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ABSTRACT PAGE

in the context of image processing, non-rigid registration is an operation that attempts to align
two or more images using spatially varying transformations. Non-rigid registration finds
application in medical image processing to account for the deformations in the soft tissues of
the imaged organs. During image-guided neurosurgery, non-rigid registration has the potential
to assist in locating critical brain structures and improve identification of the tumor boundary.
Robust non-rigid registration methods combine estimation of tissue displacement based on
image intensities with the spatial regularization using biomechanical models of brain
deformation. In practice, the use of such registration methods during neurosurgery is
complicated by a number of issues: construction of the biomechanical model used in the
registration from the image data, high computational demands of the application, and
difficulties in assessing the registration results. In this dissertation we develop methods and
tools that address some of these challenges, and provide components essential for the
intra-operative application of a previously validated physics-based non-rigid registration
method.

First, we study the problem of image-to-mesh conversion, which is required for constructing
biomechanical model of the brain used during registration. We develop and analyze a number
of methods suitable for solving this problem, and evaluate them using application-specific
quantitative metrics. Second, we develop a high-performance implementation of the non-rigid
registration algorithm and study the use of geographically distributed Grid resources for
speculative registration computations. Using the high-performance implementation running on
the remote computing resources we are able to deliver the results of registration within the
time constraints of the neurosurgery. Finally, we present a method that estimates local
alignment error between the two images of the same subject. We assess the utility of this
method using multiple sources of ground truth to evaluate its potential to support speculative
computations of non-rigid registration.
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ENABLING TECHNOLOGY FOR NON-RIGID IMAGE
REGISTRATION DURING IMAGE-GUIDED NEUROSURGERY



Chapter 1

Introduction

Cancer is one of the leading causes of death in the United States and around the world.
According to the American Brain Tumor Association. the expected incidence of brain
tumors in the US population was estimated at 52,236 new cases in 2008 [16, 43]. Neuro-
surgical resection is a primary treatment of brain tumors [17]. The goal of the resection
is maximum remmoval of the tumor tissue with the mininium damage to the surrounding
healthy tissue.

Image-guided neurosurgery (IGNS) utilizes pre-operatively acquired medical images
to improve tumor localization and the precision of tumor resection, and to minimize neg-
ative consequences for the patient. However, intra-operative shifts of the brain structure
are common during open skull brain surgery. This happens due to the leakage of cere-
brospinal fluid (CSF), the injection of medications, brain tissue swelling, etc. There is
evidence in the literature that such deformation can be in the order of up to 25 mm [64].
An illustration of the brain shift phenomenon is given in Figure 1.1. As a result of the

intra-operative shifts, preoperative imaging data may become invalid in relation to the



Figure 1.1: Left: axial slice of a pre-operative MRI showing tumor. Center: intra-operative
MRI showing brain shift and tumor resection. Right: tetrahedral mesh with the recovered
deformation. MRI images courtesy of Surgical Planning Laboratory, Brigham and Women’s
Hospital.

intra-operative brain configuration.

Recent technological advances attempt to remedy the problem of brain shift by pro-
viding means to track brain deformation. One such technology is the intra-operative
MRI (iMRI) [116]. Using iMRI during a tumor resection procedure, surgeons can ob-
tain MR imaging data that reveal brain deformations. This can be done with the use of
open MR scanners, where the surgery is taking place with the patient located inside the
scanner. Alternatively, the patient can be moved during surgery for iMRI acquisition.
The primary goal of iMRI is to provide intra-operative imaging to the surgeons, showing
tumor location and residual tumor volume to the surgeons. This is essential because
the task of maximum safe tumor resection is complicated by the visual similarities be-
tween healthy and diseased tumor tissue, as well as the proximity of life-critical brain
structures.

It was shown that the use of iMRI significantly improves the resection margins [54].
In turn, the improved resection margins result in a better prognosis for the patient [105,

161]. However, one of the remaining problems is the inébility of iMRI scanners to fully



substitute the pre-operative imaging due to their limited capabilities as compared to
closed-hore scanners, and due to the time constraints imposed on the acquisition process.
Thercfore, efforts are underway to develop methods and tools that use iMRI to deform
the pre-operative MRI in order to account for intra-operative deformation [74, 166, 53].
The process of aligning the corresponding features of two images is known as image
registration. Non-rigid registration uses spatially varying, non-global transforms, which
account for local deformations of the imaged object.

A number of approaches to non-rigid registration have been proposed to date. In
this dissertation we focus on the specific method developed by Clatz et al. [53], who
developed a physics-based technique for registering pre-operative MRI data to the im-
ages acquired in the open magnet scanner during image-guided neurosurgery. This
method combines biomechanical modeling of brain deformation with the estimates of
deformation displacements from the intra-operative images. The authors evaluated the
robustness of this method retrospectively using clinical data. The research presented in
this dissertation enabled prospective application of this method by Archip and collabo-
rators intra-operatively [8, 7]. The feasibility and accuracy of registration was confirmed
during 11 neurosurgery procedures at Brigham and Women’s Hospital in Boston, MA.

This dissertation presents the development of enabling technology to register im-
ages during image-guided neurosurgery, and includes tools and methods essential for
completing non-rigid registration within the constraints imposed by the neurosurgical
procedure. Specifically, we developed technology for the registration method presented
by Clatz et al.. a method with the established accuracy and applicability. The objective

of this work is not the development of an all-inclusive set of technologies required to



accomplish this task, but rather the development of some of the essential components

of these technologies.

1.1 Contributions of this Work

This work describes a set of both practical and novel methods. and their implemen-
tations, that are important for the task of non-rigid registration in an intra-operative
setting. We focus on a registration technique with established accuracy, which was eval-
uated off-line on the retrospective data. Prior to the completion of the work presented
in this dissertation, the application of this registration technique was not feasible during
the course of neurosurgery.

The first component developed in this dissertation is the construction of patient-
specific biomechanical models of the brain from pre-processed MR imaging data. This
model is required by the formulation of the registration technique. The studied problein,
which we define as image-to-mesh conversion, presents new challenges to mesh genera-
tion approaches previously developed for Computer Aided Design (CAD) applications.
We present and evaluate a number of approaches suitable for this task using both conven-
tional quantitative metrics and the application specific quality measures. The methods
we develop are based on open source software that facilitates their use in similar ap-
plications that require construction of tetrahedral meshes from images. Image-to-mesh
conversion tools are essential to enable non-rigid registration computation.

Ensuring that the time required for registration computation is compatible with
neurosurgery time constraints is the second topic studied in this dissertation. We develop

a distributed implementation of the non-rigid registration technique, and use distributed



remote cluster resources connected with the hospital by a high-speed network as the
platform for the execution of the restructured implementation. As a result, we were able
not ouly to reduce the computation time to under 5 minutes. but also demonstrated that
it is feasible to deliver remotely computed registration results intra-operatively.

A well-known difficulty in using complex immage processing operations like non-rigid
registration is in the selection of parameters that result in the best accuracy of the
method. The optimal parameters may depend on the properties of the input data.
Moreover, our preliminary studies of the registration parameter space show that differ-
ent parameter combinations may be optimal for minimizing registration error at different
image locations. When the parameters need to be selected within strict time constraints.
optimal parameter selection becomes particularly challenging. In this dissertation we
explore how the power of computational grids can be used to assist in improving reg-
istration accuracy. We present a feasibility study of speculative execution of non-rigid
registration on a distributed cyberinfrastructure that connects thousands of comput-
ing nodes, freely available for research studies. During speculative execution, non-rigid
registration is computed simultaneously with different parameter combinations. While
non-rigid registration is a computationally challenging task itself, speculative execu-
tion of registration requires special infrastructure to distribute, monitor and analyze
the results of execution of multiple registration instances. Such infrastructure is needed
to augment the high-performance implementation of a single registration instance. In
this dissertation we develop a framework for conducting speculative computations on
TeraGrid, the research cyber-infrastructure of the United States [188].

For the application of speculative execution, it is essential to develop measure that

6



can determine the success or failure of non-rigid registration. In general, there are no au-
tomatic techniques to accomplish such evaluation for clinical data. because ground truth
(the true deformation value at an image location) is rarely available intra-operatively.
Moreover, even retrospective evaluation of non-rigid registration, when there are no con-
straints on the analysis time, presents significant challenges. Recognizing the difficulty
of collecting ground truth data, and the spatial variability of the registration accuracy,
we propose a new technique for caleulating the alignment error at a given image location

based on the definition of Hausdorff distance.

1.2 Thesis Structure

The dissertation is organized as follows:

Chapter 2 suminarizes background information related to the application of non-

rigid registration, and describes the registration method.

e Chapter 3 describes the problem of image-to-mesh conversion in general, as well as

the application-specific requirements imposed by the non-rigid registration method.

e Chapter 4 presents the high performance iimplementation of non-rigid registration.

and the framework for its speculative execution.

e Chapter 5 describes the design, methodology and evaluation of this novel approach

for automated assessment of image alignment.

e Chapter 6 summarizes the present research and suggests future work related to

this dissertation.



Chapter 2

Image Registration

The research presented in this dissertation is motivated by the specific application of
registering medical image data for the purposes of image-guided neurosurgery. In this
Chapter we present tlie necessary background required to understand the basics of im-
age registration and its context within the clinical application. We also describe the
specific registration method targeted in this work, with the emphasis on its aspects and

requirements addressed in the subsequent chapters.

2.1 Background

The use of Magnetic Resonance Imaging (MRI) for studying brain tissue has gained
wide acceptance due to its superior capabilities in imaging soft tissue, absence of ionizing
radiation and good contrast resolution for soft tissues [134]. MRI uses powerful maguetic
field to systematically disrupt the spin of protons in the body, causing them to produce
rotating magnetic fields. which are detected by the MR scanner coils. The strength of

the signal depends on the physical properties of the tissue, and determines the values



of the image intensities derived during image reconstruction. MR image acquisition
is parametrized by different pulse sequences, that are optimized for improved contrast
while imaging different kinds of tissues. Typical MRI scans are obtained using so-called
T1- or T2-weighted sequences. With T1 sequence, tissues that contain more non-bound
water, like cerebral spinal fluid (CSF) appear dark, and those tissues that contain bound
water molecules, like fat and brain tissues, are brighter. On the opposite, bright regions
in the T2 scan correspond to the tissues rich in non-bound water.

Additional information about brain can he obtained using specialized sequences that
are gaining more acceptance with the improvements in image acquisition and processing
technology. Diffusion Tensor MRI (DT-MRI) measures the diffusion of water, which
can be used to infer the orientation of white matter fibers. Functional MRI (fMRI) can
be used to identify the cortex regions responsible for the specific kind of activity by
spatially measuring blood oxygenation at high temporal resolution while the patient is
asked to perform certain activities. Preliminary studies [149, 126] showed the value of
fMRI and DT-MRI for the neurosurgery.

The validity of the preoperatively acquired image data is often compromised during
the course of open skull neurosurgery due to significant deformation and shift of the
brain tissue. This deformation is caused in particular by leakage of cerebrospinal fluid,
injection of medications and swelling. Because of this deformation, the spatial alignment
of the preoperative data with the in situ configuration of the brain structures is no longer
accurate, and additional processing is required to recover this correspondence.

Image registration is the procedure of aligning the corresponding features of two or

more images. In the context of IGNS, the objective of registration is to align the features
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of the pre-operatively acquired data with the intra-operative image. The pre-operative
image is therefore called floating, or moving image, since it will be transformed into the
coordinate space of the iutra-operative iimage, which is called target, fized, or reference
image.

Medical image is essentially a collection of samples of some physical value taken at
regularly spaced locations within the imnaged volume. We will use the notation suggested
by Hill et al. [106] to introduce the most important related definitions. Image domain

Q is defined as:

where €1 is a bounded continuous set, also known as image field of view, and T is a
sampling grid characterized by the anisotropic spacing ¢ = {¢*,s¥,¢*}. In the context of
registration, image spacing is usually different for floating and target images. In the case
of IGNS, pre-operative image usually has better spatial resolution, while intra-operative
image is optimized for reduced acquisition time. Value of the sample at the sampling grid
is a mapping from some physical quantity into a scalar value. Commonly used imaging
sequences, e.g., T1 weighted imaging, define a mapping A from a point in physical space
Q into R:

Atz e Qs A(x) c R

A volumetric sainple value in a three-dimensional image is represented by image vozel,
which is defined as a cuboid-shaped Voronoi region of size ¢ centered at the sample grid
point.

The result of image registration is a mapping T that defines a transformation be-

tween the coordinate space of the moving image and the coordinate space of the reference

10



image. Given T, the registered image is coustructed by resampling the floating image.
During resampling, the intensity value of each voxel in the coordinate space of fixed im-
age is identified by first locating the corresponding point in the floating image space. and
then interpolating the value of intensity at that point from the values of the neighbor-
ing voxels in the floating image, e.g., using the nearest-neighbor or linear interpolation
functions.

Depending on the type of the transformation recovered, modality of the images,
imaged subject and other criteria, the registration methods can be classified into different
categories [36, 106]. With respect to the modality of the images that are registered.
registration can be intra-modal or inter-niodal. Intra-modal registration is applied to
the images that were acquired using the same imaging technique, and usually the same
pulse sequence, in the case of MRI. Inter-modal registration is usually a more difficult
problem, because different image modalities may not necessarily be capable of showing
the same anatomical features. For example, CT is ideal for imaging bone tissue, while
in MRI bones have poor contrast. Image registration finds its applications both in
aligning Imagery of the same patient (intra-subject registration) and different patients
(inter-subject registration).

Depending on the type of transformation, registration can be rigid, when the ob-
ject is changing its position under rotation and/or translation, or non-rigid, when the
transformation varies with the spatial location within the image. Affine transformation
is similar to rigid. since it defines a single, global transformation, but in addition to
translation and rotation it also includes scaling and shear. Affine transformations are

typically applicable in inter-subject registration.
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Finally, depending on the approach used to derive the transformation. the regis-
tration methods are classified into feature-based and intensity-based techniques. The
niethods in the first group rely on the identification of the same locations in images
being registered, which can include surfaces or points. The methods from the second
group are usually more general and robust, hecause the preliminary step of feature iden-
tification is not necessary. Intensity-based registration methods derive the registration
transformation iteratively by optimizing certain voxel similarity measure hetween the
images. The choice of the optimum similarity measure depends on the expected rela-
tionship between the intensities of the corresponding regions in the registered images.
For example, in case of intra-modality registration when the images differ only by noise
the sum of squared differences (SSD) measure can be sufficient [106, 207].

[inage registration does not admit general solutions. Typically, registration meth-
ods differ depending on the application, which is defined by the kind of images, and
the anatomical structures being registered. However, any registration method gener-
ally includes the same building blocks, which are the transform (global or non-rigid),
interpolation function that allows to evaluate iinage values at non-voxel locations, sim-
ilarity measure (or goodness-of-fit function) to assess the quality of alignment, and
some optimization technique to guide the derivation of the transformation based on the
goodness-of-fit value [109. 120].

Registration of the brain MRI data for IGNS is typically a multi-step process, which
includes both rigid and non-rigid components. The rigid transformation captures the
differences in the position of the patient during pre-operative acquisition compared to

the position during surgery. Local deformations that happen due to intra-operative
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brain shift are recovered by non-rigid registration.

Registration, and especially non-rigid registration, is an inherently ill-posed problem.
The objective of non-rigid registration is to produce the deformation vector at each voxel
location of the image. At the same time. this vector has to he derived based only on
the values of intensity in the reference and floating images [76]. Therefore, the non-rigid
registration constructs some mapping from lower- to higher-dimensional space, which
cannot be uniquely defined. Moreover, assuming that registration should guarantee
alignment of certain homologous points, the aligninent can be achieved with different
transformations or deformation fields. The important question is therefore how to mmake
the result of registration realistic. This is usually achieved by utilizing some form of
smoothing, or regularization of the solution. A number of the registration methods
that have been developed for brain shift recovery incorporate physical model of brain
deformation to ensure realistic registration results. We next proceed to the description

of one such method, that motivates the work in the subsequent chapters.

2.2 Robust Estimation of Volumetric Deformation

The research described in this dissertation is targeting technology development for the
specific non-rigid registration method developed by Clatz et al. in [53]. This method was
designed for intra-modality same-subject registration of the pre-operative high-resolution
brain MRI data with the intra-operative scans acquired in the open magnet MRI. In this
Section we summarize the highlights of the registration method and introduce relateed
definitions. The high-level diagram of the irnage processing steps during registration is
shown in Figure 2.1. Registration-related processing includes pre- and intra-operative
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Figure 2.1: Processing steps during non-rigid image registration for [GNS.

components, with only some steps being time-critical.

The pre-operative step includes acquisition and pre-processing of the patient data.

As part of the standard clinical protocols multi-modal MRI scans of the patient are
obtained prior to the surgery for the evaluation and surgery planning purposes. The
pre-operatively acquired data is analvzed so that the tumor is localized with respect to
the critical brain structures. The same data can be used for the pre-processing step of the
registration, which does not require intra-operative image data. The registration method
relies on the patient-specific biomechanical model of the patient brain, constructed from

the segmented brain volunie. and on the sparse estimation of displacements at selected
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registration points. The locations of those points correspond to the regions of the image
which shows significant structure, which can be identified in the intra-operative scans.

During the day of the surgery in the open MRI facility. the patient is placed on the
operating table, and their head is rigidly fixated in a position that is most convenient for
the operation. This position will generally be different fromn the position of the patient’s
head during pre-operative image acquisition. Rigid registration is used to account for
this difference, and is applied to the pre-operative data to bring it into correspondence
with the actual patient’s position. This processing step is not time-critical, since there
is usually a delay of more than an hour between the fixation of the patient’s head and
beginning of the tumor resection.

The time-critical component related to non-rigid registration is initiated by the ac-
quisition of an MR scan showing brain deformation. Once this scan is available, it is
used together with the results of the pre-operative processing for registration. First,
the displacement vectors are estimated at the locations of the registration points by
means of block matching. Next, the biomechanical model of brain deformation is used
to iteratively discard outlier measurements from the results of block matching and de-
rive the dense deformation field. Finally, the dense deformation field is applied to the
pre-operative data for subsequent visualization.

Next we discuss the processing steps in more detail, following the original presenta-

tion of Clatz et al. [53].



2.2.1 Pre-operative Processing

The first component of the pre-processing stage is the construction of the tetrahedral dis-
cretization of the brain. The tetrahedral (finite element) discretization is subsequently
used for numerical solution of the differential equation describing the mechanical behav-
ior of the brain tissue. This task will be studied in more detail in Chapter 3. Here we
give a brief overview of the approach to tetrahedral model construction described in the
original paper.

The voxels that correspond to the intra-cranial cavity (ICC) in the pre-operative
image are identified by means of semi-automatic segmentation. Image segmentation is
a fundamental research problem in medical image analysis, and in general no automatic
methods exist for segmenting an arbitrary structure from the image. Segmentation
produces a binary image M, where each voxel is marked as inside or outside the ICC:
M(x) : A(x) — {0,1}. This binary image implicitly describes the ICC. The tetrahedral
model is then constructed by first recovering the explicit triangulated surface of the ICC
using the Marching Cubes (MC) algorithm [129], which is next decimated to reduce the
number of surface triangles. The decimated triangulation of the ICC surface is finally
used as the input for the Delaunay-based mesh generator GHS3D [182], which produces
the tetrahedral mesh M = (V, 7). V is the set of vertices, and T is the set of mesh
tetrahedra.

The second component of the initialization prepares the data for sparse estimation
of the initial deformation. Given the pre-operative image A, this step produces a set
of points in voxel coordinates £ € F, f = (x,y,z). We will refer to these points as
registration points. Deformation vector will be estimated in the intra-operative part of
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the algorithm at each of these registration points. The selection of registration points
is an iterative process itself. Initially, all of the points that correspond to the centers of
the voxels inside the overlap of the segmented ICC mask A and tetrahedral mesh M
are included in the list of registration points F;,;;. Note, that due to surface decimation,
not all of the mask will be inside the mesh.

For each registration point f, the mean and variance of the inteusity in the voxels
within the cuboid region of size B = (B, By, B;) centered at the registration point are
calculated. The points in the F;,;; list are ordered by their corresponding variance. The
list is traversed starting from the highest variance value. A registration point is selected
in the list F if the following two constraints are satisfied: (1) the voxel corresponding
to the registration point 1s 1ot connected with the voxel corresponding to the already
selected point, given the specific connectivity definition, and (2) the total number of the
selected points is below 11| Fi,i¢|. Connectivity defines whether the voxels corresponding
to the selected registration points must not share faces (6-connectivity), faces and edges
(18-connectivity) or faces, edges and corners (26-connectivity). The parameters used
during registration points selection and their default values, as suggested by Clatz and
collaborators, are suiminarized in Table 2.1.

Based on the finalized list of the registration points, normalized structure tensor [14]
T(f) is calculated using the following definition:

f*+B.—1 fY'4+B,—1 f*+B.—-1 ST AN < T
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where VF(7. . k) is the value of gradient at a given registration point:
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Table 2.1: Parameter space for the non-rigid registration method of Clatz et al. [53].

parameter

default setting

Young modulus (£)

Poisson’s ratio (v)

selected fraction of registration points (1)
block connectivity (bConn)
search block dimensions (B)
search window dimensions (1)
search step (sStep)

nuinber of rejection steps (njer)
rejected blocks fraction (rg)
energy trade-off («)

error model breakup point (A)
CG precision (rce)

694 Pa

0.45

10%

26

TXTx7T

11 x 11 x 25
1x1x1

10

25%

trace(K)
n

0.5
0.001

T(f) is a second order positive-definite tensor. Eigen-decomposition applied to the

structure tensor gives the direction of gradient together with the certainty in the gradient

localization, as defined by the eigenvalues. Structure tensor is used in the subsequent

formulation to increase the confidence in the deformation estimation.

Pre-operative iinage data is acquired in the coordinate space which is generally not

aligned with the position of the patient during the surgery. As part of the standard

procedure for image acquisition during IGNS within iMRI, the initial MRI scan is ac-

quired once the patient head is fixed for the operation. Rigid registration is applied to

the pre-operative data to align the pre-operative data with the patient position in the

IMRI scanner.

2.2.2 Intra-operative Processing

The time-critical commponent of the registration is initiated with the acquisition of an

intra-operative MRI showing brain shift.

The sparse displacement field between the floating and reference images is estimated
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with the aid of volumetric block matching [53]. For each registration point f € F, block
matching iteratively searches for such a location of the region B centered at this point
in the floating image (defined as search block) that maximizes the similarity metric with
respect to the overlapping portion of the search region W (search window) within the
reference image. The search for optimum matching block is parametrized by the sizes of
the block and window regions, aud by the voxel similarity metric. Clatz et al. suggest the
use of Normalized Cross Correlation (NCC) [53] as a measure of image block similarity.
Given the region Bp of the floating image centered at a certain registration point and
the overlapping portion of the search window in the reference image Br, NCC is defined

as:
>iep(Br(i) — Br)(Bp(i) — BF)'

NCC = — —
V(Br(i) — Br)*(Br — Bp)?

Bt and Bp correspond to the average intensity values within the block in the reference
and floating image respectively.

NCC measure is computed for every possible overlap of the block region with the
window region, and the location which provides the maximum value of NCC is selected
as the estimated new position of the registration point in the target image. The numeric
value, ¢(f), of NCC for the registration point f is between 0 aud 1, and serves as the
measure of confidence in the estimated displacement. We note the high computational
complexity of the block matching procedure. Considering the sizes of three-dimensional
block and window are defined in pixels as B = {B,.B,. B.} and W = {W, W, W},

the bound on the number of operations is

O(ByB,B. x W,W,W. x | F]).
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The block matching result contains outlier displacements: for some registration
points the maximum value of NCC will not correspond to the location of the image
block in the target timage. This can happen due to a number of reasons. For example,
registration point may correspond to the region of the image that does not show suffi-
cient anatomnical structure; the anatomical region that appears in the search block may
not be present in the target image due to resection, and the resulting match is arbi-
trary; target image may be acquired after injection of contrast agent, which will result
in non-linear changes in intensity values therefore violating the assumptions required for
ralidity of the results obtained with NCC.

In addition to the presence of outliers in the block matching results, there will be
regions of the image without any estimations of the deformation because the distribution
of the registration points can be highly non-uniform. Hence. the challenge of registration
is to minimize the influence of the outliers, and estimate dense brain deformation from
a sparse and irregular set of displacements. One solution is to formulate the problem
in terms of energy minimization. Consider the brain in its rest state. without any
deformation and any forces applied. Displacements at the selected registration points
provide estimations of brain deformation. The total energy of the systetmn W can be
defined as the sum of the mechanical and matching energy components. Let m = |F|
(the number of registration points), and n = |V| (the number of mesh vertices). The
U is the vector of size 3n (three degrees of freedom for each vertex in the mesh) that
describes displacement of each mesh vertex. D is the vector of size 3m, that contains
the displacements recovered by block matching.

A tetrahedron t; € 7 is defined by the four vertices p;. j = 0,....3. Mesh de-
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formation is described by the displacement vector at each mesh vertex u; = {U]‘le =

(uf,u?, u?). Then the displacement vector at any point X = (x.y.z) € t can be found

as:
3
u(X) = "X,
j=0
where h;(X), j=0,....3 are the linear shape functions [63], defined as:
T xT r T —1
ho Py Pi P> P3 T
hi| _|po PY Py Pi| |y
ha P Pi Py Pj z
hs 11 1 1 1

H is defined as a 3m x 3n matrix that interpolates displacements at the registration
points from the displacements at the mesh vertices. For each combination of mesh
vertex v; € V and registration point f; € F, there is a 3 x 3 submatrix [H]‘jfﬂ Let
S(v;) be the set of all tetrahedra in 7 that are incident on vertex v; € V (i.e., share this

vertex). The set of tetraliedra in S is known as the vertex cell compler. The submatrix

[H}jid is non-zero and is defined as:

[H]>3 =ht. T

Jii

it and only if 3t € T : f; € t,t € S(v;) (registration point f; is located inside the
tetrahedron t).

S is a 3m x 3m block-diagonal matrix that reflects the confidence in the deformation
estimate recovered by block matching at a given registration point. A 3 x 3 submatrix
[S]jj3 which corresponds to the jth registration point is defined as the structure tensor

T evaluated at that point scaled by the normalized value of cross-correlation ¢ evaluated
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during block matching:

855 = (R T

Given the definitions of the displacement vectors U and D, interpolation matrix H

and the weighting matrix S, the matching energy is defined as:

Wmatchirzg - (HU - D)[S(HU - D)

Minimization of the matching energy with respect to U results in such a configuration of
the mesh that minimizes the error terin (||HU —DY|), which is the difference between the
displacements D recovered by block matching and those interpolated from the displace-
ments at the mesh vertices. The values of the mesh vertex displacements that minimize
the error term can be found with the Least Squares method [91]. Such formulation is
termed as interpolation formulation by some sources [53], since with sufficiently dense
mesh (e.g., when there is a mesh vertex corresponding to each of the registration points)
the error term can be reduced to zero.

Although the interpolation formulation minimizes the registration error point-wise,
the vertices of the mesh that do not contain any registration points do not move, and
the resulting deformation may not have any physical meaning.

Physical constraints that approximate brain deformation under prescribed load con-

ditions are introduced into the formulation to make the result more realistic. The

mechanical energy is the energy that is exerted as a result of body deformation:

T
Wmerhan,u’al =UKU,

where K is the stiffuess matrix that captures the physical properties of the modeled
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object [63]. Mechanical energy is proportional to the amount of deformation, and the

total energy of the system is:

W = Wl‘lz,c(“/mni(,fal + Wmatc/z'ing - UTKU -+ (HU — D)YS(HU — D)

Therefore. with this updated formulation, the final configuration of the system is the
state of equilibrium between the internal mechanical and matching forces. The mesh
vertex displacements at the equilibrium state are found by differentiating with respect

to U and solving % =0:

oW
ou

= [K+H"SH]U - H"SD = 0.

The internal forces of the body resist deformation and the external forces are driving
the model deformation based on the sparse displacements from block matching. As
a result, even with the arbitrarily dense mesh discretization, the error term (JJHU —
D||) cannot become zero. Therefore, this formulation is referred to as approzimation
formulation.

The robust estimation method proposed by Clatz et al. is based on the idea of itera-
tive convergence from the approximation to interpolation formulation. This is achieved

by introducing a force term F that is updated at each iteration increasing from zero to

the value which balances the mechanical forces of resistance:
[K+H'SH|U = H'SD +F.
The iteration scheme is defined as follows:

F,j == KU,



Algorithm 1 Iterative estimation of brain deformation with outlier rejection.
Input: 7. K, H, S. D. 9. nj., (sec Table 2.1)

Output: Mesh deformation defined by U

1. F,<0

2: for 7 = 0 to nte, do
3: F; <« KU;
4
5

U, < [K+H"SH]"'[H'SD + F]
for all f,,, € 7 do

6: compute error function &(f,)
7. end for
3. reject 'i'f_l points with highest £(£,,)

9: for all f,o:L € O(F,i)do

10: remove the contribution of f,,, from H? SH and D
11: end for

122 Uy <= [K+H'SH]"HTSD + F|]

13: end for

14: repeat

15: F;, « KU,

16: Uiy <= [K+HTSH)HHTSD + F]

17: until convergence

U, < [K+H'SH] '[H'SD + F,].

The attempt to remove outliers from the block matching data is made by discarding
those points where the error function exceeds a predefined threshold. The error function

&(f;) for registration point f; is defined as follows:

§(£) = I[S]75*[(HU); — DI

J-J

The complete algorithim for iterative deformation estimation is given in Algorithm 1.

2.3 Requirements

Non-rigid registration during IGNS is a computation. which can impact life and health

of the patient. In order to show that a particular algorithm and its implementation
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can become part of an established clinical workflow. it undergoes thorough evaluation.
The objective of the neurosurgery is maximum removal of tumor tissue with minimum
damage to the healthy structures. The primary goal of non-rigid registration is to assist
in this task, therefore, the first requirement is to improve identification of the tumor
margin by providing accurate estimmate of the deformation field. Accuracy is the main
requirement to NRR.

The outcome of registration must be correct under varying conditions of immage acqui-
sition, noise, ainount of resection and brain shift. The ability of the method to function
correctly under different external conditions is known as robustness, and is another es-
sential requirement. Robustuess of the algorithm is related to its sensitivity, which can
be defined as the variation in the output of registration as a result of changes to its
inputs. In addition to the differences introduced by the case-specific details of anatomy.
tumor size/location, and image acquisition, the result of the registration depends on the
selection of the registration parameters summarized in Table 2.1.

Finally, the results of registration in the context of IGNS can only be relevant and
useful if delivered as requested by the neurosurgeon. Acquisition of the intra-operative
MRI introduces a significant disruption into the resection procedure. The non-rigid
registration procedure should add minimuin extra wait time to the resection procedure,
and should be performed within minutes of iMRI acquisition.

Improving the accuracy. robustness and speed of the described non-rigid registration
algorithm are the focus of this dissertation. In the following chapters we develop methods
and tools that allow to deliver an implementation of the non-rigid registration method

to satisfy these critical requircments.
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Chapter 3

Mesh Generation

Study of the dynamic natural phenomena often requires solution of partial differential
equations. Analytical solutions of differential equations describing the behavior of com-
plex systems is usually not possible due to complicated geometry and boundary condi-
tions. Instead, an approximate solution is sought. Finite Element Method (FEM) [211]
is a numerical technique that allows to find such approximate solutions to partial differ-
ential equations. In particular, FEM is commonly used for solving continuum mechanics
equations in biomechanical modeling [63]. A prerequisite step to application of the FEM
is the approximation of the continuous geometric domain using discrete elements of sim-
ple shapes. The resulting discretization is often called finite element mesh, and the
process of constructing such mesh is known as mesh generation.

Most of the research in mesh generation has been stimulated by the applications
in the domain of Computer Aided Design (CAD). In the traditional formulation of the
problen that has been adopted by the CAD community, the three-dimnensional geometric

domain Q ¢ R? is defined by its boundary 9§, which consists of surfaces and curves
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in their parametric representation [211]. Sections of the domain surface are defined
by the so called patches, or faces, which are sections of the parametric surfaces in the
form of B-splines or NURBS (Non-Uniforin B-Splines) [160]. Edges of these patches are
portions of spline curves. Construction of such parametric representation takes place
prior to volumetric mesh generation, and is usually done manually using CAD software
tools. The resulting surface 9 usually precisely corresponds to the true boundary of
the modeled domain.

Relatively recently, representations of the object boundary with piecewise-linear el-
ements, or facets, started gaining wider acceptance [153]. Such representations can be
extracted from the previously meshed volumes, when the CAD surface is not available
any more, or when it is inherently not known, as is the case for most medical data. Most
of the miesh generation tools currently available accept the triangular faceted surfaces
as input description of the domain for volumetric mesh generation.

Most computational schemes which use FEM require conformal meshes. A mesh
of a closed bounded domain in three dimensions is conformal when all of the following
requirements hold: (1) the union of all mesh elements is equal to the input domain,
(2) each of the elements has non-empty interior, (3) the intersection of interiors of any
two elements is empty, and (4) the intersection of any two elements is the empty set, a
vertex, an edge, or a face [87]. Mesh generation methods can be classified according to
the type of the simple shape used in discretization, with the tetrahedral and hexahedral
discretizations being the most popular ones. Tetrahedral meshes are often preferred in
the modeling applications used in medical research. hecause they are easier to construct,

better approximate complicated shapes, and are more appropriate for remeshing [63].
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The use of FEM has gained significant popularity in medical applications in the
recent vears. In particular. FEM was used for electro-magnetical source localization
in the brain [205]. modeling irradiation in tumor therapy [155], head collision impact
simulation [124], tumor growth modeling [136], prediction of human facial shape after
craniofacial surgery [122], and finally non-rigid FEM image registration [75, 53]. Con-
sequently, there has been increased interest in adapting the traditional approaches and
developing custom mesh generation methods suitable for these new applications of FEM.

In general, there are no patient-specific CAD models of internal organs suitable for
FEM analysis in medical applications. The primary source of information about the
shape and configuration of the given organ is medical imaging, such as MRI. However,
delineation of the organ within the image is a complex task, and reconstruction of
the CAD model from such delineation is often not feasible or not practical. The lack
of precise geometric models and the need to construct volume tessellations from the
image data is an important limitation, which complicates the use of existing off-the-
shelf meshing tools. Application-specific requirements to the volume mesh make the
problemn even more challenging. In practice, there is no single widely accepted method
to address the mesh generation needs of all applications.

The work presented in this Chapter is primarily motivated by the lack of end-to-
end solutions for constructing tetrahedral meshes from the medical image data. We are
not the first to address this problem. However, to the best of our knowledge, for the
first time we propose an end-to-end approach to mesh generation from medical image
data that has been implemented and distributed as open source software. We present

this approach together with the analvsis of its limitations, and compare it with two
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existing techniques that are based on traditional meshing tools. We note. that all of the
approaches we consider are available for wider use as open source software. and have
been evaluated on the common sets of data in the context of physics-based non-rigid
registration.

In this Chapter we discuss the specifics of mesh generation for the non-rigid registra-
tion method of Clatz et al. [53]. We begin by formulating the problem of constructing
meshes from the image data. We discuss the generic requirements typical for the appli-
cations of FEM to the problems, where input domain is represented as an image. Next
we formulate the unique application requirements motivated by the understanding of
the algorithin discussed in the previous Chapter. We develop a hierarchy of the rele-
vant mesh generation methods fromn the literature, with the focus on their suitability for
NRR.

Based on this discussion, we present three specific approaches to tetrahedral mesh
generation from medical image data. One of these approaches have heen developed
as part of the research presented in this dissertation. The other two techniques use
well-established off-the-shelf components. The latter two techniques require special pre-
processing of the image data, since they have not been designed for the image-to-mesh
conversion task. Each of the evaluated methods is a representative of a separate group
of traditional approaches to mesh generation. We develop an evaluation framework and
discuss specific quantitative metrics to compare the three mesh generation approaches.
We conclude this Chapter with the qualitative and quantitative comparison of the con-
sidered tetrahedral mesh generation methods in the context of the non-rigid registration

application.



3.1 Image-to-Mesh Conversion

As discussed in Section 2.1, image A is a mapping of points from the image domain R
to R, A:x € Qw— A(x). Within the image, there is a tissue. or organ of interest, that
corresponds to the modeled geometric domain. The objective of mesh generation is to
construct a discretization of that organ, so that its surface is accurately represented by
the surface of the discretized model. Obviously, the mapping of sample points provided
by the image A alone is not sufficient to achieve this task. The minimum extra infor-
mation that is required to construct a finite element discretization is a rule that defines
which of the image samples are located inside the organ.

In this research we are mostly concerned with the medical applications that provide
a segmentation of the object of interest. The output of segmentation is a binary image,
ie., A(x) € {0.1}, with the subset {x € Q|A(x) = 1} corresponding to the voxels
located inside the object. Let % be the surface that separates zero and non-zero voxels
of this binary image. The surface ¥ is defined implicitly, as we only know whether a
given voxel is inside or outside the object. Based on the inside/outside assignment of
the image voxels in relation to the object of interest, we can construct an approximation
of the implicit function ¢(x), such that the object surface is defined by the zero level set
of ¢(x), {x : ¢(x) = 0} [138]. Such approximation can be evaluated by computing the
signed distance transform on the segmented image. Signed distance transform produces
distance map immage, where the absolute value at each voxel defines the distance to the
closest boundary pixel of the input binary image. The sign of the voxel value is negative
for the locations corresponding to the non-zero voxels in the input image, and positive
otherwise. A number of algorithms for fast computation of Euclidean distance transform
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have been proposed [61, 133].
The objective of mesh generation for FEM computations from the binary image data
is to construct a conforming tetrahedral mesh M = (V. T ). which satisfies the following

generic requirements:

R1 The mesh boundary (surface triangulation) should be close to X.

R2 Mesh size should be minimized.

R3 Mesh elements should not have small angles.

We consider these requirements generic, since thev are important for any application
that uses FEM computations, where the input domain is described as an image. The
implicit surface 3 is always an approximation of the true object boundary due to the
intrinsic error with respect to the true surface. The exact continuous houndary of the
organ can rarely be obtained because of the limitations imposed by the resolution of the
image acquisition device, and the difficulties of precise location of the true boundary in
the image. Instead, the piecewise-continuous boundary is usually estimated from the
sparse sample of boundary points. The problem of recovering the parametric surface
from the organized set of samples has been addressed by the computational geometry
community, and a number of niethods have been developed, as we discuss in the next
Section. In general, imprecisely recovered surface can result in the unrealistic outcome of
the modeling [129]. Also, in case of the specific registration method we consider, surface
approximation error is particularly important. High surface approximation error will
inevitably lead to the exclusion of the displacement estimations for the registration
points located outside the brain surface.
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The size of the mesh determines the size of the system of equations that need to be
solved in the FEM foriulation, and therefore the time required for that solution. Locally,
the size of the mesh elements determines the bounds on the solution accuracy [211].
Both the computation time and accuracy of the solution have important implications
for medical imaging. Therefore, flexibility of a mesh generation method in terms of the
size of the mesh it produces (number of mesh elements) and the ability to adjust the size
of the mesh elements locally is important. Local size of the mesh is commonly defined
by means of a sizing function. Given the specific sizing function and domain description,
an important property of a mesh generation method is its ability to construct the mesh
with as few elements as possible while maintaining other requirements. Such property
is known as mesh size optimality [176].

Finally, generic requirement R3 is important because the small angles in the mesh
lead to instability of the solution and poor conditioning of the stiffness matrix con-
structed by the FEM. Ill-conditioned systems of equations result in slower convergence
for iterative methods. and may require additional preconditioning [177], which in turn
increases solution time.

Development of the mesh generation methods that attempt to meet the three generic
requirenments has been the focus of the mesh generation community for decades. On the
other hand. the application-specific requirements are usually addressed by constructing a
customized mesh sizing function, or developing customized mesh generation methods. In
this paper we explore the first approach. Therefore, the ability to accept a user-defined
sizing function is an essential feature for a mesh generation method to be considered for

our application.
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3.2 Application Requirements

The difficulty of defining the ideal tetrahedral mesh for the targeted non-rigid registra-
tion method is due to the fact that the mesh has a dual role in the formulation.

First, it is used to model the mechanical component of the energy. The mesh is used
to construct the stiffness matrix that captures physical properties of the brain. The
desirable characteristics for this part of the formulation are well-studied in the FEM
and mesh generation communities [177, 211].

However. the tetrahedral mesh is also used to regularize, or smooth, the displace-
ments recovered by block matching locally within the mesh vertex neighborhood. This
neighborhood, or mesh vertex cell complex, shown in Figure 3.1 for a two-dimensional
mesh, includes all the mesh elements adjacent to the specific vertex. The displacement
recovered at each of the registration points within the mesh vertex cell complex affects
the displacement at the corresponding mesh vertex. Therefore. it is important to main-
tain the empirically obtained ratio between the number of mesh vertices and the number
of registration points under 0.1 (at least 10 registration points per mesh vertex) [53].
Ideally, this ratio should be maintained for every mesh vertex. The matrix HY SH has
a non-zero 3 x 3 entry for each mesh vertex and edge with the cell complexes containing
registration points. The corresponding sub-matrices can be expressed as the sum over
the registration points in a cell. The diagonal 3 x 3 sub-matrix that corresponds to the
mesh vertex v; can be calculated as the following summation over the registration points

in the cell complex S of v;:

H'SH]; = ) Zh’v{(A«)?“'(Kv)c(As)T(k).

= np
VT eS{v;yYhkeT
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Figure 3.1: Mesh vertex cell complex in two dimensions; displacement at vertex v; approximates
displacements at the registration points, marked with “x’.

Here, h{i(k) is the barycentric coordinate of the kth registration point with respect to
v; in the containing tetrahedron 7. n is the number of mesh vertices, p is the number of
the registration points, ¢(k) is the correlation coefficient fromn block matching. and T(k)
is the image structure tensor at Ath registration point.

The result of non-rigid registration is a deformation field, which provides mapping
between the voxels in floating and fixed images. The value of the deformation at a given
voxel is computed by interpolating the displacements from the mesh vertices after the

last iteration of the outlier rejection [63]:

Note that the iterative procedure of outlier rejection described in Chapter 2 requires
solving the linear systen of equations at each iteration within the time-critical part of
the computation. The size of this system depends on the number of degrees of freedoin
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in the mesh model.
Based on the registration formulation, we derive the following application-specific

requirements to mesh generation:

R4 Equi-distribution of the registration points with respect to mesh vertex cells.

R5 Minimization of the approxiination error with respect to displacement recovered

by block matching at registration points.

R6 Prevention of tetrahedron inversion during mesh deformation.

The requirement R4 is critical due to the presence of outliers in the output of block
matching. If the vertex cell complex that corresponds to a mesh vertex contains small
but non-zero number of registration points, that vertex becomes sensitive to the outlier
registration points [52]. Empty vertex cells do not pose such a problem, since their
deformation will be determined by the neighboring mesh elements. The empirically
derived ratio of the registration points to the numnber of vertices used by Clatz et al.
is about 15 matches per vertex [53]. During the process of outlier rejection, non-rigid
registration discards registration points. Therefore, their distribution will change, and
the optimal configuration of the mesh may need to be adjusted. However, in this research
we consider only construction of the initial mesh, and not its refinement.

We introduce the requirement R5 since the same distribution of registration points
can he achieved with the elements of different size. As an example, consider the mesh
and distribution of registration points shown in Figure 3.1. Assuming that there are no
other registration points in the cells of the vertices located on the cell boundary, their

locations can change without affecting the assignment of registration points at vertex



v;. However, larger elements are known to increase errors due to insufficient level of
discretization [211]. Therefore, the meaning of the requirement R5 is to use the smallest
possible elements. while maintaining the desired distribution of the registration points.

Finally, the last requirement R6 constraing the minimuin element size in the mesh.
Small elements undergoing large deformations are more likely to collapse (element vol-
ume is zero) or invert (element volume is negative). As we discussed in Chapter 2, the
deformation vectors are updated during each iteration of the outlier rejection, and the
final displacements at the mesh vertices are used to interpolate the dense deformation
field within each tetrahedron. While the interpolation error does not depend on the
tetrahedron shape, inversion or collapse of a tetrahedron will result in an unrealistic
deformation field, e.g., points inside the different tetrahedra can map to the same image
location.

The problem of moving meshes has been previously addressed in the literature [20,
178]. The proposed solutions suggest dynamic remeshing of the domain to prevent inver-
sion of the elements. However, this is not an option in case of registration. Remeshing
would require modifications to the original registration algorithm, because of the stiff-
ness matrices K, S and H will need to be regenerated. In this work we consider the
construction of the mesh suitable for registration computations without changing the
registration algorithm.

In the next Section we overview the existing approaches to mesh generation, and

consider their applicability for the non-rigid registration method.
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Figure 3.2: A hierarchy of the studied approaches to mesh generation.

3.3 Related Work

An intrinsic difficulty of generating meshes from the binary image data is the processing
and recovery of the object geometry. General-purpose mesh generators used in CAD
applications expect that the object boundary is parametrized, i.e., it is defined by means
of constructive solid geometry primitives, or explicitly (e.g., through the boundary dis-
cretization, as a collection of patches). Therefore, in order to convert the binary image
into a tetrahedral mesh, one can either (1) recover the surface of the object in such a
form that is acceptable by the traditional methods for volumetric meshing, followed by
a conventional mesh generation process, or (2) use a mesh generation method, which
operates directly on the binary image. We present the taxonomy of the available mesh
generation categories in Figure 3.2.

The traditional approaches to tetrahedral mesh generation can be classified into three

groups: (1) constrained Delaunay, (2) Advancing Front, and (3) Adaptive Space-Tree



meshing. We define the term space-free as a generalized regular subdivision of space,
which includes octree and lattice subdivisions, adopting the terminology used previously
by Bader et al. [18]. We discuss these methods in more detail in the subsequent sec-
tions, and refer the reader to the survey by Owen [152] for a detailed description of the
traditional approaches to mesh generation.

Most of the practical mesh generation methods used in CAD are capable to construct
volumetric meshes from faceted representation of the surface. Specifically, watertight
surface triangulation is a commonly acceptable input for voluine mesh generator. Thus,
methods for constructing triangular approximations of the implicitly defined surfaces X
are of particular interest in the context of meshing image data. Some of the requirements
for the recovered triangular surfaces approximating ¥ are the following: (1) same topol-
ogy as X, {2) small (bounded) approximation error with respect to X, (3) good shape of
the triangles in the surface discretization, as defined by the triangle aspect ratio, and (4)
minimum number of triangles. The first two requirements are related to the accurate
representation of the object, while the other two are essential for the quality of elements
during volume mesh generation.

A straightforward approach to recover an iso-surface is by means of the Marching
Cubes (MC) algorithm [129]. However, the original version of this algorithm may pro-
duce a triangulation with topological problems [144]. Another practical concern is the
inability of the MC algorithin to generate adaptive surface triangulations, i.e., the size
of the surface triangles is about the same independent of the local surface feature size.
The surface produced hy MC has “jagged” artifacts because of voxel sampling, which

may create subsequent problems with the siimulation [62. 32]. Surface mesh simplifica-



tion, or remeshing, is often a necessary post-processing step when MC is used [67, 39].
Topological problems of the surface recovered with Matching Cubes have been addressed
in the recently proposed modifications of the original MC method [144]. Although sur-
face triangulations constructed with the MC method have a number of problems, wide
availability of its implementations as well as its speed made MC the method of choice

for surface reconstruction in a number of studies, e.g., see [53, 38].

Figure 3.3: Left: Voxel surface extracted from a binary image. Right: Triangulated surface
approximating the isosurface of the mask as recovered by Marching Cubes algorithm.

Triangular surface representation can also be recovered by more advanced techniques,
which provide theoretical guarantees about the recovered surface. Since the seminal
work of Amenta and Bern [6], a number of algorithms have been proposed for solving the
problem of robust surface reconstruction from sparse point sample [123, 66, 31]. In order
to provide theoretical guarantees, such methods expect that the sample is sufficiently
dense. The definition of sufficient density is related to the surface feature size. Most of
the available methods rely on the refinement of restricted Delaunay triangulation that
approximates the surface represented by the finite set of sample points. A number of
methods have been presented that ensure topological and geometric closeness of the
recovered surface to the surface represented by the sample. The methods that have

been developed to date differ in their perforinance, robustness to noise and theoretical
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guarantees. Some of the methods have been implemented in publicly available packages.
In particular, Dellso package by the group of Tamal Dey implements the isosurface
meshing algorithm described in [66], and CGAL contains the implementation of the
method by Boissonnat and Oudot [31].

Recently, a number of methods have been proposed that build volumetric mesh
directly from the implicit representation of the surface [35, 125, 150]. These methods
deserve a separate category in the classification, because they do not require simplicial
surface representation, but at the same time their use is not restricted to the case of
meshing image data. An approximation of the implicit function describing the object
is easy to obtain from a binary image. Therefore, methods based on meshing implicit
surfaces are directly applicable to meshing image data. Molino et al. [35] suggested the
use of hody centric cubic lattice with subsequent adaptive refinement and adjustment
of the vertices to fit the zero level set of the implicit function. Oudot et al. [150]
proposed a Delaunay meshing approach that combines surface recovery with volume
tessellation and refinement. Recently, Labelle and Shewchuk [125] proposed a lattice-
based method that operates on implicitly-defined surfaces and generates meshes with the
theoretical guarantees on the minimum dihedral angle. None of these mnethods has been
implemented and made available for evaluation. Meshing volumes bounded by implicit
surfaces as the research area is still in its early stages with the few practical results
available. A notable exception is the method developed by Persson and Strang [158]
for meshing implicit surfaces, which is accompanied by a MATLAB implementation.
However, this technique relies on the Delaunay refinement, which in three dimensions

is known to be susceptible to generate sliver elements (nearly flat tetrahedra with the
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volume close to zero). In order to be practical, methods that use Delaunay refinement
methods must be accompanied by some sliver eliinination procedures,

Overall, most of the methods used to construct finite element meshes rely on recovery
of the triangular surface followed by volumetric meshing. A representative processing
pipeline was described by Cebral and Lohner [41. 40]. The authors apply different levels
of smoothing and improvement of surface mesh prior to the application of the Advancing
Front method.

While surface recovery followed by conventional mesh generation is an effective way of
constructing meshes from medical images, a number of direct approaches were proposed.
The methods which operate on images rather than on the parametrized boundaries can
be further separated into the following two categories, as shown in Figure 3.2.

The methods from the first category do not require segmentation and create meshes
from the multi-value image data [83. 208]. The assummption made in such methods
is that the pixels that correspond to the same tissue have similar intensity, and the
ohject boundary can be defined with sufficient accuracy by some isosurface value. Given
this assumption, these methods attempt to minimize the error of approximating the
isosurface, while maintaining good quality of the mesh tetrahedra. Such approach to
mesh generation is practical for volume rendering and certain FEM applications. It can
also be acceptable when the organ is easily detectable by intensity thresholding, e.g.. this
is the case for bone segmentation from CT image data. However, brain segmentation
from MRI is a challenging problem in image segmentation and can not be solved by
thresholding only [55, 207]. Tissues that do not belong to the brain may have similar

intensity patterns to the intensity of the brain tissue. Direct isosurface-based nieshing of
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the brain volume from the multivalued image may lead to large errors in the recovered
surface of the object. Due to this reason mesh generation methods that operate on
isosurface extracted from a grayscale iimage are not suitable for meshing brain volume
from unsegmented MRI.

The second category of the image-based mesh generation methods operate on binary
images, produced by specialized image segmentation algorithms. Among the methods
in this category we separate three groups.

The methods in the first group construct the volumetric mesh with the surface that
approximates the houndary of the segmented object at the level of voxel resolution [41,
102, 193]. Therefore, we define those techniques as vozel-based meshing. More than a
decade ago, Frey et al. [88] introduced one of the first techniques for voxel-based meshing.
Frey et al. proposed to construct tetrahedral tessellation of the voxelized volume by
subdividing each individual voxel in a consistent manner to avoid hanging mesh nodes.
Consequently, the resulting tetrahedral meshes has the number of tetrahedra in the same
order as the number of voxels in the input data without the flexibility to control the size of
the mesh. Hartmann and Kruggel [122] propose an approach that is based on hierarchical
subdivision of the labeled voxel volume, with larger tetrahedra corresponding to the
areas distant from the surface. Archip et al. [10] describe a technique that is based on
Delaunay triangulation of the points corresponding to the centers of surface voxels from
the segmented images. The resulting mesh is a convex hull of the input domain, which
is subsequently adapted to achieve surface conforniing tesscllation by eulling the outside
mesh elements.

The main concern in using voxel-based meshes is the inability to control the overall
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mesh size as well as local size of the mesh elements. The sizes of surface triangles in
the meshes constructed using this approach are comparable with the size of voxels. i.e.,
the surface triangulation is not adaptive. The use of such techniques is problematic for
tine-critical applications, because the control over the element size is limited cue to the
fixed high resolution of the surface discretization.

A large number of methods that are based on space-tree decompositions have been
proposed recently for meshing binary images. The advantage of these techniques over
voxel-based meshing methods is in the ability to control the number of of the mesh
elements. Conceptually, the approaches based on adaptive space-trees have a long his-
tory in traditional mesh generation. Yerry and Shephard [206] were sonie of the first to
present an octree-based approach to 3-d mesh generation. Mitchell and Vavasis [135] de-
scribe a quadtree-based algorithm with theoretical bounds on the mesh size. These ideas
have been adopted to construct tetrahedral meshes from binary images [74, 137, 72, 192].
Such methods recover the surface by finding the points of intersection of the adaptive
space-tree with the surface of the object defined as a binary image. Mesh quality near the
surface can be commpromised, as the newly inserted mesh nodes can be arbitrarily close to
the existing nodes. Mesh optimization [85] is commonly used as a post-processing step.
In practice, the methods from this group are well-suited for meshing binary images. and
were shown to be quite effective for a nunber of medical applications. Some of these
methods were designed and evaluated on the segmented brain MRI data [74, 137, 72].
Unfortunately, few of the published methods for image-to-mesh conversion are accom-
panied by their implementations. In addition, such methods are usually not evaluated

in the context of their ability to build the mesh following the predefined sizing function.
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The methods based on surface matching use a temnplate volume mesh, which is
warped to match the surface of the modeled object [38, 19]. While the advantages of
this approach are good surface fidelity. control over the mesh size. and high speed, the
quality of the elements undergoing deformation during warping can be compromised.
Mesh optimization is a commonly used post-processing step for the methods in this
group. This concept is most suitable for meshing objects that have similar geometries.
The geometry of the intra-cranial cavity (ICC) is quite similar between different subjects.
However, the mesh elemment sizing depends on criteria R4-6, which are patient-specific.
Therefore, it is not feasible to construct a single temnplate mesh for our application to
satisfy patient-dependent point distributions.

Overall, we ohserve that a great variety of methods for tetrahedral meshing of binary
images have been developed. Most of these niethods were proposed and evaluated in the
context of their fitness to a specific application. Little or no attention is usually paid
to the comparison of the newly proposed techniques with the existing methods, and
few implementations are available to conduct such an evaluation for a new application.
Also, most of the effort is usually directed to developing a method that delivers good
practical results, and not on establishing theoretical guarantees about the produced
meshes. The lack of such guarantees makes it even more difficult to select the most
appropriate algorithm from the range of seemingly similar methods.

Given the considered NRR. algorithin, we derived the requirements to mesh gener-
ation, see Section 3.1. These requirements can now be used to customize and evaluate
readily available, established methods to address the problem of mesh generation for

the NRR application. The results of such evaluation can be used next to identify prob-
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lems within the existing approaches and justifyv the development of new mesh generation
methods for this application. However, before such an investment is justified, the pos-

sibility of using existing off-the-shelf tools must be carefully examined.

3.4 Open Source Mesh Generation Tools

3.4.1 Piecewise-Linear Surface Recovery

Traditionally used methods and tools for tetrahedral mesh generation operate ou para-
metric or faceted representations of the domain surface. In order to leverage these
classical approaches to mesh generation for image-to-mesh conversion, the faceted sur-
face representation needs to be recovered as a first step of processing. Due to reasons
discussed earlier, simple approaches, like Marching Cubes, are not suitable for solving
this problem.

In general, the piecewise-linear triangulation of a surface should have the following

desirable characteristics [66]:

1. Topology: the recovered surface should be homeomorphic to the original surface.
In simple terms, if two shapes are homeomorphic, they can be transformed one
into another by means of continuous bending and stretching [203] (e.g., the shape
of a donut is homeomorphic to the shape of a one-handled cup, but not to the

shape of a pretzel or a ball).

2. Accuracy: the approximated surface should be sufficiently close to the original
surface. Most common measures of the surface approximation accuracy are hased
on Hausdor(f distance and angle hetween normals of the surface and its approxi-
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Figure 3.4: Approximation (solid line} of the true surface (dotted line) with high (left) and low
(right) error of normal approximation [147].

mation. Let X be the set including all points on the original surface, ¥ — the set
of points on the approximated surface, and d(z,y) — the distance between points
x and y. Then

dy(X,Y) = max{max min d(x,y), max min d(z,
HXT) = et jap e ) s iy ey

is the Hausdorff distance between X and Y. As we show in Figure 3.4, good
approximation error defined with the Hausdorff distance may not be sufficient,
depending on the specific application. As an example, smooth surfaces that closely

approximate true surface normals are important in surface rendering applications.

3. Quality: triangles of the approximated surface should have good quality, as mea-
sured by minimum angle. In general. skinny triangles with angles approaching 0°

are not desirable.

4. Optimality: the number of triangles in the approximated surface should be mini-

mized for the given approximation accuracy.

In this work we used the implicit surface meshing approach proposed by Oudot
et al. [31] to approximate the surface of the segmented binary mask. This method
is available in the public domain as implemented in CGAL. Computational Geometry

Algorithms Library [42]. Next we introduce some basic definitions from the field of
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computational geometry, and give a brief description of the surface meshing algorithm
we used.

The idea of the method takes its origin from the notion of r-sample, which was
introduced by Amenta and Bern [6]. Following the notation by Oudot et al. [31]. r-
sample F of a surface S is a set of points that is sufficiently dense with respect to the
distance to the medial axis of S. The property of r-sample is that no point p on S is
farther away from E than the value of local feature size at that point - LF.S(p). In three
dimensions, inedial axis is defined as a locus of the centers of spheres that are tangent to
the surface S in two or more points, e.g., this is a set of point that are equidistant from
at least two points on the surface. Given the definition of the medial axis, the Local
Feature Size at point p, LFS(p), is defined as the distance to p from the nearest point
of the medial axis [6].

Delaunay triangulation (or tetrahedralization, in three dimensions) is such a trian-
gulation of points that no point is contained in the circumspliere of any of its tetrahedra.
The key result achieved by Amenta and Bern [6] was that with the sufficiently sniall
values of r, the Delaunay triangulation of F contains a piecewise-linear surface 7', which

has a number of desirable properties relating it to S [31]:

e T is homeomorphic to S.

e the error between the normal of each facet in the piecewise-linear surface T and

the normals at the facet points, which belong to S. is bounded by O(r).

e the Hausdorff distance between T and S is O(r?).

In practice. the use of the r-sample notion is not trivial. since it is difficult to con-
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struct, and for a given sample of surface points, it is hard to check whether the sample
satisfies the requirements of an r-sample. Oudot et al. [31] introduced the definition
of loose e-sample. Given loose e-sample E, the anthors show that restricted Delaunay
triangulation of F is a good approximation of S iu topological and geometric sense.
Moreover, they present an algorithm, that allows to construct such a sample of points
and the corresponding triangulation for a surface defined by an oracle. Given any line
seginent, this oracle should return the points of its intersection with the original surface
S. The algorithm is guaranteed to terminate, and allows to specify the bound on the
triangle angle in the output triangulation to avoid skinny facets.

The definition of the original surface by means of oracle is quite convenient while
meshing iso-surfaces in images. Given a distance map constructed from the binary
image, for any line segment we can approximate the intersection point of this segment
with the zero level set by iteratively bisecting the segment and evaluating the distance
value at the bisection point until some tolerance is reached.

The piecewise-linear surface that can be constructed by using the technique by Oudot
et al. can be used to define the input domain for the established mesh generation tools
we present next.

The advantages of using the discussed method for implicit surface triangulation are:

e Strong theoretical guarantees provided by the algorithm.

e Robust open source implementation. which is easy to adjust to work directly with

the binary image data.

e Well-documented and maintained code base, with the improvements introduced
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regularly.

e High performance of the code, with the surface meshes of typical hrain ICC gen-

erated within seconds.

Still, there are problems one has to face while using this approach. First, surface mesh
generation is separated from volume mesh construction. Second, the implementation is
not flexible to provide control over surface mesh sizing, which may create difficulties in

adjusting to user-defined element size distribution during volume meshing.

3.4.2 Delaunay Meshing

Triangulation of a point set in three dimensions defines such a subdivision of the convex
hull enclosing thesc points into tetrahedra that the intersection of any two tetrahedra
is either empty or contains a common face, and the set of the vertices of all the tetra-
hedra coincide with the input point set. Delaunay triangulation is a specific type of
triangulation, which satisfies the Delaunay criterion: the circumsphere of each edge,
face and tetrahedron in three dimensions is empty. Delaunay refinement is a procedure
of inserting new points into an existing triangulation in such a way that the Delaunay
criterion is maintained [93]. It was shown, that insertion of the new points, which are
called Steiner points, during Delaunay refinement at certain well-defined locations re-
sults in introducing mesh elements of iimproved aspect ratio. The traditional Delaunay
refinement algorithms insert Steiner points at the center of the circumsphere of the ill-
shaped element [176]. Some of the recently introduced modifications to the insertion
procedure use alternative strategies to provide more flexibility in the mesh refinement

process [45, 194].
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Mesh refinement is a procedure of mesh adaptation that is commonly required in
numerical solution schemes to adjust the mesh according to the a posteriori error es-
timation. The reason why Delaunay refinement has been attracting so much attention
in the mesh generation commuuity is that the mesh produced by Delaunay refinement
enjovs a number of useful theoretical properties. Specifically, the circumradius to short-
est edge ratio can be bounded. In two dimensions this corresponds to the bounds on
the minimum angle, preventing the nunerical problems that can be caused by nearly
flat elements [177]. Delaunay meshes are also known to be size-optimal, and the process
of refinement is guaranteed to terminate [176]. Yet another desirable property of the
Delaunay refinement is in its amenability to execution in parallel [47], which is essential
for memory-limited and time critical mesh refinement applications.

In three dimensions, Delaunay refinement does not guarantee bounds on the mini-
mum dihedral angle. Most of the ill-shaped elements shown in Figure 3.5 can be elim-
inated by Delaunay refinement, but not slivers. Extreme values of dihedral angles in
tetrahedral elements lead to high gradient interpolation errors and poor conditioning of
the stiffness matrix, which can affect the solution accuracy and convergence of iterative
solvers [177].

The specific type of Delaunay triangulation that is of practical interest for FEM
applications is Constrained Delaunay Triangulation (CTD). Unlike pure Delaunay tri-
angulation, CDT preserves object boundaries. maintaining the surface approximation
accuracy. Existing CDT algorithms have limitations on minimum dihedral angle in the
object boundary and require its piecewise-linear or parametric definition [46, 175, 44].

We use a specific algorithm and implementation of constrained Delaunay triangu-
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Figure 3.5: Good- (a) and ill-shaped (b-f) tetrahedra [25].

lation and refinement in three dimensions proposed by Si [179]. Compared to other
existing Delaunay refinement methods, this algorithm presents a number of practical
innovations. First, it does not impose restrictions on the minimum input angle at the
expense of the guarantees provided. Second, the method has been designed specifically
to allow the use of background mesh, which governs the insertion of new mesh points.
Finally. it includes post-processing step that attempts to eliminate slivers that could be
introduced in the mesh during refinement.

The algorithm has been inmipleniented by Hang Si in the TetGen software [180], which
we evaluate in the subsequent sections. The implementation of Delaunay refinement in
Tetgen provides significant flexibility in controlling mesh size, whicl is imiportant for
realistic modeling applications. Mesh size can be adjusted spatially by constructing
application-specific sizing function. The total number of mesh elements can be con-
trolled in a number of ways. First. the method allows to specify a parameters that

essentially impose limits on the maximum density of the mesh vertices locally. Second,



the algorithim allows to bound the maximum volume of the tetrahedron. Therefore, it

is possible to control tetrahedron volume even without specifving the background mesh.

3.4.3 Advancing Front Meshing

Advancing Front Technique (AFT) is a mesh generation heuristic which builds mesh
iteratively starting from the triangulated boundary of the domain [128, 131, 164]. The
placement of newly inserted points is optimized with respect to the existing mesh ele-
ments to immprove the quality of the new elements. The task of optimuin point placement
can become particularly difficult when the meshing fronts advancing from the opposite
boundaries are close to each other. In such cases, AFT may revert to discarding parts
of the previously generated mesh layers to resolve the conflict, resulting in possible
difficulties reaching termination of the meshing process.

AFT cannot directly construct volumetric discretization of a domain defined by
parametrized surface patches. In the cases when only the parametric surface definition
is available, surface triangulation must be constructed prior to volume meshing. Quality
of meshes produced by AFT depends on the surface mesh quality. While AFT does not
give any guarantees about the final mesh, in practice this method has been shown
effective for a nuniber of engineering applications. This is explained in part by the
lack of bounds provided by the Delaunay methods on the minimmm dihedral angle in
three dimensions. In practice, AFT methods may deliver meshes with better angle
distribution and fewer elements compared to Delaunay refinement methods. The reason
is that while the Delaunay refinement produces meshes of optiinal size, the constant

involved in the theoretical bound may be too large for practical applications. The AFT
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approach does not introduce any new points on the surface which makes it perfect
for parallelization with splitting the original object domain in multiple subdomains.
However, the same property makes the method inherently inflexible in constructing
meshes with user-defined sizing. Surface triangulation must be constructed with this
sizing distribution taken into account.

The NETGEN approach proposed by Shéberl in [173] is a representative algorithm
from the broader class of the advancing front methods. Unlike the Delaunay-based
Tetgen implementation we considered in the previous Section, this mesh generation
tool is flexible in the definition of the domain boundary. Both the triangulated surface
mesh and parametric surface representation are acceptable inputs. The difference in
processing is that the surface defined parametrically will be triangulated by NETGEN
as part of pre-processing. The major distinction of NETGEN from the similar AFT
techniques is in the attempt to generalize the rules used to construct new elements,
and define them in such a way that the same rules can be applied for two-dimensional
meshing, three-dimensional surface and volume meshing.

The algorithm implemented in NETGEN organizes the construction of the mesh by
maintaining the vector of the current boundary elements ordered by their quality and
distance to the original domain boundary [173]. Point insertion is governed by the ab-
stract rules that define the location of the new point depending on the configuration of
the boundary element and its so called environment. which encloses the neighboring ele-
ments. Rules in two dimensions generate one point at a time, or connect existing points
in the mesh. These rules are directly applicable both for constructing two-dimensionat

planar or surface triangulations. Similarly to Tetgen, NETGEN provides control over



the size of the elements in the mesh. This can be done by specifving mesh sizing at the
defined points and controlling the maximum edge bound. The source code of NETGEN

tool is publicly available [143].

3.4.4 Lattice-Based Meshing

As an alternative to using the traditional methods that require faceted surface approx-
imation, we developed a novel tool that constructs tetrahedral mesh directly from the
binary image describing the domain. The mesh generator is based on the approach
presented by Molino et al. [34, 138]. This meshing method was originally developed for
simulating large scale deformations. We adopt this approach for a different application
of meshing binary images, and develop its customized implementation.

The approach we develop can be classified as space-tree based mesh generation tech-
nique. The advantage of this method over other space-tree approaches is in the choice of
the lattice: instead of using adaptive octree, as in [74, 136, 26}, body-centric cubic lat-
tice (BCC) is used for the construction of the initial domain discretization. This lattice
results in significantly better quality of the initial tetrahedral tessellation, has Delaunay
properties and consists of tetrahedra which differ from the equilateral tetrahedron as
little as possible with regular space tiling [90].

Another useful feature of the considered technique is that it does not require trian-
gular mesh of the domain boundary. Instead, the object is represented by a function,
absolute value of which gives the distance to the object surface for any point in space.
The distance value is negative, if the point is located inside the objcct volume, and

positive otherwise.



Next we smmmarize the processing steps of the developed mesh generation method.

Step 1: BCC generation The coarse BCC lattice is constructed to completely
cover the binary mask. The BCC initialization is done by overlapping two cubic lattices,
with the vertices of the second lattice being the centers of the cubes in the first lattice.
The BCC is constructed by introducing a new set of diagonal edges that connect each
vertex in the first lattice with the vertices of the containing cube in the second lattice.
Each tetraliedron contains two vertices from each of the lattices, where the same-lattice
vertices are connected with the lattice-orthogonal edges, and vertices from the different
lattices are connected with the diagonal edges.

The size of the lattice is controlled by the spacing of the iuitial Cartesian grid used
in cubic lattice construction. The lattice tetrahedra are all identical up to translation
and rotation, and satisfy the Delaunay property. A tetrahedron is discarded if all four
of its vertices are located outside the meshed mask.

Step 2: BCC red refinement The lattice is refined following the application-
defined criteria. The elements which are selected for subdivision (e.g., those which cross
the object surface) are subdivided following the 1:8 rule (see Figure 3.6). Each of the
edges of the tetrahedron are split by the mid-point, and eight new children tetrahedra are
formed from the initial tetrahedron (parent) following the template. We use the shortest
inner diagonal during the subdivision, therefore the subdivision pattern is stable [138],
i.e., subsequent red subdivisions of the children tetrahedra will not lead to diminishing
quality.

Conformity of the mesh surface to the surface of the segmented mask is enforced by

subdividing the tetrahedra that have vertices located both inside and outside the hinary
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Figure 3.6: Subdivision templates used in RGM mesh construction: red (leftmost) and three
green templates.

mask. The tetrahedra obtained by red subdivision that have all four vertices outside
the binary mask are discarded.

Step 3: BCC green refinement Following the red refinement, the tetraliedra
which share the red-split edges, but were not subdivided, will contain hanging nodes.
Hanging nodes are the vertices introduced at the midpoint of an edge in one element, but
are not valid tetrahedron vertices at those elements [211]. The mesh which contains such
hanging nodes is 1ot conforming, and introduces complications during FEM solution.
Generally, non-conforming meshes are not desirable, therefore we perform additional
refinement i order to eliminate hanging nodes from the mesh using the green subdivision
teniplates. The set of templates is shown in Figure 3.6. If the split edge configuration
does not correspond to either one of the existing templates, all of the edges are split,
and the red subdivision template is applied.

Application of the red refinement template during the green refinement stage results
in the new hanging nodes introduced into the mesh. Therefore, multiple iterations of
red and green refinement may be required.

Steps 2 and 3 (red-green refinement) are repeated until the application-defined mesh
resolution is achieved. It is important to keep the mesh quality bounded. This is why

during the iterative refinement only the elements produced as a result of red subdivision



can be subdivided. In case an edge has to be split for a green element. the whole group
of green siblings is substituted with their parent. which is then red-refined.

Step 4: Candidate mesh selection This step of the algorithm prepares the mesh
for the final processing stage. Once again. the elements which are located completely
outside the object surface set are discarded. Next, a set of tetrahedra is selected, such
that for each edge of a tetrahedron in the set at least 50% of the edge is located within
the object volume. The vertices of those tetraliedra form the set of enveloped vertices.
The mesh elements which do not include at least one of the enveloped vertices are then
discarded. This heuristic proved to work well in practice to improve the final mesh
quality. At this point, the mesh topology is finalized. The mesh elements are identical
up to scaling, translation and rotation to one of the element configurations formed by
red-green suhdivision, i.e., the candidate mesh has guaranteed quality.

Step 5: Surface boundary compression The candidate mesh roughly approxi-
mates the object surface, but the surface vertices are not aligned with the object bound-
ary. The goal of mesh boundary alignment, or compression, is to improve the boundary
match!. A straightforward approach would be to project the candidate mesh surface
vertices to the surface of segmentation mask. It is possible that some tetrahedra may
collapse as a result of such operation, and create an invalid mesh. The quality of the
mesh following boundary compression may also be compromised with arbitrarily small
dihedral angles. Therefore. more elaborate method should be applied.

Instead of snapping the boundary vertices to the surface, the nodes are iteratively

moved towards the segmentation surface guided by the distance map. In order to avoid

YHere, boundary compression should not be confused with compression for reduction in size, as in
data compression. We use the terminology following the original description of the technique in [138]
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drastic element flipping and quick deterioration of element quality, the following heuristic
is used. A displacement vector is defined for each surface vertex at each iteration of
boundary compression. The surface node displacement vector direction is defined by
the vertexr normal, i.e., the averaged normals of the faces incident on a particular mesh
surface node. The displacement vector is scaled by the distance to the zero level set of
the distance map. During the first 10 boundary compression iterations the vertices are
moved by 20% of the distance to the surface, and during the subsequent iterations the
displacement vector is scaled by the full distance value.

Surface compression inevitably leads to deformation of the mesh elements near the
surface. Two methods have been imiplemented to improve the volume mesh quality. The
first technique is physics-based. It models deformation of the candidate mesh using the
linear elastic material model [211]. The reader is referred to [74, 166] for the formulation
details. In summary, we use candidate mesh discretization as the model, and prescribe
the boundary forces acting on the surface vertices based on the distance to the seg-
mentation surface. The deformation of the linear elastic hody calculates the positions
of the model vertices given the boundary forces. These positions are calculated as the
solution for linear system of equations F' = Kz, where F is the vector or forces, x is the
displacement vector, and K is the stifiness matrix calculated based on the mesh and the
prescribed material properties [211].

An alternative approach which we impleniented applies local mesh smoothing and
optimization to the niesh after each surface compression iteration. The implementation
has been integrated with both GRUMMP [148] and Mesquite [33] mesh optimization

packages. After each boundary compression iteration, the locations of the mesh vertices
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Figure 3.7: Processing steps of the RGM mesh generator. Left: initial BCC lattice. Center:
tetrahedral mesh surface after discarding outside elements. Right: surface of the mesh with the
adjusted vertex locations.

are updated to improve the shape of the mesh elements (in case of GRUMMP, the
element connectivity can also be automatically modified if this results in mesh quality
improvement). We present the mesh at different stages of processing in Figure 3.7.

The rest of the document uses the following notation and abbreviations: Red-Green
Mesher (RGM) for the implemented mesh generation technique, RGMp for RGM with
physics-based compression, and RGMo for optimization-based candidate mesh houndary
compression.

We have implemented the presented method as two templated classes which use the
Tusight Toolkit (ITK) [120, 109] design patterns. These classes are now part of NAMIC
SandBox [141].

The implementation expects the segmented binary voxel mask as input. The first
of the classes, BinaryMaskTo3DAdaptiveMeshFilter, implements Steps 1 through 4 de-
scribed above. Mesh generation and refinement is guided by the signed discrete distance
transform of the input binary mask. The signed distance transform assigns integer val-
ued Fuclidean distance to the closest boundary voxel for each input voxel. An example
of distance transform calculation for a small iimage in two dimensions is shown in Fig-

ure 3.8. The distance value is negative for the voxels located inside the object volume.
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Figure 3.8: Signed distance transform example. Grayed squares correspond to the pixels inside
the object, aud the distance map contains the distance to the binary object boundary.

and positive otherwise. The distance value at a specific point in space is calculated by
linear interpolation from the neighboring voxels.

The core of the first of the implemented classes is the data structure that maintains
mesh connectivity. The Vertex field contains vertex coordinates. Vertices are shared and
referenced by pointers in the referencing edge and tetrahedron data structures. The Edge
keeps pointers to the two endpoints, and the pointer to the midpoint, which is initialized
when the edge is subdivided. FEach edge also keeps a list of pointers to all adjacent
tetraliedra. The structured nature of the refined lattice liniits the maximum number
of tetrahedra which can share a particular edge, thus the time required to traverse all
tetrahedra neighbors is bounded by a constant. The Tetra (tetrahedron) data structure
keeps pointers to the six edges, the type of subdivision (e.g.. red or green, which edges
are subdivided), the pointer to the list of children tetralhedra (if a tetrahedron was green
subdivided), and a pointer to the parent tetrahedron (if exists). The data structures
were designed to facilitate refinement and minimize memory requirements. During the
red stage of iterative refinement, a list of non-conforming tetrahedra is maintained and
updated during the green stage, until a conforming mesh of the desired resolution is

constructed.
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The second filter. VolumeBoundaryCompressionMeshFilter takes as an input non-
uniform mesh that does not conform to the domain, and applies physics- or optimization-
based surface compression procedure to compress the mesh surface to the binary mask
boundary. The physics-based approach to boundary compression requires solution of a
system of linear equations, which is done with PETSe [12].

The following advantages make the RGM method suitable for image-to-mesh con-

version in the context of the NRR application:

e The BCC lattice tetrahedra are as close as possible to equilateral tetrahedron,
providing significant improvement in elemeunt shape as compared to the elements
generated by tessellating an adaptive octree. thus we start from a hetter initial
discretization as compared to octree-based methods previously suggested [74, 192,

26, 137].

e The red-green refinement procedure creates limited number of elemment configura-

tions and does not allow significant propagation of the refinement.

e The mesh boundary compression stage is independent of the lattice refinement pro-
cedure and can be easily substituted with a different implementation. Any of the
methods suggested for surface recovery in octree-based techniques are potentially

applicable.

e The method was designed specifically for modeling large deformations, which is
important for registering intra-operative images during IGNS, wlere significant

deformations can occur.



e Lattice-based topology and structure of the mesh gives bounds on mesh connec-
tivity and can be advantageous to FEM applications (note: this is applicable only

for RGMp. because RGMo is likely to change the mesh topology):

e red green refinement can possibly be used to re-mesh local regions of the mesh

without remeshing the whole object (RGMp only).

e Lower rate of quality degradation for physics-based vs. optimization-based bound-
ary compression has been reported [138] (the experimental study we have per-

formed did not confirm this observation for the evaluated data).

e The method does not require explicit object boundary representation, thus there
is no need to develop a separate technique for triangular surface recovery and/or

remeshing, which is necessary for CDT and AFT methods.

e There is trade-off between the volume mesh quality and the accuracy of boundary
approximation. The volumme mesh before the boundary compression has perfect
quality, while the boundary compression procedure is iterative and can be stopped

if the quality of the volume starts to deteriorate.

Nevertheless, there are certain disadvantages of the implemented approach:

e The choice of the displacement step during boundary compression does not guaraii-
tee the surface deformation will result in topologically correct mesh (i.e., depending
on the element size, there is a possibility of having an element collapse during one

iteration step).
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e The user must choose the initial lattice spacing and the number of mesh refinement

levels,

e There are no guarantees about the aspect ratio or minimum dihedral angles in the

mesh after the surface compression.
e The implementation does not allow to mesh multiple segmented tissues.

e RGMp does not update the mesh connectivity, and thus is more susceptible to
the degraded volume mesh quality during boundary compression. Neither of the

boundary compression approaches updates surface connectivity.

e RGMp involves the solution of the problem equal or at least comparable in com-
plexity to the numerical computations performed by the solver component during

non-rigid registration.

Overall, in the absence of any implementations for automatic image-to-iesh conver-
sion tools in the public domain, the advantages provided by the presented implementa-

tion make it a practical choice for meshing binary images.

3.5 Construction of Sizing Function

In general, applications that use tetrahedral meshes require different sizes of elements
depending on their spatial location within the domain. The time required for NRR is
directly proportional to the number of points in the mesh, while the solution error is
reduced with higher discretization of the domain. Therefore, a balance between the

coniputation time and solution accuracy is usually required by refining the domain with
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higher resolution in the areas of interest, or in the areas where the a posteriori error
exceeds some threshold. Next we describe a way to adjust the size of tetrahedra in
order to ineet the application-specific requirements of the NRR method. Specifically, we
describe how to adapt the elenient size to the distribution of the registration poiuts.

The conventional approach to definition of mesh density is through the use of mesh
sizing function. Given a set of points V, mesh sizing function H defines the desired
length of the edge at a point H : p € V — R [179]. Tt can be defined analytically, but
more often its values are prescribed at the vertices of the background mesh. When the
background mesh is used, the value of the sizing function at the non-vertex locations
can be derived by interpolation. Both Tetgen and NETGEN accept a background mesh
to control local mesh size.

We use the sizing function defined at the vertices of the background mesh to adjust
the distribution of mesh element sizes to the distribution of the registration points for
application-specific mesh generation. Note, that the background mesh does not need to
be conforming to the object boundary. The only requirement is that the meshed domain
should be completely enclosed within the background mesh to allow interpolation of the
sizing function at any point within that domain [211].

We use the same CGAL-recovered surface mesh for the construction of both back-
ground mesh and the mesh used for NRR. The background mesh is constructed using
Tetgen by setting the bound on the maximun tetrahedron volume. The bound is se-
lected in such a way that the maximuin tetrahedron volume corresponds to an equilateral
tetrahedron with the edge equal to the average edge length in the CGAL-reconstructed

surface mesh. The sizing value at each mesh vertex is initialized with the distance to the
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kth closest registration point to reflect the density of the registration point distribution.

The motivation behind the initialization of the background mesh is that the shape
of a perfect mesh vertex cell coniplex is close to a ball with the radius prescribed by the
background mesh. We use CGAL [42] k-neighbor search to find the k closest registration
points and the distance to the furthest point for each background mesh vertex. Our goal
is to have around 30 registration points in the cell complex of each vertex. However,
based on the experimental results, the mean value in distribution of the registration
points both for Tetgen and NETGEN was not approaching the desired bound when we
set k = 30. Experimentally, we arrived at a result that the best distribution is obtained
by using larger values for k (we used & = 100), and adjusting the Tetgen mesh by
reducing the alpha parameters of the implementation, see [179]. The NETGEN mesh
was constructed using the same background miesh, but the sizing values were scaled
down by constant to have similar number of nodes compared to the adaptive Tetgen
mesh.

The sizing of the adaptive mesh constructed with RGM was controlled by a custom
subdivision function. This function is called for each tetrahedron during the refinement
at each mesh resolution, and returns true if the tetrahedron requires subdivision. We
calculate the number of registration points inside the cells of the four tetrahedron ver-
tices. The tetrahedron is subdivided if the number of the registration points in each
vertex cell exceeds point density threshold p;. We used two subdivision resolutions in
all cases. The process of adaptive mesh construction with RGM is parametrized by the
alue point density threshold and the spacing of the initial lattice, see [72]. These pa-

rameters were experimentally chosen so that the size of the adaptive mesh (the number



of mesh vertices) is approximately the same as the size of the adaptive Tetgen mesh.

3.6 Evaluation Framework

The evaluation of the mesh generation techniques consists of the two components. First,
since we introduce a new niesh generation method, (RGM ), we need to analyze its
performance in the context of the existing meshing tools. We approach this by comparing
a number of quality metrics for the meshes constructed from the same bhinary image data
using RGM and the conventional mesh generation tools that operate on triangulated
surfaces. The commonly accepted metrics we use allow to compare shape of the mesh
tetrahedra and assess the accuracy of surface approximation.

The second part of the evaluation is focused on the application-specific requirements.
The specific metrics we use in the evaluation require estimation of the registration error
at the registration points, which is based on the knowledge of the ground truth defor-
mation at each of those points. The issue of validating the accuracy, i.e., establishing
ground truth deformation in non-rigid registration of medical images is a difficult prob-
lem. We further discuss the issue of validation in Chapter 5. Since we cannot derive
ground truth deformation from the clinical data, in the evaluation of mesh generation
methods we use synthetic ground truth. We construct a synthetic deformation field, ap-
ply it to real MR images of brain, and use non-rigid registration to recover tle synthetic
deformation. Such a validation approach that is based on synthetic ground truth data
is quite common in evaluating non-rigid registration methods [103]. The availability of
the true deformation field allows us to assess the registration error and other velated

metrics at arbitrary image locations.



Figure 3.9: Left: Random deformation vectors are generated at the knots (red circles) of the de-
formation field grid that are located within the user-defined mask. Right: Example deformation

field.

We use the method described by Rogelj et al. [167] to coustruct a synthetic deforma-
tion field. We first construct a sparse point sample at the knots of an isotropic sampling
grid overlayed with the image. This procedure is illustrated in Figure 3.9, where sample
points are shown with red circles. Deformation vector d; = (df,d?,d?) is constructed
at each of the grid points. Each of the vector components are drawn from a a sum
of Gaussian distributions, with separately initialized distributions for each coordinate
component. The distributions are parametrized by the mean g = 0 and variance . We
set the distribution variance to be within the 5% of the brain dimension, and include
additional checks to ensure that the resulting deformation does not violate the assump-
tions used in linear elastic models [63]. The dense deformation field is constructed by
using Thin Plate Splines interpolation at non-knot image points within the binary mask.
An example of the deformation field generated by this approach is given in Figure 3.9.
The implementation of the framework for constructing the synthetic deformation field

has been presented in [27].



3.7 Results

3.7.1 Evaluation of Lattice-Based Meshing

The objective of this evaluation component is to establish that the new mesh generation
method we introduce is comparable with the conventionally used methods with respect
to common mesh quality metrics.

Three ICC segmentations from the real patient data (from [53]) were used to con-
struct tetraliedral meshes with the RGM method. Two sets of meshes were generated.
In one case we perform mesh boundary compression using the physics-based method
(RGM-p). The other set of meshes was constructed by using optimization-based bound-
ary adaptation (RGM-0).

Clatz et al. [53] used the following processing steps for coustructing tetrahedral
meshes. First, the dense triangular surface mesh was extracted from the binary mask of
the patient ICC segmentation. This surface was next decimated in order to reduce the
size with the surface decimation package Yams [86]. The decimated mesh was then used
as the input for volumetric meshing with the commercial Delaunay mesh generation
package GHS3D [182]. We were able to obtain the original meshes used by Clatz et
al. [53] for the purposes of this study, but we did not have access to the commercial tools
Yoms and GHS3D. The meshes used in the original paper by Clatz et al. comprised the
first set of meshes used in the comparison, marked further as GHS3D.

The second set of meshes was constructed with another commercial mesh generation
tool, SolidMesh [131]. This tool uses AFT combined with the Delaunay criteria for

optimizing point insertion during mesh front propagation. The third set of meshes was
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constructed with Tetgen [180]. a tool we discussed earlier. In both cases we attempted
to adjust the meshing parameters to obtaiu the number of elements as close as possible
to 10K constraint specified by Clatz et al. [53].

Both SolidMesh and Tetgen tools require a piecewise-linear surface boundary as
input. For these two methods we use the surface of the RGM-0o mesh to describe the
input volume domain.

First, we evaluate the quality of surface approximation for each of the methods.
We compute the Hausdorft distance from the triangular surfaces reconstructed from
segmented images using Marching Cubes algorithm to the surface extracted from voluime
meshes. We present the results of that evaluation in Table 3.1. Hausdorff distance was
computed using the M.E.S.H. software [15]. Note. that we do not evaluate surface
approximation for Tetgen and SolidMesh meshes, as their surfaces are identical to those
of the RGM-o0 meshes.

Second, we evaluate the initial quality of element shape using aspect ratio and min-

imum dihedral angle. We define aspect ratio as gi/[(—: where |K |« is the length of the

longest edge. and 7 is the radius of the tetrahedron inscribed sphere. These quality
metrics were calculated using VTK 4.4 [121] and are shown in Table 3.2. Perfect as-
pect ratio value is 1, and dihedral angles close to 0° or 180° and larger are considered
problematic.

Finally, we evaluate the change in quality of the meshes caused by deformation. The
deformed meshes were obtained as a result of running non-rigid registration on the image
data that corresponds to each case. Aspect ratio and minimum dihedral angles in each

of the five meshes after the deformation are shown in Table 3.3.
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Table 3.1: Surface approximation quality.

case ID  method number of surface triangles  Hausdorff distance

mar.  mean RMS

RGM-o 1328 916 047 0.66
1 RGM-p 1863 8.73 154 1.88
GHS3D 1284 11.06 098  1.25
RGM-o 2000 6.48 0.55  0.75
2 RGM-p 2022 797  1.40 1.69
GHS3D 1284 10.37  1.00 1.34
RGM-o 1858 7.25 047  0.63
3 RGM-p 1896 7.07  1.48 1.81
GHS3D 1354 896 087 1.14

The evaluation shows that for all of the cases surface approximation for the meshes
constructed by RGM is at least as good as for the meshes constructed by GHS3D.
Because of the adaptive mesh structure, RGAM meshes have larger number of surface
elements with about the same number of tetrahedra, see Table 3.2. This also contributes
to a better surface approximation. The element shape quality of the meshes generated
with RGM is also comparable and in some cases significantly better than GHS3D.
as can be seen from Table 3.2. Delaunay meshes generated with Tetgen have quality
comparable with the GHS3D meshes, but they have more elements. with small voluine
elements near the mesh surface.

The changes of the mesh quality after deformation is most drastic for Delaunay
meshes (e.g., see case 3 in Table 3.3). This is explained by the presence of small tetrahe-
dra near the mesh surface where elements experience largest strains. On average, quality
of the elements for all of the metliods decreases as the result of deformation. However,
for all of the methods (except Tetgen, where we observed large aspect ratios for cases
1 and 3) the deformed meshes preserve the quality and would probably not require

remeshing if they were deformed further. We have not observed significant difference in
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Table 3.2: Element shape quality evaluation.

case method tets aspect ratio min dih. angle
D min/average/maz  min/average/mazr
RGM-o 7334  1.03/1.44/2.83  33.3/52.5/77.2
RGM-p 7565  1.02/1.36/2.56  25.8/55.6/75.6
1 GHS3D 7886  105/1.61/11.64  6.8/47.8/815
Tetgen 21514 1.04/1.97/7.34 11.4/41.7/80.5
SolidMesh 8942 1.02/1.37/3.40 17.1/54.0/79.9
RGM-o0 7473 1.02/1.48/4.09 30.7/52.0/79.3
RGM-p 7556 1.02/1.40/2.75  23.6/54.8/76.7
2 GHS3D 8202 1.05/1.62/6.68 11.1/47.7/83.3
Tetgen 23907  1.04/1.97/6.24 13.8/41.8/81.8
SolidMesh 10266  1.03/1.36/3.45 17.6/54.1/80.6
RGMo 7497 1.01/1.46/323  32.5/52.1/79.7
RGM-p 7743 1.01/1.37/4.27 14.3/55.4/77.0
3 GHS3D 8235  1.02/1.60/19.1  3.07/47.7/83.2
Tetgen 23173 1.04/1.98/6.37 9.0/41.6/82.2
SolidMesh 9255 1.03/1.37/3.25 20.5/54.0/79.9

quality change between physics- and optimization-compressed RGM meshes.

We emphasize, that both GHS3D and SolidMesh methods are in the commercial
domain, and that both SolidMesh and Tetgen require (high quality) surface mesh as
input, while RGA is open source and operates directly on binary iiages. We observe
that optimization-based surface compression procedure results in better quality meshes,

Therefore, this is the method we will use in the subsequent experiments.

3.7.2 Application-Specific Evaluation

Previously, we introduced a number of application-specific requirements that we believe
are important in the context of non-rigid registration. In this Section we first evaluate
mesh generation techniques in the context of these metrics. As part of this evaluation, we
explore the question whether the use of sizing function results in the meshes that better

meet the application-specific requirements. In order to conduct the evaluation, we use
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Table 3.3: Element shape quality evaluation following deformation.

case method aspect ratio min dihedral angle
D min/ave/max min/ave/mazr
RGM-o 1.02/1.46,/2.80 25.85/52.00/78.79
RGM-p 1.03/1.39/3.36 20.68/54.73/77.03
1 GHS3D 1.04/1.65/12.97 5.39/47.33/82.66
Tetgen 1.04/2.06/104.52 0.41/40.92/82.29
SolidMesh ~ 1.02/1.40/3.34 17.53/53.44/79.54
RGM-o 1.02/1.49/4.42 28.28/51.78/77.46
RGM-p  1.02/1.41/2.90  23.40/54.43/78.00
2 GHS3D 1.04/1.64/6.34 11.06/47.37/81.41
Tetgen 1.04/2.07/15.60 4.71/40.97/84.61
SolidMesh 1.01/1.38/3.54 17.45/53.68/80.33
RGM-o 1.02/1.49/3.83 17.51/51.46/79.24
RGM-p  1.02/1.41/5.16  13.51/54.26,76.59
3 GHS3D 1.05/1.64/22.38 2.43/47.164/83.84
Tetgen 1.05/9.91/1717.15  0.0004/40.02/83.84
SolidMesh 1.02/1.41/3.56 17.93/53.26/80.37

three mesh generation tools to construct two sets of meshes. The first set ineludes the
meshes which have uniform distribution of element sizes, and the meshes in the second
set are constructed using the sizing function defined in Section 3.5. In order to have a
fair comparison, we attempt to construct meshes in such a way that they have similar
number of vertices within each group (uniform and adaptive). and compare them using
the same set of quantitative metrics.

We use two groups of metrics. The first group includes those mesh properties, which
can be directly optimized during the process of mesh construction. These include element
shape and surface approximation accuracy. We assess the element shape by the minimum
dihedral angle for each tetrahedron of the mesh. Surface approximation accuracy is
evaluated as the percentage of the registration points covered by the mesh. which is a
practical measure for the NRR application.

The second group includes quantitative metrics, which cannot be directly optimized
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by the existing mesh generation methods. Let D; be the ground truth displacement at
the registration point /, which aligns given point in the floating image with the corre-
sponding point in the target iimage. This value is known from the synthetic ground truth
deformation field. Following the notation introduced in Section 2, D; is the displacement
recovered at the ith registration point by block matching, U is the set of displacements
at mesh vertices, and H is the interpolation matrix from the values of displacements
at the mesh vertices U to the displacements at the registration points HU. The inter-
polated displacement at the ith registration point is defined as [HU];. Also, T; is the
structure tensor evaluated at the ith registration point. Using this notation, we define

the set of application-specific quantitative evaluation metrics:

1. Approzimation error at a registration point is defined as [[S;D; — [HU];||. We
assess the accuracy of approximation by the percentage of the registration points,
where the magnitude of this error exceeds 1.0. We call those registration points
“error points”. while reporting results (errors below this threshold are in the sub-
voxel range). We use the proportion of the registration points P, where the error

exceeds 1.0 mm as a measure of the approximation error:

p - {f€F:[SiD: — [HUJ|| > 1.0}]

-100%.
A 7 0%

2. Qutlier detection sensitivity. defined as the ratio of the true outliers within the
discarded registration points to the total munber of the discarded registration

points. The set of true outliers, F,. in the block matehing result is defined as a



registration point, where ||T;D; — D;|| > 1.0:

Fo=A{f € F:||T;D; — Di|| > 1.0}.

The registration algorithm defines the ith registration point as an outlier based
on the absolute value of the difference between the estimated deformation HU;
and the result of block matching at that point S;D;. The registration points are

ranked by this value. The top percentage is defined by K = n?\ is rejected. Here

7o and 7, are the registration parameters listed in Table 2.1. Let F k be the set
of registration points at the beginning of the kth outlier rejection iteration, and
]—",’?' — the set of registration points discarded by the registration algorithim at the

kth iteration:
k : -
FF={f e 7" :|8;D; — HU,|| > K{" .. (|S;D; — HU,|)}.
We define P, as the proportion of the true outliers that were correctly identified
by the registration algorithni:

S PN 7

- 100%.
[Fol

P, =

We use P, as a measure of sensitivity in outlier detection.

3. RMS of the absolute error at the registration points, absolute error being defined

as ]HHU], — D,H

4. Distribution of the registration points with respect to mesh vertices.
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Note that the goal of the study is not to tune the NRR parameters for optimal reg-
istration results. We attempt to perform a controlled analysis of the impact of mesh on
the NRR performance, while keeping fixed the other registration algorithm paraimeters
that can influence registration accuracy.

In the previous Section we compared the meshes constructed with GHS3D and
SolidMesh tools, both of which are commercial products. In the application-specific
evaluation we cannot use GHS3D, because we do not have access to the tool itself. In
addition, SolidMesh cannot be evaluated, because we have the freely distributed version
of this tool, which is not capable to construct adaptive meshes based on sizing function
defined at background mesh vertices. Therefore, in the current study we use NETGEN
as a representative method among AFT, in addition to the previously evaluated RGM
and Tetgen.

We constructed synthetic deforimation fields and performed NRR on the MRI scans
1 through 3 in the set of 18 iinages available from the Internet Brain Segmentation
Repository (IBSR)?. The synthetic deformations were generated with 20 “knots” in the
deformation grid on average [27]. The deformation magnitude at each “knot” was under
5% of the brain size to maintain the validity of the linear elastic physical model [63, 53].

The parameters used for CGAL surface mesh generation [42] were: angular bound
30°, surface radius and distance bounds 10.0, surface precision bound 0.001. FEach
nmethod was used to construct two meshes for each registration case. The prescribed

element size was uniform throughout the volume of the first mesh. The second mesh

was constructed to adapt the clement size according to the sizing function designed in

2The MR brain data sets were provided by the Center for Morphometric Analysis at Massachusetts
General Hospital and are available at http://wuw. cma.mgh.harvard.edu/ibsr/.
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Figure 3.10: Left to right: selected registration points, and adaptive tetrahedral mesh cuts
(same slice) generated with Tetgen, NETGEN, and RGM. Tetrahedra are colored according to
their volume, from blue (smallest) to red (largest).

Section 3.5. We adjusted the implementation-specific parameters to have the uniform
and adaptive meshes with approximately 1.5K and 6K vertices, respectively.

We present cross-cuts of the adaptive meshes in Figure 3.10. The adaptive meshes
generated with NETGEN have a layer of relatively large elements near the surface of
the mesh. This is explained by the nature of AFT, which does not insert new points on
the triangulated surface. We use the CGAL triangulation as the support surface, and
let NETGEN to construct a new triangulation to respect the prescribed element sizing.
However, the re-triangulated surfaces contained small triangles, which do not obey the
prescribed edge sizing.

The synthetic registration cases differ in the number of registration points, and in
the number of true outliers. Moreover, because of the differences in mesh surfaces
recovered by CGAL and RGM respectively, different percentage of those points are
located inside the mesh domain, as summarized in Table 3.4. This is an important
observation, because the percentage of outliers impacts the registration error, and the
reduction of the registration error is our ultimate objective. Also, due to the lower

precision of surface approximation by RGM, about 4% fewer registration points and 1%
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Table 3.4: Registration points, true outliers, and their coverage by the mesh surfaces.

case id reg. points outliers,% reg. points inside,% outliers inside,%
CGAL RGM CGAL RGM
IBSRO1 56447 7.8% 95.6% 91.1% 6.9% 5.5%
[BSR02 57526 16.2% 94.9% 90.8% 14.3%  12.4%
IBSRO03 46525 18.8% 95.3% 90.5% 16.0%  13.1%

to 3% fewer outliers are located within the RGM-generated meshes. The distribution
of outliers is non-uniform, and many of them are located close to the surface.

None of the meshes contains sliver elements. We observe that the minimum dihedral
angle was the largest, 14°, in the NETGEN -generated meshes. The values of this metric
for Tetgen and RGM are 8° and 5° respectively.

Based on the results presented in Figures 3.11 and 3.12. the use of custom mesh sizing
can significantly improve the distribution of registration points compared to uniform-
sized meshes. In conjunction with the sizing function, Tetgen achieves the best dis-
tribution results overall. Although the average values for the distributions are similar
for all meshes, Tetgen meshes have lower maximum values and better distribution: the
distribution curve approaches normal distribution with the mean close to the desired
number (k£ = 30). The advantage of Tetgen over NETGEN is that mesh points can be
inserted at arbitrary locations on the surface during refinement. RGM is linited even
more than NETGEN, as new points can be inserted only at the periodic predefined
locations, based on the initial lattice structure. Nevertheless, the distributions in RGM
meshes are consistently better compared with NETGEN. This might be caused by large
elements near the surface of the NETGEN meshes.

Note that empty vertex cells do not pose a problem. The correspouding mesh nodes

will move following the neighboring vertices during registration. Problerns can be caused

-1
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Table 3.5: Application-specific metrics for the evaluated meshes.

case id metric uniform size meshes adaptive meshes
Tetgen NETGEN RGM Tetgen NETGEN RGM
IBSRO1 mesh points 1617 1596 1607 6044 6020 6209
P, 2.4% 2.6% 1.9% 1.6% 1.8% 1.1%
P, 53.5% 52.6% 43.8% 52.3% 52.5% 42.8%
RMS error 1.60 1.62 1.61 1.69 1.65 1.60
IBSR02 mesh points 1682 1617 1696 6166 6255 6993
b, 6.7% 71%  5.9% 4.9% 58%  4.3%
P, 64.7% 64.4% 59.4% 63% 64.7% 60.5%
RMS error 1.98 1.92 182 2.55 2.27 2.23
IBSR03 mesh points 1410 1413 1404 6631 6503 6033
P, 7.7% 8.1% 6.3% 4.8% 6.4%  4.5%
P, 72.9% 71.2% 65.7% 70.7% 74.6% 69.3%
RMS error 2.61 2.63 2.25 3.52 3.08 3.05

by few registration points (the contribution of outliers is not smoothed by the correctly

recovered displacements), or by too many registration points in the cell (increased ap-

proximation error).

The non-rigid registration was performed with the default parameters suggested by

Clatz et al. [53]. The fraction of selected registration points r; was set to 5%. The

quantitative metrics that are not directly optimized by mesh generation are summa-

rized in Table 3.5. The approximation accuracy is consistently improved for all mesh
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Figure 3.11: Distribution of the number of registration points per mesh vertex: uniform-graded
meshes (left) and adaptive refined meshes (right); IBSRO1.
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Figure 3.12: Boxplot for the distribution of the number of registration points per mesh vertex
cell complex with the unrefined meshes (left) and meshes constructed using the sizing function
adapted to point distribution (right).

Figure 3.13: Left: Image voxels with the largest values of the error with respect to ground
truth. Center: mesh elements with the minimum eigenvalue of the dilation matrix below 0.1.
Right: inverted mesh elements after NRR. IBSR02, Tetgen adaptive mesh, wireframe shows the
undeformed mesh.

generation methods when the refined meshes are used. However, this is the only metric
that is clearly connected with the size of the elements of the mesh. We do not observe
improvement in either outlier detection sensitivity or RMS of the registration error. On
the contrary, RMS error is increasing in the refined meshes. We suggest that there are
two major reasons why this may be the case.

First, the adaptively refined meshes are more susceptible to the element inversion
during NRR. The areas of the high error in the deformation field recovered by NRR
are spatially co-located with the areas of the mesh, where tetrahedra invert or become
highly skewed. We use the tetrahedron measure proposed by Baker [20] and identify

highly skewed mesh elements by the minimum eigenvalue of the element dilation ma-
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trix. Figure 3.13 shows spatial correspondence of the locations of skewed and inverted
elements with the areas with the largest registration error. The sizing function that we
used does not take into consideration the expected magnitude of deformation.

Second, refined meshes decrease the error of approximating displacements recovered
by block matching both at the outlier and non-outlier registration points. Ideally, the
mesh should be constructed in such a way that in each mesh vertex cell the nuinber
of outliers is less than the number of correct displacements. In general outliers are
distributed non-uniformly. As we decrease the size of the mesh elements, it hecomes more
likely that the registration points inside some cells will be dominated by the outliers,
causing higher error with respect to the true deformation.

We tried to resolve the first problem by modifyving the sizing function to reflect the
deformation magnitude averaged over the k closest registration points. The parameters
for CGAL surface mesh recovery were chosen according to the maximum of the averaged
deformation magnitude near the object surface. None of the evaluated meshers was able
to follow the prescribed sizing distribution closely. Both Tetgen and NETGEN created
large tetrahedra near the mesh surface. We cannot attempt to improve the fitness of
the mesh to the sizing function by reducing the default values of the alpha parameters,
as we have done for the meshes evaluated previously. The alpha parameters control the
bound on the shortest edge length at a mesh point. see Lemma 1 by Si [179]. Their
reduction introduces small volume elements. The construction of meshes that adapt to

the degree of deformation requires further study.

80



3.8 Summary

In this Chapter we approached the problem of constructing finite element meshes in the
context of a specific non-rigid registration method. The task of constructing such meshes
lias been traditionally comnplicated by the fact that the domain of interest is described
as a set of image voxels. However, in addition to the intrinsic difficulty of constructing
meshes from the image data. the adaptation of the mesh to meet the requirements of a
specific image processing application is particularly challenging.

We presented a list of specific requirements imposed by the non-rigid registration
application on tetrahedral mesh, and completed a quantitative evaluation of the existing
approaches. Based on the results of the literature review, we conmipiled a taxonomy of
the available meshing methods commonly used in medical applications, and sunumnarized
their differences and limitations in the context of the considered application. We observe
that there are no tools for direct conversion of the image data to tetrahedral volume
mesh. Existing methods commonly employ multiple processing steps (surface recovery,
decimation, volume mesh generation) to construct such meshes. but the details and
deficiencies of such multi-step approaches are often left outside the research discussion.

We attempted to fill the gaps in the existing body of literature and tools by pre-
senting an end-to-end approach for direct conversion of binary images into tetrahedral
meshes. We also describe a detailed procedures for using conventional meshing tools
that work with surface triangulations to mesh binary image data, and present a quan-
titative comparison of the meshes constructed with different methods for discretization
of ICC segmentations derived from the real patient data. RGAM. the mesh generation
tool we developed, constructs meshes of quality comparable with the state of the art
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commercial packages for the geometries used in NRR. This tool lias been mmade available
as open source project, and was used for constructing patient-specific models for NRR
during IGNS procedures at Brigham and Women’s Hospital in Boston, MA in 2006.

There are no general solutions in mesh generation — application requirements vary,
and mesh generation tools have to be adjusted to meet those requirements. Based on the
specific set of requirements we formulated for the NRR application, we developed a set
of quantitative metrics that allow to assess the goodness of a particular mesh for regis-
tration purposes. Specifically, we studied the issue of adapting the distribution of mesh
element sizes to the distribution of the registration points. The quantitative comparison
of the considered mesh generation methods allowed us to conclude that Delaunay-based
mesh generation in conjunction with the robust tools for implicit surface triangulation
achieve the best quality mesh in terms of distribution of the registration points. However,
the remaining issue is the one of constructing such a mesh that optimally conforms to the
two conflicting requirements: distribution of the registration points and the magnitude
of deformation.

Possibly the most important question that has not been studied is the impact of the
mesh on the registration accuracy with the clinical data. We stress that the question
of the meaningful impact of the mesh generation method on the registration accuracy
cannot currently be evaluated due to the lack of ground truth data for clinical registration
cases. The difficulties of assessing the accuracy of non-rigid registration are further
discussed in Chapter 5. In this Chapter we described the list of guidelines and a number
of solutions for mesh generation. however further evaluation is necessary, contingent on

the availability of clinical ground truth data.
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3.9 Contributions

The main contributions of the work presented in this Chapter are the following:

a novel tool for direct conversion of binary images into tetrahedral meshes has

been presented and evaluated in the context of NRR applications:

application-specific requirements to mesh generation for NRR application have

been sumimarized;

an evaluation framework for comparing suitability of tetrahedral meshes in the
context of NRR has been proposed and used for evaluation of the considered mesh

generation tools;

a detailed description of the end-to-end procedure for constructing tetrahedral

meshes using off-the-shelf software has been presented and analyzed.

The results presented in this Chapter have been published in the following papers:

1.

A Fedorov, N.Chrisochoides, R.Kikinis, S.IX.Warfield. Tetrahedral mesh genera-
tion for medical imaging. MICCAI'05 Open source workshop, 2005 (appears in

Insight Journal, http://hdl.handle.net/1926/35)

. N.Archip, A.Fedorov, B.Lloyd, N.Chrisochoides, A.Golby, P.Black, S.K.Warfield.

Integration of patient specific mmodeling and advanced image processing techniques
for image guided neurosurgery. Proceedings of SPIE Medical Imaging., 2006.

pp.422-429

. A.Fedorov. N.Chrisochoides, R.Kikinis, S.K.Warfield. An evaluation of threc ap-

proaches to tetraliedral mesh generation for deformable registration of MR images.
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Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano

to Macro, 2006, pp.658-661

B.Joshi. A.Fedorov, N.Chrisochoides, S.Ix. Warfield, S. Ourselin. A Quantitative
Assessment of Approaches to Mesh Generation for Surgical Simulation. Engineer-

ing with Computers, 24(4):417-430, 2008

A Fedorov, N.Chrisochoides. Tetrahedral Mesh Generation for Non-rigid Regis-
tration of Brain MRI: Analysis of the Requirements and Evaluation of Solutions.
Proceedings of 17th International Meshing Roundtable, 12-15 October 2008, pp.55-
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Chapter 4

High-Performance Image

Registration

Accuracy is the most important requirement for any non-rigid registration method.
However, once the accuracy of the method has been established, it can only be useful
during IGNS if the computation is feasible to complete within the time allocated for
image processing during the procedure. Non-rigid registration methods for recovering
brain shift have been studied for more than a decade, but many of them were found to
be impractical due to the high computation time they require.

The NRR method by Clatz et al. has been designed froin the very beginning with the
goal of supporting IGNS image processing. The authors perforimed a retrospective study
of the implementation using the image data from past neurosurgeries, and estimated the
computation time required for intra-operative component of the registration to he under
one minute [53]. However, the practical constraints of the implementation and high

variahility of the execution time depending on the input data did not allow to achieve



such result during the initial attempts to apply this method intra-operatively.

The research results presented in this Chapter were originally motivated by a practi-
cal need. During the vears of 2006 and 2007, image-guided craniotomies of brain tumors
were being perforimed on average every month in the open magnet facility at Brigham
and Women's Hospital in Boston, MA. State of the art tools available at that time did
not provide any capabilities to account for intra-operative brain deformation, which mo-
tivated the feasibility study of using the method designed by Clatz et al. in the clinical
setting.

An attempt to use the iimplementation for intra-operative prospective evaluation of
the method using a 4-processor high-end workstation resulted in the conclusion that the
execution time of NRR on a single high-end workstation (next to the operating room)
exceeds by far the timne a surgeon can wait to proceed with the tumor resection after
each intra-operative scan. Ideally, the surgeon would like to have registration results
immediately, but certainly the time to process the images should not exceed the time
required to obtain a full brain iMRI, which takes about 4-5 minutes. Better performance
of the registration process could conceptually be achieved using one of two approaches.
We can either apply less computationally demanding models which provide the same
accuracy of the solution, or we can attempt to improve the scalability and efficiency of
the existing implementations. In this Chapter we explore the second approach to make
the computation of the NRR method discussed earlier feasible and practical for IGNS.

As we show in this Chapter, high performance computing (HPC) resources prove
to be essential to enable in-time completion of NRR. However. in addition to making

NRRR feasible. HPC resources hold the potential to improve the accuracy of registration.
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In practice, the non-zero registration error is inevitable, independently of the level of
complexity in the registration algorithm. This is due to the fact that existing models of
brain deformation are heuristics and approximations. There are technological limitations
(e.g., insufficient contrast in the intra-operative iMRI to detect resection boundaries,
low image resolution), lack of knowledge about the physical tissue properties, absence
of precise patient-specific biomechanical models of the brain, etc. The heuristics used
in the registration methods are characterized by certain parameters that allow to tune
their behavior. The selection of the optimal values for such parameters is usually not
straightforward, because they depend on the iimages that are registered. The parameter
settings can be optimized retrospectively, but such settings may not be optimal for the
prospective application of the method.

The problem of optimum parameter selection has been previously recognized in the
image registration community, and a number of approaches have been proposed to ad-
dress this issue. Skrinjar et al. [183] develop a framework for selecting optimum stiffness,
which parametrizes the biomechanical model of brain deformation. The proposed solu-
tion is to initialize stiffness to a small non-zero value, and iteratively increase it until
the distance between the modeled locations of the surface points to the true surface
location is close to zero. Ino et al. [110] introduce the concept of speculative parallelism
in the context of registration, where the same registration problem is approached with
the different sets of parameters at the same timne. In any scenario of optimum parameter
estimation, multiple instances of registration must be evaluated. Given the non-trivial
amount of computation needed for a single instance of NRR, the task of paraneter

search may become infeasible.



In this Chapter we focus on the use of HPC resources for the NRR method of Clatz
et al. Our first objective is to develop a high-performance implementation that meets
the IGNS time constraints and can be used for prospective studies in clinical research.
The second goal is to evaluate the possibilities of enabling parainetric search for NRR.
We consider both the ubiquitous cluster of workstations and the widely distributed Na-
tional cyber-infrastructure (TeraGrid) as platforms to facilitate these highly demanding

computations.

4.1 Cluster-based Implementation

4.1.1 Related Work

Image processing computations that operate on three-dimensional medical data often re-
quire non-trivial time when performed sequentially. Such tasks as multi-channel pattern
classifications used in medical image segmentation. complex biomechanical simulations
or optimization in multidimensional parameter space often used in medical image reg-
istration are inherently complex. Some of these computations hold the potential to be
useful in decision making during clinical procedures, which impose tight time coustraints
on the delivery of the computation results.

In this Section we focus on the computations related to image processing for the
purposes of image-guided neurosurgery. A number of approaches and frameworks have
bheen proposed to leverage the high performance power of local cluster computing re-
sources for this clinical application, as we discuss next. The major results in developing

HPC systems for such problems are coming from relatively few groups, which have corre-



sponding needs. Until recently, the use of high quality intraoperative imaging modalities
was limited and available at few clinical centers due to high cost of the needed imaging
systems.

Christensen and collaborators were some of the first to discuss the use of parallel
computing resources for solving time-consuming problems related to brain MRI process-
ing [51]. They describe a method for constructing anatomical brain atlases customized
to patient image data. The authors present a system implemented on a massively par-
allel SIMD architecture, with the parallelized PDE solver used in deformation modeling
and parallel evaluation of the three-dimensional transformations. The authors state
that parallelization allowed to reduce processing time from weeks to hours for typical
datasets.

Warfield et al. [198] presented a parallel implementation of the brain tissue classifica-
tion and rigid registration based on the segmented label overlap si.milarity metric. The
implementation includes load balancing component based on workpiles, which essentially
correspond to the master-worker distribution scheme we adopted in our distributed im-
plementation of NRR. The implementation developed in [198] was used to process a
large number of brain scans MRI scans with the reported processing time within 10
minutes.

In another development , Warfield et al. [199] presented some of the first results
in intra-operative processing of iMRI. They counsider the problem of intra-operative
segmentation of brain iMRI. The segimentation method is based on voxel-wise classi-
fication of tissue, which can be completed independently for each voxel. The authors

demonstrate linear speedup of segimentation on a 20-processor HPC workstation. which
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allows to segment 60 slices of data in about 20 seconds. Remarkably. the developed
method was subsequently applied and evaluated during real cases of neurosurgery and
liver cryo-ablation [200]. The same group later developed a high-performance method
for intra-operative non-rigid registration, which uses linear biomechanical model [197].
The authors used PETSc [159] library for parallel assembly and solution of the linear
system. Although the authors report clinically acceptable timing results delivered by
their implementation, the evaluation was restricted to off-line experimental studies.
The approaches to parallelizing registration computation are highly dependent on
the specific registration method. For example, the methods considered in [199, 198] can
be parallelized without any need for intra-processor comimunication using the master-
worker approach. On the other hand, the parallel linear solver used by the framework
described in [197] requires MPI-enabled communication. Rohlfing et al. [168] develop
an implementation of free-form non-rigid registration method based on B-spline inter-
polation on a shared memory supercomputer. Global image similarity and gradient
computations contribuite most of the execution time, as they are repeatedly evaluated
during the optimization process. The authors present parallel implementation of those
steps, and report speedups close to linear in the application of this framework for off-
line processing. Another distributed implementation of a registration method based on
free-form deformation was developed by Ino et al. [111]. Stefanescu et al. [186. 187] de-
veloped a parallel implementation of the demons-based non-rigid registration method.
Demons-based registration [191] presents the advantage of being able to recover small-
scale deforinations, as compared to registration based on B-splines. The authors of [186]

report speedup of 11 on a cluster of 15 workstations. However. neither of these methods
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incorporates biomechanical models of the tissue in the registration process.

An approach closely related to the registration method we target in this work was
studied by Ourselin et al. in [151]. Although the authors considered the problem of rigid
image registration, the registration metlhod is based o deriving the global transform
with the aid of block matching, which was parallelized using equi-distribution of work
among the processing nodes of a cluster. The implementation was used for retrospective
analysis of image data.

Overall, we observe that a large number of registration methods liave been im-
plemented on computing cluster resources. Such systems are motivated by excessive
computational time required for processing three-dimensional image data. The paral-
lelization approach is always customized to the specific registration method, and the
common denominator in such implementations are the communication libraries used,
e.g., MPI [140], and load balancing schemes based on the master-worker model. Some of
the reported results are evidently suitable for intra-operative application of the methods.
Nevertheless, very few methods (namely, only the framework developed in [199]) were
actually applied and evaluated during the neurosurgery. We explain this by the difficulty
of coordinating computation in the real time-critical setting, possible dependency of the
performance on the input data and parameters, and insufficient robustness and accuracy

of the registration approach.

4.1.2 Motivation

The method proposed by Clatz et al. has been designed specifically to be applicable

during IGNS. Therefore, a number of design decisions have been made to make the
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computation feasible within minutes:

1. Iterative rejection of the outlier registration points results in the changes in the
interpolation and stiffness niatrices B, H and S. The matrices are updated to
account for these changes by locally modifying the submatrices corresponding to

the discarded registration points.

]

The tetrahedral mesh used in the registration does not change between the it-
erations of the algorithin. The estimated mesh deformation is reflected in the

deformation vector U, but the mechanical stiffness matrix K remains constant.

3. The authors recognize that the block matching component of registration is the
most. time-consuming processing step, and develop its parallel implementation us-

ing PVM [23].

However, the method has been tested and evaluated retrospectively, in the envi-
ronment of a research lah. The intricacies of running the code during neurosurgery
and providing the result to the operating team often cannot be anticipated in advance,
as cannot be anticipated all the difficulties related to using a heuristic method on an
untested data.

During the initial attempts to run the original implementation during the course of

neurosurgery, the following ohservations have been made:

e The only computational resource readily available for non-rigid registration next
to the operating room is a high-end workstation. However, execution time of the

prototype implementation by Clatz et al. on a high-end multi-processor worksta-



tion varied between 40 minutes and 1 hour, depending on the input data, as shown

in Figure 4.1.

In the absence of local computing facilities, the external HPC resources were re-
quired. The characteristics of the external execution environment are not known
in advance. It is desirable for the parallel implementation to be robust and efficient
on both time-shared and dedicated resources, with possible heterogeneity of the

computing nodes.

The functional complexity of the implementation (initialization, parameter check-
ing. data transfer) did not allow to easily separate the individual components of
the computation, and added significantly to the total time required to execute the

code with the clinical data.

The components that contribute most to the total execution time of the imple-
mentation are data pre-processing and block matching, with the block matching
component highly amenable to parallelization. The parallel implementation of
block matching by Clatz et al. cannot be ported on commodity clusters, since it
is based on PVM, which is not a commonly supported parallel programming envi-
ronment (specifically, it is not supported on either SciClone [56] or TeraGrid [18],

the computational resources used in this study).

The implementation is highly vulnerable to failures: a hardware fault during in-
traoperative part of the registration requires restart of the computation. DBasic

fault-tolerance functionality should be part of the implementation.
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Figure 4.1: Execution time breakdown for the original implementation of NRR on a high-eud

4-way workstation.

Table 4.1: Time (minutes) required for sequential block matching with 100K registration points
using Normalized Cross Correlation similarity metric (Intel Xeon 3.7GHz).

search window dimension
block dimension 7 9 11 13 15 17 19 21

5 04 08 15 27 36 52 73 9.6

7 09 20 36 59 89 131 179 239
9 26 56 99 161 245 353 489 652
11 4.5 96 172 282 429 62.0 859 1135

Based on the initial evaluation of the prototype implementation, block matching
is the most time-consuming step, which requires parallelization. Table 4.1 shows the
timing results for sequential execution of hlock matching with 1001 registration points
on a high-end workstation. The search window size is a parameter chosen to reflect
the maximum expected deformation magnitude. The typical resolution of MR image is
~1 mm, and the reported values of the brain shift are in the order of 10-20 mm [64].
Therefore, the size of the block matching search window must be twice the expected
deformation, making the search window dimension of 21 pixel typical. Based on the
results in Table 4.1. a block matching search parametrized by such values cannot be
completed sequentially within the neurosurgery time constraints.
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Given the initial observations, we identified the need to provide a computational in-
frastructure, capable of delivering the NRR results within the clinical time constraints.
The components of such infrastructure must include high-performance computing re-
sources, low-latency network connection between the remote site and the hospital net-
work, and the software implementation, that can leverage these resources.

Nowadays, clusters of workstations (CoWs) are readily available at most research
institutions and universities. However, the use of such facilities is normally optimized
for off-line computations, i.e., when the results of the computation do not need to be
delivered within strict time constraints. Most clusters are accessed in the space-shared
mode. A user wishing to use the cluster for computation submits so called job request,
which describes the code to be executed, inputs and outputs. number of cluster nodes,
and the expected time needed for the computation to complete. The cluster batch
scheduler manages the queue of job requests and assignment of the cluster resources. In
the space-shared scheduling mode. once the cluster nodes are assigned to the task, the
task has exclusive access to this subset of cluster resources.

In the case of NRR, the computation is triggered by the availability of the intra-
operative MRI scan. Once this scan is available. the computation must proceed as
quickly as possible. Typically, scheduling a job is associated with queuing delays, which
depend on the current availability of the resources and job load of the cluster. Certain
batch scheduling systemns allow preemiption of the currently scheduled jobs in favor of
high-priority requests. However, job preemption requires the ability to save the current
state of the jobs being preempted. so that they can be safely restarted. In practice.

job preemption mode is rarely supported. An alternative to job preemption is advance
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reservation of the cluster nodes. The problem related to this is the sub-optimal uti-
lization of the resources, which is why advance reservations are rarely available on the
production systems [146]. and can be accomplished by special arrangement only.

In order to enable the timely computation of NRR. considering the lack of parallel
computing resources at Brigham and Women’s Hospital at the tiine this study was per-
formed. we decided to use resources of the SciClone Cluster [56] at the College of William
and Mary. SciClone is a heterogeneous cluster that consists of roughly 200 nodes, which,
as we show further, is sufficient for timely computation of the block matching registra-
tion step. Moreover, SciClone site is counected with the national LambdaRail [142]
backbone network through the 10 Ghbps link, providing low latency high bandwidth
means for transferring intra-operative data and registration results. Parallel computa-
tions are facilitated by the numerous implementations of the Message Passing Interface
(MPI) [140] available on SciClone. The access to the SciClone resources is managed by
the PBS scheduler. However, for the purposes of this study, we were able to eliminate
the PBS scheduling delay hy special arrangement to have exclusive access to the Sci-
Clone resources at the time of the neurosurgery. In order to provide a backup computing
facility for the fault-tolerance considerations, we also use the student computer lab at
the Computer Science department at the College of William and Mary.

The described environment provides ample computational capabilities accessible via
a high-end network connection. However, in order to take advantage of this computa-
tional infrastructure, significant restructuring of the NRR code was necessary. In the
next Section we focus on the architecture of the parallel distributed NRR implementa-

tion.
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4.1.3 Implementation

Based on the initial evaluation of the NRR performance, the most straightforward, but
very important modification necessary was the separation of the monolithic computation
into separate processing stages. The processing modules are pre-processing (selection of
the registration points), block matching between the pre-operative and iMRI showing
brain shift, iterative outlier rejection (solver) and resampling of the pre-operative image
using the displacements recovered at mesh vertices. This separation is motivated not
only by performance, but also by the fault-tolerance considerations.

The complete processing timeline is shown in Figure 4.2. The processing involves
acquisition of data in the hospital located in Boston, transfer of the data and its pre-
processing at the College of William annd Mary, and transfer of the computation results
back to the hospital for the subsequent post-processing and visualization. The technical
aspects that needed to be considered in the high-performance implementation are load
balancing and fault tolerance.

Load balancing Within the time-critical computational components, the block
matching is the step that requires performance improvements. The processing required
by the block matching is by definition embarrassingly parallel. In order to find a match
for a given block, we need the block center coordinates, and the regions of the fixed and
floating images bounded by the block matching window [53]. No communication between
processors is necessary. A straightforward work assigniment is static equi-distribution of
the registration points to the computing nodes. Static assigninent eliminates the need
for communication during block matching computation. However, this approach is not

practical for a numnber of reasouns.
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Figure 4.2: Timeline of the processing steps with the restructured NRR implementation.
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First, the computing environment is highly heterogeneous, and processing time re-
quired for a single registration point varies depending on the processor speed. Noreover,
the computing resources at the computer lab are available only in the tiime-shared mode.
i.e., multiple users may utilize a given node at the same time. Therefore, the CPU load
is highly variable and cannot be predicted. This creates motivation for dynamic re-
distribution of work, or load balancing. Second, even in the presence of perfect static
assignment of work, lack of communication between the computing node will make fail-
ure detection impossible, leading to the partial loss of the block matching results. Based
on these two considerations, we implemented parallel block matching using hierarchical
master-worker load balancing scheme.

Multi-level dynamic load balancing method which we adopted for parallel block
matching is different from the static multi-level graph partitioning methods presented
in [1], and is closer to the hierarchical partitioning approaches described in [189, 70]. We
use initial estimation of the combined computational power of each cluster involved in
the computation (based on CPU clock speed) for the weighted partitioning of the work-
pool and initial assignment of work. This initial estimation is adjusted at runtime using
a combination of master-worker and work-stealing [30, 204] methods. At the level of
individual cluster, we implement conventional master-worker model. The input images
are loaded in memory at all the computing nodes. The master node (selected as the rank
0 node assigned by MPI) is responsible for maintaining the list of registration points, and
the results of block mnatching for each of these points. These data are maintained in the
work-pool data structure. Each item of the work-pool contains the three coordinates of

the block center, the displacement vector estimated by block matching, and the value of
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correlation for the optimal location. The registration points are assigned to the worker
nodes in small batches. Upoun completion of the registration, the worker reports the
result back to master and requests more work. if available.

We maintain the hierarchical structure of load balancing by designating a separate
master node at each of the administrative domains involved in the computation. Each
master node maintains a copy of the global work-pool. which are identical in the begin-
ning of the computation. The portion of the work-pool assigned to the specific cluster
is partitioned in meta-blocks (a sequence of blocks), which are passed between the clus-
ter nodes using the master-worker model. As soon as all the matches for a meta-block
are computed, they are commmunicated back to the master, and a new meta-block is
requested. In case the portion of the work-pool assigned to a master is processed, the
master continues with the “remote” portions of work (i.e., those, initially assigned to
other clusters). As soon as the processing of a “remote” meta-block is complete, it is
communicated to all the other master nodes to prevent duplicated computation.

Fault tolerance We perform data pre-processing sequentially on the fastest machine
at the computer lab. Parallel block matching uses combined computational facilities of
the computer lab and SciClone, and the FEM solver is executed sequentially on the
fastest machine at the computer lab.

The implementation is loosely coupled, with the results of separate processing steps
communicated over the file system. This introduces the first level of fault tolerance, i.e.,
if the failure takes place at any of the stages, we can restart just the failed phase of the
algorithm and recover the computation.

The communication between different clusters is handled via TCP sockets. In case of
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a hardware problem on one of the clusters, the rest of the unaffected sites can continue
with the execution. A monolithic code which uses a conventional MPI implementation
would crash in the case of a single node failure. because conventional MPI implementa-
tions do not include provisions for automatic checkpoint and restart [140].

The redundant workpool data structure maintained at each of the master nodes as-
sists not only in load balancing, but also in providing the second level of defense against
hardware failures. Based on the statistical data collected over the years, hardware
failures are usually caused by the disruptions of power, or faults in air conditioning at
SciClone. Such problems cannot be anticipated, and the recovery of the cluster following
the failure takes hours. In case there is a failure that niakes one of the clusters inacces-
sible, the block matching computation can continue, and the results already calculated
will be secured at the replica of the work-pool at the other master node.

Both the frequency of work-pool updates within each cluster and the intra-cluster
synchronization is an adjustable trade-off between the communication time and a pos-
sibility of duplicate block processing. This situation is possible when a block has been
processed on one site, but the work-pool update has not yet been propagated. However,
note that frequent synchronization of work-pools can be done by a separate background
thread not involved in the computation, and the comnunication latencies associated
with intra-cluster updates can be generally hidden by emploving non-blocking com-
munication feature of existing communication libraries. Overall, these side effects are
negligible compared to the benefits we gain by our ability to save the computation state.

The distributed implementation was exposed to the hospital users as a web service.

In order to use the service. the client-side script was developed to implement initial data
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correctness checks, contact the server and transfer the computation results back to the

hospital. as shown in Figure 4.2.

4.1.4 Evaluation

The perforinance evaluation is based on non-rigid registration of seven image datasets
acquired at BWH. Two of these seven registration computations were accomplished
during the course of surgery, while the rest of the computations were done retrospec-
tively. The surgery for case 6 was postponed in the last moment due to patient’s health
complications, and the analysis was performed retrospectively. All of the intra-operative
computations utilized SciClone, which was reserved in advance for the neurosurgery use.

All the experiments for the implementation we present here were performed in the
combined computing resources of two clusters: (1) a cluster of 30 Dell Precision 360n
single-core CPU at 3 to 3.6GHz and 1GB SDRAM 333MHz which is used by computer
science students for class assignments and projects (CSLab) and (2) SciClone cluster [56].
These clusters belong to different adininistrative domains (users need separate accounts
to access these resources). SciClone is a heterogeneous cluster maintained at College of
Willianm1 and Mary. It is arranged as seven sub-clusters which can be used individually
or together. The extensive details of hardware configuration and structure of SciClone
are available elsewhere [56]. The configuration details of the SciClone sub-clusters fol-
low, since they have changed since the time experimental evaluation was performed.
Whirlwind : 64 single-CPU Sun Fire V120 servers, 650MHz, 1GB RAM, 36.4GB HDD;
2) Typhoon: 64 single-CPU Sun Ultra 5 workstations, 333MHz, 256MB RAM, 9.1GB

HDD: 3) Twister: 32 dual-CPU Sun Fire 280R servers., 900MHz, 2GB RAM, 72.8GB
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HDD:; 4) Tornado: 32 dual-CPU Sun Ultra 60 workstations, 360MHz, 512MB RAM,
18.2GB HDD: 5) Guifstream: 6 dual-CPU Sun Ultra 60 workstations, 360MHz. 512MB
RAM, 45.5-63.7 GB HDD: 6) Hurricane: 4 quad-CPU Sun Enterprise 420R servers.
450MHz, 4GB RAM, 18.2GB HDD:; 7) Vorter : 4 quad-CPU Sun Fire V440 servers,
1.28GHz, 8-16GB RAM, 292GB HDD. Three additional heavily configured server nodes
act as front-ends and file servers for the entire systeni, and two network server nodes
provide application gateways between SciClone’s various internal and external networks.
In aggregate, at the time of the experimental evaluation SciClone provided 212 nodes
with a total of 311 CPUs, 236 GB of RAM, 15.1 TB of disk capacity, and 362 GFLOPS
peak floating point performance. We used all sub-clusters of SciClone except Typhoon,
which at the time was the least powerful resource.

The quantitative results of the evaluation are suminarized in Tables 4.2, 4.4, and 4.2

and in Figure 4.3.
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Figure 4.3: Scalability of the time-critical part of registration implementation with block sizes
3 x 3 x 3 (left) and 11 x 11 x 11 (right).

Portability of the code has been improved. Original iimplementation used PVM [23]
that is not widely supported nowadays. The new iimplementation is based on MPI [184].
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Table 4.2: Execution time (seconds) of the intra-surgery part of the restructured implementa-
tion at various stages of developmerit.

Setup Case 1D
1 2 3 4 5 6 7
using original 1558 1850 2090 2882 2317 2302 3130

PVM implementation
SciClone (240 procs),

no load-balancing

Pre- and post-processing
on single CS node, BM on
SciClone (240 procs) 226 123 182 189 217 174 139

639 595 617 570 53504 1153

-1
o
[vb23

no load-balancing

Pre- and post-processing

on single CS node, pre-

processing in advance, BM

on SciClone (240 procs), 35 53 56 47 42 42 48
dynamic load-balancing

Pre- and post-processing

on single CS node, pre-

processing in advance, BM

on SciClone (240 procs)

and CSLab(29 proes), dynamic 30 40 42 37 34 33 35

2-level load-balancing

From porting the code from BWH-HPC cluster at BWH to SciClone in dedicated mode
at W&M we improved the performance of the application by 3.5 times (see first and
second rows of the Table 4.2). One would expect a linear improvement (i.e., 60 times)
due to the scalable nature of the algorithm. However, this was not feasible due to the
following three reasons: (1) monolithic design of the original implementation, i.e., it was
designed to run on the same static configuration from the beginning to the end: (2) the
fastest processors of SciClone were much slower (in terms of CPU speed) than the nodes
available at the hospital and C'SLab, and (3) presence of work load imbalances.
Decoupling of the pre-processing phase from intra-operative image registration. This
allowed us to: (1) execute the sequential pre-processing phase on the fastest workstation
available and (2) mask latencies caused by MPI initialization of the parallel component

of the implementation. Initialization of MPI, depending on the implementation. may
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include startup of the daemon processes at each of the nodes. which adds up to a non-
negligible delay when using hundreds of nodes. As a result we were able to reduce the
response time of the non-rigid registration on average by more than 12 minutes (see
second and third rows of Table 4.2 and Figure 4.2). The maximum improvement we
observed so far was more than 16 minutes (case 1).

Multi-level dynamic load balancing over multiple clusters reduced the execution time
by more than 14 minutes when we used 240 processors and the decoupled implementation
of the code (compare the second row with the fourth and fifth rows of Table 4.2). The
flexibility we achieved froin the portability of the code and these two optimizations
(decoupling and dynamic load balancing) together reduced the absolute respounse time
of the parallel block matching code alone by two orders of magnitude. We can complete
this step in 1225 seconds (case 1) and 2890 seconds (case 7) using the local resources
available at the hospital, while with all the computational resources of multiple clusters
we could possibly utilize, we now complete it in less than 30 seconds, see Table 4.4. These
experimental data indicate, that we gain about 50% improvement in the performance of
the application due to dynainic load balancing, i.e., we can achieve the same performance
with half of the resources. This is a particularly important result for hospitals, where
space is at premium.

Web-services became an option after the decoupling and implementing the function-
ality to handle platform-dependent aspeets of heterogeneous and time-shared clusters.
The use of wéh-service and hence the elimination of the human factor from the loop
reduced the response time by roughly 20 minutes. Originally, the initialization involved

two teamms. one at BWH and another at W&M, and four different administrative do-
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Table 4.3: Execution time (seconds) of block matching with static work distribution on SciClone
cluster.

ID Number of processors
40 80 120 160 193 240
1 377.82 199.96 142.14 110.53 91.33 60.84
2 17341 10149 158.08  89.72 52,75 29.70
3 316.20 159.34 10550 81.40 65.28 53.54
4 407.82 213.86 150.56 113.17 93.67 T1.17
5 353.96 183.20 127.19 105.06 83.43 57.09
6 20897 151.16 104.72  81.30 64.13 49.53
7 300.99 15148 105.10 80.11 64.37 49.49

Table 4.4: Execution time (seconds) of block matching with dynamic work distribution on
SciClone cluster.

1D Number of processors
40 80 120 160 198 240
1 20084 10777 77.67 6341 b54.65 33.27
2 103.65 77.62 12595 111.62 36.89 17.06
3 21770 109.74 7545  56.62 47.33 38.80
4 24235 12564  91.23 70.19 57.80 43.98
5 189.17 100.95  73.00 57.73 49.75 3247
6 152,13  81.20 57.97 4565 3749 27.51
7 15081 7898 5735 4591 37.21 27.91

mains, taking up to 30 minutes of time. With the use of web-services. the time to start
the application at BWH and initiate its execution at W&M was reduced to 75 seconds
(57s to send the images from BWH to W&M and 18s to retrieve the output at BWH
from W&M). These data vary due to network traffic, but consistently we observe them
to be below 2 minutes total, which is the bare-minimum cost for data transfer and I/0
for the application. Computations for Case 7 (run retrospectively) took less than 7
minutes (as measured between the time the data was submitted for computation from
BWH until the result was received back from W&M). This is an improvement in the
response time by 18 to 15 times.

Fault-tolerance became very important attribute of the code, since by increasing the
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hardware components and the complexity of the distributed computing environment we
increase the chances for failures. Our implementation can safelv run the registration
procedure on several clusters in different locations at a modest overhead of 6% over the
non-fault-tolerant version, and deliver results of the computation even in case of the

failures of all but one cluster involved.

4.1.5 Discussion

We developed a parallel and distributed web-service based implementation of the NRR
code that is capable of delivering registration results within 5 minutes. Moreover, we
showed that this result can be achieved in the absence of the high-performance infrastruc-
ture within the hospital, as the existing communication networks can provide seainless
access to the remote computing sites. The result we demonstrated confirmed, for the
first time, the feasibility of near real-time image fusion for brain MRI using landmark
tracking across the entire immage volunie. This becane possible because we were able to
achieve: (1) the reduction of the execution time of the parallel block matching from 2890
seconds at BWH to less than 30 seconds at W&M (for the last intra-operative non-rigid
registration case); (2) effective use of a large number of processors, with dynamic load
balancing, we improved the performance of parallel block matching by 50% compared
with the static work distribution: (3) the reduction of the overheads associated with
manual initialization and transfer of data from BWH from 20-30 minutes to about 60
seconds; (4) ease-of-use; and (5) the first fault-tolerant and web-service based non-rigid
registration code using landmark tracking across the entire volume.

The computations we perforin are supporting clinical research activities underway at
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BWH. It has yet to be shown whether the software infrastructure we developed can be
used for decision-making during the course of a neurosurgery. It is clear. however, that
there is great potential in using ubiquitous CoWs for performing intensive time-critical

computations for medical applications within the clinical time constraints.

4.2 Grid-Enabled Infrastructure

4.2.1 Motivation

Registration accuracy, robustness, and perforinance can all be affected by the values of
NRR parameters. Sensitivity of the method is defined as the impact of the small changes
in the algorithin inputs and parameters on the result of computation. Sensitivity of the
specific NRR method we study has previously not been evaluated. In this Section we
present an initial evaluation of the NRR sensitivity, which motivates our studies in de-
veloping a Grid-enabled infrastructure for parametric studies and speculative execution
of NRR.

The default parameter values for the NRR computation were suggested in [53]. Pre-
viously, results of registration were reported with the bloek dimensions fixed to 7x 7 x 7.,
and cumulative rejection rate of 25%. These settings were shown to give significant
immprovement in registration accuracy as compared to rigid registration only. This result
was verified in multiple studies using clinical data both retrospectively and prospec-
tively [53, 8, 7].

High dimensionality of the parameter space precludes its exhaustive evaluation. At

the same time, some of the parameters (e.g.. block size used in block matching, or
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percentage of the rejected blocks) belong to well-defined ranges. Block size cannot ex-
ceed window size, and has dimensions expressed in multiples of the corresponding voxel
dimensions. The outlier ratio cannot be higher than 50% of the measured displace-
ments [169]. The optimum selection of those parameter values is non-trivial, as we
do not know in advance what will be the mixture of outliers in the data, and what
will be the magnitude of deformation. We select the parameter subspace of the regis-
tration algorithm by varying outlier rejection fraction r5 and block size B as follows:
B e {57,911}, m € {5,10,15,20,25,30,35,40,45,50}. The rest of the parameters
were fixed to their default values, which we discussed in Chapter 2.

We evaluated the sensitivity of the algorithm to changes in the selected paranieters
on clinical data using expert-placed corresponding brain landmarks in the floating and
target images from [53]. The initial alignment accuracy is evaluated by measuring the
Fuclidian distance between the corresponding landmark locations in the floating and
reference data. Deformation field derived during non-rigid registration is then used
to warp the floating immage to the reference image. The post-registration accuracy is
measured by computing Euclidian distances between the corresponding landinarks in
the warped (registered) and reference images. Preference was given to this method over
the automated assessment (e.g., the method described in [8]), because it allows for the
collection of localized accuracy measurements throughout the image volume.

The impact of the selected parameters on registration accuracy was evaluated on 6
MRI datasets previously used in [53]. Ideally. warped landmarks of the floating image
should coincide with the ones located on the reference image. The accuracy of regis-

tration at the landinark locations can be assessed by computing distances hetween the
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corresponding landmarks in floating and reference images (before registration). and be-
tween floating and registered images (after registration). The registration accuracy is
considered good. if the registration error at a given landmark location does not exceed
the smallest voxel dimension. Note, that identification of anatomical landinarks is chal-
lenging for clinical data and depends on the specifics of a particular dataset. This made
identification of the same number of landmarks in each of the images not possible.

First we consider the impact of varying the block size on the initial sparse displace-
ment field recovered by block matching. The landmark-measured error hefore non-rigid
registration for each case is shown in Table 4.5. Table 4.6 summarizes the improvement
in accuracy for each of the landmarks with the optimuin combination of B and rg, as
compared to the default parameter settings. Based on the experimental data, in most
cases, good registration accuracy is achieved using the default parameters as suggested
by Clatz et al. [53]. For example, for Case 2 (see Figure 4.4), we did not achieve any
noticeable improvement in accuracy by varying the studied parameters. This was not
true for Case 3, where such improvement was as high as 2.9 mm. In both cases, however,
there were landmark points, where registration error exceeded voxel dimensions.

The experimental results suggest, that the optimum value of outlier rejection is varied
in different locations of the image. For example, if we consider landmarks 5 and 12 in
Case 1, the optimal combination of the studied parameters is different in each case,
see Figure 4.5. When thie rate of outlier rejection at a certain location is insufficient,
registration error will increase due to the influence of incorrect matches. Otherwise,
when the rejection rate is too conservative, correct matches may be discarded, which

will lead to higher approximation error.
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Table 4.5: Landmark error hefore registration (mm)

Case 1 2 3 4 5 6 7 3 9 10 11 12
1 0.9 2.4 1.7 1.8 50 3.3 1.7 21 26 20 21 1.8
2 1.9 0.8 3.6 1.7 1.7 08 0.8 1.2 1.2 08 36 0.8
3 6.7 3.7 09 97 37 30 20 - : - - -
4 1.8 09 68 4.7 57 4.5 1.3 46 1.3 64 37 -
) 0.0 08 1.2 08 42 6.1 9.0 6.5 6.5 9.0 - -
6 0.8 1.9 3.5 0.8 27 08 1.7 00 - - - -
Table 4.6: Absolute improvement in accuracy using optimal B and »; compared to B = 7,

ry = 25%(inm)
Case 1 2 3 4 5 6 7 8 9 10 11 12
1 62 01 02 02 03 01 03 04 00 02 02 03

2 02 00 00 00 02 03 03 02 05 0.3 01 0.2
3 06 10 02 29 00 01 03 n/a n/a n/a n/a n/a
4 0.9 0.8 0.2 04 07 05 07 04 03 07 07 nja
5 00 03 00 00 08 05 04 00 03 04 wu/a n/a
6 02 01 02 01 20 01 00 01 =n/a n/a n/a n/a

One approach to address the problem of sub-optimal parameter selection is to use
speculative execution of registration, as suggested by Ino et al. [110]. The idea of spec-
ulative execution is to compute multiple registrations on the same input data using
different parameter settings. Variability between the results can then be used to es-
timate sensitivity of the method, e.g., by automatically calculating certain metrics to
assure registration accuracy. A nuwmnber of such metrics for NRR have been proposed by
Christensen et al. [49]. Archip et al. [8] used Hausdorff distance between edges identi-
fied automatically to prospectively evaluate the accuracy of the registration achieved by
the algorithm of Clatz et al. [53]. Recently, we proposed a robust modification of the
HD metric, which allows local evaluation of the registration accuracy in a region of the
image [71]. Automated approaches for NRR assessment are particularly useful in the

context of the speculative execution.
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Figure 4.4: Distribution of landmark errors before registration (" x”), and after registration
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Figure 4.5: Influence of the block size and rejection rate on landmark error: case 1, landmark
5 (left), and case 1, landmark 12 (right).

One of the practical problems in performing speculative registration is the enormous
amount of computation required. For example, based on the evaluation results presented
carlier in Table 4.1, we need more than 11 hours of computation on a high-end worksta-
tion (the timings were collected for the highly optimized code on Intel Xeon 3.7GHz),
to sequentially complete the parameter study for block matching only. Considering that
there may be 3-4 different similarity metrics that must be evaluated, the range of valid
values for the outlier rejection in the solver, and the need to assess the accuracy of each
NRR result. the total time required to perform exhaustive evaluation on a single dataset

is in the order of dayvs of sequential processing.
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While the implementation presented in the previous Section proved to be practi-
cal and useful during neurosurgery research studies, it has a number of deficiencies.
These deficiencies are particularly importait in the context of using the framework for
speculative NRR computations. Although the idea we described to manage workload
distribution is not constrained to be used with two clusters, in practice it is not straight-
forward to extend this implementation to larger scale.

As discussed earlier, we were able to disable the batch scheduling system to ensure
that the NRR computation gets immediate access to the SciClone resources. Direct
access to computational resources at any other non-affiliated computational cluster can-
not be arranged, and automatic handling of the interaction with the batch scheduling
systems must be part of the framework. Security is a critical concern for NRR, since the
patient data is passed over the unsecured network. In our case, the communication was
done via authenticated secure shell sessions (SSH). With the growing number of com-
puting sites located in different administrative domains, manual user authentication at
each of the sites is not an option. Speculative execution and parametric studies of NRR
motivate the use of highly distributed infrastructure with the established mechanisms
for security and authentication, data transfer and resource management. Implementa-
tion of speculative registration should be portable and flexible to enable easy inclusion
of new computational resources.

The idea of harnessing the power of the large nuniber of computational resources
to solve a single problem lias earlier motivated the concept and development of Grid
computing. Following the definition, computational grid is a “...hardware and software

infrastructure that provides dependable, consistent. pervasive, and inexpensive access to
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high-end computational capabilities” [83]. The three defining features that distinguish
Grid from cluster computing have been outlined by Foster in [81]. First, the resources
involved in the computation must not he subject to centralized control. This facilitates
expansion and openness of the Grid. Second, Grid infrastructure must be built based
on “..standard, open, general-purpose protocols and interfaces.” Third, Grid must be
capable to deliver nontrivial qualities of service.

In the last decade significant effort has been focused on development of the supporting
standards and software [24], deploying production grid systems worldwide and porting
applications on those systems [154]. Oue such production system under continuous
improvement and development is USA-based TeraGrid [188]. As of May 2007, TeraGrid
was connecting 11 high-end computational sites within the USA, providing “...more
than 250 TFLOPS of computing capability and more than 30 petabytes of storage”
and therefore making TeraGrid “...the world’s largest. most comprehensive distributed
cyberinfrastructure for open scientific research™ [188]. Currently, TeraGrid connects 11
computational centers providing cumulative peak performance of 1124 teraflops. The
capabilities of TeraGrid are continuously growing, providing computational and storage
resources otherwise unavailable to any single research iustitution worldwide.

The computing resources of TeraGrid cyberinfrastructure satisfy the definition of a
Grid system. The resources of TeraGrid are not subject to centralized control: each of
the 11 computational sites represents a separate administrative domains. ‘The TeraGrid
infrastructure is built based on open, community-defined standards. The core docu-
nment that defines architecture of the Grid, as it is implemented in TeraGrid. is Open

Grid Services Architecture (OGSA) [84]. OGSA provides a high-level definition of for
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most of the services that are utilized on a Grid: security and authentication. resource
management and data transfer. Open Grid Services Infrastructure (OGSI) is another
community standard, that specifies technical details of how Grid services must be imple-
mented [80]. In the latest developments, OGSI has been superseded by the extensions
to Web Service Resource Framework (WSRF), which defines procedures for accessing
and providing open services [4]. Following OGSA and WSRF one can develop an open
Grid infrastructure, and access the resources of such a Grid. Globus Toolkit [3] is an
open-source software that implements the standards defined by OGSI. Globus Toolkit
is the core middleware that enables TeraGrid implementation.

The features of Grid in general and its specific implementation in TeraGrid na-
tional cyberinfrastructure make it the platform of choice for the highly demanding
multi-parameter computations of NRR. The capabilities of the Grid have been pre-
viously recognized and used for a nuinber of medical applications. In the next Section
we discuss the applications of Grid computing for clinical problems, and in non-rigid

registration in particular.

4.2.2 Grid Computing for Medical Applications

Concurrently with the development of the grid technology, we witness significant ad-
vances in medical image acquisition, analysis and visualization. Medical images of high
resolution and of different modalities are essential in prevention, diagnosis and treat-
ment of many diseases. As the related techuology is improving and chinical studies
complete, the demand for analvsis of the medical data will be growing. Distributed

computational and storage resources, like the TeraGrid, provide a promising platforn



to meet such demands. Medical applications that require processing and archival of large
amounts of data contributed by geographically distributed medical centers were natu-
rally some of the first to embrace grid computing. Representative projects include Mam-
moGrid (maintenance and analysis of mammography data: Europe) [79] and Biomedical
Informatics Research Network (BIRN) (analysis of functional MRI; USA) [28]. The
infrastructures developed by these projects (by design) are highly specialized for the
application domain.

In the coutext of our project, we are interested in using general purpose research
grid environment for the NRR computations. This idea has been evaluated in the
past for different medical applications. Dong et al. [69] present results of modeling
whole human arterial tree on TeraGrid. Grid Enabled Neurosurgical Iinaging Using
Simulation (GENIUS) project [130] targets modeling and visualization of cerebral blood
flow within 15-30 minutes to assist in surgical planning. The common feature of these
two applications is that they show linear scalability up to thousands of cores. Therefore,
they can leverage virtually any large number of nodes available to the application.

The lack of global TeraGrid resource management system makes it difficult to use
large number of nodes at different sites for cross-site runs without prior arrangements.
The aforementioned projects circuunvented this problem by using the advance reserva-
tion capabilities available at some TeraGrid sites. However, advance reservations are
not generally favored by the site administrators, as they tend to reduce the resource
utilization [146]. This is possibly the primary reason why advance reservations are not
available at most of the TeraGrid sites. Moreover, in the case of intra-operative pro-

cessing for IGNS, the actual time of the surgery is not known precisely well in advance.
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The surgery may also be canceled or postponed due to the last minute considerations,
e.g.. changes in the patient’s condition. The GENIUS project [130] considered the use
of SPRUCE [22], urgent computing system under development on TeraGrid. This idea
is more practical. as it allows to dynamically affect the scheduling decisions to favor
selected jobs. In practice, to the hest of our knowledge, only one site of the TeraGrid
(UC/ANL) provides SPRUCE-directed job preemption, and at some other limited num-
ber of sites SPRUCE can be used to schedule the SPRUCE johs to run first, once the
resources become available.

Non-rigid image registration is usually amenable to parallelization. However, its
scalability is highly dependent on the specific algorithm used, and the NRR methods
known to us [75, 48, 112, 198] do not require more than hundreds of nodes. Still. such
computational resources are not available locally at most hospitals, aud a number of
groups studied lhow the grid resources specifically can be used to increase the perfor-
mance of medical image processing computations. Lippman and Kruggel [127] present
a framework for intra-operative image registration on the grid. However, they use cus-
tomized grid environment (GEMSS [92]), and do not evaluate the procedure on a general
research grid, like the TeraGrid. Stefanescu et al. [187] describe a parallel implemen-
tation of non-rigid registration deployed on a cluster of workstations as a web service
(we evaluated this approach in [48]). Gropp et al. [100] study rigid registration, which
is a computationally simpler problem, and discuss its different aspects in the context of
grid computing. Glatard et al. [94] present a grid-enabled service-based infrastructure
for comparing the performance of rigid registration implementations. Their work does

explore the use of general-purpose grid resources, and uses workflow model for describing
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and scheduling the execution. However, their evaluation is done using the European grid
infrastructure. The approaches to grid application development and workflow definition
are different from those that can he applied on TeraGrid, and cannot he directly used
in our application. In general, we ohserve that the studies of the NRR methods that are

used in practice do not leverage general purpose grid systems.

4.2.3 Implementation .

We leverage the cluster-based iniplementation presented earlier to develop the Grid-
based NRR infrastructure. The Grid-based implementation follows the workflow design.
In a workflow, the computation is coordinated among the participating resources by
processing tasks according to a defined set of rules to achieve an overall goal [107].
Workflow can be implemented by manually organizing the interaction of the components,
but in practice computational workflows are automated. Workflow management systems
are used to define and execute workflows, and organize the results produced during their
execution.

Essentially, our cluster-based implementation of NRR represents a workflow, since
the processing is not done in a monolithic component. The processing steps are loosely
coupled, with the results of pre-processing passed to intra-operative computation as
files. However, the coordination of the workflow is not done by a generic workflow
management system. This significantly complicates the task of migrating, porting and
extending the currently defined workflow.

Without going into the details of OGSA or Globus Toolkit architecture, consider

the high-level procedure of job submission to a Grid system. Before access to the Grid
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resources can be granted, the user and the resource must be mutually authenticated.
Globus Toolkit implements authentication procedure using public key eryptography fa-
cilitated by X.509 certificates [202]. Every user or resource participating in the Grid
activities must possess a valid certificate issued by a recognized Certificate Authority
(CA). Note, that since the centralized control is not present in a Grid system, each of
the participating administrative domains requires separate mutual authentication. In
presence of multiple resource providers, the task of authentication may become unman-
ageable. This problem is resolved in Globus Toolkit by proxzy certificates, which are
issued on behalf of the user and delegate restricted credentials within the Public Key
Infrastructure [202]. Proxy certificates allow to implement the so called single sign-
on feature, when the user needs to be authenticated only once to use all of the Grid
resources, given all of those resources recognize a common Certificate Authority.

After authentication the user is granted access to the Grid resources. OGSA defines
that the Grid resources are available via Grid services, which are extensions of Web
services. Again, due to the lack of centralized control, the management of the resources
at each specific Grid site is done by a Local Resource Manager, which is usually a batch
scheduler like PBS or LSF. OGSA defines a unified way to discover those resources,
submit new job requests, monitor the job status, and communicate the results of the
coniputation back to the client. Within the Globus Toolkit, resources at a particular site
are managed by a Grid Resource Acquisition and Management system (GRAM) [73].
GRAM is a service that can be accessed via the site-specific public contact address, and
allows to abstract specifics of local resource management with a well-defined APT.

Finally. the last component which is critical for executing jobs on a Grid resource
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is the mechanism to provide data transfer functionality. The conventional means of
transferring the data cannot be used due to their incompatibility with the standards
defining Grid Security Infrastructure, insufficient reliability and performance. The data
transfer protocol that is used in Globus-supported grids is GridE'TP [2]. From the user
perspective, GridFTP is not significantly different from regular FTP, but it provides
robust, secure and efficient file transfer, particularly optimized for transferring bulk
data.

Each TeraGrid site runs its own GRAM and GridEFTP servers, as part of server
installation of Globus Toolkit. These services can bhe accessed via the publicly available
portable Globus client immplementations.

While TeraGrid resources can be accessed directly for individual job submission
and data transfer, doing this on the large scale or as part of workflow execution is
not practical. We adopted Swift workflow scripting and management system [210] to
implement and deplov NRR workflow. This choice was motivated by the following

ohservations.

1. Swift has been developed and evaluated to support grid implementations that are
based on Globus Toolkit, which allows to use this system without any modifications

to schedule workflows on TeraGrid.

2. Swift uses a scripting language, SwiftScript, to define the workflow. SwiftScript
is a powerful way of abstracting interaction of the processing tasks, which allows
to define composite data inputs, dependencies between the processing tasks, and
provides familiar control structures like loops and conditional structures. which

allow flexible control over workflow definition and execution.
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3. Swift execution management system is highly flexible in its capabilities of inter-
acting with the various resource provides. It uses programimatic access to Globus-
managed resources by means of CoG Karajan [195]. Swift provides the flexibility
of using the same unmodified workflow description script to interact with conven-
tional resources, like those managed by local batch scheduler, or even accessed in

time-shared mode via direct login.

4. Swift implements basic fault-tolerance of workflow execution at the individual task
level, which is critical for NRR computations. In case a particular task fails to
deliver the expected output data, Swift will re-schedule its execution, possibly on

a different site.

(W

Task-level load-balancing is one of the functionalities provided by the Swift work-
flow execution infrastructure. The execution traces for the same computational
task are continuously collected. These traces are used to dynamiecally select the

best performing site when the task is scheduled next.

6. Data provenance mechanisms in Swift allow to abstract the site-specific file man-
agement issues. All the inputs and outputs of the individual tasks are transparently
communicated, and can be referenced within the SwiftScript through simple data

pointers.

Swift provides the means to define and execute the workflow, which consists of indi-
vidual processing tasks. Each of the processing tasks must be available as an executable
at cach of the sites, that will be involved in the workflow computation. The details of
running a specific task are provided to Swift inn the so called translation catalog available
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Output /

Figure 4.6: NRR workflow diagrain for single registration execution (shaded are the time-critical
components of the workflow).

at the client (submission) site. The translation catalog contains the identifier of the
remote site where the executable is installed, together with the optional information on
its invocation. For example, in order to execute an MPI-parallelized task, the number
of nodes must be explicitly specified. In order to guarantee that the task execution will
be able to complete on the systems managed by a site-specific Local Resource Manager
(LRM, e.g.. PBS or LSF), estimated wall clock time must also be included in the task
description.

The execution sites are described in the Swift site catalog, located at the workflow
submission site. The site catalog contains a pool element for each execution site. The
pool element specifies the details about file transfer and task invocation services at
the given site. For the local resources, the file transfer method can be a local copy
operation supported by the filesystem, and task invocation is local execution. For the
pool elements corresponding to the TeraGrid sites, file transfer is done through GridFTP
(each TeraGrid site provides GridFTP service URL for file operations). and the remote
resources are accessed via the Globus GRAM4 [82] gatekeeper endpoint. Task submission
for the remote sites is a complex operation that involves mutual authentication, secure

transfer of the job descriptor and monitoring of the job status. However, all these



complex details are handled transparently by the Swift execution engine.

In order to implement the Grid-based workflow using the Swift svstem. we restruc-
tured the cluster-based implementation to have looselyv-coupled computation of NRRR
with the separate tasks for each processing step. As part of the preparation for Swift
workflow execution, each of the executables must be compiled at a remote site, and ba-
sic profiling of the code is required to obtain the approximate execution titne on typical
input data. This is needed to estimate the expected walltiie for each task.

Single NRR workflow The NRR workflow diagram of a single NRR procedure
together with the accuracy assessment module is shown in Figure 4.6 (the development
of the accuracy assessment module is discussed in the next Chapter). The block matching
task is parallelized using MPI, and has been deployed on the TeraGrid sites for remote
parallel execution. The other components of the workflow are executed on the local
resources (single node of the W&M SciClone cluster). This NRR workflow corresponds
to the base case for computation supported by our cluster-based implementation we
discussed earlier, augmented with the accuracy assessment module.

Speculative NRR workflow Speculative execution of NRR literally requires just
a few additional lnes of SwiftScript to iterate through the user-defined parameter space.
Using the Swift filesystem mappers, each intermediate and the end result of the specu-
lative computation is given a unique self-descriptive nane, and stored in a user-defined
location on the local filesystem. For the speculative NRR workflow, block matching,
solver, and NRR assessment tasks are executed on the remnote TeraGrid resources. The
rest of the tasks are computed locally. The complete diagram of the speculative exe-

cution of the NRRR workflow for the parametric study of a parameter subset of block
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Figure 4.7: NRR workflow diagram for speculative execution of the registration with B € {7.9},
W e {15.17.19}, and r2 € {0.2,0.3} (this Figure is only for the purposes of illustrating the
connections between the workflow components).

matching block size (B), search window size (W) and the value of fraction of the rejected
registration points (r2) is shown in Figure 4.7.

We believe the Swift-based workflow description of NRR as a significant improvement
over the custom implementation in [48]. In this new implementation we are able to
easily include additional computing resources for NRR execution. Modification of the
procedure to include new intermediate steps, or even imajor changes in the workflow

(like speculative execution) minimum updates to the existing workflow description.

4.2.4 Evaluation

We used three sites of TeraGrid (TACC Lonestar, NCSA Abe, NCSA Mercury) to install
components of the workflow that we selected for remote execution. These sites were
chosen among the eurrently available 11 TeraGrid sites because they provide the most
convenient development environment (multi-core Intel nodes). Our implementation of
the NRR has been originally developed and tuned in similar environments, We expected
that porting of the codes would require less effort for the selected sites as compared to,
for example, BlueGene/L or Cray XT3 platforms, also available within TeraGrid.

Porting of the NRR code included setup of the supporting open source libraries.
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which were not available at the sites we used. As part of the setup, we had to update the
local firewall configuration on SciClone to allow incoming connections from the TeraGrid
sites.  Open firewall ports is a necessary condition for using remote Globus GRAM
service. Access to the TeraGrid resources is simplified with single sign-on procedure
and Globus Security Infrastructure [82]. The user password is entered once at the local
site (SciClone), and after that all job subinissions and data transfers to and fromn the
TeraGrid sites are transparent from the SciClone user perspective,

The hardware and software configuration for the selected sites together with the
benchinarked execution times for the workflow components are suimmarized in Table 4.7.
There are two ohservations to be made. First, hardware configurations were introduced
at different times on different TeraGrid sites. Therefore, we observe significant het-
erogeneity and disparity in processing power for the available nodes. Second, it is not
possible to use the same compiler and MPI implementation on all TeraGrid sites. This
creates significant difficulties for porting legacy codes, since different compilers may re-
quire different configurations and, sometimes, may simply fail to compile the code. As
the results of the benchmark runs for the installed components show (see Table 4.7), ex-
ecution times vary significantly for the same level optimization with different comnpilers,
exaggerated even more by the non-uniformity of the clock speeds.

Single NRR instance execution We performed experimental evaluation of the
single instance of NRR workflow (see Figure 4.6) at each of the three sites of the Tera-
Grid in Table 4.7. In eacli case, block matching was executed on 10 nodes at a remote
site, while the rest of the workflow components were run on the single node of the

SciClone cluster. The execution timeline for NCSA Abe cluster is summarized in Fig-
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Table 4.7: Summary of the hardware and software environments, and processing times on a
single node for the time critical components of the NRR workflow: sequential block matching
(C1), solver (C2). registration assessment (C3). Benchmark setup: 55K registration points,
B =7 W =17, =4.5K mesh vertices.

W&M SciClone  TACC Lonestar NCSA Abe NCSA Mercury
Opteron 2218 Intel Xeon Intel 64 Clowertown Intel Ttanium 2
2.6GHz, 8GB 2.6GHz, 8GB 2.33GHz, 8GB 1.5GHz, 4GB
gce 4.1.2, -03 ice 10.1, -O3 gce 3.4.6, -O3 gee 3.2.2, -03

MVAPICH2-1.0.1 MVAPICH-1.0.1 MPICH-VMI 2.2.0-3 MPICH-GM 1.2.5
C1 275 sec 294 sec 418 sec 608 sec
C2 6 sec 27 sec 12 sec 21 sec
C3 24 sec 22 sec 182 sec 495 sec

ure 4.8. Although we did not use any advance resource reservation capabilities, which
are available at some sites of TeraGrid, we were able to complete execution and collect
traces without major queuing delays at each of the tested sites. We observed that the
file transfer delays (maximum below 30 sec) were negligible in comparison to the speed
improvement in block matching computation due to parallelization in each case. This is
in part attributed to high-perforniance GridF'TP protocol, which in our experience pro-
vides faster transfer of irnage data as compared to SFTP that we used in [48]. The NRR
workflow was completed in less than 6 min. This includes point selection component,
which can be evaluated before the time-critical part of the computation.

Speculative NRR execution The timeline of speculative NRR execution for a
relatively small parameter search space is shown in Figure 4.9 (this corresponds to the
workflow diagram in Figure 4.7). The total time required to complete such speculative
execution was in this particular case about 20 min. Observe, that the execution of the
single block matching component on Lonestar site reportedly took more than 800 sec in
the speculative run. We attribute this to the intermittent overload of the remote GRAM

service, which might have prevented the timmely propagation of the job update status to
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the submitting client.

The resources available within the TeraGrid are sufficient for concurrent execution
of all independent branches of the workflow shown in Figure 4.7. Therefore, in the ideal
case, ignoring all overheads, one could expect that the total time required for speculative
execution would be equal to the longest execution of single registration. We measured
this time by executing a single instance of NRR on each of the sites, and the maximum

execution time we observed was under 10 min (without accounting for the queue delays).
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In practice, a number of factors are contributing to the increased processing time. as
compared to the ideal case:

(1) As we show in Table 4.7, time required to complete the same task varies depending
on the selected TeraGrid site. The current procedure of the workflow scheduling by Swift
execution engine does not take into account execution time during the process of resource
selection (the same task is available for execution at all three sites).

(2) Due to the fact that the resources at each site are available through the remote
LRM, some of the jobs will be delayed in the queue. In our case, as shown in Figure 4.9,
cumulative queuing delays for all jobs were about 20 minutes (!), with the maximum
individual queued time of 385 sec.

(3) There are certain constraints in the Swift scheduling procedure, that limit the
maximum number of jobs that are allowed to run at a given site at the same time (the
so-called job throttle limit). Because of this, there only 4. not 6, concurrent executions
of block matching initially, see Figure 4.9. The job throttle limits are in place to prevent
overloading the GRAM service with the large number of concurrent job submissions.

(4) There are multiple minor overheads due to file staging (transfers of input and
output files), task scheduling, Swift book-keeping, etc. Current scheduling policy used in
Swift does not account for minimization of the file transfers (e.g., in Figure 4.9, observe
that assessiment task is perfornied on sites different from where solver was run to produce
registration results). These are, however, minor issues compared to the first three items.

There is on-going work to address the limitations that negatively affect the per-
formance of throughput-oriented applications, like speculative NRR, on TeraGrid. Al-

though in our evaluation we did not experience queue delays. they are to be expected in
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the general case. We expect one of the problems that will need to be addressed for the
intra-operative application of speculative execution will be how to reduce the impact
of the queue delays at the remote site. One approach, which has been considered by
the community, is to estimate the remote LRM queue wait time, and use to adjust the
task scheduling (queue prediction services are provided by all the TeraGrid sites). As we
show in Figure 4.10, wait time is dependent on the job execution time and the number of
processors requested. Moreover, scheduling policies are not uniform across the TeraGrid
sites (e.g., some sites favor long jobs, and some sites give preference to short-running
tasks), and are changing with the time. The dynamic selection of the job configuration
can potentially improve job throughput.

Conceptually different approach is currently under development within the broader
grid workflow community. The idea is to use multi-level scheduling. Using this approach,
a group of nodes within a cluster is allocated, and then used to schedule multiple smaller
tasks of the workflow. Falkon [165] implements this concept, and has been shown to
achieve very high throughput for the applications they evaluated. The use of multi-level
scheduling also helps to alleviate the restriction on the maximum task concurrency.
The limits currently in place are the safeguards to prevent overloading of the remote
GRAM service by the large number of jobs. Scheduling of smaller jobs within the
larger allocation would not require interaction with GRAM. We expect to see significant
benefits in using Falkon and other similar techniques under developient (e.g.. Coasters
resource provider developed within Swift) for executing speculative NRR workflows.

File transfer costs were insignificant for the reduced parainetric studies we performed.

However, for the tull-scale parametric studies workflow scheduling will need to take into
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Figure 4.10: Estimation of queue wait times and probability that the estimate is correct by
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Right: estimation as a function of the number of nodes, 30 min job wall time.

account, data affinity to minimize communication. Also, since the execution time of
the solver module is comparable with the time required to transfer its input, it is very
inefficient to schedule solver as a separate task. Multi-level scheduling and job clustering

may improve execution locality and minimize file transfers.

4.2.5 Discussion

As a result of this work, we developed a workflow-based implementation of the single and
speculative workflows for the NRR method, and completed their preliminary evaluation
at three TeraGrid sites.

Speculative execution with different combinations of parameters could be a necessary
precaution in the applications, where accuracy is important, but the rules for selecting
optimum parameter combinations are not clear. In the context of neurosurgery, spec-
ulative execution can be applied in two scenarios. First, immediately following the
acquisition of the first intra-operative scan (but before the scull opening), speculative
computation can be initiated to explore those parameters of the algorithm that depend

on the properties of the intra-operative image. As an example, this can involve the study
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of the best similarity metric to be used in block matching. It was suggested elsewhere
that the selection of the best similarity metric depends on the properties of the image,
other than its modality [196]. The second application of speculative execution is during
the time-critical intra-operative registratioi.

The implementation we developed is not tied to a specific collection of execution
sites, as the framework presented in [48], but is generic enough due to its use of Swift,
and the broad range of resource providers supported by Swift (e.g.., Globus GRAM?2
and GRAMA4, PBS and LSF batch schedulers, etc.). Therefore, the implementation can
be deploved with minimum effort on any conventional cluster within a hospital, or can
he executed on the TeraGrid resources, to enable large-scale population and parameter
studies of the NRR miethod.

The important result of our evaluation is that it is feasible to use TeraGrid resources
for intra-operative NRR. Although we were able to complete test runs without signif-
icant queue delays for the single NRR instance, advance reservations should be used,
whenever possible, to guarantee resource availability during the surgery. Our prelimi-
nary results of evaluating speculative NRR workflow executions indicate, that with the
current technology we cannot achieve the required task throughput to do speculative exe-
cution within the time constraints of IGNS. However, the work under developiment in the
relevant projects, e.g., Falkon [165], is very promising. We expect to achieve significant
performance improvements by using mnulti-level scheduling techniques. as compared to
the conventional direct interaction with the remote batch scheduler via Globus GRAM4
for each workflow task. Again, due to our use of Swift for workflow iinplementation, we

can leverage these new execution models without any modifications to the NRR code or
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workflow script.

The open question that cannot be answered by this study (vet) is the following.
Given the availability of the local mid-size computing cluster, is the effort to niigrate an
application like NRR on the TeraGrid justified? As we discovered during the course of
this work, significant time investment may be required to port a code on the TeraGrid
and learn the site-specific usage procedures. Efficient use of the TeraGrid resources is
complicated by the queue delays, scheduled and emergency shutdowns of the TeraGrid
sites and Globus services we use, and by the technical difficulties we described in the
previous Section. On the other hand, although mid-size clusters (100-200 nodes) become
more and more ubiquitous, we believe they are not yet affordable by an average hospital
or research group. We also believe that local clusters (which by the way are usually also
managed by a batch scheduler) are insufficient for large-scale computations like NRR
speculative execution, or large-scale population studies. It remains to be seen how prac-
tical the full-scale speculative studies can be on the TeraGrid. However, the prelitninary
results we present are sufficient to affirm the advantages of the Swift-based workflow
NRR implementation, which can be used iinmediately both on TeraGrid and couven-
tional clusters for NRR evaluation. At the same time, to achieve good performaiice of the
speculative NRR execution we need to evaluate non-conventional, throughput-oriented

workflow scheduling techniques.

4.3 Summary

The ability to deliver the results of NRR within the clinical thne constraints is essential.
In this Chapter we presented a distributed imiplementation of the NRR workflow that
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makes near real-time execution possible with the use of distributed cluster resources.

The first major difference of the new implementation compared to the original ver-
sion developed by Clatz et al. [53] is in the restructuring of the registration process to
use multiple processing steps within a workflow. Such restructuring allows for the first
level of fault tolerance during the execution, and facilitates independent execution of
the pre-processing steps before the time-critical computation. The second major im-
provement we implemented is the high-performance parallel MPI version of the block
matching. We used a master-worker load distribution scheme to dynamically adjust to
the heterogeneity of the computing resources. In addition to this, master-worker load
distribution applied within the multi-cluster environment allows to provide an additional
layer of fault-tolerance. The CoW-based implementation presented in this Chapter has
been applied to perform non-rigid registration of the pre-operative MRI to the iMRI
acquired during the neurosurgery.

The NRR method we study is characterized by the large parameter space. We per-
form an exploration of a relatively small parameter subspace and present the initial
results on sensitivity of the method to the parameter selection. Based on the expert-
identified brain landmark accuracy assessment, the registration error is non-uniform
over the registered volume. We report the experimental results that show the difficulties
in selecting the optimum parameter combination for the given dataset. This difficulty
motivates the development of the grid-enabled workflow implementation of the regis-
tration, which utilizes Swift workflow management system [210] and the resources of
TeraGrid [188] to enable speculative execution of the registration. We present initial re-

sults of running parametric search on multiple geographically distributed computational
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sites from different administrative domains using the workflow-based implementation.
Compared to the existing distributed systems designed for NRR. the cluster-based
distributed registration version discussed in this Chapter was applied and evaluated
prospectively during neurosurgeries. The preliminary results of evaluating our dis-
tributed workflow implementation on the TeraGrid shows the feasibility of using Grid

resources for the needs of intra-operative registration.

4.4 Contributions

The contributions of this part of research are the following:

for the first time ever, results of volume matching registration delivered intra-

operatively within 5 minutes;

e presented NRR infrastructure routinely used for image registration during IGNS

research studies (>11 MRT surgery cases in 2006-2007);

e feasibility study of using TeraGrid for neurosurgery registration research;

e practical NRR workflow-based Grid-enabled NRR implementation deployed on

TeraGrid.
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Chapter 5

Registration Accuracy

Assessment

The goal of non-rigid registration for image-guided neurosurgery is to update the pre-
operative MRI to accurately represent the deformed brain anatomy. Therefore, critical
decisions made by the surgeon may be based on the registered iimages. Lack of accuracy
in registration result may lead to imprecise location of a life-critical brain structure and
irreparable damage to the healthy brain and to the patient. At the same time, accu-
racy of a given image processing niethod is only one of the components that has to be
considered while comparing it with other methods developed for the same task [115].
Such complete evaluation is known as wvalidation. Validation is a mandatory step that
must be completed prior to the application of any method in the clinical context. Al-
though there are no standards for performing validation, some of the criteria that are
commonly used in addition to accuracy are reproducibility. robustness ane consistency

of the method [97, 114].
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In general. complete validation is a difficult task, because the true result expected
from the image processing method is rarely known. In part this is explained by the
incomplete information about the object available from the medical image. This in-
complete data is corrupted by multiple sources of error and uncertainty, which may he
related, for example, to biological variability in the imaged tissue or to the specifics of
the image acquisition process. These problems are further exacerbated by the variability
of interpretation of the same image by different experts (observers, using the validation
terminology [115]). Another difficulty in assessing and comparing accuracy of different
methods is the lack of comimon datasets and the lack of common metrics, which also
depend on the application and specific processing method.

For the practical purposes, accuracy of the immage processing method is a required
prerequisite, and one of the key components of the complete validation of the technol-
ogy [89]. In the context of image registration, accuracy can be defined as determination
of alignment between the points in one image with the corresponding (homologous)
points in the other image [101]. In order to evaluate the accuracy of registration. we
need so called gold standard, or ground truth, — the true transformation that recovers the
aligniment of all the homologous points in two images. If such gold standard is known,
we can use it to compute a “figure of merit” to quantify the distance to ground truth.
Such an approach allows to formalize accuracy validation as hypothesis testing, with the
known techniques and tools for its statistical analysis [114]. However, the ground truth
is rarely available for the general clinical case, which makes calculation of the figure of
merit problematic, and requires different means of validation.

Jannin et al. [114] define four types of datasets commonly used in validation. de-
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pending on the availability of ground truth in that data: (1) numerical simulations.
e.g., [167]: (2) realistic simulations from clinical data sets [172]; (3) physical phantoms:
or (4) clinical datasets. For the first two types of validation data, the ground truth is
known. In the case of phantom studies, the ground truth can be measured or recovered.
Some examples of phantom studies for brain registration were employed in accuracy
assessment studies previously [163, 65, 5, 117]. However, the established accuracy on
svnthetic data of phantom data does not eliminate the need of evaluating the method on
real data. In the cases when clinical data is used for validation, ground truth cannot he
recovered, and a substitute of ground truth is usually given by experts in the imaging for
the specific application [114]. For example, in the case of non-rigid registration, homolo-
gous points may be manually identified in the images before and after registration. The
problem associated with this approach of estimating the ground truth is the consistency
of locating the homologous points. Generally, ground truth obtained with the aid of
human observers is called a bronze standard, or fuzzy gold standard [114].

In the previous Chapter we discussed the distributed framework, one of the poten-
tial uses of which is to facilitate speculative execution of non-rigid registration. One
of the approaches to perform such execution assumes the capability of evaluating and
comparing the accuracy of the solution obtained with the different registration parame-
ters during registration of clinical data. This requires some kind of ground truth, or its
substitute, to be available. Obviously. derivation of such ground truth cannot possibly
involve human observers, hecause of the limited time and prohibitively large amount of
data.

In this Chapter we develop and evaluate a novel metric that can be used to assess
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the accuracy of non-rigid registration automatically. This metric is based on the Haus-
dorff distance (HD) between the edges in the image pairs before and after registration.
This measure can be evaluated automatically, since it does not require the known cor-
respondence between the image points, and does not require humﬁn interaction due to
automatic edge identification. The use of such a metric can not substitute accuracy val-
idation. However, in the conditions when the time for validation is limited, automatic
measure may be the only option.

We evaluate the recent advances in improving robustness of HD, and apply the novel
accuracy assessuient measures we develop to evaluate the accuracy of pairwise alignment
for brain MRI under non-rigid deformation. Based on the results of our evaluation, the
presented approach significantly improves the accuracy of the previously used alignment
metrics that are based on the conventional HD. The implementation of the presented
approach is available as opeun source software, accompanied by the detailed description
of the parameters we used to obtain the reported results on publicly available BrainWeb

data [27] L

5.1 Related Work

In this Section we present related work in the development of the quantitative measures
that allow to assess the accuracy of registration. Rigid registration, where alignment
between iimages is established with the aid of global translation and rotation has been the
area where such metrics were studied and developed originally. In a number of medical

applications, particularly in neurosurgery. the problem of registering the image with the

!BrainWeb sinulation interface can be accessed at http://www.bic.mni.mcgill.ca/brainweb/.
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position of the patient during the procedure can often be formulated as the alignment
of two sets of points. Such points, which can be reliably identified. are called fiducial
points. Examples of such fiducial points can be anatomical landmarks, or artificial
landmarks implanted for the purposes of registration. The sets of landmarks identified
in both images can be used for point-based rigid registration, which seeks least-squares
fit of the corresponding fiducial points. Such an aligmmnent problem can be reduced to
the Orthogonal Procrustes problem, that has known solutions [174].

One measure of error for point-based registration that can be easily evaluated is
fiducial registration error (FRE). FRE is usually reported as the root mean square
(RMS) distance between the corresponding fiducial points after registration defined by

some rigid transform T [101]:
:,7\,7
FRE® =Y "|T(p:) — qi*.

The FRE measure is directly related to the reliability of locating fiducial points in the
images. Such reliability is defined as the fiducial localization error (FLE), that captures
the difference hetween the assumed position of the fiducial and its ground truth location.

The relationship between FRE and FLE has been established by Sibson et al. [181]:

RMS(FRE) = /(1 - 2/N)RMS(FLE).

The fundamental problem in using FRE as the measure of registration accuracy is
that small FRE is not a sufficient condition for small error at any point in the image.
Target registration error (TRE) [181] measures the error in the clinically important

region, e.g.., at the boundary of the tumor, which is of practical importance. There
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are theoretical results that relate TRE to FRE in the case of rigid registration [78].
The FRE, FLE and TRE measures were introduced by Maurer et al. [132] and proved
effective for evaluating point-based registration methods. However. the problem is much
more complex for non-rigid registration. Due to the fact that potentially arbitrary local
deformations can be introduced by registration, any set of points can be brought into
alignment, even if those points are totally irrelevant. The connection hetween TRE and
FRE cannot be established for non-rigid registration, and TRE can rarely be evaluated.

Few studies exist, where TRE was evaluated for non-rigid registration based on the
simulated ground truth, e.g., see Schnabel et al. [172]. In general, however, TRE is
difficult to estimate, because the task of finding features or landmarks in the clinically
relevant region may be very difficult. An easier task is often to outline the corresponding
regions in the compared images, and evaluate the so called regional correspondence [60].
The two most common quantitative measures for estimating region overlap are the Dice
similarity coefficient (DCE) [68] and the Tanimoto coefficient (TC), also known as the
Jaccard coefficient [113]. For two overlapping regions A and B DSC and TC are defined

as follows [59]:

_ 2N(4AnDB)
N(AUB) 777 7 N(4)+ N(B)’

where N () corresponds to the number of voxels that correspond to the segmented region.
DCE and TC evaluate the overlap of two labels, but cannot bhe applied to evaluate
more than two volumes, and do not allow to compare the degree of mis-alignment. In
particular, the same overlap coefficient can correspond to two different cases that differ if
we consider point-wise registration error. Some of these deficiencies have been addressed

by the generalized overlap measures developed by Crum et al. [59].
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In general, very few comprehensive validation studies of non-rigid registration meth-
ods exist. We refer the reader to the reports by Grachev et al. [98] that relies on
anatomical landimarks, and by Hellier et al. [104] that uses regional overlap measures.

The major difficulty in applving overlap measures and TRE in assessing non-rigid
registration accuracy remains the definition of the relevant regions or points, which in
general requires involvement of hwunan observer. Complete validation studies that rely
on such data necessarily include analysis of the variability of rater results, and possibly
estimation of ground truth from the inputs of multiple experts, as proposed by Warfield
et al. [201]. This problem has been recognized by the community, and a number of
alternative assessment measures were developed that do not require human observer.

Consistency of registration can be evaluated based on analysis of the transformation
obtained with the registration tool. Fitzpatrick et al. [101] describe the idea of regis-
tration circuit that is constructed by registering image A to B, B to C' and C to A. In
the ideal case, each point of image A can be tracked back to A through the registration
transforms. Christensen et al. [50] suggest the use of inverse consistency metric, which
is based on the assumption that the composition of the forward and backward transfor-
mations with the same input images should result in the identity transform. Hellier et
al. [104] use the Jacobian transform, which is the first partial derivative of the transfor-
mation, applied to the deformation field to find the points of singularity. Metrics that
are based on analyzing transformations may allow to detect the failure of registration.
However, they are not sufficient to conclude success.

Recently, Archip et al. [11] proposed to use the value of mutual information similarity

measure between the images to assess the accuracy of registration. This approach has a
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number of problems, outlined by Crum et al. in relation to the use of image similarity
measures for registration in general [60]. In particular. good image similarity value
does not necessarily iimply correctness of registration, it does not allow to assess the
magnitude of the error. and it cannot be used to analvze spatial error distribution.

The Hausdorff distance is a very common measure in pattern recognition and com-
puter vision to evaluate mismatch between the two sets of points. A number of methods
liave been proposed to identify features (points, edges, lines) in medical images [37, 29].
The resulting feature images can be used as input for the HD measure. The HD is not
based on point correspondence. which makes it somewhat tolerant to the differences in
the two sets of features compared. However. it is highly sensitive to noise. A number
of robust modifications to the HD have been proposed to suppress the impact of noise
and improve robustness of the HD, since one of the first papers in this direction by
Huttenlocher et al. [108]. The most recent surveys of the modifications to the HD are
available in [209, 21]. Until recently, the HD has found limited use as a measure for the
evaluation of image alignment. Peng et al. [156] used a robust version of the HD to reg-
ister outlines of brain in two dimensions. Morain-Nicolier et al. [139] applied the HD to
quantify brain twmnor evolution. Finally, Archip et al. [9, 8, 11] assess the performance of
non-rigid image registration of brain MRI with the 95% partial IID, but do not discuss
the reliability of this approach.

To the best of our knowledge, the HD-hased approach to image alignment assessiment
has not been comprehensively evaluated before. A number of the robust versions of the
HD exist, but they have not been evaluated for three-dimensional images and in the

context of NRR for medical imaging.
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5.2 Robust Error Estimation Methodology

The methods we are developing focus primarily on registration asscssment for lmage
guided neurosurgery. The objective of the NRR is to align the pre-operative image
with the intra-operative data. Consequently. the objective of the evaluation procedure
is to confirm that alignment indeed improved following NRR, and quantify the level of
mis-alignment hefore and after registration. We approach this by considering two pairs
of images. The first image is always the fixed (target) image used in registration. For
the purposes of assessment, the second image can either be the floating image or the
registered image. By evaluating the alignment of fixed vs floating and fixed vs registered
images we attempt to assess the error of alignment before and after registration, respec-
tively. However, the formulation of the problem remains the same. Next we describe in

detail the processing steps required for the derivation of the alignment metric.

5.2.1 Image Pre-Processing

A common procedure that precedes analysis of the images, in particular for medical
imaging applications, is pre-processing. The specifics of pre-processing are highly de-
pendent on the application, and may target improvements of the visual appearance of
the image for better interpretation by the human observer (e.g., contrast or sharpness
improvement, enhancement of certain features), or as a prerequisite in order to im-
prove the quality of the subsequent processing operations. The latter is the reason that
necessitates pre-processing for the purposes of registration accuracy analysis.

The objective of the accuracy assessment study is essentially to identify and quantify

the differences between the images due to non-rigid deformation of the image features.
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Therefore, it is very important that all other sources of difference between the images
are suppressed, and the corresponding features are identified in both images.

The first step of pre-processing is to remove small spurious noise features from the
analyzed images. A straightforward approach to noise removal in spatial domain is
based on linear filtering [96]. which is usually implemented as a convolution operation.
Convolution is defined by the mask of constant size m x n with the coefficients wy, (in
two dimensions), which is also known as a convolution kernel. Convolution of an iinage
with the kernel means generation of a new image, where intensity R at a pixel location

1s calculated as follows:

mn

R= E W 2
k=1

Here, zj. are the iiage intensity values that overlap with the convolution kernel. Convo-
lution bhased linear filtering allows to easily implement averaging and weighted averaging
operations, that suppress the high frequency image features. Gaussian function used to
initialize the convolution kernel provides flexibility to precisely control the range of high
frequencies in the resulting image by varying the size of the convolution kernel [77]. The
convolved image can also be viewed as a result of solving the differential equation for
heat propagation with the initial conditions defined to be the intensities of the input
image [157].

Application of a linear convolution operation results in an image that appears blurred,
with high frequency noise features suppressed. The negative result of such blurring is
that the meaningful image features. like the boundaries of distinctive iimage regions, are
also diffused. Perona and Malik studied this probleni, and proposed an alternative ap-

proach using anisotropic diffusion [157] that limits smoothing at the region boundaries.
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We apply anisotropic diffusion filtering to the input images as the first pre-processing
step to preserve the region boundaries that define image features, and eliminate image
noise.

The basic assumptions made in our accuracy assessment scheme is that the images
correspond to the same brain, and they are acquired under the same image acquisition
protocol. The second pre-processing operation addresses the fact that the intensities of
the image in the corresponding brain regions may be different in each of the images.
We improve the contrast of the input images by applying adaptive contrast enhance-
ment algorithm presented by Stark in [185]. Adaptive contrast enhancement is a time
consuming procedure, and in the time-critical applications we instead use conventional
histogram equalization [96]. Finally, we rescale the intensity ranges of both images to

be within the same range.

5.2.2 Edge Detection

The first pre-processing step is needed to prepare the input data for selection of the
features, that are used as inputs for the actual accuracy assessment algorithin. Image
features are defined by abrupt changes in the image intensity. In the medical MRI, image
intensity is related to the physical properties of the imaged tissue. Therefore, changes in
intensity correspond to the boundaries between the tissues that have different properties.
FEdge detection operation attempts to identify the set of connected pixels that define the
region boundaries, extracting structural information from multi-valued images.

Robust edge detection is not trivial for realistic images. Sharp change in image

intensity is a relative definition, that requires certain threshold to define how sharp that
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change should be. The definition of the threshold is related to the normal variation of the
image intensities within the homogeneous region and the level of edge detail required.

We use the edge detection filter proposed by Canny [37] to identify the features in

the input data. The filter consists of the four main steps [96]. First. the input image is
smoothed with the Gaussian filter, that we discussed in the previous Section. Second.,
the magnitude and angle of the gradient are computed on the smoothed image. High
alues of the gradient magnitude define the locations in the image that are likely to
correspond to the edge features. However, there will generally he multiple non-zero
gradient magnitude pixels that correspond to the same edge. The next processing step
is non-maxima suppression operation, which is thinning the initial approximation of the
edges. This is accomplished by locally estimating the edge direction that is closest to
the gradient angle at a point, and discarding the edge points that have their gradient
magnitude values less than those of its neighbors. The goal of this step is to produce
the edges that are exactly one pixel wide.

The last step of Canny edge detection is concerned with filtering the remaining non-
zero gradient magnitude pixels to eliminate the “false” edges. This step is accomplished
with two thresholds: a low threshold, 7;. and high threshold, Ty. The suggested ratio
of these thresholds is two or three to one [37]. The final edge image is constructed by
combining the images obtained by thresholding the output of the previous step with
the high and low thresholds. The result of thresholding with 7T}, produces edges that
correspond to stronger gradients in the initial image. The weaker edges can be identified
by removing the strong edges from the set of cdges obtained with 7;. Those weaker edges

are used to “repair” disconnected strong edges by analyzing neighborhood connectivity
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as described in [96].
Both the pre-processing and edge-detection steps are facilitated by the implementa-

tions of the image processing algorithms in the Insight Toolkit [109, 120].

5.2.3 Development of the Robust Local Hausdorff Distance Metric

Given two three-dimensional images, 7 and 7, we attempt to estimate the point-wise
alignment error between the homologous points of these images. Let A and B be the
binary images, as defined earlier in Chapter 2, with the non-zero voxels corresponding to
the feature (edge) points extracted from 7 and J respectively. Binary images A and B
are the result of pre-processing and edge detection operations described in the previous
Sections. Let 4 = {ay,...,a,} and B = {b1.....b,} of R? e the sets of points that
correspond to the non-zero voxels in A and B, respectively.

The directed Hausdorff Distance (HD) between the two sets of points h(A, B) is
defined as the maximum distance from any of the points in the first set to the second
set. The symmetric HD between the two sets, denoted H(A, B), is the maximum of the
directed HD wvalues for the two sets [108]:

h(A, B) = max(d(a, B)), where d(a, B) = 1}11111'?1]](1. —bll,
oS

ac€A

H(A.,B) =max(h(A, B),h(B,A)).

As suggested in [21], we use the same notation for images, considering 4 and B the
sets of non-zero pixels of A and B, respectively: h(A.B) = h(A, B). In the rest of this

seetion we refer to symmetric Hausdorff Distance whenever we use HD.
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In the case when the points used for calculation of d(a. B) and d(b, A) happen to be
the homologous points (i.c.. when they correspond to the same image feature in both
images), H(A, B) would be the maximum (global). alignment error. Even in this perfect
correspondence case, the first problem of using HD for alignment assessment becomes
apparent: HD can only estimate the maximum error. The second problem comes from
the sensitivity of the metric to noise and lack of point correspondence: the estimated
value of the error will not be the same as the maximuin error, in the general case. Siinple
versions of the robust HD measure were proposed to alleviate this problem. The partial
Hausdorff distance is defined as a quantile of the ranked distances between the two point
sets, originally proposed by Huttenlocher et al. [108]. Archip et al. [8, 11] use 95%-HD,
which is defined as the 0.95-quantile partial distance between the two sets. However,
95%-HD is a glohal measure, and does not allow to assess the error locally without
modifications to the calculation procedure.

The local-distance map (LDMap) proposed by Baudrier et al. [21] for the comparison
of two-dimensional images extends the definition of the HD. LDMap allows to derive
the local measure of dissimilarity Hj,.(A, B, x) between the two binary images A and B

at the point x as follows:

Vr € R*: HyuolA, B.x) = |A(z) — B(x)| x max(d(x, A), d(z, B)). (5.

ot
—_
—

Hioo(A. B, @) is a symmetric measure, which is connected to the conventional HD defi-
nition by the relation H(A, B) = max(H,.(A, B, z)) [21].
€
The advantage of the LDMap measure Hj,.(A. B, 2) is that it can be used for local-

ized estimation of the alignment error. Ideally, the value of Hj,. should be the same as
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Figure 5.1: Left: Binary image. Right: Corresponding greyscale image.

the distance between the corresponding points in the images. However, because there is
no point corresponderice in the HD definition, the values of Hj,. would generally deviate
from the values of the alignment error.

We attempt to add the notion of point correspondence to the definition of the LDMap
by using greyscale modification of the HD originally proposed by Zhao et al. [209] for
matching two-dimensional images corrupted by noise. In order to achieve this, we first
transform the input binary images, produced by the feature detection procedure, into
non-binary (so called, greyscale) images A and B. These greyscale images have the
same size as the initial binary images, with each voxel corresponding to the non-zero
voxel in the input binary image initialized to the total number of non-zero voxels in
its neighborhood. A two-dimensional example of greyscale image construction is shown
in Figure 5.1. By construction, 4 : @ € Q ~— {0,1,...27}. Pixel value is zero, if the
corresponding pixel in the binary image is zero, and the maximum number of non-zero
neighbors is 26 in a three-dimensional image neighborhood.

The definition of the distance between a point a point set should be updated, to take
into account the intensity value in the grevscale image. Let a be a greyscale image pixel
with non-zero value, and A(a) be that greyscale image value. The definition of distance

from a to greyscale image B is based on the use of tolerance parameter ¢ that specifies



the maximum allowed difference in the intensity between the pixel values in A and B.
[t is defined as the minimum distance a pixel in B with such an intensity value that
differs from A(a) by no more than ¢:

d(a, B) = min|la —b||, A(a) —g < B(b) < A(a) + g.
he B

Zhao et al. suggested selecting g = 1 for two-dimensional images [209]. We set g = 2
to account for the increase in image dimensionality. The symmetric Hausdorff Distance
can now be redefined to account for greyscale image values using the modified formula

for d(a. B):

h(A, B) = max(d(a. B)),

a€A
H(fi, B) = max(h(A, B)h(B 4))

The use of greyscale definition of the Hausdorff distance is based on the assumption
that non-rigid deformation of an image should not change the local topological properties
of the edge features. We use the number of non-zero pixels in the fixed neighborhood as
the measure of topological connectivity. This is a measure that can be easily evaluated.
and can be used to discard those points that are located at a close distance, but do not
have similar connectivity.

Accordingly, the greyscale local HD can now be evaluated based on this updated

point distance definition:

Vo e RY: GHo(A B.x) = |A(x) — B(2)| x max(d(r. A). d(x. B)). (5.2)

Based on the G Hy,., we define the corresponding glohal measure, greyscale Hausdorff
distance (GHD) GH (A, B) between the two binary images. as GH (A, B) = max(GHy,.(A, B, r)).
x
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The calculation of G Hj,, results in a greyscale image, where every non-zero pixel cor-
responds to the value of local greyscale Hausdortf distance. As the final step, we apply
local simoothing operation, to reduce the impact of noise on the error estimation. We de-
fine robust greyscale HD locally based on the least trimmed squares robust statistics [169]
on the values of G Hj,. in the region around each feature point. The robust greyscale HD
RGH loc(rjl, B. x) is calculated as the average of the ordered values of GH [OC(A, [3 x) in
the fixed size window centered at x, after discarding 20% percent of the top distance val-
ues within this window (trimmed mean value). Similarly to the HD and GHD, we define

the robust greyscale Hausdorff distance (RGHD) RGH(A, B) = max(RGH;oc(/i B, x)).

5.3 Evaluation

In this Section we perform an evaluation of the presented error assessment method. The
objective of this evaluation is to establish accuracy of the estimated error measures. We
approach this evaluation by utilizing different sources of ground truth, as we discussed
previously. As the first source of ground truth we consider known synthetic deformation
field applied to a real image. In the second experiment, the ground truth is represented
by the deformation field obtained hy realistic simulation. Finally, we use the ohserver-
recovered ground truth from the real images obhtained during neurosurgery.

In all three evaluation approaches, the performance of an evaluation metric is mea-
sured as its ability to recover the deformation magnitude (thus, misalignment error
value) at the locations of the detected edge features in the input images. The recovered
error estimate can then he compared to the ground truth deformation at this point. In
the first and second evaluation scenario. the ground truth deformation is available at
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every point of the image. In the third evaluation study that is based on observer ground
truth, we know the estimate of the deformation only at few points identified by the
observer. Therefore. in the cases when these point do not coincide with the edge points
recovered by the edge detector, ground truth comparison cannot be accomplished.

The questions we attempt to answer in this evaluation are (1) how the values of Hy,..,
GH,,. and RG Hj,. locally compare to the ground truth alignment error, and (2) how

the robust versions of the HD (GHD and RGHD) compare with the conventional HD.

5.3.1 Synthetic Ground Truth

We first evaluate the effectiveness of the proposed accuracy assessiment methodology for
non-rigid registration of brain MRI using the synthetic ground truth data. We use the
method described by Rogelj et al. [167] to construct a synthetic deformation field. The
synthetic deformation field is applied to the original grayscale inage, followed by feature
detection step performed on both the original and deformed images. The proposed
error recovery methodology is then employed to estimate the misalignment between the
original and the deformed images at the selected feature points. The true misalignment
value, which is the magnitude of the synthetic deformation at a point, ideally should be
equal to the error value recovered by the either of the proposed assessment measures.
The procedure used for generating the synthetic deformation field is the same as
used for evaluating mesh generation methods in Chapter 3 and in [167, 27]. We assign a
random deforimation vector at each of the grid control points, with the components of the
vector drawn from a Gaussian distribution parametrized by mean p = 0 and variance o.

The variance parameter can be used to control the deformation field, with larger local
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deformation values obtained with the larger values of variance. Deformation vectors at
the control points are initialized in such a way that the magnitude of the deformation
does not exceed 10% of the brain dimensions, and there are no discontinuities in the
deformation field (no intersections of the deformation vectors at the control points). The
dense deformation field is constructed hy using Thin Plate Splines interpolation from
the deformation vectors at the control points that fall within the binary mask.

The synthetic deformation is next applied to the MR images of the brain. In this
study we use brain MRI available from the BrainWeb MRI simulator [57]. BrainWeb
siiulator was used to create two normal subject T1 iimages with the following parameters
of the simulator: 1 mm slice thickness, 0% iuten\sity non-uniformity. In order to evaluate
the impact of noise in the input data, we perforin evaluation on two image sets with
different noise levels. BrainWeb simulator was used to generate images with no noise,
and images corrupted with the 9% Gaussian noise.

We compare the local estimation methods with ground truth error using two mea-
sures: distribution of error and percentage of outliers. Ideally, the distribution of local
error estimates (Hjoe, GHjoe and RG Hy,.) will closely mimic the true error distribution.
Also. a good estimate of error should have minimuim number of outliers. Let d; be the
distance at voxel location 7, as measured by a local estimation method. Let e; be the
true error at the same voxel, defined as the magnitude of the ground truth deformation
vector defined at this voxel. We further refer to the value e; as the alignment error. Any
voxel ¢ where |d; — e;| > 2mn is defined as an outlier. The meaning of outlier mea-
surement is that the absolute difference between the distance from the feature located

at this particular voxel exceeds the true distance between the corresponding points by
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more than 2 mm. We choose 2 min bhecause the deformation field is in physical space
and the HD distance implementation is limited to 1 mum spacing of the input immages we
use. Therefore, errors as large as /3 cannot be prevented.

The distributions of the alignment error values, and Hj,.. GHj,.. and RGH,. are
shown in Figure 5.2. We observe that the true distribution of error is approximated
closer by the robust HD measures. With the simple definition of H Dy,., topological
properties of the edge features are not considered, which causes underestimation of the
error value. As can be seen from the figure, the problem of underestimation is still
relevant for the RGHD 1neasure, since the distribution shows lower variance. This is
expected, because RGHD results in local smoothing of the distance estimates. Although
the RGHD provides closer approximation of the original distribution, it comnes at a cost
that maximum errors will be discarded because of the use of least trimmed squares
robust statistics [169].

We compare relative robustness of the evaluated accuracy measures, and their sus-
ceptibility to noise by evaluating the percentage of outlier estimations with the increasing
variance parameter in the synthetic deformation field. The results are plotted in Fig-
ure 5.3, showing the comparison between the different global and local error estimation
measures. We observe that conventional global HD metric overestimates the maximum
error in most cases, and always overestimates the mean error. This metric is highly
susceptible to image noise: note the difference between the error reported for 0% and
9% noise levels with the global HD measure. Comparing the 95% HD and the RGHD
measure we developed, we observe that both of these metrics are consistently growing

as the average/maximun errors increase. However, neither of this measures cannot be
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Figure 5.2: Distribution of the alignment error and the H Dy,., GH Dy, and RGH D, values
for the same synthetic deformation case (three-dimensional BrainWeb image data, deformation
as a sum of Gaussians, u = 0, o = 5).

used as the estimate of the maximum registration error, since the reported metrics by
definition exclude maximum local estimates.

Comparison of the percentage of outliers in local error measure estimations is shown
in Figure 5.3. First, we observe that the number of outliers is increasing as we increase
the variability and deformation magnitude in the synthetic deformation field by changing
the Gaussian variance. Although the percentage of outliers is growing for both robust
and non-robust metrics, it is consistently lower for the metrics we developed. At the
same time we ohserve that the robust metrics are more sensitive to image noise, and
contain more outliers for low values of the deformation.

Overall, the robust metrics contain less outliers, which is reflected in the more stable
behavior of GHD and RGHD in comparison to the HD: RGHD is consistently increas-

ing as the alignment error increases. and it is always above the mean error value (see
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Figure 5.3: Comparison of the error estimation accuracy for the analyzed robust Hausdortf
Distance based metrics. Left: Error statistics for synthetically deformed BrainWeb images with
and without noise, and the derived values of the Hausdorff distance based estimations. Right:
The change in the proportion of outliers as a function of Gaussian variance.

Figure 5.3, left). Thus, for large deformations (deformations as large as 10-15 min have

been reported during open scull craniotoniy) RGHD is a more appropriate measure.

5.3.2 Physically-Realistic Simulated Ground Truth

We used simulated brain tumor growth iimages to assess error estimation performance for
more realistic deformation modes, and for the images of different contrast. The simulated
images were created from the BrainWel anatomical data as described by Prastawa et
al. [162]. We used two versions of the simulated data: (1) with the intensity distribution
close to that of the healthy subject image, and (2) with the intensity distribution derived
from the real tumor data. Edge detection was done on the images with the regions
corresponding to the tumor excluded. The misalignment was estimated between the
healthy subject data and the iinage with the simulated tumor for the same subject at
each feature point of the edge immages. The recovered distances were compared with the
true deformation magnitude from the tumor growth simulation (deformation field heing

the sum of the tumor mass effect and infiltration-induced deformations).
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Table 5.1: Outliers percentage for synthetic tumor growth data (only points corresponding to
non-zero ground truth deformation are considered).

same contrast diff. contrast diff. contrast, enhanced
id Hlo,; RGH[OC H[OC RGH[OC Hloc RGH[(,(,
1| 7.9% 1.6% 32.7% 42.9% 12.1% 9.5%
2 | 21.7% 16.4% 30.3% 34.1% 20.2% 15.4%
3 | 4.1% 3.6% 34.5% 44.7% 10.4% 7.1%

The outlier statistics is summarized in Table 5.1. Case 2 was the most complex,
with the two infiltrating tumors of large volume located one next to another. Edge
detection is particularly problematic in the edema region, which in this particular case
extends over most of the deforming tissue region. This explains large number of outliers
for set 2. Figure 5.4 helps to appreciate the complexity of error recovery for tumor set
2: there are very few edges detected in the area of the deformation, and the tumor
area is almost indistinguishable from the large edema region. Nevertheless, robust HD

estimation consistently has less outliers than the HD.

Figure 5.4: Synthetic tumor deformation and recovered alignment error estimates. Left: Syn-
thetic twinor, case 2. Center: Deformation field produced by the tumor growth simulation {tumor
mass effect and infiltration), colored by magnitude. Right: Edges recovered from the simulated
tumor image. The same slice is shown in all iimages.



5.3.3 Observer-Derived Ground Truth

We used three data sets from the public SPL repository of the tumor resection cases?.
A radiologist was asked to locate 10 corresponding anatomical landmarks in the pre-
and intra-operative brain MRI T1 images. Some of the landmarks identified for the first
imaging case together with the edge features used in the automated analysis are shown
in Figure 5.5. We used the total of three sets of intra-operative data, and only one
observer. The effort required for identification of such landmark points is significant,
and we were not able to recruit more observers to cross-validate correctness of landmark
locations.

The error recovered using the HD-based techniques was compared with the expert-
estimated error. The results are summarized in Table 5.2. On average, the RGHD
measure shows better accuracy compared to the HD. At the same time, these results
identify one of the problems associated with the automated error estimation. The au-
tomatically estimated measures rely on the consistent identification of the anatomical
features in the analyzed images. Therefore, the error cannot be estimated in the regions
of the image where such features were not located. We observe that this was the case
for a number of anatomical landmarks, when there were no edge points in the landmark
vicinity.

We note that accuracy improvement of the robust error estimmation measures i coni-
parison with the conventional HD-based estimates is in the sub-voxel range. Also, both
of the metrics disagree with the observer-estimated displacement magnitude in the order

of 1-2 mmn1. In relation to these observations, one of the very important issues that has

"http://www.spl.harvard.edu/pages/Special : PubDB_View?dspaceid=541
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Figure 5.5: Expert-estimated locations of the used landmarks for a pair of IGNS images .Top:
Pre- and intra-operative images with some of the anatomical landmarks selected. Bottom: Edge
features extracted from the pre- and intra-operative images.

not been studied is the reliability of the observer-estimated ground truth data. As we
discussed previously, the derivation of ground truth in validating non-rigid registration
on clinical data is inherently unsolvable problem. We do not suggest that the developed
techniques can serve as a substitute for validation of the method. Rather, we propose
an alternative method to estimate the alignment error between the non-rigidly deformed

images in the ahsence of ground truth.
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Table 5.2: Accuracy of error assessment for the tumor resection data in mm; empty entries
correspond to image locations without edge features to assess error.

land- case 1 case 2 case 3

mark | expert | Hy,. | RGH,,. | expert | Hi,. | RGH,,. | expert | Hy,. | RGHp,,.
1 2.59 : 2.51 - - 4.43 1 3.07
2 0.48 - - 1.52 - = 4.53 1.41 2.25
3 0.48 1 0.92 2.99 1.41 1.53 3.96 - -
4 0.48 1 1.2 1.36 1.73 1.16 2.15 - -
5 2.59 1 0.82 0.98 - 2.88 2 2
6 1.07 - = 2.4 - - 3.66 - -
7 2.45 - - 2.04 - - 3.49 | 2.24 2.22
8 1.44 1 0.63 1.92 1 1.36 443 | 141 2.94
9 3.36 | 2.24 3.45 3.04 - - 3.96 - —
10 1.44 1 1.11 1.36 1 1.43 1.98 | 1.41 1.05

avg difference

w.r.t. expert | 0.77 0.69 0.81 0.57 2.04 1.37

I8 .

Figure 5.6: Local estimation of misalignment using RGHD, all are images show the same slice.
Left: Undeformed image, BrainWeh. Center: Deformed image, Gaussian kernel variance 5 mmn.
Right: LDMap of the deformed and undeformed images, voxel values initialized to RGH Dy,

5.4 Summary

We have presented an HD-based approach to estimation of image alignment error. Based
on the evaluation results, the RGHD measure we propose can be more robust compared
to the conventional Hausdorff Distance measure in terms of outliers in local distance
estimation, and thus can potentially improve the accuracy of the image alignment as-

sessment. While our primary application is the assessment of the non-rigid registration

161



results, validation of the proposed method itself on real neurosurgery data is complicated
by the absence of ground truth. However, based on the evaluation, it can be used to
improve the confidence in registration results.

The syuthetic tuinor growth data used in our evaluation may be more challenging
than estimation of the pre-, intra-operative and registered image alignment. In the latter
case, the images have similar content: tuimor and edema are present on both images, and
the edges detected from those images are more similar. We show that RGHD improves
error estimation accuracy locally for anatoniical landmarks, thus we expect that globally
RGHD is also more accurate on neurosurgery data than the HD measure.

The evaluated techniques, and specifically RGHD — the most robust of the evaluated
methods — can serve multiple purposes in registration assessment. First, they can be
used as a global similarity metric between the two images, as well as for local alignment
assessment. This mode of operation is particularly useful for automatic assessment
of the non-rigid registration results during large-scale unsupervised parametric studies.
Second, localized assessment of registration error can also be applied in conjunction with
the visual assessment to provide quantitative error measurements. An example is shown
in Figure 5.6. We emphasize, that the proposed method cannot substitute validation
studies. Instead, it can be used in conjunction with other accuracy assessment methods
for the patient studies, where accuracy is critical, processing time is highly limited and
there are no means to compare the registration result with the ground truth. A promising
area of our future work is the evaluation of the proposed measures in conjunction with
the consistency tests of the deformation fields obtained during the NRR, and sensitivity

of the measures to parameter selection of a specific NRR method.
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5.5 Contributions

Following are the contributions of the research presented in this Chapter:

¢ A novel robust method for alignment error estimation based on local Hausdorff

distance definition was proposed;

e An open-source implementation of the method has been developed;

e The developed method has been evaluated using different sources of ground truth
data, establishing the advantages in robustness of the proposed approach over the

conventional Hausdorff distance estimations.

The results presented in this Chapter previously appeared in the following publica-

tions:

e A.Fedorov, E.Billet, M.Prastawa, A Radmanesh, G.Gerig, R.Kikinis, S.K.Warfield,
N.Chrisochoides. Evaluation of Brain MRI Alignment with the Robust Hausdorff
Distance Measures. In Proc. of 4th International Symiposium on Visual Comput-

ing (ISVC’08), 2008, pp.594-603

e E.Billet. A.Fedorov, N.Chrisochoides. The Use of Robust Local Hausdorff Dis-
tances in Accuracy Assessment for Image Aligniment of Brain MRI. ISC Insight

Journal, 2008
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Chapter 6

Discussion and Future Work

In this dissertation we discussed three aspects related to non-rigid registration for image-
guided neurosurgery. These aspects belong to quite different domains: high performance
and distributed computing, tetrahedral mesh generation, and image analysis for auto-
mated accuracy assessment of non-rigid registration. As a result, we developed a number
of methods and tools that attempt to make NRR computation feasible, more accurate
and more reliable for the purposes of intra-operative ilnage guidance.

Non-rigid registration is an inherently ill-posed problem in medical image analysis,
that requires customized solutions depending on the clinical application, imaging modal-
ity and anatomical region. While developing robust non-rigid registration algorithms is
a complex task, the complete solution of the problem includes deployinent of the method
in the clinical setting. As we showed in this dissertation, the various aspects related to
such deployment of the method requires understanding of a number of related issues.

We believe that this work presents tangible results that will facilitate development

and application of the broad range of image registration and processing algorithms in the
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clinical setting. Our study of the mesh generation problem in the context of the NRR
resulted in the development and analysis of the three reproducible approaches to this
problent. Two of these approaches include off-the-shelf tools used in traditional mmesh
generation. In this work, we show how these tools can be combined to mesh binary
images.

As we showed in this dissertation, construction of the mesh for the registration
method we studied requires consideration of multiple generic and application-specific
criteria. These criteria present conflicting requirements, and the question of combining
these requirements to produce the final mesh requires further study. In particular, an
interesting question could be what is the optimal distribution of the registration points
that can be achieved, and how to improve the mesh sizing to consider the magnitude of
mesh deformation.

The most important issue that has been addressed in this work to the very limited
extent is the validation of the developed techniques for image meshing and accuracy
assessment with the clinically relevant data. This problem is inherent to validation of the
non-rigid registration methods. Validation of the presented results with the anatomical
landmark data obtained using multiple expert observers is necessary to establish the
clinically significant impact of the meshing methods on registration accuracy.

The presented methods of image-to-mesh conversion consider only the case of single-
material, homogeneous meshes. Constructing multi-material tetrahedral meshes using
the conventional mesh generation tools by surface meshing followed by voluine meshing
is more challenging. The surface recovery method we evaluated as implemented in

CGAL is not capable of meshing multiple surfaces at the same time. However, this is
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not a limitation inherent to the surface recovery algorithm, which is indeed capable of
handling recovery of multiple surfaces [31].

We developed a distributed implementation of the clinically evaluated NRR method.
Recognizing the difficulties of parameter selection for this method, we proposed to ad-
dress this problem using speculative execution. Speculative computations require signifi-
cant processing resources. We developed an implementation that is capable of leveraging
the computing power of the national TeraGrid cyberinfrastructure to enable this com-
putation.

The feasibility of using geographically distributed Grid resources for the purposes of
non-rigid registration has been evaluated. There are some important practical issues,
which still complicate use of the developed framework on the TeraGrid during newuro-
surgery. The first difficulty is due to the presence of local job batch scheduler does not
provide guarantees on the start time of the job execution. We discussed a number of
approaches that can help to alleviate this problem. First, there are wait time prediction
services, like QBETS [145]. available as services on TeraGrid. These services provide
potential to improve scheduling decisions while choosing the execution site. Second, we
used direct submission of jobs to the batch scheduler, which is not the most optimal for
throughput-oriented execution. Recently introduced alternative scheduling mechanisims
allow to use single job submission request to subsequently execute multiple applica-
tion instances. This significantly reduces time due to minimized interaction with the
scheduler and reduced queue times.

The second difficulty related to the use of TeraGrid is that the interaction with the

remote GRAM using the standard Globus Toolkit installation requires open ports in
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the client firewall configuration to receive updates about the job status. Based on our
experience, configuration of the hospital intranet often includes multiple levels of network
security, which may make firewall openings not possible. The issue of firewalls has been
recognized by some groups as one of the most difficult practical issues in using grid
resources. In order to address this problem, the ¢lient workstation may require special
configuration, or may need to be located outside the firewall. Alternative solutions
proposed in the literature describe customized implementation of communication with
the Grid resources, that does not require firewall openings [99, 170]. Study of these
solutions within the Globus Toolkit implementation presents a subject of interesting
future work.

We contributed an automated approach for estimating alignment error between the
MRI images of the same subject brain. The novelty of this method is in its ability to
provide localized error estimates, and in reporting the error measure as the Euclidean
distance at an image feature location. Such error reporting compares the method we
developed favorably with the accuracy estimates based on similarity measure calculation,
or based on global Hausdorfl Distance. The clinical relevance of the proposed technique
was evaluated on the set of three sets of MRI data collected during neurosurgery, with
the anatomical landmarks identified by one observer. As it is the case for the mesh
generation component of this dissertation, the study of this new accuracy assessment

measure would greatly benefit from the evaluation on a larger set of clinical data.
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Appendix A

Software Tools for Image-to-Mesh

Conversion

In this Appendix we provide hrief usage instructions for the image-to-mesh conversion
tools developed in Chapter 3. All of these tools are written in C/C++. We refer to the
software toolkit developed in this dissertation as ImageMeshingToolkit (I2MTK). We
refer to the root directory of the source code distribution as I2MTK. The described tools

are located in I2MTK/Tools directory.

Table A.1: Software dependencies of 2MTIX tools.

name purpose

CMake [118] platform-independent configuration

ITK [120] image processing and image 10

VTK [121] mesh data structures for mesh 1O support

Mesquite [171] mesh optimization

CGAL [42] implicit surface recovery and spatial search data structures support
Tetgen [180] Delaunay mesh generation and refinement

The developed software depends on a number of tools and libraries, as summarized in

Table A.1. Prior to compilation of the Mesquite library. the contents of I2MTK/Mesquite
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must be copied to the root directory of the Mesquite source code. These files contain
modifications required for programmatic access to the Mesquite data structures. Upon
installation of the prerequisite libraries, vour I2MTK distribution must be updated to
include the correct path to vour Mesquite distribution following the instructions in

I2MTK/CMakeLists.txt, configured and compiled.

A.1 Triangulated Surface Recovery

I2MTK/Tools/surface-recovery. cxx.
This tool wraps the surface recovery functionality provided by CGAL, implements
direct surface recovery from binary image, and saves the surface mesh in VIIX POLY-

DATA format [119].

Table A.2: Command line flags for triangulated surface recovery from binary image input.

flag explanation suggested
value

—input name name of the input binary image in any im- n/a

age format supported by ITK 10
—output name name of the output mesh saved in any for- n/a

mat supported by VTK 10
-surfaceRadiusBound surface recovery parameter that regulates 5..10
value the maximum radius of the circumsphere of

a triangulated facet centered on the facet
(the detailed explanation is available in
CGAL documentation)
—surfaceDistaneeBound surface recovery parameter that specifies 5..10
value the bound on the distance bhetween the
facet and the center of its eircumsphere)

The command line options are summarized in Table A.2,
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A.2 Delaunay Mesh Generation and Refinement from Bi-

nary Image

I2MTK/Tools/image-mesher-adaptive. cxx.

This tool combines the functionality of CGAL surface recovery with the Tetgen

algorithms for Delaunay meshing and refinement.

Table A.3: Command line flags for adaptive Delaunay meshing from binary image input.

flag

explanation

suggested
value

—input name
-inputPointList name
—-output name

—surfaceRadiusBound
value

-surfaceDistanceBound
value
—alphal wvalue

—alpha2 value

-nnN value

name of the input binary image in any im-
age format supported by I'TK IO

name of the input VI'K unstructured grid
file [119] with the list of registration points
name of the output mesh saved in any for-
mat supported by VI'K 10

surface recovery parameter that regulates
the maxintum radius of the circumsphere of
a triangulated facet centered on the facet
(the detailed explanation is available in
CGAL documentation)

surface recovery parameter that specifies
the bound on the distance between the
facet and the center of its circumsphere)
volume mesh generation parameter (the
detailed explanation is available in Tet-
gen [180] documentation

volume mesh generation parameter (the
detailed explanation is available in Tet-
gen [180] documentation

desired nuinber of the registration points
per mesh vertex cell complex

n/a
n/a
n/a

5..10

0.4..0.8

The command line options are summarized in Table A.3.
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A.3 Lattice-Based Image Meshing

I2MTK/Tools/biofemir-mesher.cxx

This tool implements the functionality of RGM mesher, which is based on BCC

lattice refinement, followed by iterative surface compression to the binary label surface.

This tool operates directly on the binary image data, as described in Chapter 3. Mesquite

library [171] is used by this tool for mesh quality improvement following boundary

compressiol.

Table A.4: Command line flags for adaptive lattice-based meshing from binary

iiage input.

flag explanation suggested
value
—input name name of the input binary image in any im- n/a
age format supported by ITK 10
~inputPointlmage name name of the input image with the registra- n/a

—output name
-nnN value

—resolutions value
—hceSpacing value

—beeSpacingValue value
-maxlIteratious value
—minAngleAllowed value

tion points in any format supported by ITK
10

name of the output mesh saved in any for-
mat supported by VTK 10

desired number of the registration points
per mesh vertex cell complex

number of red-green refinement iterations
value of BCC spacing for the ini-
tial lattice as a relative to the corre-
sponding image dimension, i.e., numeric
value of the spacing is calculated as
image Dimension/becSpacing

numeric value of BCC spacing

number of surface compression iterations
minimum value of the dihedral angle al-
lowed during surface compression; if the
mesh contains angle smaller than this
salue, boundary compression procedure is
terminated

n/a
n/a

2
n/a

n/a
n/a
n/a

The command line options are summarized in Table A.4. Most of tliese options
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should be set depending on the desired properties of the mesh. Specifically. the values
of BCC spacing allow to control the size of the mesh. Bounds on the nuiuber of surface
compression iterations and minimuin dihedral angle provide flexibility in terms of the

trade-off between the surface approximation accuracy and quality of the mesh elements.

A.4 Background Mesh Construction

I2MTK/Tools/biofemir-bg-mesher-nn. cxx

This tools constructs the background mesh based on refinement of BCC lattice that
completely encloses the input binary image. The values of the sizing function are ini-
tialized as described in Section 3.5. The resulting tetrahedral background mesh can
be saved in any file format supported by VIK 10, and also in the format required for
background sizing field description by Tetgen and NETGEN.

The command line options are summarized in Table A.5.

A.5 Utilities

I2MTK/Tools/mesher-reader. cxx performs conversion between the tetrahedral meshes
saved in different formats. Supported formats include those available in VTK 10, and
the formats produced and supported by Tetgen and NETGEN.
I2MTK/Tools/surface-reader. cxx provides conversion between the triangular sur-
face meshes in different formats.
I2MTK/Tools/meshqual~driver. cxx reports statistics on mesh quality. The quality

metrics for each tetrahedron can also be saved in a VTN file. This class wraps the quality



Table A.5: Command line flags for adaptive lattice-hased meshing from binary image input.

flag explanation suggested
value

—-input name name of the input binary image in any im- n/a
age format supported by ITK 10

—inputPointlmage name name of the input image with the registra- n/a
tion points in any format supported by ITK
10

—output name nanie of the output mesh saved in any for- n/a
mat supported by VIK 10

-nnN value desired number of the registration points n/a
per mesh vertex cell complex

—resolutions walue number of red-green refinement iterations 2

~beeSpacing value value of BCC spacing for the ini- n/a

tial lattice as a relative to the corre-
sponding image dimension, i.e., numeric
value of the spacing is calculated as
imageDimension/bceSpacing

~hceSpacingValue value numeric value of BCC spacing n/a
~outputPrefix name if specified, background mesh will be n/a

saved in the files named name.msz and
name.b.node for NETGEN and Tetgen re-
spectively.

assessment functionality implemented in vtkMeshQuality class provided by VTK [121].
I2MTK/Tools/meshAddPtCnt . cxx takes the tetrahedral mesh aud the list of points,
and produces a mesh with initialized value of point count in the mesh vertex cell complex

for each mesh vertex.
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Appendix B

Execution of Non-Rigid

Registration on TeraGrid

In this Appendix we describe the setup and infrastructure for executing the non-rigid
registration workflow over the TeraGrid [188] resources. Execution of the registration
workflow assumes that the registration process is run as a sequence of processing steps
available separate modules, which correspond to the decoupled implementation of NRR

described in Chapter 4. The modules used in the workflow are the following:
e smooth wraps the anisotropic diffusion filtering;

e detectEdges wraps the Canny edge detection filter, and produces a hinary output

with the edges extracted from greyscale image;

e pointSelection prepares the list of registration points identified in the floating (pre-

operative) image:
o blockMatchingMPI is a parallel implementation of block matching based on MPI;
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e solver is the implementation of the iterative outlier rejection procedure:

o ResampleRunAssessment applies the procedure of error estimation on the result

of non-rigid registration.

The pointSelection. blockMatchingMPI and solver are the components of the restruc-
tured implementation of the original NRR code used in [53].

The setup of the Grid-based NRR infrastructure consists of the preparations that
must be done on the submitting site (client side) and on the site where the computation
will be taking place (server side).

The processing modules depend on the ITK and VTK libraries, which are the same
as mentioned in Appendix A. These libraries must be available on the server side for
workflow component execution. Additionally, the block matching module depends on
the availability of an MPI implementation on the server side. No restriction are in place
on the specific implementation of MPI that should be used, which reinforces portability
of the implementation. We mention OpenMPI [190] and MPICH [13] as the two popular
MPI libraries. All the modules that will be executed remotely must be compiled and
available as executables on each of the server sites.

On the client side, Globus Toolkit (GT) compatible with the version that supports

58] must be

TeraGrid must be installed (we used GT version 4.0.7). Swift package |
available on the client side for workflow description, execution and management. Swift
location is referred to by the environment variable SWIFT_HOME. As part of the client side

setup. a range of TCP ports open for incoming connections must be available, following

the GT setup guidelines [95].

—
|
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Execution of jobs on TeraGrid requires that the submitting user has active accounts
and resource allocations on the TeraGrid sites that will be used for job submissions.

Once the workflow modules are installed on the server sites, the client side must
be configured to describe the computational resources that will be used for workflow
execution. and the details on the module location and execution by means of Site catalog
(grid resource description) and Translation catalog (workflow component description).
As an example, the following XML listing describes the configuration for a single remote

resource, as provided in the site catalog in

SWIFT_HOME/etc/sites.xml:

<config>

<pool handle="SDSC-GT4">
<gridftp url="gsiftp://tg-gridftp.sdsc.teragrid.org:2811/" />
<execution provider="gt4" jobmanager="PBS"
url="https://tg-loginl.sdsc.teragrid.org:8443/wsrf"/>
<workdirectory>/users/fedorov/scratch</workdirectory>

</pool>

</config>

The description of each resource (the “pool™ element) must include the contact string
for GridEFTP service, the execution provider, which is a GRAM service for TeraGrid sites,
and the location of scratch directory on the remote resource. This directory will be used
to store intermediate data relevant for the job execution.

The details on the availability of the workflow components are provided in the trans-
lation catalog stored in SWIFT_HOME/etc/tc.data. The translation catalog provides all
the details about the workflow component that are necessary for its remote execution:
the full path to the executable, the walltime needed for its completion, and the number

of nodes, if the executable is an MPI application.
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We refer the reader to the supporting documentation of Swift [58] and TeraGrid [188]
for further information on configuration of the translation and site catalogs, as they
should be tailored to the resources and configurations available in each particular case.

Using the Swift script, the parametrized execution of the NRR workflow can bhe

described as follows:

### Description of the types used in the script

type vtkfile{} // .vtk file: meshes and registration points
type imagefile{} // various image files supported by ITK readers
type volfile{} // .vol file: mesh format expected by NRR

type messagefile{} // message files: stderr and stdout

### Invocations of the workflow components

# Detect registration points

(vtkfile output) selectPoints(imagefile image, imagefile mask, volfile mesh,
string comnexity, string fracVar, string blockSize){

app {
pointSelection "--mesh" @mesh "--floatinglmage" Q@image "--fracVarRejected"
@fracVar "--blockConnexityType" @connexity '"--mask" @mask
"--blockHalfSizeX" @blockSize "--blockHalfSizeY" @blockSize
"--blockHalfSizeZ" @blockSize "--output" Qoutput;
}

# Smooth and rescale input images for assessment processing
(imagefile out) smoothlImage(imagefile input){
app {
smoothAndRescale Q@input Qout;
}
}

# Detect edges in such a way that the total number of edge
# points is about 10% of the image mask points
(imagefile output) detectEdges(imagefile input){
app {
EdgeDetection @input "10" Qoutput;
¥
¥

# Take the input edges and the mesh containing deformation vectors at the
# vertices, and compute the alignment score
(messagefile out) runAssessment(imagefile flo_edges, imagefile ref_edges, vtkfile mesh){
app {
ResampleRunAssessmentRegion "--floating-edges" @flo_edges
"--reference-edges" Oref_edges "--metric" "rghd"
stdout=@f ilename (out) "--transform-mesh” @mesh;



# Estimate the mesh deformation based on the registration points displacements
(vtkfile meshOut) solver(volfile mesh,vtkfile bmResult, string spacing[]){

app {
solver "--mesh" @mesh "--pointFileName" @bmResult "--voxelSizeX"
spacing[0] "--voxelSizeY" spacing[1] "--voxelSizeZ" spacing[2]

"--output” CmeshQut;
}
}

# Compute block matching displacements at the registration points
(vtkfile output) blockMatching(imagefile fImage, imagefile rImage,
imagefile mask, volfile mesh, string blockSize, string windowSize, vtkfile points){
app {
blockMatchingMPI "--mesh" @mesh "--floatinglmage" @fImage "--output" Qoutput
"--mask" @mask "--blockHalfSizeX" @blockSize "--blockHalfSizeY"
@blockSize "--blockHalfSizeZ" @blockSize "--pointFileName" @points
"--referencelmage" @rlmage "--blockHalfStepX" "1" "--blockHalfStepY" "1"
"--blockHalfStepZ" "1" "--blockHalfWindowX" @windowSize
"--blockHalfWindowY" @windowSize "--blockHalfWindowZ" @windowSize;

HERBHRHHRRRHR AR ARAR B AR RBRBRRBRRHH R AR AR BR R AR RRRH R R UH

### Parameters

# - point selection

string psConnexity = "26";

string psFracVar = ".958";

string psBlockSize = "3";

# - block matching: include speculative execution for block and window sizes

string bmBlockSize[] = ["3","4"];

string bmWindowSize[] = ["7","8","9"];

# - solver: include speculative execution for the outlier percentage
string sFracRejected[] = ["0.2","0.3"]; # estimated percentage of outliers
string inputImageSpacing[] = ["0.9375","0.9375","1.5"];

# Inputs

imagefile flolImage<'"floating.nii.gz">; # floating image
imagefile refImage<'reference.nii.gz">; # reference image
imagefile maskImage<"mask.nii.gz">; # binary mask image
volfile mesh<"mesh.vol">; # tetrahedral mesh

### Intermediate files

imagefile floSmooth<"floating_smooth.nii.gz">; # result of smoothing
imagefile refSmooth<"reference_smooth.nii.gz">;

imagefile floEdges<"floating_edges.nii.gz">; # result of edge detection
imagefile refEdges<"reference_edges.nii.gz">;

vtkfile  psFlo<"psFlo.vtk">; # list of registration points

### Outputs
vtkfile deformationMesh<'"mesh_def.vtk">; # mesh with deformation vectors

### Beginning of workflow description

# filter input image
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floSmooth = smoothImage (floImage);

refSmooth = smoothImage (reflmage) ;

# detect edges

floEdges = detectEdges(floSmoothHM);

refEdges = detectEdges(refSmooth);

# identify registration points

psFlo = selectPoints(floImage, maskImage, mesh, psConnexity, psFracVar, psBlockSize);

f

# iterate through all possible combinations of block/window sizes and

# percentage of outliers

foreach blockSize in bmBlockSize {

foreach windowSize in bmWindowSize {
vtkfile bmOutput<single_file_mapper;
file=@strcat ("Results/bmOutput~",blockSize,"-" windowSize,".vtk")>;
# perform block matching
(bmOutput) = blockMatching(floImage, reflImage, maskImage, mesh,
blockSize, windowSize, psFlo);

foreach fRejected in sFracRejected {
vtkfile sOutput<single_file_mapper;file=@strcat("Results/sOutput-",
blockSize,"-",windowSize,"-",fRejected, " .vtk")>;
# perform iterative outlier rejection
(sOutput) = solver (mesh,bmOutput,inputlImageSpacing);

messagefile alignmentReport<single_file_mapper;file=@strcat("Results/score-",
blockSize,"-",windowSize,"-",fRejected, " .dat")>;

# estimate registration error

alignmentReport = runAssessment (floEdges,refEdges,sOutput);
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Appendix C

Software Tools for Local

Accuracy Alignment Estimation

This Appendix describes the developed tool for estimating the alignment error between
the two images. The accuracy assessment tool was developed jointly with Eric Billet,
and this short guide is largely based on the detailed paper describing the details of
implementation and parameter settings by Billet et al. [27].

The accuracy assessment tools are written in C+4, and are based on the function-
ality provided by the individual processing filters of Insight Toolkit [120]. The analysis
functionality is implemented in the RunAssessment tool, which accepts on input the con-
figuration file that specifies inputs and processing parameters. The parameters listed
in the configuration file are explained in Tables C.1 and C.2. Note, that the parame-
ters corresponding to each row in the tables should be available in the same line of the
configuration file.

In the calculations of GHD and RGHD, the local values of the distance are initialized
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to -100 for the edge points where the value cannot be determined for the selected analysis
parameters.

In case the ground truth deformation field is available, as it is the case for when
synthetic ground truth is used. the results of the accuracy assessment can be compared
with the ewvaluation tool we supply. This tool accepts as input local distance map
(generated by the RunAssessment tool using the HD, GHD or RGHD approach), the
ground truth deformation field, and the edges extracted from the analyzed images. All of
these are saved by the Rundssessment tool. Give this data, the evaluation tool reports

statistics on the accuracy of error estimation stored in the local distance map.
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Table C.1: Parameters for the configuration file used by the accuracy assessment tool.

parameter

explanation

suggested
value

input images

input image masks

percent of the edge voxels

output edge images

local distance map

contrast enhancement

number of threads

type of metric

the names of the files with the two images
to be compared

the names of the files with the two images
corresponding to the masks for regions of
interest in the analyzed images

an integer specifying the percentage of vox-
els of the mask image. which defines the de-
sired number of edge voxels to be detected
in the image

the names of the two files where the edges
detected from the input images should be
saved

the name of the file where the local distance
map image will be stored

a flag that defines the iimage enhancement
procedure to be used prior to edge detec-
tion. The allowed options are:

e (: no contrast enhancement

e 1: adaptive contrast enhancement [185].
Note, that this operation is very time-
consuming and for typical brain dataset
takes about an hour

e 2: histogram matching [96]. This opera-
tion is very fast, but is not as robust as the
adaptive procedure

should be adjusted to the system configu-
ration for the efficient execution of the par-
allelized processing components

should have one of the following values,
that correspond to the developed metrics
discussed in Chapter 5:

e HD: conventional local distance map
(LDMap)

e GHD: greyscale local distance map that
includes topological edge structure

e RGHD: greyscale local distance map
with robust smoothing

n/a

n/a

10

n/a

n/a

n/a




Table C.2: Parameters for the configuration file used hy the accuracy assessment tool (contin-
ued).

parameter explanation suggested
value
neighborhood radius the radius of the image neighborhood to 1

be used for construction of the greyscale
local distance image. Note, that in three
dimensions radius of 1 corresponds to the
neighborhood dimensions 3x3x3

tolerance this parameter corresponds to the value t 2
used in Chapter 5 for finding the corre-
sponding point in greyscale distance iinage
calculations

maximum deformation this parameter limits the search neighbor- n/a
hood during the search of the correspond-
ing point. This is an application-dependent
parameter that should be set based on the
expected maximum deformation.

Ot

robust statistics window tlis parameter is a non-zero integer num-
ber, which should be set only if RGHD met-
ric is used. This number defines the radius
of the neighborhood over which the robust
statistics metrics will be calculated.
robust statistics percent- a number between 0 and 1 that is used in 0.8
age robust statistics calculation. The robust
statistics window is centered around each
of the edge voxels, and initializes the local
RGHD value at that voxel based on the
robust statistics calculated over the values
of previouslv estimated GHD at the voxels
inside the window.
minimum 1umber of edge non-zero integer number that defines the
points minimum number of non-zero edge voxels
within the smoothing neighborhood to pro-
ceed with the RGHD calculations. In the
case when the number of edge points within
the smoothing window is below the speci-
fied number.
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