72 research outputs found

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Distributed Modeling Approach for Electrical and Thermal Analysis of High-Frequency Transistors

    Get PDF
    The research conducted in this dissertation is focused on developing modeling approaches for analyzing high-frequency transistors and present solutions for optimizing the device output power and gain. First, a literature review of different transistor types utilized in high-frequency regions is conducted and gallium nitride high electron mobility transistor is identified as the promising device for these bands. Different structural configurations and operating modes of these transistors are explained, and their applications are discussed. Equivalent circuit models and physics-based models are also introduced and their limitations for analyzing the small-signal and large-signal behavior of these devices are explained. Next, a model is developed to investigate the thermal properties of different semiconductor substrates. Heat dissipation issues associated with some substrate materials, such as sapphire, silicon, and silicon carbide are identified, and thinning the substrates is proposed as a preliminary solution for addressing them. This leads to a comprehensive and universal approach to increase the heat dissipation capabilities of any substrate material and 2X-3X improvement is achieved according to this novel technique. Moreover, for analyzing the electrical behavior of these devices, a small-signal model is developed to examine the operation of transistors in the linear regions. This model is obtained based on an equivalent circuit which includes the distributed effects of the device at higher frequency bands. In other words, the wave propagation effects and phase velocity mismatches are considered when developing the model. The obtained results from the developed simulation tool are then compared with the measurements and excellent agreement is achieved between the two cases, which serves as the proof for validation. Additionally, this model is extended to predict and analyze the nonlinear behavior of these transistors and the developed tool is validated according to the obtained large-signal analysis results from measurement. Based on the developed modeling approach, a novel fabrication technique is also proposed which ensures the high-frequency operability of current devices with the available fabrication technologies, without forfeiting the gain and output power. The technical details regarding this approach and a sample configuration of the electrode model for the transistor based on the proposed design are also provided

    4H-SiC Integrated circuits for high temperature and harsh environment applications

    Get PDF
    Silicon Carbide (SiC) has received a special attention in the last decades thanks to its superior electrical, mechanical and chemical proprieties. SiC is mostly used for applications where Silicon is limited, becoming a proper material for both unipolar and bipolar power device able to work under high power, high frequency and high temperature conditions. Aside from the outstanding theoretical and practical advantages still to be proved in SiC devices, the need for more accurate models for the design and optimization of these devices, along with the development of integrated circuits (ICs) on SiC is indispensable for the further success of modern power electronics. The design and development of SiC ICs has become a necessity since the high temperature operation of ICs is expected to enable important improvements in aerospace, automotive, energy production and other industrial systems. Due to the last impressive progresses in the manufacturing of high quality SiC substrates, the possibility of developing ICs applications is now feasible. SiC unipolar transistors, such as JFETs and MESFETs show a promising potential for digital ICs operating at high temperature and in harsh environments. The reported ICs on SiC have been realized so far with either a small number of elements, or with a low integration density. Therefore, this work demonstrates that by means of our SiC MESFET technology, multi-stage digital ICs fabrication containing a large number of 4H-SiC devices is feasible, accomplishing some of the most important ICs requirements. The ultimate objective is the development of SiC digital building blocks by transferring the Si CMOS topologies, hence demonstrating that the ICs SiC technology can be an important competitor of the Si ICs technology especially in application fields in which high temperature, high switching speed and harsh environment operations are required. The study starts with the current normally-on SiC MESFET CNM complete analysis of an already fabricated MESFET. It continues with the modeling and fabrication of a new planar-MESFET structure together with new epitaxial resistors specially suited for high temperature and high integration density. A novel device isolation technique never used on SiC before is approached. A fabrication process flow with three metal levels fully compatible with the CMOS technology is defined. An exhaustive experimental characterization at room and high temperature (300ºC) and Spice parameter extractions for both structures are performed. In order to design digital ICs on SiC with the previously developed devices, the current available topologies for normally-on transistors are discussed. The circuits design using Spice modeling, the process technology, the fabrication and the testing of the 4H-SiC MESFET elementary logic gates library at high temperature and high frequencies are performed. The MESFET logic gates behavior up to 300ºC is analyzed. Finally, this library has allowed us implementing complex multi-stage logic circuits with three metal levels and a process flow fully compatible with a CMOS technology. This study demonstrates that the development of important SiC digital blocks by transferring CMOS topologies (such as Master Slave Data Flip-Flop and Data-Reset Flip-Flop) is successfully achieved. Hence, demonstrating that our 4H-SiC MESFET technology enables the fabrication of mixed signal ICs capable to operate at high temperature (300ºC) and high frequencies (300kHz). We consider this study an important step ahead regarding the future ICs developments on SiC. Finally, experimental irradiations were performed on W-Schotthy diodes and mesa-MESFET devices (with the same Schottky gate than the planar SiC MESFET) in order to study their radiation hardness stability. The good radiation endurance of SiC Schottky-gate devices is proven. It is expected that the new developed devices with the same W-Schottky gate, to have a similar behavior in radiation rich environments.Postprint (published version

    Chemical vapour deposition synthetic diamond: materials, technology and applications

    Full text link
    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form, however non-planar geometries are also possible and enable a number of key applications. This article reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, based on the ability to synthesize a consistent and engineered high performance product.Comment: 51 pages, 16 figure

    Gallium nitride-based microwave high-power heterostructure field-effect transistors

    Get PDF
    The research described in this thesis has been carried out within a joint project between the Radboud Universiteit Nijmegen (RU) and the Technische Universiteit Eindhoven (TU/e) with the title: "Performance enhancement of GaN-based microwave power amplifiers: material, device and design issues". This project has been granted by the Dutch Technology Foundation STW under project number NAF 5040. The aims of this project have been to develop the technology required to grow state-of-the-art AlGaN/GaN epilayers on sapphire and semi-insulating (s.i.) SiC substrates using metal organic chemical vapor deposition (MOCVD) and to fabricate microwave (f > 1 GHz) high-power (Pout > 10 W) heterostructure field-effect transistors (HFETs) on these epitaxial films. MOCVD growth of AlGaN/GaN epilayers and material characterization has been done within the group Applied Materials Science (AMS) of RU. Research at the Opto-Electronic Devices group (OED) of TU/e has focused on both electrical characterization of AlGaN/GaN epilayers and design, process technology development, and characterization of GaN-based HFETs and CPW passive components. Although a considerable amount of work has been done during this research with respect to processing of CPW passive components on s.i. SiC substrates, this thesis focused on active AlGaN/GaN devices only. GaN is an excellent option for high-power/high-temperature microwave applications because of its high electric breakdown field (3 MV/cm) and high electron saturation velocity (1.5 x 107 cm/s). The former is a result of the wide bandgap (3.44 eV at RT) and enables the application of high supply voltages (> 50 V), which is one of the two requirements for highpower device performance. In addition, the wide bandgap allows the material to withstand much higher operating temperatures (300oC - 500oC) than can the conventional semiconductor materials such as Si, GaAs, and InP. A big advantage of GaN over SiC is the possibility to grow heterostructures, e.g. AlGaN/GaN. The resulting two-dimensional electron gas (2DEG) at the AlGaN/GaN heterojunction serves as the conductive channel. Large drain currents (> 1 A/mm), which are the second requirement for a power device, can be achieved because of the high electron sheet densities (> 1 x 1013 cm-2) and high electron saturation velocity. These material properties clearly indicate why GaN is a very suitable candidate for next-generation microwave high-power/high-temperature applications such as high-power amplifiers (HPAs) for GSM base stations, and microwave monolithic integrated circuits (MMICs) for radar systems. In this thesis we have presented the design, technology, and measurement results of n.i.d. AlGaN/GaN:Fe HFETs grown on s.i. 4H-SiC substrates by MOCVD. These devices have submicrometer T- or FP-gates with a gate length (Lg) of 0.7 µm and total gate widths (Wg) of 0.25 mm, 0.5 mm, and 1.0 mm, respectively. The 1.0 mm devices are capable of producing a maximum microwave output power (Pout) of 11.9 W at S-band (2 GHz - 4 GHz) using class AB bias conditions of VDS = 50 V and VGS = -4.65 V. It has to be noted that excellent scaling of Pout with Wg has been demonstrated. In addition, the associated power gain (Gp) ranges between 15 dB and 20 dB, and for the power added efficiency (PAE) values from 54 % up to 70 % have been obtained. These results clearly illustrate both the successful development of the MOCVD growth process, and the successful development and integration of process modules such as ohmic and Schottky contact technology, device isolation, electron beam lithography, surface passivation, and air bridge technology, into a process flow that enables the fabrication of state-of-the-art large periphery n.i.d. AlGaN/GaN:Fe HFETs on s.i. SiC substrates, which are perfectly suitable for application in e.g. HPAs at S-band

    High Efficiency Microwave Amplifiers and SiC Varactors Optimized for Dynamic Load Modulation

    Get PDF
    The increasing use of mobile networks as the main source of internet connectivity is creating challenges in the infrastructure. Customer demand is a moving target and continuous hardware developments are necessary to supply higher data rates in an environmentally sustainable and cost effective way. This thesis reviews and advances the status of realizing wideband and high efficiency power amplifiers, which will facilitate improvements in network capacity and energy efficiency. Several demonstrator PAs are proposed, analyzed, designed, and characterized: First, resistive loading at higher harmonics in wideband power amplifier design suitable for envelope tracking (ET) is proposed. A 40 dBm decade bandwidth 0.4–4.1 GHz PA is designed, with 10–15 dB gain and 40–62% drain efficiency. Its versatility is demonstrated by digital pre-distortion (DPD) linearized measurements resulting in adjacent channel leakage ratios (ACLR) lower than −46 dBc for various downlink signals (WCDMA, LTE, WiMAX). Second, a theory for class-J microwave frequency dynamic load modulation (DLM) PAs is derived. This connects transistor technology and load network requirements to enable power-scalable and bandwidth conscious designs. A 38 dBm PA is designed at 2.08 GHz, maintaining efficiencies >45% over 8 dB of output power back-off (OPBO) dynamic range. From this pre-study a fully packaged 86-W peak power version at 2.14 GHz is designed. ACLR after DPD is −46 dBc at a drain efficiency of 34%. For DLM PAs there is a need for varactors with large effective tuning range and high breakdown voltage. For this purpose, SiC Schottky diode varactors are developed with an effective tuning range of 6:1 and supporting a 3:1 tuning ratio at 36 V of RF swing. Nonlinear characterization to enable Q-factor extraction in the presence of distortion is proposed and demonstrated by multi-harmonic active source- and load-pull, offering insights to tunable network design. Third, a method to evaluate and optimize dual-RF input PAs, while catering to higher harmonic conditions and transistor parasitics, is proposed. The method is validated by a PA design having a peak power of 44 +/- 0.9 dBm and 6 dB OPBO PAE exceeding 45% over a 1–3 GHz bandwidth. The results in this thesis contribute with a novel device and analysis of high efficiency and wideband PAs, aiding in the design of key components for future energy efficient and high capacity wireless systems
    • …
    corecore