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ABSTRACT PAGE 

In the context of image processing, non-rigid registration is an operation that attempts to align 
two or more images using spatially varying transformations. Non-rigid registration finds 
application in medical image processing to account for the deformations in the soft tissues of 
the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential 
to assist in locating critical brain structures and improve identification of the tumor boundary. 
Robust non-rigid registration methods combine estimation of tissue displacement based on 
image intensities with the spatial regularization using biomechanical models of brain 
deformation. In practice, the use of such registration methods during neurosurgery is 
complicated by a number of issues: construction of the biomechanical model used in the 
registration from the image data, high computational demands of the application, and 
difficulties in assessing the registration results. In this dissertation we develop methods and 
tools that address some of these challenges, and provide components essential for the 
intra-operative application of a previously validated physics-based non-rigid registration 
method. 

First, we study the problem of image-to-mesh conversion, which is required for constructing 
biomechanical model of the brain used during registration. We develop and analyze a number 
of methods suitable for solving this problem, and evaluate them using application-specific 
quantitative metrics. Second, we develop a high-performance implementation of the non-rigid 
registration algorithm and study the use of geographically distributed Grid resources for 
speculative registration computations. Using the high-performance implementation running on 
the remote computing resources we are able to deliver the results of registration within the 
time constraints of the neurosurgery. Finally, we present a method that estimates local 
alignment error between the two images of the same subject. We assess the utility of this 
method using multiple sources of ground truth to evaluate its potential to support speculative 
computations of non-rigid registration. 
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ENABLING TECHNOLOGY FOR NON-RIGID HviAGE 

REGISTRATION DURING Il'viAGE-GUIDED NEUROSURGERY 



Chapter 1 

Introduction 

Cancer is one of the leading causes of death in the United States and around the world. 

According to the American Brain Tumor Association. the expected incidence of brain 

tumors in the US population was estimated at 52.236 new ca:oes in 2008 [16, 43]. Neuro­

surgical resection is a primary treatment of brain tumors [17]. The goal of the resection 

is maximum removal of the tumor tissue with the minimum damage to the surrounding 

healthy tissue. 

Image-guided neurosurgery (IGNS) utilizes pre-operatively acquired medical images 

to improve tumor localization and the precision of tumor resection, and to minimize neg­

ative consequences for the patient. However, intra-operative shifts of the brain structure 

are common during open skull brain surgery. This happens clue to the leakage of cere­

brospinal fluid ( CSF), the injection of medications, brain tissue swelling, etc. There is 

evidence in the literature that such deformation can be in the order of up to 23 nun [64]. 

An illustration of the brain shift phenomenon is given in Figure 1.1. As a result of the 

intra-operative shifts. preoperative imaging data may become invalid in rclatimt to the 
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Figure 1.1: Left: axial slice of a pre-operative MRI showing tumor. Center: intra-operative 
MRI showing brain shift and tumor resection. Right: tetrahedral mesh with the recovered 
deformation. MRI images courtesy of Surgical Planning Laboratory, Brigham and Women's 
Hospital. 

intra-operative brain configuration. 

Recent technological advances attempt to remedy the problem of brain shift by pro-

viding means to track brain deformation. One such technology is the intra-operative 

MRI (iMRI) [116]. Using iMRI during a tumor resection procedure, surgeons can ob-

tain MR imaging data that reveal brain deformations. This can be done with the use of 

open MR scanners, where the surgery is taking place with the patient located inside the 

scanner. Alternatively, the patient can be moved during surgery for iMRI acquisition. 

The primary goal of iMRI is to provide intra-operative imaging to the surgeons, showing 

tumor location and residual tumor volume to the surgeons. This is essential because 

the task of maximum safe tumor resection is complicated by the visual similarities be-

tween healthy and diseased tumor tissue, as well as the proximity of life-critical brain 

structures. 

It was shown that the use of iMRI significantly improves the resection margins [54]. 

In turn, the improved resection margins result in a better prognosis for the patient [105, 

161]. However, one of the remaining problems is the inability of iMRI scanners to fully 
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substitute the pre-operative imaging clue to their limited capabilities as compared to 

closed-bore scanners, and clue to the time constraints in1posecl on the acquisition process. 

Therefore, efforts are underway to develop methods and tools that use il\IRI to deform 

the pre-operative MRI in order to account for intra-operative deformation [74, 166, 53]. 

The process of aligning the corresponding features of two images is known as image 

registration. Non-rigid registration uses spatially varying. non-global transforms, which 

account for local deformations of the imaged object. 

A number of approaches to non-rigid registration have been proposed to date. In 

this dissertation we focus on the specific method developed by Clatz et al. [53], who 

developed a physics-based technique for registering pre-operative l\IRI data to the im-

ages acquired in the open magnet scanner during image-guided neurosurger:v. This 

method combines biomechanical modeling of brain deformation with the estimates of 

deformation displacements from the intra-operative images. The authors evaluated the 

robustness of this method retrospectively using clinical data. The research presented in 

this dissertation enabled prospective application of this method by Archip and collabo-

rators intra-operatively [8, 7]. The feasibility and accuracy of registration was confirmed 

during 11 neurosurgery procedures at Brigham and \Vomen's Hospital in Boston. MA. 

This dissertation presents the development of enabling technology to register im­

ages during image-guided neurosurgery. and includes tools and methods essential for 

completing non-rigid registration within the constraints imposed by the neurosurgical 

procedure. Specifically, wr• developed technology for the registration method presented 

by Clatz et aL a method with the established accuracy and applicability. The objective 

of this work is not the development of an all-inclusive set of technologies required to 
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accomplish this task but rather the development of some of the essential components 

of these technologies. 

1.1 Contributions of this Work 

This work describes a set of both practical and novel methods, and their implemen-

tabons, that are important for the task of non-rigid registration in an intra-operative 

setting. \Vc focus on a registration technique v,rith established accuracy. which was eval­

uated off-line on the retrospective data. Prior to the completion of the work presented 

in this dissertation, the application of this registration technique 'Was not feasible during 

the course of neurosurgery. 

The first component developed m this dissertation is the construction of patient-

specific biornechanical models of the brain from pre-processed 11R imaging data. This 

model is required by the formulation of the registration technique. The studied problem, 

which we define as image-to-mesh conversion, presents new challenges to mesh genera-

tion approaches previously developed for Computer Aided Design (CAD) applications. 

\Ve present and evaluate a number of approaches suitable for this task using both conven-

tional quantitative metrics and the application specific quality measures. The methods 

we develop are based on open source software that facilitates their use in similar <lp­

plications that require construction of tetrahedral meshes from images. Image-to-mesh 

conversion tools are essential to enable non-rigid registration computation. 

Ensuring that the time required for registration computation is compatible with 

neurosurgery time constraints is the second topic studied in this dissertation. vVe develop 

a distributed implementation of the nm1-rigid registration technique. and use distributed 



remote cluster resources connected \Yith the hospital by a high-speed network as the 

platform for the execution of the restructured implementation. As a result, we were clble 

not only to reduce the computation time to under 5 minutes. but also demonstrated that 

it is feasible to deliver remotely computed registration results intra-operatively. 

A well-known difficulty in using complex image processing operations like non-rigid 

registration is in the selection of parameters that result in the best accuracy of the 

method. The optimal parameters may depend on the properties of the input data. 

l\Ioreover, our preliminary studies of the registration parameter space show that differ-

ent parameter combinations may be optimal for minimizing registration error at different 

image locations. When the parameters need to be selected within strict time constraints. 

optimal parameter selection becomes particularly challenging. In this dissertation we 

explore how the power of computational grids can be used to assist in improving reg­

istration accuracy. \Ve present a feasibility study of speculative execution of non-rigid 

registration on a distributed cyberinfrastructure that connects thousands of comput­

ing nodes, freely available for research studies. During speculative execution. non-rigid 

registration is computed simultaneously with different parameter combinations. \Vhile 

non- rigid registration is a computationally challenging task itself, speculative execu-

tion of registration requires special infra:otructure to distribute. monitor and analyze 

the re:oult:o of execution of multiple registration instances. Such infrastructure is needed 

to augment the high-performance implementation of a single regi:otration in:otance. In 

thi:o dise:;ertation we develop a framework for conducting speculative computations 011 

TcraGrid, the research cybcr-infrastructure of the United States [188]. 

For the application of speculative execution. it is essential to develop measure that 
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can determine the success or failure of non-rigid registration. In general. there are no au­

tomatic techniques to accomplish such evaluation for clinical data, because ground truth 

(the true deformation value at an image location) is rarely available intra-operatively. 

Moreover, even retrospective evalufltion of non-rigid registration, when there are no con­

straints on the analysis time, presents significant challenges. Recognizing the difficulty 

of collecting ground truth data, and the spatial variability of the registration accuracy, 

we propose a new technique for calculating the alignment error at a given image location 

based on the definition of Hausdorff distance. 

1. 2 Thesis Structure 

The dissertation is organized as follows: 

• Chapter 2 summarizes background information related to the application of non-

rigid registration, and describes the registration method. 

• Chapter 3 describes the problem of image-to-mesh conversion in general. as well as 

the application-specific requirements imposed by the non-rigid registration method. 

• Chitpter 4 presents the high performance implementation of non-rigid registration. 

and the framework for its speculative execution. 

• Chapter 5 describes the design. methodology and evaluation of this novel approach 

for automated assessment of image alignment. 

• Chapter G summanzes the present research and suggests fnturc work related to 

this clisserta tion. 
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Chapter 2 

Image Registration 

The research presented in this dissertation is motiYated by the specific application of 

registering medical image data for the purposes of image-guided neurosurgery. In this 

Chapter we present the necessary background required to understand the basics of im-

age registration and its context within the clinical application. \Ve also describe the 

specific registration method targeted in this work, with the emphasis on its aspects and 

requirements addressed in the subsequent chapters. 

2.1 Background 

The use of i-.Iagnetic Resonance Imaging (l\IRI) for studying brain tissue has gained 

wide acceptance due to its superior capabilities in imaging soft tissue, absence of ionizing 

radiation and good contrast resolution for soft tissues [134]. 1-.IRI uses powerful magnetic 

field to systematically disrupt the spin of protons in the body, causing them to produce 

rotating magnetic fields. which are detected by the l\IR scanner coils. The strength of 

the signal dcpemls on the physical properties of the tissue, and determines the values 
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of the image intensities derived during image reconstruction. l\IR image acquisition 

is parametrized by dift"ereut pulse sequences, that are optimized for impruvecl contrast 

while imaging different kinds of tissues. Typicall\IRI scans are obtained using so-called 

T1- or T2-weighted sequences. \Vith T1 sequence. tissues that contain more non-bound 

water, like cerebral spinal fluid ( CSF) appear dark and those tissues that contain bound 

water molecules, like fat and brain tissues, are brighter. On the opposite, bright regions 

in the T2 scan correspond to the tissues rich in non-hound water. 

Additional information about brain can be obtained using specialized sequences that 

are gaining more acceptance with the improvements in image acquisition and processing 

technology. Dift"usion Tensor l\IRI (DT-l\IRI) measures the dift"usion of water. which 

can be used to infer the orientation of white matter fibers. Functional i\IRI (fl\IRI) can 

be used to identify the cortex regions responsible for the specific kind of activity by 

spatially measuring blood oxygenation at high temporal resolution while the patient is 

asked to perform certain activities. Preliminary studies [149, 126] showed the value of 

fl\IRI and DT-l\IRI for the neurosurgery. 

The validity of the preoperatively acquired image data is often compromised during 

the course of open skull neurosurgery clue to significant deformation and shift of the 

brain tissue. This deformation is caused in particular by leakage of cerebrospinal fluid. 

injection of medications and swelling. Because of this deformation, the spatial alignment 

of the preoperative data with the in situ configuration of the brain structures is no longer 

accurate, and additional processing is required to recover this correspondence. 

Image registration is the procedure of aligning the corresponding features of two or 

more images. In the context of IGNS. the objective of registration is to align the features 



of the pre-operatively acquired data with the intra-operative image. The pre-operative 

image is therefore called .floating, or moving image, since it will be transformed into the 

coordinate space of the intra-operative image. \\·hich is called target, ji:rerL or reference 

nnage. 

l\Iedical image is essentially a collection of samples of some physical value taken at 

regularly spaced locations within the imaged volume. \Ve will use the notation suggested 

by Hill et al. [106] to introduce the most important related definitions. Image domain 

f2 is defined as: 

where fl lS a bounded continuous set, also known as image field of view, and [ is a 

sampling grid characterized by the anisotropic spacing c; = { c;'r, r:.,·Y, c; 2
}. In the context of 

registration, image spacing is usually different for floating and target images. In the case 

of IGNS, pre-operative image usually has better spatial resolution, while intra-operative 

image is optimized for reduced acquisition time. Value of the sample at the sampling grid 

is a mapping from some physical quantity into a scalar value. Commonly used imaging 

sequences, e.g., Tl weighted imaging, define a mapping A from a point in physical space 

n into IR: 

A : x E f2 ~--; A(x) E R 

A volumetric sample value in a three-dimensional image is represented by image l'Oxel, 

which is defined as a cuboid-shaped Voronoi region of size c; centered at the sample grid 

point. 

The rcsulr of image registration is a mapping T that defines a transformation be-

t\Yecn the coordinate space of the moving image and the coordinatP space of the reference 
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nnage. Given T, the registered image is constructed by resarnplinq the floating image. 

During resampling·, the int('nsity value of each voxel in the coordinate space of fixed im-

age is identified by first locating the corresponding point in the floating image space, ancl 

then interpolating the value of intensity at that point from the values of the neighbor-

ing voxels in the floating image, e.g., using the nearest-neighbor or linear interpolation 

functions. 

Depending on the type of the transformation recovered, modality of the images, 

imaged subject and other criteria. the registration methods can be classified into different 

categories [36, 106]. \Vith respect to the modality of the images that are registered. 

registration can be intra-modal or inter-modal. Intra-modal registration is applied to 

the images that were acquired using the same imaging technique, and usually the same 

pulse sequence, in the case of l\IRI. Inter-modal registration is usually a more difficult 

problem, because different image modalities may not necessarily be capable of shmving 

the same anatomical features. For example. CT is ideal for imaging hone tissue. while 

in l\IRI bones have poor contrast. Image registration finds its applications both in 

aligning imagery of the same patient (intra-subject registration) and different patients 

(inter-subject registration). 

Depending on the type of transformation, registration can be rigid. when the ob­

ject is changing its position under rotation and/or translation. or non-r"ig·id. when the 

transformation varies with the spatial location within the image. Affine transformation 

is similar to rigid, since it ddines a single. global transformation, but in addition to 

translation and rotation it also includes scaling and shear. Affine transformations are 

typically applicable in inter-sn bject registration. 
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Finally, depending on the approach used to derive the transformation. the regis­

tration methods are classified into feature-based and intensity-based techniques. The 

methods in the first group rely on the identification of the same locations in images 

being registered, which can include surfaces or points. The methods from the second 

group are usually more general and robust. because the preliminary step of feature iden-

tification is not necessary. Intensity-based registration methods derive the registration 

transformation iteratively by optimizing certain voxel .similarity measure between the 

images. The choice of the optimum similarity measure depends on the expected rela-

tionship between the intensities of the corresponding regions in the registered images. 

For example, in case of intra-modality registration when the images differ only by noise 

the sum of squared differences (SSD) measure can be sufficient [106. 207]. 

Image registration does not admit general solutions. Typically. registration meth-

ods differ depending on the application, which is defined by the kind of images, and 

the anatomical structures being registered. However. any registration method gener-

ally includes the same building blocks, which are the transform (global or non-rigid), 

interpolation function that allows to evaluate image values at non-voxcl locations, sim-

ilarity measure (or goodness-of-fit function) to assess the quality of alignment, and 

some optimization technique to guide the derivation of the transformation based on the 

goodness-of-fit value [109. 120]. 

Registration of the brain I\IRI data for IGNS is typically a multi-step process, which 

includes both rigid and nou-rigid components. The rigid transformation captures the 

differences in the position of the patient during pre-operative acquisition compared to 

the position dm·ing surgery. Local deformations that happen due to intra-operative 
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brain shift are recovered by non-rigid registration. 

Registration, and especially non-rigid registration, is an inherently ill-posed problem. 

The objective of non-rigid registration is to produce the deformation vector at each voxel 

location of the image. At the same time. this vector has to be derived based only on 

the values of intensity in the reference and floating images [76]. Therefore, the non-rigid 

registration constructs some mapping from lower- to higher-dimensional space, which 

cannot be uniquely defined. .Moreover. assuming that registration should guarantee 

alignment of certain homologous points, the alignment can be achieved \Vith different 

transformations or deformation fields. The important question is therefore hmv to make 

the result of registration realistic. This is usually achieved by utilizing some form of 

smoothing. or regularization of the solution. A number of the registration methods 

that have been developed for brain shift recovery incorporate physical model of brain 

deformation to ensure realistic registration results. \Ve next proceed to the description 

of one such method, that motivates the work in the subsequent chapters. 

2.2 Robust Estimation of Volumetric Deformation 

The research described in this dissertation is targeting technology development for the 

specific non-rigid registr<ttion method developed by Clatz et al. in [53]. This method was 

designed for intra-modality same-subject registration oft he pre-operative high-resolution 

brain I\IRI data with the intra-operative scans acquired in the open magnet 1\IRI. In this 

Section we stmmw.rize the highlights of the registration method and introduce related 

definitions. The high-le,·el diagram of the image processing sreps during registration is 

sho\vn in Figure 2.1. Registration-related processing includes pre- and intra-operative 
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Figure 2.1: Processing steps during non-rigid image registration fur IC:'\S. 

components, with only some steps being time-critical. 

The pre-operative step includes acquisition and pre-processing of the patient data. 

As part of the standard clinical protocols multi-modal :\IRI scans of the patient are 

obtained prior to the surgery for the evaluation and smgery planning purposes. The 

pre-operatively acquired data is analyzed so that the tumor is localized with respect to 

the critical brain structures. The same data can be used i(Jr the pre-processing step of the 

registration. which does not require intra-operative image data. The registration method 

relies on the patient-spet'ifi(' bionwchanicalmoclel of the patient brain, constructed from 

the segmented brain volume, and on the sparse estimation of displacements at selcclccl 
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registration points. The locations of those points correspond to the regions of the image 

which shows significant structure. which can be identified in the intra-operative scans. 

During the day of the surgery in the open l\IRI fa.cility, the patient is placed on the 

operating table, and their head is rigidly fixated in a position that is most convenient for 

the operation. This position will generally be different from the position of the patient's 

head during pre-operative image acquisition. Rigid registration is used to account for 

this difference. and is applied to the pre-operative data to bring it into correspondence 

with the actual patient's position. This processing step is not time-criticaL since there 

is usually a delay of more than an hour between the fixation of the patient's head and 

beginning of the tumor resection. 

The time-critical component related to non-rigid registration is initiated by the ac­

quisition of an l\IR scan showing brain deformation. Once this scan is available, it is 

used together with the results of the pre-operative processing for registration. First. 

the displacement vectors are estimated at the locations of the registration points by 

means of block matching. Kext. the biomechanical model of brain deformation is used 

to iteratively discard outlier measurements from the results of block matching and de­

rive the dense deformation field. Finally, the dense deformation field is applied to the 

pre-operative data for subsequent visualization. 

Next we discuss the processing steps in more detail, following the original presenta-

tion of Clatz et aL [53]. 
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2.2.1 Pre-operative Processing 

The first component of the pre-processing stage is the construction of the tetrahedral dis-

cretization of the brain. The tetrahedral (finite element) discretization is su bsequcntly 

used for numerical solution of the differential equation describing the mechanical behav­

ior of the brain tissue. This task will be studied in more detail in Chapter 3. Here we 

give a brief overview of the approach to tetrahedral model construction described in the 

original paper. 

The voxels that correspond to the intra-cranial cavity (ICC) in the pre-operative 

image are identified by means of semi-automatic segmentation. Image segmentation is 

a fundamental research problem in medical image analysis, and in general no automatic 

methods exist for segmenting an arbitrary structure from the image. Segmentation 

produces a binary image 1\1, where each voxel is marked as inside or outside the ICC: 

M(:T) : A(:r) f----'> {0.1 }. This binary image implicitly describes the ICC. The tetrahedral 

model is then constructed by first recovering the explicit triangulated surface of the ICC 

nsing the l\larching Cubes (l\IC) algorithm [129]. which is next decimated to reduce the 

number of surface triangles. The decimated triangulation of the ICC surface is finally 

used as the input for the Delaunay-based mesh generator GH88D [182], which produces 

the tetrahedral mesh M = (V, T). V is the set of vertices, and T is the set of mesh 

tetrahedra. 

The second component of the initialization prepares the data for sparse estimation 

of the initial deformation. Given the pre-operative image A. this step produces a set 

of points in voxel coordinates f E F. f = (:r. y, z). \Ye will refer to these points as 

Tegistmtion points. Deformation vector will be estimated in the intra-operative part of 
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the algorithm at each of these registration points. The selection of registration points 

is an iterative process itself. Initially, all of the points that correspond to the centers of 

the voxels inside the overlap of the segmented ICC mask iii and tetrahedral mesh }vt 

are included in the list of registration points Finit· Note. that due to surface decimation, 

not all of the mask will be inside the mesh. 

For each registration point f, the mean and variance of the intensity in the voxels 

within the cuboid region of size B = (B7 , By, Bz) centered at the registration point are 

calculated. The points in the Find list are ordered by their corresponding variance. The 

list is traversed starting from the highest variance value. A registration point is selected 

in the list F if the following two constraints are satisfied: (1) the voxel corresponding 

to the registration point is not connected with the voxel corresponding to the already 

selected point, given the specific connectivity definition, and (2) the total number of the 

selected points is below r1IFinit I· Connectivity defines whether the voxels corresponding 

to the selected registration points must not share faces ( 6-connectivity), faces and edges 

(IS-connectivity) or faces, edges and corners (26-connectivity). The parameters used 

during registration points selection and their default values, as suggested by Clatz and 

collaborators, are summarized in Table 2.1. 

Based on the finalized list oft he registration points. normalized structure tensor [14] 

T(f) is calculated using the following definition: 

'\"'f"'+B.c-1 '\"'f"+By-1 '\"'F+Bo-1 [nF(: · k·) DF( · .· J··)T] 
0i=F-B +1 0 -f'l-fl +I 0k-f2 -P +1 v 1: ), · v L ), '· T( f) = r .c )----.. !I -:. h ' 

t ·(""'f· +B.,-1 '\"'fV+Bu-1 '\"'f~-t-B2 -1 [nF( · .' 1.). "nF( · · I.)T]) 
J 0i=F-BT+I 0j=fY-Bu+l0k=fZ-Bz+1 v I,J, 11 g v I . .J, 11 · 

where v F( i. j. k) is the value of gradient at a given registration point: 

'V F(· . . -) _ [F(:t-l.y.:)-F(:r-l,y.z) 
.l . .1/. /~ - (, "[ 

F(:r.y-1.: )-F(.r,y-t- l.z) 
(,y 
.\ 
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Table 2.1: Parameter space for the uon-rigid registration method of Clatz et al. [53]. 

parameter default setting 
Young modulus (E) 694 Po 
Poisson's ratio (r) 0.45 
selected fraction of registration points ( Tl) 107<' 
block connectivity ( bC ann) 26 
search block dimensions (B) 7 x 7 x 7 
search window dimensions (W) 11 x 11 x 25 
search step ( sStep) 1 x 1 x 1 
number of rejection steps (niter) 10 
rejected blocks fraction (r-2) 25c;(, 

energy trade-off (a) trac~(K) 
error model breakup point (,\) 0.5 
CG precision (rcc) 0.001 

T(f) is a second order positive-definite tensor. Eigen-decomposition applied to the 

structure tensor gives the direction of gradient together with the certainty in the gradient 

localization, as defined by the eigenvalues. Structure tensor is used in the subsequent 

formulation to increase the confidence in the deformation estimation. 

Pre-operative image data is acquired in the coordinate space which is generally not 

aligned \Vith the position of the patient during the surgery. As part of the standard 

procedure for image acquisition during IGNS within il\IRI, the initial l\IRI scau is ac-

quired once the patient head is fixed for the operation. Rigid registration is applied to 

the pre-operative data to align the pre-operative data \Yith the patient position in the 

iMRI scanner. 

2.2.2 Intra-operative Processing 

The time-critical component of the registration is initiated with the acquisition of an 

intra-operative MRI showing brain shift. 

The sparse displacement field between the ftoatiug and reference images is estimated 
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with the aid of volumetric block matching [53]. For each registration point f E :F, block 

matching iteratively searches for such a location of the region B centered at this point 

in the floating image (defined as search block) that maximizes the similarity metric with 

respect to the overlapping portion of the search region nr (search window) within the 

reference image. The search for optimum matching block is parametrized by the sizes of 

the block and window regions, and by the voxel similarity metric. Clatz et al. suggest the 

use of Normalized Cross Correlation (NCC) [5:3] as a measure of image block similarity. 

Given the region B F of the floating image centered at a certain registration point and 

the overlapping portion of the search window in the reference image BR. NCC is defined 

as: 

fh· and [3 F correspond to the average intensity values within the block in the reference 

and floating image respectively. 

NCC measure is computed for every possible overlap of the block region with the 

window region, and the location which provides the maximum value of NCC is selected 

as the estimated new position of the registration point in the target image. The numeric 

value, c( f), of NCC for the registration point f is between 0 and 1. and serves as the 

measure of confidence in the estimated displacement. \Ve note the high computational 

complexity of the block matching procedure. Considering the sizes of three-dimensional 

block and windmY are defined in pixels as B = { B1 • By, BJ and VV = {VV1,. lFy, Wz}, 

the bound on the number of operations is 
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The block matching result contains outlier displacements: for some registration 

points the maximum value of NCC will not correspond to the location of the image 

block in the target image. This can happen due to a nmnber of reasons. For example, 

registration point may correspond to the region of the image that does not show snffi­

cient anatomical structure; the anatomical region that appears in the search block may 

not be present in the target image due to resection, and the resulting match is arbi­

trary: target image may be acquired after injection of contrast agent, which will result 

in non-linear changes in intensity values therefore violating the assumptions required for 

validity of the results obtained with NCC. 

In addition to the presence of outliers m the block matching results. there will be 

regions of the image without any estimations of the deformation because the distribution 

of the registration points can be highly non-uniform. Hence, the challenge of registration 

is to minimize the influence of the outliers, and estimate dense brain deformation from 

a sparse and irregular set of displacements. One solution is to formulate the problem 

in terms of energy minimization. Consider the brain in its rest state, without any 

deformation and any forces applied. Displacements at the selected registration points 

provide estimations of brain deformation. The total energy of the system W can be 

defined as the sum of the mechanical and matching energ~r components. Let m = JFI 

(the number of registration points), and n = lVI (the number of mesh vertices). The 

U is the vector of size 3n (three degrees of freedom for each vertex in the mesh) that 

describes displacement of each mesh vertex. D is the vector of size 3m, that contains 

the displacements recovered by block matching. 

A tetrahedron t; E T is defined by the four n:rtices PJ· .J 0, .... 3. J\lesh de-
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formation is described by the displacement vector at each mesh vertex u; = [U]fx 1 = 

(u'f:u7.v.f). Then the displacement vector at any point X= (:r.y.z) E t can be found 

as: 
:3 

u(X) = L hj(X}uj. 
j=O 

where hj(X), j = 0, .... 3 are the linear shape functions [63]. defined as: 

[PO 
P1 p·r 

Tl1 
2 Pf X 

Pb PY y p:Y I) P2 ,; . 
Po pf P2 P3 z . 

1 1 1 1 1 

H is defined as a 3m x 3n matrix that interpolates displacements at the registration 

points from the displacemento; at the mesh vertices. For each combination of mesh 

vertex v; E V and registration point fj E F, there is a 3 x 3 submatrix [HJJ,7:3. Let 

S(v;) bet he set of all tetrahedra in T that are incident on vertex v; E V (i.e .. share this 

vertex). The set of tetrahedra in S is knmvn as the vertex cell comple;r. The submatrix 

[Hf3x 3 is non-zero and is defined as: 
],> 

[H]3 X. :3 = h t . I 
],1 1 

if and only if 3t E T fj E t, t E S(v;) (registration point fj 1s located inside the 

tetrahedron t). 

S is a 3m x 3m block-diagonal matrix that reflects the confidence in the deformation 

estimate recovered by block matching at a given registration point. A 3 x 3 submatrix 

[sl :l X ;3 l . l l l . l . . . . l fi d l J,J \V nc 1 corresponc o; to t 1e Jt 1 reg1stratwn pomt 1s ( c nc as t 1e structure tensor 

T evaluated at that point scaled by the normalized valne of cross-correlation c evaluated 
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during block matching: 

[S] 3 x:l = J.~L(f)T(f) . 
. h'l IFI J J 

Given the definitions of the displacement vectors U and D. interpolation matrix H 

and the weighting matrix S, the matching energy is defined as: 

T 
Wmotching = (HU- D) S(HU- D). 

Minimization of the matching energy vvith respect to U results in such a configuration of 

the mesh that minimizes the error term (IIHU -DII). which is the difference between the 

displacements D recovered by block matching and those interpolated from the displace-

ments at the mesh vertices. The values of the mesh vertex displacements that minimize 

the error term can be found \Vith the Least Squares method [91]. Such formulation is 

termed as irderpola.tion formulation by some sources [53], since with sufficiently dense 

mesh (e.g., when there is a mesh vertex corresponding to each of the registration points) 

the error term can be reduced to zero. 

Although the interpolation formulation minimizes the registration error point-wise, 

the vertices of the mesh that do not contain any registration points do not move, and 

the resulting deformation may not have any physical meaning. 

Physical constraints that approximate brain deformation nnder prescribed load con-

ditions are introduced into the formulation to make the result more realistic. The 

mechanical energy is the energy that is exerted as a result of body deformation: 

T W merhan teal = U KU, 

where K 1s the stiffness matrix that captnrcs the physical properties of the modeled 
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object [63]. J\Iechanical energy is proportional to the amount of deformation, and the 

total energy of the system is: 

T T W = Wrncc!wnical + Wmatchinu = U KU + (HU- D) S(HU- D). 

Therefore. with this updated formulation, the final configuration of the system is the 

state of equilibrium between the internal mechanical and matching forces. The mesh 

vertex displacements at the equilibrium state are found by differentiating with respect 

to U and solving ~if = 0: 

The internal forces of the body resist deformation and the external forces are driving 

the model deformation based on the sparse displacements from block matching. As 

a result. even with the arbitrarily dense mesh discretization, the error term (IIHU -

D II) cannot become zero. Therefore, this formulation is referred to as appro:rirnatiorz 

fonnulation. 

The robust estimation method proposed by Clatz et al. is based on the idea of itera-

tive convergence from the approximation to interpolation formulation. This is achieved 

by introducing a force term F that is updated at each iteration increasing from zero to 

the value which balances the mechanical forces of resistance: 

The iteration scheme is defined as follows: 

F; ¢= KU; 



Algorithm 1 Iterative estimation of brain deformation with outlier rejection. 

Input: F. K, H, S, D, r:2, !liter (sec Table 2.1) 
Output: l\lesh deformation defined by U 

1: F; -¢::: 0 
2: for i = 0 to nitPr do 
:3: F; -¢::: KUi 
4: Ui+l -¢::: [K + HTSH]- 1[HTSD + Fi] 
G: for all fm E :F do 
6: 

7: 

compute error function ~ ( fm) 
end for 
reject r2 IFI points with highest ~(fm) 

nm 
9: for all fm E O(F, i) do 

10: 

11: 

remove the contribution of f171 from HTSH and D 
end for 
Ui+l-¢::: [K + HTSH]- 1[HTSD + Fi] 

1:3: end for 
14: repeat 
13: Fi -¢::: KU; 
16: U;+l-¢::: [K + HTSH]- 1[HTSD + Fi] 
17: until convergence 

The attempt to remove outliers from the block matching data is made by discarding 

those points where the error function exceeds a predefined threshold. The error function 

~ ( fj) for registration point fj is defined as follows: 

The complete algorithm for iterative clefonn<ction estimation is given in Algorithm 1. 

2.3 Requirements 

Non-rigid registration during IGNS is a computation. which can impact life and health 

of the patient. In order to show that a particular algurithm and its implementation 
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can become part of an established clinical workfim\', it undergoes thorough evaluation. 

The objective of the neurosurgery is maximum removal of tumor tissue with minimum 

damage to the healthy structures. The primary goal of non-rigid registration is to assist 

in this task, therefore, the first requirement is to improve identification of the tumor 

margin by providing accurate estimate of the deformation field. Accuracy is the main 

requirement to NRR. 

The outcome of registration must be correct under varying conditions of image acqui-

sition, noise, amount of resection and brain shift. The ability of the method to function 

correctly under different external conditions is known as robustness, and is another es­

sential requirement. Robustness of the algorithm is related to its sensitivity, ·which can 

be defined as the variation in the output of registration as a result of changes to its 

inputs. In addition to the differences introduced by the case-specific details of anatomy, 

tumor size/location, and image acquisition, the result of the registration depends on the 

selection of the registration parameters summarized in Table 2.1. 

Finally, the results of registration in the context of IGNS can only be relevant and 

useful if delivered as requested by the neurosurgeon. Acquisition of the intra-open=ttive 

11RI introduces a significant disruption into the resection procedure. The non-rigid 

registration procedure should add minimum extra wait time to the resection procedure, 

and should be performed within minutes of iMRI acquisition. 

Improving the accuracy. robustness and speed of the described non-rigid registration 

algorithm are the focus ofthis dissertation. In the follovviug chapters we develop methods 

and tools that allow to deliver an implementation of the non-rigid registration method 

to satisfy these critical requirements. 
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Chapter 3 

Mesh Generation 

Study of the dynamic natural phenomena often requires solution of partial differential 

equations. Analytical solutions of differential equations describing the behavior of com-

plex systems is mmally not possible due to complicated geometry and boundary condi-

tions. Instead, an approximate solution is sought. Finite Element Method (FEJ\1) [211] 

is a numerical technique that allows to find such approximate solutions to partial differ-

entia] equations. In particular. FEJ\I is commonly used for solving continuum mechanics 

equations in biomechanicalmodeling [63]. A prerequisite step to application of the FEl\I 

is the approximation of the continuous geometric domain using discrete elements of sim-

ple shapes. The resulting discretization is often called finite element mesh. and the 

process of constructing such mesh is knmvn as m.esh genemtion. 

1\Iost of the research in mesh generation has been stimulated by the applications 

in the domain of Computer Aided Design (CAD). In the traditional formulation of the 

problem that has been adopted by the CAD cornnnmity. the three-dimensional geometric 

domain D C JR(3 is defined ln· its boundary Dn. which consists of surfaces and curves " . 
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m their parametric representation [211]. Sections of the domain surface are defined 

by the so called patches, or faces, which are sections of the parametric surfaces in the 

form of B-splines or NURBS (Non-Uniform B-Splines) [1GO]. Edges of these patches arc 

portions of spline curves. Construction of such parametric representation takes place 

prior to volumetric mesh generation, and is usually done manually using CAD software 

tools. The resulting surface IJ0. usually precisely corresponds to the true boundary of 

the modeled domain. 

Relatively recently, representations of the object boundary with piecewise-linear el­

ements. or facets, started gaining wider acceptance [153]. Such representations can be 

extracted from the previously meshed volumes, when the CAD surface is not available 

any more, or when it is inherently not known. as is the case for most medical data. l\Iost 

of the mesh generation tools currently available accept the triangular faceted surfaces 

as input description of the domain for volumetric mesh generation. 

l\Iost computational schemes V-.'hich use FEl\I require conformal meshes. A mesh 

of a closed bounded domain in three dimensions is conformal when all of the following 

requirements hold: ( 1) the union of all mesh elements is equal to the input domain, 

(2) each of the elements has non-empty interior. (3) the intersection of interiors of any 

two elements is empty, and ( 4) the intersection of any two elements is the empty set, a 

vertex, an edge, or a face [87]. l\Iesh generation met hods can be classified according to 

the type of the simple shape used in discretization. with the tetrahedral and hexahedral 

discretization::; being the most popular ones. Tetrahedral me::;hes are often preferred in 

the modeling applications used in medical research. becau::;c the.v are easier to construct. 

better approximate complicated shapes, and are more appropriate for remcshing [63]. 
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The use of FEJ\I has gained significant popularity in medical applications in the 

recent yecns. In particular. FEl\I was used for electro-magnetical source localization 

in the brain [20.5], modeling irradiation in tumor therapy [155], head collision impact 

simulation [124], tumor growth modeling [136], prediction of human facial shape after 

craniofacial surgery [122], and finally non- rigid FEJ\I image registration [75, 53]. Con­

sequently, there has been increased interest in adapting the traditional approaches and 

developing custom mesh generation methods suitable for these new applications of FEM. 

In general, there arc no patient-specific CAD models of internal organs suitable for 

FEM analysis in medical application::;. The primary source of information about the 

shape and configuration of the given organ is medical imaging, such as MRI. However, 

delineation of the organ within the image is a complex task, and reconstruction of 

the CAD model from such delineation is often not feasible or not practical. The lack 

of precise geometric models and the need to construct volume tessellations from the 

image data is an important limitation, which complicates the usc of existing off-the-

shelf meshing tools. Application-specific requirements to the volume mesh make the 

problem even more challenging. In practice, there is no single widely accepted method 

to address the mesh generation needs of all applications. 

The work presented in this Chapter is primarily motivated by the lack of end-to-

end solutions for constructing tetrahedral meshes from the medical image data. \Ye are 

not the first to address this problem. However, to the best of our knowledge, for the 

first time we propose an end-to-end approach to mesh generation from medical image 

data that has been implemented and distributed as open source software. \Ye present 

this approach together with the amll\·sis of its limitations. and compare it with two 
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existing techniques that are based on traditional meshing toob. \Ve note. that all of the 

approaches we cousider are available for vvider use as open source sofhvare, and have 

been evaluated on the common sets of data in the context of ph~rsics-based non-rigid 

registration. 

In this Chapter \Ve discuss the specifics of mesh generation for the non-rigid registra­

tion method of Clatz et al. [53]. \Ve begin by formulating the problem of constructing 

meshes from the image data. \Ve discuss the generic requirements typical for the appli­

cations of FEM to the problems, where input domain is represented as an image. Next 

we formulate the unique application requirements motivated by the understanding of 

the algorithm discussed in the previous Chapter. \Ve develop a hierarchy of the rele­

vant mesh generation methods from the literature, with the focus on their suitability for 

NRR. 

Based on this discussion. \\·e present three specific approaches to tetrahedral mesh 

generation from medical image data. One of these approaches have been developed 

as part of the research presented in this dissertation. The other two techniques use 

well-established off-the-shelf components. The latter two techniques require special pre-

processiug of the image data. since they have not been designed for the image-to-mesh 

conversion task. Each of the evaluated methods is a representative of a separate group 

of traditional approaches to mesh generation. \Ve develop an evaluation framework and 

discuss specific quantitati,·e metrics to compare the three mesh generation approaches. 

\Ve conclude this Chapter with the qualitative and quantitative comparison of the cm1-

siderecl tetrahedral mesh gcneratiou met hods in the context of the non- rigid registration 

application. 

20 



3.1 Image-to-Mesh Conversion 

As discussed in Section 2.L image A is a mapping of points from the image domain R.:3 

to 1Ft A :X E n ~ A(x). \Vithin the image, there is a tissue, or organ of interest. that 

corresponds to the modeled geometric domain. The objective of mesh generation is to 

construct a discretization of that organ, so that its surface is accurately represented by 

the surface of the discretized model. Obviously, the mapping of sample points provided 

by the image A alone is not sufficient to achieve this task. The minimum extra infor­

mation that is required to construct a finite element discretization is a rule that defines 

which of the image samples are located inside the organ. 

In this research we are mostly concerned with the medical applications that provide 

a segmentation of the object of interest. The output of segmentation is a binary image, 

i.e., A(x) E {0.1}, with the subset {x E DIA(x) = 1} corresponding to the voxels 

located inside the object. Let 2:: be the surface that separates zero and non-zero voxels 

of this binary image. The surface L is defined implicitly, as we only know whether a 

given voxel is inside or outside the object. Based on the inside/ outside assignment of 

the image voxels in relation to the object of interest, we can construct <:Ul approximation 

of the implicit function ¢(x), such that the object surface is defined by the zero level set 

of ¢(:r). {:r : o(x) = 0} [138]. Such approximation can be evaluated by computing the 

signed distance transform on the segmented image. Signed distance transform produces 

distance map image, where the absolute value <tt each voxel defines the distance to the 

closest boundary pixel of the input binary image. The sign of the voxel value is negative 

for the loccltions corresponding to the non-zero voxels in the input image. and positive 

otherwise. A number of algorithrm; for fast computation of Euclidecm distance transform 
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have been proposed [6L 133]. 

The objective of mesh generation for FE~I computations from the binary image data 

is to construct a conforming tetrahedral mesh A1 = (V. T). which satisfies the following 

generic requirements: 

Rl The mesh boundary (surface triangulation) should be close to 2:. 

R2 1vlesh size should be minimized. 

R3 Mesh elements should not have small angles. 

\Ve consider these requirements generic, since they are important for any application 

that uses FEM computations. where the input domain is described as an image. The 

implicit surface 2.: is ahvays an approximation of the true object boundary due to the 

intrinsic error with respect to the true surface. The exact continuous boundary of the 

organ can rarely be obtained because of the limitations imposed by the resolution of the 

image acquisition device, and the difficulties of precise location of the true boundary in 

the image. Instead, the piecewise-continuous boundary is usually estimated from the 

sparse sample of boundary points. The problem of recovering the parametric surface 

from the organized set of samples has been addressed by the computational geometry 

community, and a number of methods have been developed, as we discuss in the next 

Section. In general, imprecisely recovered surface can result in the unrealistic outcome of 

the modeling [129]. Also, in case of the specific registration method we consider. surface 

approximation error is particularly important. High smface approximation error will 

incvita bly lead to the exclusion of the displacement estimations for the registration 

points located outside the bn1in surface. 
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The size of the mesh determines the size of the system of equations that need to be 

solved in the FEJ\I formulation, and therefore the time required for that solution. Loc·all~'· 

the size of the mesh elements determines the hounds on the solution accuracy [211]. 

!3oth the computation time and accuracy of the solution have important implications 

for medical imaging. Therefore, flexibility of a mesh generation method in terms of the 

size of the mesh it produces (number of mesh elements) and the ability to adjust the size 

of the mesh elements locally is important. Local size of the mesh is commonly defined 

by means of a sizing function. Given the specific sizing function and domain description. 

an important property of a mesh generation method is its ability to construct the mesh 

with as few elements as possible while maintaining other requirements. Such property 

is known as mesh si.::e optimality [17G]. 

Finally, generic requirement R3 is important because the small angles in the mesh 

lead to instability of the solution and poor conditioning of the stiffness matrix con­

structed by the FEJ\L Ill-conditioned systems of equations result in slower convergence 

for iterative methods, and may require additional preconditioning [177], which in tum 

increases solution time. 

Development of the mesh generation methods that attempt to meet the three generic 

requirements has been the focus of the mesh generation community for decades. On the 

other hand. the application-specific requirements are usually addressed by constructing a 

customized mesh sizing function, or developing customized mesh generation methods. In 

this paper >ve explore the first approach. Therefore. the ability to accept a user-defined 

sizing function is an essential feature for a mesh generation method to be considered for 

our application. 
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3.2 Application Requirements 

The difficulty of defining the ideal tetrahedral mesh for the targeted non-rigid registra-

tion method is due to the fact that the mesh has a dual role in the formulation. 

First, it is used to model the mechanical component of the energy. The mesh is used 

to construct the stiffness matrix that captures physical properties of the brain. The 

desirable characteristics for this part of the formulation are well-studied in the FEJ\1 

and mesh generation communities [1 77, 211]. 

However, the tetrahedral mesh is also used to regularize, or smooth, the displace-

ments recovered by block matching locally within the mesh vertex neighborhood. This 

neighborhood, or mesh vertex cell complex, shown in Figure 3.1 for a two-dimensional 

mesh. includes all the mesh elements adjacent to the specific vertex. The displacement 

recovered at each of the registration points within the mesh vertex cell complex affects 

the displacement at the corresponding mesh vertex. Therefore. it is important to main-

tain the empirically obtained ratio between the number of mesh vertices and the number 

of registration points under 0.1 (at least 10 registration points per mesh vertex) [53]. 

Ideally, this ratio should be maintained for every mesh vertex. The matrix HTSH has 

a non-zero 3 x 3 entry for each mesh vertex and edge with the cell complexes containing 

registration points. The corresponding sub-matrices can be expressed as the sum over 

the registration points in a cell. The diagonal ~1 x 3 sub-matrix that corresponds to the 

mesh vertex vi can be calculated as the following summation over the registration points 

in the cell complex S of v;: 

T ~ ~ T ') tr(K) . [H SH]i = hv (k)---· c(k)T(k). 
, TIJJ 

VTES(v;) 'lkET 



•v ·. J 

Figure 3.1: ~Iesh vertex cell complex in two dimensions; dic:placemeut at vertex v, approximates 
displacements at the registration points, marked with 'x'. 

Here. h~ ( k) is the barycentric coordinate of the kth registration point with respect to 

v 1 in the containing tetrahedron T, n is the number of mesh vertices, p is the number of 

the registration points, c(k) is the correlation coefficient from block matching. and T(k) 

is the image structure tensor at kth registration point. 

The result of non-rigid registration is a deformation field, which provides mapping 

between the voxels in floating and fixed images. The value of the deformation at a given 

voxel is computed by interpolating the displacements from the mesh vertices after the 

last iteration of the outlier rejection [63]: 

3 

Vx E T: u(x) = L h~ (x)u(vi). 
j=O 

Note that the iterative procedure of outlier rejection described in Chapter 2 requires 

::;olviug the linear system of equations at each iteration ·within the time-critical part of 

the computation. The size of this s.vstem depends on the unrnber of degrees of freedom 
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in the mesh model. 

Bai:iccl on the registration formulation. we derive the follm\·ing appliccltion-specific 

requirements to mesh generation: 

R4 £qui-distribution of the registration points vvith respect to mesh vertex cells. 

R5 I\Iinimization of the approximation error with respect to displacement recovered 

by block matching at registration pointi:i. 

R6 Prevention of tetrahedron inversion during mesh deformation. 

The requirement R4 is critical due to the presence of outlieri:i in the output of block 

matching. If the vertex cell complex that corresponds to a mesh vertex contains small 

but non-zero number of registration points, that vertex becomes sensitive to the outlier 

regii:itration points [52]. Empty vertex cells do not pose such a problem, since their 

deformation will be determined by the neighboring mesh elements. The empirically 

derived ratio of the registration points to the number of verticci:i used by Clatz et al. 

is about 15 matches per vertex [53]. During the process of outlier rejection, non-rigid 

registration discardi:i registration points. Therefore, their distribution will change, and 

the optimal configuration of the mesh may need to be adjui:ited. However, in this research 

we consider only construction of the initial mesh, and not its refinement. 

\Ve introduce the requirement R5 since the same distribution of registration pointi:i 

can be achieved with the elements of different i:iize. As an example. coni:iider the mesh 

and distribution of registration points shown in Figure 3.1. Assuming that there are no 

other registration points in the cells of the vertices located on the cell boundary. their 

locations can clwngc without affecting the assignment of regii:itration points at vertex 
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vi. However, larger elements arc known to increase errors due to insufficient level of 

discretization [211]. Therefore, the meaning of the requirement B5 is to usc the smallest 

possible elements. while maintaining the desired distribution of the registration points. 

Finally, the last requirement R6 coustrains the minimum element size in the mesh. 

Small elements undergoing large deformations are more likely to collapse (element vol­

ume is zero) or invert (element volume is negative). As we discussed in Chapter 2, the 

deformation vectors a.re updated during each iteration of the outlier rejection, and the 

fiual displacemeuts at the mesh vertices are used to interpolate the dense deformation 

field within each tetrahedron. \Yhile the interpolation error does not depend on the 

tetrahedron shape, inversion or collapse of a tetrahedron will result in an unrealistic 

deformation field. e.g., points inside the different tetrahedra can map to the same image 

location. 

The problem of moving meshes has been previousl.v addressed in the literature [20. 

178]. The proposed solutions suggest dynamic remeshing of the domain to prevent inver­

sion of the elements. However, this is not an option in case of registration. Remeshing 

would require modifications to the original registration algorithm. because of the stiff­

ness matrices K, S and H will need to be regenerated. In this work we consider the 

construction of the mesh suitable for registration computations without changing the 

registration algorithm. 

In the next Section we overview the existing approaches to mesh generation, and 

consider their applicability for the nm1-rigid registration method. 
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Figure 3.2: A hierarchy of the studied approacheH to mesh generation. 

3.3 Related Work 

An intrinsic difficulty of generating meshes from the binary image data is the processing 

and recovery of the object geometry. General-purpose mesh generators used in CAD 

applications expect that the object boundary is parametrized, i.e., it is defined by means 

of constructive solid geometry primitives, or explicitly (e.g., through the boundary dis-

cretization. as a collection of patches). Therefore, in order to convert the binary image 

into a tetrahedral mesh, one can either ( 1) recover the surface of the object in such a 

form that is acceptable by the traditional met hods for volumetric meshing, followed by 

a conventional mesh generation process, or (2) use a mesh generation method. ·which 

operates directly on the binary image. \Ve present the taxonomy of the available mesh 

generation categories in Figure 3.2. 

The traditional approaches to tetrahedral mesh generation can be classified into three 

groups: (1) constrained Delamwy. (2) Advancing Front. aud (3) Adaptive Space-Tree 
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meshing. \Vc define the term space-tr-ee as a generalized regular subdivision of space, 

which includes octree and lattice subdivisions, adopting the terminology used previously 

by Bader et al. [18]. \Ve discuss these methods in more detail in the subsequent sec­

tions, and refer the reader to the surve\' by Owen [152] for a detailed description of the 

traditional approaches to mesh generation. 

I\Iost of the practical mesh generation methods used in CAD are capable to construct 

volumetric meshes from faceted representation of the surface. Specifically, watertight 

surface triangulation is a commonly acceptable input for volume mesh generator. Thus, 

methods for constructing triangular approximations of the implicitly defined surfaces L 

are of particular interest in the context of meshing image data. Some of the requirements 

for the recovered triangular surfaces approximating L are the following: ( 1) same topol­

ogy as I:, (2) small (bounded) approximation error with respect to I:, (3) good shape of 

the triangles in the surface discretization, as defined by the triangle aspect ratio, and ( 4) 

minimum number of triangles. The first two requirements are related to the accurate 

representation of the object, while the other two are essential for the quality of elements 

during volume mesh generation. 

A straightforward approach to recover an iso-smface is by means of the Marching 

Cubes (MC) algorithm [129]. However. the original version of this algorithm may pro­

duce a triangulation with topological problems [144]. Another practical concern is the 

inability of the l\IC algorithm to generate adaptive surface triangulations, i.e., the size 

of the surface triangles is about the same independent of the local surface feature size. 

The surface produced by l\IC has ''jagged" artifacts because of voxel sampling, which 

may create subsequent problems with the simulMion [G2. :32]. Surface mesh simplifica-
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tion, or remeshing, is often a necessary post-processing step when MC is used [67, 39]. 

Topological problems of the surface recovered with l\'Iatching Cubes have been addressed 

in the recently proposed modifications of the original MC method [144]. Although sur-

face triangulations constructed with the MC method have a number of problems, wide 

availability of its implementations as well as its speed made MC the method of choice 

for surface reconstruction in a number of studies, e.g., see [53, 38]. 

Figure 3.3: Left: Voxel surface extracted from a binary image. Right: Triangulated surface 
approximating the isosurface of the mask as recovered by :rvfarching Cubes algorithm. 

Triangular surface representation can also be recovered by more advanced techniques, 

which provide theoretical guarantees about the recovered surface. Since the seminal 

work of Amenta and Bern [6], a number of algorithms have been proposed for solving the 

problem of robust surface reconstruction from sparse point sample [123, 66, 31]. In order 

to provide theoretical guarantees, such methods expect that the sample is sufficiently 

dense. The definition of sufficient density is related to the surface feature size. Most of 

the available methods rely on the refinement of restricted Delaunay triangulation that 

approximates the surface represented by the finite set of sample points. A number of 

methods have been presented that ensure topological and geometric closeness of the 

recovered surface to the surface represented by the sample. The methods that have 

been developed to date differ in their performance, robustness to noise and theoretical 
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guarantees. Some of the methods have been implemented in publicly available packages. 

In particular, Dellso package by the group of Tarnal Dey implements the isosurface 

meshing algorithm described in [66], and CGAL contains the implementation of the 

method by Boissonnat and Oudot [31]. 

Recently. a number of methods have been proposed that build volumetric mesh 

directly from the implicit representation of the surface [35, 125, 150]. These methods 

deserve a separate category in the clas::;ification, because they do not require simplicial 

surface representation, but at the same time their use is not restricted to the case of 

meshing image data. An approximation of the implicit function describing the object 

is easy to obtain from a binary image. Therefore, methods based on meshing implicit 

surfaces are directly applicable to meshing image data . .i\Iolino et al. [35] suggested the 

use of body centric cubic lattice vv.ith subsequent adaptive refinement and aclju::;tment 

of the vertices to fit the zero level set of the implicit function. Oudot et al. [150] 

proposed a Delaunay me::;hing approach that combines surface recovery with volume 

tessellation and refinement. Recently, Labelle and Shewchuk [125] proposed a lattice­

based method that operates on implicitly-defined surfaces and generates meshes with the 

theoretical guarantees on the minimum dihedral angle. None of these methods has been 

implemented and made available for evaluation . .i\Ieshing volumes bounded by implicit 

surfaces as the research area i::; still in its early stages with the few practical results 

available. A notable exception is the method developed by Persson and Strang [158] 

for meshing implicit surfaces, which is accompanied by a .i\IATLAB implementation. 

However. thi::; technique relies on the Delaunay refinement, which in three dimensions 

is known to be susceptible to generate sliver elements (nearl~· fiat tetrahedra with the 
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volume close to zero). In order to be practicaL methods that use Delaunay refinement 

methods must be accompanied by some sliver elimination procedures. 

Overall, most of the methods used to construct finite clement meshes rely on recm·ery 

of the triangular surface follmw~d by volumetric meshing. A representative processing 

pipeline was described by Cebral and Lohner [4L 40]. The authors apply different levels 

of smoothing and improvement of surface mesh prior to the application of the Advancing 

Front method. 

vVhile surface recovery followed by conventional mesh generation is an effective way of 

constructing meshes from medical images, a number of direct approaches were proposed. 

The methods which operate on images rather than on the parametrized boundaries can 

be further separated into the following two categories, as shown in Figure 3.2. 

The methods from the first category do not require segmentation and create meshes 

from the multi-value image data [88. 208]. The assumption made in such methods 

is that the pixels that correspond to the same tissue have similar intensity, and the 

object boundary can be defined \\·ith sufficient accuracy by some isosurface value. Given 

this as:,;umption. these methods attempt to minimize the error of approximating the 

isosurface, while maintaining good quality of the mesh tetrahedra. Such approach to 

mesh generation is practical for volume rendering and certain FEM applications. It can 

also be acceptable when the organ is easily detectable by intensity thresholding. e.g .. this 

is the case for bone segmentation from CT image data. However, brain segmentation 

from 1-.IRI if:> a challeuging problem in image segmentation and can not be sol vecl by 

thresholding onl:v [55, 207]. Tissues that do not belong to the brain may have similar 

iutensity patterns to the intensity of the brain ti::;sue. Direct isosurface-based meshing of 
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the brain volume from the rnultivalued image may lead to large errors in the recovered 

surface of the object. Due to this reason mesh generation methods that operate on 

isosurface extracted from a grayscale image are not suitable for meshing brain volume 

from unsegmented l\IRI. 

The second category of the image-based mesh generation methods operate on binary 

images, produced by speciali7:ed image segmentation algorithms. Among the methods 

in this category we separate three groups. 

The methods in the first group construct the volumetric mesh with the surface that 

approximates the boundary of the segmented object at the level of voxel resolution [4L 

102, 193]. Therefore, we define those techniques as uoxel-based meshing. l\Iore than a 

decade ago, Frey et al. [88] introduced one of the first techniques for voxel-based meshing. 

Frey et al. proposed to construct tetrahedral tessellation of the voxeli7:ed volume by 

subdividing each individual voxel in a consistent manner to avoid hanging mesh nodes. 

Consequently. the resnlting tetrahedral meshes has the number of tetrahedra in the same 

order as the number of voxels in the input data without the flexibility to control the size of 

the mesh. Hartmann and Kruggel [122] propose an approach that is based on hierarchical 

subdivision of the labeled voxel volume, with larger tetrahedra corresponding to the 

areas distant from the surface. Archip et al. [10] describe a technique that is based on 

Delaunay triangulation of the points corresponding to the centers of surface voxels from 

the segmented images. The resulting mesh is a convex hull of the input domain, which 

is subsequently adapted to achieve surface conforming tessellation by culling the outside 

mesh elements. 

The main concern in using voxel-basecl meshes is the inability to control the overall 
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mesh size as well as local size of the mesh elements. The sizes of surface triangles in 

the meshes con::;tructed using this approach arc comparable \Vith the size of voxels, i.e., 

the surface triangulation is not adaptive. The use of such techniques is problematic for 

time-critical applications, because the control over the element size is limited due to the 

fixed high resolution of the surface discretization. 

A large number of methods that are based on space-tree decompositions have been 

proposed recently for meshing binary images. The advantage of these techniques over 

voxel-based meshing methods is in the ability to control the number of of the mesh 

elements. Conceptually, the approa.ches based on adaptive space-trees have a long his­

tory in traditional mesh generation. Yerry and Shephard [206] were some of the first to 

present an octree-based approach to 3-d mesh generation. T\Iitchell and Vavasis [135] de­

scribe a quadtree-based algorithm with theoretical bounds on the mesh size. These ideas 

have been adopted to construct tetrahedral meshes from binary images [74, 137, 72, 192]. 

Such methods recover the surface by finding the points of intersection of the adaptive 

space-tree with the surface of the object defined as a binary image. l'vlesh quality near the 

surface can be compromised, as the newly inserted mesh nodes can be arbitrarily close to 

the existing nodes. T\Iesh optimization [85] is commonly used as a post-processing step. 

In practice, the met hods from this group are well-suited for meshing binary images. and 

were shown to be quite effective for a number of medical applications. Some of these 

methods were designed and evaluated on the segmented bra.in MRI data [74, 137, 72]. 

Unfortunately, few of the published methods for image-to-mesh conversion are ac:c:om­

paniecl by their implementations. In addition. ::;uch met hods are usually not eYaluated 

in the context of their ability to build the mesh follo,Ying the predefined sizing function. 

43 



The methods based on surface matching usc a template volume mesh, which is 

warped to match the surface of the modeled object [38. 19]. \Vhile the advantages of 

this approach are good surface fidelity. control owr the mesh size, and high speed. the 

quality of the elements undergoing deformation during warping can be compromised. 

Mesh optimization is a commonly used post-processing step for the methods in this 

group. This concept is most suitable for meshing objects that have similar geometries. 

The geometry of the intra-cranial cavity (ICC) is quite similar between different subjects. 

However, the mesh element si:6ing depends on criteria R4-6, which are patient-specific. 

Therefore, it is not feasible to construct a single template mesh for our application to 

satisfy patient-dependent point distributions. 

OveralL we observe that a great variety of methods for tetrahedral meshing of binary 

images have been developed. l\Iost of these methods were proposed and evaluated in the 

context of their fitness to a specific application. Little or no attention is usually paid 

to the comparison of the newly proposed techniques with the existing methods, and 

few implementations are available to conduct such an evaluation for a new application. 

Also, most of the effort is usually directed to developing a method that delivers good 

practical results, and not on establishing theoretical guarantees about the produced 

meshes. The lack of such guarantees makes it even more difficult to select the most 

appropriate algorithm from the range of seemingly similar methods. 

Given the considered NRR algorithm, \Ve derived the requirements to mesh gener-

ation, see Section 3.1. These requirements can now be used to customize and evaluate 

readily available, established methods to address the problem of mesh generation for 

the :'-JRR application. The results of such evaluation can be used next to identify prob-



lems within the existing approaches and justif:v the development of new mesh generation 

met hods for this application. However. before such an investment is justified, the pos­

sibility of using existing off-the-shelf tools must be carefully examined. 

3.4 Open Source Mesh Generation Tools 

3.4.1 Piecewise-Linear Surface Recovery 

Traditionally used methods and tools for tetrahedral mesh generation operate on para-

metric or faceted representations of the domain surface. In order to leverage these 

classical approaches to mesh generation for image-to-mesh conversion, the faceted sur­

face representation needs to be recovered as a first step of processing. Due to reasons 

discussed earlier, simple approaches, like l\Iarching Cubes. are not suitable for solving 

this problem. 

In general. the piecewise-linear triangulation of a surface should have the following 

desirable characteristics [ 66]: 

1. Topology: the recovered surface should be homeomorphic to the original surface. 

In simple terms, if t\VO shapes are homeomorphic, they can be transformed one 

into another by means of continuous bending and stretching [203] (e.g .. the shape 

of a donut is homeomorphic to the shape of a one-handled cup, but not to the 

shape of a pretzel or a ball). 

2. Accuracy: the approximated surface should be sufficiently close to the original 

snrfacc. l\Iost common measures of the surface approximation accuracy arc based 

on Hausdor:ff distance and angle between uormab uf the surface and its approxi-



... 

Figure 3.4: Approximation (solid liue) of the true surface (dotted line) with high (left) and low 
(right) error of normal approximation [147]. 

mation. Let X be the set including all points on the original surface, Y - the set 

of points on the approximated surface, and d(:r:, y) -the distance betVI'een points 

:T and :y. Then 

dH(X, Y) = max{ma~ min d(.1·, y), max mil! d(:c, y)} 
xEX yEY yEY :rEX 

IS the Hausdorff distance between X and Y. As we show in Figure 3.4, good 

approximation error defined with the Hausdorff distance may not be sufficient, 

depending on the specific application. As an example, smooth surfaces that closely 

approximate true surface normals are important in surface rendering applications. 

3. Quality: triangles of the approximated surface should have good quality, as mea-

sured by minimum angle. In generaL skinny triangles with angles approaching oo 

are not desirable. 

4. Optimality: the number of triangles in the approximated surface should be mini-

mized for the given approximation accuracy. 

In this work we used the implicit surface meshing approach proposed by Ondot 

et aL [31] to approximate the surface of the segmented binary mask. This method 

is available in the public domain <"lS implemented in CGAL Computational Geometry 

Algorithms Librar~· [ 42]. K ext we int rod nee some basic clcfini tions from the field of 
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computational geometry. and give a brief description of the surface meshing algorithm 

we used. 

The idea of the method takes its ongm from the notion of r-sample. which was 

introduced by Amenta and Bern [6]. Following the notation by Oudot et al. [:31]. r­

sample E of a surface S is a set of points that is sufficiently dense with respect to the 

distance to the medial axis of 5. The property of r-sample is that no point p on S is 

farther away from E than the value of local feature size at that point r · LF S (p). In three 

dimensions, medial axis is defined as a locus of the centers of spheres that are tangent to 

the surface S in two or more points, e.g., this is a set of point that are equidistant from 

at least two points on the surface. Given the definition of the medial axis, the Local 

Feature Size at point p, LFS(p), is defined a.s the distance top from the nearest point 

of the medial axis [6]. 

Delaunay triangulation (or tetrahedralization, in three dimensions) is such a triml­

gulation of points that no point is contained in the circumsphere of any of its tetrahedra. 

The key result achieved by Amenta and Bern [6] was that with the sufficiently small 

values of r, the Delaunay triangulation of E contains a piecewise-linear surface T, which 

has a number of desirable properties relating it to S [31]: 

• T is homeomorphic to S. 

• the error between the normal of each facet in the piecewise-linear surface T and 

the normals at the facet points, which belong to 5. is bounded by O(r). 

• the Hausdorff distance between T and Sis O(r2
). 

In practice. the use of the r-sample notion is not trivial. since it is clifficnlt to cou-
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struct, and for a given sample of surface points, it is hard to check whether the sample 

satisfies the requirements of an r-sample. Ouclot et al. [::n] int rocluced the definition 

of loose f-sample. Given loose E-sample E, the authors shmv that restricted Delannay 

triangulation of E is a good approximation of 8 in topological and geometric sense. 

l\1oreover. they present an algorithm, that allows to construct such a sample of points 

and the corresponding triangulation for a surface defined by an oracle. Given any line 

segment, this oracle should return the points of its intersection with the original surface 

8. The algorithm is guaranteed to terminate, and allows to specify the bound on the 

triangle angle in the output triangulation to avoid skinny facets. 

The definition of the original surface by means of oracle is quite convenient while 

meshing iso-surfaces in images. Given a distance map constructed from the binary 

image, for any line segment we can approximate the intersection point of this segment 

with the zero level set by iteratively bisecting the segment and evaluating the distance 

value at the bisection point until some tolerance is reached. 

The piecewise-linear surface that can be constructed by using the technique by Oudot 

et al. can be used to define the input domain for the established mesh generation tools 

\Ve present next. 

The advantages of using the discussed method for implicit surface triangulation are: 

• Strong theoretical guarantees provided by the algorithm. 

• Robust open source implementation, which is easy to adjust to work directly with 

the binary image data. 

• \Yell-docunwntccl and maintained code base. with the improvements introduced 
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regularly. 

• High performance of the code, \Vith the surface meshes of typical bn1in ICC gen-

crated within seconds. 

Still, there are problems one has to face while using this approach. First, surface mesh 

generation is separated from volume mesh construction. Second, the implementation is 

not flexible to provide control over surface mesh sizing, which may create difficulties in 

adjusting to user-defined element size distribution during volume meshing. 

3.4.2 Delaunay Meshing 

Triangulation of a point set in three dimensions defines such a subdivision of the convex 

hull enclosing these points into tetrahedra that the intersection of any two tetrahedra 

is either empty or contains a common face, and the set of the vertices of all the tetra­

hedra coincide with the input point set. Delaunay triangulation is a specific type of 

triangulation. which satisfies the Delaunay criterion: the circumsphere of each edge, 

face and tetrahedron in three dimensions is empty. Delaunay refinement is a procedure 

of inserting new points into an existing triangulation in such a way that the Delaunay 

criterion is maintained [93]. It was shown. that insertion of the new points, \vhich are 

called Steiner points. during Delaunay refinement at certain well-defined locations re­

sults in introducing mesh elements of improved aspect ratio. The traditional Delaunay 

refinement algorithms insert Steiner points at the center of the circumsphere of the ill­

shaped element [176]. Some of the recently introduced modifications to the insertion 

procedure use alternative strategies to provide more flexibility in the mesh refinement 

process [c!G. 194]. 
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J\Iesh refinement is a procedure of mesh adaptation that is cornrnonly required in 

numerical solution schemes to adjust the mesh <lccorcling to the o. posteriori error es-

timation. The reason \\'hy Dclaunay refinement has been attracting so much attention 

in the mesh generation community is that the mesh produced by Delauna~· refinement 

enjoys a number of useful theoretical properties. Specifically, the circumraclius to short-

est edge ratio can be bounded. In tvvo dimensions this corresponds to the bounds on 

the minimum angle, preventing the numerical problems that can be caused by nearly 

fiat elements [177]. Dclaunay meshes are also known to be size-optimal, and the process 

of refinement is guaranteed to terminate [176]. Yet another desirable property of the 

Delaunay refinement is in its amenability to execution in parallel [4 7]. which is essential 

for memory-limited and time critical mesh refinement applications. 

In three dimensions, Delaunay refinement does not guarantee bounds on the mini-

mum dihedral angle. l\Iost of the ill-shaped elements shown in Figure 3.5 can be elim-

inatecl by Dclaunay refinement, but not sliYers. Extreme values of dihedral angles in 

tetrahedral elements lead to high gradient interpolation errors and poor conditioning of 

the stiffness matrix, which can affect the solution accuracy and corwergence of iterative 

solvers [177]. 

The specific type of Delaunay triangulation that is of practical interest for FEl\I 

applications is Constrained Delaunay Triangulation (CTD). Unlike pure Delaunay tri­

angulation. CDT preserves object boundaries. maintaining the surface approximation 

accuracy. Existing CDT algorithms have limitations on minimum dihedral angle in the 

object boundary and require its piecewise-linear or panunetric definition [4G, 175, 44]. 

\Ve nse a specific algorithm and implementation of constrained Delmma)' triangu-
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Figure 3.5: Good- (a) and ill-shaped (b-f) tetrahedra [25]. 

lation and refinement in three dimensions proposed by Si [179]. Compared to other 

existing Delaunay refinement methods, this algorithm presents a nmnber of practical 

innovations. First, it does not impose restrictions on the minimum input angle at the 

expense of the guarantees provided. Second, the method has been designed specifically 

to allow the use of background mesh, which governs the insertion of ne\Y mesh points. 

Finally, it includes post-processing step that attempts to eliminate slivers that could be 

introduced in the mesh during refinement. 

The algorithm has been implemented by Hang Si in the TeiGen software [180], which 

we evaluate in the subsequent sections. The implementation of Delaunay refinement in 

Teigen provides significant fiexibili ty in controlling mesh size, \vhich is important for 

realistic modeling applications. J\Iesh size can be adjusted spatially by constructing 

application-specific sizing function. The total number of mesh elements can be con-

trolled in a number of vvays. First. the method allows to specify 0: parameters that 

essentially impose limits on the maximum density of the mesh Yertices locally. Second, 
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the algorithm allows to bound the maximum volume of the tetrahedron. Therefore, it 

is po::;sible to control tetrahedron volume even without specifying the background mesh. 

3.4.3 Advancing Front Meshing 

Advancing Front Technique (AFT) is a mesh generation heuristic which builds mesh 

iteratively starting from the triangulated boundary of the domain [128, 13L 164]. The 

placement of ne,vly inserted points is optimized with respect to the existing mesh ele­

ments to improve the quality of the new clements. The task of optimum point placement 

can become particularly difficult when the meshing fronts advancing from the opposite 

boundaries are close to each other. In such cases, AFT may revert to discarding parts 

of the previously generated mesh layers to resolve the confiict, resulting in possible 

difficulties reaching termination of the meshing process. 

AFT cannot directly construct volumetric discretization of a domain defined by 

parametrized surface patches. In the cases when only the parametric surface definition 

is available, surface triangulation must he constructed prior to volume meshing. Quality 

of meshes produced by AFT depends on the surface mesh quality. \Vhile AFT docs not 

give any guarantees about the final mesh, in practice this method has been shown 

effective for a number of engineering applications. This is explained in part by the 

lack of bounds provided by the Delaunay methods on the minimum dihedral angle in 

three dimensions. In practice, AFT methods may deliver meshes with better angle 

distribution and fewer elements compared to Delaunay refinement methods. The reason 

is that while the Delaunay refinement produces meshes of optimal size, the constant 

involved in the theoretical bound may be too large for practical applications. The AFT 
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approach does not introduce any new points on the surface which makes it perfect 

for parallelization with splitting the original object domain in multiple snbdomains. 

Howe veL the same property makes the met hod inherently inftexi hlc in constmcting 

meshes with user-defined sizing. Surface triangulation must be constructed with this 

sizing distribution taken into account. 

The NETGEN approach proposed by Shoberl in [173] is a representative algorithm 

from the broader class of the advancing front methods. Unlike the Delaunay-basecl 

Tetgen implementation we considered in the previous Section, this mesh generation 

tool is flexible in the definition of the domain boundary. Both the triangulated surface 

mesh and parametric surface representation are acceptable inputs. The difference in 

processing is that the surface defined parametrically will be triangulated by NETGEN 

as part of pre-processing. The major distinction of NETGEN from the similar AFT 

techniques is in the attempt to generalize the rules used to construct new elements. 

and define them in such a way that the same rules can be applied for two-dimensional 

meshing, three-dimensional surface and volume meshing. 

The algorithm implemented in NETGEN organizes the construction of the mesh by 

maintaining the vector of the current boundary elements ordered by their quality and 

distance to the original domain boundary [173]. Point insertion is governed by the ab­

stract rules that define the location of the new point depending on the configuration of 

the boundary element and its so called em1ir-onment. which encloses the neighboring ele-

ments. Rules in two dimensions generate one point at a time, or connect existing points 

in the mesh. These rules are directly applicable both for constructing two-dimensional 

planar or surface triangulations. Similarly to Teigen, NETCEN provides control over 



the size of the elements in the mesh. This can be done by specifying mesh sizing at the 

defined points and controlling the maximum edge bound. The source code of NETGEN 

tool is publicly available [143]. 

3.4.4 Lattice-Based Meshing 

As an alternative to using the traditional methods that require faceted surface approx-

imation, we developed a novel tool that constructs tetrahedral mesh directly from the 

binary image describing the domain. The mesh generator is based on the approach 

presented by I\Iolino et al. [34, 138]. This meshing method was originally developed for 

simulating large scale deformations. \Ve adopt this approach for a different application 

of meshing binary images, and develop it:o customized implementation. 

The approach we develop can be classified as space-tree based mesh generatiou tech-

nique. The advantage of this method over other space-tree approaches is in the choice of 

the lattice: instead of using adaptive octrcc, as in [7 4. 136, 26]: body-centric cubic lat­

tice (BCC) is used for the construction of the initial domain discretization. This lattice 

results in significantly better quality of the initial tetrahedral tessellation. has Delaunay 

properties and consists of tetrahedra which differ from the equilateral tetrahedron as 

little as possible with regular space tiling [90]. 

Another useful feature of the considered technique is that it does not require trian-

gular mesh of the domain boundary. Instead, the object is represented by a function, 

absolute \"alue of which give::; the distance to the object surface for any point in space. 

The distance value is negative, if the point is located inside the object volume. and 

positive otherwise. 
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Next we summarize the processing steps of the developed mesh generation method. 

Step 1: BCC generation The coarse BCC lattice is constructed to completely 

cover the binary mask. The BCC initialization is done by overlapping two cubic lattices, 

with the vertices of the second lattice being the centers of the cubes in the first lattice. 

The BCC is constructed by introducing a new set of diagonal edges that connect each 

vertex in the first lattice with the vertices of the containing cube in the second lattice. 

Each tetrahedron contains two vertices from each of the lattices, Yvhere the same-lattice 

vertices are connected with the lattice-orthogonal edges, and vertices from the different 

lattices are connected with the diagonal edges. 

The size of the lattice is controlled by the spacing of the initial Cartesian grid used 

in cubic lattice construction. The lattice tetrahedra arc all identical up to translation 

and rotation, and satisfy the Delaunay property. A tetrahedron is discarded if all four 

of its vertices are located outside the meshed mask. 

Step 2: BCC red refinement The lattice is refined following the application­

defined criteria. The elements which are selected for subdivision (e.g., those which cross 

the object surface) are subdivided following the 1:8 rule (see Figure 3.6). Each of the 

edges of the tetrahedron arc split by the mid-point, and eight ne\\' children tetrahedra arc 

formed from the initial tetrahedron (parent) following the template. We use the shortest 

inner diagonal during the subdivision, therefore the subdivision pattern is stable [138], 

i.e., subsequent Ted subdivisions of the children tetrahedra will not lead to diminishing 

quality. 

Conformity of the mesh surface to the surface of the segmented mask is enforced by 

subdividing the tetrahedra that have vertices located both inside and outside the binary 



Figure 3.6: Subdivision templates used in RGAf mesh construction: red (leftmost) and three 
green templates. 

mask. The tetrahedra obtained by red subdivision that have all four vertices outside 

the binary mask are discarded. 

Step 3: BCC green refinement Following the Ted refinement, the tetrahedra 

which share the red-split edges, but \Vere not subdivided, \vill contain hanging nodes. 

Hanging nodes are the vertices introduced at the midpoint of an edge in one element, but 

are not valid tetrahedron vertices at those elements [211]. The mesh which contains such 

hanging nodes is not conforming, and introduces complications during FE1I solution. 

Generally. non-conforming meshes are not desirable, therefore we perform additional 

refinement in order to eliminate hanging nodes from the mesh using the green subdivision 

templates. The set of templates is shown in Figure 3.6. If the split edge configuration 

does not correspond to either one of the existing templates, all of the edges are split, 

and the red subdivision template is applied. 

Application of the red refinement template during the green refinement stage results 

m the new hanging nodes introduced into the mesh. Therefore. multiple iterations of 

Ted and green refinement may be required. 

Steps 2 and 3 (Ted-green refinement) are repeated until the applic<:~tion-defined mesh 

resolution is achieYecl. It is important to keep the mesh quality bounded. This is why 

during the iterntive refinement only the clements produced as a result of red subdivision 

56 



can be subdivided. In case an edge has to be split for a green element. the whole group 

of grnm siblings is substitnted with their parent. which is then red-refined. 

Step 4: Candidate mesh selection This step of the algorithm prepares the mesh 

for the final processing stage. Once again. the clements which are located completely 

outside the object surface set are discarded. Next, a set of tetrahedra is selected, such 

that for each edge of a tetrahedron in the set at least 50% of the edge is located within 

the object volume. The vertices of those tetrahedra form the set of enveloped vertices. 

The mesh elements which do not include at least one of the enveloped vertices are then 

discarded. This heuristic proved to work well in practice to improve the final mesh 

quality. At this point, the mesh topology is finalized. The mesh elements are identical 

up to scaling, translation and rotation to one of the element configurations formed by 

red-green subdivision, i.e., the candidate mesh has guaranteed quality. 

Step 5: Surface boundary compression The candidate mesh roughly approxi-

mates the object surface, but the surface vertices are not aligned with the object bound-

ar_'.·. The goal of mesh boundary alignment, or compression, is to improve the boundary 

match 1. A straightforward approach would be to project the candidate mesh surface 

vertices to the surface of segmentation mask. It is possible that some tetrahedra may 

collapse as a result of such operation. and create an invalid mesh. The quality of the 

mesh following boundary compression may also be compromised with arbitrarily small 

dihedral angles. Therefore. more elaborate method should be applied. 

Instead of snapping the boundary vertices to the surface, the nodes are iterati\·cl.\· 

moved towards the segmentation :-mrface guided by the distance map. In order to avoid 

1 Here. boundary cmnpn:ssion should nut he confn~Pd with compression for reduction in si~e, as in 
data comprPssion. \VP usl' the terminologv follm,·ing thP original description of the techniquP in ;1:181 
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drastic element flipping and quick deterioration of element quality. the following heuristic 

is used. A displacement vector is defined for each surface vertex at each iteration of 

boundary compression. The surface node displacement vector direction is defined by 

the verte:J: normoJ, i.e .. the averaged normals of the faces incident on a particular mesh 

surface node. The displacement vector is scaled by the distance to the zero level set of 

the distance map. During the first 10 boundary compression iterations the vertices are 

moved by 20% of the distance to the surface, and during the subsequent iterations the 

displacement vector is scaled by the full distance value. 

Surface compression inevitably leads to deformation of the mesh elements near the 

surface. Two methods have been implemented to improve the volume mesh quality. The 

first technique is physics-based. It models deformation of the candidate mesh using the 

linear elastic material model [211]. The reader is referred to [7 4. 166] for the formulation 

details. In summary, we use candidate mesh discretization <:l.c'i the modeL and prescribe 

the boundary forces acting on the surface vertices based on the distance to the seg­

mentation surface. The deformation of the linear elastic body calculates the positions 

of the model vertices given the boundary forces. These positions are calculated as the 

solution for linear system of equations F = }( x, where F is the vector or forces, x is the 

displacement vector, and J( is the stiffness matrix calculated based on the mesh and the 

prc:scri bed material properties [211]. 

Au alternative approach which we implemented applies local mesh smoothing and 

optimization to the mesh after each surface compression iteration. The implementation 

has been integrated with both GRUl\E\iP [148] and l\Iesquite [:33] mesh optimization 

packages. After each boundary compression iteration, the locations of the mesh vertices 
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Figure 3. 7: Processing steps of the RG.\1 mesh generator. Left: initial BCC lattice. Center: 
tetrahedral mesh surface after discarding out::;icle dements. Right: surface of the mesh with the 
adjusted vertex locations. 

are updated to improve the shape of the mesh elements (in case of GRUMl\IP, the 

element connectivity can also be automatically modified if this results in mesh quality 

improvement). \\re present the mesh at different stages of processing in Figure 3.7. 

The rest of the document uses the following notation and abbreviations: Red-Green 

1\,Iesher (RGl'vf) for the implemented mesh generation technique, RGMp for RGl'vf with 

physics-based compression. and R G .M o for optimization-based candidate mesh boundary 

compressiOn. 

We have implemented the presented method as two templated classes which use the 

Insight Toolkit (ITK) [120, 109] design patterns. These classes are nuw part of NAMIC 

SandBox [141]. 

The implementation expects the segmented binary voxel mask as input. The first 

of the classes, BinaryMaskTo3DAdaptiveMeshFilter, implements Steps 1 through 4 de-

scribed above. l\Iesh generation and refinement is guided by the signed discrete distance 

transform of the input binE1ry mask. The signed distance transform assigns integer val-

ued Euclidean distance to the closest boundar~· voxel for each input voxel. An example 

of distance transform calculation for a small image in two dimensions is shown in Fig-

ure 3.8. The distance value is negatin' for the voxcb locc1ted in:-;ide the object \"olumc. 
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Figure 3.8: Signed distance transform example. Grayed square:-; correspond to the pixels inside 
the object, and the distance map contains the distance to the binary object boundary. 

and positive otherwise. The distance value at a specific point in space is calculated by 

linear interpolation from the neighboring voxels. 

The core of the first of the implemented classes is the data structure that maintains 

mesh connectivity. The Vertex field contains vertex coordinates. Vertices are shared and 

referenced by pointers in the referencing edge and tetrahedron data structures. The Edge 

keeps pointers to the two endpoints, and the pointer to the midpoint, which is initialized 

when the edge is subdivided. Each edge also keeps a list of pointers to all adjaceut 

tetrahedra. The structured nature of the refined lattice limits the maximum number 

of tetrahedra which can share a particular edge, thus the time required to traverse all 

tetrahedra neighbors is bounded by a constant. The Tetra (tetrahedron) data structure 

keeps pointers to the six edges, the type of subdivision (e.g .. red or green, which edges 

are subdivided), the pointer to the list of children tetrahedra (if a tetrahedron was gr-een 

subdivided). and a pointer to the parent tetrahedron (if exists). The data structures 

were designed to facilitate refinement and minimize memory requirements. During the 

red stage of iterative refinement, a list of non-conforming tetrahedra is maintained and 

updated during the gn;en stage. until a conforming mesh of the desired resolution is 

constructed. 
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The second filter. VolumeBoundaryCornpressionMeshFil ter takes as an input non­

uniform mesh that does not conform to the domain, and applies physics- or optimization-

based surface compression procedure to compress the mesh surface to the binary mask 

boundary. The physics-based approach to boundary compression requires solution of a 

system of linear equations, which is clone with P ETSc [12]. 

The following advantages make the RGJ\I method suitable for image-to-mesh con­

version in the context of the NRR application: 

• The BCC lattice tetrahedra are as close as possible to equilateral tetrahedron, 

providing significant improvement in clement shape as compared to the elements 

generated by tessellating an adaptive octree. thus \Ve start from a better initial 

discretization as compared to octrce-based methods previously suggested [7 -i, 192, 

26, 137]. 

• The red-green refinement procedure creates limited number of clement configura-

tions and does not allow significant propagation of the refinement. 

• The mesh boundary compression stage is independent of the lattice refinement pro­

cedure and can be easily substituted \Vith a different implementation. Any of the 

methods suggested for surface recovery in octree-based techniques are potentially 

applicable. 

• The method was designed specifically for modeling large deformations, which is 

important for registering intra-operative images during IG?'-JS, \vhere significant 

deformations can occur. 
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• Lattice-based topology and structure of the mesh gives bounds on mesh connec­

tivity and can be adnmtageous to FEM applications (note: this is applicable only 

for RG1'V!p. because RGMo is likely to change the mesh topology): 

• red qr·een refinement can possibly be used to re-mesh local regions of the mesh 

without remeshing the whole object (RGMp only). 

• Lower rate of quality degradation for physics-based vs. optimization-based bound­

ary compression has been reported [138] (the experimental study we have per­

formed did not confirm this observation for the evaluated data). 

• The method does not require explicit object boundary representation. thus there 

is no need to deYe lop a separate technique for triangular surface recoYery and/ or 

remeshing, which is necessary for CDT and AFT methods. 

• There is trade-off between the volume mesh quality and the accuracy of boundary 

approximation. The volume mesh before the boundary compression has perfect 

quality. while the boundary compression procedure is iterative and can be stopped 

if the quality of the volume starts to deteriorate. 

Nevertheless, there are certain disadvantages of the implemented approach: 

• The choice of the displacement step during boundary compression does not guaran­

tee the surface deformation will result in topologically correct mesh (i.e., depending 

on the element size. there is a possibility of having an element collapse during one 

iteration step). 
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• The user must choose the initial lattice spacing and the number of mesh refinement 

levels. 

• There are no guarantees about the Hspect ratio or minimum dihedral angles in the 

mesh after the surface compression. 

• The implementation does not allow to mesh multiple segmented tissues. 

• RG.AJp does not update the mesh connectivity, and thus is more susceptible to 

the degraded volume mesh quality during boundary compression. Neither of the 

boundary compression approaches updates surface connectivity. 

• RGJV!p involves the solution of the problem equal or at least comparable in com­

plexity to the numerical computations performed by the solwr component during 

non- rigid registration. 

Overall. in the absence of any implementations for automatic image-to-mesh convcr-

sion tools in the public domain, the advantages provided by the presented implementa-

tion make it a practical choice for meshing binary images. 

3.5 Construction of Sizing Function 

In general. applications that use tetrahedral meshes require different sizes of elements 

depending on their spatial location within the domain. The time required for NRR is 

directly proportional to the number of points in the mesh. while the solution error 1s 

reduced with higher discretization of the domain. Therefore. a balance between the 

computation time and solution accuracy is usually required by refining the domain with 



higher resolution in the areas of interest, or in the areas where the a posteriori error 

exceeds some threshold. N"ext we describe a way to adjust the size of tetrahedra in 

order to meet the application-specific requirements of the NRR method. Specifically, we 

describe how to adapt the clement size to the distribution of the registration points. 

The conventional approach to definition of mesh density is through the usc of mesh 

sizing function. Given a set of points V, mesh sizing function H defines the desired 

length of the edge at a point H : p E V f------7 R + [179]. It can be defined analytically, but 

more often its values are prescribed at the vertices of the background mesh. \Vhen the 

background mesh is used. the value of the sizing function at the non-vertex locations 

can be derived by interpolation. Both Tetgen and NETGEN accept a background mesh 

to control local mesh size. 

\Ve use the sizing function defined at the vertices of the background mesh to adjust 

the distribution of mesh element sizes to the distribution of the registration points for 

application-specific mesh generation. Note, that the background mesh does not need to 

be conforming to the object boundary. The only requirement is that the meshed domain 

should be completely enclosed within the background mesh to allow interpolation of the 

sizing function at any point within that domain [211]. 

We use the same CGAL-recoverecl surface mesh for the construction of both back-

ground mesh and the mesh used for NRR. The background mesh if! constructed using 

Tetgen by setting the bound on the maximum tetrahedron Yolume. The bound is :'Je-

lected in such a way that the maximum tetrahedron volume corresponds to an equilateral 

tetrahedron with the edge equal to the average edge length in the CGAL-reconstructed 

:'!urfacc mesh. The sizing value at each me:'!h vertex is initialized \Yith the distance to the 
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k:th closest registration point to reflect the density of the registration point distribution. 

The motivation behind the initialization of the background mesh is that the shape 

of a perfect mesh vertex cell complex is close to a hall \\'ith the radius prescribed by the 

background mesh. \Ye use CGAL [42] k:-neighbor search to find the k closest registration 

points and the distance to the furthest point for each background mesh vertex. Our goal 

is to have around 30 registration points in the cell complex of each vertex. However, 

based on the experimental results, the mean value in distribution of the registration 

points both for Tetgen and NETGEN was not approaching the desired bound when we 

set k = 30. Experimentally, we arrived at a result that the best distribution is obtained 

by using larger values for k (we used k = 100), and adjusting the Tetgen mesh by 

reducing the alpha parameters of the implementation, sec [179]. The NETG EN mesh 

was constructed using the same background mesh, but the sizing values were scaled 

down by constant to have similar number of nodes compared to the adaptive Tetgen 

mesh. 

The sizing of the adaptive mesh constructed with RG11f was controlled by a custom 

subdivision function. This function is called for each tetrahedron during the refinement 

at each mesh resolution, and returns tnte if the tetrahedron requires subdivision. \Ve 

calculate the number of registration points inside the cells of the four tetrahedron ver-

tices. The tetrahedron is subdivided if the Immber of the registration points in each 

vertex cell exceeds point density threshold p1 . \Ve used two subdivision resolutions in 

all cases. The process of adaptive mesh construction with RGkl is parametrized by the 

value point density threshold and the spacing of the initial lattice, see [72]. These pa-

rameters \Vere experimentally chosen so that the size of the adaptive mesh (the number 
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of mesh vertices) is approximately the same as the size of the adaptive Tetgen mesh. 

3.6 Evaluation Framework 

The evalwttion of the mesh generation techniques consists of the two components. First, 

since we introduce a new mesh generation method. (RGAJ), we need to analyze its 

performance in the context of the existing meshing tools. \Ve approach this by comparing 

a number of quality mctrics for the meshes constructed from the same binary image data 

using RGJ\1! and the conventional mesh generation tools that operate on triangulated 

surfaces. The commonly accepted metrics we use allmv to compare shape of the mesh 

tetrahedra and assess the accuracy of surface approximation. 

The second part of the evaluation is focused on the application-specific requirements. 

The specific rnetrics we use in the evaluation require estimation of the registration error 

at the registration points, which is based on the knowledge of the ground truth defor-

mation at each of those points. The issue of validating the accuracy, i.e., establishing 

ground truth deformation in non-rigid registration of medical images is a difficult prob-

lem. \Ve further discuss the issue of validation in Chapter 5. Since we ccmnot derive 

ground truth deformation from the clinical data, in the evaluation of mesh generation 

methods we use synthetic ground truth. \Ve construet a synthetic deformation field, ap-

ply it to real J\1R images of brain. and use non-rigid registration to recover the s.vnthetic 

deformation. Such a validation approach that is based on synthetic ground truth data 

is quite common in evaluating non-rigid registration methods [103]. The availability of 

the true deformation field allows us to assess the registration error and other related 

metrics at arbitrary image locations. 
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Figure 3.9: Left: Random deformation vectors are generated at the knots (red circles) oft he de­
formation field grid that are located '''ithin the user-defined mask. Right: Example deformation 
field. 

\Ve use the method described by Rogelj et al. [167] to construct a synthetic dcforma-

tion field, \Ve first construct a sparse point sample at the knots of an isotropic sampling 

grid overlayed with the image. This procedure is illustrated in Figure 3.9, where sample 

points are shown with red circles. Deformation vector di = ( d'[. d~, di) is constructed 

at each of the grid points. Each of the vector components are drawn from a a sum 

of Gaussian distributions, with separately initialized distributions for each coordinate 

component. The distributions are parametrized by the mean 11, = 0 and variance rJ. \Ve 

set the distribution variance to be within the 5% of the brain dimension, and include 

additional checks to ensure that the resulting deformation does not violate the assump-

tions used in linear elastic models [63]. The dense deformation field is constructed by 

using Thin Plate Splines interpolation at non-knot image points within the binary mask. 

An example of the deformation field generated by this approach is given in Figure 3.9. 

The implementation of the fr<tmework for constructing the synthetic deformation field 

ha::; been presented in [27]. 
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3. 7 Results 

3. 7.1 Evaluation of Lattice-Based Meshing 

The objective of this evaluation component is to establish that the new mesh generation 

method we introduce is comparable 'Nith the conventionally nsed methods with respect 

to common mesh quality metrics. 

Three ICC segmentations from the real patient data (from [.53]) were used to con­

struct tetrahedral meshes with the RGAf method. Two sets of meshes were generated. 

In one case we perform mesh boundary compression using the physics-based method 

(flGAf-p ). The other set of meshes was constructed by using optimization-based bound­

ary adaptation ( RGAf-o). 

Clatz et al. [53] used the follmving processing steps for constructing tetrahedral 

meshes. First. the dense triangular surface mesh was extracted from the binary mask of 

the patient ICC segmentation. This surface was next decimated in order to reduce the 

size with the surface decimation package Yams [86]. The decimated mesh was then used 

as the input for volumetric meshing with the commercial Dclaunay mesh generation 

package GHSSD [182]. \Ve were able to obtain the original meshes used by Clatz et 

al. [53] for the purposes of this study, but \Ye did not have access to the commercial tools 

Yams and GHSSD. The meshes used in the original paper by Clatz et al. comprised the 

first set of meshes used in the comparison. marked further as G HS3D. 

The second set of meshes was constructed with another commercial mesh generation 

tool, Solidkfesh [131]. This tool uses AFT combined with the Dclauuay criteria for 

optimizing point insertion during mcc;h front propagation. The third set of meshes was 
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constructed with Tetgen [180]. a tool we discussed earlier. In both cases we attempted 

to adjust the meshing; parameters to obtain the number of elements as dose as possible 

to 10K constraint specified by Clatz et al. [53]. 

Both Soli!L~fesh and Tetgen tools require a piecewise-linear surface boundary as 

input. For these two methods we use the surface of the RGl'vf-o mesh to describe the 

input volume domain. 

First, we evaluate the quality of surface approximation for each of the methods. 

vVe compute the Hausdorff distance from the triangular surfaces reconstructed from 

segmented images using Marching Cubes algorithm to the surface extracted from volume 

meshes. vVe present the results of that evaluation in Table 3.1. Hausdorff distance was 

computed using the 1\I.E.S.H. software [15]. Note. that we do not evaluate surface 

approximation for Tetgen and SolidAfesh meshes. <tS their surfaces are identical to those 

of the RGAI-o meshes. 

Second. we evaluate the initial quality of element shape using aspect ratio and min­

imum dihedral angle. vVe define aspect ratio as ~Ji--x:, where IKicx: is the length of the 

longest edge, and r is the radius of the tetrahedron inscribed sphere. These quality 

metrics were calculated using VTK 4.4 [121] and arc shown in Table 3.2. Perfect as-

pcct ratio value is L and dihedral angles close to 0° or 180° and larger are considered 

problematic. 

Finally, we evaluate the change in quality of the meshes caused by deformation. The 

deformed meshes ~were obtained as a result of running non-rigid registration on the image 

data that corresponds to each case. Aspect ratio and minimum dihedral angles in each 

of the five meshes after the deformation are shown in Table 3.::L 
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Table 3.1: Surface approximation quality. 

case ID method num.ber of surface tr-iangles Hausdorff di.stonce 
rrw:r mean RMS 

RG1I-o 1828 9.16 0.47 0.66 
1 RGM-p 1868 8.73 1.5.:.1 1.88 

GHS3D 1284 11.06 0.98 1.25 
RGM-o 2000 6.48 0 .. 5.5 0.75 

2 RG.~vi-p 2022 7.97 1.40 1.69 
GHS3D 1284 10.37 1.00 1.34 
RG1I-o 1858 7.25 0.47 0.63 

3 RGM-p 1896 7.07 1.48 1.81 
GHS3D 1354 8.96 0.87 1.14 

The evaluation shows that for all of the cases surface approximation for the meshes 

constructed by RGkf is at least as good as for the meshes constructed by GHSSD. 

Because of the adaptive mesh structure, RGJII meshes have larger number of surface 

clements with about the same number of tetrahedra, see Table 3.2. This also contributes 

to a better surface approximation. The dement shape quality of the meshes generated 

with RGM is also comparable and in some cases significantly better than GHS.'JD. 

a:o can be seen from Table 3.2. Delaunay meshes generated with Tetgen have quality 

comparable with the GHSSD meshes, but they have more elements. with small volume 

elements ncar the mesh surface. 

The changes of the mesh quality after deformation is most drastic for Delaunay 

meshes (e.g., see case 3 in Table 3.3). This is explained by the presence of small tctrahe-

dra near the mesh surface where elements experience largest strains. On average, quality 

of the elements for all of the methods decreases as the result of deformation. However. 

for all of the methods (except Tetgen, where \Ve observed large aspect ratio:-; for cases 

1 and 3) the deformed meshes preserve the quality and would probably not require 

rcmcshing if they were deformed further. \Ye have not observed :oignificant difference in 
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Table 3.2: Element shape quality evaluation. 

case method tet.s aspect rntio min dih. angle 
ID rnin/ averaye/rna.T mi71/aueragejmax 

RGi\I-o 73:34 1.03/1.44/2.83 33 3j~'>) r: ;-~ 2 . , .. 'J~.'J I I. 

RGl\I-p 7565 1.02/1.36/2.56 25.8/5.5.6/75.6 
1 GHS3D 7886 1.05/1.61/11.64 6.8/47.8/81.5 

Tetgen 21514 1.04/1.97/7.34 11.4/41.7/80.5 
Solidl\Iesh 8942 1.02/1.37/3.40 17.1/54.0/79.9 

RGl\I-o 7473 1.02/1.48/4.09 :30.7/52.0/79.3 
RGM-p 75.56 1.02/1.40/2.7.5 23.6/54.8/76.7 

2 GHS3D 8202 1.05/1.62/6.68 11.1/47.7/83.3 
Tetgen 23907 1.04/1.97/6.24 13.8/41.8/81.8 

Solidl\Iesh 10266 1.03/1.36/3.45 17.6/54.1/80.6 
RGl\1-o 7497 1.01/1.46/3.23 32.5/52.1/79.7 
RGM-p 7743 1.01/1.37/4.27 14.3/55.4/77.0 

3 GHS3D 8235 1.02/1.60/19.1 3.07/47.7/83.2 
Tetgen 23173 1.04/1.98/6.37 9.o 141.6/82.2 

SolidMcsh 9255 1.03/1.37/3.25 20.5/54.0/79.9 

quality change between physics- and optimization-compressed RGAf meshes. 

\Ve emphasize, that both GHS8D and Solid.Mesh methods are in the commercial 

domain, and that both Solidlvfe.sh and Tetgen require (high quality) surface mesh as 

input, while RGlvf is open source and operates directly on binary images. \Ve observe 

that optimization-based surface compression procedure results in better quality meshes. 

Therefore, this is the method we \Vill use in the subsequent experiments. 

3. 7.2 Application-Specific Evaluation 

Previously, we introduced a number of application-specific requirements that we believe 

are important in the context of non-rigid registration. In this Section we first evaluate 

mesh generation techniques in the context of these me tries. As part of this evaluation, we 

explore the question whether the use of sizing function results in the meslws that better 

meet the application-specific requirements. In order to conduct the evaluation. we usc 
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Table 3.3: Element shape quality c-:aluation follm;;ing deformation. 

case method aspect ratio min dihedral angle 
ID min/ a·uejnw:r min/ avejma:r 

RGJ\I-o 1.0211.4612.80 25.85152.00178.79 
RGJ\I-p 1.0311.3913.36 20.68154.73/77. o3 

1 GHS:3D 1.0411.65112.97 5.3914 7.:33182.66 
Tetgen 1.0412.061104.52 0.41140.92182.29 

SolidMesh 1.0211.4013.34 17.53153.44179.54 
RGJ\I-o 1.0211.4914.42 28.28151.78177.46 
RGM-p 1.0211.4112.90 23.401.54.43 l78.oo 

2 GHS:3D 1.0411.6416.34 11.06147.37181.41 
Tetgen 1.0412.07115.60 4.71140.97184.61 

Solidl\Iesh 1.0111.3813.54 17.45153.68180.33 
RGJ\I-o 1.0211.491:3.8:3 17.51151.46179.24 
RGl\1-p 1.0211.4115.16 13.51/54.26176.59 

3 GHS3D 1.0511.64122.38 2.43141.164183.84 
Tetgen 1.0.519.9111717.15 0.0004140.02183.84 

Solidl\Iesh 1.02l1.41j:3.56 17.93153.26180.37 

three mesh generation tools to construct two sets of meshes. The first set includes the 

meshes which have uniform distribution of element sizes, and the meshes in the second 

set are constructed using the sizing function defined in Section 3 .. 5. In order to have a 

fair comparison, we attempt to construct meshes in such a way that they have similar 

number of vertices within each group (uniform and adaptive), and compare them using 

the same set of quantitative metrics. 

\Ve use two groups of metrics. The first group includes those mesh properties, which 

can be directly optimized during the process of mesh construction. These include element 

shape and surface approximation accuracy. \Ve assess the element shape by the minimum 

dihedral angle for each tetra.hedron of the mesh. Surface approximation accuracy is 

evaluated as the percentage of the registration points covered by the mesh, which is a 

practical measure for the NRR application. 

The second group includes quantitative metrics, which cannot be din~ct ly optimized 
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by the existing mesh generation methods. Let D; be the ground truth displacement at 

the registration point i, which aligns given point in the floating image with the corre-

sponding point in the target image. This value is known from the synt betic ground trnth 

deformation field. Following the notation introduced in Section 2, D; is the displc>cernent 

recovered at the ith registration point by block matching, U is the set of displacements 

at mesh vertices. and H is the interpolation matrix from the values of displacements 

at the mesh vertices U to the displacements at the registration points HU. The inter-

polated displacement at the ith registration point is defined as [HU]i. Also, T; is the 

structure tensor evaluated at the ith registration point. Using this notation. we define 

the set of application-specific quantitative evaluation metrics: 

1. Approxim.ation error at a registration point is defined a::; IIS;D; - [HU];fl. \Ve 

assess the accuracy of approximation by the percentage of the registration points, 

where the magnitude of this error exceeds 1.0. \Ve call those registration points 

''error points''. ·while reporting results (errors below this threshold are in the sub-

voxel range). \Ve use the proportion of the registration points Fe where the error 

exceeds 1.0 nun as a measure of the approximation error: 

l{f E F: IIS;D;- [HU];II > 1.0}1 C/ 

Pe = IF! · lOO;c. 

2. Outlier detection sensitivity, defined as the ratio of the true outliers within the 

discarded registration points to the total number of the discarded registration 

points. The set of true outliers, F0 , in the block matching result is defined as a 
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The registration algorithm defines the ith registration point as an outlier based 

on the absolute value of the difference between the estimated deformation HU; 

and the result of block matching at that point S;Di. The registration points are 

ranked by this value. The top percentage is defined by K = n;L is rejected. Here 

r2 and niter are the registration parameters listed in Table 2.1. Let Fk be the set 

of registration points at the beginning of the kth outlier rejection iteration, and 

F,k - the set of registration points discarded by the registration algorithm at the 

kth iteration: 

\Ve define Po as the proportion of the true outliers that were correctly identified 

by the registration algorithm: 

\Ve usc Po as a measure of sensitivity in outlier detection. 

3. Riv!S of the absolute ermr at the registration points. absolute error being defined 

as II[HU];- D;jj. 

4. Distribution of the ru;istration points with respect to mesh vertices. 
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Note that the goal of the study is not to tune the NRR parameters for optimal reg-

istration results. \Ye attempt to perform a controlled analysis of the impact of mesh on 

the NRR performance. while keeping fixed the other registration algorithm parameters 

that can influence registration accuracy. 

In the previous Section we compared the meshes constrncted with GHS:JD and 

Solidlvfesh tools, both of which arc commercial products. In the application-specific 

evaluation we cannot use GHSSD, because we do not have access to the tool itself. In 

addition. Solidlvfesh cannot be evaluated. because we have the freely distributed version 

of this tool, which is not capable to construct adaptive meshes based on sizing function 

defined at background mesh vertices. Therefore, in the current study we use NETGEN 

as a representative method among AFT, in addition to the previously evaluated RGAI 

and Tetgen. 

\Vc constructed synthetic deformation fields and performed NRR on the l\IRI scans 

1 through 3 in the set of 18 images available from the Internet Brain Segmentation 

Repository (IBSR?. The synthetic deformations were generated with 20 '·knots'' in the 

deformation grid on average [27]. The deformation magnitude at each ''knot'' was under 

5% of the brain size to maintain the validity of the linear elastic physical model [63, 5:3]. 

The parameters used for CGAL surface mesh generation [42] were: angular bound 

:30°, surface radius and distance bonnds 10.0. surface precision bound 0.001. Each 

method was used to construct two meshes for each registration case. The prescribed 

element size was uniform throughout the volume of the first mesh. The second mesh 

was constructed to adapt the clement size according to the sizing function designed in 

2 The :\IR brain data sets were provided by tlw CPntPr for \Iorphometric Analysis at \Iassachusptts 
General Hospital and are available at http: I /www. cma. mgh. harvard. edu/ibsr /. 
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Figure 3.10: Left to right: selected registration points, and adaptive tetrahedral mesh cuts 
(same slice) generated with Tetgen, NETGEN, and RGM. Tetrahedra are colored according to 
their volume, from blue (smallest) to red (largest). 

Section 3.5. We adjusted the implementation-specific parameters to have the uniform 

and adaptive meshes with approximately 1.5K and 6K vertices, respectively. 

We present cross-cuts of the adaptive meshes in Figure 3.10. The adaptive meshes 

generated with NETGEN have a layer of relatively large elements near the surface of 

the mesh. This is explained by the nature of AFT, which does not insert new points on 

the triangulated surface. We use the CGAL triangulation as the support surface, and 

let NETGEN to construct a new triangulation to respect the prescribed element sizing. 

However, the re-triangulated surfaces contained small triangles, which do not obey the 

prescribed edge sizing. 

The synthetic registration cases differ in the number of registration points, and in 

the number of true outliers. Moreover, because of the differences in mesh surfaces 

recovered by CGAL and RGM respectively, different percentage of those points are 

located inside the mesh domain, as summarized in Table 3.4. This is an important 

observation, because the percentage of outliers impacts the registration error, and the 

reduction of the registration error is our ultimate objective. Also, due to the lower 

precision of surface approximation by RGM, about 4% fewer registration points and 1% 
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Table 3.4: Registration points, true outliers. and their coverage by the mesh surfaces. 

case icl reg. points outliers.% reg. points inside.% outliers inside.% 
CGAL RG;o.I CGAL RG.l\1 

IDSROl 
IBSR02 
IBSR03 

.56447 
57526 
46525 

7.8% 9.5.6% 
16.2% 94.9% 
18.8% 95.3% 

91.1% 6.9% .5.5(/( 

90.8% 14.3% 12.4% 
90 . .5c;( 16.07c 13.17c 

to 3% fewer outliers are located within the RGM -generated meshes. The distribution 

of outliers is non-uniform. and many of them are located close to the surface. 

None of the meshes contains sliver elements. \Ye observe that the minimum dihedral 

angle was the largest, 14°. in the NETGEN-generated meshes. The values of this metric 

for Tetgen and RGJ'vf are 8° and 5° respectively. 

Based on the results presented in Figures 3.11 and3.12. the use of custom mesh sizing 

can significantly improve the distribution of registration points compared to uniform-

sized meshes. In conjunction \Vith the sizing function, Tetgen achieves rhe best dis-

tribution results overall. Although the average values for the distributions are similar 

for all meshes, Tetgen meshes have lmver maximum values and better distribution: the 

distribution curve approaches normal distribution with the mean close to the desired 

number (k = 30). The advantage of Tetgen over NETGEN is that mesh points can be 

inserted at arbitrary locations on the surface during refinement. RGAf is limited even 

more than NETGEN. as new points can be inserted only at the periodic predefined 

locations, based on the initial lattice structure. Nevertheless, the distributions in RGJ'vf 

meshes are consistently better compared with NETGEN. This might be caused by large 

clements near the surface of the NETGEN meshes. 

Note th<tt empty vertex cells do uot pose a problem. The corresponding mesh nodes 

will move following the neighboring vertices during registration. Problems can be caused 
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Table 3.5: Application-specific metrics for the evaluated meshes. 

case id metric uniform size meshes adaptive meshes 
Tetgen NETGEN RGM Tetgen NETGEN RGM 

IBSR01 mesh points 1617 1596 1607 6044 6020 6209 
Pe 2.4% 2.6% 1.9% 1.6% 1.8% 1.1% 
Po 53.5% 52.6% 43.8% 52.3% 52.5% 42.8% 
RMS error 1.60 1.62 1.61 1.69 1.65 1.60 

IBSR02 mesh points 1682 1617 1696 6166 6255 6993 
Pe 6.7% 7.1% 5.9% 4.9% 5.8% 4.3% 
Po 64.7% 64.4% 59.4% 63% 64.7% 60.5% 
RMS error 1.98 1.92 1.82 2.55 2.27 2.23 

IBSR03 mesh points 1410 1413 1404 6631 6503 6033 
Pe 7.7% 8.1% 6.3% 4.8% 6.4% 4.5% 
Po 72.9% 71.2% 65.7% 70.7% 74.6% 69.3% 
RMS error 2.61 2.53 2.25 3.52 3.08 3.05 

by few registration points (the contribution of outliers is not smoothed by the correctly 

recovered displacements), or by too many registration points in the cell (increased ap-

proximation error). 

The non-rigid registration was performed with the default parameters suggested by 

Clatz et al. [53]. The fraction of selected registration points r 1 was set to 5%. The 

quantitative metrics that are not directly optimized by mesh generation are summa-

rized in Table 3.5. The approximation accuracy is consistently improved for all mesh 
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Figure 3.11: Distribution of the number of registration points per mesh vertex: uniform-graded 
meshes (left) and adaptive refined meshes (right); IBSROl. 
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Figure 3.12: Boxplot for the distribution of the number of registration points per mesh vertex 
cell complex with the unrefined meshes (left) and meshes constructed using the sizing function 
adapted to point distribution (right). 

Figure 3.13: Left: Image voxels with the largest values of the error with respect to ground 
truth. Center: mesh elements with the minimum eigenvalue of the dilation matrix below 0.1. 
Right: inverted mesh elements after NRR. IBSR02, Tetgen adaptive mesh, wireframe shows the 
undeformed mesh. 

generation methods when the refined meshes are used. However, this is the only metric 

that is clearly connected with the size of the elements of the mesh. We do not observe 

improvement in either outlier detection sensitivity or RMS of the registration error. On 

the contrary, RMS error is increasing in the refined meshes. We suggest that there are 

two major reasons why this may be the case. 

First, the adaptively refined meshes are more susceptible to the element inversion 

during NRR. The areas of the high error in the deformation field recovered by NRR 

are spatially co-located with the areas of the mesh, where tetrahedra invert or become 

highly skewed. We use the tetrahedron measure proposed by Baker [20] and identify 

highly skewed mesh elements by the minimum eigenvalue of the element dilation rna-
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trix. Figure 3.13 shmvs spatial correspondence of the locations of skewed and inverted 

elements with the areas with the largest registration error. The sizing function that we 

used does not take into consideration the expected magnitude of deformation. 

Second, refined meshes decrease the error of approximating displacements recovered 

by block matching both at the outlier and non-outlier registration points. Ideally, the 

mesh should be constructed in such a way that in each mesh vertex cell the number 

of outliers is less than the number of correct displacements. In general outliers are 

distributed non-uniformly. As \\·e decrease the size of the mesh elements, it becomes more 

likely that the registration points inside some cells will be dominated by the outliers. 

causing higher error with respect to the true deformation. 

\Ve tried to resolve the first problem by modifying the sizing function to reflect the 

deformation magnitude averaged over the k closest registration points. The parameters 

for CGAL surface mesh recovery were chosen according to the maximum of the averaged 

deformation magnitude near the object surface. None of the evaluated meshers was able 

to follow the prescribed sizing distribution closely. Both Tetgen and NETGEN created 

large tetrahedra near the mesh surface. \Ve cannot attempt to improve the fitness of 

the mesh to the sizing function by reducing the default values of the alpha parameters, 

as we have done for the meshes evaluated previously. The alpha parameters control the 

bound on the shortest edge length at a mesh point. see Lemma 1 by Si [179]. Their 

reduction introduces small volume elements. The construction of meshes that adapt to 

the degree of deformation requires further study. 
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3.8 Summary 

In this Chapter \Ye approc1ched the problem of constrncting finite clement meshes in the 

context of a specific non-rigid registration method. The task of constructing such meshes 

has been traditionally complicated by the fact that the domain of interest is described 

as a set of image voxels. Hmvever. in addition to the intrinsic difficulty of constructing 

meshes from the image data. the adaptation of the mesh to meet the requirements of a 

specific image processing application is particularly challenging. 

vVe presented a list of specific requirements imposed by the non-rigid registration 

application on tetrahedral mesh, and completed a quantitative evaluation of the existing 

approaches. Based on the results of the literature review. we compiled a taxonomy of 

the available meshing methods commonly used in medical applications, and summarized 

their differences and limitations in the context of the considered application. \Ve observe 

that there are no tools for direct conversion of the image data to tetrahedral volume 

mesh. Existing methods commonly employ multiple processing steps (surface recovery, 

decimation, volume mesh generation) to construct such meshes. but the details and 

deficiencies of such multi-step approaches are often left outside the research discussion. 

We attempted to fill the gaps in the existing body of literature and tools by pre-

senting an end-to-end approach for direct conversion of binary images into tetrahedral 

meshes. We also describe a detailed procedures for using conventional meshing tools 

that work with surface triangulations to mesh binary image data, and present a quan-

titative comparison of the meshes constructed with different methods for discretization 

of ICC segmentations derived from the real patient data. RGAJ. the mesh generation 

tool we developed. constructs meshes of quality comparable with the stc"tte of the art 
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commercial packages for the geometries used in NRR. This tool has been made available 

as open source project. and was used for constructing patient-specific models for NRR 

during IGNS procedures at Brigham and \\'omen's Hospital in Boston, ~IA in 200G. 

There are no general solutions in mesh generation - application requirements vary, 

and mesh generation tools have to be adjusted to meet those requirements. Based on the 

specific set of requirements we formulated for the NRR application. we developed a set 

of quantitative metrics that allow to assess the goodness of a particular mesh for regis-

tration purposes. Specifically, we studied the issue of adapting the distribution of mesh 

element sizes to the distribution of the registration points. The quantitative comparison 

of the considered mesh generation methods allowed us to conclude that Delaunay-hased 

mesh generation in conjunction with the robust tools for implicit surface triangulation 

achieve the best quality mesh in terms of distribution of the registration points. However, 

the remaining issue is the one of constructing such a mesh that optimally conforms to the 

two conflicting requirements: distribution of the registration points and the magnitude 

of deformation. 

Possibly the most important question that has not been studied is the impact of the 

mesh on the registration accuracy with the clinical data. \Ve stress that the question 

of the meaningful impact of the mesh generation method on the registration accuracy 

cannot currently be evaluated due to the lack of ground truth data for clinical registration 

cases. The difficulties of assessing the accuracy of non-rigid registration are further 

discussed in Chapter 5. In this Chapter we described the list of guidelines and a number 

of solutions for mesh generation. however further evaluation is necessary, contingent on 

the availability of clinical ground truth data. 
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3.9 Contributions 

The main contributions of the work presented in this Chapter are the following: 

• a novel tool for direct conversiOn of binary images into tetrahedral meshes has 

been presented and evaluated in the context of NRR applications: 

• application-specif-ic requirements to mesh generation for NRR application have 

been summarized; 

• an evaluation framework for comparing suitability of tetrahedral meshes in the 

context of NRR has been proposed and used for evaluation of the considered mesh 

generation tools: 

• a detailed description of the end-to-cud procedure for constructing tetrahedral 

meshes using off-the-shelf software has been presented and analyzed. 

The results presented in this Chapter have been published in the following papers: 

1. A.Fedorov, N.Chrisochoides, R.Kikinis, S.K.\Yarfield. Tetrahedral mesh genera­

tion for medical imaging. l\IICCAI'05 Open source workshop, 2005 (appears in 

Insight Journal, http: I /hdl. handle. net/ 1926/35) 

2. N.Archip, A.Fedorov, I3.Lloyd, N.Chrisochoides, A.Golby, P.Black, S.K.Warfield. 

Integration of patient specific modeling and advanced image processing techniques 

for image guided neurosnrgery. Proceedings of SPIE Medical Imaging, 200G, 

pp.422-429 

:3. A.Fedorov, ?'·LChrisochoides, R.Kikinis, S.K.\Yarfield. An evaluation of three ap-

proaches to tetrahedral mesh generation fur deformable registration of l\IR images. 

http://hdl.handle.net/1926/35


Proceedings ofiEEE International Symposium on Biomedical Imaging: From Nano 

to l\Iacro. 2006, pp.G5~-G61 

4. B.Joshi, A.Fedoruv. N.Chrisochoiclcs. S.I\:. \YarfielcL S. Ourselin. A Quantitative 

Assessment of Approaches to Mesh Generation for Surgical Simulation. Engineer-

ing with Computers, 24( 4) :417-430, 2008 

5. A.Feclorov. N.Chrisochoides. Tetrahedral Mesh Generation for Non-rigid Regis­

tration of Brain 1\IRI: Analysis of the Requirements and Evaluation of Solutions. 

Proceedings of 17th International Meshing Roundtable, 12-15 October 2008. pp.55-
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Chapter 4 

High-Performance Image 

Registration 

Accuracy is the most important requirement for any non- rigid registration method. 

However. once the accuracy of the method has been established. it can only be useful 

during IGNS if the computation is feasible to complete within the time allocated for 

image processing during the procedure. Non-rigid registration methods for recovering 

brain shift have been studied for more than a decade, but many of them were found to 

be impractical due to the high computation time they require. 

The NRR method by Clatz ct al. has been designed from the very beginning with the 

goal of supporting IGNS image processing. The authors performed a retrospective study 

of the implementation using the image data from past neurosurgeries, and estimated the 

computation time required for intra-operative component of the registration to be under 

one minute [53]. Hmvevcr, the practical constraints of the implementation and high 

variability of the execution time depending on the input data did not allow to achieve 
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such result during the initial attempts to apply this method intra-operatively. 

The research results presented in this Chapter were originall.Y motivated by a practi-

cal need. During the years of 200G and 20()7. image-guided craniotomies of brain tumors 

were being performed on average every month in the open magnet facility at Brigham 

and ·women's Hospital in Boston, J\IA. State of the art tools available at that time did 

not provide any capabilities to account for intra-operative brain deformation, which mo-

tivatcd the feasibility study of using the method designed by Clatz et al. in the clinical 

setting. 

An attempt to use the implementation for intra-operative prospective evaluation of 

the method using a 4-processor high-end workstation resulted in the conclusion that the 

execution time of NRR on a single high-end workstation (next to the operating room) 

exceeds by far the time a surgeon can wait to proceed with the tumor resection after 

each intra-operative scan. Ideally, the surgeon would like to have registration results 

immediately, but certainly the time to process the images should not exceed the time 

required to obtain a full brain il\IRI, which takes about 4-5 minutes. Better performance 

of the registration process could conceptually be achieved using one of two approaches. 

\Ve can either apply less computationally demanding models which provide the same 

accuracy of the solution, or we can attempt to improve the scalability and efficiency of 

the existing implementations. In this Chapter we explore the second approach to make 

the computation of the NRR method discussed earlier feasible and practical for IGNS. 

As we show in this Chapter, high performance computing (HPC) resources prove 

to be essential to enable i11-tirne completion of NRR. However. in addition to making 

NRR feasible, HPC resources hold the potenticll to improve the accuracy of registration. 
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In practice, the non-zero registration error is inevitable. independently of the level of 

complexity in the registration algorithm. This is due to the fact that existing models of 

brain deformation are heuristics and approximations. There are technological limitations 

(e.g., insufficient contrast in the intra-opcr<ttive il\IRI to detect resection boundaries. 

low image resolution). lack of knowledge about the physical tissue properties, absence 

of precise patient-specific biornechanical models of the brain, etc. The heuristics used 

in the registration methods arc characterized by certain parameters that allow to tune 

their behavior. The selection of the optimal values for such parameters is usually not 

straightforward, because they depend on the images that are registered. The parameter 

settings can be optimized retrospectively, but such settings may not be optimal for the 

prospective application of the method. 

The problem of optimum parameter selection has been previously recognized in the 

image registration community, and a number of c1pproaches have been proposed to ad-

dress this issue. Skrinjar et al. [183] develop a framevwrk for selecting optimum stiffness, 

which parametrizes the biomechanical model of brain deformation. The proposed solu-

tion is to initialize stiffness to a small non-zero value. and iteratively increase it until 

the distance between the modeled locations of the surface points to the true surface 

location is close to zero. Ino et al. [110] introduce the concept of speculative parallelism 

in the context of registration, where the same registration problem is approached with 

the different sets of parameters at the same time. In any scenario of optimum parameter 

estimation, multiple instances of registration must he evaluated. Given the non-trivial 

amount of computation needed for a single instance of NRR, the task of parameter 

search may become infeasible. 
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In this Chapter we focus on the use of HPC resources for the NRR method of Clatz 

et al. Our first objective is to de,-elop a high-performance implementation that meets 

the IGNS time constraints and can be used for prospective studies in clinical research. 

The second goal is to evaluate the possibilities of enabling parametric search for NRR. 

\Ve consider both the ubiquitous cluster of workstations and the widely distributed N a­

tional cyber-infrastructure (TeraGrid) as platform:-; to facilitate these highly demanding 

computations. 

4.1 Cluster-based Implementation 

4.1.1 Related Work 

Image processing computations that operate on three-dimensional medical data often re-

quire non-trivial time when performed sequentially. Such tasks a:-; multi-channel pattern 

classifications uo;ed in medical image segmentation. complex biomechanical simulations 

or optimization in multidimensional parameter space often used in medical image reg-

istration are inherently complex. Some of these computations hold the potential to be 

useful in decision making during clinical procedures. which impose tight time constraints 

on the delivery of the computation results. 

In this Section we focus on the computations related to image processing for the 

purposes of image-guided neurosurgery. A number of approaches and frameworks have 

been proposed to leverage the high performance power of local cluster computing re­

sources for this clinical application, as we cliscuss next. The major results in developing 

HPC systems for such problems arc coming from relatively few groups, ~which haw~ corre-
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sponding needs. Until recently, the usc of high quality intraoperative imaging modalities 

was limited and available at fe,v clinical centers clue to high cost of the needed imaging 

systems. 

Christensen and collaborators were some of the first to discuss the use of parallel 

computing resources for solving time-consuming problems related to brain l\IRI process­

ing [51]. They describe a method for constructing anatomical brain atlases customized 

to patient image data. The authors present a system implemented on a massively par-

allel SIJ\ID architecture, with the parallelized PDE solver used in deformation modeling 

and parallel evaluation of the three-dimensional transformations. The authors state 

that parallelization allowed to reduce processing time from weeks to hours for typical 

datasets. 

vVarfield ct al. [198] presented a parallel implementation of the brain tissue classifica­

tion and rigid registration based on the segmented label overlap similarity metric. The 

implementation includes load balancing component based on workpiles, which essentially 

correspond to the master-worker distribution scheme we adopted in our distributed im­

plementation of 1\RR. The implementation developed in [198] was used to process a 

large number of brain scans l\IRI scans with the reported processing time within 10 

minutes. 

In another development , \Varfield et al. [199] presented some of the first results 

m intra-operative processing of il\fRI. They consider the problem of intra-operative 

segmentation of brain il\IRI. The segmentation method is based on voxel-wise classi-

fication of tissue. which can be completed independently for each voxcl. The authors 

demonstrate linear speedup of segmentation on a 20-processor HPC workstation. which 
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allows to segment 60 slices of data in about 20 seconds. Remarkably, the developed 

method was subsequently applied and evaluated during real cases of neurosurgery and 

liver cryo-ablation [200]. The same group later developed a high-performance method 

for intra-operative non-rigid registration, which uses linear biomechanical model [197]. 

The authors used PETSc [159] library for parallel assembl~' and solution of the linear 

system. Although the authors report clinically acceptable timing results delivered by 

their implementation, the evaluation was restricted to off-line experimental studies. 

The approaches to parallelizing registration computation are highly dependent on 

the specific registration method. For example, the methods considered in [199, 198] can 

be parallelized without any need for intra-processor communication using the master-

worker approach. On the other hand. the parallel linear solver used by the framework 

described in [197] requires 1IPI-enabled communication. Rohlfing ct al. [168] develop 

an implementation of free-form non-rigid registration method based on B-spline inter-

polation on a shared memory supercomputer. Global image similarity and gradient 

computations contribute most of the execution time, as they arc repeatedly evaluated 

during the optimization process. The authors present parallel implementation of those 

steps, and report speedups close to linear in the application of this framework for off-

line processing. Another distributed implementation of a registration method based on 

free-form deformation was developed by Ino et al. [111]. Stefanescn et al. [186. 187] de-

vcloped a parallel implementation of the demons-based non-rigid registration method. 

Demons-based registration [191] presents the advantage of being able to recover small­

scale deformations, as compared to registration based on B-splines. The authors of [186] 

report speedup of 11 on a cluster of 15 workstations. However, neither of these methods 
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incorporates biomechanical models of the tissue in the registration process. 

An approach closely related to the registration method we target in this work was 

studied by Ourselin et al. in [151]. Although the authors considered the problem of rigid 

image registration, the registration method is based on deriving the global transform 

with the aiel of block matching, which was parallelized using equi-distribution of work 

among the processing nodes of a cluster. The implementation was used for retrospective 

analysis of image data. 

OveralL we observe that a large number of registration methods have been im­

plemented on computing cluster resources. Such systems are motivated by excessive 

computational time required for processing three-dimensional image data. The paral-

lelization approach is always customized to the specific registration method, and the 

common denominator in such implementations are the communication libraries used, 

e.g., MPI [140], and load balcmcing schemes based on the master->vorkcr model. Some of 

the reported results are evidently suitable for intra-operative application of the methods. 

Nevertheless, very few methods (namely, only the framework developed in [199]) were 

actually applied and evaluated during the neurosurgery. \Ve explain this by the difficulty 

of coordinating computation in the real time-critical setting, possible dependency of the 

performance on the input data and parameters. and insufficient robustness and accuracy 

of the registration approach. 

4.1.2 Motivation 

The method proposed by Clatz et al. has been designed specifically to be applicable 

during IGNS. Therefore. a number of design decisions have been made to make the 
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computation feasible within minutes: 

1. Iterative r0jcction of the outlier registration points results in the changes in the 

interpolation and stifi"uess matrices B. H and S. The matrices are updated to 

account fur these changes by locally modifying the submatrices corresponding to 

the discarded registration points. 

2. The tetrahedral mesh used in the registration does not change between the it­

erations of the algorithm. The estimated mesh deformation is reflected in the 

deformation vector U. but the mechanical stiffness matrix K remains constant. 

3. The authors recognize that the block matching component of registration is the 

most time-consuming processing step, and develop its parallel implementation us-

ing PVl\1 [23]. 

Hmvever, the met hod has been tested and evaluated retrospectively. in the en vi-

romnent of a research lab. The intric<tcies of running the code during neurosurgery 

and providing the result to the operating team often cannot be anticipated in advance, 

a:-:; cannot be anticipated all the difficulties related to using a heuristic method on an 

untested data. 

During the initial attempts to run the original implementation during the course of 

neurosurgery, the follmving observations have been made: 

• The only computational resource readily :wailable for non-rigid registration next 

to the operating room is a high-end workstation. However, execution time of the 

prototype implementation by Clatz ct al. on a high-end multi-processor \vorksta-
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tion varied between 40 minutes and 1 hour. depending on the input data, as shown 

in Figure 4.1. 

• In the absence of local computing facilities. rhe external HPC resources were re­

quired. The characteristics of the external execution environment are not known 

in advance. It is desirable for the parallel implementation to be robust and efficient 

on both time-shared and dedicated resources, with possible heterogeneity of the 

computing nodes. 

• The functional complexity of the implementation (initialization, parameter check­

ing, data transfer) did not allow to easily separate the individual component:,; of 

the computation. and added ::significantly to the total time required to execute the 

code with the clinical data. 

• The component:,; that contribute most to the total execution time of the imple-

mentation are data pre-processing and block matching, with the block matching 

component highly amenable to parallelization. The parallel implementation of 

block matching by Clatz et al. cannot be ported on commodity clusters, ::since it 

is based on PVl\L which is not a commonly supported parallel programming envi-

ronment (specifically, it is not supported on either SciClone [.56] or TeraGrid [188], 

the computational resources u:oed in thi:o study). 

• The implementation i:o highly vulnerable to failure::-;: a hardware fault during in­

traoperative part of the registration requires re:otart of the computation. Da:oic 

fanlt- tolerance functionality should bf' part of the implementation. 

93 



3500 I I I 

I~ 
pre-procc"ing 

1

1 n 
r- block-11L.1tcl1ing 

outlier reJection 

3000 

2500 f- -

f-

1500 f- -

1000 1- -

500 f- -

0 
0 4 

case id 

Figure 4.1: Execution time breakdown for the original implementation of NRR on a high-end 
4-way workstation. 

Table 4.1: Time (minutes) required for sequential block matching with lOOK rcgistratiou points 
using ::\' ormalized Cros::J Correlation similarity metric (Intel X eon 3. 7G Hz). 

search window dimension 
block dimension 7 9 11 13 15 17 19 21 

5 0.4 0.8 1.5 2.7 3.6 .5.2 7.3 9.6 
7 0.9 2.0 3.6 5.9 8.9 1:3.1 17.9 23.9 
9 2.6 5.6 9.9 16.1 24.5 35.3 48.9 65.2 
11 4.5 9.6 17.2 28.2 42.9 62.0 85.9 113.5 

Based on the initial evaluation of the prototype implementation, block matching 

is the most time-consuming step, \vhich requires parallelization. Table 4.1 shows the 

timing results for sequential execution of block matching with 1001\: registration points 

on a high-end workstation. The search window size is a parameter chosen to reflect 

the maximum expected deformation magnitude. The typical resolution of MR image is 

::::::;1 mm, and the reported values of the brain shift are in the order of 10-20 nm1 [64]. 

Therefore, the size of the block matching search window must be twice the expected 

deformation, making the search window climenc;ion of 21 pixel typical. Based on the 

results in T<tble 4.1. a block matching search parametrized by such values cannot be 

completed sequentially \Vithin the neurosurgery time constraint:-;. 

94 



Given the initial observations. vve identified the need to provide a computational in-

frastructurc, capable of delivering the NRR results within the clinical time constraints. 

The components of such infrastructure must include high-performance computing re­

sources, low-latency net\vork connection between the remote site and the hospital net­

work and the software implementation, that can leverage these resources. 

Nowadays, clusters of workstations (Co\Vs) are readily available at most research 

institutions and universities. However, the use of such facilities is normally optimized 

for off-line computations, i.e., when the results of the computation do not need to be 

delivered within strict time constraints. l\Iost dusters are accessed in the space-shared 

mode. A user wishing to usc the cluster for computation submits so called job request, 

which describes the code to be executed, inputs and outputs. number of cluster nodes, 

and the expected time needed for the computation to complete. The cluster batch 

schcd'uler manages the queue of job requests and assignment of the cluster resources. In 

the space-shared scheduling mode. once the cluster nodes are assigned to the task, the 

task has exclusive access to this subset of cluster resources. 

In the case of NRR, the computation is triggered by the availability of the intra­

operative l\IRI scan. Once this scan is available. the computation must proceed as 

quickly as possible. Typically. scheduling a job is associated with queuing delays, which 

depend on the current availability of the resources and job load uf the cluster. Certain 

batch scheduling systems allow preemption of the currently scheduled jobs in favor of 

high-priority requests. However, job preemption requires the ability to save the current 

state of the jobs being preempted, so that they can be safely restarted. In practice, 

job preemption mode is rarely supported. An altcrnati,·e to job preemption is advance 
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reservation of the cluster nodes. The problem related to this is the sub-optimal uti-

lization of the resources. which is wh.v advance reservations are rarely available on the 

production systems [146]. and can be accomplished by special arrangement only. 

In order to enable the timely computation of NRR. considering the lack of parallel 

computing resources at Brigham and \Vomen's Hospital at the time this study was per-

formed. we decided to use resources of the Sci Clone Cluster [56] at the College of \Villiam 

and I\Iary. Sci Clone is a heterogeneous duster that consists of roughly 200 nodes, which, 

as we show further, is sufficient for timely computation of the block matching registra-

tion step. Moreover, SciClonc site is connected with the national LambdaRail [142] 

backbone network through the 10 Gbps link. providing low latency high bandwidth 

means for transferring intra-operative data and registration results. Parallel computa-

tions are facilitated by the numerous implementations of the Message Passing Interface 

(MPI) [140] available on SciClone. The access to the SciClone resources is managed by 

the PBS scheduler. However, for the purposes of this study. we were able to eliminate 

the PBS scheduling delay by special arrangement to have exclusive access to the Sci-

Clone resources at the time of the neurosurgery. In order to provide a backup computing 

facility for the fault-tolerance considerations, we also use the student computer lab at 

the Computer Science department at the College of \Villiam ancl Mary. 

The described environment provides ample computational capabilities accessible via 

a high-end network connection. However. in order to take advantage of this computa­

tional infrastructure, significant restructuring of the NRR code was necessary. In the 

next Section we focus on the architecture of the parallel distributed NRR implementa-

tion. 
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4.1.3 Implementation 

Based 011 the initial evaluation of the NRR performance, the most straightformud. but 

very important modification necessary was the separation of the monolithic computation 

into separate processing stage::;. The processing modules are pre-processing (selection of 

the registration points). block matching between the pre-operative and il\IRI showing 

brain shift, iterative outlier rejection (solver) and resampling of the pre-operative image 

using the displacements recovered at mesh verticc::;. This separation is motivated not 

only by performance, but also by the fault-tolerance con:oiderations. 

The complete processing timeline is shown in Figure 4.2. The processing involves 

acquisition of data in the hospital located in Boston, transfer of the data and its pre­

processing at the College of \Villiam and l\lary, and tran:ofer of the computation result::; 

back to the hospital for the subsequent post-processing and visualization. The technical 

aspects that needed to be considered in the high-performance implementation are load 

balancing and fault tolerance. 

Load balancing \Vithin the time-critical computational components, the block 

matching is the step that requires performance improvements. The processing required 

by the block matching is by definition emb<=trrassingly parallel. In order to find a match 

for a given block, we need the block center coordinates, and the regions of the fixed and 

floating images bounded by the block matching window [53]. No conmnmication bet\veen 

processors is necessary. A straightforwa.rd \Vork assignment is static cqui-distribution of 

the registration points to the computing nodes. Static assignment eliminate::; the need 

for communication during block matching computation. However, thi::; approach is not 

practical for a number of reasons. 
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First, the computing environment is highly heterogeneous, and processing time re­

quired for a single registration point varies depending on the processor speed. l\Ioreover. 

the computing resources at the computer lab are available only in the time-shared mode. 

i.e., multiple users may utilize a given node at the same time. Therefore, the CPU load 

is highly variable and cannot be predicted. This creates motivation for dynamic re­

distribution of work, or load balancing. Second, even in the presence of perfect static 

assignment of work, lack of communication between the computing node will make fail-

ure detection impossible. leading to the partial loss of the block matching results. Based 

on these two considerations, we implemented parallel block matching using hierarchical 

master->vorker load balancing scheme. 

Multi-level dynamic load balancing method which we adopted for parallel block 

matching is different from the static multi-level graph partitioning methods presented 

in [1]. and is closer to the hierarchical partitioning approaches described in [189. 70]. ~We 

use initial estimation of the combined computational power of each cluster involved in 

the computation (based on CPU clock speed) for the weighted partitioning of the work­

pool and initial assignment of work. This initial estimation is adjusted at runtime using 

a combination of master-worker and work-stealing [30, 204] methods. At the level of 

individual cluster, we implement conventional master-worker model. The input images 

are loaded in memory at all the computing nodes. The master node (selected as the rank 

0 node assigned by MPI) is responsible for maintaining the list of registration points, and 

the results of block matching for each of these points. These data are maintained in the 

work-pool data structure. Each item of the work-pool contains the three coordinates of 

the block center, the displacement vector estimated by block matching, and the value of 
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correlation for the optimal location. The registration points are assigned to the worker 

nodes in small batches. Upon completion of the registration, the \Vorker reports the 

result back to master and requests more work if available. 

\Ve maintain the hierarchical structure of load balancing by designating a separate 

master node at each of the administrative domains involved in the computation. Each 

master node maintains a copy of the global work-pool. \Vhich arc identical in the begin-

ning of the computation. The portion of the work-pool assigned to the specific cluster 

is partitioned in meta-blocks (a sequence of blocks). which are passed between the clus­

ter nodes using the master-worker model. As soon as all the matches for a meta-block 

arc computed, they are communicated back to the master, and a new meta-block is 

requested. In case the portion of the work-pool assigned to a master is processed. the 

master continues with the ''remote'' portions of work (i.e .. those. initially assigned to 

other clusters). As soon as the processing of a "remote'' meta-block is complete, it is 

communicated to all the other master nodes to prevent duplicated computation. 

Fault tolerance \Ve perform data pre-processing sequentially on the fastest machine 

at the computer lab. Parallel block matching uses combined computational facilities of 

the computer lab and SciClone, and the FE1I solver is executed sequentially on the 

fastest machine at the computer lab. 

The implementation is loosely coupled. with the results of separate processing steps 

communicated over the file system. This introduces the first level of fault tolerance. i.e .. 

if the failure takes place at any of the stages, we can restart just the failed phase of the 

algorithm and recover the computation. 

The communication between different dusters is handled via TCP sockets. In case of 
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a hardvvare problem on one of the clusters, the rest of the unaffected sites can continue 

with the execution. A monolit hie code which uses a conventional :\IPI implementation 

would crash in the case of a single node failure. because conventionall\IPI implementa­

tions do not include provisions for automatic checkpoint and restart [140]. 

The redundant workpool data structure maintained at each of the master nodes as-

sists not only in load balancing. but also in providing the second level of defense against 

hardware failures. Based on the statistical data collected over the years, hardware 

failures are usually caused by the disruptions of power, or faults in air conditioning at 

Sci Clone. Such problems cannot be anticipated, and the recovery of the cluster follmving 

the failure takes hours. In case there is a failure that makes one of the clusters inacces-

sible, the block matching computation can continue, and the results already calculated 

will be secured at the replica of the work-pool at the other master node. 

Both the frequency of work-pool updates within each cluster and the intra-cluster 

synchronization is an adjustable trade-off between the communication time and a pos-

sibility of duplicate block processing. This situation is possible when a block has been 

processed on one site. but the work-pool update has not yet been propagated. Hmvever, 

note that frequent synchronization of work-pools can be done by a separate background 

thread not involved in the compntation, and the cmmmmication latencies associated 

with intra-cluster updates C<Ul be generally hidden by employing non-blocking com­

munication feature of existing communication libraries. OveralL these side effects arc 

negligible compared to the benefits \VC gain by our ability to save the computation state. 

The distributed implementation was exposed to the hospital users as a web service. 

In order to use the service. the client-side script was developed to implement initial data 
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correctness checks, contact the server and transfer the computation results back to the 

hospitaL ac; shown in Figure 4.2. 

4.1.4 Evaluation 

The performance evaluation is based on non-rigid registration of seven image datasets 

acquired at BvVH. Tvvo of these seven registration computatiom; were accomplished 

during the course of surgery, while the rest of the computations were done retrospec-

tively. The surgery for case 6 was postponed in the last moment due to patient's health 

complications, and the analysis was performed retrospectiYely. All of the intra-operative 

computations utilized SciClone. which was reserved in ml-nmce for the neurosurgery use. 

All the experiments for the implementation we present here were performed in the 

combined computing resources of t\vo clusters: (1) a cluster of 30 Dell Precision 360n 

single-core CPU at 3 to 3.GGHz and 1GB SDRAI\1 3331\IHz which is used by computer 

science students for class assignments and projects (CSLab) and (2) SciClone clu:'lter [56]. 

These clusters belong to different administrative domains (users need separate accounts 

to access these resources). SciClone is a heterogeneous cluster maintained at College of 

\Villiam and 1\,Iary. It is arranged as seven sub-clusters which can be used individually 

or together. The extensive details of hardware configuration and structure of SciClone 

arc available elsewhere [56]. The configuration details of the SciClone sub-clusters fol-

low, since they have changed since the time experimental evaluation was performed. 

Whirlwind: 64 single-CPU Snn Fire V120 servers. 6501\IHz. 1GB RAM. 36.4GB HDD; 

2) Typhoon: 64 single-CPU Sun Ultra 5 workstations. :333MHz. 2561\IB RAI\1, 9.1GB 

HDD: 3) Twistet~ 32 dual-CPU Sun Fire 280R servers, 9001\IHz, 2GB RA1I, 72.8GB 
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HDD; 4) Tornado: 32 dual-CPU Sun Ultra 60 workstations, 3GOTv1Hz, 512l\IB RAT\L 

18.2GB HDD: 5) Gu~j:,tream: 6 dual-CPU Sun Ultra 60 workstations, %0.\IHz, 5121\IB 

RA.\1, 45 .. 5-63.7 GB HDD: 6) Hurricane: 4 quad-CPU Sun Enterprise 420R servers. 

4501\1Hz, 4GB RAT\ I, 18.2GB HDD: 7) Vorte.:c : 4 quad-CPU Sun Fire V 440 servers, 

1.28GHz, 8-16GB RAM, 292GB HDD. Three additional heavily configured server nodes 

act as front-ends and file servers for the entire system. and two network server nodes 

provide application gateways between SciClone's various internal and external networks. 

In aggregate, at the time of the experimental evaluation SciClone provided 212 nodes 

with a total of 311 CPUs, 236GB of RAM, 15.1 TB of disk capacity, and 362 GFLOPS 

peak floating point performance. \Ve used all sub-clusters of SciClone except Typhoon, 

which at the time was the least powerful resource. 

The quantitative results of the evaluation are summarized in Tables 4.2, 4.4, and 4.2 

and in Figure 4.3. 
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Figure 4.3: Scalability of the time-critical part of registration implementation with block sizes 
:3 x 3 x 3 (left) and 11 x 11 x 11 (right). 

Portability of the code has been improved. Original implementation used PV?\1 [23] 

that is not widely supporteclnm\·adays. The new implementation is ba.secl on l\IPI [184]. 

103 



Table 4.2: Execution time (:oec:oncb) of the intra-surgery part of the restructured irnplementa-

tion at various st.age:-; of development. 

Setup Cas(' ID 
2 ;~ ~t <) (i 7 

using original 1 G.'i8 18GO :20!JO :288:2 n11 2:102 :n:~o 

PVi\1 implerneJttat ion 
Sci Clone (2<10 proc:s). 745 6:39 59.] 617 570 ;)50.4 ll;)J 
no load-balancing 
Pre- and post-processing; 
on ;;ingle CS node. Bi\1 on 
Sci Clone ( 240 procs), 22G 12:3 182 189 217 174 189 
no load-balancing 
Pre- and post-processing 
on ;;ingle CS node, pre-
processing in advance, Bi\[ 
on SciClone (240 proes), 3;) ;)3 56 47 42 42 <18 
dynamic load-balancing 
Pre- and post-processing 
on single CS node, pre-
processing in advance, Bi\I 
on SciClone (240 procs) 
and CSLab(29 procs), dynamic 30 40 42 37 34 33 35 
2-level load-balancing 

From porting the code from B\VH-HPC cluster at B\VH to SciClone in dedicated mode 

at \V&Ivi we improved the performance of the application by 3.5 times (see first and 

second rows of the Table 4.2). One \Vould expect a linear improvement (i.e., 60 times) 

due to the scalable nature of the algorithm. However. this was not feasible due to the 

following three reasons: (1) monolithic design of the original implementation, i.e., it was 

designed to run on the same static configuration from the beginning to the encl: (2) the 

fastest processors of Sci Clone were much slower (in terms of CPU speed) than the nodes 

available at the hospital and CSLa.b, and (:3) presence of work load imbalances. 

Decoupling of the pre-processing phase from intra-operative image registration. This 

allowed us to: (1) execute the sequential pre-processing phase on the fastest workstation 

available and (2) mask latencies caused by 1IPI initialization of the parallel component 

of the implementation. Initialization of MPI, depending on the implementation, ma~· 
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include startup of the daemon processes at each of the nodes. which adds up to a non-

negligible delay when using hundreds of nodes. As a result we were able to reduce the 

response time of the non-rigid registration on average by more than 12 minutes (see 

second and third rows of Table 4.2 and Figure 4.2). The maximum improvement we 

observed so far was more than 16 minutes (case 1). 

1Unlti-level dynamic load balancing over multiple clusters reduced the execution time 

by more than 14 minutes vvhen we used 240 processors and the decoupled implementation 

of the code (compare the second row ~with the fourth and fifth rows of Table 4.2). The 

flexibility we achieved from the portability of the code and these two optimizations 

( decoupling and dynamic load balancing) together reduced the absolute response time 

of the parallel block matching code alone by two orders of magnitude. \Vc can complete 

this step in 1225 seconds (case 1) and 2890 seconds (case 7) using the local resources 

available at the hospitaL while with all the computational resources of multiple clusters 

we could possibly utilize, \Ve now complete it in less than 30 seconds, sec Table 4.4. These 

experimental data indicate, that we gain about 50% improvement in the performance of 

the application due to dynamic load balancing. i.e., we can achieve the same performance 

with half of the resources. This is a particularly important result for hospitals, where 

space is at premium. 

~Veb-ser-vices became an option after the dccoupliug and implementing the function­

ality to handle platform-dependent aspects of heterogeneous and time-shared clusters. 

The use of web-service and hence the elimination of the human factor from the loop 

reduced the response time by roughly 20 minutes. Originally, the initialization involwd 

two teams, one at 13\VH and another at \V &l\L and four different administratiw do-
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Table 4.3: Execution time (seconds) of block matching with static work distribution on Sci Clone 
cluster. 

ID Number of processors 
40 80 120 160 198 240 

1 377.82 199.96 142.14 110.53 91.33 60.84 
2 173.41 101.49 158.08 89.72 52.75 29.70 
3 316.20 159.34 105.50 81.40 65.28 53.54 
4 407.82 218.86 150 .. 56 11:3.17 93.67 71.17 
5 :353.96 183.20 127.19 10.5.06 83.43 57.09 
6 298.97 151.16 104.72 81.:30 64.13 49.5:3 
7 300.99 151.48 105.10 80.11 64.37 49.49 

Table 4.4: Execution time (seconds) of block matching with dynamic \vork distribution on 
Sc:iClone cluster. 

ID Number of processors 
40 80 120 160 198 240 

1 200.84 107.77 77.67 63.41 54.65 33.27 
2 103.65 77.62 125.95 111.62 36.89 17.06 
3 217.70 109.74 75.45 56.62 47.33 38.80 
4 242.35 125.64 91.2:3 70.19 57.80 43.98 
5 189.17 100.95 73.00 57.73 49.75 32.47 
6 152.13 81.20 57.97 45.65 37.49 27 .. 51 
7 150.81 78.98 57.35 45.91 37.21 27.91 

mains, taking up to 30 minutes of time. \Vith the use of web-services, the time to start 

the application at B\VH and initiate its execution at \V &l\I was reduced to 75 seconds 

( 57s to send the images from 13\VH to \V&l\I and 18s to retrieve the output at B\VH 

from \V &l\I). These data vary due to network traffic. but consistently we observe them 

to be below 2 minutes total. which is the bare-minimum cost for data transfer <mel I/0 

for the application. Computations for Case 7 (run retrospectively) took less than 7 

minutes (as measured betvYeen the time the data was submitted for computation from 

B\VH until the result was rec:cived back from \V &l\I). This is an improvement in the 

response time by 13 to 15 tirnes. 

Fault-tolerance became very important attribute of the code, since by increasing rhc 
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hardvvare components and the complexity of the distributed computing environment we 

increase the chances for failures. Our implementation can safel:· run the registration 

procedure on several clusters in different locations at a modest overhead of 61/{ over the 

non-fault-tolerant version, and deliver results of the computation even in case of the 

failures of all but one cluster involved. 

4.1.5 Discussion 

\Ve developed a parallel and distributed web-service based implementation of the NRR 

code that is capable of delivering registration results within 5 minutes. r-..Ioreover, we 

shov.-ed that this result can be achieved in the absence of the high-performance infrastruc­

ture within the hospital, as the existing communication networks can provide seamless 

access to the remote computing sites. The result we demonstrated confirmed, for the 

first time, the feasibility of ncar real-time image fusion for brain MRI using landmark 

tracking across the entire image volume. This became possible because we were able to 

achieve: (1) the reduction of the execution time of the parallel block matching from 2890 

seconds at B\VH to less than 30 seconds at \V&M (for the last intra-operative non-rigid 

registration case); (2) effective use of a large number of processors, with dynamic load 

balancing, we improved the performance of parallel block matching by 50% compared 

with the static \Vork distribution: ( 3) the reduction of the overheads associated with 

manual initialization and transfer of data from 13\VH from 20-30 minutes to about 60 

seconds; (4) ease-of-use: and (5) the first fault-tolerant and web-service based non-rigid 

registration code using landmark tracking across the entire volume. 

The computations we perform arc supporting clinical research activities underway at 
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D\VH. It has yet to be shown whether the software infrastructure we developed can be 

used for decision-m.aking during the course of a nenrosurgery. It is clear. however, that 

there is great potential in using n biq ui tons Co \V s for performing intensive time-critical 

computations for medical applications within the clinical time constraints. 

4.2 Grid-Enabled Infrastructure 

4.2.1 Motivation 

Registration accuracy, robustness, and performance can all be affected by the values of 

NRR parameters. Sensitivity of the method is defined as the impact of the small changes 

in the algorithm inputs and parameters on the result of computation. Sensitivity of the 

specific NRR method we stndy has previously not been evaluated. In this Section we 

present an initial evaluation of the NRR sensitivity, vYhich motivates our studies in de­

veloping a Grid-enabled infrastructure for parametric studies and speculative execution 

of NRR. 

The default parameter valnes for the NRR computation were suggested in [53]. Pre­

viously. results of registration \\'ere reported with the block dimensions fixed to 7 x 7 x 7, 

and cumulative rejection rate of 25%. These settings were shown to give significant 

improvement in registration accuracy as compared to rigid registration only. This result 

was verified in multiple stndies using clinical data both retrospectively and prospec-

tively [53. 8, 7]. 

High dimensionality of the parameter space precludes its exhaustive evahmtion. At 

the same time, some of the parameters (e.g .. block size used in block matching, or 
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percentage of the rejected blocks) belong to well-defined ranges. Block size cannot ex-

ceed window size, and has dimensions expressed in multiples of the corresponding ,·oxel 

dimensions. The outlier ratio cannot be higher than 50;{ of the measured displace­

ments [169]. The optimum selection of those parameter values is non-triviaL as we 

do not know in advance \vhat will be the mixture of outliers in the data. and what 

will be the magnitude of deformation. \Ve select the parameter subspace of the regis-

tration algorithm by varying outlier rejection fraction 7'2 ancl block size n as follows: 

B E {5, 7, 9, 11 }, T'J E {5, 10, 15. 20, 25, 30, 35. 40, 45, 50}. The rest of the parameters 

were fixed to their default values. which we discussed in Chapter 2. 

\Ve evaluated the sensitivity of the algorithm to changes in the selected parameters 

on clinical data using expert-placed corresponding brain landmarks in the floating and 

target images from [53]. The initial alignment accuracy is evaluated by measuring the 

Euclidian distance between the corresponding landmark locations in the floating and 

reference data. Deformation field derived during non-rigid registration is then used 

to warp the floating image to the reference image. The post-registration accuracy is 

measured by computing Euclidian distances between the corresponding landmarks in 

the w:uped (registered) and reference images. Preference was given to this method over 

the automated assessment (e.g .. the method described in [8]), because it allows for the 

collection of localized accuracy measurements throughout the image volume~. 

The impact of the selected parameters on registration accuracy was evaluated on 6 

I\IRI datasets previously nsed in [53]. Ideally. warped landmarks of the floating image 

should coincide with the oues located on the reference inwge. The accuracy of regis­

tration at the landmark locations can be assessed by computing distances between the 
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corresponding landmarks in floating and reference images (before registration). and be­

tween floating and registered images (after registration). The registration accmacy is 

considered good. if the registration error at a given landmark location does not exceed 

the smallest voxel dimension. Note, that iJcntification of anatomical landmarks is chal­

lenging for clinical data and depends on the specifics of a particular dataset. This made 

identification of the same number of landmarks in each of the images not possible. 

First we consider the impact of varying the block si;ce on the initial sparse displace-

rnent field recovered by block matching. The landmark-measmed error before non-rigid 

registration for each case is shown in Table 4.5. Table 4.6 summarizes the improvement 

in accuracy for each of the landmarks with the optimum combination of B and r2, as 

compared to the default parameter settings. Based on the experimental data. in most 

cases, good registration accuracy is achieved using the default parameters as suggested 

by Clatz et al. [53]. For example, for Case 2 (see Figure 4.4), \Ve did not achieve any 

noticeable improvement in accuracy by varying the studied parameters. This was not 

true for Case 3, where such improvement was as high as 2.9 mm. In both cases, however. 

there were landmark points, where registration error exceeded voxel dimensions. 

The experimental results suggest, that the optimum value of outlier rejection is varied 

in different locations of the image. For example, if we consider landmarks 5 and 12 in 

Case 1. the optimal combination of the studied parameters is different in each case, 

see Figure 4.5. \Vhen the rate of outlier rejection at a certain location is insufficient. 

registration error will increase due to the influence of incorrect matches. Otherwise. 

when the rejection rate is too conservative. correct matches may be discarded. which 

will lead to higher approximation error. 
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Table 4.5: Landmark error before registratiou (mm) 

Case 1 2 3 4 5 G 7 8 D 10 11 12 

1 O.D 2.4 1.7 1.8 5.0 3.:3 1.7 2.1 2.6 2.0 2.1 1.8 
2 1.9 0.8 3.G 1.7 1.7 0.8 0.8 1.2 1.2 0.8 3.6 0.8 
:3 6.7 3.7 0.9 9.7 3.7 3.0 2.0 
4 1.8 0.9 6.8 4.7 5.7 4.5 1.:3 4.6 1.3 6.4 3.7 
5 0.0 0.8 1.2 0.8 4.2 6.1 D.O 6 -.0 6 r: .0 9.0 
6 0.8 1.9 3.5 0.8 2.7 0.8 1.7 0.0 

Table 4.6: Absolute improvement in accuracy using optimal fl and r 2 compared to B 7, 
r2 = 25%(mm) 

Case 1 2 3 4 5 6 
..., 

8 9 10 11 12 I 

1 0.2 0.1 0.2 0.2 0.3 0.1 0.3 0.4 0.0 0.2 0.2 0.3 
2 0.2 0.0 0.0 0.0 0.2 0.3 0.3 0.2 0.5 0.3 0.1 0.2 
3 0.6 1.0 0.2 2.9 0.0 0.1 0.3 n/a n/a n/a n/a n/a 
4 0.9 0.8 0.2 0.4 0.7 o .. s 0.7 0.4 0.3 0.7 0.7 n/a 
5 0.0 0.3 0.0 0.0 0.8 0.5 0.4 0.0 0.3 0.4 n/a n/a 
6 0.2 0.1 0.2 0.1 2.0 0.1 0.0 0.1 n/a nja n/a n/a 

One approach to address the problem of sub-optimal parameter selection is to use 

speculative ex:ecution of registration, as suggested by Ino et al. [110]. The idea of spec-

ulativc execution is to compute multiple registrations on the same input data using 

different parameter settings. Variability between the results can then be used to es-

timate sensitivity of the method, e.g., by automatically calculating certain metrics to 

assure registration accuracy. A number of such metrics for NRR have been proposed by 

Christensen et al. [49]. Archip et al. [8] used Hausdorff distance between edges identi-

fied automatically to prospectively evaluate the accuracy of the registration achieved by 

the algorithm of Clatz et al. [53]. Recently, we proposed a robust modification of the 

HD metric, which allows local evaluation of the registration accuracy in a region of the 

image [71]. Automated approaches for NRR assessment are particularly useful in the 

context of The speculative execution. 
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Figure 4.4: Distribution of landmark errors before registration C' x"). and after registration 
with the default parameters C+ .. ): case 2 (left), case 4 (right). 
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Figure 4.5: Infiueuce of the block size and rejection rate on landnutrk error: case L landmark 
5 (left). and case L landmark 12 (right). 

One of the practical problems in performing speculative registration is the enormous 

amount of computation required. For example. based on the evaluation results presented 

earlier in Table 4.1, we need more than 11 hours of computation on a high-end worksta-

tion (the timings were collected for the highly optimized code on Intel Xeon 3.7GHz), 

to sequentially complete the parameter study for block matching only. Considering that 

there may be 3-4 different similarity metrics that must be evaluated, the range of valid 

values for the outlier rejection in the solver, a.nd the need to assess the accuracy of each 

NRR result, the total time required to perform exhaustive evaluation on a single dataset 

is in the order of days of sequential processing. 
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\Yhile the implementation presented in the prev1ous Section proved to be practi-

cal and useful during neurosurgery research studies. it has a number of deficiencies. 

These deficiencies are particularly important in the context of using the framework for 

speculati\·e NRR computations. Although the idea we described to manage workload 

distribution is not constrained to be used with two clusters, in practice it is not straight­

forward to extend this implementation to larger scale. 

As discussed earlier. we were able to disable the batch scheduling system to ensure 

that the NRR computation gets immediate access to the SciClone resources. Direct 

access to computational resources at any other non-affiliated computational duster can­

not be arranged, and automatic handling of the interaction with the batch scheduling 

systems must be part of the framework. Security is a critical concern for NRR. since the 

patient data is passed over the unsecured network. In our case, the communication \Vas 

done via authenticated secure shell sessions (SSH). \Yith the growing number of com­

puting sites located in different administrative domains, manual user authentication at 

each of the sites is not an option. Speculative execution and parametric studies of NRR 

motivate the use of highly distributed infrastructure with the established mechanisms 

for security and authentication, data transfer and resource management. Implementa-

tion of speculati\·e registration should be portable and flexible to enable easy inclusion 

of new computational resources. 

The idea of harnessing the power of the large number of computational resources 

to solve a single problem has earlier motivated the concept and development of Grid 

compv.ting. Following the definition. computational grid is a ·' ... hard\vare and software 

infrastructure that provides dependable, consistent, pervasive. and inexpensive access to 
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high-end computational capabilities·' [83]. The three defining features that distinguish 

Grid from cluster computing have been outlined by Foster in [81]. First, the resources 

involved in the computation must not be subject to centralized control. This facilitates 

expansion and openness of the Grid. Second. Grid infrastructure must be built based 

on " ... standard, open, general-purpose protocols and interfaces." Third. Grid must be 

capable to deliver nontrivial qualities of service. 

In the last decade significant effort has been focused on development of the supporting 

standards and software [24]. deploying production grid systems worldwide and porting 

applications on those systems [154]. One such production system under continuous 

improvement and development is USA-based TeraGrid [188]. As of l\Iay 2007, TeraGrid 

was connecting 11 high-end computational sites within the USA. providing " ... more 

than 250 TFLOPS of computing capability and more than 30 petabytes of storage" 

and therefore making TeraGrid '· ... the world's largest, most comprehensive distributed 

cyberinfrastructure for open scientific research'. [188]. Currently. TeraGrid connects 11 

computational centers providing cumulative peak performance of 1124 teraflops. The 

capabilities of TeraGrid are continuously growing, providing computational and storage 

resources otherwise unavailable to any single research institution worldwide. 

The computing resources of TeraGrid cyberinfrastructure satisfy the definition of a 

Grid system. The resources of TeraGrid are not subject to centralized control: each of 

the 11 computational sites represents a separate administrative domains. The TeraGrid 

infrastructure is built based on open, community-defined standards. The core docu­

ment that defines architecture of the Grid. as it is implemented in TeraGrid. is Open 

Grid Services Architecture (OGSA) [84]. OGSA provides a high-level definition of for 
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most of the services that are utilized on a Grid: security and authentication, resource 

management and delta transfer. Open Grid Sen-ices Infrastructure ( OGSI) is another 

community standard. that specifies technical details of how Grid services must be imple­

mented [80]. In the latest developments, OGSI has been superseded by the extensions 

to \Veb Service Resource Framework (\VSRF), which defines procedures for accessing 

and providing open services [4]. Following OGSA and \YSRF one can develop an open 

Grid infrastructure, and access the resources of such a Grid. Globus Toolkit [3] is an 

open-source software that implements the standards defined by OGSI. Globus Toolkit 

is the core middlcware that enables TcraGrid implementation. 

The features of Grid in general and its specific implementation m TeraGrid na-

tional cyberinfrastructure make it the platform of choice for the highly demanding 

multi-parameter computations of NRR. The capabilities of the Grid have been pre­

vionsly recognized and used for a number of medical applications. In the next Section 

we discuss the applications of Grid computing for clinical problems, and in non-rigid 

registration in particular. 

4.2.2 Grid Computing for Medical Applications 

Concurrently with the development of the grid technology, \Ve witness significant ad-

vances in medical image acquisition, analysis and visualization. I\Iedical images of high 

resolution and of different modalities are essential in prevention, diagnosis and treat­

ment of many diseases. As the related technology is improving and clinical studies 

complete, the demand for analysis of the medical data will be growing. Distributed 

computational and storage resources. like the TeraGricL provide a promising platform 
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to meet such demands. 1Iedical applications that require processing and archival of large 

amounts of uata contributed by geographically distributed medical centers were natn-

rally some of the first to embrace grid computing. Representative projects include 1Iam­

moGrid (maintenance and analysis of mammography data: Europe) [79] and Biomedical 

Informatics Research Network ( BIRN) (analysis of functional 1IRI; USA) [28]. The 

infrastructures developed by these projects (by design) are highly specialized for the 

application domain. 

In the context of our project, we are interested in using general pmpose research 

grid environment for the NRR computations. This idea has been evaluated in the 

past for different medical applications. Dong et al. [69] present results of modeling 

whole human arterial tree on TeraGrid. Grid Enabled Neurosurgical Imaging Using 

Simulation (GENIUS) project [130] targets modeling and visualization of cerebral blood 

fl.mv \\"ithin 15-30 minutes to assist in surgical planning. The common feature of these 

two applications is that they shmv linear scalability up to thousands of cores. Therefore, 

they can leverage virtually any large number of nodes available to the application. 

The lack of global TeraGrid resource management system makes it difficult to use 

large number of nodes at different sites for cross-site runs without prior arrangements. 

The aforementioned projects circumvented this problem by using the advance reserva­

tion capabilities available at some TeraGrid sites. However, advance reservations are 

not generally favored by the site administrators, as they tend to reduce the resource 

utilization [146]. This is possibly the primar)' reason why advance reservations arc not 

available at most of the TeraGrid sites. Moreover, in the case of intra-operative pro­

cessing for IGNS, the actual time of the surgery is not known precisely well in advance. 
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The surgery may also be canceled or postponed due to the last minute considerations, 

e.g .. changes in the patient's condition. The GENIUS project [130] considered the use 

of SPRUCE [22], urgent computing system under development on TeraGrid. This idea 

is more practical. as it allows to dynamically affect the scheduling decisions to favor 

selected jobs. In practice, to the best of our knowledge, only one site of the TeraGrid 

(UC/ ANL) provides SPRUCE-directed job preemption, and at some other limited num­

ber of sites SPRUCE can be used to schedule the SPRUCE jobs to run first, once the 

resources become available. 

Non-rigid image registration is usually amenable to parallelization. However, its 

scalability is highly dependent on the specific algorithm used, and the NRR methods 

known to us [75, 48, 112, 198] do not require more than hundreds of nodes. StilL such 

computational resources are not available locall~' at most hospitals, and a number of 

groups studied how the grid resources specifically can be used to increase the perfor-

mance of medical image processing computations. Lippman and Kn1ggel [127] present 

a framework for intra-operative image registration on the grid. However, they use cus-

tomized grid environment (GE~ISS [92]), and do not evaluate the procedure on a general 

research grid, like the TeraGrid. Stefanescu et aL [187] describe a parallel implemen-

tation of non-rigid registration deployed on a cluster of workstations as a web service 

(we evaluated this approach in [48]). Gropp et aL [100] study rigid registration. ·which 

is a computationally simpler problem, and discuss its different aspects in the context of 

grid computing. Glatard et al. [94] present a grid-enabled service-based infrastructure 

for comparing the performance of rigid registration implementations. Their work does 

explore the usc of general-purpose grid resources. and uses workflow mocld for describing 
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and scheduling the execution. However, their evaluation is clone using the European grid 

infrastructure. The approaches to grid application development and workflow definition 

are different from those that can he applied on TeraGricL and cannot he directb' used 

in our application. In general. we observe that the studies of the NRR methods that are 

used in practice do not leverage general purpose grid systems. 

4.2.3 Implementation 

\Ve leverage the cluster-based implementation presented earlier to develop the Grid­

based NRR infrastructure. The Grid-based implementation follows the workflow design. 

In a workflow, the computation is coordinated among the participating resources by 

processing tasks according to a defined set of rules to achieve an overall goal [107]. 

\Vorkflow can be implemented by manually organizing the interaction of the components, 

but in practice computational workflows are automated. \Vorkflow management systems 

are used to define and execute workflows, and organize the results produced during their 

execution. 

Essentially, our cluster-based implementation of NRR represents a workflow, smce 

the processing is not done in a monolithic component. The processing steps are loosely 

coupled, with the results of pre-processing passed to intra-operative computation as 

files. However, the coordination of the workflovv is not done by a generic workflmv 

management system. This significantly complicates the task of migrating, porting <lild 

extending the currently defined workflow. 

\Vithout going into the details of OGSA or Globus Toolkit architecture. consider 

the high-level procedure of job submission to a Gricl system. Defore access to the Grid 
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resources can be granted, the user and the resource must be mutually authenticated. 

Globus Toolkit implements authentication procedure using public key cryptography fa­

cilitated by X .. 509 certificates [202]. Every user or resource participating in the Grid 

activities must possess a valid certificate issued by a recognized Certificate Authority 

(CA). Note, that since the centralized control is not present in a Grid system, each of 

the participating administrative domains requires separate mutual authentication. In 

presence of multiple resource providers, the task of authentication may become unman-

ageable. This problem is resolved in Globus Toolkit by proxy certificates, which are 

issued on behalf of the user and delegate restricted credentials within the Public Key 

Infrastructure [202]. Proxy certificates allow to implement the so called single sign­

on feature, when the user needs to be authenticated only once to use all of the Grid 

resources, given all of those resources recognize a common Certificate Authority. 

After authentication the user is granted access to the Grid resources. OGSA defines 

that the Grid resources are available via Grid services. which are extensions of \Neb 

services. Again, clue to the lack of centralized control, the management of the resources 

at each specific Grid site is done by a Local Rescmrce I'vfanager, 'Nhich is usually a batch 

scheduler like PBS or LSF. OGSA defines a unified way to discover those resources, 

submit new job requests. monitor the job status. and communicate the results of the 

computation back to the client. \Vithin the Globus Toolkit. resources at a particular site 

are managed by a Grid Resource Acquisition and r-Ianagement system (GRAf-.1) [73]. 

GRAJ\1 is a service that can be accessed via the site-specific public contact address. and 

allows to abstract specifics of local resource management with a well-defined API. 

Finally. the last component \Yhich is critical for executing jobs on a Grid resource 

119 



IS the mechanism to provide data transfer functionality. The conventional means of 

transferring the data cannot be used clue to their incompatibility with the standards 

defining Grid Security Infrastructure, insufficient reliability and performance. The data 

transfer protocol that is used in Globus-supported grids is GridFTP [2]. From the user 

perspective, GridFTP is not significantly different from regular FTP, but it provides 

robust. secure and efficient file transfer, particularly optimized for transferring bulk 

data. 

Each TeraGrid site nms its own GRAJ\I and GridFTP servers, as part of server 

installation of Globus Toolkit. These services can be accessed via the publicly aYaila ble 

portable Globus client implementations. 

While TeraGrid resources can be accessed directly for individual job submission 

and data transfer, doing this on the large scale or as part of workflow execution is 

not practical. \Ve adopted Swift workflow scripting and management system [210] to 

implement and deploy NRR workflow. This choice was motivated by the follmving 

observations. 

1. Swift has been developed and evaluated to support grid implementation::-; that are 

based on Globus ToolkiL which allows to use this system without any modifications 

to schedule workflow::-; on TeraGrid. 

2. Swift uses a scripting language, SwiftScript, to define the workflow. SwiftScript 

is a powerful way of abstracting interaction of the processing tasks, which allows 

to define composite data inputs, dependencies between the processing tasks, and 

provides familiar control structure:,; like loops and conditional structures. which 

allovv flexible control over workftmv definition and execntion. 
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3. Svvift execution management system is highly flexible in its capabilities of inter­

acting with the various resource provides. It uses programmatic access to Globus-

managed resources by means of CoG Karajan [195]. Swift provides the flexibility 

of using the same unmodified workflow description script to interact with conven­

tional resources, like those managed by local batch scheduler, or even accessed in 

time-shared mode via direct login. 

4. Swift implements basic fault-tolerance of \Vorkftow execution at the individual task 

leveL which is critical for NRR computations. In case a particulcu· task fails to 

deliver the expected output data, Swift will re-schedule its execution, possibly on 

a different site. 

5. Task-level load-balancing is one of the functionalities provided by the Swift work-

flm\' execution infrastructure. The execution traces for the same computational 

task are continuously collected. These traces arc used to dynamically select the 

best performing site when the task is scheduled next. 

6. Data provenance mechanisms in Swift allow to abstract the site-specific file man-

agemcnt issues. All the inputs and outputs of the individual tasks are transparently 

communicated. and can be referenced within the SwiftScript through simple data 

pointers. 

Swift provides the means to define and execute the workflow, which consists of imli-

vidual processing tasks. Each of the processing tasks must be available as an execut,<blc 

at each of the sites, that will be involved in the workflow computation. The details of 

nmuing a specific task arc provided to Swift in the so called translation catalog available 
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Figure 4.6: .\"RR workflow diagram for single registration execution (shaded are the time-critical 
components of the workflow). 

at the client (submission) site. The translation catalog contains the identifier of the 

remote site where the executable is installed, together with the optional information on 

its invocation. For example. in order to execute an l\IPI-parallelized task, the number 

of nodes must be explicitly specified. In order to guarantee that the task execution will 

be able to complete on the systems managed by a site-specific Local Resource l\Ianager 

(LRl'vL e.g., PBS or LSF). estimated wa.ll dock time must also be induded in the task 

description. 

The execution sites are described in the Swift site catalog, located at the \\'orkftow 

submission site. The site catalog contains a pool clement for each execution site. The 

pool element specifies the details about file transfer and task invocation services at 

the given site. For the local resources, the file transfer method can be a local copy 

operation supported by the filesystem, and task invocation is local execution. For the 

pool elements corresponding to the TeraGrid sites. file transfer is clone through GridFTP 

(each TeraGrid site provides GridFTP service URL for file operations). and the remote 

resources are accessed via the Globus GRAl\14 [82] gatekeeper endpoint. Task submission 

for the remote sites is a complex operation that involves mutual authentication. secure 

transfer of the job descriptor ami monitoring of the job status. However. all these 
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complex details are handled transparently by the Swift execution engine. 

In order to implement the Grid-based vmrkflow using the Swift system. we restrnc-

ttued the cluster-based implementation to have loosely-coupled computation of NRR 

with the separate tasks for each processing step. As part of the prepanltion for Swift 

workflow execution, each of the executables must be compiled at a remote site, and ba­

sic profiling of the code is required to obtain the approximate execution time on typical 

input data. This is needed to estimate the expected walltime for each task. 

Single NRR workflow The NRR workflow diagram of a single NRR procedure 

together with the accuracy assessment module is shown in Figure 4.6 (the development 

of the accuracy assessment module is discussed in the next Chapter). The block matching 

task is parallelizcd using l\IPL and has been deployed on the TeraGrid sites for remote 

parallel execution. The other components of the workflow are executed on the local 

resources (single node of the \\'&l\I SciClone cluster). This NRR \Yorkflow corresponds 

to the base case for computation supported by our cluster-based implementation we 

discussed earlier, augmented with the accuracy assessment module. 

Speculative NRR workflow Speculative execution of NRR literally requires just 

a few additional lines of SwiftSc:ript to iterate through the user-defined parameter space. 

Using the Swift filesystem mappers. each intermediate and the end result of the specu-

lativc computation is given a unique self-descriptive name, and stored in a user-defined 

location on the local filesystem. For the speculative NRR workflmv. block matching, 

solver. and NRR assessment tasks are exec:nted on the remote TeraGrid resources. The 

rest of the tasks are computed locally. The complete diagram of the speculative exe-

cution of the NRR workflow for the parametric: c>tudy of a parameter subset of block 
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Figure 4.7: :\RR workflow diagram for speculative execution of the registration vYith BE {7. 9}. 
YV E {15.17.19}. and r 2 E {0.2,0.:~} (this Figure is ouly for the purposes of illustrating the 
connections betweeu the workflow components). 

matching block size (B), search window size (rV) and the value of fraction of the rejected 

registration points (r2) is shown in Figure 4.7. 

\Ye believe the Swift-based workflow description of NRR as a significant improvement 

over the custom implementation in [48]. In this new implementation we are able to 

easily include additional computing resources for NRR execution. T\Iodification of the 

procedure to include new intermediate steps, or even major changes in the workflow 

(like speculative execution) minimum updates to the existing workflow description. 

4.2.4 Evaluation 

\\'e used three sites ofTeraGrid (TACC Lonestar, NCSA Abe, NCSA Mercury) to install 

components of the workflow that we selected for remote execution. These sites were 

chosen among the currently available 11 TeraGrid sites because they provide the most 

convenient development environment (multi-core Intel nodes). Our implementation of 

the NRR has been originally developed and tuned in similar environments. We expected 

that porting of the codes would require less effort for the selected sites as compared to, 

for example. BlueGene/L or Cray XT::l platforms. also available within TeraGricl. 

Porting of the NRR code included setup of the supporting open source libraries. 
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which were not available at the sites \'>T u::sed. As part of the ::setup, \Ve had to update the 

local firewall configuration on SciClone to allmv incoming connections from the TeraGrid 

sites. Open firewall ports is a necessary condition for using remote Globus GRAI\1 

service. Access to the TeraGrid resources is simplified with single sign-on procedure 

and Globus Security Infrastructure [82]. The user password is entered once at the local 

site (Sci Clone), and after that all job submi::ssions and data transfers to and from the 

TemGrid sites are transparent from the SciClone user perspective. 

The hardware and software configuration for the selected sites together with the 

benchmarked execution times for the workflow components are summarized in Table 4. 7. 

There are two observations to be made. First, hardware configurations vvere introduced 

at different times on different TeraGrid site::;. Therefore, we observe significant het-

erogeneity and disparity in processing power for the available nodes. Second, it is not 

possible to use the same compiler and MPI implementation on all TeraGrid sites. This 

creates significant difficulties for porting legacy codes, since different compilers may re­

quire different configurations and. sometimes, may simply fail to compile the code. As 

the results of the benchmark runs for the installed components show (see Table 4. 7), ex­

ecution times vary significantly for the same level optimization >vith different compilers, 

exaggerated even more by the non-uniformity of the clock speeds. 

Single NRR instance execution \Ve performed experimental evaluation of the 

single instance of NRR workflow (see Figure 4.G) at each of the three sites of the Tera­

Grid in Table 4.7. In each case, block matching was executed on 10 nodes at a remote 

site, while the rest of the workflow components were run on the single node of the 

SciClone cluster. The execution timeline for NCSA Abe cluster is summarizr:d in Fig-
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Table 4. 7: Smmnm)· of the hardware and software enYironments. and proce~sing times on a 
single node for the time critical components of the ::\RR workfiow: sequential block matching 
( Cl), solver ( C2). registration n::;s~c•ssment (C3). Benchmark setup: 55K registration points. 
B = 7. TV= 17. ;::::.:LGK me::;h venice:->. 

vY&l\1 SciClone TACC Lonestar NCSA Abe NCSA l\Iercnry 

Opteron 2218 Intel Xeou Intel G4 Clowertown Intel I ta.ni urn 2 
2.GGHz, 8GB 2.GGHz, 8GB 2.:33GHz. 8GB 1.5GHz, 4GB 
gee 4.1.2, -03 icc 10.1. -0:3 gee 3.4.G, -03 gee 3.2.2. -03 

l\IVAPICH2-1.0.1 l\IVAPICH-1.0.1 rviPICH-Vl\II 2.2.0-3 l\IPICH-Gl\11.2.5 
C1 275 sec 294 sec 418 sec G08 sec 
C2 G sec 27 sec 12 sec 21 sec 
C3 24 sec 22 sec 182 sec 495 sec 

ure 4.8. Although we did not use any advcmce resource reservation capabilities, which 

are available at some sites of TeraGrid, \Ve were able to complete execution and collect 

traces without major queuing delays at each of the tested sites. \Ve observed that the 

file transfer delays (maximum below 30 sec) were negligible in comparison to the speed 

improvement in block matching computation due to parallelization in each case. This is 

in part attributed to high-performance GridFTP protocol, which in our experience pro-

vides faster transfer of image data as compared to SFTP that we used in [48]. The NRR 

workflow was completed in less than G min. This includes point selection componeut, 

which can be evaluated before the time-critical part of the computation. 

Speculative NRR execution The timeline of speculative NRR execntiou for a 

relatively small parameter search space is shown in Figure 4.9 (this corresponds to the 

workflow diagram in Figure 4.7). The total time required to complete such speculative 

execution was in this particular case about 20 min. Observe. that the execution of the 

single block matching component on Lonestar site reportedly took more than 800 sec in 

the speculative run. \\'e attribute this to the intermittent overload of the remote GRAI\I 

service. which might have prevented the timely propagation of the job update status to 
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the submitting client. 

The resources available within the Tera.Grid are sufficient for concurrent execution 

of all independent branches of the workflow shown in Figure 4. 7. Therefore, in the ideal 

case, ignoring all overheads, one could expect that the total time required for speculative 

execution would be equal to the longest execution of single registration. We measured 

this time by executing a. single instance of NRR on each of the sites, and the maximum 

execution time we observed was under 10 min (without accounting for the queue delays). 
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In practice, a number of factors are contributing to the increased processing time, as 

compared to the ideal case: 

(1) As we show in Table 4. 7. time required to complete the same task varies depending 

on the selected TeraGricl site. The current procedure of the workflow scheduling by Swift 

execution engine docs not take into account execution time during the process of resource 

selection (the same task is aYailable for execution at all three sites). 

(2) Due to the fact that the resources at each site are available through the remote 

LRL\1, some of the jobs will be delayed in the queue. In our case, as shown in Figure 4.9. 

cumulative queuing delays for all jobs were about 20 minutes (!), with the maximum 

individual queued time of 385 sec. 

(3) There arc certain constraints in the Swift scheduling procedure, that limit the 

maximum number of jobs that are allowed to run at a given site at the same time (the 

so-called job thmttle limit). Because of this, there only 4. not 6, concurrent executions 

of block matching initially. see Figure 4.9. The job throttle limits are in place to prevent 

overloading the GRAl\I serYice with the large number of concurrent job submissions. 

(4) There are multiple minor overheads due to file staging (transfers of input and 

output files), task scheduling, Swift book-keeping, etc. Current scheduling policy used in 

Swift does not account for minimization of the file transfers (e.g .. in Figure 4.9, observe 

that assessment task is performed on sites different from where solver was run to produce 

registration results). These are. however, minor issues compared to the first three items. 

There is on-going \Vork to address the limitations that negatively affect the per-

fonnance of throughput-oriented applications. like speculative NRR. on TeraGrid. Al-

though in our evaluation we did not experience queue delays. they are to be expected in 
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the general case. \Ye expect one of the problems that will need to be addressed for the 

intra-operative application of speculative execution "~Nill be how to reduce the impa.ct 

of the queue delays at the remote site. One approach, which has been considered by 

the community, is to estimate the remote LR:M queue \\'ait time. and use to adjust the 

task scheduling (queue prediction services are provided by all the TeraGrid sites). As we 

show in Figure 4.10, wait time is dependent on the job execution time and the number of 

processors requested. Moreover, scheduling policies are not uniform across the TeraGrid 

sites (e.g .. some sites favor long jobs. and some sites give preference to short-running 

tasks). and are changing with the time. The dynamic selection of the job configuration 

can potentially improve job throughput. 

Conceptually different approach is currently under development within the broader 

grid \Vorkfiow community. The idea is to use multi-level scheduling. Using this approach, 

a group of nodes within a cluster is allocated, and then used to schedule multiple smaller 

tasks of the workflow. Falkon [IG5] implements this concept, and has been shown to 

achieve very high throughput for the applications they evaluated. The use of multi-level 

scheduling also helps to alleviate the restriction on the maximum task concurrency. 

The limits currently in place are the safeguards to prevent overloading of the remote 

GRAM service by the large number of jobs. Scheduling of smaller jobs within the 

larger allocation would not require interaction with GRA~vl. We expect to see significant 

benefits in using Falkon and other similar techniques under development (e.g., Coasters 

resource provider developed within Swift) for executing speculative NRR workfiows. 

File transfer costs were insignificant for the reduced parametric studies we performed. 

However, for the full-scale parametric studies workflow scheduling >Yill need to take into 
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Figure 4.10: Estimation of queue wait times and probability that the estimate is correct by 
QBETS service [145] for some of the TeraGrid sites (job start within 30 min with requested 95% 
confidence in the result). Left: estimation as a function of job walltime, 16 nodes requested. 
Right: estimation as a function of the number of nodes, 30 min job wall time. 

account data affinity to minimize communication. Also, since the execution time of 

the solver module is comparable with the time required to transfer its input, it is very 

inefficient to schedule solver as a separate task. Multi-level scheduling and job clustering 

may improve execution locality and minimize file transfers. 

4.2.5 Discussion 

As a result of this work, we developed a workflow-based implementation of the single and 

speculative workflows for the NRR method, and completed their preliminary evaluation 

at three TeraGrid sites. 

Speculative execution with different combinations of parameters could be a necessary 

precaution in the applications, where accuracy is important, but the rules for selecting 

optimum parameter combinations are not clear. In the context of neurosurgery, spec-

ulative execution can be applied in two scenarios. First, immediately following the 

acquisition of the first intra-operative scan (but before the scull opening), speculative 

computation can be initiated to explore those parameters of the algorithm that depend 

on the properties of the intra-operative image. As an example, this can involve the study 
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of the best similarity metric to be used in block matching. It was suggested elsewhere 

that the selection of the best similarity metric depends on the properties of the image. 

other than its modality [19G]. The second application of speculative execution is during 

the time-critical intra-operative registratiou. 

The implementation we developed is not tied to a specific collection of execution 

sites, as the framework presented in [48], but is generic enough due to its use of Swift, 

and the broad range of resource providers supported by Swift (e.g., Globus GRAl\12 

and GRAl\14, PI3S and LSF batch schedulers, etc.). Therefore, the implementation can 

be deployed with minimum effort on auy conventional cluster within a hospitaL or can 

be executed on the TeraGrid resources, to enable large-scale population and parameter 

studies of the NRR method. 

The important result of our evaluation is that it is feasible to use TeraGrid resources 

for intra-operative NRR. Although we \Vere able to complete test runs without signif­

icant queue delays for the single NRR instance, advance reservations should be used, 

whenever possible, to guarantee resource availability during the surgery. Our prelimi-

nary results of evaluating speculative NRR workflow executions indicate, that \Vith the 

current technology we cannot achieve the required task throughput to do speculative exe-

cution within the time constraints of IGNS. However, the work under development in the 

relevant projects, e.g., Falkon [165], is very promising. \Ve expect to achieve significant 

performance improvements by using multi-level scheduling techniques. as compared to 

the conventional direct interaction with the remote batch scheduler via Globus GRAl\14 

for each vYorkflo>Y task. Again, due to our use of Swift for workflow implementation. we 

can leverage these ne\v execution models without any modifications to the NTIR code or 
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workflow script. 

The open question that cannot be ~ms\Ycred by this stucly (yet) is the following. 

Given the availability of the local mid-size computing cluster, is the effort to migrate an 

application like NRR on the TeraGrid justified? As we discovered during the course of 

this work, significant time investment may be required to port a code on the TeraGrid 

and learn the site-specific usage procedures. Efficient use of the TeraGrid resources is 

complicated by the queue delays. scheduled and emergency shutdowns of the TeraGrid 

sites and Globus services we use, and by the technical difficulties we described in the 

previous Section. On the other hand. although mid-size clusters (100-200 nodes) become 

more and more ubiquitous, we believe they are not yet affordable by au aYerage hospital 

or research group. \\'e also believe that local clusters (which by the way are usually also 

managed by a batch scheduler) are insufficient for large-scale computations like NRR 

speculative execution, or large-scale population studies. It remains to be seen how prac-

tical the full-scale speculative studies can be on the TeraGrid. However, the preliminary 

results we present are sufficient to affirm the advantages of the Swift-based workflow 

NRR implementation, which can be used immediately both on TeraGrid and conven­

tional clusters for NRR evaluation. At the same time, to achieve good performance of the 

speculative NRR execution we need to evaluate non-conventionaL throughput-oriented 

workflow scheduling techniques. 

4.3 Summary 

The abilit)' to deliYer the result:-; of NRR within the clinical time constraints is essential. 

In t hi:-; Chapter we presented a distributed implementation of the 1\RR workflow that 
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makes near real- time execution possible with the use of distributed cluster resources. 

The first major difference of the new implementation compared to the original ver­

sion developed h:v Clatz et al. [G3] is in the restructuring of the registration process to 

use multiple processing steps within a workflow. Such restructuring allows for the first 

level of fault tolerance during the execution, and facilitates independent execution of 

the pre-processing steps before the time-critical computation. The second major im­

provement we implemented is the high-performance parallel 1\IPI version of the block 

matching. \Ve used a master-worker load distribution scheme to dynamically adjust to 

the heterogeneity of the computing resources. In addition to this, master-worker load 

distribution applied within the multi-cluster environment allows to provide an additional 

layer of fault-tolerance. The Co \V-bRsed implementation presemed in this Chapter has 

been applied to perform non-rigid registration of the pre-operative I\IRI to the iMRI 

acquired during the neurosurgery. 

The NRR method we study is characterized by the large parameter space. \Ye per-

form an exploration of a relatively small parameter subspace and present the initial 

results on sensitivity of the method to the parameter selection. Based on the expert­

identified brain landmark accuracy assessment, the registration error is non-uniform 

over the registered volume. \Ye report the experimental results that show the difficulties 

in selecting the optimum parameter combination for the given dataset. This difficulty 

motivates the development of the grid-enabled workflow implementation of the regis­

tration, \Yhich utilizes Swift workflow management system [210] and the resources of 

TcraGrid [188] to enable speculative execution of the registration. \Ye present initial re­

snlts of running parametric search on multiple geographically distributed compntational 

133 



sites from different administrative domains using the workflow-based implementation. 

Compared to the existing distributed systems designed for NRR. the cluster-based 

distributed registration version discussed in this Chapter was applied and evaluated 

prospectively dming neurosmgeries. The preliminary results of evaluating our dis-

tributed workflow implementation on the TeraGrid shows the feasibility of using Grid 

resources for the needs of intra-operative registration. 

4.4 Contributions 

The contributions of this part of research are the following: 

• for the first time ever. results of volume matching registration delivered intra-

operatively within S minutes; 

• presented NRR infrastmcture routinely used for image registration during IGNS 

research studies ( > 11 :rviRT surgery cases in 2006-2007): 

• feasibility study of using TeraGrid for neurosurgery registration research: 

• practical NRR workflmv-based Grid-enabled NRR implementation deployed on 

TeraGrid. 

The results prcsC'nted in this Chapter have been previously published in the follmving 

papers: 

1. N.Archip, O.Clatz, S.\Yhalen, D.Kacher, A.Fedorov, A.KoL N.Chrisochoides, F.Jolesz. 

A.Golby. P.Black. S.K.\Varfidd. Non-rigid alignment of pre-opcrati\·e l\IRI. ThiRI. 
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2. N.Chrisochoides. A.Fedorov. A.Kot. N.Archip. P.Black. O.Clatz, A.Golby. RKikinis. 

S.K.\Varfield. Tmvard Real-Time, Image Guided Neurosurgery Using Distributed 

and Grid Computing. IEEE/ ACl\1 Supercomputing 2006 

3. N.Archip, A.Fed.orov, B.Lloyd, N.Chrisochoides, A.Golhy, P.Black. S.I\:.\Varfield. 

Integration of patient specific modeling and advanced image processing techniques 

for image guided neurosurgery. SPIE l\Iedical Imaging 2006: Visualization, Image-

Guided Procedures, and Display, 2006 

4. A.Fedorov, N.Chrisochoides. Toward Improved T1nnor Targeting for Image Guided 

Neurosurgery \Yith Intra-operative Parametric Search using Distributed and Grid 

Computing. IEEE International Parallel and Distributed Processing Symposium, 

NSFNGS Workshop, pp.l-.5, 2008 

1:35 



Chapter 5 

Registration Accuracy 

Assessment 

The goal of non-rigid registration for image-guided neurosurgery is to update the pre­

operative f\IIU to accurately represent the deformed brain anatomy. Therefore, critical 

decisions made by the surgeon may be based on the registered images. Lack of accuracy 

in registration result may lead to imprecise location of a life-critical brain structure and 

irreparable damage to the healthy brain and to the patient. At the same time, accu-

racy of a given image processing method is only one of the components that has to be 

considered while comparing it vYith other methods dcwlopcd for the same task [115]. 

Such complete evaluation is known as validation. Validation is a mandatory step that 

must be completed prior to the application of any method in the clinical context. Al-

though there are no standards for performing validation, some of the criteria that are 

conunonly used in addition to accuracy are reproducibility. rolmstness and consistency 

of the rnethocl [97. 114]. 
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In general. complete validation is a difficult task, because the true result expected 

from the image processing method is rarely known. In part this is explained by the 

incomplete information about the object available from the medical image. This in­

complete data is corrupted by multiple sources of error and uncertainty, which may be 

related, for example, to biological variability in the inmged tissue or to the specifics of 

the image acquisition process. These problems are further exacerbated by the variability 

of interpretation of the same image by different experts (observers, using the validation 

terminology [115]). Another difficulty in assessing and comparing accuracy of different 

methods is the lack of common clatasets and the lack of common metrics, ·which also 

depend on the application and specific processing method. 

For the practical purposes, accuracy of the image processing method is a required 

prerequisite, and one of the key components of the complete validation of the technol-

ogy [89]. In the context of image registration, accuracy can be defined as determination 

of alignment between the points in one image with the corresponding (homologous) 

points in the other image [101]. In order to evaluate the accuracy of registration, we 

need so called gold standard, or ground truth,- the true transformation that recovers the 

alignment of all the homologous points in two images. If such gold standard is known, 

we can use it to compute a ·'figure of merit'' to quantify the distance to ground truth. 

Such an approach allows to formalize accuracy validation as hypothesis testing. with the 

known techniques and tools for its statistical analysis [114]. However, the ground truth 

is rarely available for the general clinical case. which makes calculation of the figure of 

merit problematic, and requires different means of validation . 

.Tannin et al. [114] define four types of datasets commonly used m ntlidatiou. de-
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pending on the availability of ground truth in that data: (1) numerical simulations. 

e.g., [1G7]: (2) realistic simulations from clinical data sets [172]; ( 3) physical phantoms: 

or ( 4) clinical dataset:-;. For the first two types of validation data, the ground tmth is 

known. In the case of phantom studies, the ground truth can be measured or recovered. 

Some examples of phantom studies for brain registration were employed in accuracy 

assessment studies previously [163, 65. 5, 117]. However, the established accuracy on 

synthetic data of phantom data does not eliminate the need of evaluating the method on 

real data. In the cases \vhen clinical data is used for validation, ground truth cannot be 

recovered. and a substitute of ground truth is usually given by experts in the imaging for 

the specific application [114]. For example, in the case of non-rigid registration, homolo­

gous points may be manually identified in the images before and after registration. The 

problem associated with this approach of estimating the ground truth is the consistency 

of locating the homologous points. Generally, ground truth obtained with the aid of 

human observers is called a bronze stundanl, or fa::zy gold standard [114]. 

In the previous Chapter \Ve discussed the distributed framework one of the poten-

tial uses of which is to facilitate speculative execution of non-rigid registration. One 

of the approaches to perform such execution assumes the capability of evaluating and 

comparing the accuracy of the solution obtained with the different registration panune­

ters during registration of clinical data. This requires some kind of ground truth, or its 

substitute. to be available. Obviously. derivation of such ground truth cannot possibly 

involve human observers, because of the limited time and prohibitively large amount of 

data. 

In this Chapter we develop and evaluate a novel metric that can be used to assess 
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the accuracy of non-rigid registration automatically. This metric is based on the Haus­

dorff distance (HD) between the edges in the image pairs before and after registration. 

This measure can be evaluated automatically. since it does not require the known cor­

respondence between the image points, and does not require human interaction due to 

automatic edge identification. The use of such a metric can not substitute accurac~' val-

iclation. However. in the conditions when the time for validation is limited, automatic 

measure may be the only option. 

\Ve evaluate the recent advances in improving robustness of HD, and apply the novel 

accuracy assessment measures we develop to evaluate the accuracy of pairwise alignment 

for brain l\IRI under non-rigid deformation. I3ased on the results of our evaluation, the 

presented approach significantly improves the accuracy of the previously used alignment 

metrics that are based on the conventional HD. The implementation of the presented 

approach is available as open source software, accompanied by the detailed description 

of the parameters vve used to obtain the reported results on publicly available Brain\Yeb 

data [27] 1 . 

5.1 Related Work 

In this Section we present related work in the development oft he quantitative measures 

that allow to assess the accuracy of registration. Rigid registration. where alignment 

between images is established with the aiel of global translation and rotation has been the 

area vvhcre such rnetrics were studied and developed originally. In a number of medical 

applications, particularly in neurosurgery. the problem of registering the image with the 

1 Brain \Veb simulation intPrfaet' can be accpssecl at http: I /www. bic. rnni. mcgill. ca/brainweb/. 

http://www.bic.mni.mcgill.ca/brainweb/


position of the patient during the procedure can often be formulated as the alignment 

of two sets of points. Such points, which can be reliably identified. are called .fiducial 

points. Examples of such fiducial points can he anatomical landmarks. or artificial 

landmarks implanted for the purposes of registration. The sets of landmarks identified 

in both images can be used for point-based rigid registration, which seeks least-squares 

fit of the corresponding fiducial points. Such an alignment problem can be reduced to 

the Orthogonal Procrustes problem, that has known solutions [174]. 

One measure of error for point-based registration that can be easily evaluated is 

fiducial registration error (FRE). FRE is usually reported as the root mean square 

(R~IS) distance between the corresponding fiducial points after registration defined by 

some rigid transform T [101]: 

X 
2 ~ 2 FRE = L... JT(p;)- %1 . 

The FRE measure is directly related to the reliability oflocating fiducial points in the 

images. Such reliability is defined as the fiducial localization error (FLE). that captures 

the difference between the assumed position of the fiducial and its ground truth location. 

The relationship between FRE and FLE has been established by Sibson et al. [181]: 

RMS(FRE) = yf(1- 2/N)RMS(FLE). 

The fundamental problem in using FRE as the measure of registration accuracy is 

that small FRE is not a sufficient condition for small error at any point in the image. 

Target registration error (TTIE) [181] measures the error in the clinically important 

regwn. e.g., at the boundary of the tumor. which is of practical importance. There 
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are theoretical results that relate TRE to FRE in the case of rigid registration [78]. 

The FRE. FLE and TRE measures were introduced lw Maurer et al. [132] and proved 

effective for evaluating point-based registration methods. However. the problem is much 

more complex for non-rigid registration. Due to the fact that putentiallv arbitrary local 

deformations can be introduced by registration, any set of points can be brought into 

alignment, even if those points are totally irrelevant. The connection between TRE and 

FRE cannot be established for non-rigid registration, and TRE can rarely be evaluated. 

Few studies exist, where TRE was evaluated for non-rigid registration based on the 

simulated ground truth, e.g., see Schnabel et al. [172]. In generaL however, TRE is 

difficult to estimate, because the task of finding features or landmarks in the clinically 

relevant region may be very difficult. An easier task is often to outline the corresponding 

regions in the compared images, and evaluate the so called regional correspondence [60]. 

The two most common quantitative measures for estimating region overlap are the Dice 

similarity coefficient (DCE) [68] and the Tanimoto coefficient (TC). also known as the 

.Jaccard coefficient [113]. For two overlapping regions A and B DSC and TC are defined 

as follows [59]: 

TC = N(A n B) DS'C = 2N(A n B) 
N(A u B)' N(A) + N(B) 

vvhere N() corresponds to the number of voxels that correspond to the segmented region. 

DCE and TC evaluate the overlap of two labels. but cannot be applied to evaluate 

more than two volumes, and do not allow to compare the degree of mis-alignment. In 

particular, the same oYerlap coefficient can correspond to t\VO different cases that differ if 

\Ye consider point-vvise registration error. Some of these deficiencies have been addressed 

by the generalized overlap measures developed by Crum et al. [59]. 
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In generaL \'ery few comprehensive validation studies of non-rigid registration rneth-

ods exist. \;Ve refer the reader to the reports b~· Grachev et al. [98] that relies on 

anatomical landmarks, and by Hellier et al. [104] that uses regional overlap measures. 

The major difficulty in applying overlap measures and TRE in assessing non-rigid 

registration accuracy remains the definition of the relevant regions or points, \Vhich in 

general requires involvement of human observer. Complete validation studies that rely 

on such data necessarily include analysis of the variability of rater results. and possibly 

estimation of ground truth from the inputs of multiple experts, as proposed by \Varfield 

et al. [201]. This problem has been recognized by the community, and a number of 

alternative assessment measures were developed that do not require human observer. 

Consistency of registration can be evaluated based on analysis of the transformation 

obtained with the registration tool. Fitzpatrick et al. [101] describe the idea of regis-

tration circuit that is constructed by registering image A to B, fl to C and C to A. In 

the ideal case. each point of image A can be tracked back to A through the registration 

transforms. Christensen et al. [50] suggest the use of inverse consistency metric, which 

is based on the assumption that the composition of the forward and backward transfor­

mations with the same input images should result in the identity transform. Hellier et 

al. [104] use the .Jacobian transform, which is the first partial derivative of the tram-;for­

mation, applied to the deformation field to find the points of singularity. 1vietrics that 

are based on analyzing transformations may allow to detect the failure of registration. 

However. they are not sufficient to conclude success. 

Recently, Archip et al. [11] proposed to use the value of mutual information similarity 

measure between the images to assess the accuracy of registration. This approach has a 
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number of problems, outlined by Crum et al. in relation to the use of image similarity 

measures for registration in general [60]. In particular. goocl image similarity Vi:llue 

docs not necessarily imply correctness of registration. it docs not allow to assess the 

magnitude of the error, and it cannot be used to analyze spatial error distribution. 

The Hausdorff distance is a very common measure in pattern recognition and com-

puter vision to evaluate mismatch between the two sets of points. A number of methods 

have been proposed to identify features (points, edges. lines) in medical images [37, 29]. 

The resulting feature images can be used as input for the HD measure. The HD is not 

based on point correspondence. which makes it somewhat tolerant to the differences in 

the two sets of features compared. However. it is highly sensitive to noise. A number 

of robust modifications to the HD have been proposed to suppress the impact of noise 

and improve robustness of the HD. since one of the first papers in this direction by 

Huttenlocher et al. [108]. The most recent surveys of the modifications to the HD are 

available in [209. 21]. Until recently. the HD has found limited use as a measure for the 

evaluation of image alignment. Peng et al. [156] used a robust version of the HD to reg­

ister outlines of brain in two dimensions. Morain-Nicolier et al. [139] applied the HD to 

quantify brain tumor evolution. Finally, Archip et al. [9, 8. 11] assess the performance of 

non-rigid image registration of brain MRI with the 95o/r partial HD, hut do not discuss 

the reliability of this approach. 

To the best of our knm,·lcdgc, the HD-based a.pproach to image alignment assessment 

has not been comprehensively evaluated before. A number of the robust versions of the 

HD exist, but they have not been evaluated for t hree-dirncnsional images and in the 

context of NRR for medical imaging. 



5.2 Robust Error Estimation Methodology 

The methods we are deYeloping focus primarily on registration assessment for image 

guided neurosurgery. The objectiYc of the NRR is to align the pre-operative Image 

·with the intra-operative data. Consequently. the objective of the evaluation procedure 

is to confirm that alignment indeed improYed following NRR, and quantify the level of 

mis-alignment before and after registration. \Ve approach this by considering two pairs 

of images. The first image is always the fixed (target) image used in registration. For 

the purposes of assessment, the second image can either be the floating image or the 

registered image. By evaluating the alignment of fixed vs floating and fixed us registered 

images we attempt to assess the error of alignment before and after registration. respec-

tively. However. the formulation of the problem remains the same. Next we describe in 

detail the processing steps required for the derivation of the alignment metric. 

5.2.1 Image Pre-Processing 

A common procedure that precedes analysis of the images, in particular for medical 

imaging applications, is pre-processing. The specifics of pre-processing are highly de­

pendent on the application. and may target improvements of the visual appearance of 

the image for better interpretation by the human observer (e.g., contrast or sharpness 

improvement, enhancement of certain features), or as a prerequisite in order to im­

prove the quality of the subsequent processing operations. The latter is the reason that 

necessitates pre-processing for the purposes of wgistration accuracy analysis. 

The objective of the accuracy assessment study is essentially to identify and quantify 

the differences between the images due to non-rigid deformation of the image features. 
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Therefore, it is very important that all other sources of difference between the images 

are suppressed, and the corresponding fec1tures arc identified in both images. 

The first step of pre-processing is to remove small spurious noise features from the 

analyzed images. A straightforward approach to noise removal in spatial domain is 

based on linear filtering [96]. which is usually implemented as a convolution operation. 

Convolution is defined by the mask of constant size m x n with the coefficients wk (in 

two dimensions), which is also known as a convolution kernel. Convolution of an image 

vvith the kernel means generation of a new image. where intensity R at a pixel location 

is calculated as follows: 
"Inn 

R = L 'll'kZk. 

k=l 

Here, ::~,. are the image intensity values that overlap with the convolution kernel. Convo-

lution based linear filtering allows to easily implement averaging and weighted averaging 

operations, that suppress the high frequency image features. Gaussian function used to 

initialize the convolution kernel provides flexibility to precisely control the range of high 

frequencies in the resulting image by varying the size of the convolution kernel [77]. The 

convolved image can also be viewed as a result of solving the differential equation for 

heat propagation with the initial conditions defined to be the intensities of the input 

image [157]. 

Application of a linear convolution operation results in an image that appears blurred, 

with high frequency noise features suppreo;sed. The negative result of such blurring is 

that the meaningful image features. like the boundaries of distinctive image regions, are 

also diffused. Perona and l\Ialik studied this problem. and proposed an alternative ap-

proach using anisotropic diffusion [157] that limits smoothing at the region boundaries. 
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\Ve apply anisotropic diffusion filtering to the input images as the first pre-processing 

step to preserve the region boundaries that define image features. and eliminate image 

nmse. 

The basic assumptions made in our accuracy assessment scheme is that the images 

correspond to the same brain. and they are acquired under the same image acquisition 

protocol. The second pre-processing operation addresses the fact that the intensities of 

the image in the corresponding brain regions may be different in each of the images. 

\Ve improve the contrast of the input images by applying adaptive contrast enhance­

ment algorithm presented by Stark in [185]. Adaptive contrast enhancement is a time 

consuming procedure, and in the time-critical applications we instead use conventional 

histogram equalization [96]. Finally, \\'e rescale the intensity ranges of both images to 

be within the same range. 

5.2.2 Edge Detection 

The first pre-processing step IS needed to prepare the input data for selection of the 

features, that are used as inputs for the actual accuracy assessment algorithm. Image 

features are defined by abrupt changes in the image intensity. In the medicall\IRI, image 

intensity is related to the physical properties of the imaged tissue. Therefore, changes in 

intensity correspond to the boundaries between the tissues that have different properties. 

Edge detection operation attempts to identify the set of connected pixels that define the 

region boundaries, extracting structural information from multi-Yalucd images. 

Robust edge detection is not trivial for realistic images. Sharp change in mmge 

intensity is a relative definition, that requires certain threshold to define how sharp that 
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change should be. The definition of the threshold is related to the normal variation of the 

image intensities within the homogeneous region and the level of edge detail required. 

\Ye use the edge detection filter proposed by Canny [~37] to identify the features in 

the input data. The filter consists of the four main steps [96]. First, the input image is 

smoothed with the Gaussian filter, that "·e discussed in the previous Section. Second, 

the magnitude and angle of the gradient are computed on the smoothed image. High 

values of the gradient magnitude define the locations in the image that arc likely to 

correspond to the edge features. However, there will generally be multiple non-zero 

gradient magnitude pixels that correspond to the same edge. The next processing step 

is non-maxima suppression operation, which is thinning the initial approximation of the 

edges. This is accomplished by locally estimating the edge direction that is closest to 

the gradient angle at a poinL and discarding the edge points that have their gradient 

magnitude values less than those of its neighbors. The goal of this step is to produce 

the edges that are exactly one pixel wide. 

The last step of Canny edge detection is concerned with filtering the remaining non­

zero gradient magnitude pixels to eliminate the ·'false'' edges. This step is accomplished 

with two thresholds: a low threshold, T1. and high threshold, Th. The suggested ratio 

of these thresholds is two or three to one [37]. The final edge image is constructed by 

combining the images obtained by thresholding the output of the previous step with 

the high and low thresholds. The result of thresholding with Th produces edges that 

correspond to stronger gradients in the initial image. The weaker edges can be identified 

by removing the strong edges from the set of edges obtained with 1}. Those weaker edges 

are used to "repair'' disconnected strong edges by analyzing neighborhood connectivity 
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as described in [96]. 

Both the pre-processing and edge-detection steps are facilitated by the implementa-

tions of the image processing algorithms in the Insight Toolkit [109, 120]. 

5.2.3 Development of the Robust Local Hausdorff Distance Metric 

Given two three-dimensional images, I and :J, we attempt to estimate the point->vise 

alignment error between the homologous points of these images. Let A and B be the 

binary images, as defined earlier in Chapter 2, with the non-zero voxels corresponding to 

the feature (edge) points extracted from I and :J respectively. Binary images A and B 

are the result of pre-processing and edge detection operations described in the previous 

Sections. Let A = {a 1, ... , an} and B = { h, .... bm} of JR:l be the sets of points that 

correspond to the non-zero voxels in A and B, respectively. 

The directed Hausdorff Distance (HD) between the two sets of points h(A, B) is 

defined as the maximum distance from any of the points in the first set to the second 

set. The symmetric HD between the two sets, denoted H(A, B), is the maximum of the 

directed HD values for the two sets [108]: 

h(A B)= max(d(a, B)), where d(a, B)= minlla- bll, 
aEA bEE 

H(A B)= rnax(h(A B), h(B, A)). 

As suggested in [21]. we use the same notation for images. considering A and B the 

sets of non-zero pixels of A and B, respectively: h(A. B) = h(A B). In the rest of this 

section we refer to symmetric Hausdorff Distance whenever we use HD. 
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In the case when the points used for calculation of d(a, B) and rl(b, A) happen to be 

the homologous points (i.e .. when they correspond to the same image feature in both 

images), H(A. B) would he the maximum (global), alignment error. Even in this perfect 

correspondence case, the first problem of using HD for alignment assessment becomes 

apparent: HD ca,n only estimate the maximum error. The second problem comes from 

the sensitivity of the metric to noise and lack of point correspondence: the estimated 

value of the error will not he the same as the maximum error, in the general case. Simple 

versions of the robust HD measure were proposed to alleviate this problem. The partial 

Hausdorff distance is defined as a quantile of the ranked distances bet\wen the two point 

sets, originally proposed hy Huttenlocher et al. [108]. Archip et al. [8, 11] use 95o/c-HD, 

which is defined as the 0.95-quantile partial distance between the two sets. However, 

95%-HD is a global measure, and doe::; not allow to assess the error locally without 

modifications to the calculation procedure. 

The local-distance map (LDf..Iap) proposed by Baudrier et al. [21] for the comparison 

of two-dimensional images extends the definition of the HD. LD~vlap allows to deri\•e 

the local measure of dissimilarity Htoc(A, B, x) between the two binary images A and B 

at the point :r as follows: 

:l V.r E R : Hloc(A, B, x) = \A(:r:)- B(:r:)\ x max(d(;r, A), d(x, B)). (5.1) 

Hlac(A, B, :r) is a symmetric measure, \vhich is connected to the conventional HD clefi-

nition by the relation H(A, B)= max(Hiac(A B, :r)) [21]. 
,1' 

The ach·antage of the LDI\lap measure Hlur(A, B. J:) is that it can be used for local-

izecl estimation of the alignment error. Icleally, the value of Htac should be the sanw as 
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Figure 5.1: Left: Binary image. Right: Corresponding greyscale image. 

the distance between the corresponding points in the images. However, because there is 

no point correspondence in the HD definition, the values of Hloc would generally deviate 

from the values of the alignment error, 

vVe attempt to add the notion of point correspondence to the definition of the LD.I\fi1p 

by using greyscale modification of the HD originally proposed by Zhao et al. [209] for 

matching two-dimensional images corrupted by noise. In order to achieve this. we first 

tramlform the input binary images, produced by the feature detection procedure. into 

non-binary (so called. greyscale) images A and B. These greyscale images have the 

same size as the initial binary images. with each voxel corresponding to the non-zero 

voxel in the input binary image initialized to the total number of non-zero voxcls in 

its neighborhood. A two-dimensional example of greyscale image construction is shown 

in Figure 5.1. By construction. "'! : :r E n f---.> {0, L ... 27}. Pixel value is zero, if the 

corresponding pixel in the binary image i::; zero. and the maximum number of non-zero 

neighbors i::; 26 in a three-dimensional image neighborhood. 

The definition of the distance between a point a point set should be updated, to take 

into account the intensity value in the greyscale image. Let a be a greyscale image pixel 

with non-zero value, and .4.( a) be that greyscale image value. The definition of distance 

from a to greyscalc image B is based on the use of tolerance parameter g that specific::; 
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- -
the maximum allovvecl difference in the intensity between the pixel values in A ancl B. 

It is defined as the minimum distance a pixel in B with such an intensity value that 

differs from A( a) by no more than _q: 

d(a. D)= mi~~lla- bjj, A( a)- g ~ D(b) ~A( a)+ g. 
bEB 

Zhao et al. suggested selecting g = 1 for two-dimensional images [209]. \Ve set g = 2 

to account for the increase in image dimensionality. The symmetric Hausdorff Distance 

can now be redefined to account for greyscale image values using the modified formula 

for d(a.B): 

h(A, B)= rna~(d(a. D)), 
aEA 

The usc of greyscale definition of the Hausdorff distance is based on the assumption 

that non-rigid deformation of an image should not change the local topological properties 

of the edge features. \Ve use the number of non-zero pixels in the fixed neighborhood as 

the measure of topological connectivity. This is a measure that can be easily evaluated. 

and can be used to discard those points that are located at a close distance, but do not 

have similar connectivity. 

Accordiugly, the grcyscale local HD can now be evaluated based on this updated 

point distance definition: 

'l -: - - -
V:c E R : GHtoc(k B. :r) = IA(:r)- B(x)l X max(d(.r. A). d(:t. B)). (5.2) 

Based on the G Htoc· we define the corresponding global measure, greysc<tle Hausdorff 

distance (GHD) GH(A, B) between the two binary images. as GH(A. B)= max(GHtor(A, B, :r:)). 
J• 
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The calculation of G Hloc results in a greyscale image, where every non-zero pixel cor-

responds to the value of local greyscale Hausdorff distance. As the final step, we apply 

local smoothing operation. to reduce the impact of noise on the error estimation. \Ve de-

fine robust greyscale HD locally based on the least trimmed squares robust statistics [169] 

on the values of G Hzac in the region around each feature point. The robust greyscale HD 

RGHtac(.4,B.:r) is calculated as the average of the ordered values of GH/oc(lLB,T) in 

the fixed size window centered at :r, after discarding 20% percent of the top distance val-

ues within this window (trimmed mean value). Similarly to the HD and GHD, \Ve define 

the robust greyscale Hausdorff distance (RGHD) RGH(A, B) = max(RGHioc(A. B, x)) . 
. 1: 

5.3 Evaluation 

In this Section we perform an evaluation of the presented error assessment method. The 

objective of this evaluation is to establish accuracy of the estimated error measures. \Ve 

approach this evaluation by utilizing different sources of ground truth, as we discussed 

previously. As the first source of ground truth we consider known synthetic deformation 

field applied to a real image. In the second experiment. the ground truth is represented 

by the deformation field obtained by realistic simulation. Finally, we use the observer-

recovered ground truth from the real images obtained during neurosurgery. 

In all three evaluation approaches, the performance of an evaluation metric is mea-

surecl as its ability to recover the deformation magnitude (thus. misalignment error 

value) at the locations of the detected edge features in the input images. The recoYered 

error estimate can then be compared to the ground truth deformation at this point. In 

the first and second evaluation scenario. the ground truth deformation is available at 
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every point of the image. In the third evaluation study that is based on observer ground 

truth, we know the estimate of the deformation only at few points identified by the 

observer. Therefore, in the cases vvhen these point do not coincide with the edge points 

recovered by the edge detector, ground truth comparison cannot be accomplished. 

The questions we attempt to answer in this evaluation are ( 1) how the values of Hloc: 

CHloe and RGHzoc locally compare to the ground truth alignment error, and (2) how 

the robust versions of the HD (GHD and RGHD) compare with the conventional HD. 

5.3.1 Synthetic Ground Truth 

\\re first evaluate the effectiveness of the proposed accuracy assessment methodology for 

non-rigid registration of brain MRI using the synthetic ground truth data. \\~e use the 

method described by Rogelj et al. [167] to construct a synthetic deformation field. The 

synthetic deformation field is applied to the original grayscale image, followed by feature 

detection step performed on both the original and deformed images. The proposed 

error recovery methodology is then employed to estimate the misalignment between the 

original and the deformed images at the selected feature points. The true misalignment 

value, which is the magnitude of the synthetic deformation at a poinL ideally should be 

equal to the error value recovered b~r the either of the proposed assessment measures. 

The procedure used for generating the synthetic deformation field is the same as 

used for evaluating mesh generation methods in Chapter 3 and in [167. 27]. \Ve assign a 

random deformation vector at each of the grid control points, with the components of the 

vector drawn from a Gaus:-sian distribution parametrized by mean p = 0 and variance a. 

The variance parameter can be used to control the deformation field. \Vith larger local 
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deformation values obtained with the larger values of variance. Deformation vectors at 

the control points are ini tializccl in such a W<t.Y that the magnitude of the deformation 

does not exceed 10o/c of the brain dimensions. and there arc no discontinuities in the 

deformation field (no intersections of the deformation vectors at the control points). The 

dense deformation field is constructed by using Thin Plate Splines interpolation from 

the deformation vectors at the control points that fall within the binary mask. 

The synthetic deformation is next applied to the l\IR images of the brain. In this 

study \Ve use brain l\IRI available from the Brain \Vcb l\IRI simulator [57]. Brain \Yeb 

simulator was used to create two normal subject T1 images with the following parameters 

I 

of the simulator: 1 mrn slice thickness. 0% intensity non-uniformity. In order to evaluate 

the impact of noise in the input data, we perform evaluation on two image sets with 

different noise levels. Brain \Veb simulator was used to generate images with no nmse. 

and images corrupted with the 9% Gaussian noise. 

\Ye compare the local estimation methods with ground truth error using two mea-

sures: distribution of error and percentage of outliers. Ideally. the distribution of local 

error estimates ( Hlac, G Htoc and RG Hloc) will closely mimic the true error distribution. 

Also, a good estimate of error should have minimum number of outliers. Let d; be the 

distance at voxel location i, as measured by a local estimation method. Let e; be the 

true error at the same voxel. defined as the magnitude of the ground truth deformation 

vector defined at this voxel. \Ve further refer to the value e; as the alignment error. Any 

voxcl i where jd;- e;j > 2mm is defined as an outlier. The meaning of outlier mea-

surement is that the absolute cliffcrc'nce between the distance from the feature located 

at this particular voxel exceeds the true distance between the corresponding points by 
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more than 2 mm. vVe choose 2 mm because the deformation field is in ph~·sical space 

:-mel the HD distance implementation is limited to 1 nnn spacing of the input images we 

use. Therefore, errors as large as /3 cannot be prevented. 

The distributions of the alignment error values. and Hloc· G Hzoc· and RG Hloc are 

shown in Figure 5.2. vVe observe that the true distribution of error is approximated 

closer by the robust HD measures. \Vith the simple definition of H Df,JC'• topological 

propertie:-; of the edge features are not considered, which causes underestimation of the 

error value. As can be seen from the figure, the problem of underestimation is still 

relevant for the RGHD measure, since the distribution shows lower variance. This is 

expected. because RGHD results in local smoothing of the distance estimates. Although 

the RGHD provides closer approximation of the original distribution, it comes at a cost 

that maximum errors will be discarded because of the usc of least trimmed squares 

robust statistics [169]. 

\Ve compare relative robustness of the evaluated accuracy measures, and their sus­

ceptibility to noise by evaluating the percentage of outlier estimations with the increasing 

variance parameter in the synthetic deformation field. The results are plotted in Fig­

ure 5.3, showing the comparison between the different global and local error estimation 

measures. \Ve observe that conventional global HD metric overestimates the maximum 

error in most cases, and always overestimates the mean error. This metric is highly 

susceptible to image noise: note the difference between the error reported for 0% and 

9% noise levels with the global HD measure. Comparing the 95% HD and the RGHD 

measure we developed. \Vc obsen·e that both of these metrics arc consistently growing 

as the averagejmaxinnnn errors increase. HmvcveL neither of this measures cannot be 
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Figure 5.2: Distribution of the alignment error and the H Dloc. GH Droc. and RGH D1cw values 
for the same synthetic deformation ease (three-dimensional Brain\Veb image data, deformation 
as a sum of Gaussians, 11 = 0. O" = 5). 

used as the estimate of the maximum registration error. since the reported metrics by 

definition exclude maximum local estimates. 

Comparison of the percentage of outliers in local error measure estimations is shown 

in Figure 5.3. First. we observe that the number of outliers is increasing as we increase 

the variability and deformation magnitude in the synthetic deformation field by changing 

the Gaussiau variance. Although the percentage of outliers is growing for both robust 

and non-robust metrics. it is consistently lower for the metrics we developed. At the 

same time we observe that the robust metrics are more sensitive to image noise. and 

contain more outliers for low values of the deformation. 

OveralL the robust metrics contain less outliers. which is reflected in the more stable 

behavior of GHD and RGHD in comparison to the HD: RGHD is consistently incrcas-

ing as the alignment error increases. and it is always above the mean error n<luc (sec 
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Figure 5.3: Comparison of the error estimation accuracy for the analyzed robust Hausdorff 
Distance based metrics. Left: Error statistics for synthetically deformed Brain \iVeb images with 
and without noise, and the deriYcd ntlucs of the Hausdorff distance based estimations. Right: 
The change in the proportion of outliers as a function of Gaussian variance. 

Figure 5.3, left). Thus, for large deformations (deformations as large as 10-15 mm have 

been reported during open scull craniotomy) RGHD is a more appropriate measure. 

5.3.2 Physically-Realistic Simulated Ground Truth 

\Ve used simulated brain tumor growth images to assess error estimation performance for 

more realistic deformation rnodes, and for the images of different contrast. The simulated 

images \Vere created from the Brain vVeb anatomical data as described by Prastawa et 

al. [162]. \Ve used t'vo versions of the simulated data: (1) with the intensity distribution 

close to that of the healthy subject image, and (2) with the intensity distribution derived 

from the real tumor data. Edge detection was done on the images with the regions 

corresponding to the tumor excluded. The misalignment was estimated between the 

healthy subject data and the image with the simulated tumor for the same subject at 

each feature point of the edge images. The recovered distances were compared with the 

true deformation magnitude from the tumor growth simulation (deformation field being 

the sum of the tumor mass effect and infiltration-induced deformations). 
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Table 5.1: Outlier:-; percentage for synthetic: tumor growth data (only points corre:-;pondiug to 
non-~:ero ground truth deformation are considered). 

smnc contrast d. iff. contrast cliff. contrast. enhanced 
id Hzoc RGHtac Htoc RGHtoc Hzoc RGHtoc 
1 7.9% 4.6% 32.7% 42.97<' 12.1(/(' 9.5% 
2 21.77r 16.4% 30.3% 34.1% 20.2% 15.47r 
3 4.1% 3.6% :34.5% 44.7?1 10.4% 7.1% 

The outlier statistics IS sunn11arized in Table 5.1. Case 2 was the most complex, 

with the two infiltrating tumors of large volume located one next to another. Edge 

detection is particularly problematic in the edema region. which in this particular case 

extends over most of the deforming tissue region. This explains large number of outliers 

for set 2. Figure 5.4 helps to appreciate the complexity of error recovery for tumor set 

2: there are very few edges detected in the area of the deformation. and the tumor 

area is almost indistinguishable from the large edema region. Nevertheless. robust HD 

estimation consistently has less outliers than the HD. 

Figure 5.4: Synthetic tumor deformation and recovered alignment error estimates. Left: Syn­
thetic tumor. ca:-;e 2. Center: Deformation field produced by the tumor growth simulation (tumor 
mass effect and infiltration), colored by magnitude. Right: Edges recowred from the simulated 
tumor image. The same slice is shown in all images. 
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5.3.3 Observer-Derived Ground Truth 

\Ve used three data sets from the pnhlic SPL repository of the tnmor resection cases:.?. 

A radiologist was asked to locate 10 corresponding anatomical landmarks in the pre-

and intra-operative brain l\IRI Tl images. Some of the landmarks identified for the first 

imaging case together with the edge features used in the automated analysis C\re shown 

in Figure .5.5. \Ve used the total of three sets of intra-operative data, and only one 

observer. The effort required for identification of such landmark points is significant, 

and we were not able to recruit more observers to cross-v<:didate correctness of landmark 

locations. 

The error recovered using the HD-based techniques was compared with the expert­

estimated error. The results are summarized in Table 5.2. On average, the RGHD 

measure shows better accuracy compared to the HD. At the same time. these results 

identify one of the problems associated with the automated error estimation. The au­

tomatically estimated measures rely on the consistent identification of the anatomical 

features in the analyzed images. Therefore, the error cannot be estimated in the regions 

of the image where such features were not located. \Ve observe that this was the case 

for a number of anatomical landmarks, when there vvere no edge points in the landmark 

vicinity. 

\Ye note that accuracy improvement of the robust error estimation measures in com­

parison with the conventional HD-bascd estimates is in the snb-voxel range. Also, both 

of the metrics disagree with the observer-estimated displacement magnitude in the order 

of 1-2 mm. In relation to these observations. oue of the very important issues that has 

~http://www.spl.harvard.edu/pages/Special:PubDB_View?dspaceid=541 
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Figure 5.5: Expert-estimated locations oft he used landmarks for a pair of IG.:\S images . Top: 
Pre- and intra-operative images with some of the anatomical landmarks selected. Bottom: Edge 
features extracted from the pre- and intra-operative images. 

not been studied is the reliability of the observer-estimated ground truth data. As we 

discussed previously, the derivation of ground truth in validating non-rigid registration 

on clinical data is inherently unsolvable problem. \Ve do not suggest that the developed 

techniques can serve as a substitute for validation of the method. Rather, we propose 

an alternative method to estimate the alignment error between the non-rigidly deformed 

images in the absence of gronnd truth. 
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Table 5.2: Accuracy of error assessment for the tumor resection data in mm: empty entries 
correspond to image locations \vithout edge features to assess error. 

land- case 1 case 2 
mark expert Htoc RGHtor expert Hzoc 

1 2.59 2.51 --

2 0.48 - - 1.52 --

3 0.48 1 0.92 2.99 1.41 
4 0.48 1 1.2 1.36 1.73 
5 2.59 1 0.82 0.98 --

6 1.07 - 2.4 -

7 2.45 - - 2.04 -

8 1.44 1 0.63 1.92 1 
9 3.36 2.24 3.45 3.04 -

10 1.44 1 1.11 1.36 1 

avg difference 
w.r.t. expert 0.77 0.69 0.81 

case :3 

RGHzoc expert Hzoc 

--

1.53 
1.16 

-

-

1.36 
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1.43 

0.57 

4 .. :1:3 1 
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Figure 5.6: Local estimation of misalignment using RGHD, all are images shovv the same slice. 
Left: Undeformed image, Brain\Veh. Center: Deformed image, Gaussian kernel variance 5 mm. 
Right: LDI'vfap of the deformed and undeformed images, voxel Yalues initialized to RG H Dzoc. 

5.4 Summary 

\Ye have presented an HD-based approach to estimation of image alignment error. Based 

on the evaluation results, the RGHD measure we propose can be more robust compared 

to the conventional Hausdorff Distance measure in terms of outliers in local distance 

estimation, and thus can potentially improve the accuracy of the image alignment as-

sessmeut. \\"hile our primary application is the assessment of the non- rigid registration 
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results, validation oft he proposed method itself on real neurosurgery data is complicated 

by the absence of ground truth. However. based on the evaluation. it can be used to 

improve the confidence in registration results. 

The synthetic tumor grm:~:th data used in our evalucction may be more challenging 

than estimation of the pre-. intra-operative and registered image alignment. In the latter 

case, the images have similar content: tumor and edema are present on both images, and 

the edges detected from those ima.ges are more similar. vVe show that RGHD improves 

error estimation accuracy locally for anatomical landmarks, thus we expect that globally 

RGHD is also more accurate on neurosurgery data than the HD measure. 

The evaluated techniques, and specifically RGHD ~the most robust of the evaluated 

methods ~ can serve multiple purposes in registration assessment. First, they can be 

used as a global similarity metric between the two images, as well as for local alignment 

assessment. This mode of operation is particularly useful for automatic assessment 

of the non-rigid registration results during large-scale unsupervised parametric studies. 

Second, localized assessment of registration error can also be applied in conjunction with 

the visual assessment to provide quantitative error measurements. An example is shown 

in Figure 5.6. \Ve emphasize, that the proposed method cannot substitute validation 

studies. Instead, it can be used in conjunction with other accuracy assessment methods 

for the patient studies. where accuracy is critical, processing time is highly limited and 

there are no means to compare the registration result with the ground truth. A promising 

area of our future work is the evaluation of the proposed measures in conjunction with 

the consistency tests of the deformation fields obt<lined during the NRR, and S('nsitivity 

of the measures to parameter selection of a specific Nnn method. 

162 



5.5 Contributions 

Following are the contributions of the research presented in this Chapter: 

• A novel robust method for alignment error estimation based on local Hausdorff 

distance definition was proposed; 

• An open-source implementation of the method has been developed; 

• The developed method has been evaluated using different sources of ground truth 

data, establishing the advantages in robustness of the proposed approach over the 

conventional Hausdorff distance estimations. 

The results presented in this Chapter previously appeared in the follmving publica-

tions: 

• A.Fedorov, E.BilleL J\LPrastm\'a, A.Radmanesh, G.Gerig, R.Kikinis, S.K.Warfield, 

N.Chrisochoides. Evaluation of Brain l\IRI Alignment with the Robust Hausdorff 

Distance Measures. In Proc. of 4th International Symposium on Visual Comput-

ing (ISVC'OS), 2008, pp.594-603 

• E.Billet, A.Feclorov, N.Chrisochoides. The Use of Robust Local Hausdorff Dis-

tances in Accuracy Assessment for Image Alignment of Brain MRI. ISC Insight 

Journal, 2008 
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Chapter 6 

Discussion and Future Work 

In this dissertation we discussed three aspects related to non-rigid registration for image-

guided neurosurgery. These aspects belong to quite different domains: high performance 

and distributed computing, tetrahedral mesh generation, and image analysis for auto­

mated accuracy assessment of non-rigid registration. As a result, we developed a number 

of methods and tools that attempt to make NRR computation feasible, more accurate 

and more reliable for the purposes of intra-operative image guidance. 

Non-rigid registration is au inherently ill-posed problem in medical image analysis, 

that requires customiz;ed solutions depending on the clinical application, imaging modal­

ity and anatomical region. \Vhile developing robust non-rigid registration algorithms is 

a complex task, the complete solution of the problem includes deployment of the method 

in the clinical setting. As \Ve showed in this dissertation, the various aspects related to 

such deployment of the method requires understanding of a uumber of related issues. 

\Ve believe that this v.-ork presents tangible results that will facilitate development 

and application of the broad rauge of image registration <md processing algorithms in the 
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clinical setting. Our study of the mesh generation problem in the context of the NRR 

resulted in the development and analysis of the three reproducible clpproclches to this 

problem. Tv·:o of these approaches include off-the-shelf tools used in traditional mesh 

generation. In this ,,·ork. we show how these tools can be combined to mesh binary 

1m ages. 

As we showed in this dissertation, construction of the mesh for the registration 

method we studied requires consideration of multiple generic and application-specific 

criteria. These criteria present conflicting requirements, and the question of combining 

these requirements to produce the final mesh requires further study. In particular, an 

interesting question could be what is the optimal distribution of the registration points 

that can be achieved, and how to improve the mesh sizing to consider the magnitude of 

me::;h deformation. 

The most important issue that has been addressed in this work to the very limited 

extent is the validation of the developed techniques for image meshing and accuracy 

assessment with the clinically relevant data. This problem is inherent to validation of the 

non-rigid registration methods. Validation of the presented results with the anatomical 

landmark data obtained using multiple expert observers is necessary to establish the 

clinically significant impact of the meshing methods on registration accuracy. 

The presented methods of image-to-mesh conversion consider only the case of single-

materiaL homogeneous meshes. Constructing multi-material tetrahedral meshes using 

the conventional mesh generation tools by surface meshing follmvcd by volume meshing 

is more challenging. The surface recovery method we evaluated as implemented in 

CGAL is not capable of meshing multiple surfaces at the same time. However. this is 
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not a limitation inherent to the surface recovery algorithm. which is indeed capable of 

handling recover~' of multiple surfaces [~n ]. 

\Ye developed a distributed implementation of the clinically evaluated NRR method. 

Recognizing the difficulties of parameter selection for this method. we proposed to ad-

dress this problem using speculative execution. Speculative computations require signifi-

cant processing resources. \Ve developed an implementation that is capable of leveraging 

the computing power of the national TeraGrid cyberinfrastructure to enable this com­

putation. 

The feasibility of using geographically distributed Grid resources for the purposes of 

non-rigid registration has been evaluated. There are some important practical issues, 

which :-;till complicate use of the developed framework on the TeraGricl during neuro­

surgery. The first difficulty is due to the presence of local job batch scheduler does not 

provide guarantees on the start time of the job execution. \\'e discussed a number of 

approaches that can help to alleviate this problem. First, there are wait time prediction 

services, like QBETS [145]. available as services on TeraGrid. These services provide 

potential to improve scheduling decisions while choosing the execution site. Second, we 

used direct submission of jobs to the batch scheduler, which is not the most optimal for 

throughput-oriented execntion. Recently introduced alternative scheduling mechanisms 

allow to use single job submission request to subsequently execute multiple applica-

tion instances. This significantly reduces time clue to minimized interaction with the 

:-;cheduler and reduced queue times. 

The second difficulty related to the use of Tc~raGricl is that the interaction with the 

remote GRA.l\I using the :-;tandard Globus Toolkit installation requires open ports in 
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the client firewall configuration to receive update:-; about the job status. Based on our 

experience, configmation of the ho:-;pital intranet often includes multiple levels of network 

security. which may make firewall openings not possible. The i:-;sue of firewalls has been 

recognized by some groups cl:-J one of the most difficult practical issnes in using grid 

resources. In order to adclres:-; this problem, the client workstation may require special 

configuration, or may need to be located out:-;ide the firewall. Alternative solution:-; 

proposed in the literature describe customized implementation of communication with 

the Grid resources, that docs not require firewall openings [99, 170]. Study of these 

solutions within the Globus Toolkit implementation presents a subject of interesting 

future work. 

vVe contributed an automated approach for estimating alignment error between the 

l\IRI images of the same subject brain. The novelty of this method is in its ability to 

provide localized error estimates, and in reporting the error measure as the Euclidean 

di:-;tance at an image feature location. Such error reporting compares the method we 

developed favorably with the accuracy estimates based on similarity measure calculation, 

or based on global Hausdorff Distance. The clinical relevance of the proposed technique 

was evaluated on the set of three sets of l\IRI data collected during neurosurgery, with 

the anatomical landmarks identified by one observer. As it is the case for the me:-;h 

generation component of this dissertation, the study of this new accuracy assessment 

measure would greatly benefit from the evaluation on a larger set of clinical data. 
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Appendix A 

Software Tools for Image-to-Mesh 

Conversion 

In this Appendix we provide brief usage instructions for the image-to-mesh conversion 

tools developed in Chapter 3. All of these tools are \Vritten in C/C++. \Vc refer to the 

software toolkit developed in this dissertation as Imagel\'IeshingToolkit (I2IVITK). We 

refer to the root directory of the source code distribution as I2MTK. The described tools 

are located in I2MTK/Tools directory. 

nmne 
Cl\'Iake [118] 
ITK [120] 
VTK [121] 
l\fesquite [171] 
CGAL [42] 
Tetgen [180] 

Table A.l: Software dependencies of IniTE tools. 

purpose 
platform-independent configuration 
image processing and image IO 
mesh data structures for mesh IO support 
mesh optimization 
implicit surface recovery and spatial search data structures support 
Ddaunay mesh generation and refinement 

The developed software ck•pcnds on a number of tools and libraries, as summarized in 

Table A.l. Prior to compilation of the Mesquite library, the contents of I2MTK/Mesqui te 

168 



must be copied to the root directory of the l\Iesquite source code. These files contain 

modifications required for programmatic access to the l\Iesquitc data structures. Upon 

installation of the prerequisite libraries, your 121\ITK distribution must be updated to 

include the correct path to your l\Iesquite distribution following the instructions in 

I2MTK/CMakeLists. txt. configured and compiled. 

A.l Triangulated Surface Recovery 

I2MTK/Tools/surface-recovery.cxx. 

This tool wraps the surface recovery functionality provided by CGAL, implements 

direct surface recovery from binary image. and saves the surface mesh in VTI\: POLY-

DATA format [119]. 

Table A.2: Command line flags for triangulated :ourface recovery from binary image input. 

flag 

-input name 

-output name 

- surfaceRadiusBouncl 
value 

-surfaceDistanceBound 
"L'alue 

explanation 

name of the input binary image in any im­
age format supported by ITK IO 
name of the output mesh saved in any for­
mat supported by VTK IO 
surface recovery parameter that regulates 
the maximum radius of the circumsphere of 
a triangulated facet centered on the facet 
(the detailed explanation is available in 
CGAL documentation) 

suovested bb 

value 

n/a 

n/a 

5 .. 10 

surface recovery parameter that specifies 5 .. 10 
the bound on the distance between the 
facet and the center of its circumsphere) 

The command line options are smmnarizecl in Table A.2. 
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A.2 Delaunay Mesh Generation and Refinement from Bi-

nary Image 

I2MTK/Tools/image-mesher-adaptive.cxx. 

This tool combines the functionality of CGAL surface recovery 'With the Tetgen 

algorithms for Dclaunay meshing and refinement. 

Table A.3: Command line flags for adaptive Delaunay meshing from binary image input. 

fiag 

-input name 

- inputPointList name 

-output name 

-surfaceRadiusBound 
valve 

-surfaceDistanceBound 
vahte 

-alpha! value 

-alpha2 value 

-nnN value 

explanation 

name of the input binary image in any im­
age format supported by ITK IO 
name of the input VTK unstructured grid 
file [119] with the list of registration points 
name of the output mesh saved in any for­
mat supported by VTK IO 
surface recovery parameter that regulates 
the maximum radius of the circumsphere of 
a triangulated facet centered on the facet 
(the detailed explanation is available in 
CGAL documentation) 
surface recovery parameter that specifies 
the bound on the distance between the 
facet and the center of its circumsphere) 
volume mesh generation parameter (the 
detailed explanation is available in Tet­
gen [180] documentation 
volume mesh generation parameter (the 
detailed explanation is available in Tet­
gcn [180] documentation 
desired number of the registration points 
per mesh vertex cell complex 

The command line options arc summarized in Table A.:3. 
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suggested 
value 

n/a 

n/a 

nja 

5 .. 10 

5 .. 10 

0.4 .. 0.8 

0.6 .. 0.9 

n/a 



A.3 Lattice-Based Image Meshing 

I2MTK/Tools/biofemir-mesher.cxx 

This tool implements the functionality of HGM nwshcr, which is based on BCC 

lattice refinement, followed b)' iterative surface compression to the binary label surface. 

This tool operates directly on the binar)' image data, as described in Chapter 3. 1\lesquite 

library [171] is used by this tool for mesh quality improvement following boundary 

compresswn. 

Table A.4: Command line flags for adaptive lattice-bao;cd meshing hom binary image input. 

flag 

-input nome 

inputPointlmage name 

-output name 

-nnN value 

-resolutions value 
-bccSpacing value 

-bccSpacingValue voJue 
-maxlteratious value 
-minAngleAllowed value 

explanation 

name of the input binary image in any im­
age format supported by ITK IO 
name of the input image with the registra­
tion points in any format supported by ITK 
IO 
name of the output mesh saved in any for­
mat supported by VTK IO 
desired number of the registration points 
per mesh vertex cell complex 
number of red-green refinement iterations 
value of BCC spacing for the ml­

ti<:tl lattice as a relative to the corre­
sponding image dimension, i.e., numeric 
value of the spacing is calculated as 
inwgeDimens'ionjbccSpacing 
numeric value of BCC spacing 
number of surface compression iterations 
minimum value of the dihedra.l angle al­
lowed during surface compression: if the 
mesh contains angle smaller than this 
value. boundary compression procedure is 
term ina ted 

suggested 
value 

n/a 

n/a 

n/a 

n/a 

2 

n/a 

n/a 
n/a 
n/a 

The command line options are summarized m Table A.4. 1\lost of the::;c options 
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should be set depending on the desired properties of the mesh. Specifically. the values 

of BCC spacing allow to control the size of the mesh. Bounds on the number of surf<'~ce 

compression iterations and minimum dihedral angle pro,·icle flexibility in terms of the 

trade-off between the surface approximation accuracy and quality oft he mesh elements. 

A.4 Background Mesh Construction 

I2MTK/Tools/biofemir-bg-mesher-nn.cxx 

This tools constructs the background mesh based on refinement of BCC lattice that 

completely encloses the input binary image. The values of the sizing function are ini-

tialized as described in Section 3.5. The resulting tetrahedral background mesh can 

be saved in any file format supported by VTK IO, and also in the format required for 

background sizing field description by Tetgen and NETGEN. 

The command line options arc summarized in Table A.5. 

A.5 Utilities 

I2MTK/Tools/mesher-reader. cxx performs conversion bet\veen the tetrahedral meshes 

saved in different formats. Supported formats include those available in VTK IO, and 

the formats produced and supported by Tctgen and NETGEN. 

I2MTK/Tools/surface-reader. cxx provides conversion between the triangular sur­

face meshes in different formats. 

I2MTK/Tools/meshqual-dri ver. cxx reports statistics on mef:ih quality. The quality 

metrics for each tetrahedron can also be saved in a VTI\. file. This class wraps the quality 
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Table A.5: Command line flags for adapti\'e latticc-haseclmeshiug from binary image input. 

flag 

-input name 

-inputPointirnage name 

--output name 

-nnN value 

-resolutions value 
-bccSpacing value 

-bccSpacingValue value 
-outputPrefix narne 

explanation 

name of the input binary image in any im­
age format supported by ITI\. IO 
name of the input image \Yith the registra­
tion points in any format supported by ITK 
IO 
name of the output mesh saved in any for­
mat supported by VTK IO 
desired number of the registration points 
per mesh vertex cell complex 
number of red-green refinement iterations 
value of BCC spacing for the ini­
tial lattice as a relative to the corre­
sponding image dimension, i.e., numeric 
value of the spacing is calculated as 
irnageDimensionjbccSpacing 
numeric value of BCC spacing 
if specified, background mesh will be 
sa-.,-ed in the files named name. rnsz and 
·name. b. node for NETGEN and Tetgen re­
spectively. 

suggested 
value 

n/a 

n/a 

n/a 

n/a 

2 

n/a 

n/a 
n/a 

assessment functionality implemented in vtkMeshQuality class provided by VTK [121]. 

I2MTK/Tools/meshAddPtCnt. cxx takes the tetrahedral mesh and the list of points, 

and produces a mesh with initialized value of point count in the mesh vertex cell complex 

for each mesh vertex. 
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Appendix B 

Execution of Non-Rigid 

Registration on TeraGrid 

In this Appendix we describe the setup and infrastructure for executing the non-rigid 

registration workflow over the TeraGrid [188] resources. Execution of the registration 

workflow assumes that the registration process is run as a sequence of processing steps 

available separate modules, which correspond to the deconpled implementation of NRR 

described in Chapter 4. The modules used in the workflow are the following: 

• smooth wraps the anisotropic diffusion filtering; 

• detectEdges wraps the Canny edge detection filter, and produces a binary output 

with the edges extracted from greyscale image: 

• pointSelection prepares the list of registration points identified in the floating (pre-

operative) image: 

• !Jlock~MatchinyiHP I is a parallel implementation of block matching based on l\IPI: 

174 



• solver is the implementation of the iterative outlier rejection procedure: 

• ResompleRunAs.se.s.smcnt appliei-i the procedure of error estimation on the rci-iult 

of non-rigid registration. 

The pointSelection, block:AiatchingAJPI and solver are the components of the restruc­

tured implementation of the original NRR code used in [5:3]. 

The i-iCtup of the Grid-based NRR infrai-itructure consists of the preparations that 

must be done on the submitting site (client side) and on the site where the computation 

will be taking place (server side). 

The processing modules depend on the ITK and VTK libraries, which are the same 

as mentioned in Appendix A. These libraries must be available on the server side for 

workflow component execution. Additionally, the block matching module depends on 

the availability of an MPI implementation on the server side. No restriction are in place 

on the specific implementation of l\IPI that should be used, which reinforces portability 

of the implementation. \Ve mention Opcnl\IPI [190] and I\IPICH [1:3] as the two popular 

l\IPI libraries. All the modules that will be executed remotely must be compiled ::mel 

available as executables on each of the server sitei-i. 

On the client side. Globus Toolkit ( GT) compatible with the version that supports 

TeraGrid. must be installed (we used GT version 4.0. 7). SvYift package [58] must be 

available on the client side for workflow description. execution and management. Swift 

location is referred to by the environment variable SWIFT ...HOME. As part of the client side 

setup. a range of TCP ports open for incoming connections must be available, following 

the GT setup guidelines [95]. 
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Execution of jobs on TeraGricl requires that the submitting user has active accounts 

and resource allocations ou the TeraGrid sites that will be used for job submissions. 

Once the workflow modules are installed on the server sites, the clieut side must 

be configured to describe the computational resources that will be used for \Vorkflow 

execution, and the details on the module location and execution by means of Site catalog 

(grid resource description) and Translation catalog ( wor kflmv component description). 

As an example, the following Xl\IL listing describes the configuration for a single remote 

resource, as provided in the site catalog in 

SWIFT_HOME/etc/sites.xml: 

<config> 
<pool handle="SDSC-GT4"> 

<gridftp url="gsiftp://tg-gridftp.sdsc.teragrid.org:2811/" /> 
<execution provider="gt4" jobmanager="PBS" 
url="https://tg-login1.sdsc.teragrid.org:8443/wsrf"/> 
<workdirectory>/users/fedorov/scratch</workdirectory> 

</pool> 
</config> 

The description of each resource (the "poor· element) must include the contact string 

for GridFTP service, the execution provider, which is a GRAJ\1 service for TeraGrid sites, 

and the location of scratch directory on the remote resource. This directory will be used 

to store iutermecliate data relevant for the job execution. 

The details on the availability of the workflow components are provided in the trans-

lation catalog stored in SWIFLHOME/ etc/tc. data. The translation catalog provides all 

the details about the workflow component that are necessary for its remote execution: 

the full path to the executable, the walltirne needed for its completion. and the number 

of nodes. if the executable is an :\IPI npplication. 
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v\'e refer the reader to the supporting documentation of Swift [58] and TeraGrid [188] 

for further information on configuration of the translation and site cat<1logs, as they 

should be tailort>cl to the resources and configurations available in each particular cc1se. 

Using the Swift script, the parametrized execution of the NRR workflow can be 

describt>d as follows: 

### Description of the types used in the script 
type vtkfile{} II .vtk file: meshes and registration points 
type imagefile{} II various image files supported by ITK readers 
type volfile{} II .vol file: mesh format expected by NRR 
type messagefile{} II message files: stderr and stdout 

### Invocations of the workflow components 
# Detect registration points 
(vtkfile output) selectPoints(imagefile image, imagefile mask, volfile mesh, 

string connexity, string fracVar, string blockSize){ 

} 

app { 

} 

pointSelection "--mesh" ©mesh "--floatinglmage" ©image "--fracVarRejected" 
©fracVar "--blockConnexityType" ©connexity "--mask" ©mask 
"--blockHalfSizeX" ©blockSize "--blockHalfSizeY" ©blockSize 
"--blockHalfSizeZ" ©blockSize "--output" ©output; 

# Smooth and rescale input images for assessment processing 
(imagefile out) smoothlmage(imagefile input){ 

app { 
smoothAndRescale ©input ©out; 

} 

} 

# Detect edges in such a way that the total number of edge 
# points is about 10% of the image mask points 
(imagefile output) detectEdges(imagefile input){ 

app { 
EdgeDetection ©input "10" ©output; 

} 

} 

# Take the input edges and the mesh containing deformation vectors at the 
# vertices, and compute the alignment score 
(messagefile out) runAssessment(imagefile flo_edges, imagefile ref_edges, vtkfile mesh){ 

app { 

} 

} 

ResampleRunAssessmentRegion "--floating-edges" ©flo_edges 
"--reference-edges" ©ref_edges "--metric" "rghd" 
stdout=©filename(out) "--transform-mesh" ©mesh; 
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# Estimate the mesh deformation based on the registration points displacements 
(vtkfile meshOut) solver(volfile mesh,vtkfile brnResult, string spacing[]){ 

app { 
solver "--mesh" ©mesh "--pointFileNarne" ©brnResult "--voxelSizeX" 
spacing[O] "--voxelSizeY" spacing[1] "--voxelSizeZ" spacing[2] 
"--output" ©meshOut; 

} 

} 

# Compute block matching displacements at the registration points 
(vtkfile output) blockMatching(imagefile £Image, imagefile rimage, 

imagefile mask, volfile mesh, string blockSize, string windowSize, vtkfile points){ 
app { 

blockMatchingMPI "--mesh" ©mesh "--floatingimage" ©£Image "--output" ©output 
"--mask" ©mask "--blockHalfSizeX" ©blockSize "--blockHalfSizeY" 
©blockSize "--blockHalfSizeZ" ©blockSize "--pointFileNarne" ©points 
"--referenceimage" ©rimage "--blockHalfStepX" "1" "--blockHalfStepY" "1" 

"--blockHalfStepZ" ''1" "--blockHalfWindowX" ©windowSize 
"--blockHalfWindowY" ©windowSize "--blockHalfWindowZ" ©windowSize; 

} 

} 

##################################################### 

### Parameters 
# - point selection 
string psConnexity "26"; 
string psFracVar = ".95"; 
string psBlockSize = "3"; 
# - block matching: include speculative execution for block and window sizes 
string bmBlockSize [] = ["3", "4"]; 
string bmWindowSize [] = ["7", "8", "9"]; 
# - solver: include speculative execution for the outlier percentage 
string sFracRejected[] = ["0.2","0.3"]; #estimated percentage of outliers 
string inputimageSpacing[] = ["0.9375","0.9375","1.5"]; 

# Inputs 
imagefile floimage<"floating.nii.gz">; # floating image 
imagefile refimage<"reference.nii.gz">; # reference image 
imagefile maskimage<"mask.nii.gz">; #binary mask image 
volfile mesh<"mesh.vol">; # tetrahedral mesh 

### Intermediate files 
imagefile floSmooth<"floating_smooth.nii.gz">; 
imagefile refSmooth<"reference_smooth.nii.gz">; 
imagefile floEdges<"floating_edges.nii.gz">; 
image£ ile refEdges<"reference_edges. nii. gz">; 
vtkfile psFlo<"psFlo.vtk">; 

### Outputs 
vtkfile deformationMesh<"mesh_def.vtk">; 

### Beginning of workflow description 

# filter input image 
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# result of smoothing 

# result of edge detection 

# list of registration points 

# mesh with deformation vectors 



floSmooth = smoothimage(floimage); 
refSmooth = smoothimage(refimage); 
# detect edges 
floEdges = detectEdges(floSmoothHM); 
refEdges = detectEdges(refSmooth); 
# identify registration points 
psFlo = selectPoints(floimage, maskimage, mesh, psConnexity, psFracVar, psBlockSize); 

# iterate through all possible combinations of block/window sizes and 
# percentage of outliers 
foreach blockSize in bmBlockSize { 

} 

foreach windowSize in bmWindowSize { 

} 

vtkfile bmOutput<single_file_mapper; 
file=©strcat("Results/bmDutput-",blockSize,"-",windowSize,".vtk")>; 

# perform block matching 
(bmDutput) = blockMatching(floimage, refimage, maskimage, mesh, 

blockSize, windowSize, psFlo); 

foreach £Rejected in sFracRejected { 

} 

vtkfile sOutput<single_file_mapper;file=©strcat("Results/sOutput-", 
blockSize,"-",windowSize,"-",fRejected,".vtk")>; 

# perform iterative outlier rejection 
(sOutput) = solver(mesh,bmOutput,inputimageSpacing); 

messagefile alignmentReport<single_file_mapper;file=©strcat("Results/score-", 
blockSize, "-" ,windowSize, "-",£Rejected," .dat")>; 

# estimate registration error 
alignmentReport = runAssessment(floEdges,refEdges,sDutput); 
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Appendix C 

Software Tools for Local 

Accuracy Alignment Estimation 

This Appendix describes the developed tool for e:-;timating the alignment error between 

the two images. The accuracy assessment tool vva:-; developed jointly with Eric Billet. 

and this short guide is largely based on the detailed paper de:-;cribing the details of 

implementation and parameter setting:-; by Billet et al. [27]. 

The accuracy a:-;sessment tool:-; are written in C++, and are based on the function-

ality provided by the individual proces:-;ing filters of Insight Toolkit [120]. The analysis 

functionality is implemented in the RunAssessment tool. which accepts on input the con-

figuration file that specifies input:-; and processing parameters. The parameter:-; listed 

in the configuration file are explained in Tables C.1 and C.2. Note, that the parame-

ters corresponding to each row in the tables should he available in the same line of the 

configuration file. 

In the calculation:-; of GHD and RGHD, the local value:-; of the di:-;tance are initialized 
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to -100 for the edge points where the value cannot be determined for the selected analysis 

parameters. 

In case the ground tmth deformation field is aYailable, as it is the case for \\'hen 

synthetic ground truth is used. the results of the accuracy assessment can be compared 

\Yith the ev(duation tool we supply. This tool accepts as input local distance map 

(generated by the R11nAssessrnent tool using the HD, GHD or RGHD approach). the 

ground truth deformation field, and the edges extracted from the analyzed images. All of 

these are saved by the RunAssessrnent tool. Give this data, the evaluation tool reports 

statistics on the accuracy of error estimation stored in the local distance map. 
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Table C.l: Parameters for the configuration file used hy the accmacy asses::;ment tool. 

parameter 

input images 

input image masks 

percent of the edge voxels 

output edge images 

local distance map 

contrast enhancement 

number of threads 

type of metric 

explmHltion suggested 
value 

the names of the files with the two images n/a 
to be compared 
the names of the files with the two images n/a 
corresponding to the masks for regions of 
interest in the analyzed images 
an integer specifying the percentage of vox- 10 
els of the mask image, which defines the de­
sired number of edge voxels to be detected 
in the image 
the names of the two files where the edges n/ a 
detected from the input images should be 
saved 
the name of the file where the local distance n/ a 
map image will be stored 
a flag that defines the image enhancement n/ a 
procedure to be used prior to edge detec-
tion. The allowed options are: 
• 0: no contrast enhancement 
• 1: adaptive contrast enhancement [185]. 
Note, that this operation 1s very time­
consuming and for typical brain dataset 
takes about an hour 
• 2: histogram matching [96]. This opera­
tion is very fast, but is not as robust as the 
adaptive procedure 
should be adjusted to the system confign- n/a 
ration for the efficient execution of the par­
allelized processing components 
should have one of the following values, n/a 
that correspond to the developed metrics 
discussed in Chapter 5: 
• HD: conventional local distance map 
(LDI\Iap) 
• GHD: greyscale local distance map that 
includes topological edge structure 
• RGHD: greyscale local distcmce map 
with robust smoothing 
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Table C.2: Parameters for the coniiguratioll file used hy the accuracY assessmellt tool (contin­
ued). 

parameter 

neighborhood radius 

tolerance 

maximum deformation 

robust statistics window 

explanation suggested 
value 

the radius of the image neighborhood to 1 
be used for construction of the greysca.le 
local distance image. Note, that in three 
dimensions radius of 1 corresponds to the 
neighborhood dimensions 3x3x3 
this parameter corresponds to the value t 2 
used in Chapter 5 for finding the corre­
sponding point in greyscale distance image 
calculations 
this parameter limits the search neighbor- n/ a 
hood during the search of the correspond-
ing point. This is an application-dependent 
parameter that should be set based on the 
expected maximum deformation. 
this parameter is a non-zero integer num- 5 
ber, which should be set only if RGHD met-
ric is used. This number defines the radius 
of the neighborhood over which the robust 
statistics rnetrics will be calculated. 

robust statistics percent- a number between 0 and 1 that is used in 0.8 
age robust statistics calculation. The robust 

statistics winclovv is centered around each 
of the edge voxels, and initializes the local 
RGHD value at that voxel based on the 
robust statistics calculated over the values 
of previously estimated GHD at the voxels 
inside the window. 

mnnmum number of edge non-zero integer munber that defines the 
points minimum number of non-zero edge voxels 

within the smoothing neighborhood to pro­
ceed with the RGHD calculations. In the 
case when the number of edge points within 
the smoothing window is below the speci­
fied number. 
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