented using current methods. This resulted in the heigh-and-tilt texture model
(Chapter 8), where the conventional height-field texture incorporates a drift in the tan-
gential direction. This makes it possible to model the elaborate non-heightfield surface
detail (i.e. thorns, scales, fur or bark) as a texture superimposed on the base shape. Our
representation is fully intrinsic to the surface and allows for easy texture transfer and
editing. The next step in that direction would certainly be an algorithm for heigh-and-
tilt texture synthesis.

A method for content-aware texture resizing (Chapter 9) is another step we made on the
geometry side. The problem it aims to solve, resizing and deforming the object while
preserving detail content, is inspired by image retargeting. However, the methods used
in 2D cannot be applied to geometry and an alternative approach was needed. With
the use of weighted Laplacian editing we obtained good results for objects with promi-
nent surface detail. This method could be improved by allowing the vertices of the
background to move along the surface and make room for better feature preservation.

In conclusion, the work presented here does not bring a unified geometric texture pro-
cessing framework. Instead, we developed a few methods that are very successful in
solving some specific tasks. What our methods have in common is that they point
toward modeling the small surface detail.
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[84] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick. Graphcut
textures: image and video synthesis using graph cuts. ACM Transactions on
Graphics, 22(3):277–286, 2003.

[85] Y.-K. Lai, S.-M. Hu, D. X. Gu, and R. R. Martin. Geometric texture synthesis
and transfer via geometry images. In SPM ’05: Proceedings of the 2005 ACM
symposium on Solid and physical modeling, pages 15–26, New York, NY, USA,
2005. ACM.
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and Hans-Peter Seidel. Differential coordinates for interactive mesh editing. In
SMI ’04: Proceedings of the Shape Modeling International 2004, pages 181–
190, Washington, DC, USA, 2004. IEEE Computer Society.

[94] Sebastian Magda and David Kriegman. Fast texture synthesis on arbitrary
meshes. In EGRW ’03: Proceedings of the 14th Eurographics workshop on
Rendering, pages 82–89, Aire-la-Ville, Switzerland, Switzerland, 2003. Euro-
graphics Association.

[95] Sridhar Mahadevan. Adaptive mesh compression in 3d computer graphics using
multiscale manifold learning. In ICML ’07: Proceedings of the 24th interna-
tional conference on Machine learning, pages 585–592, New York, NY, USA,
2007. ACM.

[96] Martti Mantyla. Introduction to Solid Modeling. W. H. Freeman & Co., New
York, NY, USA, 1988.

[97] Steven Marschner, James Davis, Matt Garr, and Marc Levoy. Filling holes in
complex surfaces using volumetric diffusion. In In First International Sympo-
sium on 3D Data Processing, Visualization, and Transmission, pages 428–438,
2001.

[98] Colt McAnlis. Halo wars: The terrain of next-gen. Game Developers Confer-
ence, 2009.

[99] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh
optimization. In Proceedings of ACM GRAPHITE, pages 381–389, 2006.

[100] Minh X. Nguyen, Xiaoru Yuan, and Baoquan Chen. Geometry completion and
detail generation by texture synthesis. Journal The Visual Computer, 21(8-
10):669–678, August 2005.

[101] Yutaka Ohtake and Alexander G. Belyaev. Dual/primal mesh optimization for
polygonized implicit surfaces. In SMA ’02: Proceedings of the seventh ACM
symposium on Solid modeling and applications, pages 171–178, New York, NY,
USA, 2002. ACM.

[102] Manuel M. Oliveira, Brian Bowen, Richard McKenna, and Yu-Sung Chang. Fast
digital image inpainting. In Proceedings of the International Conference on Vi-
sualization, Imaging and Image Processing (VIIP 2001), pages 261–266. Cite-
seer, 2001.



134 BIBLIOGRAPHY

[103] J.W. Patterson, S.G. Hoggar, and JR Logie. Inverse displacement mapping. In
Computer Graphics Forum, volume 10, pages 129–139, 1991.

[104] Rasmus R. Paulsen, J. Andreas Bærentzen, and Rasmus Larsen. Markov Ran-
dom Field Surface Reconstruction. IEEE Transactions on Visualization and
Computer Graphics, 2009.

[105] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape modeling
with point-sampled geometry. ACM Transactions on Graphics, 22(3):641–650,
2003.

[106] Mark Pauly, Niloy J. Mitra, Joachim Giesen, Markus Gross, and Leonidas J.
Guibas. Example-based 3D scan completion. In Proceedings of the third Euro-
graphics symposium on Geometry processing, page 23. Eurographics Associa-
tion, 2005.

[107] Darwyn R. Peachey. Solid texturing of complex surfaces. In SIGGRAPH ’85:
Proceedings of the 12th annual conference on Computer graphics and interac-
tive techniques, pages 279–286, New York, NY, USA, 1985. ACM.

[108] M. Peercy, J. Airey, and B. Cabral. Efficient bump mapping hardware. In Pro-
ceedings of the 24th annual conference on Computer graphics and interactive
techniques, page 306. ACM Press/Addison-Wesley Publishing Co., 1997.

[109] Jianbo Peng and Dennis Kristjansson, D.anieland Zorin. Interactive modeling
of topologically complex geometric detail. In ACM SIGGRAPH 2004 Papers,
page 643. ACM, 2004.

[110] Ken Perlin. An image synthesizer. In SIGGRAPH ’85: Proceedings of the
12th annual conference on Computer graphics and interactive techniques, pages
287–296, New York, NY, USA, 1985. ACM.

[111] Ken Perlin and Eric M. Hoffert. Hypertexture. In SIGGRAPH ’89: Proceedings
of the 16th annual conference on Computer graphics and interactive techniques,
pages 253–262, New York, NY, USA, 1989. ACM.

[112] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Sur-
fels: surface elements as rendering primitives. In SIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interactive techniques,
pages 335–342, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-
lishing Co.

[113] Bui T. Phong. Illumination for computer generated pictures. Commun. ACM,
18(6):311–317, 1975.

[114] Les Piegl. On NURBS: a survey. IEEE Computer Graphics and Applications,
11(1):55–71, 1991.



BIBLIOGRAPHY 135

[115] Ulrich Pinkall and Konrad Polthier. Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics, 2(1):15–36, 1993.

[116] Jean-Philippe Pons, Renaud Keriven, and Olivier D. Faugeras. Multi-view stereo
reconstruction and scene flow estimation with a global image-based matching
score. International Journal of Computer Vision, 72:179–193, 2005.

[117] S.C. Pont and J.J. Koenderink. Bidirectional texture contrast function. Interna-
tional Journal of Computer Vision, 62(1):17–34, 2005.

[118] Tiberiu Popa, Dan Julius, and Alla Sheffer. Material-aware mesh deformations.
In IEEE International Conference on Shape Modeling and Applications, 2006.
SMI 2006, pages 22–22, 2006.

[119] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Pro-
ceedings of ACM SIGGRAPH 2000, pages 465–470, July 2000.

[120] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Improved seam carving for
video retargeting. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages
1–9, New York, NY, USA, 2008. ACM.

[121] Michael Rubinstein, Ariel Shamir, and Shai Avidan. Multioperator media retar-
geting. ACM Transactions on Graphics, 28(3):23, 2009.

[122] Joaquim Salvi, Jordi Pages, and Joan Batlle. Pattern codification strategies in
structured light systems. Pattern Recognition, 37(4):827–849, 2004.
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