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Abstract

The modern emergence of automation in many industries has given impetus to extensive 

research into mobile robotics. Novel perception technologies now enable cars to drive 

autonomously, tractors to till a field automatically and underwater robots to construct 

pipelines. An essential requirement to facilitate both perception and autonomous navi

gation is the analysis of the 3D environment using sensors like laser scanners or stereo 

cameras. 3D sensors generate a very large number of 3D data points in sampling object 

shapes within an environment, but crucially do not provide any intrinsic information 

about the environment in which the robots operate with. This means unstructured 

3D samples must be processed by application-specific models to enable a robot, for 

instance, to detect and identify objects and infer the scene geometry for path-planning 

more efficiently than by using raw 3D data.

This thesis specifically focuses on the fundamental task of 3D shape reconstruction and 

modelling by presenting a new knowledge integration framework for unstructured 3D 

samples. The novelty lies in the representation of surfaces by algebraic functions with 

limited support, which enables the extraction of smooth consistent shapes from noisy 

samples with a heterogeneous density. Moreover, many surfaces in urban environments 

can reasonably be assumed to be planar, and the framework exploits this knowledge 

to enable effective noise suppression without loss of detail. This is achieved by using 

a convex optimization technique which has linear computational complexity. Thus is 

much more efficient than existing solutions.

The new framework has been validated by critical experimental analysis and evaluation 

and has been shown to increase the accuracy of the reconstructed shape significantly 

compared to state-of-the-art methods. Applying this new knowledge integration frame

work means that less accurate, low-cost 3D sensors can be employed without sacrificing 

the high demands that 3D perception must achieve. This links well into the area 

of robotic inspection, as for example regarding small drones that use inaccurate and 

lightweight image sensors.
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1 Introduction

The importance of mobile robotics in many industries and in our everyday lives has 

increased significantly in the last decade. Research on autonomous robotics allows many 

handcraft tasks to be automated. Today, supportive driving on motorways, automated 

farm tractors or pallet trucks in warehouses are practical to a certain extent. A critical 

task of all autonomous systems is the perception of the surrounding environment. 

Perception depends on the analysis of data from 3D sensors such as laser scanners 

or stereo cameras. In fact, the key to most applications related to mobile robotics is 

the ability to reconstruct and analyse a 3D shape model of the environment. Thus, 

technologies integrating 3D shape reconstruction have the potential for a significant 

breakthrough in the future, in terms of both social and economical impact (Hagele, 

2011). When modelling the environment from 3D sensor data, automated decisions like, 

for example, how to pick up an object, how to avoid a collision or how to recognize 

objects become feasible.

1.1 Stereoscopic Cameras for 3D Reconstruction

State-of-the-art mobile 3D perception systems rely mainly on large 3D laser scanners 

to sample the geometry of the environment by 3D points as shown in Figures 1.1a and

1



1 Introduction

Velodyne'

a)

c)

Figure 1.1: a) Modern 3D scanner (LiDAR) from Velodyne, b) 3D point cloud from a street, 
c) 3D point cloud of a chapel obtained via time consuming post processing (SfM), d) Error 
prone 3D points of a building interior obtained in real-time from a mobile stereoscopic 
camera system.

1.1b. However, these sensors are expensive and their application on mobile platforms 

can be cumbersome due to their weight and power consumption. For this reason, 

camera-based 3D shape reconstruction has become a major focus of research. However, 

mobile platforms are often required to perform the 3D reconstruction process in real 

time, which prevents the application of high-accuracy, but computationally intensive 

techniques such as the Structure from Motion (SfM) algorithm. Furthermore, the 3D 

data obtained from mobile stereo platforms often contains many errors and outliers, as 

illustrated in Figures 1.1c and l.ld . Collectively, these issues mean the quality of the 

3D point data makes it extremely challenging to either create suitable 3D models or to

2
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3D Sensor
Reconstructed 
3D ShapeProvided 3D Points

a) b) c)

Figure 1.2: a) 3D sensor observing a scene, b) obtained 3D samples, c) 3D shape reconstructed 
from the samples.

perform semantic scene analysis in order for a robot to automatically interpret what is 

in front of the camera. For these reasons, improving the 3D data quality is a key aim 

in this thesis. The main process of automated 3D modelling is further illustrated in 

Figure 1.2 where 3D sensor samples are used as an input.

First, the 3D sensor (camera icon) observes the objects (building and vehicle) in 

Figure 1.2a and generates 3D samples (shown in Figure 1.2b) of the object geometries. 

Each 3D sample is represented by spatial coordinates (.t , y, z ) together with a colour 

value. The final step is then the construction of the 3D model (Figure 1.2c using the 

3D samples. A crucial feature of this final step is that it is expected to be able to ignore 

error-prone 3D samples at wrong locations and to represent the walls, the roof and the 

car as accurate as possible.

1.2 Data Processing Challenges and the Research Question

Being able to improve the quality of a 3D model relying on error-prone 3D samples 

would enable a large set of applications with mobile camera devices. This motivated 

several research communities to investigate the noise and outliers reduction techniques 

in 3D point data. As a starting point, triangulation techniques have been applied widely.

3
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However, these directly interconnect the acquired 3D samples to represent the shapes 

by triangle meshes (Cazals and Giesen, 2004) which introduces errors in the 3D shape 

model directly from the sample data. Furthermore, when the spatial distribution of the 

3D samples is non-uniform and the distance between samples is random (scattered), the 

triangulation process produces triangles at random positions with random orientations.

In order to reduce the effect of noise in the raw 3D samples, the research community 

has investigated the statistical filtering of samples (Huber et al., 1981). While smoothing 

or outlier removal techniques have become state of the art (Harrell, 2015), they involve 

the removal of important information by processing the data. New statistical shape 

modelling strategies are therefore required to effectively combine both outlier removal 

and detail-aware filtering without crucially removing key information from the input 

3D dataset. In contrast to standard triangulation techniques where data samples are 

interpolated, new techniques need to be developed which can approximate the data 

while having an awareness of the errors in particular 3D samples. This provided the 

motivation to explore how a priori knowledge can be exploited effectively to address 

this challenge and leads to the overarching research question of the thesis:

How can scenes be modelled by using 3D shape approximation from scattered 3D 

samples?

The research question is addressed by the new knowledge integration framework shown 

in Figure 1.3. Starting with error-prone 3D point clouds, the framework applies several 

novel approaches in order to generate a high accuracy 3D shape. Referring to the process 

illustration in Figure 1.2, the novel framework lieas in between steps 2 and 3. The 

framework consists of three key elements. Firstly, a new mathematical representation

4
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Sensor *
3D Samples

Figure 1.3: The proposed knowledge integration framework.

model is formulated that facilitates the approximation of scattered 3D samples. A 

new implicit shape model is proposed which enables the extrapolation of missing 

data (holes) and the representation of shapes with arbitrary smoothness. Regarding 

outlier removal, research (Wekel and Hellwich, 2015) has shown that when exploiting 

additional environment-specific information, it is possible to improve the quality of the 

model extraction significantly. In the second aspect of the framework, the proposed 

implicit shape formulation is extended to enable the integration of environment-specific 

information, that is a priori knowledge, into the 3D shape approximation process. 

Finally, in order to be able to process realistic datasets comprising millions of 3D 

samples, the numerical optimization algorithm is extended to linear complexity without 

compromising the accuracy of the final shape approximation results. In the next section 

these three aspects will be described in detail.

1.3 Research Objectives and Hypotheses

Research O bjective 1:

To develop and critically evaluate new kernel-based models for yeometry approxi

mation from scattered 3D samples.

3. Numerical, efficient optimization

2. Smoothing with a priori knowledge

I .  Implicit shape approximation Accurate 
3D Shape

5



1 Introduction

The task of 3D shape reconstruction from scattered points has attracted much 

attention in the computer graphics community (Alexa et al., 2001; Kazhdan and Hoppe, 

2013). In contrast to robotics applications, which is the main motivation of this thesis, 

the goal is to support manual modelling of movie characters or film sceneries. That 

means the focus of research has been limited to accurate dense 3D point clouds that 

have been acquired by stationary 3D scanning systems in controlled environments 

(Bodenmuller, 2009).

In recent times, 3D modelling has focused on the 3D samples generation step as 

shown in Figure 1.2b with significant improvements in accuracy being reported (Wei 

et al., 2014). Unfortunately, the computational overheads are extremely high, with 

accurately computed 3D samples from camera images taking several days. Thus, lower 

accuracy methods are favoured when results in real time are required. This leads to 

larger errors in the 3D measurements, which prevents the application of state-of-the-art 

shape reconstruction methods.

Moreover, in unknown environments the accuracy of 3D sensors decreases dramatically 

(Meister et al., 2012) even if time consuming off-line 3D sample reconstruction techniques 

are applied. Difficult illumination conditions cause outliers, homogeneous colours of 

surfaces lead to noise, and occlusions make accurate 3D shape reconstruction even more 

challenging. Figure 1.4 shows an example of data acquired from a mobile 3D sensor. 

Strong noise and missing samples due to occlusion and reflections are evident. Dealing 

with noise and outliers naturally involves techniques from the computational statistics 

domain (Bishop, 2006). In the past decade, kernel-based optimization techniques have 

become important because they can significantly enhance the approximation accuracy of
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Missing 
Noise Samples

a) b)

Figure 1.4: a) The acquired 3D samples shown as a point cloud, b) A part of the scanned 
stair house as a photograph.

machine learning applications (Scholkopf and Smola, 2001) and statistical data analysis 

in general (Fasshauer, 2011). This provided the motivation for the research objective 

to investigate and evaluate critically how kernel-based approximations can be applied 

effectively to 3D shape reconstruction. The goal is to enable consistent surfaces of 

arbitrary smoothness and the extrapolation of missing samples.

Research Objective 2:

To develop models which exploit planarity information, support noise suppression 

and improve shape approximation accuracy in error-prone 3D datasets.

The integration of a priori knowledge into the model extraction process has been 

proven to increase accuracy (Wang et ah, 2011). In many application domains such as 

indoor or urban outdoor environments most shapes are planar in nature. Bredies et al. 

(2010) proposed an edge-aware minimization strategy for the number of corners and 

edges in depth images by applying total variation (TV) minimization. Each pixel in a 

depth image encodes the distance of the object away from the sensor as presented in 

Figure 1.5, which shows a single object (building). Bredies et al. (2010) compared the TV

7
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filtering approach to several state-of-the-art estimators such as averaging (Figure 1.5c), 

median (Figure 1.5d and the Huber norm (Huber et ah, 1981) (Figure 1.5e). Since TV 

minimization assumes that most height measurements he on a plane, the building model 

extracted from the noisy input data can be very accurate. Similar challenges arise in 3D 

shape approximation, since the 3D samples usually contain significant errors. This means 

that integrating planarity regularization into the proposed framework represents an 

attractive opportunity to pursue in seeking superior 3D shape reconstruction accuracy. 

R esearch O bjective 3:

Critically synthesize a new computationally tractable TV  3D shape approximation 

technique.

Fulfilling research objective 2 by minimizing the TV in combination with the 3D shape 

reconstruction process, has a major impact on the overall computational complexity. 

When the number of 3D samples is increased, the order of computational time increases 

by an order of three when standard numerical techniques are applied. This prohibits their 

application on realistic datasets that typically comprise millions of points. Thus, new

(a) Ground tru th  (b) Input image (c) Average

/
(e) Huber(d) Median

Figure 1.5: Edge-aware image filtering via TV minimization (Bredies et al., 2010).
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more efficient algorithms need to be designed and developed which are computationally 

faster but do not compromise the accuracy and noise suppression performance while at 

the same time maintain the shape approximation smoothness.

The underlying work consolidates all three research objectives in an innovative 

framework shown in Figure 1.3 for an efficient and reliable 3D shape approximation 

technique for error-prone scattered 3D points. The integration of smoothness information 

as a priori knowledge is a fundamental contribution which, by means of an efficient 

iterative optimization algorithm, extends the implicit shape model representation. A 

summary of the main contributions of this research will be presented now.

1.4 Contributions

The new knowledge integration framework for 3D shape reconstruction proposed in 

this thesis makes three original contributions. The first is the development of a novel 

automated shape approximation technique using an implicit non-parametric function.

The second contribution integrates the planarity assumption on the approximated 

geometry as a priori knowledge into the approximation process. It is assumed that 

the second derivative of the implicit function is zero when the shape is planar. This is 

exploited for data-adaptive shape smoothing while being aware of the corners and edges 

sampled by 3D points. Thus, the second derivative of the shape is jointly minimized 

during the reconstruction process and the number of edges and corners is reduced.

The third contribution relates to the numerical optimization of the techniques devel

oped in the first two framework contributions. Common TV minimization techniques 

suffer from high complexity of G (N 3) (Boyd and Vandenberghe, 2004). As it will be

9
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analysed critically in Chapter 6, the new technique incurs linear O(N)  complexity with

out compromising the accuracy, noise suppression performance and the approximation 

1 of piecewise smooth shapes.
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1.5 Structure of the Thesis

The remainder of the thesis is organized as follows:

• Chapter 2 provides a comprehensive literature review of contemporary 3D geom

etry representation and approximation techniques. As will be shown, modern 

approaches focus on the integration of specific a priori knowledge into the shape 

reconstruction process in order to increase the modelling accuracy. The critique 

in Chapter 2 especially emphasizes key aspects of existing methods including their 

efficiency, robustness to noise, the ability to deal with sparse measurements and 

overall accuracy.

• Chapter 3 describes the applied integrated iterative research methodology adopted 

in this thesis. This methodology integrates aspects from the literature research, 

idea prototyping, testing and validation. In addition, both qualitative and quanti

tative evaluation strategies are presented including details of the test simulation 

platform, performance metrics and test datasets used for benchmarking.

• Chapter 4 introduces the theory of non-parametric (kernel-based) approximations. 

As this is fundamental to the development of the new implicit shape model, 

radial basis functions RBF are critically reviewed with respect to the regression 

stability from redundant and sparse samples. The effect of different regularization 

techniques is illustrated with simple examples which allow generalization and 

direct application on the 3D shape approximation from 3D samples. Chapter 4 

concludes with a series of generalized guiding principles for selecting a specific 

RBF type for a 3D shape approximation task.

11



1 Introduction

• Chapter 5 presents the first contribution of this work by proposing a kernel- 

based (RBF) shape reconstruction approach for 3D samples. The shape planarity 

assumption highlighted above in research objective 2 is enforced by minimizing 

the second derivatives of the shape. Its effect is demonstrated on synthetic 

geometrical models with different noise levels. It is shown that the proposed 

technique enables significant improvements in the approximation quality from 

scattered and error-prone 3D samples. Parts of this chapter have been published 

in Funk et al. (2014).

• Chapter 6 introduces an efficient numerical solution to the 3D shape reconstruction 

technique developed in Chapter 5. The originality of this work is the development 

of an iterative optimization method capable of efficiently solving the TVLi shape 

approximation, so reducing the order of computational complexity from cubic 

to linear without affecting the quality of the shape reconstruction. Parts of this 

chapter have been published in Funk and Borner (2014), Funk et al. (2015) and 

Funk et al. (2016).

• Chapter 7 presents an evaluation of the new knowledge integration framework 

on indoor and outdoor scenes. Critical qualitative and quantitative analysis 

underpins the improved quality and robustness to existing shape reconstruction 

approaches. The error metric, which is the statistical difference between the 

ground truth data and the reconstructed shapes, is reduced by approximately 

20% when the proposed technique is applied.

• Chapter 8 discusses some potential research directions which can exploit the new

12
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knowledge integration framework. This can be expected to have a significant 

impact on the domain of automated 3D modelling.

• Chapter 9 provides some conclusions on the findings presented in this thesis.

1.6 Summary

This chapter has presented the context for the development of a new 3D shape ap

proximation framework with the novelty being the integration of a priori knowledge 

into the shape reconstruction process. The focus is especially on planarity-aware shape 

approximation which enables enhanced accuracy when surfaces in either urban or indoor 

environments are approximated. Three research objectives have been framed which 

specifically relate to the development of a formal shape representation methodology, 

a strategy for integrating a priori planarity knowledge and the efficient computation 

strategy for very large 3D datasets.

As the first step to achieving these objectives, the next chapter presents a critical 

literature review of existing knowledge integration approaches to 2D and 3D shape 

approximation. Issues addressed in the contributions such as shape smoothness and 

robustness to error in the data are particularly highlighted.

13
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This chapter will review the current state of the art in shape reconstruction from 

unordered 3D points. Initially, general shape representation techniques are reviewed 

which are suitable for numerical shape modelling and approximation. Thereafter, 

modern approaches that integrate a priori knowledge into the shape reconstruction 

process are evaluated. The most promising approaches are discussed with respect to 

the research goals of this work.

Shape reconstruction and approximation has been addressed by the computer graphics 

community for the past two decades. Initially, direct triangulation techniques have 

been developed (Edelsbrunner and Miicke, 1994), which, however, are not applicable 

on scattered 3D points because of noise and redundancy. The difficulty has later been 

elaborated by integrating smoothness a priori knowledge, also called prior, into the 

approximation process (Alexa et al., 2001; Calakli and Taubin, 2011; Kazhdan and 

Hoppe, 2013). This allows the reconstruction of smooth surfaces even if the samples 

are nearly redundant and distributed randomly. This important property is further 

extended in the presented research. However, a serious issue remains: the suppression of 

noise. The smoothness prior integration motivated many research groups to develop new 

application-specific a priori models. Some of these consider repetitive structures (Pauly 

et al., 2008; Berner et al., 2011) while others consider the geometry of the sampled scene

14
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(Bao et al., 2013). Capabilities of such approaches are further reviewed in this chapter. 

Also smoothness priors have been extended to global and piecewise smooth geometries 

(Boulch et al., 2014; Avron et al., 2010; Bredies et al., 2010). Since smoothness is the 

most common feature in many applications, this will be investigated in more detail as 

it forms the basis of research objective 2. The discussion is then summarized in Section

2.3, where robustness, computational effort, handling of sparse measurements and the 

overall accuracy of existing methods are elaborated.

2.1 General Shape Representation

2 .1 .1  R epresentation via S im plexes

In the domain of computer graphics shape representation via polygon meshes, or 

more generally with simplexes, is an accepted practise. This is mainly driven by 

interactive visualization applications such as games and virtual reality simulations 

(Hughes et al., 2014). The research in computer graphics leads to a large number of 

rendering frameworks such as OpenGL (Wolff, 2013) and enables the visualization 

of simplical polygon meshes with the help of parallel hardware. For this reason, 

early research of automated shape reconstruction from 3D points focused on the

a) b) c) d)

Figure 2.1: The a-shapes algorithm, a) Input samples, b-d) reconstruction with increasing a. 
Edelsbrunner and Miicke (1994).
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direct construction of triangle meshes connecting tetrahedra via Delaunay-triangulation 

(Bowyer, 1981; Edelsbrunner, 1987). Edelsbrunner and Miicke (1994) and Bajaj et al. 

(1995) proposed the so-called a-shapes (Figure 2.1) for creating a closed and topologically 

correct surface. The method aims at connecting neighbouring points via triangles while 

the a  value controls the acceptable Euclidean distance between the connected samples. 

Since a  is defined by an expert user, the method is not practical for non-interactive 

applications. Later, Bernardini et al. (1999) proposed a more adaptive region growing 

technique called Ball-Pivoting Algorithm (BPA), though a major recurring drawback of 

a  shapes, BPA and all Delaunay-triangulation-based methods is their high sensitivity to 

noise and outliers (Bodenmuller, 2009). The reason for this is that each sample is used 

to construct triangles even if it is an outlier or an error-prone measurement (Cazals 

and Giesen, 2004).

2 .1 .2  Param etric Representation

Parametric surface-fitting algorithms, which are also called spline-based methods, are 

well-known for signal approximation as well as for interpolation. The goal is to find 

a function f (u , v)  : M2 M that acts on a planar space M2 and gives the height

Figure 2.2: a) Smooth surface model via NURBS, b) A set of parametric shapes combined 
to  a global consistent surface. Schreiner et al. (2004).
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with respect to the plane it is approximating. Traditionally, a parametric surface 

reconstruction algorithm consists of two main steps:

1. Partition ing : Application of Delaunay-triangulation or a clustering technique 

(Sheffer et al., 2007),

2. P aram etrization : For each segment, a local plane and the corresponding height 

parametrization model /  is extracted via optimization.

A common practise is to apply the least squares technique to minimize

N

II Mpi ) -  f (ui ,  Vi) 111
i

where p* £ R3 is the ith input 3D sample, /i(pj) : R3 R is its height in a segment and 

(■Ui,Vi) =  proj(pi) is the projection of p  ̂ on the corresponding segment plane partition 

from step 1.

Several spline models such as non-uniform rational B-Splines (NURBS) (Piegl and 

Tiller, 1997; Rogers, 2001) or Bezier curves (Agoston, 2005) are commonly employed to 

model /  of each segment. These methods are able to create smooth surfaces for non- 

uniform control point sets (Figure 2.2a). Locally parametrized segments are combined 

to give a global continuous shape (Figure 2.2b), which is, however, a combinatorial task 

with high computational complexity as shown by Floater and Hormann (2005). For 

this reason, global shape modelling with NURBS or Bezier-curves is not used. Instead 

local-based approximations are preferred as will be examined in greater depth in Section 

2 .2 .2 .
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2 .1 .3  Implicit Representation

The Signed Distance Field (SDF) is a special case of shape representation. It is of high 

potential for applications such as camera movement tracking (Canelhas et al., 2013), 

collision detection and cloth animation (Bridson et al., 2003), multi-body dynamics 

(Guendelman et al., 2003) or motion planning (Hoff et al., 1999). An implicit shape 

is basically an indicator function / ( x )  to classify the 3D space as inside / ( x )  < 0 or 

outside / ( x )  > 0 with x  E R3 as 3D coordinate. The surface of the object is the set of 

all x  where /  gives zero as illustrated in Figure 2.3. The 3D space is divided into a fine 

grid in which each element, called voxel, contains the implicit indicator / ( v ) .  Newcombe 

et al. (2011) demonstrated high accuracy 3D modelling with SDF by applying it to the 

Kinect sensors, where the data is provided as a stream.

The disadvantage of SDF is that the complete 3D space has to be divided into a large 

dense set of cells even for areas where no measurements have been registered. Because 

of this high memory requirement, the representation method is not feasible for larger 

areas. Approximating a volume 100 x 100 x 100m3 on a grid of 1cm would thus require 

4000GB using standard 32 bit floating point values to encode the implicit SDF.

Inside Outside
I0 .9 I0 .4 to lo .2 lo .9 l 1 11 11 11 11 I■SSI?1 OS (El 
E IR S ^ m E E I lO E lI l
DEESEE^QSESIDEIflil
Bl SE EE 54 EB B E P O n n  

HEEEES^dBSBHSDODI
BISSES £3 E E E D I1 D H
30 0E0ELQEBEDDD El 
s g g g a i E i i i i i i n i i

Figure 2.3: A Signed Distance Function (SDF) on a fine grid.
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The general shape representations discussed so far enable the approximation of 

arbitrary geometries. In many applications, however, this is not required and it is 

preferable to restrict the generality of the representation approach in favour of the 

approximation quality. Examples in the next section will illustrate how more explicit a 

priori information can be exploited effectively to handle missing measurements and to 

approximate a shape provided the underlying model is known.

2.2 Prior-Based Shape Reconstruction

The integration of prior knowledge into the reconstruction task is essential when surfaces 

are required to be reconstructed from noisy data. Two general prior types have been 

identified: i) regular or repetitive structures, ii) smoothness and piecewise smoothness 

priors.

2 .2 .1  Regularity Priors

Pauly et al. (2008) proposed clustering point clouds into repetitive segments and 

exploiting this information for hole filling of structured environments as shown in Figure

2.4. Berner et al. (2011) developed a more general notion of partial symmetries, which 

is represented in a low dimensional shape space. A basic structure is firstly detected

Figure 2.4: Detecting repetitive structures (a) enables hole filling (b) in s tructured environ
ments. Pauly et al. (2008).
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Figure 2.5: Similar objects are scaled to match repetitive patterns. Red: strong deformations.
Green: small deformations. Berner et al. (2011).

and then applied to similar areas by means of non-rigid deformations. In Figure 2.5, 

for example, strong deformations in the shape subspace are coloured in red while small 

variations are shown in green. Berner et al. (2011) further proposed to apply supervised 

segmentation of the data. Supervised integration of priors has also been investigated by 

Sharf et al. (2007) and Arikan et al. (2013), where topology or relation-based similarities 

are marked by the user. In order to reduce the effort from interactive intervention, Bao 

et al. (2013) and Shen et al. (2012) perform the classification of the observed images 

and sparse point clouds by fitting a known model from the database (Figure 2.6) and 

using regularity and pre-learning approaches. These methods are expected to perform 

well when known objects are observed. The methods do not provide any advantage 

when the scene consists on unknown elements, which is a more common case. Thus, 

more straightforward and generalized prior models are required.

Testing Object Images

Refinement

Reconstruction Phase
SFM / 
MVS

Learning Phase
Training Images 3D Scans

Learned Prior Shape & 
Anchor Points (Stars)

Learning Anchor Points

Prior Shape Warped by Using 
Matched Anchor Points (Stars)

Output

Figure 2.6: Bao et al. (2013) learn priors from images for reconstruction.

20



2 Review of 3D Shape Modelling

Smooth surfaces have been identified as the most common denominators for a large 

variety of scenes. So integrating this information into the shape reconstruction approach 

does not restrict an algorithm to a specific application. The smoothness assumption is 

divided into three categories: i) local, ii) global and iii) piecewise smoothness. Each of 

these will now be considered.

2 .2 .2  Local S m ooth n ess Priors

Alexa et al. (2001) proposed the approximation of the implicit shape in the local 

neighbourhood around each sample. Since only neighbouring samples are used in the 

approximation process, methods of this type are known as moving least squares (MLS) 

techniques. Discontinuities are smoothed by a decreasing smooth weighting function 0 . 

This enables smooth shape transitions between two different approximation centres x 

as illustrated in Figure 2.7a. In the first step, a plane function /i(x) is extracted from 

the surrounding samples (green support in Figure 2.7a):

fi(x) =  a r g m in ^ ( n  • p, -  d)20 (|| p* -  x ||2).
n,d

Figure 2.7: a) Local surface approximation by Alexa et al. (2001). b-c) Controlled smoothness 
by point-to-plane blending by Kolluri (2005).
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In the second step, a smooth polynomial function /(x ) is approximated via LSQ to 

give the height h(pi) of each sample:

argmin -  ^(Pi))2©(|| Pi -  x ||2).

Finally, the samples are re-sampled along the estimated shape and rendered as proposed 

by Rusinkiewicz and Levoy (2000). This approach has received much attention due to 

its simplicity and smooth continuous representation. Kolluri (2005) further proposed 

a technique enabling the control of the smoothness via point-based blending that 

integrates the sample normals into the shape function

f(  (Pi -  x)y>(|| Pi -  x ||2)
/ W  Ei^dl Pi - x  ||2)

where the sharpness weighting

V(r)  =  1r2 +  e

can be controlled via the user-specified parameter e. Figure 2.7b illustrates the effect of 

e on the smoothness of the shape. Higher e values lead to over-smoothing but enable 

more accurate reconstruction when noise is present.

Guennebaud and Gross (2007) extended the polynomial model from Alexa et al. 

(2001) by fitting spheres to local samples. The approach is feasible to reconstruct shapes 

from sparse measurements as illustrated in Figure 2.8a. However, dealing with noise 

remains a severe issue.

All the aforementioned local methods approximate a shape from neighbouring samples
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# • * v•  •* !',7 ■*
♦* •*

Figure 2.8: a) Algebraic sphere fitting from sparse samples. Guennebaud and Gross (2007). 
b) MLS without and with outliers. Ohtake et al. (2003).

valid only for the single query position x. In the case of strong noise or outliers, these 

approaches fail and lead to artefacts (Figure 2.8b). In order to overcome this, a family 

of techniques which aim to reconstruct a shape by minimizing a global cost function is 

employed. These will now be reviewed.

2 .2 .3  Global S m ooth n ess Priors

Carr et al. (2001) proposed one of the first, global shape approximation techniques by 

reconstructing an implicit representation of a shape. The implicit function is defined as

/(x) = E<w(ll x-c> lb)
i

where c* are the centres of the radial basis functions and cq the weights for the ith

Figure 2.9: a) The implicit function via augmented off-surface points, b) Extrapolation far 
away from samples. Carr et al. (2001).
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RBF center respectively. The approach exploits the included normals for orientation 

information as shown in Figure 2.9a. The shape function is expected to give zero at the 

samples f (pi )  = 0 and di on the off-surface points /(p* +  e^n*) =  di. This enables a 

convex LSQ minimization task to be defined:

a  =  arg ruin ^  / ( p *)2 +  (/(Pi +  efii») -  d,)2 +  (/(p* -  e,n7) + d*)2
i

of which the global solution provides the weightings a . The smoothness of the final 

representation is controlled by the offset distances di and the polynomial degree of the 

RBF. The achieved smoothness and good extrapolation capabilities allow solving sparse 

sampling issues and also approximating details in high density areas. The distance 

between the offsets d7; is, however, a critical parameter which leads to artefacts when 

complex shapes are processed.

Hornung and Kobbelt (2006) proposed a discrete technique addressing the issues with 

the off-surface distances. The space is partitioned into a narrow band voxel grid around 

the samples and a distance value from its nearest sample is assigned to each voxel 

(Figure 2.10a). The shape is extracted as the shortest path between the voxels applying

N a r ro w  b a n d  
i n p u t  "V 'VT/

I n s i d e /O u t s i d e  O p t im iz e d  s h a p e R e s u l t

Figure 2.10: a) Narrow band voxel grid around the samples for Graph Cut Hornung and 
Kobbelt (2006). b) A smooth and global implicit shape extracted via radial basis functions 
Walder et al. (2006).
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the Graph Cut technique from Boykov et al. (1999). Unfortunately, the method suffers 

from a high computational complexity and is not suitable for datasets with millions of 

3D points.

Kazhdan (2005) avoided using off-surface samples by defining the reconstruction task 

as a partial differential equation (PDE). Fourier basis functions are used to extract 

the shape which, however, leads to the smooth approximation of edges and corners. 

Manson et al. (2008) replaced the Fourier bases by wavelets, known for their superior 

approximation of unit step functions. The difficulty is, however, that the wavelets are 

separated on each of the three axes (x , y , z) and then combined independently. This 

leads to good approximation results along the axis alignment but degraded quality 

for arbitrary-oriented shapes. For these reasons, Manson et al. (2008) also applied 

post-filtering to smooth the resulting inconsistencies, though this further degrades the 

quality.

Later, Kazhdan et al. (2006) replaced the Fourier bases by smooth splines while 

subdividing the space with an adaptive octree. The resulting method is known as the 

Poission (Kazhdan and Hoppe, 2013) reconstruction technique and is widely applied 

for shape reconstruction.

Walder et al. (2006) proposed a two-step application of RBF where small regions are 

approximated independently via global RBFs (Figure 2.10b). In the second step, local 

approximations are combined with compactly supported RBFs. Walder also proposed a 

novel regression model which forces the gradient of the shape function /  to match the 

sample normals:

V /(Pi) =  n*.
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M e s h I n p u t

Figure 2.11: a) Reconstruction via SSDF. b) SSDF compared with Poisson and Wavelets 
Calakli and Taubin (2011).

In the convex optimization task this constraint is integrated as a cost term. A drawback 

of this method is that the combination of locally defined functions allied with a global 

smooth RBF leads to over-smoothing. However, Walder’s regression model inspired 

Calakli and Taubin (2011) to apply its discrete form on an octree. Further, Calakli and 

Taubin (2011) minimized the second derivatives, which led to Smooth Signed Distance 

Field (SSDF) surfaces. Figure 2.11a shows the extrapolation behaviour of SSDF on 

sparse samples and the accuracy compared to Kazhdan et al. (2006) and Manson et al. 

(2008) in b. The method is accurate but expects a closed surface, which is also the case 

for Kazhdan and Hoppe (2013). As a consequence, shape meshes are constructed in 

noil-sampled areas such as doorways and windows (Figure 2.11a).

2 .2 .4  P iecew ise  S m ooth n ess Priors

Smoothness priors enable higher shape reconstruction accuracies but often lead to 

over-smoothing along edges or corners. Human-made environments such as buildings, 

urban environments or indoor areas often contain planar shapes connected by corners 

and edges. Boulc.h et al. (2014) proposed extracting planar clusters from the point 

cloud and extrapolating the planar arrangements to fill holes. The approach applies 

combinatorial integer programming (Andres et al., 2012) in order to find a set of possible

W a v e le tsI n p u t
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Figure 2.12: Shape reconstruction via combinatorial optimization, a) Input samples, b) 
reconstruction result Boulch et al. (2014).

intersections in space which leads to good approximations of indoor environments, but 

finer detail such as staircase railings are ignored as illustrated in Figure 2.12.

A general edge-aware smoothing has been proposed by Oztireli et al. (2009):Robust 

Implicit MLS - (RIMLS). Applyig RIMLS, iterative reweighing of the sample importance 

weights is performed giving higher weight to edges. The shape approximation task is 

similar to the approach of Kolluri (2005) (Figure 2.7b) but is extended by a non-constant 

weight w f

f M t+i = E ,  n, ■ (Pi ~  x ) y ( | |  p.j -  x  ||2K ( n j )

J(> Ei¥>(|| Pi — x  ||2)

with pj, rii the ithsample position and normal orientation respectively, and

Wi(ni) =  e-llv/M'-ndUM,,.

R IM L SP o is s o n

Figure 2.13: a) Edge-aware reconstruction after zero or two reweighting steps, b) Comparison 
of RIMLS and the Poisson Oztireli et al. (2009).
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Wi decreases when the shape orientation deviates from the sample orientation. 

Figure 2.13a illustrates the iterative behaviour of the reconstructed shape after zero and 

two refinements (reweighting steps) while Figure 2.13b presents a comparison between 

the Poisson and RIMLS techniques. A drawback of this method is its sensitivity to 

irregularities in the sample orientations and because it uses a MLS approach, it is not 

robust to noisy data.

Avron et al. (2010) addressed the robustness issue by proposing a two-step re-sampling 

process: i) correcting the normal vectors n* and ii) correcting the sample positions 

p, along the estimated normal vectors (Figure 2.14). In the first step a cost function 

penalizes orientation differences between neighbouring samples. Since only a small 

number of samples is expected to be located upon an edge or corner, the sparsity- 

inducing Li norm is applied in the cost term. The L\ based optimization has received 

a lot of interest in the statistics community (Gonin, 1989; Bach et al., 2011) due to its 

proven robustness in many application domains. The method is particularly accurate 

when applied to dense point clouds and outperforms RIMLS as illustrated in Figure 2.15. 

Unfortunately, the computational overhead is very high which means that only relatively 

small datasets, i.e. up to around 240, 000 samples, have been used for demonstration 

purposes requiring a computation time of 22 minutes.

Figure 2.14: A two-step algorithm refining the orientations (b) and the positions (c) of noisy 
samples (a) in independent processing steps. (Avron et al., 2010).
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) ^  b)

Figure 2.15: a) Noisy data , b) RIMLS outperformed by Avrons m ethod in c) Avron et al.
(2010).

Also motivated by the robustness of L\ cost terms, Bredies et al. (2010) proposed 

an optimization technique for filtering noisy depth images (Figure 1.5). The technique 

penalizes the variations in the second derivative of the depth values. Since this will only 

be non-zero on edges or corners, the sparsity-inducing L\ norm is chosen. Penalizing 

variations in the function derivatives is usually referred to as Total Variation (TV) 

minimization in the image processing discipline. However, applying TV to derivatives 

higher than first order is difficult when noisy data is processed. Bredies et al. (2010) 

approached this issue by integrating smooth weighting functions onto the samples. They 

reported very promising results by applying this technique to depth images. In addition, 

extending this approach to 3D shapes has not been considered so far, which was in part 

the rationale for the second research objective addressed in this thesis.

2.3 Key Considerations

From this critique of the relevant 3D shape reconstruction literature five critical aspects 

have been distilled. These are:

1. G enerality  (Gen.): Applicability of the technique to be able to reconstruct both 

simple and complex shapes.
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2. Computational Speed (Spd.): Computation efficiency and expandability to 

parallel computing.

3. Robustness (Rob.): Ability to deal with strong noise and/or outliers.

4. Sparse Measurements (SM): Ability to reconstruct shapes when only sparse 

samples are available.

5. Accuracy (Acc.): Overall accuracy of the technique.

Table 2.1 summarizes the reviewed methods with respect to these five criteria. The plus

Table 2.1: State-of-the-art shape reconstruction approaches

Technique l:Gen. 2:Spd. 3:Rob. 4:SM. 5: Acc.
No priors
a shapes - Edelsbrunner and Miicke (1994) i +  +  + i i +
BPA - Bernardini et al. (1999) + 1 +  +  + i

i ; +
SDF - Newcombe et al. (2011) + + +  ' ++ 1 + 1 ++
Regularity priors
Clustering - Pauly et al. (2008) i i + + + + + + i +
Subspace tension - Berner et al. (2011) +  ; + 1 4-4- +i r  ' +  +  + ; +
Learning clusters - Bao et al. (2013) i 1 +  +  + +  +  + • +
Local smoothness priors
MLS - Alexa et al. (2001) + +  , +  +  + i i + +
Point blending - Kolluri (2005) ++ 1 + +  + i 1 + +
APSS - Guennebaud and Gross (2007) + +  , +  +  + 1 , + +
MPU - Ohtake et al. (2003) + +  1 +  +  + 1 + 1 + +
Global smoothness priors
RBF - Carr et al. (2001) H—b i 4- i + + i +
Graph Cut - Hornung and Kobbelt (2006) + +  ! : + + ; + +
Fourier - Kazhdan (2005) + +  1 + + 1 + + 1 + +
Wavelet - Manson et al. (2008) 4—b i 4—b i + + i +
Poisson - Kazhdan and Hoppe (2013) + | + + : + + +  +  + ! + +
SSDF - Calakli and Taubin (2011) 4~ 1 4—b 1 + + +  +  + 1 + +
Piecewise smoothness priors
Intersection clusters - Boulch et al. (2014) i i + + + +  +  + , ++
RIMLS - Oztireli et al. (2009) ++ 1 ++ i 1 +
L\ re-sampling - Avron et al. (2010) ”1—b i i + + + i + + +
TV depth approx. - Bredies et al. (2010) 1 + 1 + + + 1 + + +
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signs indicate whether a particular technique is satisfactorily fulfils a certain criterion. 

This judgement has been distilled mainly from the literature and in certain cases by 

direct communication with the authors. In particular, the computational speed metric, 

which is easy to evaluate when the source code for an algorithm is provided. However, it 

is difficult to appraise from only a publication. In such cases, the computation approach 

has been analysed by focusing on its capabilities with respect to the computation time. 

A simple example is when an algorithm applies local smoothness, which scales linearly 

with the dataset, then its computational speed is shown to have the maximum number 

of plus (+) signs in Table 2.1.

The overall conclusion is that techniques which do not exploit any priors are inap

propriate for either noisy data or sparse samples, with the one exception being the 

discrete SDF by Newcombe et al. (2011), though this suffers from very high storage 

requirements.

R egularity  priors are stable under the influence of noise or outliers, but are usually 

designed for very specific scenes such as building facades or vehicles. This restricts the 

applicability domains.

Sm oothness is the most common property observed in any environment, thus 

integrating smoothness priors enables the accuracy of shape reconstruction to be 

increased for a large number of applications. While local methods make fast parallel 

computations possible, they are less suited for noisy or sparse 3D points. Here, global 

methods perform significantly better. Outstanding techniques are the Poisson method 

from Kazhdan and Hoppe (2013) and the SSDF (Calakli and Taubin, 2011), which are 

particularly good at reconstructing sparse data with high accuracy but require closed
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surfaces, which reduces the generality of the approaches.

Since smoothness priors fail at reconstructing sharp corners and edges, techniques 

integrating piecewise sm oothness are in the focus of current research (Strekalovskiy 

et al., 2014). Clustering samples and searching for intersections of planar segments 

has been claimed to be robust to outliers but is not applicable to scenes containing 

fine and coarse details (Boulch et al., 2014). On the other hand, RIMLS from Oztireli 

et al. (2009) applies iterative edge-aware optimization to reconstruct sharp features, 

though this technique is not robust to noisy data. In this regard, the highest accuracy 

is achieved by the L\ re-sampling approach from Avron et al. (2010) and the TV depth 

filtering from Bredies et al. (2010), which also applies the L\ norm. The integration 

of the TV penalties and Li norms is particularly challenging from the computational 

point of view. In contrast to regularity priors, the smoothness prior is more general 

and can be applied to a much larger range of environments. It is thus more attractive 

for 3D shape reconstruction in robotics applications. The planarity regularization via 

the Li norm is a very promising technique to further increase the shape accuracy from 

general datasets.

2.4 Summary

Several state-of-the-art techniques in shape approximation make use of a priori know

ledge. For example, detection of regularity patterns in the point clouds allows to 

extrapolate the shapes despite missing measurements. This approach works well on 

scenes like a facade with repetitive windows but does not provide benefits on more 

general environments. For this reason, the smoothness prior, which expects the surfaces
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to be smooth, is applied more frequently for indoor and outdoor scenarios. In the context 

of mobile robotics the integration of smoothness is a promising direction. Therefore, 

the first research objective focuses on this issue.

Enhancing the smoothness priors to planar surfaces, most evident in indoor and 

urban environments, has been demonstrated on images up to today. The extension 

of such planarity-aware, image-based techniques to 3D data is very promising and is 

therefore addressed by the second research objective. Since the state-of-the-art processes 

involve optimization strategies which suffer from high computational complexity, the 

third research question is the reduction of the computational overhead without having 

to sacrifice the accuracy of the method.

The next chapter will present the methodology established to ensure the correctness 

and the success of the novel technique and the benchmark strategy when assessing the 

quality of the 3D shape reconstruction.
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3.1 Framework Structure

The proposed framework in this thesis refers to a structure that processes 3D data to 

a continuous and discrete surface. The framework is generic in terms of the source of 

input 3D data, which can be a 3D laser scanner or a camera system. However, the main 

motivation is to be able to process error-prone data from a stereo camera system, which 

would enable reliable mobile robots with cameras to be increasingly cost-efficiency. The 

structure of the framework applied to stereo image data is illustrated in Figure 3.1. 

Processes p l  and p2 are shown in grey as they are not part of the presented framework. 

Essentially, at least two images (e.g. left and right) are processed to a depth image, 

where each pixel grey value represents the distance of the 3D point from the camera 

centre. This allows the computing of a 3D point cloud from either one or more depth 

images.

The first process p3, in the new framework structures the input point cloud into an 

octree for faster access and more processing efficiency. This process is not critical and 

is a standard approach in spatial data processing (see Appendix E for more details). 

Process p4 represents the core method for 3D shape reconstruction, which contains 

the three key thesis contributions: 1) implicit surface approximation, 2) integration
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Figure 3.1: The framework applied on stereo image data.

of a priori knowledge into the approximation task, 3) efficient numerical optimization 

technique.

3.2 Integrated Iterative Research

Successful research requires a systematic methodology which helps to keep track of the 

objectives and to manage the findings. In order to achieve the three research objectives 

stated in Chapter 1, an iterative methodology is applied in which the literature review, 

fast idea prototyping, testing and validation are integrated parts of the process. Similar 

approaches are known from the discipline of project management (Schwaber, 2004). 

However, the challenge in scientific research is that the impact of a particular idea 

is difficult to predict. This is addressed by smaller work phases that are carried out 

iteratively. Figure 3.2 illustrates the herein developed integrated iterative research (HR) 

steps as one iteration. The IIR methodology relies on the principles of the agile project
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Figure 3.2: Illustration of the MR methodology.

management, which particularly focuses on experimental software development projects 

where the outcome is not known a priori. A single agile period consists of steps such 

as i) identifying a task that improves the software, ii) working on the problem for a 

defined period of time, and iii) reviewing the new functionality and defining the new 

tasks for the next period. Similarly to this, four research periods have been defined:

1. The first step is the investigation of existing literature regarding the given objective. 

Since the internet search engines give access to a huge body of research work 

published as journals, conference proceedings and various web-based resources 

like blogs, the investigation of a suitable approach for the stated objective is 

challenging. Section 3.3 presents the established work flow for literature research 

and introduces the sources and tools applied to manage and to assess new findings. 

Having identified either a promising approach or strategy which addresses a 

particular research objective, the first step is to implement a very basic version of 

the algorithm.

2. The second goal is to assess the suitability of the selected approach and to identify
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issues and limitations that are often not mentioned or stressed in the published 

documents. Since the prototype aims at providing deeper understanding, a 

programming language with strong visualization support and simple syntax is 

favoured. The implementation aspects will be discussed in detail in Section 3.4.

3. The third task is to validate the correctness of the prototype implementation. 

Test scripts, also referred to as unit-tests, check the computational correctness of 

test cases in which the exact results are known a priori. By using established test 

metrics, the performance of the overall framework can then be undertaken. This 

will be explained further in Section 3.5.

4. The final step is the evaluation of the developed algorithm’s implementation and 

validation, which will be presented in Section 3.6. Synthetic and real datasets are 

applied in order to reveal the achieved performance of an algorithm. The various 

3D test datasets used for the critical qualitative and quantitative analysis of the 

algorithms are discussed in Sectino 3.6. The ground tru th  dataset generation 

process and evaluation metrics are also included.

3.3 Literature Research 

Information Sources

Many sources of scientific publications like journal articles, conference proceedings 

and various web-based resources like blogs are accessible via web search engines. The 

research community addresses the difficulty to find relevant information by defining 

impact factors (Greenwood, 2007) which help to identify the relevance of authors,
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articles, conferences or journals. Nevertheless, characterization of research quality 

via a single number is critically discussed in the community (Seglen, 1997). In any 

case, intensive reading, information management and individual critical analysis of the 

publications is fundamental. Tools such as Zotero (Roy Rosenzweig Center, 2015) or 

Redmine (Lang, 2015) help to structure publications and to store individual notes and 

explanations of the subject. Both tools have been selected since they are web-based 

and can be accessed from any computer via web browser.

3.4 Idea Prototyping

After identifying a promising approach in the literature, the first step is to implement 

a basic version for proof-of-concept and to evaluate its suitability. In the computing 

community Matlab is used as a standard tool for fast prototyping of algorithms. However, 

in recent years the programming language Python has received a lot of interest. A large 

set of libraries, simple syntax and excellent support by the web community are the main 

benefits of Python. In contrast to Matlab, Python and its libraries are free (GPL), the 

language is object and name-spaces oriented, and allows to create advanced graphical 

user interfaces (GUI). Programs developed in Python work on Windows, Linux or OS X. 

Nevertheless, the implementations have been carried out under Windows on a standard 

PC since this enables efficient debugging and flexible software development. In terms of 

this research work, Python was used for the initial prototype implementations of the 

RBF-based approximation as will be discussed in Chapter 4.
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3.5 Testing

After a prototype, e.g. approximation via RBF, was developed and validated for its 

correctness with simple examples, it is then implemented in C++. The main reason for 

this is the increased computation performance, which exceeds the runtime performance 

of Python or Matlab.

The algorithms implemented in C ++ are required to be monitored over time since 

their stability and correctness have an impact on many parts of the research work. For 

this reason, unit-tests have been adopted. A unit-test is a simple test program that 

performs predefined operations on a software module. In the case of matrix-vector 

multiplication, a known vector v and matrix A  are multiplied:

A v = r

/ \
an an

( \
Vi

( \
anUi +  0 1̂2^ 2

^21 a22 j  \ V 2  y ^21^1 +  2̂2̂ 2 y

Since the exact outcome is known, the multiplication results are automatically proven to 

be correct by the unit-test program. When one of the elements in r  does not correspond 

to the expected value, the test-program exits with an error that generates an email 

alert for the developer.

The unit-test approach validates a particular program’s correctness but does not 

investigate the performance of the full algorithm. In the case of RBF-based approxi

mation, for example, in which measurements from a known model are perturbed by 

noise, evaluating its correctness falls within the scope of the evaluation step. This will
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a) b) c) d)

Figure 3.3: Virtual cameras (b-c) scan a 3D model (a), d) The simulated 3D point cloud.

be discussed in the next section.

3.6 Validation and Evaluation

In order to make sure that the implementations are in fact correct, unit-tests and 

evaluation on synthetic and real datasets are combined. While the unit-tests ensure 

tha t low-level computations such as optimization solvers are correct, the data-based 

evaluation proves that the developed shape reconstruction algorithm is correct and 

competitive.

3 .6 .1  Evaluation Framework

After the shape approximation framework was established, its accuracy and computation 

times, which are standard performance metrics for shape reconstruction (Strecha et al., 

2008), are evaluated. This step naturally involves the comparison of the reconstruction 

result with a priori known results, the ground truth. Unfortunately, ground truths for 

large scale 3D reconstruction are generally not available in the community. Several 

research groups have published datasets acquired by laser scanner devices or the Kinect 

(Microsoft Inc., 2015), but they only provide ground tru th  data for the pose of the 

moving sensor (Sturm et al., 2012).

To perform quantitative evaluation, a virtual range camera has been implemented
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simulating temporal data acquisition during a movement (Figure 3.3). In the first step, 

a 3D model from the 3D warehouse (Google Inc., 2014) (Figure 3.3a) is sampled by a 

range camera from different locations (Figure 3.3b-c). Each image is perturbed with 

Gaussian noise and the 3D points are aligned in a common coordinate frame (Figure 

3.3d). The implementation of the virtual camera strategy has been performed in the 

rendering engine Blender (Blender Online Community, 2016). Blender is an open-source 

project delivering high-quality ray tracing rendering for low-cost film productions. It is 

extendible with custom scripts that enable it to access the properties of the camera and 

the scene and thus to simulate range camera measurements and the scanning process. 

By applying this approach, it is possible to load a common mesh-based 3D model into 

Blender and to define the trajectory of the camera movement during the animation. 

When the animation is started, a 3D point cloud is generated using the camera position 

at each frame. Finally, a set of 3D point clouds is available, one for each time point 

respectively. The full assessment framework is summarized in Figure 3.4 and has four 

underlying processes pl-p4 which perform the following tasks:

. p i:  Given a 3D model, the polygon-based shape is re-sampled with at least 106 

points. The resulting point cloud, labelled as d2 in Figure 3.4, is defined to be 

the ground truth and is passed to task p4 for the assessment of the reconstruction 

result.

. P2: The 3D model is scanned by the synthetic camera and stored as a point cloud 

in a file.

• p3: This is the main shape reconstruction process. It uses the point cloud from
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Figure 3.4: The  process overview developed to  assess the shape reconstruction quality, p  

represents a process task and d is the data type which is transferred from one process to 
another.

the process p2, approximates the shape and generates a mesh which is further 

evaluated by p4.

. p4: The resulting mesh is re-sampled in the same way as in p i. Point-to-point 

error distribution with respect to the ground truth from p2 is calculated.

3 .6 .2  Performance Metrics

The last step p4 computes the performance metrics representing the success of the 

reconstruction process p3. Besides the perceptual inspection of the reconstruction shape 

results, numerical evaluation using appropriate performance metrics is undertaken to 

enable more meaningful information to be extracted and to assess the success of the new 

shape reconstruction process. Similar to Berger et al. (2013), the Euclidean distance 

between the reconstructed surface and the ground truth surface is computed. For each 

sample from d4 its next neighbour in d2 is found. Furthermore, the statistical error
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distribution including cumulative statistics is extracted. A similar approach has been 

applied by Strecha et al. (2008) for the evaluation of multi-view stereo algorithms. In 

summary, the following performance metrics are applied:

• Visual inspection: Shape reconstruction results are visualized using OpenGL. 

Viewing the shapes in detail allows to quickly detect inconsistencies in the recon

struction process.

• Spatial deviation: Spatial deviation of the reconstructed shape from the original 

model. This is the main metric investigated in p4. The nearest neighbour from 

the ground truth point cloud is selected for each mesh vertex. The spatial error 

distance is shown in terms of colour intensity in Figure 3.5a. The model is 

visualized in a different colour where the intensity of red represents the deviation 

from the ground truth.

Using common statistical visualization standard tools (Tufte, 1990) such as 

median and variance plots (Figure 3.5b), error histograms (Figure 3.5c) and 

the cumulative distribution plots (Figure 3.5d) are generated. These provide 

additional information about the intensity of the reconstruction errors and also 

their spatial distribution.

• Median and variance: After computing the spatial deviations between d4 and 

d2, the error distribution information is summarized by the median value. First, 

all the N  distances are sorted in ascending order. Second, the central sample 

at the list position N/2  is taken as the Median Distance Error (MDE). The 

benefit of MDE is its robustness to large outliers in the spatial distances. In cases
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where large reconstruction errors occur at only one position, the corresponding 

MDE metric is less likely to increase than the mean value. Additionally, MDE is 

augmented by the error variance in Figure 3.5b, in which four exemplary methods 

are shown for comparison.

• Distribution visualization: In statistics, the probability density function plays 

an important role when evaluating the nature of a random process. Its equivalent 

discrete representation is the histogram, shown in Figure 3.5c. The histogram 

reveals how well the reconstructed shape aligns to the ground truth surface. 

The peak illustrates the most frequent error made by the reconstruction process. 

However, intuitive comparison using the histograms is difficult. This is addressed 

by the cumulative distribution which can directly be computed from the histogram. 

In the cumulative distribution graph in Figure 3.5d a superior method would rise 

sharply to 100% and a method of low quality would be less steep and thus reach 

100% fraction at a larger error value. In particular, the vertical axis expresses the 

percentage of samples with a smaller error than the corresponding value on the 

horizontal axis. In summary, the higher the accuracy, the steeper is the cumulative 

curve in Figure 3.5d and the smaller the median value in Figure 3.5b.

• Runtime: The time an algorithm requires to accomplish the computation is 

measured in milliseconds using the CPU clock. This empirical metric enables the 

evaluation of the achieved computational complexity. For all experiments the 

computing platform was an Intel i5 CPU with 4 GB of memory. Applying platforms 

with higher performance will accordingly improve the runtime performance metric.
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Figure 3.5: a) Calculating error distances between two shapes and projecting the colour on 
the model (bar), b) Median, variance and the maximum error, c) Error histogram, d) 
Cumulative error distribution.

3.7 Datasets

3.7 .1  Synthetic  ID  Signal

The aim of this research is to perform reliable shape approximation from 3D samples. 

Since the new framework relies on foundations from signal recovery theory, it is beneficial 

to critically evaluate its performance initially on a ID sinusoid signal. This simplifies 

the visualization of the approximation results as a standard plot and enables qualitative 

validation of the correctness of the process. Thus, a synthetic ID signal is used in 

Chapter 4, where the basic properties and drawbacks of signal reconstruction using 

RBF are discussed. Figure 3.6 illustrates samples from a sinusoid signal, which have
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Figure 3 .6 : A simple synthetic ID signal as a verification dataset  for RBF-based approximation.

been used for the approximation.

3 .7 .2  Synthetic  3D Step Function

To validate the correctness of the implicit shape reconstruction from the 3D data, 

samples from a simple step function are used as a validating dataset (see Figure 3.7). 

The benefit of this approach is that the dataset size and noise can easily be controlled. 

The model also contains planar areas and sharp corners, so the extrapolation away 

from the samples can thus be evaluated. This dataset has been used in Chapter 5 to 

evaluate different kernels and regularization techniques for 3D shape approximation.

//■'111! HU : .

a) b) c)

Figure 3.7: a) Input 3D samples, b) a poor shape approximation, c) a good shape approxi
mation.
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Figure 3.8: Synthetic datasets (a-d) and datasets  obtained from stereo (e, f).

3.7 .3  Complex 3D Environments

The final evaluation phase for the developed TVLi knowledge integration framework 

was performed on two synthetic and one physically acquired point cloud datasets. 

A major limitation with currently available 3D datasets in the community, is tha t 

no ground tru th  is available which means, tha t even if some precise 3D samples are
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provided, the true position and orientation of the sampled shape is unknown. This 

however, is required in order to perform rigorous quantitative evaluation of the shape 

approximation algorithm. Thus, two synthetic point clouds have been simulated using 

a ray tracer, which is referred to as a virtual range camera. The simulated scanning 

process is described in Section 3.6. The scenes are firstly a facade of a building, which 

contains planar and sharp corners, which is generally the most difficult to reconstruct 

in the shape approximation process. The second scene is a simulated indoor scan of a 

kitchen, which also contains challenging planar and sharp edges, together with small 

objects.

These two datasets have been specifically designed to reflect a broad range of re

quirements often imposed on 3D shape reconstruction. Thus, when an algorithm is 

performing well on both these datasets, it is a pragmatic generalisation to claim they 

are also expected to perform well on real data obtained from stereo cameras.

The third dataset has been acquired from a mobile stereo camera system fusing 

measurements from an inertial measurement unit (IMU). Each stereo image pair has 

been processed by the semi global matching (SGM) algorithm (Hirschmuller, 2011) to 

3D points in real time. The alignment of the point clouds in the global coordinate 

frame has been achieved by the sensor fusion technique of the integrated positioning 

system (IPS) (Griessbach et al., 2014). IPS provides a high-accuracy trajectory of the 

camera movement (Figure 3.8e) which enables the alignment of the 3D point clouds 

from each image frame into a global consistent coordinate frame. Using the synthetic 

simulation and the IPS, three scenes have been developed for benchmarking purposes 

that represent indoor and outdoor urban environments. These are:
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• Facade: A mesh model (Figure 3.8a) from Google’s 3D warehouse (Google Inc., 

2014) is scanned by a virtual range camera in the artistic 3D modelling software 

Blender (Blender Online Community, 2016). During the scanning process the 

measurements of the building with dimensions of 9 x 5 x 6.5m are perturbed by 

normally distributed noise with o = 0.4m. Sharp corners and edges make this 

point cloud (Figure 3.8b) challenging to be approximated without over-smoothing 

either the edges or the corners.

• Kitchen: Also obtained from the 3D warehouse, the kitchen model is shown in 

Figure 3.8c and 3.8d. The object with the dimensions of 4 x 4 x 2.6m has been 

scanned by a virtual camera, and a noise of a — 0.05 cm has been added, which 

is expected from real sensors when indoor close-range environments are scanned.

• Corridors: IPS and SGM have been used to acquire this dataset. The resulting 

point cloud (Figure 3.8e) suffers from strong noise and many outliers caused 

by reflections, varying illumination and fast camera movements. The sampling 

density varies strongly since due to fast movements and motion blur several areas 

have not been reconstructed by SGM. Difficult lighting conditions and occlusions 

further lead to holes or even the absence of complete walls. Figure 3.9 shows the 

particular areas selected for perceptual assessment from this dataset. These are a 

large entry into a hall (T), transparent windows from the corridor into the hall 

(5), transparent glass door (3 ) and a corridor with high lighting variations (4).

The presented datasets and the evaluation methodology have been applied to the 

developed framework and the results will be presented in Chapter 7.
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Figure 3 .9 : Selected locations from the corridor dataset.  1: Large hall entry,
2: Windows from corridor into the hall, 3: Glass door, 4: Corridor.

3.8 Summary

The developed research methodology presented in this chapter divides the complex 

research task into four distinct parts: literature study, prototype development, testing 

for correctness and performance evaluation. For each of them a set of tools has been 

developed which facilitates continuous improvements. The following chapter will lay 

out the theoretical concepts for RBF-based data approximation, which is fundamental 

for understanding the new shape approximation algorithm.

50



4 Fundamentals in RBF-Based Approximation

In Chapter 2 the need for the integration of a priori models (priors) in the shape recon

struction technique has been justified. It is stated that the exploitation of smoothness 

priors is the most versatile model for indoor and outdoor environments and is thus of 

particular interest for mobile robotics. Smoothness priors can be computed in a robust 

way using RBF, though over-smoothing is a major consideration since this tends to 

smooth out information and must be avoided. As discussed in Chapter 2, regularization 

methods are a promising approach to avoid over-smoothing and to preserve sharp edges.

This chapter introduces the application of RBF to reconstruct simple one-dimensional 

(ID) data and it demonstrates how to extend the optimization technique with non

smooth regularization. One-dimensional data is selected for the introduction since 

the experiments enable a clear visual analysis of the reconstruction process. The 

discussed behaviour of the RBF-based reconstruction techniques does not change when 

the dimensionality of the data is increased.

Regularization techniques have been introduced in order to enable a solution for 

ill-posed problems (Wahba, 1990). These occur when the number of measurements is 

lower than the number of unknowns and some a priori knowledge must be used to obtain 

a valid solution (Bickel, 2007). In shape reconstruction regularization enables continuous 

surfaces to be reconstructed from scattered and non-uniformly distributed 3D points.
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As will be shown, the regularization helps to increase not only the reconstruction quality 

but also the stability of the process. The stability of the RBF reconstruction process is 

an important issue. If neighbouring samples are too close to each other, the system 

interpolates redundant measurements and affects the condition of the system negatively.

4.1 Radial Basis Functions

RBF interpolation has been initially studied by Hardy (1971), Duchon (1977) and 

Pratt (1987). Working in the field of cartography, Hardy empirically discovered that a 

linear combination of multi-quadrics, now known as multi-quadric RBFs, produces an 

interpolant that fits all the scattered point data. Duchon (1977) and later Madych and 

Nelson (1990) studied the globally smooth class of RBFs proposing the globally defined 

Thin-Plate splines (TPS) for scattered data approximation and numerical solutions of 

coupled partial differential, stochastic equations. However, globally defined RBFs are 

not feasible for large datasets, so Wendland (1995) introduced the RBF with compact 

support, which has received considerable attention. Later, Wendland (2004) studied 

the stability issues related to RBF interpolation and derived formal stability criteria 

using the Fourier-Bessel transform. This enables the characterization of the regression 

system with only the expected sampling density given, so no numerical experiments 

are necessary. The underlying research work is inspired by these advances in the RBF 

approximation and focuses on three RBF types in particular:

1. State-of-the-art Gaussian RBF,

2. Thin-Plate splines with global smoothness properties and
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3. Wendland’s RBFs, which enable efficient regression and the control of the surface 

smoothness.

More details on these aspects will be provided in the following sections.

4.1.1 Interpolation with Radial Basis Functions

The general goal is to find a function /  : M.d i-)> R from a set of N  sample values yiR 

at X{ E Rd. The core idea of RBF-based interpolation is that the function f (x)  is 

represented by a linear combination of M  weighted basis functions (Takens, 1968):

M

f ( x ) = (4-1)
j

Each of the basis functions p(x,Xj) is centred at Xj and essentially computes the 

similarity between x  and Xj. One possible form for ip is ip(x,Xj) = e~^x~Xj 2̂̂ s, which is 

similar to the Gaussian distribution with s = cr influencing the width of the support. 

Consider a set of Xj on a circle around x, then <p(x, Xj) will give the same value for 

all Xj. This is why the Gaussian as well as other RBFs considered in this chapter are 

called radial basis functions.

The underlying interpolation concept of RBF is illustrated in the one-dimensional 

example in Figure 4.1, in which /  is defined as the sum of all given Gaussians with 

their respective weights aj. In this work it is assumed that the widths of the basis 

functions are known a priori, so only the weighting factors otj are to be determined 

leading to f(x).  The task is therefore to perform regression over N  samples and to find
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M  weights via the minimization of

N  M

m m YXVi -  Y < * M x i> xi ) f  
i 3

where yi is the ith measured sample at position X{. This can also be rewritten in 

matrix-vector form as

min || y — K o l  \\\ (4.2)

where K  is often referred to as the design or kernel matrix with Ki:j = (p(xi,Xj). The 

solution to (4.2) is

a  =  A~lK T y (4.3)

with A = (K TK ), which is the well-known linear least squares regression (Hastie et al.,

2008). An important aspect of this technique is that f{x)  is not restricted to being

linear. This linear representation of non-linear functions will form the basis of the

Xi X4

Figure 4.1: Function /  constructed by a weighted linear combination of Gaussian radial basis 
functions.
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subsequent 3D shape approximation process. This mathematical framework is able to 

handle datasets of arbitrary dimensions that only affect the type of the basis functions. 

Since the number of unknowns is only connected to the number of samples, the technique 

is very flexible and will be used in successive chapters to approximate surfaces from 3D 

samples. By applying this approach, the choice of suitable basis functions remains an 

open question which will be now discussed.

4.1.2 Selected Radial Basis Functions for Geometric Approximation

In the last two decades several types of RBFs have been proposed for different ap

plications, the most popular being Gaussian RBF, which is very commonly used in 

the machine learning community. Three RBF types have been selected for shape 

approximation applications:

1. Gaussian since it is the state of the art,

2. Thin-Plate splines because of their global smooth properties and

3. compactly supported RBFs which enable sparse regression systems to be created 

and the smoothness to be controlled.

RBFs are in principle derived by minimizing specific function norms. In the case 

of the Thin-Plate, the global smoothness as well as the invariance to rotations and 

translations are the key features to be exploited. Similarly, Wendland (1995) proposed 

RBFs with compact support where the compact non-zero domain of the basis function is 

formed by a polynomial of a predefined degree. As will be shown in Section 4.1.3, lower 

degree polynomials increase the stability of the interpolation but they also restrict the
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number of the derivatives on f (x),  which reduces the smoothness of the reconstructed 

shape.

Radial Basis Functions with Compact Support

Consider the Gaussian approximation at X\ in Figure 4.1, where the thick line represents 

the function response, which is a weighted sum of RBFs ip{. The function response, 

namely the thick line, is defined as f ( x i) =  YJf Xj)&j- However, because of 

the restricted support, p(xi,Xj)  gives a value close to zero for j  — 3 and j  = 4. If 

very small values from ip are neglected, the kernel matrix values = ip(x\)X$) and 

K 1 4  = ip(xi, X4 ) are zero and are not required to be evaluated when computing f (xi)  or 

performing the regression. Research on sparse linear algebra enables very large matrices 

to be processed by exploiting the sparsity of K  (Heroux et al., 2005). Unfortunately, the 

Gaussian can only be truncated far away from the centre, which significantly increases 

the support. This is why Wendland’s compactly supported RBFs (CSRBFs) are popular 

in physical computing since they provide sharp support boundaries.

An additional requirement for CSRBF is that the kernel matrix K  remains positive 

definite in any dimension d of x e  Rd, which is the case for Gaussian RBF. This is one of 

the reasons why Gaussian RBF is widely applied. In contrast, the positive definiteness 

cannot be guaranteed in all dimensions for the CSRBF (Wendland, 2004) which means 

specific kernel types need to be constructed in each dimension. Table 4.1 lists selected 

CSRBF functions (Wendland, 2004) where =  denotes equality up to a positive constant 

factor. The ()+ operator is the positive definiteness constraint and can be interpreted 

as (x)+ = max(0,rr). Several CSRBF types are presented for the dimensions d = 1 and
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Table 4.1: Compactly supported functions of minimal degree

Space dimension Function Smoothness
d =  1 <p(r)=( 1 - r )+ C°

ip(r)={ 1 - r)® (3r +  1) c
(p(r)={ 1 - r)® (8r2 +  5r +  1) c4

d < 3 y>(r)=(l - r)2+ c°
ip{r)=( 1 - r)^_(4r +  1) c2
y>(r)=(l - r)® (35r2 +  18r +  1) c4
ip(r)=( 1 - r)® (32r3 + 25r2 + 8r +  1) c6

d < 3. d = 3 is of special relevance for 3D shape approximation. The continuity Cm or 

the polynomial degree m affect the type of the RBF, which is addressed by different 

rows in the table. More practically, the higher the polynomial degree of a RBF, the 

more complex shape variations that can be approximated. The RBF must be of at least 

m =  2 in order to calculate the second derivative of the reconstructed function.

Figure 4.2 illustrates the Gaussian and the compactly supported RBF for different 

C-continuity and scaling (support-width). Similar to the case of Gaussian RBF, the 

scaling may be applied to the compact RBF by normalizing the argument rs = so a

larger s makes the curves broader while a smaller value narrows their width.

Wendland's RBF
1.0

0.6

0.4

0.2

1.5- 1.0 - 0 .5 0.0
r

0.5 1.0

S=0.5
S=0.1

0.6

-e-

0.2

0.0
- 3 - 2 -1

r

a) b)

Figure 4.2: a) Gaussian RBF with different scales s. b) Compact ly supported RBF with 
different continuity properties.
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Figure 4.3: a-c) Compactly supported RBFs with different scales and continuities, d) Gaussian 
RBF with different scales s.

Wendland's RBF, s = 0 .5

Wendland's RBF, s= 0 .1
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An important restriction of compactly supported RBFs is that the approximation 

quality is sensitive to proper scaling of the basis functions. Figure 4.3 illustrates the 

behaviour of the Gaussian and Wendland’s RBF with different scaling parameters 

applied to interpolate a ID sinusoidal signal. Sin(t) signal has been selected for 

visualization purposes since the visualization of the approximation quality is intuitive. 

These properties do not change when data of a higher dimension, eg. M3, is processed, 

though higher dimensions make the visualization much more challenging and as a 

consequence will not be considered further in this chapter.

From the scale variation results in Figure 4.3 it can be concluded that a small scale 

s leads to poor interpolation between the samples while higher s values increase the
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smoothness of the interpolant. If, however, s becomes larger than the distance between 

two RBF centres, the regression will become unstable. This leads to rank reduction in 

the kernel matrix K  in (4.3) and strong amplitudes in the interpolated function are 

more likely. A more detailed discussion concerning the instability issue and selection of 

the best scaling parameters will be given in Sections 4.1.3 and 4.2.

Thin-Plate RBF

Initially introduced by Duchon (1977), Thin-Plate splines have been used for solving 

heat or more general differential equations in well-proven applications like meteorology 

(Wahba and Wendelberger, 1980). The aim was to find a basis function with maximal 

smoothness with respect to a specific derivative degree m. In the case of m  =  2 and for 

two dimensional data d = 2 the minimized cost function is

Duchon (1977) showed that a minimization problem of the type

2 (3 / i  _  ' ' ' Xdi))2 + Mmif)  (4 -5)
i = 1

with A as a weighting parameter of the penalty J  has a unique minimizer f \  with the 

representation

N

f \(x)  = A Xi)<*i +  cTp(x) (4.6)
i = 1

with cTp(rr) as a polynomial with Mp variables.
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The proposed basis functions <p(r) with r  = || x  — H2 are

tp(r) =
r2m log(r) if is even

(4.7)

r 2 m —d otherwise.

As shown in Figure 4.4, unlike the Gaussian RBF the Thin-Plate basis function 

attains zero at r =  0. This leads to a non-positive definite basis function matrix K  in 

(4.2) which cannot be solved. Wahba (1990) showed that this limitation can be resolved 

by adding a polynomial to / ,  which is c Tp ( x )  in (4.6). One constraint to this solution 

is that the polynomial coefficients must be orthogonal to the a  coefficients. The reason 

lies in the foundation of the reproducing kernel Hilbert space theorem (Wahba, 1990). 

The function of interest /  is defined as

f (x )  = (4.8)

Thin-Plate RBF
100

m = l
m=2
m=3

80

60

-e-
4 0

20

- 1 0 - 5
r

Figure 4.4: The  Thin-Plate function value ip(r) with different m  values defining the Cm 
continuity.
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where (•, •) is formally the inner product and is practically stated as a finite sum over 

all elements a* in (4.1). Including the additional polynomial leads to

f ( x )  =  (<p(x) + p ( x ) c , a ) , (4.9)

which does not hold and gives a different representation of / .  So by restricting the 

polynomial coefficients p(x) to be orthogonal to a , namely {p(x)c, a) =  0, the inner 

product in (4.8) is upheld. Applying this to practical linear algebra computations, the 

orthogonal polynomials are constructed by introducing a constraint into (4.2):

N  M

E E v  =  o
i q

(4.10)

resulting in a matrix representation

(
K  B  

B t 0

\ ( \ 
OL

( \ 
n

\ 0/

^p (x i)tN

, with B  =

p (x n )T
/

(4.11)

The degree of the polynomial in c cannot be higher than m — 1 as the data can only 

be fitted if the underlying sample manifold is less than m.

Figure 4.5 illustrates the behaviour of the Thin-Plate for different values of m. While 

the C1 interpolant directly connects the samples, the C2 curve is everywhere smooth 

and is apparently a better choice for reconstructing smooth signals like sin(t) from a 

relatively small number of samples.

The main drawback of the Thin-Plate RBF is its global support. Since the basis
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Thin-Plate Regression

—  Ground Truth
- -  m = l 
- -  m=2
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Figure 4.5: The Thin-Plate regression of s in( t)  from sparse samples.

functions are non-compact, even a small change in a single centre affects the entire 

interpolation result. Further, K  can never be sparse, so the application of the Thin-Plate 

kernel to large datasets is difficult. However, the focus of this thesis is on the efficient 

processing of large 3D point clouds, so applying global RBF is impractical.

While exhibiting both good shape approximation performance and stability, Thin- 

Plate RBF has efficiency limitations which leads to the question of how best to apply 

compactly-supported RBF without compromising these attractive properties. These 

issues will be discussed and critically evaluated in the next section.

4 .1 .3  Stability and Error Bounds  

Stability

When applying RBF for shape approximation, it is important to be aware of instabilities, 

which may occur if the data samples are redundant or the sample-to-sample distance is 

much smaller than the RBF support parameter s. To provide an insight, an example 

that demonstrates instabilities on the interpolation of a sin(t) curve is considered. Since
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the RBF interpolation concept does not depend on the dimension of the data, the simple 

one-dimensional sinusoid signal is well-suited to illustrate the benefits and limitations 

of a RBF valid for all dimensions. In contrast to the examples in Section 4.1, ten new 

samples that follow the normal distribution J\f(xi, ox) with <j x = 0.1 have been added 

around each RBF centre.

Figure 4.6 shows the interpolation behaviour for Thin-Plate, Gaussian and CSRBF. 

The Gaussian suffers most from the redundant data problem, even for very small scaling 

s close to RBF centres, thus strong oscillations ensue. CSRBF shows less sensitive 

behaviour and a stable interpolation is achieved at large scaling s = 1. Furthermore, 

the predefined continuity Cm of ip plays an important role. The lower the degree m, 

the more stable is the interpolation even with redundant measurements. From the 

discussion in the previous section it can be concluded that RBFs with higher smoothness 

tend to over-fit the data. So to validate the intuitive judgement without performing 

a large number of experiments, an analysis is presented which provides more general 

assessment aspects.

From the numerical perspective, a common measure of stability in regression is the 

condition number of the inverted matrix A  from (4.3):

c o n d ^ H v ^ l  (4-12)
Amin

with Amax and Am;n as the maximal and minimal eigenvalues of A  respectively. The 

condition increases (becomes worse) when (p(xk,Xj) and (p(xk+i,Xj) for neighbouring 

samples Xk and Xk+i are very similar, so the lower eigenvalue decreases. The computation
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G aussian  RBF

  sin(t)
♦--* <r=0.03 
*- -» cr=0.01 

O ©  sam p le

2.0 2.5 3.01.5
t

1.00.5

a)
W endland 's  RBF. c = l

sin (t)

Q ©  sam p le

3.02.0 2.51.5
t

1.00.5

b)
T h in -P la te , o= l().()

  sin(<)

-  -  m = l  
m =2  

+  +  sample

a

-1

- 2

2.0 2.5 3.00.5
t

T hin -P la te , o= 100.0

—  sin (t)

-  -  m = l
m =2  

+  +  sample

- l

- 2

2.5 3.00.5 2.0
t

c) d)

Figure 4.6: Unstable regression with redundant  samples, a) Gaussian with scaling s =  0.01 
and s =  0.03, b) Wendland’s RBF with s =  1 and varying continuity and c-d) Thin-plate 
RBF with varying continuity and scaling.

of the condition A  is expensive, so it cannot be applied in applications with large datasets. 

In addition, no generalization is possible since it depends on the data and small variations 

in the samples have significant effects. Consequently, this section focuses on a more 

general stability characterization of the applied RBF.

If two samples have a much closer distance to each other than the scaling parameter
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s in the Gaussian or the CSRBF, the condition of A  deteriorates. It is thus intuitive to 

address the minimal distance between two samples or the radius qx

qx := i  min || x{ -  xj ||2 (4.13)

in the dataset. Moreover, the minimal eigenvalue Xmin plays a central role in the 

stability analysis, especially in the field of control theory (Reinschke, 2014). When 

interpreting f (x)  = YJf  F(x )aj as a transfer function, its behaviour can be analysed 

in the frequency domain. The key is the Fourier transform of (p. Interpreting the 

frequency u  as the minimal distance qx between the interpolated samples allows the 

best-case stability of the regression model to be estimated analytically. More practically, 

the lower (worst) boundaries for the lowest eigenvalue are discussed and framed in 

relation to the expected sample radius qx. This enables a qualitative assessment of a 

basis function without performing any numerical experiments. Table 4.2a shows the 

lower boundaries G for Am*n > G(qx), which have been computed according to the 

Fourier-Bessel transforms and the Borel measure described by Wendland (2004) (p215). 

The graph in Figure 4.7a clearly shows that the Gaussian is most likely to become 

unstable (lowest Amin) as also illustrated in Figure 4.6. As further approved by the 

lower bounds on Amin, the higher the continuity Cm, the higher the probability that a 

regression system becomes unstable.

Approximation Quality

Another important aspect when selecting a RBF is the best achievable approximation 

quality. As in stability assessment, numerical experiments often only indicate RBF
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RBF A m in  ^  G id lx ) RBF error> E(qx)
Gaussian 3  —10.63( — ) 2 3  -is e q*, s = 1 Gaussian e -s\\og(qx )\/qx  ̂ s  _  j

Thin-Plate n 2m  
Vx Thin-Plate „2 m  

xx

CSRBF ~2 m + ltlx CSRBF „ 2 m + ltlx

a) b)
Table 4.2: a) The  lower stability bounds (higher is more desirable) for Amin. b) The lower 

bounds (lower is desirable) for the approximation error of each RBF.

behaviour with respect to one dataset. Fortunately, the theoretical error bounds can be 

evaluated in a similar way as has been demonstrated with the lower bounds on the mini

mal eigenvalue of the matrix A. These have been discussed by Wendland (2004) (pl88), 

computed as part of this research and are summarized to provide a complete characteri

zation of the considered RBF. The graph in Figure 4.7b presents the best achievable 

error for each RBF given the sampling density qx. The error bounds are shown up to a 

positive scale factor in Table 4.2b. The lower the error bounds, the higher the approxi

mation quality may be expected from the applied RBF. Thin-Plate and CSRBF-C2 are 

shown to be superior compared to Gaussian and CSRBF-C0.

From the evaluation results it is concluded that the higher the sampling density

Lower bounds on
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Figure 4.7: a) The lower bounds (higher is more stable) for Xmin of different RBFs. b) The 
lower bounds (lower is better) for the approximation error of each RBF.
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(small qx), the better the approximation quality. Interestingly, the CSRBF-C2 achieves 

better quality than other compact RBFs at a lower sampling density qx and comparable 

to the Thin-Plate RBF. It is important to stress that a small qx value conflicts with 

the stability requirements discussed above. A small qx increases the redundancy in 

the data and therefore the ability to achieve higher approximation accuracy. However, 

redundancy also leads to instabilities, which may break the approximation process.

Guiding Principles

From this discussion and taking into account both the stability and shape approximation 

quality perspectives, the following general guiding principles have been framed for 

choosing the most appropriate RBF type:

• CSRBF with C° is the best choice if the interpolation does not have to be smooth. 

This is illustrated in Figure 4.7, in which it is evident that in order to achieve 

the greatest stability, the poorest approximation quality is obtained. Thus, the 

sampling density needs to be relatively large qx 0.1 -s with s as the RBF support 

width.

• If higher degrees are required, e.g. for TV minimization, then Thin Plate-C2 is 

preferable.

• When the number of RBF centres exceeds M  = 104, CSRBF-C2 must be applied 

in order to obtain a result within reasonable time. This particular value of M  has 

been determined empirically.
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In choosing the scaling parameter s, it should be set to qx =< 0.25s which means a 

single RBF support should include more than four samples in its support. As indicated 

by the diagrams in Table 4.2 and Figure 4.7, large scaling values (s qx) lead to 

instability while small ones (s <C qx) increase the approximation error. So there is a 

trade-off when selecting the most appropriate value.

These findings have been derived from the general stability and approximation quality 

estimations shown in Table 4.2 and have been illustrated so far on simple sinusoid 

signals. Crucially, this result does not depend on the dimension of the data, so the 

findings are equally valid and applicable to surface approximation of scattered 3D data 

samples, which will be the main research question addressed in this thesis.

Table 4.3 summarizes the characteristics of the respective RBF types. The more 

plus signs, the higher the relevance of the RBF regarding the corresponding aspect. 

The efficiency row reflects the sparsity of the constructed kernel matrix which directly 

influences the computational overhead.

The bottom row of Table 4.3 provides an intuitive summary of the overall performance 

for each RBF feature, from which a conclusion can be distilled, namely that CSRBF 

is the preferred choice for shape approximation from scattered 3D samples. While its 

stability and overall approximation quality are marginally lower than the Thin-Plate 

RBF, its computational efficiency makes it especially attractive for massive 3D datasets. 

Moreover, the aforementioned stability and the approximation quality issues will be 

addressed by the integration of regularization strategies, which is the focus of the next 

section.
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4.2 Regularization

This section introduces regularization techniques to deal with regression instabilities. 

Additionally, regularization enables the integration of specific domain a priori know

ledge such as smoothness or piecewise planarity of the surfaces. The first discussed 

regularization technique is the Tikhonov regularization. It is one of the oldest but yet 

most effective approaches initially presented by Tikhonov (1943). The motivation and 

intuitive reasoning will be presented in Section 4.2.1. Thereafter, sparsity-inducing Li 

based regularization will be introduced. Although statistical analysis via Li norms has 

been discussed for some years in the statistical computing community (Gonin, 1989), 

the approach only became very popular after a numerical efficient method has been 

introduced some years ago (Tibshirani, 1994). In contrast to the Tikhonov models, 

which apply quadratic L2 terms and lead to global smoothing, Li is suitable for piece- 

wise regularization penalties and is therefore of particular interest. The reason is the 

sparsity-inducing property of the La norm. The shapes are not over-smoothed and 

sharp edges are preserved when only a few edges and corners are present. This effect 

on 3D data will be discussed in Chapter 5. In this section, more general regularization 

with the Li norm and its implications on the regression will be discussed critically.

4.2.1 Tikhonov Regularization

Section 4.1 showed that redundant measurements lead to over-fitting and instabilities 

of a regression process. Motivated by the severe instability common for all regression 

problems in general, Tikhonov (1943) proposed a technique to improve the condition 

of equation (4.2) by penalizing the target vector ol by || cx \\\ additionally to the
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cost term. This idea becomes evident when the multiplication of the inverted matrix 

A~x = (KTK)~l is applied on K Ty. If A has a bad (very high) condition or is even 

singular, very large values in a  will appear due to the division by the smallest eigenvalue. 

This relation is illustrated in Figure 4.8, in which || a  |||, the Euclidian norm of a , is 

observed when the RBF scale <r is increased. Therefore, minimizing || a  \\% improves 

the condition of (4.2). The new optimization task is then stated as:

min || K a  — y ||| +  || l a  \\l

a °pt =  ( R t k  +  j T j y i K T y

Replacing I  with a more general linear operator matrix D enables linear operators to be 

applied on the solution a. Common examples for D are differential operators such as 

low-pass filters. In discrete models difference or Fourier operators may be represented 

by D giving preference to specific frequencies (Yang et al., 2010). The drawback of 

the Tikhonov regularization is that the Euclidian norm || Dot ||| is relatively sensitive 

to variations in entries of (D a)i. For this reason, significant research into efficient 

optimization models has taken place leading to a common consensus that || D a  ||i, the 

Li penalty term, is more resilient (Hastie et ah, 2008; Gonin, 1989). Investigations into 

these Li based regularization techniques will now be reviewed.

4.2.2 Regularization via the Sparsity-Inducing Li Norm

From the more generalized perspective, the Tikhonov regularization applies a vector
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Figure 4.8: a) Relation between the vector norm || a  ||2 and cond (A), b) Regularization 
effect with D = XI  for two different A.

with p =  2. Such vector norm functions are also known as Lebesgue-Measures and have 

been studied in formal function analysis for many years (Riesz, 1910). It has been 

proven (Gonin, 1989) that norms with p < 2 lead to higher accuracy when applied in 

model approximation. However, the computational effort usually makes the application 

intractable in robotics. The Lx norm received a lot of interest after Chen et al. (1998) 

presented its convex properties and had demonstrated novel efficient computations, with 

the idea widely adopted in the signal and image processing domains. Equipped with 

this new model, improvements in various tasks such as noise suppression, restoration, 

signal separation, interpolation and extrapolation, compression, sampling, detection, 

and recognition have been reported (Elad, 2010). The technique is widely known as 

Least Absolute Shrinkage and Selection (Lasso) (Tibshirani, 1994).

The basic effect of Lx may be enlightened with the so-called unit circles, which are 

also known as the norm balls shown in Figure 4.9. Basically, the norm circle is a contour 

of || a  ||p along the curve with || a  ||p=  1. Figure 4.9 displays the unit circles of the Li, 

L2 and Lq.5  norms. The purpose of the diagram is to show the behaviour of the norms, 

which also can easily be interpreted as cost functions with respect to the two entries in

71



4 Fundamentals in RBF-Based Approximation

a ,  and a 2. If the contour is close to the origin, then it means that the cost putting 

all values eq to zero is smaller than when setting only one of them to a value larger 

than zero. In case of the L2 norm, the distance to the origin remains constant on a 

circle. Integrating L2 into an optimization process means that from the perspective of 

the overall cost function aq or a 2 or both might be preferred. However, when a norm 

with p < 2 is applied, the values of aq and a 2 are both reduced to zero (if p =  0) when 

both are expected to be non-zero. Thus, if the application requires making a decision 

between aq and ct2, norms with p < 1 tend to move the solution to one of the axes cq 

since setting all cq to zero does not lead to a valid solution.

This observation is the key to the sparse data analysis, where the set of cq ^  0 is 

expected to be small. Practically, if two RBF centres kth and j th are very close to each 

other, both weights a*. and cq will be set to a value close to zero or only one of them 

will be set to a number larger or smaller than zero. In the case of the L2 norm, both 

would receive values larger than in the Lq case. On the other hand, if a RBF centre is 

placed on an outlier, then its effect on other weights will be smaller when Li is used.

As can be interpreted from Figure 4.9, the p =  0.5 norm provides results of higher

1.0

0.5

Oi2 0.0 

- 0 . 5  

- 1.0

Figure 4.9: The  unit circles of the L2l L_i and the L 0.5 norms.

Unit circles of d iffe ren t norms

0.0 0.5■0.5 1.01.0 cti
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sparsity. However, the optimization becomes non-convex. So reaching a global minimum 

is not guaranteed.

Next, the application of the Li norm is compared with the Tikhonov regularization. 

For the sake of consistency, the interpolation of the signal sin(t) is reviewed. The new 

regression task is restated as:

min || Ket -  y | | 2 +A || Da. ||i . (4.15)

Similar to Section 4.1, the goal is to reconstruct the sinewave signal by adding random 

samples with a much smaller spacing than the RBF support cr.

Figure 4.10 illustrates the interpolation behaviour of different RBF models as well as 

values for two different weightings A. The right column in Figure 4.10a-c shows a zoomed 

part of the approximation at t = 1.5. The dotted curves represent the approximated 

functions with different weighting parameters A that controls the strength of the Li 

regularization. The red crosses illustrate the samples.

Moreover, Figure 4.10 shows that the Gaussian curve always remains smooth. A strong 

A makes the approximation pass below the samples (closer to zero). The approximation 

using CSRBF- and Thin-Plate-C° RBF reveals more clearly which samples have been 

dropped. This means that the ith measurement does not contribute to the approximation 

and the a* value of a sample at U has been set close to a* = 0. An interesting aspect 

is the stability of the reconstruction. In contrast to the experiments in the previous 

section, where the smooth RBF models with C° continuity have been identified as 

unreliable in the case of redundant data, the regularization not only stabilizes the
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C° continuity.
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regression but also improves the approximation quality significantly.

In this experiment the sparsity weighting A has been set to two different values to 

verify and illustrate the effect of the enforced sparsity. This effect is evaluated in more 

detail in Figure 4.11, where the number of non-zero elements and the approximation 

quality are elaborated with respect to A. From the evaluation results in Figure 4.11 it 

can be concluded that a higher RBF degree allows to increase the sparsity in ot without 

sacrificing the approximation quality. However, the question raised is how to determine 

the best trade-off controlled by A. This is addressed in Appendix A in which a standard 

Cross Validation (CV) technique from Wahba (1990) is described. CV defines a metric 

which enables the selection of the best from multiple approximations for A. More recent 

discussions about the parameter estimation via CV are provided by Zhang et al. (2011).

So far, this section has explained how the L2 or Li regularization affect the approxi

mation on datasets leading to instabilities. Applying the Li norm on the parameter a ,  

sets the weights cq of redundant RBF centres to zero. The next Section 4.3 will examine 

a reliable state-of-the-art technique to solve the Li approximation task numerically.

G a u s s i a n  RBF
CSRBF

T h in -P la te

—  G a u s s i a n  RBF
—  CSRBF
—  T h in -P la te
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Figure 4.11: Effect of A on the sparsity, a) continuity C°, b) continuity C 2.
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4.3 Efficient Algorithm for Regularized Regression

The algorithm is known as the alternating direction method of multipliers (ADMM) 

(Boyd et ah, 2011) and is appropriate to distributed convex optimization, particularly 

large-scale problems relevant to the main research question. This section introduces 

the basic form of ADMM before being extended in Chapter 7 into a matrix-free form.

The optimization task is formally stated as

m in /(a )  =  i  || y -  K a  \\\ +A || D a  ||x . (4.16)

Initially, the cost function (4.16) is split into two parts: the smooth and convex 

f i (a )  = |  || K a  — y \\% and the non-smooth regularization term / 2 (a) =  A || a  ||i. 

They are further separated into different variables a  and z and coupled together via a 

constraint:

m in /i(a )  +  / 2(z)
a , b

s.t. z — D a  =  0.

This constrained optimization problem is restated via the dual decomposition

L(a, z, b) = f i (a )  +  / 2(z) + bT(Da  -  z)

which is known as the Bregman-Split form from Goldstein and Osher (2009). In order 

to improve the convergence of the method, the augmented Lagrangian published by
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Hestenes (1969) is superimposed to give

Lp(a, z, b) =  / i(a )  + f 2(z) +  bT(Dot -  z) +  p/2 || Dot. -  z ||| (4.17)

with p > 0 as the constraint controlling weight. So on every iteration, the three following 

steps have to be performed:

1. otk + 1  := min LJot, z k, bfc)a H

2. z k + 1  := min Lp(ctk+1, z, bfc)z ^

3. bfc+1 := bfc + (D afc+1 — zfc+1)p

In explicit form, the three steps defined above are:

J

ADMM  for Li approximation:

1 . Solve for a: (K ^K n +  K TK  +  pDTD)ct = K ?n  +  DT(pz -  b)

2 . Solve for each Z{ separately:

min X\zi\ +  bT(Ha — z) +  DT Dot — 2zT Dot +  zTz)
z i  2 i

3. Evaluate: bfc+1 := bk +  (Dctk + 1  — zfc+1)p

So far, the general form of ADMM has been extended to the case of Li regularization 

applying the matrix D. Note that D may be a differential operator enabling piecewise 

penalization of areas with high curvature. If D is the identity matrix, then it is a
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simple smoothing operator, known as Lasso. While steps 2  and 3 can be executed in 

parallel with complexity of 0(N ),  the computation time of step 1 usually suffers from 

complexity 0 ( N 3). For datasets with more than N  > 104 points, the computation 

becomes intractable for robotics applications (Bach et al., 2012). This issue will 

be further addressed in Chapter 6 , where a fast iterative solution based upon the 

Gauss-Seidel scheme will be developed.

4.4 Discussion

When performing signal approximation with RBF, several crucial aspects have been 

identified:

• The approximation quality increases with the smoothness of RBF. E.g. C 2 leads 

to a higher approximation quality than C°-RBF (see Figure 4.2).

• When the smoothness is increased, the stability of the optimization task is reduced 

(see 4.6b).

• Higher RBF scales reduce the stability but lead to more successful noise suppres

sion. Thus the trade-off between good noise suppression and stability needs to be 

maintained (see 4.6c-d).

• Regularization helps to deal with redundant samples and thus increases the 

stability, so larger RBF scaling values may be applied without reducing the 

stability (see Figure 4.8b).

• The sparsity domain can be controlled by the matrix D, which is an identity 

Matrix when Thikhonov regularization is applied (see (4.14)). When performing
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edge aware shape reconstruction, D a  will represent the variation of the shape. 

The regularization term || D a  ||i will increase the cost function on shapes with 

high variation such as edges or corners.

• When extending the approximation task with a regularization term, the best 

sparsity effect is achieved when applying Thin-Plate or CSRBF with C 2  (or higher) 

smoothness (see Figure 4.11).

• The algorithm (ADMM) presented to solve the Li regularization task numerically 

is flexible enough to deal with any positive-semidefinite matrix D. Its first 

step, however, relies on dense algebra computation and usually suffers from high 

computational overhead. This issue will be solved in Section 6 .

• CSRBF has been selected for the integration in the 3D shape approximation task 

because of its favourable smoothness, stability and the effect on the computation 

overhead (see Table 4.3). The plus signs for each criteria have been derived from 

the previous discussion in Section 4.1.2. The efficiency of a RBF relates to the 

ability to solve the first step of ADMM when the matrix K  is constructed using 

the particular RBF. The insights provided in this chapter will help to define the 

3D shape approximation as a combination of CSRBF, Li regularization over D a  

and the application of ADMM.
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Table 4.3: Comparative overview of the RBF models

Gaussian Thin Plate CSRBF
Stability —1—b +  +  +
Approximation +  + H—1—b + +  +
Smoothness +  +  + 4—1—b + +
Efficiency + + +
E 6 9 1 0

4.5 Summary

This chapter set up the theoretical foundation for efficient interpolation with radial 

basis functions. The elaboration results of suitable RBFs for general approximation, the 

RBF selection criteria based on stability and approximation quality have been provided. 

The stability has further been addressed in the discussion on regularization techniques 

framed by a convex optimization task. A numerical method for solving the RBF 

regression problems with Li regularization operators (matrix D) has been developed 

and presented. The illustrative discussions provided in this chapter aim to support 

the underlying theory applied in Chapters 5 and 6 , where 3D shape reconstruction 

on synthetic and realistic datasets will be performed. The next chapter will present 

the application of these fundamentals for 3D shape approximation from scattered 3D 

samples.
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This chapter presents novel solutions to address both the first (shape representation) 

and second (planarity regularization) research objectives defined for the knowledge 

integration framework presented in Figure 1.3. The shape of the sampled surface is 

reconstructed by using a set of scattered 3D points as input. In order to achieve 

this, the shape is modelled as an implicit function which is defined as a weighted 

sum of RBFs. The first research objective is fulfilled by extracting the weights from a 

convex cost functional leading to a consistent and smooth shape. To fulfil the second 

research objective of the new framework, the a ’priori piecewise planarity assumption is 

incorporated by extending the optimization process using TVLi regularization (Section 

5.2). Quantitative evaluation upon a synthetic dataset has shown that TVLi-based 

shape approximation achieves higher accuracy compared with existing approaches 

including LSQ, Lasso and TVL2 .

In particular, in Section 5.1 the underlying shape regression model is established. 

Section 5.2 will discuss the effect of regularization techniques such as Lasso and TVLi 

on different RBF types and elaborates the approximation quality depending on involved 

parameters such as the RBF scale or the regularization term weighting. In this chapter 

simple synthetic data is used to evaluate and to validate the algorithm. The application 

of the algorithm on realistic datasets will be discussed in Chapter 7.

81



5 Shape Reconstruction from Scattered 3D Points

f ( x )  >  0

Figure 5.1: Implicit shape function /(x ), samples (dots) and orientation vectors n7. The
colours illustrate the value of f (x) .  Red: f ( x)  > 0, blue: f (x)  < 0.

5.1 Implicit Shape Regression

The principal idea of shape modelling with RBF is to extract an implicit function that 

represents the shape of interest by its zero values. Figure 5.1 shows an implicit function 

/(x ) with colour-encoded values. All segments where the function is zero are considered 

as part of the shape of interest and are highlighted with a thick line. The task is the 

approximation of /  from the given set of sample points (thick dots) and its available 

orientation vectors n7.

More formally, an algebraic function /(x ), /  : R3 i-» M which is defined in the 3D 

space needs to be reconstructed. In Figure 5.1 the curve is representing the space of x 

with /(x ) = 0. Given a set of measured 3D points x*, this condition defines a constraint 

on each sample point /(x*) = 0. Thus, /  must be zero at each ith sample x* and has to 

interpolate between these samples. The surface normals at every sample are employed 

since the zero level alone does not provide information about the orientation of the 

surface. The task is stated as a search for /  giving zero at each sample position / ( x 7;) = 0 

and, V /(x 7) =  n* approximating the normals by the gradient of / .  By integrating 

all this information, the convex regression task is formulated with the objective of
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minimizing the cost function:

m i n i  || /(x i) ||i +  || Hi — V /(xi) \\l (5.1)

where V /(xj) is the gradient with respect to x  of /  at x*. The length constraint of 

the normals || V /(xj) ||2 =  1 is omitted in order to simplify the optimization problem. 

Following the basic RBF interpolation concepts presented in Chapter 4, the non-linear 

function /  is defined as a linear combination of M  distinct RBF as

Integrating this into the regression of N  samples, the cost function becomes

N
m in ^a 2-—'

M  M

(y v (Pmfemi Xj)o:m) T || Ilj 7̂a;(/9Tn(x7n, Xj)o:m H2 (5.2)

In order to obtain the gradient V /, only the gradient of (p needs to be computed, which 

is available in analytical form (see Appendix C). Rewriting (5.2) in matrix notation 

leads to a shorthand version of the cost function:

min || K a  \\l +  || n  — K ^ ol . (5.3)

The matrix K  contains the RBFs K n m̂ = ty?(xm, xn) G R and K y nm̂ = V ^(xn, xm) G R3 

as introduced in Chapter 4. The matrices are of the dimensions K  G R iVxM and 

K y  G R3iVxM. All ai are summarized in one vector a . Note that RBFs with local
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support return zero for the distant point pairs xn, x m and lead to sparse matrices K  

and Ky, which improves the storage requirement and computational efficiency. This is 

because whenever xn and xm are far away from each other, <£>(xn,x m) and CSRBF are 

applied.

Since (5.3) has the usual LSQ form, it can be rewritten as

min a T(KTK  +  K ^K ^ )a  — 2n TK^ot (5.4)

and solved in one linear algebra step:

a  =  A ^ K ^ n ,  with A = K TK  +  K ^K ^ .  (5.5)

Note that matrix inversion is usually a computing power demanding operation and 

is not practical for matrices A  larger than e.g. 100 x 100. However, since K TK  and 

are positive definite, so is A. Thus, the more efficient Cholesky factorization of 

A  can be performed, which enables to reduce the computational effort.

The Thin-Plate RBF requires an additional polynomial in order to guarantee a valid 

solution as discussed in Chapter 4. When applying the Thin-Plate RBF, /  becomes 

/(x )  =  Em <p(Xm,x) + p (x )TC with p(x) as the additional polynomial of degree m — 1  

(Wahba, 1990). So the matrices K  and iFy from (5.3) and the target parameter vector 

a  are extended to

K  =

( \  
K  B

\ BT ° j

. K v  =  LKv Bv  - “  =

( \  
OL

\ CJ

(5.6)
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with

^ p{x i)T^

B

p (xn)'

/ Vp(x1)T^

and B y  =

/ Vp(xN)r

(5.7)

7

where Vp(xi)T is the gradient of the polynomials. Having applied these modifications, 

the LSQ is solved as stated in (5.5).

In order to visualize the implicit geometric shape functions, the border between 

positive f ( x)  > 0 and negative f ( x)  < 0 implicit values is extracted and rendered 

as a mesh via OpenGL. This process is illustrated in Figure 5.2 and is known as the 

Marching Cubes algorithm (Lorensen and Cline, 1987).

Figure 5.3 demonstrates the LSQ solution on a synthetic ideal 3D step function 

that contains neither noise nor outliers. Figures 5.3c and 5.3d show the reconstructed 

3D shapes using the Thin-Plate and CSRBFs of degree C2. Figure 5.3b illustrates 

positive values of /  by a green colour and negative values by a red one. Image pixels 

where /  attains zero are highlighted in white. The image has been generated along the 

slicing-plane as shown in Figure 5.3a highlighted in red. The 3D samples are shown as

black dots.

Transfer

e) Rendera) Input 3D points b) Approximated shape c) Contour extraction d) Mesh

Figure 5.2: Scat tered samples (a) are processed to  an implicit shape (b), processed to  a 
mesh (c,d) via Marching Cubes and visualized via OpenGL (e).
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The results obtained from Thin-Plate (Figure 5.3c) and CSRBF (Figure 5.3d) are 

similar since the input dataset is not perturbed by noise or outliers. This, however, 

will change when error-prone samples are processed, which will be the focus of Section 

5.2. Note that the implicit shape is also defined outside of the sampled area since the 

general RBF-based approximation concept is well-suited for inter- and extrapolation. 

Also note that the shapes are smooth outside of the sampled area, which is an indicator 

for a stable approximation.

The following Section 5.2 will introduce regularization which improves the sensibility 

to noise and outliers as well as the stability of the shape approximation.

f ( x )  > o

f ( x )  0

CSRBF-C2

Figure 5.3: a) The input dataset,  b) The implicit function along the slice-plane ( Thin-Plate 
RBF). c) Rendered Thin-Plate RBF and d) CSRBF C2 reconstruction.

86



5 Shape Reconstruction from Scattered 3D Points

a) b) c)

Figure 5.4: a) Noisy 3D samples of the s tep function, b) Direct LSQ approximation,  c) 
Regularized (Lasso) approximation.

5.2 Noise Suppression via Regularization

3D samples acquired from a sensor generally contain errors and outliers, though these 

should not perturb the final geometry reconstruction result. This section introduces 

three proposed regularization techniques which significantly enhance the robustness 

of the 3D shape approximation process by both reducing the sensitivity to noise and 

increasing the stability of the RBF-based LSQ regression.

Figure 5.4 shows an example in which a) is the noisy input dataset, b) the reconstruc

tion via the unregularized LSQ method, and c) a result obtained via Lasso regularization. 

As expected from the discussion in Chapter 4, the regularization technique improves 

the accuracy of the reconstruction from noisy data. Now, this will be elaborated in 

detail with Lasso and two variants of total variation minimization approaches.

5.2 .1  Lasso Regularization

The Lasso technique was initially proposed for sparsity-inducing regularization by 

Tibshirani (1994). The technique applies the Li norm on the parameter vector a ,  

which further improves the stability and robustness to noise. Having placed the RBF
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centres directly on the samples, this may lead to redundant RBFs and cause unstable 

approximation, as pointed out in Chapter 4. This issue is, however, solved by the Li 

regularization. If the m-th basis function (^(xm, x )  does not contribute to the solution, 

it is deactivated by a zero weight a m. Furthermore, the Li regularization suppresses 

outliers and error measurements efficiently.

O rien ta tio n  v e c to rs

Active RBF C en tre s

X Inac tive  RBF C en tre s  CC

2D corner 3D step function with noise

Figure 5.5: Lasso regularization on a noise-free 2D corner and the error-prone 3D step 
function, a) Shape approximation with small A, b) medium A and c) large A leading to 
strong over-smoothing.
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When extending the Lasso form to the underlying RBF-based regression, the cost 

function is restated as

min || K ol H2 +  || n — K^jol H2 +A || a  ||i (5.8)

where the weighting parameter A controls the impact of the regularization. Figure 

5.5 illustrates the effect of the Lasso model on 2D and 3D approximations. In the 

left column circles illustrate the RBF centres that have non-zero weights ol\ ^  0. The 

numbers close to them show the ck* values obtained after minimizing equation (5.8). 

For a more insightful illustration explanation, the 2D examples on the left column 

do not include any noise. The short red lines indicate the orientation of each sample 

(yellow cross). The resulting shape is shown as a white line. In Figure 5.5b a specific 

A is reached where the shape is very similar to the case when all RBF centres are 

employed, but only a limited set of RBFs remains active receiving a weight 7  ̂ 0. 

The generalized cross validation technique from Wahba (1990) (Appendix A) has been 

applied in order to find this condition. Even though the regularization with Lasso 

improves the approximation quality, it does not distinguish between error-prone samples 

on corners and samples along planar areas. Motivated by the fact that areas along 

planar segments should receive stronger smoothing than along edges, total variation 

minimization is integrated into the shape regression, which will be discussed next.

5.2.2 Total Variation - L2

The TV technique is motivated by the fact that most shapes encountered in real-world 

environments are planar in nature. The novelty in this proposed solution is to exploit
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this knowledge by a regularization operator that gives high penalties at corners and 

edges and lower penalty costs in planar areas.

Planar areas share a common property: the second derivative of the shape function 

is zero. Thus, the goal is to define a regularization term that penalizes the intensity of 

the second derivatives along a shape.

Figure 5.6 illustrates the TV cost on an extracted shape (Figure 5.3) reconstructed 

from error-prone samples in which the intensity of the second derivatives is encoded in 

red colour. Figure 5.6a illustrates a shape where the TV has been calculated without 

changing its geometry. Figure 5.6b shows the shape after optimization where the TV 

has been jointly minimized via regularization. Qualitatively, the introduction of the 

TV penalty has improved the corners and the planarity of the extracted shape leading 

to a more accurate reconstruction. A quantitative validation of these findings will be 

presented in Section 5.2.5.

Optimization models employing the TV regularization are well-known in the discipline 

of variational optimization in computer vision. It is usually performed by computing the 

Hessian matrix of the target function. In contrast to this state-of-the-art methodology,

a) b)

Figure 5.6: The effect of TV minimization, a) The TV cost is displayed in red colour on the 
extracted shape, b) The cost has been employed to improve the shape reconstruction.
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the second derivative is obtained by performing derivatives with respect to the radius r 

of the RBF <p(r). Compared to the evaluation of the 3 x 3  Hessian matrix, this reduces 

the computational cost by a factor of nine and is easier to compute analytically (see 

Appendix C). Similar to computing the gradients of / ,  the second derivative is also a 

sum of derived RBFs. These are obtained via

M

T^ ( X) = ^ 2 ^ r M r)am
m

with r = || xm — x ||2 . Explicit second order derivatives of the RBFs are presented in 

Appendix ??. Applying the TV regularization, the cost term (5.8) is extended by D to

min || Kot +  || n  — K y a  \\\ +A || Da. (5.9)

with D^m = ^ ry?(xj,xm). Any positive semi-definite matrix D can be used for regulari

zation purposes as stated by Smola and Schdlkopf (1998). The factors am corresponding 

to the largest eigenvalue of D are attenuated most while weights which lie within the 

kernel of D are not reduced at all. The solution is obtained via a single linear algebra 

step:

a  = A - 'K ^ n ,  with A = ADTD + K TK  + K $ K V.

A qualitative and quantitative evaluation of the TVL2 approach will be discussed 

in Sections 5.2.4 and 5.2.5 respectively. The following section introduces the TVLi 

approximation model.
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5.2.3 Total Variation - Li

The TVLi model is developed in order to preserve sharp edges and to increase the 

robustness of the shape approximation. In contrast to the L2 norm || D a  H2 , this 

extension applies the Li norm || D a  ||i. The minimized cost function is now defined as

min || K a  \\l +  || n  — K ^ a  \\l +A || D a  ||i .

Now, the qualitative and quantitative evaluations of the presented LSQ, Lasso TVL2 

and TVLi approaches will be compared.

5.2.4 Qualitative Approximation Performance

Figure 5.7 shows the shape approximation results for the noisy 3D step function 

processed by the proposed Lasso, TVL2 and TVLi techniques. In addition, different 

RBF types have been applied in shape reconstruction. The red colour in the images 

reflects the TV cost estimated of the shape. The black surfaces for the approximated 

shapes using the Gaussian RBF are due to the Gaussian function being smoother than 

CSRBF, which leads to lower variations. However, the CSRBF shape still has sharper 

edges. These have been smoothed out in the Gaussian case. Since the Thin-Plate basis 

functions are designed to provide smallest deviations of the reconstructed shape, the 

TV cost is much smaller than for CSRBF or Gaussian. This also leads to smoother 

results in planar areas. Note that the shape reconstructed by Gaussian tends to curl 

at the extrapolated edges, which is the result of instability. As proposed in Section 

4.1.3, if not stated differently, for all experiments the same RBF scale of s/qx — 4 units
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5 Shape Reconstruction from Scattered 3D Points

lias been applied enclosing approximately 16 samples. The implementation details of 

the RBF centres’ distribution are described in Appendix E. The weighting parameter 

A for Lasso has been estimated via cross validation to Xiasso =  10—3, A tv  — 0-5- The 

influence of the RBF scale parameter s will be elaborated next.

Noise-free ground truth

j,* I 1 1

Input data

a) Lasso

Figure 5.7: Approximation results from error-prone samples with Lasso (a), TV L2 (b) and 
TVLi (c) using 1) CSRBF-C2, 2) Gaussian and 3) Thin-Plate RBF. T he  TV intensity 
cost is shown in red.
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5 .2 .5  Quantitative Approximation Performance

The RBF scaling parameter is crucial for the overall shape approximation quality. If 

the RBF supports do not overlap, no approximation is possible except in the case of 

the Thin-Plate RBF. Large values s make the resulting approximation too smooth by 

removing edges and corners. The following analysis seeks to critically assess the impact 

of scaling. The Thin-Plate and CSRBF have been set to C2 since TV computations 

require a smoothness degree of at least two. Unregularized LSQ approximation has also 

been applied for comparison.

As illustrated in Figure 5.7, the positions and orientations of the ground truth samples 

are perturbed with Gaussian noise of cr ~  30% of the object size. Note that this noise 

level notably exceeds the usual level applied in 3D shape reconstruction evaluations. 

Most approaches that inject noise have 1% to 5% of the object size (Fleishman et al., 

2005). This also indicates the increased robustness of the proposed solution.

The precise ground tru th  points are projected on /(x )  after /(x )  was successfully 

reconstructed. The projection is performed along the gradient direction V /(x 9Q at 

each of the ground tru th  points. The distance between each ground tru th  sample 

and the zero level of /  is considered as the deviation of the precise shape. Figure 5.8

V / 0 rpro j

f(x) =  0

Figure 5.8: The distance between x gt and its projection on f ,  x proj.
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CSRBF
—  Gaussian
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—  G aussian

—  TP
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Figure 5.9: Projection MSE for a) unregularized LSQ, b) Lasso, c) TVL2, d) TVLi strategy.

illustrates the projection of x gt onto the surface of / .  The deviation is then calculated 

as || x proj — x gt ||2 and the overall MSE is determined as the approximation quality 

metric.

Figure 5.9 shows the achieved MSE for each regression strategy with a varying scaling 

parameter s in terms of the sampling density qx . For example, s /qx =  4 means that 

the RBF support is four times larger than the sampling density of the dataset. Similar 

to the elaboration given in Chapter 4, the approximation using RBF achieves a best 

accuracy of MSE=0.12 at s /qx = 7. TVLi (Figure 5.9d) achieves the highest accuracy 

(lowest MSE value) in all four cases. The MSE is approximately 10% lower compared 

to TVL2 or the Lasso approach. Moreover, large scaling s lead to over-smoothing and 

decreasing approximation quality. However, this situation is handled successfully by
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both TV regularization techniques.

Figure 5.10 shows the effect of increased support s when the TVLi method is applied. 

If s/qx is too small, the reconstructed shape has a strong curvature. Larger scaling 

values, however, lead to an increasing smoothness of the shape and higher attenuation 

of strong noise whilst preserving edges.

As stated in the quantitative evaluation presented above, the most accurate recon

struction is achieved when the scaling is set to a value larger than s/qx > 4. Note that 

this empirical observation corresponds to the guiding principles based on the theory 

discussed in Chapter 4.

Thin-Plate regression provides the best accuracy results for small scales s/qx < 5. 

Since CSRBF and Gaussian require an overlap between RBF centres, the error decreases 

until over-smoothing occurs. The TV-based regression outperforms other variants when 

CSRBF is applied with relatively high support (s/qx > 15). This is an important 

finding since it means that using CSRBF at larger scaling values provides comparable 

approximation quality to Thin-Plate kernels while still obtaining a sparse regression 

matrix K  in (5.9). In all observed cases, each of the regularization strategies outperforms 

the unregularized LSQ accuracy shown in Figure 5.9a. The quality is increased by up 

to 85% when TVLi is applied.

s/qx = 2 s/qx = 4 s/qx =  6 s/qx = 10

Figure 5.10: TVLx CSRBF: The effect of support scale.

96



5 Shape Reconstruction from Scattered 3D Points

The findings refer to the simplified case of a 3D step function. However, they can be 

expected to apply for realistic datasets since the main assumption is that real-world 

environments consist of many planar connected areas as illustrated by the step function.

5.2.6 Runtime Performance

The final aspect discussed in this section is the runtime performance of the various 

regression techniques. In particular, since TVLi has been selected for its superior shape 

approximation performance, its computational complexity is higher compared to both 

TVL2 or Lasso (Bach et al., 2011). It is thus important to appraise the comparative 

runtime performance of these regularization methods.

The ADMM algorithm is applied in order to obtain the solution of the TVLi opti

mization task. Its iterative process has previously been discussed in Chapter 4. The 

first step of this iterative algorithm is to solve a linear system which incurs 0 ( N 3) 

complexity. Figure 5.11 shows the time required to solve the TVLi task depending on 

the number of samples N.

It is interesting to note that processing only 2500 samples takes the ADMM algorithm 

more than a minute to compute. Furthermore, when processing real datasets with 

more than 1 0 0 , 0 0 0  samples, its application becomes prohibitively expensive in terms of 

computational time. This particular issue will be addressed in Chapter 6 , where a novel 

modification to ADMM is introduced to lower the computational cost by exploiting the 

sparsity of matrix A  in (5.5) when CSRBF is applied.
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TVL

CSRBF
70

u 50ail/l
« 40

1500 2000 25001000500

Figure 5.11: The  t ime required to solve TVLi via ADMM with N  samples.

5.3 Summary

In this chapter it has been shown that when applying TVLi, regularization with CSRBF 

significantly increases the 3D shape approximation quality. The integration of the shape 

variation via || Dot. ||i into the optimization framework enables to identify and to reduce 

strong shape variation caused by error-prone samples.

So far, the TVLx approximation applies the ADMM algorithm as described in 

Chapter 4. However, since ADMM involves computations of complexity G (N 3), the 

technique is not applicable to large point clouds with N  > 105 when N  is the amount 

of processed samples. This issue will be approached in Chapter 6, where a scalable 

solution is developed to solve the shape approximation task in linear time. Only a linear 

complexity enables the application of the proposed technique on realistic datasets.
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The previous section presented the novel TVLi approach to reconstruct an implicit 

shape from noisy point clouds. The numerical technique used for optimization, ADMM, 

suffers from a high order of complexity of 0 ( N 3), which makes the algorithm infeasible 

for realistic 3D datasets that comprise several thousands or millions of samples.

In this chapter the CSRBF shape approximation and ADMM are extended, which 

results in a significant reduction of the complexity to O(N). This is achieved by applying 

an iterative numerical solver technique and by avoiding to compute matrices, which 

further reduces the runtime and storage requirements of the algorithm.

The main contribution here is the application of an iterative numerical solver technique 

in the second step of ADMM. The minimization of a large linear system is replaced 

by an iterative method known as Gauss-Seidel (GS) (Saad, 2003). Furthermore, the 

ADMM-GS implementation does not generate any matrices and works directly on 

the data, thus no additional memory is required for the numerical optimization to be 

performed. The result is a fast ADMM method still capable of solving TVLi problems 

in just a fraction of time. The concept, the runtime performance and also convergence 

properties are presented. The convergence issues are important to consider since an 

iterative method to solve a linear system is applied.
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6.1 Gauss-Seidel for ADMM

Given the Lagrangian from ADMM (4.17), the first optimization step requires the 

minimization of Lp(oc, z, b) with respect to a . The minimization is a LSQ task of the 

general form E(oi) =|| A ol — y ||| and can be stated without loss of generality as

E(a)  =  a TA TA(x — 2yT A ol +  yTy. (6.1)

The main idea of the Gauss-Seidel approach is to approximate each target variable a* 

independently and iteratively by taking its current value as a starting point a®. When 

expanding the cost term E(ct) via the Taylor expansion with respect to a*:

E {a  +  5ei) = E(a°) +  8ViE{a°) +

with H = ATA  as the Hessian of (6.1), then minimizing for 8 gives

ViE(a°)
8 =

When applying this to the least squares regression, the minimum of E(a)  is approached

by

where Ai is the ith column of A. Note that after was computed, it is updated in 

place. So the computation of c^+i directly uses the updated a*.
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An important drawback of Gauss-Seidel is its convergence condition. The method 

requires the maximal eigenvalue of the matrix ATA  to be at most 1 (Xmax < 1) • However, 

the obtained maximal eigenvalue exceeds this restriction when CSRBF is employed. In 

order to overcome this limitation, successive over-relaxation (SOR) is applied, which 

introduces weighting factor u  to the Gauss-Seidel updates:

A T A  ■ < «>

The convergence properties of SOR are discussed in detail by Kahan (1958) and it is 

shown that co should be in a range of 0 < u  < 2, while u  — 2 maximizes the step size, 

uj = 1 reduces to the common Gauss-Seidel updates and u  < 1 should only be used 

when convergence problems arise, which is the case here. The effect of variation in u  

will be presented in Section 6.3.

6.2 Matrix-Free Implementation

This section illustrates the computation strategy of the relaxed Gauss-Seidel algorithm 

from (6.3). The main motivation is to avoid creating matrices before executing an 

iteration step which reduces the storage requirement and increases the computation 

speed. Further, updates of a* only from the neighbouring RBF centres and samples are 

possible since CSRBFs are employed. The computation speed is significantly increased 

and the task is solved in only a fraction of time compared to the standard ADMM 

computation.

Note that the support size and the locations of the RBF centres are estimated
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adaptively to the data density as described in Appendix E. Following the concept of 

the Gauss-Seidel iterations from Section 6.1, the matrix A  contains matrices Kn for 

shape orientation regression, K  for zero levels regression and D as a differential part 

for total variation regularization (see (5.9)). (6.3) can be rewritten as

ak+1 _  ,—  a, +  u y, -  (K lK n +  K f K  +  p D jD W  
KniKni 4- K fK i  +  pDfDi

(6.4)

with yi =  K f  n +  Df(zp  — b). Considering the case where the matrices K , K n and 

D are sparse (see Figure 6.1), the evaluation in (6.4) is simplified by avoiding the 

multiplication of the zero entries in the matrices. This is achieved by extracting only 

the neighbouring RBF centres and samples around c^. The search is performed by an 

efficient tree search technique (Muja and Lowe, 2014).

The basis functions c/?(cj,Xj) in

N  N

K i K  =  ( %  t (c u  Xj) ■ <p(c1}xj), • • • , t ( cu Xj) • p ( c M, X j )
3 3

return zero if a sample Xj is outside of the support of the centre c*. Thus, all <p(cm, Xj) are

y, .  v ".t.Z:

0  5 0  1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
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2 0 0
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1 5 0

6 0 0

‘*1•«* Y*\y T„ *e W ..
-  v  ; l^ \r 2 0 0
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Figure 6.1: Sparse matrices K, Kn and D when CSRBF is applied. Black dots illustrate 
non-zero entries in the corresponding matrix.
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unnecessarily multiplied with zeros. This important observation enables the computation 

to be reduced dramatically by selecting only the samples around cm and neighbouring 

RBF centres which support intersects with the support of cm. Repeating this procedure 

for each RBF centre a*, the full vector a k+1 is calculated.

After a k+1 was obtained, steps two and three of the ADMM algorithm follow. The 

second step involves the minimization with respect to the Lagrangian variable z:

min A || 0  ||i + b T(Dot — z) +  ^-{aT DT D a  — 2zTD a  +  zTz). 
z 2

This minimization task can be solved efficiently for each element Zi independently. The 

solution is known as shrinkage and was previously introduced by Tibshirani (1994). It 

will be described in Appendix B. The last step of ADMM is an evaluation and does 

not require any minimization techniques. The complete algorithm is summarized in 

Figure 6.2.

1. For each RBF centre c* compute:
a) Find all neighbouring RBF centres and all neighbouring samples located 

in the support of c
b) Compute ak+1 via (6.4) using only the collected neighbours.
c) Compute D a  with ak+1.

2. Solve minz A || z ||i + bT(Da — z) + £(aTDTD a — 2zTD a  +  zTz) via shrinkage 
(see Appendix B).

3. Evaluate: b fc+1 =  bfc +  (D ak+1 — zk+1)p.

Figure 6.2: Fast matrix-free TVLi algorithm.
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6.3 Convergence and Runtime Performance

The previous chapters presented the extension of the ADMM approach with Gauss- 

Seidel and the weighting parameter u  leading to a SOR method. Since iterative 

optimization techniques approach a solution via multiple steps, it is important to 

address the convergence speed. If an algorithm approaches an optimal solution very 

slowly, many iterations are required, which increases the overall runtime of the method. 

The introduced parameter uj directly controls the step width of a single iteration. 

However, a high uj value («  2) breaks the optimization and the solution diverges from 

the optimum. This section evaluates the effect of uj on CSRBF-C2 and CA RBF and a 

uj value is proposed for both RBF types.

The introduction of SOR with the iteration step width uj is necessary since the largest 

eigenvalue of the matrix A TA  in (6.1) does not meet the convergence condition for 

Gauss-Seidel (Kalian, 1958). Moreover, since no theoretical estimation of the step size 

parameter uj is possible, its value is estimated empirically. Figure 6.3a shows the effect 

of uj on the minimization process when CSRBF-C2 and CSRBF-C4 are applied after

Effect of (jJ Convergence ADMM - GS a; =  0.15
14UUi

CSRBF C2 
CSRBF C41200

1000
80 0

B 6 0 0

4 0 0

200

10 1 4
Iteration

1UUU

CSRBF C2 
CSRBF C4

8 0 0

E 6 0 0

*  4 0 0

200

0.5 0.60.0 0.1 0.2 0 .3 0 .4

a) b)

Figure 6.3: a) The  effect of the SOR weighting uj. b) The  convergence performance for 
selected u  for CSRBF-C2 and CSRBF-C4.
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five iterations. The graph shows the residuum, namely the achieved cost value with the 

estimated a  of the optimization after four iterations. Figure 6.3b shows the convergence 

performance when uj = 0.15 is selected. Compared to CSRBF-C4, CSRBF-C2 converges 

faster because of its higher stability properties.

The extended ADMM-GS approach enables the TVLx minimization to be solved 

much faster than the standard technique presented in Chapter 5. Figure 6.4 shows the 

achieved runtime performance processing the synthetic 3D step function increasing the 

number of samples. For the experiments, the size of RBF was set to s/qx = 5. Larger 

values generally reduce the sparsity of the matrix K  and increase the computation time.

The proposed ADMM-GS technique clearly outperforms the standard ADMM. Addi

tionally, the verification of the new low complexity O(N)  is presented. The computation 

time achieved by the algorithm is compared to the theoretical linear runtime. The 

computation time is generally slightly higher than the theoretical prediction since mem

ory allocation and thread blocking by the operating system causes additional delays 

(Kopetz, 2011). Intel i5 with 4GB of memory has been used to compute the runtime 

performance. More advanced computing platforms will enable shorter processing times.

ADMM

— Empirical
-  Theoretical OfiV3)

ADMM-GS

-  Empirical
-  Theoretical O(N)

0 20000 40000 60000 80000 100000 120000 140000
N

Figure 6.4: Runtime complexity validation, a) ADMM, b) ADMM-GS.
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6.4 Summary

This chapter presented an extension to the ADMM optimization technique that allows 

to solve the TVLi task for large datasets. The new computation strategy exploits the 

sparsity due to the compact support of CSRBF. Further, a matrix-free optimization 

procedure is established which works directly on the input points instead of allocating 

additional memory for linear algebra computations. Since all multiplications with zeros 

are avoided in the optimization process, the complexity is reduced significantly to 0(N) .  

As presented in Figure 6.4, the proposed technique is 100 times faster when N  =  1200 

samples are processed to a 3D shape. The standard ADMM is not applicable for larger 

datasets with 120,000 samples. A drawback of the presented methodology is the high 

number of iterations required to solve the framed problem. Since the SOR weighting u  is 

introduced to relax the convergence condition imposed by the Gauss-Seidel algorithms, 

the number of iterations may increase depending upon the dataset being used.

Chapter 7 will focus on the qualitative and quantitative evaluation of the proposed 

technique. The algorithm will be evaluated on realistic data with available ground truth 

and challenging datasets obtained from a mobile stereo camera system.
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This chapter compares the proposed TVLi shape reconstruction model with two state- 

of-the-art surface approximation techniques (Section 7.1) which are applied to the three 

test datasets presented in Section 3.7. The critical evaluation consists of two distinct 

elements: a qualitative assessment (Section 7.2) which focuses specifically on the visual 

appearance of the reconstructed shapes; and a quantitative assessment (Section 7.3) 

which applies the quality metrics introduced in Chapter 3. Section 7.4 will conclude 

this chapter by highlighting the generic findings common for all datasets when TVLi is 

applied.

7.1 Surface Reconstruction Comparators

The proposed TVLi approach is compared with two existing surface reconstruction 

techniques: the Poisson algorithm (Kazhdan and Hoppe, 2013) and SSDF (Calakli and 

Taubin, 2011). Since the Poisson algorithm is preferred in many application domains 

(Rusu and Cousins, 2011), it is a comparative technique of particular interest to this 

research. Similarly, SSDF was one of the first algorithms to integrate the smoothness 

regularization into the shape reconstruction process, which equally makes this a valuable 

comparator in the critical evaluation.
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Both methods differ from the proposed TVLi approach in several important aspects:

• User-specified subdivision depth: In contrast to the comparators, the pro

posed framework adapts the RBF sizes to the data. Poisson and SSDF group the 

3D samples via an OcTree (Gomes et ah, 2009) into disjunct cubes and the depth of 

the tree is set by the user before the approximation process starts. Unfortunately, 

the depth parameter varies depending on the dataset volume, which makes the 

other compared methods impractical for non-interactive shape reconstruction. In 

both cases, the user has to estimate the proper depth before applying one of the 

comparator algorithms. More details about the RBF distribution can be found 

in Appendix E. First of all, the evaluation presented in Appendix D has to be 

performed in order to estimate the optimal dataset-specific depth parameter for 

Poisson and SSDF.

• Discretization: Poisson and SSDF work explicitly with the discretized OcTree 

data structure. Both methods require that a surface between neighbouring OcTree 

leaves has to exist, which can lead to the reconstruction of non-existent surfaces. 

While this effect can be beneficial for hole-filling by extrapolation, it also causes the 

closure of larger naturally occurring apertures like doors, windows and occluded 

areas. This is disadvantageous in many applications involving both inspection 

and exploration.

• Minimized cost function: The Poisson approach solves the partial differential 

equation A /  =  Vn by performing multiple convolution (weighted averaging) steps 

that lead to smooth results (Kazhdan et al., 2006). Instead of modelling the
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function /  by RBF, constant basis functions, ip = 1 centred on the neighbouring 

OcTree leaf corners are applied. Subsequently the solution is approached by a 

coarse-to-fine optimization approach exploiting the hierarchical structure of the 

OcTree. The SSDF approach achieves smoothness regularization by applying 

discrete derivatives and the standard L2 norm. Using this particular norm rather 

than Li does not take into account the sparse number of edges in a 3D scene. 

This leads to an overall smoothing of the shape reconstruction results, as expected 

from the L2 regularization discussed in Chapter 4.

The first comparative performance evaluation will be considered now.

7.2 Qualitative Analysis

In this section, visual assessment of the 3D shape reconstruction results will be un

dertaken. Section 7.2.1 will present the reconstructed meshes for the Facade and the 

Kitchen datasets while Section 7.2.2 will examine the related approximation errors in 

the reconstructed shapes.

7.2.1 Shapes from Synthetic Data

Figures 7.1 and 7.2 show the reconstructed surfaces for the Facade and the Kitchen 

datasets using the Poisson, SSDF, TVL1-C 2 and TVI^-C4 techniques respectively.

In addition to the full 3D datasets shown in Figures 7.1a and 7.2a, two particular 

areas have been enlarged to highlight the quality of the respective shape reconstructions 

in especially challenging areas (sparse samples, occlusions, fine structures) as shown in 

Figures 7.1c and 7.2c. The corresponding ground truth models are also included for
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subjective assessment purposes.

A general perceptual conclusion for both of these synthetic datasets is that both 

proposed TVLi regularization techniques consistently achieve superior reconstruction, 

particularly in terms of the detail in the vicinity of and around corners and edges (see b, 

c in both Figures 7.1 and 7.2). Note that since the balcony railings in the Facade dataset 

are represented by a pure texture, its shape is not being sampled by the simulated 

camera and thus cannot be reconstructed by any of the shape modelling techniques.

The reconstruction along unsampled areas such as the roof of the Facade incurs holes 

since TVLi avoids extrapolation of the samples. Similar behaviour can be seen in the 

Kitchen dataset along the boundary edge between the floor and the furniture (Figure 

7.2b).

When processing sparse samples collected from either a narrow or reflective structure 

such as in Figure 7.2c, TVLi is the only technique that successfully identifies this as a 

surface. For example, neither Poisson nor SSDF considered the 3D samples around the 

water tap and so failed to reconstruct any shape at all. However, the surface orientation 

quality suffers from a limited number of normals, because its computation relies on a 

high density of 3D samples (Rusu and Cousins, 2011) which the test datasets do not 

possess.

7.2.2 Region-Specific Error Distribution

Seven challenging areas for shape reconstruction have been identified in each dataset 

to assist in the critical evaluation of the 3D models. In evaluating the capabilities 

of the different algorithms, a number of feature areas have been identified, namely:
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areas with a low sampling density ((T),(^),(4}) including occlusions ((4), (6j) and fine 

structures ((§), (5))• The comparative performance of each of the methods is illustrated

a)

0
£
r*
0O

O

b) c)

Figure 7.1: Reconstruction results on the Facade dataset,  a) Full model overview, b) front 
view enlarged, c) side balcony enlarged.
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Figure 7.2: The reconstruction results of the Kitchen dataset,  a) Overview, b) water tap, c) 
stove.

in Figure 7.3, where the spatial distribution of the point-to-point errors aligned to 

the ground tru th  model is coloured in red. This enables areas that are difficult to be 

reconstructed for a particular technique to be highlighted. The ground tru th  model 

and the reconstructed mesh are compared with the distance between each ground truth 

sample and its nearest vertex in the reconstructed model being determined. The error 

distributions are shown by the red colours in Figure 7.3, where the brighter the colour, 

the higher the error. In the first row a series of circled numbers have been identified in 

the error distributions to aid the critical discussion of the respective models. These will
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now be discussed individually referring to Figure 7.3:

1. In area (T), where two planes interconnect and rectangular corners need to be 

reconstructed, TVLi achieves higher accuracy compared to both Poisson and 

SSDF, which apply greater smoothing to the approximation and as a consequence 

generate notably larger errors. This can be seen on the example area beneath the 

exhaust hood in the Kitchen dataset.
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Figure 7.3: Error distribution for the Kitchen (a) and the Facade (b) datasets .  Red colour 
illustrates larger errors.
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2. When the noise variance is small with respect to observed structures in a scene (e.g. 

area (§)), all the analysed reconstruction methods are able to approximate shape 

geometry effectively, though at different quality levels. However, when the noise 

variance exceeds the size of the objects (e.g. the fine joints in the Facade dataset 

in Figure 7.1) then these become smoothed and disappear in the reconstructed 

shape approximation. Note that also the planarity integration regularization can 

not change this principle of too low signal to noise ratio.

3. In large planar areas such as in (7) the reconstruction quality of TVLi is consis

tently superior to Poisson and SSDF. This can be observed along the wall of the 

Facade.

4. In situations where no 3D samples are available such as in the corner of the roof 

in the Facade both Poisson and SSDF still extrapolate the holes into a closed 

surface and thus create an erroneous reconstruction. In contrast, TVLi, as seen 

also in (2), does not perform any hole-filling, i.e. it skips this area.

5. In regions of a scene which are weakly sampled and contain sharp corners (see @ ) 

both SSDF and Poisson force the surface to close between samples, which leads 

to large errors as highlighted in Figure 7.3b. This is not advantageous for any 

dataset which contains naturally occurring apertures like open doors or windows. 

In contrast, for TVLi the shape reconstruction of large unsampled areas is not 

performed since the error in such regions would be too large and would not reflect 

the true geometry.

6. When parts of an object are occluded such as in the case of the floor of the balcony
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in the Facade dataset, the reconstructed shape is successfully extrapolated by all 

methods, though focusing on samples rather than closed surfaces. That means 

the results for both SSDF and Poisson lead to larger errors than either TVLi-C2 

or TVLi-C4.

7. While fine structures (3) tend to be smoothed by all approximating techniques 

(e.g. stove in the Kitchen dataset), the new TVLi method as illustrated in Figure 

7.1 is still able to extract rudimentary shapes like the cabinet handle that are not 

visible in the corresponding results for both SSDF and Poisson. Furthermore, in 

comparison to TVLi-C2, TVLi-C4 provides a consistently better approximation 

of finer details in the reconstruction. The underlying reason for this is that 

structures which exhibit significant shape variations benefit from the higher-order 

interpolation in the shape approximating process.

A number of general observations concerning the performance of the new TVLi technique 

can be distilled from this qualitative evaluation:

• TVLi focuses on the approximation of samples without enforcing and synthesizing 

closed surfaces.

• TVLi is more robust in being able to deal with larger noise variance than either 

Poisson or SSDF. However, when the noise variance exceeds the size of the sampled 

object, only a vague smoothed reconstruction of the object is possible.

• TVLi leads to significantly lower over-smoothing effects.

• TVLi clearly outperforms both Poisson and SSDF when large planar areas need 

to be reconstructed from relatively dense samples.

115



7 Performance Evaluation

a) b) c)

0  M issing  d a t a  on  
r e f le c tiv e  f lo o rO

o s a r r  (I), l A
P-t Q  Hall entry / ©

C o rrid o r  W in d o w s b o o r

H

''rigs

Figure 7.4: The  reconstruction results of the Corridor dataset ,  a) Corridor crossing, b) 
reflective floor (2) ,  c) corridor enlarged ( 4).

7 .2 .3  Shapes from a Non-Synthetic  D ataset

Unlike the two synthetic datasets Kitchen and Facade, this 3D dataset comprises a 

physically acquired point cloud from a stereo camera as shown in Figure 7.4. The reason 

why in this case no detailed quantitative analysis can be performed is the lack of ground
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truth. The entrance area (T), windows @  and doors (3) do not naturally contain 

samples and thus should not become enclosed by surfaces. However, in both SSDF and 

Poisson approximations such apertures become closed surfaces and consequently create 

non-existing walls in the shape reconstruction as illustrated in Figure 7.4a.

In Figure 7.4b a scene with reflective floor and glass windows along the corridor has 

been observed. This represents an extremely challenging task since reflective objects 

are generally difficult to handle for optical sensors. Provided the holes in the dataset 

are not larger than the sampling density, then the adaptive RBF distribution enables 

a satisfactory approximation of the surface to be made. In comparison to SSDF and 

Poisson, the resulting shape approximation has fewer ripples and does not suffer strong 

over-smoothing effects as in the Poisson case. Furthermore, while SSDF reconstructs 

more structural details than Poisson, both are more sensitive to noise than the proposed 

TVLi approach.

7.3 Quantitative Analysis

In this section, a quantitative analysis is performed to assess the various shape re

construction methods using different evaluation metrics. Since the ground truth data 

is available, the quality metrics introduced in Chapter 3 are applied to measure the 

deviation of the approximation results from the reference models.

The histograms in Figures 7.5a and b show the error density distribution with respect 

to the distance from the reference shape. This basically describes how many samples 

are a distance away i.e., 0.01m, from the ground truth surface. The smaller the overall 

distance from the ground truth shape, the higher the peak and the closer it appears
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Figure 7.5: Statistical quality metrics: a, b) error histograms, c, d) cumulative error distribu

tions, e, f) median errors in metres.

to the origin of the graph. In the case of the Kitchen dataset, the peak is much more 

to the left (5mm) since the density of the samples is much higher than in the Facade 

dataset (0.1m).

In both scenarios, Kitchen and Facade, TVLi outperforms Poisson and SSDF in
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terms of their corresponding shape reconstruction accuracy. This is especially true 

for the Facade dataset, where TVLi distributions produce consistently lower error 

than its comparators, especially the Poisson approximation. The reason for the TVLi 

improvement is that the noise in the plane object samples is better suppressed due to 

the integration of a priori knowledge that a planar surface is approximated.

The cumulative distribution graphs in Figures 7.5c and d reveal how many samples 

have a smaller error than say 0.2m. These clarify that for both TVLi variants 90% 

of the errors are less than 1.5cm for the Kitchen and 0.2m for the Facade dataset 

respectively. In contrast, the corresponding errors for Poisson are 5cm and 0.4m, and 

for SSDF they are 4.5cm and 0.33m.

Figures 7.5e and f illustrate the respective median errors, where the TVLi variants 

again achieve the smallest values. For the Kitchen dataset, noise is relatively low and the 

data density high, so all the shape reconstruction methods produce satisfactory results. 

However, for the Facade dataset, where the noise level is high, the TVLi framework 

significantly outperforms its comparators. Overall an improvement of up to 23% on 

the Kitchen and up to 67% (compared with Poisson) on the Facade dataset has been 

achieved corroborating the corresponding perceptual results for these datasets.

Referring to the noise level applied to the ground truth data of a = 0.4m for the 

Facade and a = 0.05m for the Kitchen dataset, the resulting TVLi standard deviations 

are significantly lower. TVLi reduces the effect of the noise by up to 42% (Facade) and 

26% (Kitchen) as shown in Table 7.1. The table also presents the input noise for both 

datasets (Facade = 0.4m and Kitchen: = 0.05m). TVLi achieves to suppress the noise 

down to 42% (Facade) and 26% (Kitchen) as shown in Table 7.1. The table presents
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the input noise for both datasets (Facade: a = 0.4m and Kitchen: a = 0.05m) and 

the corresponding variance of the reconstructed shape. The reconstruction variance 

has been computed using the ground truth data and numerically measures the shape 

approximation accuracy. This is particularly interesting since noise in 3D samples 

makes the shape reconstruction challenging. Yet despite this, the resulting errors are 

reduced by up to 80% when TVLi is applied.

Table 7.1: Error Statistics. Median (Med.), Variance (Var.) and ore\ =  a°utput
v 7 O input

Facade,
Med.

<j = 0.4m 
Var. orei

Kitchen, <r = 
Med. (10-3)

0.05m
Var. &rel

Poisson 0.25m 0.35m 87.5% 6.4m 0.17m 300%
SSDF 0.14m 0.33m 82.5% 6.2m 0.08m 160%
TVLi-C2 0.12m 0.24m 60% 5.2m 0.010m 20%
TVLi-C4 0.08m 0.17m 42.5% 4.9m 0.013m 26%

While these findings have focused on two very different test 3D datasets, the findings 

relating to the comparative performance of TVLi can be generalized and the dataset 

characteristics under which superior shape reconstruction results can be achieved will 

now be summarised: In critically evaluating the performance of TVLi in comparison 

with existing state-of-the-art 3D shape reconstruction techniques, it performs better 

when:

• Approximating details at corners and along contours by virtue of a priori planarity 

knowledge are incorporated into the shape reconstruction process.

• By distributing the RBF centres adaptively to the dataset, TVLi does not 

reconstruct non-existent surfaces in larger holes like doors or windows. This is 

essential for generic applications in many domains.
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• Processing noisy datasets, a suppression of up to 50% can be achieved.

7.4 Summary

This chapter presented a thorough evaluation of the proposed shape approximation using 

TVLi regularization. Two state-of-the-art comparative methods, Poisson and SSDF, 

were applied to three diverse 3D test datasets to assess the quality of their respective 

shape approximations. The datasets were Facade, Kitchen and the physically-acquired 

point cloud Corridor, which each exhibit different and challenging features, sampling 

densities and noise levels. The critical evaluation involved a visual assessment of the 

3D reconstructed shapes supported by a numerical comparison of the approximation 

methods. Findings from the evaluations reveal conclusively that the new TVLi technique 

produced higher accuracy 3D shape approximations in all test scenarios.
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8 Future Directions

This thesis has presented a novel robust 3D shape approximation framework with 

significant improvements being achieved over existing state-of-the-art techniques due 

to the integration of a priori smoothness knowledge via TVLi regularization. The 

framework is flexible and adaptive to data and does not require user interaction on 

specific datasets. The following sections outline some suggestions for extending the 

framework in order to pave the way for future research.

8.1 Recursive Shape Approximation

The underlying thesis focuses on the shape reconstruction considering all available 3D 

samples in a single optimization process. In entertainment, tele-operation, virtual reality 

or robotic applications it is of high importance to reconstruct the scene from a data 

stream (e.g. a video of depth images). This means that the shape approximation process 

is expected to use new incoming data packets to update and improve the existing 3D 

shape iteratively. This is certainly a feasible extension to the framework since the TVLi 

regularization technique already involves iterative optimization steps that can further 

be amended to update the shape from incoming measurements. The recursive extension 

of the presented framework will enable the reconstruction of dynamic environments and
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also the application of consumer grade 3D perception hardware like small cameras or 

scanners which generate error-prone data.

8.2 Data Structures for Large Environments

3D datasets of few million 3D samples have been processed so far. However, in real-world 

environments which may cover hundreds of thousands of kilometres the requirement 

will involve processing billions of data points. Unfortunately, state-of-the-art data 

structures are only able to access distances of a few hundred metres and are not scalable 

to large domains. For this reason, effective data storage techniques need to be developed 

enabling fast access to 3D data that may be simple 3D points or preprocessed implicit 

shapes. This extension of the TVLi framework is expected to have an additional 

impact on a range of different industries such as geographic information systems (GIS), 

autonomous driving in public or in industrial facilities, and security applications that 

monitor larger environments such as construction sites below or above the ground.

8.3 Automated Scene Understanding

After having reconstructed the implicit shape model, the highest value from the recon

structed shapes is expected when object detection or general scene analysis is performed 

automatically. Dealing with the implicit shape representation, a scene can be analysed 

by its differential patterns such as the gradient and second derivative, which can be 

viewed as the planarity of a shape. Differential analysis is the fundamental baseline 

of many convolutional Deep Learning techniques (Lai, 2015; Goodfellow et al., 2015; 

Yan et al., 2014), which can directly be applied on top of the reconstructed implicit
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shape. Currently, Deep Learning outperforms many other classification methods, which 

leads to the overall conclusion that integrating Deep Learning into the newly developed 

framework will enable a powerful system understanding of the surrounding environment. 

This opens up new opportunities in areas such as the detection of pedestrians, cars and 

other objects, which is pivotal in many automation domains.

8.4 Out-of-Core Rendering

When processing huge 3D sample datasets, the visualization of a virtual environment 

becomes very challenging. Since the datasets cannot be stored in the internal memory 

of a GPU, direct visualization of the shapes or raw 3D samples is not possible even 

on high-end hardware. This requires the development of new multi-level memory 

management techniques. Depending on the camera position, only the observed parts 

of a 3D scene are loaded into the internal GPU memory while the rest of the dataset 

is ignored. This issue has already been recognized by numerous research groups and 

several approaches have been proposed (Gobbetti et al., 2008) to deal with large point 

clouds or meshes.

Recent research by Limper et al. (2014) and Robinet et al. (2014) has focused on 3D 

visualization within web browsers. There the term core defines a local machine that 

downloads only the relevant part of a 3D scene from a web server. In combination 

with the proposed recursive shape approximation strategy discussed in Section 8.1, this 

opens many new perspectives on how 3D content can be generated in real time for 

human-to-machine interactions via the mobile internet.
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9 Conclusion

The increasing demand for efficient automation in many industries has led to extensive 

research into mobile robotics. The demand is driven by several domains including 

automated transport, agriculture machinery and inspection applications. A fundamental 

requirement in these applications is to be able to analyse the environment in which the 

robot operates in real-time by using either laser scanners and/or cameras. Such devices, 

however, only provide unordered 3D samples. A major challenge is that these samples 

do not provide any intrinsic information about the scene and thus have to be processed 

to derive more meaningful structures like surfaces, apertures and obstacles which then 

enable a robot to navigate.

This thesis has presented a new framework which addresses the fundamental question 

of 3D shape reconstruction from incomplete 3D samples by the integration of a priori 

smoothness knowledge. In modelling outdoor and indoor scenes, it is intuitive to assume 

most observed surfaces are planar. This a priori knowledge has been formalized by means 

of the convex regularization and extended to a robust model using the Li norm. This 

integration of planarity information into the 3D shape approximation process significantly 

increases the robustness of the framework to measurement errors. The new knowledge 

integration framework presented in this thesis makes three original scientific contributions 

to the 3D computer vision and robotics field:
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9 Conclusion

1. The most significant contribution is the new planarity-aware 3D shape approxima

tion algorithm that integrates a priori knowledge as piecewise smoothness with 

the inducing TVLi regularization enabling more robust shape reconstruction from 

error-prone 3D samples.

2. A novel formalization of implicit shape representations using RBF has been de

veloped. This enables the representation of arbitrary non-linear shapes by means 

of linear functions and thus facilitates TVLi-based shape approximation from 

scattered 3D samples.

3. A novel numerical technique has been developed to reduce the order of computa

tional complexity of the shape reconstruction process from G (N3) to O(N)  without 

compromising the accuracy, noise suppression performance or the approximation 

of piecewise smooth shapes. This importantly allows the new framework to be 

applied to realistic 3D datasets which typically comprise millions of data samples.

The contributions of this thesis have an impact on many different robotics domains 

where spatial perception is required. The main benefit of the presented research is the 

accuracy of the reconstructed shape even if error-prone 3D points are provided. This 

is of particular interest for low-cost 3D sensors including consumer grade cameras or 

simple 3D scanners which are usually employed in lightweight systems. Applications 

such as inspection via robots or drones, 3D modelling with low-cost consumer hardware, 

or navigation and path planning in unknown environments are only a few examples 

where the presented research has an impact. Critical tasks such as obstacle avoidance or 

human-machine-interaction naturally rely on accurate 3D modelling, which makes the 

presented research contributions significant for the considered technologies.
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A p p e n d i x  A :  E s t i m a t i n g  t h e  W e i g h t i n g  P a r a m e t e r  A

Background

Chapter 4 showed how the Li regularization can solve the stability and the over-fitting 

issues. However, while applying the Lx regularization, it is im portant to select a 

proper weight A to the penalty term in equation (4.15). Setting A to a very high level 

leads to over-smoothing. A weight that is too small leads to over-fitting and instable 

approximation.

Consider Figure A.l, in which two approximation results with two different weights 

are demonstrated. Since the residuums of the minimized cost function do not provide 

information about over-fitting or over-smoothing, a technique assessing the overall 

approximation quality is required. In the field of machine learning, this issue is usually
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Figure A.l: The effect of the smoothing parameter A on the regression of a corrupted signal, 
a) A is too small, b) A is too large.
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approached by splitting a dataset into a training and a testing set. The training set 

is used for the estimation of the target variables a  while the testing set is applied 

to measure the quality of the model defined by a. However, applying this technique 

to robotic applications is usually not possible since no separated data samples are 

available.

Because of these restrictions, Mosteller and Wallace (1963) and later Allen (1974) 

proposed a method known as the cross validation (CV) or leaving one out technique. 

Basically, it is assumed that the best value for A lies in a range between Xmin and \ max- 

Dividing this range into M  discrete Am values enables the best of them to be evaluated 

and selected. In order to estimate the quality of each Am, a single sample from the 

dataset is omitted, the regression task is solved and the error of the omitted sample is 

measured. This is repeated for each of the N  samples.

The full search would require performing the regression G(M\ • (N — 1)) times when 

evaluating all M  hypotheses for the weight A. Note that when the computation of a  

is of complexity 0 (N 3), the cross validation will have 0 ( N 4). In practise this can be 

performed for very small datasets of N  < 1000 samples.

Bach (2008) proposed selecting only k < N  samples randomly and to extract the most 

influential coefficients in a. Meinshausen and Biihlmann (2010) defined the importance 

of the coefficients via probability to be part of the solution. The detection process 

is performed for every A hypothesis, so that the overall regression task reduced to 

0 (M \ ■ k) computations. Unfortunately, the number k has to be high in order to obtain 

reliable estimates. Thus the repetitive solving of the regression task still causes high 

computational costs.
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Following the ideas for L2 regularization from Wahba (1990), a more efficient method 

is applied. The approach does not require solving the regression task for each of kth 

samples. The regression task is solved only once for each hypothesis Am, thus reducing 

the complexity to only The technique is adopted here to Li regularization and

will be described in the following paragraph.

Generalized Cross Validation

In ordinary CV the parameter A =  Am is fixed in the first step, one of the samples 

k G {1, • • • N }  is excluded, and the regression task is solved. Finally, the overall error 

of the interpolated model with omitted sample k is estimated. This process is repeated 

for all given samples N. The variance of all N  errors for Xm is the metric:

C V W  = h  E (!/* -  $(**))*
iV k=l

where is the estimate of /  without kth sample. So the best Xopt is the minimizer 

of C V(A) which is found by calculating C V(A) for all Am,m  € {0, • • • , M \}. When 

considering the L2 regularization norm as studied by Wahba (1990), the estimator of /  

including all samples is

fx{x) =  kTaopt =  kT(KTK  +  A DTD)~1K Ty.

Then the CV  (A) error follows the identity:

Vi -  
1 — Su
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Figure A.2: a) C V ( A), b) approximation result with optima I \ opt.

and in matrix form:

n
(I -  S ( \ ) )y  \\2 / - T r ( /  — 

n
(A.l)

with S  =  K ( K TK  +  ADTD)~1K T, S  G M.NxN. This identity states that the C V (A) 

may be computed from only a single estimation of f \  without having to repeat the 

computation N  times as it is the case in standard methods. Now, this CV approach is 

extended for Li regularization.

Figure A.2 illustrates the estimated A for the problem of reconstructing a sin signal 

via Gaussian RBF (s =  3). The variance distribution CV{A) is shown for varying A 

in Figure A.2a. The optimal A leading to the minimal variance has been selected to 

compute the approximation of the sin signal shown in Figure A.2b.

In Figure A.2a thin lines indicate the sample variance. When (A.l) is considered as 

the mean pa and a sample is s* =  yi~[AXi  ̂? then the sample variance is calculated as

V a r  =  -  ^  ■

(A.2)
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Figure A.3: a) The C V (A) estimation, b) sin(t) approximation with optimal A.

Note that to simplify matters the sample variance is computed assuming a normal 

distribution. In contrast to the correct computation using y 2 statistics, the applied
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computation is more conservative and gives larger values for (A.2) as also pointed out 

by Hardle and Simar (2012). This is, however, not critical here since the results are 

only considered in the visualization.

Theoretical studies of GCV for Tikhonov regression (Wahba, 1990) justify that it 

converges asymptotically. However, good results cannot be expected for small datasets. 

Selecting N  > 100 samples for each Am has been identified as reliable in evaluation 

experiments. This is also the number proposed by Bach (2008) for general datasets. 

Even though the GCV method is much more efficient than general CV approaches, it 

requires solving the full regression system several times. For large systems this might be 

inappropriate. Today, regularization tasks with RBF are in the focus of mathematical 

research. Lin and Yuan (2006) proposed a simple formula computing optimal A from 

the number of samples and the differential degree of the approximation:

A « i \ r ( 2™+2)/3.

However, it is not explained how this formula has been established. This approximately 

agrees with the GCV-estimated values in the presented experiments shown in Figure 

A.3. Though, more research on this topic is required, which is unfortunately outside of 

the scope of this work. The interested reader is referred to the recent investigations 

presented by Zhang et al. (2011) and Friedman (2012), who seeks to partly integrate 

the cross validation into the optimization processes.

132



Appendix B: Li Subgradients

Chapter 4 introduced the ADMM algorithm. In its second step, it relies on the 

minimization of the Lagrangian (4.17) with respect to z. The minimization

ming(z) = A || z ||i + b T(Da  — z) +  ~ (a T DT D a  — 2zTD a  +  zTz) 
z 2

is carried out via differentiation for each element of z\ independently:

b* A
Zi =  — +  ( D a ) i  sign(^).

P P

This is further simplified to z\ = a — A /psign^). By induction, the following possible 

solutions are:

• When Zi > 0, then a > A/p, thus Zi = a — A/p.

• When Zi < 0, then a < —A/p, thus Zi = a +  A/p.

This leads to a simplified notation:

if lal < -i i p

^  +  (D a k)i -  ^sign(zf) else.

The form above is the extension of the Shrinkage-Operator from Tibshirani (1994).
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Appendix C: Partial Derivatives of the RBF

Table C.l: Gradients for RBFs, for 3D data with d =  3

RBF Type
Thin-Plate
V(r) =  & m~d (xj — x m)(2 m — d)crd~2rTy 2m~d~2
CSRBF
C°: ip(r) =  (1 -  r)%
C 2: ip(r) =  (1 — r)4 (4r +  1)

-(x j — x m)( l  — r ) +
\(X i -  x m) ((1 -  r)X -  (1 -  r ) l  (4r +  1))

C A: (p(r) =  (1 — r)+(35r2 +  18r +  3) -(x j — x m) ( l  — r ) i (
(1 -  r)(70r +  18) -  (35r2 +  18r +  3))

Gaussian
<,p(r) =  e~r2 -2 (x*  -  x m)e“r2

Table C.2: Second order derivatives with respect to radius r for d =  3

R B F Type drry{r)
Thin-Plate iIITT (2m — 4) (2m  — 3) r2m~5
CSRBF
C°: <p(r) =  ( 1 -  r ) l —2 if r < 1, otherwise 0.
C2: (p(r) = (1 — r)4 (4r +  1)
C4: (p(r) =  (1 — r)+(35r2 +  18r +  3)

12 (1 -  r ) \  (4r  +  1) -  32(1 -  r )+3 
3 0 ( l - r ) 4.(35r2 +  18r +  3 )-  
12(1 -  r)5.(70r +  18) +  70(1 -  r)6+

Gaussian
(p(r) =  e~r2 4 r2e~t2 — 2e~t2
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Appendix D: Parameter Selection for Poisson and

SSDF

These experiments aim at identifying the proper depth parameter for the Poisson and 

SSDF algorithms. In both the octree depth parameter needs to be selected by the user 

beforehand. The evaluation considers the median of the shape distance error and the 

median of the curvature indicating over-fitting. For the Facade dataset depth =  8 has 

been identified as the best depth for both algorithms. As for the Kitchen dataset depth 

=  7 is selected for both methods. These values are further employed in all benchmark 

experiments presented in Chapter 7.
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Poisson, Facade da tase t

Figure D.l: a) depth  =  4, b) depth  =  8, c) depth  =  12, d) approximation error and curvature 
of the Poisson reconstruction.
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Figure D.2: a) depth  =  4, b) depth =  8, c) depth =  12, d) approximation error and curvature 
of the SSDF reconstruction.
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Figure D.3: a) depth =  4, b) depth  =  7, c) depth =  12, d) error and curvature  of the 
Poisson reconstruction.
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Figure D.4: a) depth  =  4, b) depth  =  7, c) depth  =  12, d) error and curvature of the SSDF 
reconstruction.
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A p p e n d i x  E: D a t a - a d a p t i v e  R B F  d i s t r i b u t i o n

E.l Octree

Given an unstructured list of 3D points, computing / ( x )  from the neighbours around x  

usually requires iterating through all N  samples. This process is very time-consuming. 

Thus, the samples are structured with an octree which allows to access neighbours of a 

point much faster than iterating the full dataset. An octree is a spatial hierarchical 

grid that divides the 3D space into cubes of equivalent volumes. Beginning with the 

root node which encloses the full data volume, the second level contains eight blocks 

of smaller sizes. The third level can also contain further branches until the expected 

level of detail is achieved. When a leaf of the octree is accessed by a 3D coordinate, the

Level 1

a) b)

Figure E.l: Exemplary space partitioning with an octree, a) The  volume partitions of two 
different levels, b) hierarchical logical decomposition.

Level 2
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Appendix E: Data-adaptive RDF distribution

a) b)

Figure E.2: The RBF centres (red dots) are placed on a grid around the samples (black dots), 
a) 2D, b) 3D illustration.

complexity is G(d) with d as the depth of the octree. Thus, the level of detail directly 

affects the data access speed and consequently the computation time of / ( x ) .  The 

octree is a fundamental part when it comes to estimating the RBF sizes from the data.

E.2 Data-Adaptive RBF

The RBF centres are distributed uniformly between the data samples before the shape 

reconstruction process can start to optimize the values of a .

Initially, the full dataset is structured in an octree to enable faster data grouping 

and access. The depth parameter is estimated automatically and is controlled by the 

required number of included 3D points. The subdivision process is terminated as soon 

as an octree node has less samples than required by a predefined parameter nc.

Each octree node stores the 3D samples and the corresponding mean position as 

shown in Figure E.2. RBF centres are placed on octree leaf corners around each cube 

before the approximation process starts. Figure E.2a illustrates the distribution of the 

RBFs on a 2D grid and when applied on 3D samples of the step function. This strategy

O  RBF C entre  
#  Sam ple
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Figure E.3: The  effect of nc on the ADMM-GS residuum.

allows to adopt the framework to the data without user interaction. Initially, similar 

approaches have been discussed in physical numerics, today also known as mesh free 

methods (Liu, 2002).

When distributing the RBF centres on the adaptive grid, the support size s* is a 

critical parameter that influences the achieved approximation quality. When an RBF is 

required to enclose nc samples with rmax as the distance to the furthermost sample, the 

support Si is set to s* =  rmax. In Chapter 4 the theoretical optimal scaling of RBF has 

been identified as s/qx > 5. This means that when a planar shape is approximated, the 

number of included samples should be 5 x 5 =  25 < nc. This is validated by experiments 

shown in Figure E.3, where the optimal number of included samples has been identified 

as nc > 25. Larger nc values may improve the approximation quality but definitely 

increase the probability of over-smoothing and also raise the computation time. Thus, 

the value should be selected as small as possible. Based on these considerations, nc =  30 

has been selected for all experiments.
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