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Abstract 

The research conducted in this dissertation is focused on developing modeling 

approaches for analyzing high-frequency transistors and present solutions for optimizing the 

device output power and gain. First, a literature review of different transistor types utilized in 

high-frequency regions is conducted and gallium nitride high electron mobility transistor is 

identified as the promising device for these bands. Different structural configurations and 

operating modes of these transistors are explained, and their applications are discussed. 

Equivalent circuit models and physics-based models are also introduced and their limitations for 

analyzing the small-signal and large-signal behavior of these devices are explained. Next, a 

model is developed to investigate the thermal properties of different semiconductor substrates. 

Heat dissipation issues associated with some substrate materials, such as sapphire, silicon, and 

silicon carbide are identified, and thinning the substrates is proposed as a preliminary solution 

for addressing them. This leads to a comprehensive and universal approach to increase the heat 

dissipation capabilities of any substrate material and 2X-3X improvement is achieved according 

to this novel technique. 

Moreover, for analyzing the electrical behavior of these devices, a small-signal model is 

developed to examine the operation of transistors in the linear regions. This model is obtained 

based on an equivalent circuit which includes the distributed effects of the device at higher 

frequency bands. In other words, the wave propagation effects and phase velocity mismatches 

are considered when developing the model. The obtained results from the developed simulation 

tool are then compared with the measurements and excellent agreement is achieved between the 

two cases, which serves as the proof for validation. Additionally, this model is extended to 

predict and analyze the nonlinear behavior of these transistors and the developed tool is validated 

according to the obtained large-signal analysis results from measurement. Based on the 



 

developed modeling approach, a novel fabrication technique is also proposed which ensures the 

high-frequency operability of current devices with the available fabrication technologies, without 

forfeiting the gain and output power. The technical details regarding this approach and a sample 

configuration of the electrode model for the transistor based on the proposed design are also 

provided. 
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Chapter 1 

Introduction 

1.1 Introduction 

 Systems and devices with high output powers, operating at high-frequency bands have 

penetrated almost every aspect of the applications in the areas of wireless communications, 

remote sensing, and aerospace, to name only a few. These two features are the most critical 

properties of the devices that embody the future of many systems in achieving higher data rates. 

One of the main categories of these systems is the active microwave devices that, as the name 

indicates, is expected to operate at the microwave (MW) and millimeter-wave (mm-wave) 

frequency bands in order to meet the broad bandwidths and reconfigurability requirements. In 

general, many technologies operating at this frequency range owe their emergence and 

advancements to the material properties of gallium nitride (GaN) utilized in high electron 

mobility transistor (HEMT) devices. High saturation velocity, high electron mobility, high sheet 

carrier density, and high breakdown voltage are some of the characteristics associated with GaN 

that make it a material that meets the requirements of building high-power amplifiers (HPAs) 

capable of working at high operating frequencies. 

 These high-frequency transistors are incorporated in many of the complicated 

contemporary systems in order to drive a multitude of compact passive and active circuit 

components and elements that are accompanied by numerous discontinuity levels and 

transmission line sections. Charge transport, thermal properties, and electromagnetic-wave 

propagations are some of the topics that must be addressed in such high-performance mm-wave 

systems, and this must be conducted on more than an individual basis. The reason is mainly due 

to their diverse physical dimensions in the structure and various frequency scales and power 

levels while operating. Understanding these subject matters has offered technical cognizance to 
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enhance the device performance of mm-wave transistors for various applications in terms of 

increasing their efficiency, gain, bandwidth, and output power. 

 The gain and RF output power for mm-wave transistors are directly related to the device 

width, which signifies the direction along the device electrodes perpendicular to the flow of 

charges. At mm-wave bands, the device electrodes may act as transmission lines due to their 

large size relative to the wavelength of the guided wave inside the device. In typical transistor 

configurations, the input impedance (gate to source) and output impedance (drain to source) are 

significantly different. Consequently, the phase velocities of the propagating waves on the input 

line, gate electrode, and output line, drain electrode, will be different. This phase velocity 

mismatch, when exists, causes significant degradations in the device performance, such as 

reducing the available gain and output power and limiting the maximum operating frequency. To 

avoid the phase-cancellation effects, the fabricated device width is normally limited to at least 

less than one-twentieth of the propagating wavelength, which makes the effects of the velocity 

mismatch ignorable. Consequently, a sufficient number of transistor fingers needs to be 

incorporated in order to obtain the desired output power. Therefore, numerous interconnects are 

introduced to the device design which adds more parasitic elements to the system. Hence, in 

addition to optimizing the semiconductor structure, rearranging the electrode layouts to reduce 

the phase-velocity mismatch, increase the efficiency, and minimize the effects of discontinuities 

and signal losses, are of great importance in designing mm-wave transistors. 

In this research, three main issues associated with the operation of high-frequency 

transistors are identified and appropriate solutions are provided. The first issue is related to the 

thermal management, where the devices are not capable of sufficiently dissipating the internally 

generated heat. The second problem relates to the limitations with the developed circuit models 
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for analyzing these devices, where the required reliability and comprehensiveness are not offered 

by the modeling approaches. The last issue is about the presence of a phase velocity mismatch 

with the devices operating at mm-wave frequency bands which notably reduces the gain of the 

device and imposes fabrication limitation. These issues will be briefly explained in the following 

sections and the extended discussions will be provided in the next chapters. 

 

1.2 Thermal management and heat dissipation issues 

Transistor operations are mainly associated with different gain values and output power 

densities provided at specific frequency bands along with other figures of merit. One of the 

important factors that has a huge effect on these operating modes and needs to be studied and 

analyzed when characterizing a semiconductor device, is the operation over different temperature 

gradients. In GaN HEMTs, due to being a high-power device, a great amount of internal heat is 

generated, and it affects the electrical behavior of the transistor [1]. Hence, information about the 

maximum temperature that the device channel can handle is very vital. The generated heat in the 

channel layer is normally dissipated through the substrate layer and deciding on the optimized 

material type and structure for this layer is a very critical stage of device design and development 

[2]. 

For all types of transistors that are operating at high voltage levels, the created current in 

the output is very large which translates into the generation of high temperature gradients. These 

local hot spots that are generally in the vicinity of the gate electrode, if not cooled efficiently, 

hinder the proper operation of the device or even damage the structure of the transistor. 

Therefore, the heat handling and dissipation capabilities of the device is very important for a 

reliable transistor operation at high frequency ranges and high output power levels. The solution 
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provided in this research is associated with the thermal conductance of the substrate platform on 

which the device is grown, which leads to improvements in power handling capabilities of the 

transistor. 

For this purpose, different substrate materials and structures are modeled, and rigorous 

simulation are conducted to identify the thermal issues and present solutions. The initial material 

to be tested is sapphire which possesses specific characteristics suitable for high-frequency and 

high-power operations. However, sapphire has a low heat conductivity which gives rise to 

numerous heat dissipation issues and results in being substituted with other semiconductor 

substrates, such as silicon carbide, in many applications. This imposes some cost limitations as 

sapphire is a much cheaper option. In this research, all the simulations are conducted in 

COSMOL Multiphysics where the dimensions for the structures and the boundary conditions are 

defined according to practical experiments. The initial step for proposing a holistic fabrication 

approach for solving the heat dissipation issues with substrates is to consider utilizing thinner 

platforms in device structures. The simulation results associated with this design is promising 

and an analytical approach is also employed to further validate the obtained results. From 

practical viewpoints, the thinner substrates are achieved either prior or after the fabrication 

process. 

The heat transfer model utilized in this study is the conduction heat transfer that mainly 

relates to temperature gradients in a solid structure. For increasing the heat conduction 

coefficient, which results in a decrement in thermal resistance of the material, a selective etching 

process is utilized which is applied on the substrate from backside. The resulting configuration is 

a substrate which is comprised of materials such as silicon, sapphire, and silicon carbide and 

includes a plurality of spaced-apart heat sinks that are filled with one or more materials with high 
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heat conductivity such as copper. The etched section is generally in the shape of a truncated cone 

for facilitating the process. Practically, the filling process for the hollow etched section is 

performed through sputtering [3]. For the optimized design, the improvement for the silicon, 

silicon carbide, and sapphire substrates is 78%, 101%, and 288%, respectively. All the details 

related to the thermal modeling and optimization of the device structure will be provided in 

Chapter 3. 

 

1.3 Device analysis and distributed modeling approach 

In the recent years, there has been an increasing demand for developing high-power and 

high-frequency devices for many applications in wireless communication systems, where the 

circuit models have played a major role in optimizing the design process for advanced state-of-

the-art monolithic microwave integrated circuits (MMICs). One of the most critical features of 

the models developed for individual devices at radio frequency (RF) ranges, is the wideband 

accuracy. For the microwave and mm-wave ranges, the operation of the devices become 

distinctly different than their low-frequency counterparts and performance degradations are 

normally observed in their behavior. The developed equivalent circuit models for these operating 

bands are comprised of intrinsic- and extrinsic-level elements and the performance drop is 

generally associated with both of these sections [4]. Hence, for establishing universally-

satisfactory circuit models, which incorporate the complicated device topology, the properties of 

different materials used in fabrication, and underlying physical behavior of the device, care must 

be taken in identifying the extrinsic parasitic elements of the device interconnects and they must 

be considered as important components similar to the bias-dependent active elements. 
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The parasitic couplings of the devices operating at high frequency ranges are mainly 

referred to as linear elements which depend on the electrode structures, interconnects, and probe 

pad models. These elements are primarily extracted based on characterizing the fabricated device 

according to the measurement data. In other words, for a circuit model to be developed when 

there is a slight variation in the configuration, a new device based on the updated topology must 

be fabricated and characterized. This process is not cost-efficient and requires long processing 

times. Additionally, this procedure demands using numerical curve-fitting practices which suffer 

from convergence to physically-illogical local minima [5]. The key objective for developing a 

circuit model is to have a simulation platform that provides a tool for design optimizations before 

the fabrication stage. 

In this research, an equivalent circuit model is developed for the analysis of a GaN 

transistor for the W-band frequencies and beyond. This model is developed solely based on the 

physical structure of the device and according to the conformal mapping theorem and 

incremental inductance rule without utilizing the experimental data of the fabricated device. 

Moreover, the model incorporates the electromagnetic-wave propagation effects and wave-

particle interactions by taking advantage of the distributed concepts. This ensures that the model 

maintains its accuracy at higher frequency bands. The simulation results are provided for 

different operating modes and the model is validated by the measurement results obtained from 

the fabricated device. A brief explanation of the model development along with the preliminary 

results is presented here. 
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1.3.1 Device structure and circuit model development 

The configuration of a nitrogen-polar mm-wave GaN MISHEMT device fabricated by 

Guidry et al. is demonstrated in Fig. 1.1 [6]. The device is grown on a silicon carbide substrate 

and consists of a GaN buffer layer, an AlGaN back-barrier, a 9.3 nm GaN channel, a 2.6 nm 

AlGaN layer, and a 47 nm GaN cap. The gate stem height is 250 nm and the trapezoidal form of 

the gate top ensures the sufficient reduction of the parasitic resistance on the input electrode. The 

device has a 25 µm width for each of its fingers and the multi-finger layout of the device is 

designed based on a T-configuration. 

The frequency at which the device is operating determines the electromagnetic 

wavelength of the guided wave inside the device. At higher operating frequencies, the device 

width and the active component dimensions become comparable to the wavelength, which makes 

the lumped-element conventional small-signal equivalent circuits inaccurate for modeling, due to 

the phase velocity mismatch in the input and output. In order to take into account the wave 

propagation effects, the intrinsic equivalent circuit is combined with the transmission line 

system, called the extrinsic section, and the resulting configuration is depicted in Fig. 1.2. This 

model is a typical 19-element small-signal equivalent circuit and is considered as the unit-cell for 

the distributed model utilized at higher frequencies. In order to simplify the element extraction 

technique, a quasi-transverse electromagnetic (quasi-TEM) approximation, valid for microwave 

range operating frequencies, is also considered. The parameters are extracted as follows: 

Extrinsic Capacitance: To obtain the values for the coupled capacitors between drain, 

source, and gate electrodes, the proposed model in is simulated in COMSOL Multiphysics. This 

tool is used as the 3D Laplace solver for our equations. The conductors are considered to be 

made of gold and all the boundary conditions are defined accordingly. Since the coupling effects 
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must be observed on these elements, one of the conductors is excited with a defined voltage and 

the charge is measured on the other two conductors. The capacitance value is equal to the 

observed charge divided by the voltage. 

 

Fig. 1.1 GaN MISHEMT cross-section. 

 

 
Fig. 1.2 19-element small-signal equivalent model for high frequency transistors and the 

representative of a unit-cell for the distributed model. 
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Extrinsic Inductance: According to quasi-TEM approximation, the magnetic field 

solution around the device is not affected by the presence of III-Nitride semiconductor layers and 

the substrate under the conductors. Therefore, similar to obtaining the capacitance, the same 

device is structured in COMSOL Multiphysics without considering the semiconductor layers. 

First, the capacitance on each line is measured by exciting one electrode and observing the 

charge on that same electrode. Then, as the phase velocity is the same as the speed of light in 

free space, the inductance of each line is calculated using Equation (1.1). c is the speed of light in 

free space and L and C are the inductance and capacitance per unit width of the device, 

respectively. 

𝐿 = !
"×$!

 (1.1) 

Extrinsic Conductance: Similar to the approach implemented for finding the extrinsic 

capacitance, the device structure is arranged in COMSOL. To define the conductivity parameter 

of the semiconductor layers, carrier concentration and mobility of electrons and holes are 

considered. This parameter is mostly controlled by the characteristics of the channel layer and 

the 2DEG (two-dimensional electron gas) layer in high-frequency devices. Due to the coupling 

nature of the conductance in this model, a voltage is applied on a conductor and the current is 

observed on the other two electrodes. 

Extrinsic Resistance: The conductor loss for all the electrodes is obtained using 

Wheeler’s incremental inductance rule [7]. As the magnetic field penetrates into the electrode, an 

internal inductance is created. To obtain the value of the internal inductance, first, the external 

inductance is calculated as mentioned above. Then, all the dimensions of the conductors are 

reduced by half the skin depth and the external inductance is calculated again. The difference 
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between the external inductance of these two cases is equal to the internal inductance, which is 

multiplied by the angular frequency to give us the value of resistance on each line. 

Intrinsic Elements: The parameters for the intrinsic section of the device are also 

obtained using the already developed extraction methods as explained in [8]. These parameters 

are dependent on the bias point and represent the active characteristics of the transistor. The 

obtained values for the full small-signal equivalent model are summarized in Table 1.1. The 

parameters are provided in per-unit width of the device. 

 

Table 1.1 Small-Signal parameter values 

 
 

1.3.2 Distributed model 

The distributed model applied in this research begins with connecting N unit cells of the 

small-signal equivalent model, shown in Fig. 1.2, to represent the whole width of the device. To 

decide on the value for N, the wavelength of the propagating signal is calculated and as a rule of 

thumb, the unit cell length (ΔZ) must be at least 10 times smaller than that. The source and 

boundary conditions are then incorporated into the distributed model. For analyzing the 

governing equations to find the voltage and current values at different operating frequencies, a 
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finite-difference time-domain approach is utilized. Initially, all the parameters are set to zero and 

then all the currents and voltages are updated at each time interval. Initially, the finite difference 

method was solved based on an explicit scheme, where the current was updated first and then the 

new value for the voltage was obtained based on that [8-9]. Since the explicit method is 

potentially unstable, to satisfy the Courant stability condition and the convergence of the 

proposed method, the temporal step size, Δt, was on the order of 10−16 seconds. This value was 

very small and increased the computation time of the simulation. 

In a later study, the proposed scheme becomes an unconditionally stable implicit method. 

All the currents and voltages are defined in a coupled set of equations and to obtain the solution, 

iterative or matrix techniques are utilized, starting from initial transient states to a final steady-

state condition. The two governing relations in Equations (1.2) and (1.3) denote the behavior of 

the parameters on different lines and nodes and the implicit finite difference scheme is applied to 

them. The time step Δt for this scheme is on the order of 10−13 seconds, which makes the 

computation time become much smaller than the explicit case. 

𝑉 + 𝑅𝐼 + 𝐿 %&
%'
= 𝑉( (1.2) 

𝐼 + 𝐺𝑉 + 𝐶 %)
%'
= 0 (1.3) 

 

1.3.3 Simulation results and model validation 

Fig. 1.3 (a) depicts the current in the input and output of the device. It is obtained for a 

ΔZ of 20 µm and a temporal step size of 2e-16 seconds (explicit scheme). The input current is 

the gate current at the very first cell and the output is the current on the drain line of the last cell. 

The current gain of the device is 5.5 dB. As illustrated in this figure, it takes some time for the 

output current to start to have some values. This is the time at which the wave reaches the end of 
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the device and the calculated velocity using this time needs to satisfy the Courant condition if the 

solution is stable. 

 
Fig. 1.3 Obtained results at the input and output of the device over time. 

 

Similarly, Fig. 1.3 (b) and (c) show the input and output voltages and powers for the 

same analysis. The voltage gain and power gain are 11.7 dB and 17.2 dB, respectively. It is clear 

that the power gain is the sum of current and voltage gains. The proposed model here is merely a 



 13 

small-signal model and will not be able to handle any DC or large signal analysis. Comparing the 

obtained current gain with the results in [10] signifies a good agreement mainly in higher 

frequency ranges (6-67 GHz). 

After developing the distributed model, the boundary conditions are applied based on the 

multi-finger configuration of the device and pad layouts. The small-signal results are obtained 

under 12 V and 500 mA/mm class-AB bias condition. Fig. 1.4 and Fig. 1.5 show the comparison 

between the simulation and measurement results for the 2×25 µm GaN MISHEMT device. The 

current gain (h21), maximum available gain (MAG), and unilateral gain (U) are obtained over the 

frequency range of 0.25-67 GHz. According to the device width and the maximum operating 

frequency, using two unit-cells is sufficient for ensuring that the wave propagation effects are 

included in the model. For the case of current gain, the load impedance is set to zero and for the 

MAG, the impedance at the output is matched to the circuit. For obtaining the U gain through 

simulation, the internal feedback is ignored in the circuit model. The obtained simulation results 

have a good agreement with the measurement results, which validates the proposed method in 

this research. 

 

Fig. 1.4 Simulated (dashed) and measured (solid) current gain and MAG results over 0.25-67 
GHz. 
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Fig. 1.5 Unilateral gain comparison results over 0.25-67 GHz. 

 

For extending the small-signal model to the large-signal model, the values for the 

intrinsic elements need to be obtained for different bias points. Subsequently, the data points are 

incorporated in the FDTD code, and the results are obtained according to the applied input 

power. It is worth noting that the extrinsic elements will remain the same for different bias points 

and operating frequencies as they represent the electrode configurations and device pad layouts. 

The detailed explanation of how to account for the nonlinear effects and electromagnetic wave 

propagations, and how to solve the phase mismatch issues will be presented in Chapters 4 and 5. 

 

1.4 Optimized electrode design 

The wave propagation effects and mismatch issues have a significant impact on how the 

devices are fabricated and operated. Here is an example where these effects are explained, and a 

solution is provided. The wavelength for a wave propagating in free space at 60 GHz is equal to 

5 mm. However, for a guided wave operating at the same frequency inside a semiconductor 

device such as HEMT, since the propagation speed is almost one-third of that in free space, the 

guided wavelength becomes roughly 1.67 mm. If the device width is assumed to be equal to 0.3 

mm, since the number is not smaller than at least one-tenth of the guided wavelength, this 
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dimension becomes comparable to it. As a result, the electromagnetic-wave propagation effects 

will be significant and there will be a phase velocity mismatch at the input and output ports of 

the device. In order to have a point of comparison, the value for the current gain of the 

mentioned device operating at 60 GHz is calculated, which is equal to 3.85 dB. 

In order to assess and compare the effects of the mismatch on the device gain, the phase 

velocity is obtained on the gate and drain electrodes. First, the device is simulated in an even or 

gate excitation mode and the per-unit-width extrinsic capacitance on the gate line is calculated. 

Adding the capacitance from the intrinsic section of the model to this value yields the total 

capacitance for the even mode analysis. By incorporating the per-unit-width value for the gate 

inductance in Equation (1.4) the input phase velocity is calculated. Similarly, another simulation 

is conducted for analyzing the device in an odd or drain excitation mode condition and the 

extrinsic capacitance of the drain line is obtained and then added to the intrinsic value. 

Subsequently, the resultant capacitance and the drain inductance value is plugged in Equation 

(1.4) to obtain the phase velocity value on the drain conductor. Table 1.2 demonstrates the 

parameter values for the two analyses along with the obtained phase velocities. 

𝑣*+ =
!
√-"

 (1.4) 

 

Table 1.2 Parameter values associated with calculating the phase velocity for the even/odd mode 
analyses. 
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Clearly, there is a 43% phase velocity mismatch on the input, gate electrode, and output, 

drain electrode, which will affect the gain of the device. To improve the performance of this 

transistor, and other millimeter-wave transistors in general, the electrodes must be designed so as 

to provide matched phase velocities on the ports. In other words, the optimized electrode layouts 

will compensate for the mismatch in phase velocity induced by the intrinsic properties of the 

transistor. The proposed design approach in this work is to utilize the metamaterial concepts for 

redesigning the electrodes. The technique is to arrange the electrode layouts in some defined 

repeating patterns to enable the device to manipulate the electromagnetic waves. The transistors 

designed based on the new electrode configurations may be realized in wider fingers due to the 

matched phase velocities at the input and output ports. In other words, the electromagnetic-wave 

effects are compensated and the limitation of keeping the transistor width less than one-tenth of 

the guided wavelength is eliminated. Consequently, a much smaller number of wider devices 

will be capable of providing a certain power and the losses, discontinuities, and transistor 

footprint will be significantly reduced. 

The proposed metamaterial concept is applied to the drain electrode in order to achieve a 

matched phase velocity at the input and output ports. The aforementioned even mode analysis 

procedure is utilized for the new design and the new values are obtained for the per-unit-width 

capacitance and inductance of the drain line. The new phase velocity on the drain conductor is 

calculated and the results are presented in Table 1.3. Evidently, the new drain phase velocity is 

identical to the phase velocity of the gate electrode. The current gain for the new design is 

calculated for the device with a width of 300 µm and operating frequency of 60 GHz. This value 

increased by a factor of 130% compared to the conventional case and reached the value of 8.86 
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dB. Chapter 5 will explicitly explain how this approach is developed and an example of the 

electrode configuration will also be provided. 

 

Table 1.3 Parameter values associated with calculating the phase velocity on the metamaterial 
drain electrode. 

 
 

1.5 Dissertation objectives and motivation 

One of the major challenges in developing systems for high-frequency applications is the 

lack of accurate, comprehensive, and universally satisfactory modeling approaches. To make 

sure that the systems in 5G and 6G technologies have the required efficiency to provide enough 

output in the designated frequency ranges, every aspect of the device operation must be 

optimized. This optimization is generally performed by the modeling approaches developed for 

transistors. However, the already developed approaches have several limitations. These models 

are mainly developed after the fabrication process and the measurement results are utilized in 

obtaining the model. This is probably the most important limitation with the available modeling 

approaches. The optimization must be performed before the fabrication stage to save money, 

time, and resources. Additionally, in mm-wave ranges, the models are generally developed for a 

specific device type and frequency range and if the operating mode changes, the model does not 

yield accurate results. Hence, there is a huge demand for modeling techniques that addresses the 

mentioned limitations. 

The overall objective of this research is to develop a technique that can be utilized for 

modeling transistors regardless of the device type, operating mode, and frequency range. For this 
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purpose, the technique needs to be based on the physical structure of the device to make sure that 

any device type can be modeled using this technique and the tool is available before the 

fabrication stage. Additionally, the model needs to include some physical phenomena, specific to 

the mm-wave frequency range, to make ensure that the developed approach is accurate 

independent of the operating frequency. Moreover, to make sure that the developed model is 

comprehensive, both the electrical and thermal properties of the device must be considered in the 

process. 

 

1.6 Dissertation organization 

This dissertation is organized into six chapters. Chapter 1 introduces the background, 

problems to be addressed in this research, preliminary results, and motivations and objectives. 

Chapter 2 explains the review of relevant literature for this research related to the device types, 

different modeling approaches, and their applications. Chapter 3 presents the thermal modeling 

procedure of the transistor along with a patented fabrication technique for enhancing the heat 

dissipation capabilities of the device. Chapter 4 discusses the developed small-signal model 

along with the device analysis and model validation process. Chapter 5 presents the large-signal 

analysis of the device, and a patented fabrication technique is also demonstrated which solves the 

device limitations for operating at higher frequency bands. Lastly, chapter 6 summarizes the 

research and presents the contributions and future work. 
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Chapter 2 

Heterojunction field effect transistors 

Authors: Amirreza G. Avval, Emmanuel Larique, Samir M. El-Ghazaly 

2.1 Introduction 

A FET is essentially a semiconductor current path whose conductance is controlled by 

applying an electric field perpendicular to the current. This field and the carrier density in the 

semiconductor channel are changed by a voltage imposed on a metal gate. The more electrons in 

the channel, the higher its conductivity and better performance is obtained from the transistor. 

Moreover, with the development of heterostructure science and technology, heterojunction FETs 

now offer potential advantages in microwave, millimeter-wave, and high-speed digital integrated 

circuit applications over the former homojunction devices [1]. 

Contrary to the conventional GaAs metal semiconductor field effect transistor (MESFET) 

which has been one of the most widely used device structures for microwave applications [2], 

heterojunction field effect transistors (HFET) are more mature semiconductor components of the 

new generation of III-V transistors. Different names are used for these devices signifying the 

underlying physical mechanism or structural configuration. Examples are high electron mobility 

transistor (HEMT), selectively doped heterojunction transistor (SDHT), modulation-doped FET 

(MODFET), and two-dimensional electron gas FET (TEGFET). For convenience, only the 

HEMT types will be covered in this chapter. Despite their different names, all these components 

are based on the same physical theory. 

With the recent advancements in mobile communication applications, TV broadcasting, 

and satellite communications, microwave transistors and wide bandgap materials have been the 

area of focus for many research groups and these components play a critical role in many 

technology viewpoints. Table 2.1 presents the material properties of some microwave 
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semiconductors where the advantages of GaN semiconductor over its counterparts can be readily 

explained [3]. A high output power per unit width and high temperature operation require a 

semiconductor material with higher bandgap. This leads to fabricating compact devices that are 

easily matched when integrated with other circuit elements and the need for extra cooling will be 

either eliminated or reduced. For using a device in high power mode, a high voltage operation is 

necessary for the device, and this is fulfilled by using a material with high breakdown field. This 

will either reduce or completely eliminate the need for a step-down converter in devices. A high 

gain and high velocity are the two enabling features of the demand for a low noise device 

generally used in all types of receivers with a high dynamic range. Additionally, a high electron 

velocity in a HEMT topology will have a performance advantage of an optimum band allocation 

and it is required that the material used in the device indicate a high linearity and high frequency 

operation. All these demands and features make GaN devices be a reliable choice for many 

advanced operations [4]. 

 

Table 2.1 Properties of competing semiconductor materials [3]. 

Material Mobility Dielectric Constant Bandgap Breakdown Field Tmax 

Si 1300 11.4 1.12 0.3*106 300 °C 

GaAs 5000 13.1 1.42 0.4*106 300 °C 

4H-SiC 260 9.7 3.2 3.5*106 600 °C 

GaN 1500 9.5 3.4 2.0*106 700 °C 

 

There are many reports on GaN HEMTs operating at high frequencies as power 

amplifiers with high output power densities and power added efficiencies. Some high-power 

examples are 10.5 W/mm operating at 40 GHz [5], 13.7 W/mm at 30 GHz [6], and 41.4 W/mm 
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at 4 GHz [7]. Millimeter-wave N-polar GaN MISHEMT on SiC substrate with 6.5 W/mm power 

density operating at 94 GHz [8] and a 4.2 W/mm device at the same operating frequency 

fabricated on sapphire substrate [9] are also two reports on high frequency operations of GaN 

HEMTs. 

 

2.2 Passive and active characteristics of HEMTs 

2.2.1 Metallic passive structure 

The cross-section of a HEMT is illustrated in Fig. 2.1. Three metal electrode contacts are 

made to the surface of the semiconductor structure. These contacts are named source, gate, and 

drain. The figure shows several important geometric dimensions: L, z, Lgs, Lgd, Ls, and Ld. The 

most important dimension that characterizes the HEMT physical structure is the gate length L. 

This dimension is critical in determining the maximum frequency limits for HEMT structures. 

The cutoff frequency (ft) is given by Equation (2.1), where 𝑣( is the saturation velocity of the 

carrier. The gate width z affects the device performance significantly. It can vary from about 100 

to 2000 times the gate length. The device current is directly proportional to gate width because 

the cross-sectional area available for channel current is proportional to z. 

𝑓' =
."
/0-

 (2.1) 

The range of these dimensions used in the fabrication of HEMTs is typically identical to 

that used in MESFET fabrication, so the physical layouts of HEMTs and MESFETs are usually 

identical [10]. For both MESFETs and HEMTs a transistor referred to as a 4×75 μm device is 

composed of four gate electrodes, each being 75 μm wide. However, the important phenomena 

controlling the operation of MESFETs and HEMTs are different. Indeed, the HEMT structure is 

significantly more complex than the MESFET one. This complexity is associated with 
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fabrication difficulties, added costs, and lower yields. The primary motivation for pursuing such 

a structure is a notable improvement in the high frequency and power performance. 

 

Fig. 2.1 A HEMT structure along with important dimensions. 

 

2.2.2 Intrinsic semiconductor structure 

The heterojunction FETs are formed between semiconductors of different compositions, 

lattice constants, and bandgaps, such as AlGaN/GaN and InGaAs/InP. A schematic cross-section 

of a conventional n-AlGaN HEMT structure is shown in Fig. 2.2. Typical doping densities and 

thicknesses of the various epitaxial layers are indicated. The dimensions of both the n-type 

AlGaN and the undoped AlGaN spacer layer are critical in determining the device behavior. The 

idea of modulation doping is to separate the carriers from ionized impurities so that they can 

attain a mobility that is not affected by scattering phenomena due to crystal structure defects, 

lattice vibrations excited thermally, and impurities in the crystal [11]. To grow a device wafer, 
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several different layers are grown on a semi-insulating substrate: first, an undoped GaN layer, 

then an undoped AlGaN spacer, and finally an n-type GaN layer below the drain and source 

contacts. 

                 

Fig. 2.2 Layer structure of a conventional HEMT. 

 

With this multilayered structure, electrons are naturally transferred from the upper doped 

n-AlGaN (higher bandgap) to the lower undoped GaN layer (lower bandgap), thus forming a 

two-dimensional electron gas (2-DEG) layer with a high sheet carrier concentration at the 

heterostructure interface. Since the conduction band edge of GaN lies below the donor states in 

AlGaN, free electrons diffuse out of the donor states of AlGaN into the donor states of GaN. The 

band diagrams of the two semiconductors, with their Fermi energies Ԑf1 and Ԑf2, work functions 

𝜙1 and 𝜙2, electron affinities Χ1 and Χ2, and bandgap energies Eg1 and Eg2, are shown in Fig. 2.3, 

before and after the junction is made. The work function is the energy needed to excite an 

electron from the Fermi level into vacuum, while the electron affinity is the energy required to 

excite an electron from the bottom of the conduction band into vacuum. 
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Fig. 2.3 Electron energy band diagram before and after contact formation. 

 

The resulting electron potential energy profile suggests how charge contributed by the 

dopant atoms transfers into the GaN layer just to the right of the heterojunction. The transferred 

electrons are confined to the GaN layer due to the energy barrier at the heterointerface. In the 

design of a FET this 2-DEG layer is used as the channel region. The sheet carrier concentration 

(ns) is controlled by the application of a potential at the metal Schottky barrier gate placed on the 

n-AlGaN layer. Increasing the negative bias applied to the gate decreases the depth (in electron 

energy) of the potential well at the AlGaN/GaN boundary. Note that in the MESFET, bias on the 

gate terminal controls the depth of the undepleted channel, while in the HEMT, gate bias 

controls the carrier density. However, both of these effects result in control of the maximum 

channel current [12]. 
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The flow of channel current occurs via the drain and source ohmic contacts placed on 

either side of, and parallel to, the gate metallization. For low values of drain-to-source bias, a 

current flows from the drain to the source through the electron gas. In this case, the average 

velocity of carriers is linearly proportional to the field strength. This is demonstrated in Equation 

(2.2), where E is the electric field strength and μn is the low field electron mobility. This mobility 

is usually a strong function of doping density. For high electric field values, when the drain to 

source bias level is increased, the steady-state carrier velocity becomes limited and the current 

levels saturate. The saturation current is determined primarily by the sheet carrier density of the 

2-DEG that forms in the structure. 

𝑣 = 𝜇1𝐸 (2.2) 

For this reason, an undoped AlGaN layer between the n-type AlGaN and undoped GaN is 

added [13]. This layer is referred to as a spacer layer and serves to separate the electrons flowing 

in the 2-DEG from the dopant ions in the wide-bandgap material. Without such a layer, electrons 

in the 2-DEG may collide with an ionized doping impurity. These collisions are termed 

scattering events and have the effect of temporarily randomizing the direction of movements for 

the particles. Then again, the electric field begins to accelerate the particles until the next 

scattering event occurs. This scattering reduces electron mobility and, therefore, diminishes the 

effect exploited in the device. Fig. 2.4 presents the classical I-V characteristics of a 4×75 μm 

HEMT. 

So far only the conventional AlGaN/GaN HEMT has been considered. However, to 

obtain better noise and power performances, pseudomorphic HEMTs are now often used. One 

way of improving the performance of the HEMT is to use InGaN as the two-dimensional 

electron gas channel material instead of GaN. The benefits of using a thin InGaN layer as the 
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pseudomorphic channel in a HEMT include the enhanced electron transport in InGaN compared 

with GaN, improved confinement of carriers in the quantum well channel, and the layer 

conduction band discontinuity at the AlGaN/InGaN heterointerface which allows even higher 

sheet charge density and, hence, higher current density and transconductance than is possible 

with an AlGaN/GaN conventional HEMT. As seen in Fig. 2.5, the GaN-based pseudomorphic 

HEMT differs from the conventional AlGaN/GaN HEMT in that a thin layer of InGaN is 

inserted between the doped AlGaN barrier layer and the GaN buffer. There is a lattice constant 

mismatch between the InGaN channel layer and the AlGaN donor and GaN buffer layers, but the 

strain from this lattice mismatch is taken up entirely in the thin InGaN quantum well. 

 

Fig. 2.4 I-V characteristics for the conventional HEMT. 

 

2.2.3 Schottky and ohmic contacts 

Connections between the bulk semiconductor and other electrical components or 

equipment are established via a number of different types of semiconductor contacts. The 
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properties of these contacts are as critical to overall device performance as the properties of the 

semiconductor. 

 

Fig. 2.5 Layer structure of a pseudomorphic HEMT. 

 

Schottky gate contact: These junctions are special cases of the more general class of 

metal-semiconductor contacts. The current-voltage characteristics of these junctions are very 

similar to that of a p-n junction, although there are important differences in the mechanism of 

current flow and carrier type participation. Both electrons and holes contribute to the current in 

p-n junctions, whereas Schottky diodes are unipolar devices. Fig. 2.6 shows the equilibrium band 

diagram of a metal of work function 𝜙m and an n-type semiconductor of work function 𝜙s. The 

electron affinity of the semiconductor, measured in energy from the edge of the conduction band 

to the vacuum level, is Χs [14]. It is assumed that the Fermi level in the metal is lower than that 

of the semiconductor. 

When a contact is made between the metal and the semiconductor, electrons are 

transferred from the semiconductor to the metal until the Fermi levels are aligned. The current in 

the metal-semiconductor contact under bias is determined by the flow of electrons from 
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semiconductor to metal and vice-versa. When the metal is biased positively with respect to the 

semiconductor, the barrier from the semiconductor to the metal is lowered and the electron flow 

from semiconductor to metal is enhanced. Under reverse bias the barrier increases and the 

probability of an electron moving into the metal decreases. Finally, applying an appropriate bias 

voltage can effectively control the 2-DEG sheet charge concentration. Moreover, for an 

appropriately selected n-AlGaN thickness, the maximum 2-DEG sheet carrier concentration (nso) 

can be realized with the application of a gate bias voltage. It would maintain the borderline 

between the state of a complete depletion and the onset of the carrier conduction in the n-AlGaN 

layer under the gate electrodes. 

 

Fig. 2.6 Electron energy band diagram for a Schottky contact. 

 

Ohmic drain and source contacts: The electron energy band diagram for a metal-

semiconductor junction with 𝜙s > 𝜙m is shown in Fig. 2.7. The electrical characteristics of an 

ideal ohmic contact are purely resistive in nature. This means that the current through the contact 

is linearly proportional to the voltage drop across it. Good ohmic contacts to semiconductor 

devices are essential for the realization of near-ideal device performances. The common 

technique to form reliable ohmic contacts is to heavily dope the region under the metal contact. It 
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serves the purpose of preventing oxidation of the AlGaN layer and of reducing the parasitic 

source resistance by providing a conduction path parallel to the 2-DEG. 

 

Fig. 2.7 Electron energy band diagram for an ohmic contact. 

 

2.2.4 Fabrication of heterojunction FETs 

These high-speed device structures are most commonly prepared by molecular beam 

epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD) because of the high 

degree of compositional and dimensional control coupled with the precise placement of donors. 

The HEMT material quality is affected mainly by impurities, defects, heterointerface roughness, 

and compositional mismatch strain. High material quality and optimal layer design are the keys 

to achieve good device performance. For a successful monolithic integration of digital or 

microwave HEMTs, surface morphology, layer thickness, and doping uniformity should also be 

well controlled. 

The growth by MBE is accomplished under non-equilibrium conditions and is principally 

governed by surface processes. MBE is a controlled thermal evaporation process under ultrahigh 

vacuum conditions. It is achieved by the evaporation or sublimation of heated sources, such as 
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aluminum, gallium, and arsenic, thereby forming molecular beams that impinge on a heated 

substrate such as GaN. The layer composition and doping level are controlled by the molecular 

beam fluxes and hence the temperature of the cells. The MOCVD growth technique has emerged 

as being technologically important for the production of single layers, heterojunctions, and 

quantum well structures with excellent control over layer thickness and doping and the 

achievement of hyper-abrupt isotype and anisotype junctions. The main advantages of MOCVD 

are high throughput and multilayer growth. Other than the MBE and MOCVD technologies, 

another technology for HEMT growth is metal-organic molecular beam. This new growth 

technique combines the advantages of MOCVD and MBE. 

 

2.3 New design of AlGaN/GaN HEMT 

There are two different polarizations for a GaN crystal. Fig. 2.8 shows the atomic 

structure for N and Ga polarizations [15]. In N-polar heterostructures the electric field induced 

through the polarization is in the opposite direction of this field in Ga-polar configuration. This 

results in formation of a 2-DEG in the N-polar structure which is above the wide bandgap 

AlGaN shown in Fig. 2.9 [16]. In GaN HEMT structure with N polarity, the first layer of GaN 

will be deposited on the substrate to account for the buffer layer. The next AlGaN or AlN layer is 

the barrier layer and the other GaN layer comes on top as the channel layer. The reduction in 

effective gate-channel length is a result of fabricating the N-polar GaN HEMTs which leads to 

scaling shorter gate lengths. Additionally, as the channel layer has a narrower bandgap and low 

barrier to electrons, the contact to 2-DEG is made through here and a low contact resistance can 

be obtained [16]. Furthermore, the presence of AlGaN barrier reduces the short channel effects in 

N-polar devices. 
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Fig. 2.8 Atomic structure for Ga-polar and N-polar GaN [15]. 

 

 

Fig. 2.9 Energy band diagram of Ga-polar and N-polar heterostructures [16]. 

 

A new GaN HEMT design is presented in Fig. 2.10 [17]. The current is maximized by 

high mobility along with large electron densities. A layer of AlxGa1-xN is combined with a cap 

and a gate dielectric so as to minimize gate leakage and have a high breakdown voltage. The 

substrate used here is SiC with a good heat conductivity and mechanical strength. The intrinsic 

device performance is sometimes degraded in higher frequencies. This is mainly due to parasitic 

resistances formed at very thin gate lengths. Therefore, the gate in this configuration is made in a 
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mushroom or T shape configuration in order to increase the cross-sectional area that carries the 

current which results in the reduction in resistance. A higher power added efficiency and output 

power densities are obtained using this device compared to the conventional HEMT structures 

[17]. 

 

Fig. 2.10 The cross-section of a new N-polar HEMT design [17]. 

 

2.4 HEMT modeling 

A great number of different semiconductor device models exist. The most usually 

employed is certainly the equivalent circuit model, which is based on the electrical performance 

of the device at its external terminals. There are two main advantages of equivalent circuit 

models. First, they are easy to implement in circuit design and analysis procedures. Most 

computer-aided design (CAD) tools used today can only accept circuit models because most 
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models were initially developed to model the circuit's electrical properties at low alternating 

current or radio frequencies. The second, and the most important, advantage of equivalent circuit 

models is the computational efficiency. This is a very important factor, particularly for circuit 

optimization, where several simulation iterations are required for the analysis of large-scale 

integrated circuits. Some numerical methods have shown a good compatibility with most of these 

circuit models [18]. This topic has been thoroughly discussed and different approaches are 

evaluated throughout the chapters of this dissertation. 

 

2.4.1 Electrical equivalent models 

Two types of models have been developed: small-signal and large-signal model. 

Small-signal model: HEMT models provide a link between measured S parameters and 

electrical processes occurring within the device. From the section view in Fig. 2.11, which shows 

the physical origin of the circuit, we can obtain the model topology in Fig. 2.12, where each 

element provides a lumped element approximation to some aspects of the device. Although other 

circuit topologies involving additional elements have been described in the literature, this 

topology developed for microstrip technology has been shown to provide an excellent match to 

measure S-parameters through 30 GHz [19]. 

Basically, this conventional small-signal equivalent circuit can be divided into two parts: 

the intrinsic elements, which are functions of the biasing conditions, and the extrinsic elements 

that are independent of the biasing conditions. The transconductance, gm, varies directly with the 

gain. It is a measure of the incremental change in the output current Ids for a given change in 

input voltage Vgs, at constant Vds (Equation (2.3)). 
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Fig. 2.11 Physical origin of the equivalent circuit model for HEMT. 

 

 

Fig. 2.12 Small-signal HEMT model. 

 

The conductance, Gd, is a measure of the incremental change in output current Ids for a 

given change in output voltage Vds, at constant Vgs (Equation (2.4)). 
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The capacitances Cgs and Cgd model the change in the depletion charge under the gate 

with respect to the gate-source and gate-drain voltages, respectively (Equations (2.5) and (2.6)). 
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Cds takes into account the electromagnetic coupling between the highly doped regions 

under the source and drain contacts. Ri and Rgd represent the channel resistances. Lg, Ld, and Ls 

arise primarily from metal contact pads deposited on the device surface. In microstrip technology 

Ls is due to via-holes. Rs and Rd account for the contact resistances of the ohmic contacts as well 

as any bulk resistance leading up to the active channel. The gate resistance Rg results from the 

metallization resistance of the gate Schottky contact. Cpg and Cpd are the pad capacitances of the 

HEMT and depend on the calibration measurements realized to characterize the transistor. 

Combined with Lg and Ld inductances, they provide a simple representation for the metal contact 

pads. 

Large-signal model: The complete topology of the classical nonlinear model is shown in 

Fig. 2.13. Compared with the previous model in Fig. 2.12, several elements have been added or 

modified so as to take into account the bias dependency. The drain-source current, Ids, is 

controlled by voltages Vgs and Vds and is the main transistor nonlinearity. A mathematical 

function including adjustable parameters approximates some I-V measurements. A time constant 

τ represents the electron transit time under the gate. Two diodes Igs and Igd characterize the input 

gate current. They are also modeled by analytical expression. On the other hand, reactive 

nonlinearities are extracted from S-parameter measurements. Ri, Rgd, τ, and Cds are usually 

independent of the gate and drain excitation voltages, while Cgs and Cgd are highly dependent on 
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the gate and drain excitation voltages, so it is very important to consider these elements to be 

nonlinear. These capacitances are mainly described by analytical model. Cgs and Cgd are 

controlled by voltages Vgs and Vgd, respectively. 

 

Fig. 2.13 Large signal HEMT model. 

 

For high-frequency applications, equivalent circuit models become increasingly complex 

to describe accurately the operation of the device. In most cases, the circuit elements have a 

strong dependence on operating conditions. The bias conditions, operating frequency, 

temperature, and signal level influence the values of equivalent circuit elements. This limits the 

usefulness of these models. Another major problem associated with equivalent circuit models is 

the fact that it is difficult to relate circuit element values to physical and process parameters, such 

as device geometry, doping profile carrier types, and mobility. Consequently, it is practically 

impossible to use equivalent circuit models to design and develop new types of devices. In these 

cases, it is necessary to use physics-based models. 

Limitations of the electrical equivalent model: In all equivalent circuit models, there is 

an underlying assumption that separates the electronic physics inside the device from the 
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electromagnetic wave propagation. While this assumption is acceptable at radio frequencies and 

the lower end of microwave range, it is no longer obvious at the high end of the microwave 

frequency range and the millimeter wave range for several reasons: 

(I) Device dimensions become comparable with the electromagnetic wavelength and 

distributed effects due to wave propagation become important and must be 

accounted for in the model. This can be achieved only with a full-wave modeling 

technique. 

(II) The electromagnetic wave period becomes of the same order as the charge carrier 

transit time and relaxation times. Consequently, the coupling between the 

electromagnetic wave and the charge carriers becomes important in carrier 

transport and the transient response of the devices. 

(III) Under large-signal operation conditions, time-varying fields can be large 

compared to DC bias fields. The wave-particle interaction is highly nonlinear and 

involves multi-frequency conversion and the generation of several harmonics. 

Hence, accurate analysis of circuit-device interactions requires simulations over 

very wide frequency bands in order to detect all the relevant harmonics content 

that affects the circuit performance. This reinforces the need for full-wave 

electromagnetic device models. 

 

2.4.2 Physics-based models 

In contrast to equivalent circuit models, physical models are based on the physics of 

carrier transport inside the device. These models can provide better insight and understanding of 

the device operation under different operating conditions. Physical models also provide a link 
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between physical and process parameters (doping profile, gate length, recessed gate depth, etc.) 

and electrical performance parameters (DC characteristics, RF transconductance, junction 

capacitances, etc.). For these reasons, physical device models should be essential tools, not only 

in the development of new devices, but also in performance and yield optimizations of 

microwave circuit design. The major limitation of such models, however, is that they are 

computationally intensive, preventing their direct use in circuit design. In most cases, it is 

inevitable to introduce simplifying assumptions in order to make the model computationally 

tractable. 

The most commonly used physics-based models can be classified into two categories: 

particle-based models and fluid-based or hydrodynamic models. The first category is represented 

by the Monte-Carlo technique. The second is based on a set of conservation or continuity 

equations that can be derived from the Boltzmann transport equation (BTE). These models 

usually involve several approximations that vary from the simplest to the more complex: 

analytical models, drift-diffusion models, energy models, and full-hydrodynamic models. Up 

until the 1970s semiconductor devices were well modeled with the drift-diffusion transport 

approach. This approach includes a drift velocity controlled by the electric field and carrier 

diffusion density gradients. In a spatially homogeneous system, it reduces to Ohm's law for low 

electric fields. It assumes that the microscopic distribution of momentum and energy over the 

charge carriers at any location and time inside the device is equal to which one would find in a 

large sample with a DC field equal to the local instantaneous field. 

The assumptions in the drift-diffusion model, however, break down for submicron 

devices, where carrier transport is predominantly nonstationary. For small-signal devices with 

gate lengths of less than 0.5 μm nonstationary transport effects, such as hot electron effects and 
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velocity over-shoot, become very important and must be accounted for in the device model. 

Semi-classical device models have been developed to include energy and momentum relaxation 

effects while at the same time providing computationally efficient models. These models deal 

with charge carriers as classical particles whose motion properties, such as effective mass and 

scattering effects, are derived from quantum models. 

Attempts to develop simpler models that can take into account the nonstationary effects 

such as velocity over-shoot have culminated in the formulation of the hydrodynamic model. This 

model consists of the set of coupled and highly nonlinear conservation equations derived from 

the zero, first, and second order moments of the Boltzmann transport equation. An alternative to 

these previous models is a full-wave electromagnetic analysis of the passive distributed metallic 

part of the transistor combined with a physics-based device simulation used to characterize the 

active contribution of the component. This approach is known as the global modeling of circuits. 

 

2.5 HEMT applications 

The main characteristics of HEMTs are: 

• high electron mobility 

• small source resistance 

• high cutoff frequency (ft) due to high electron velocity in large electric fields 

• high transconductance due to small gate to channel separation 

• high output resistance 

• high Schottky barrier height due to deposition of Schottky metal on AlGaN instead of on 

GaN 



 41 

By using these characteristics engineers have developed a great number of microwave 

circuit applications. A list of applications where heterojunction FETs have enabled some 

improvements is discussed below: 

• Low-noise and small-signal amplifiers (LNA) are circuits designed to operate as linear 

gain blocks, with specific requirements determined by their location within the system. 

They are typically operated at input power levels well below power saturation and may 

keep the overall system noise figure small [20]. 

• Power amplifiers are typically used in communication systems to provide sufficient 

signal power to allow transmission from one site to another. They are usually designed 

for maximum efficiency rather than linearity or low noise. 

• Oscillators are used to perform frequency conversion of a desired signal. To obtain 

extremely low noise HEMT oscillators, the dielectric resonator is integrated for 

stabilization [21]. 

• Mixers are three-port devices that function to convert an input RF signal in conjunction 

with LO signal to an intermediate signal IF. The IF signal may be either the sum or the 

difference between LO and RF signals. Ideally, a mixer performs this frequency 

conversion with perfect fidelity, without intermodulation distortion, with high isolation 

between all three ports and a low noise figure. 

• HEMTs can also be used in a variable attenuator, which is defined as a two-port device 

that allows adjustment of the signal amplitude by application of an external voltage or 

current. 
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2.6 Conclusion 

The analysis of device performance and structural characteristics of high electron 

mobility transistors have been discussed in this chapter. Based on the available literature, GaN 

seems to be the reliable choice to be used as the active section in HEMT devices offering a high 

output power density, high operational frequency, and satisfactory power added efficiency. The 

typical thicknesses and doping densities for different layers are provided and the formation of 

contacts are explained. Layer growth methods are briefly discussed and a new HEMT device 

along with the structural modifications is described. Furthermore, a small-signal model is 

depicted to account for the equivalent circuit in a frequency range lower than 30 GHz. The 

limitations for the small-signal model are also explained and a description of physical-based 

models are presented. Last but not the least, some general HEMT applications are discussed both 

for high and low operating frequencies. Performance characteristics reported in this article for 

microwave and millimeter-wave heterojunction FETs continue to improve. Minimum noise 

figures are reduced, while the frequencies of operation and maximum output powers are 

increased. These factors ensure that interest in HEMT will continue for a long time. 
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Chapter 3 

Apparatus and method to reduce the thermal resistance of semiconductor substrates 

Authors: Amirreza G. Avval, Shui-Qing Yu, Gregory J. Salamo, Samir M. El-Ghazaly 

3.1 Introduction 

Any type of circuit component that has the ability to electrically control the electron flow 

is called a switch. The switch may depend on an active device in its operation [1]. Some of these 

active devices allow a voltage to control the current flow through them while some devices do 

the job by another controlling current signal. In these types of switches, electricity is controlling 

the electricity. These two categories of switches are commonly referred to as voltage-controlled 

devices and current-controlled devices, respectively. Vacuum tubes, transistors, diodes, and 

silicon-controlled rectifiers are some of the examples of active devices [2-3]. Initially, transistors 

were made as current-controlled devices, but voltage-controlled transistors were also developed 

thereafter. 

Different terms are used for these transistors, such as bipolar junction transistor (BJT) 

[4], field-effect transistor (FET) [5], metal-oxide-semiconductor FET (MOSFET) [6], metal-

semiconductor FET (MESFET) [7], heterojunction bipolar transistor (HBT) [8], and high 

electron mobility transistor (HEMT). The terms mark the structural configurations and physical 

mechanisms associated with these devices, which demonstrate the fundamental settings for the 

operation. These devices are often developed for high-speed, low-noise, or high-power 

applications such as small-signal amplifiers [9], power amplifiers, mixers [10], and oscillators 

[11] operating over a wide frequency range. The other category of applications is the RF circuits 

and systems, where the devices are used in cellular communications and RADARs in an 

integrated circuit configuration. 
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The main solid-state materials for designing high-performance transistors and power 

amplifiers are Silicon (Si), Gallium Arsenide (GaAs), Silicon Germanium (SiGe), Aluminum 

Gallium Nitride (AlGaN), Silicon Carbide (SiC), and Gallium Nitride (GaN). These are used for 

the formation of channel layers, buffer layers, and substrates in most transistor devices. Devices 

and circuits that are based on silicon are the forerunners of all semiconductor devices. However, 

the recent upsurge in wireless communication applications, 5G technology, electric cars, solar 

cells, and power switches, demands high-frequency operations, high power handling, and high-

temperature performance of the devices where silicon may not be able to fulfill the needs. This is 

one of the reasons for the recent focus of many research groups on some wide-bandgap 

semiconductors. 

These devices are mainly characterized by the operating frequency, output power density, 

and power-added efficiency. However, for a thorough characterization of semiconductor devices, 

the study of device operation over different temperature ranges is also very vital, especially for 

high power devices such as GaN-based HEMTs, where a great amount of heat is generated 

which affects the underlying physics of the device [12]. It is therefore very important to 

determine what the maximum channel temperature is under specific operating modes. Hence, 

other than the materials chosen for the active layers, deciding on the best option for the 

semiconductor substrate is also very critical, for it serves as the layer where the generated heat in 

the channel layer is dissipated. For a device operating at a high-voltage level, the output current 

is very large which, consequently, generates a high temperature gradient. This temperature may 

either damage the device or prevent it from functioning properly, if the heat dissipation does not 

happen efficiently. Therefore, for a reliable device operating at high frequencies with a high 
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output power density, thermal management and heat handling are very important in the design 

process [13]. 

The present chapter provides a method, system, approach, and solution that increases the 

thermal conductance of a power semiconductor device that generates internal heat in the channel 

layer which needs to be dissipated through the substrate. This results in improving the power 

handling capabilities of semiconductor devices. A novel semiconductor substrate is introduced 

which is made of a first material including a plurality of spaced-apart depressions and an area 

surrounding the depressions filled with one or more materials having a heat conductivity greater 

than the first material. 

 

3.2 Substrate modeling 

Sapphire is a material that possesses high heat resistance, good electrical insulation, low 

dielectric loss, and stable dielectric constant which makes it a reliable candidate to be used as an 

insulating substrate in high-frequency transistors. In almost all high-power, high-frequency 

devices that are fabricated on a sapphire substrate, heat conductivity has been identified as an 

issue. This has limited the device operation at higher output power densities and some research 

groups have replaced it with other semi-insulating substrates. In [14], the proposed HEMT 

device is deposited on sapphire which operates at 94 GHz with an output power density of 2.9 

W/mm. The authors have mentioned some limitations for the operation at higher powers 

pertaining to thermal management and replaced the substrate in another report with SiC [15], 

where the operating frequency is the same and the power density has improved to 6.5 W/mm. 

This limitation is based on the fact that thermal conductivity of sapphire is lower compared to 



 48 

SiC [16]. However, compared to SiC, sapphire is much cheaper and available in different sizes 

and thicknesses that makes it a very cost-efficient choice. 

To solve the thermal conductivity problem of sapphire substrates and provide a holistic 

optimization method, a fabrication technique is proposed. Fig. 3.1 shows a substrate for solid-

state amplifiers in a cylinder-shaped configuration. The upper cylinder is made of sapphire and 

the lower part is the metallization section made of copper. Table 3.1 indicates the thermal 

properties of the two materials. The radius for the cylinders’ cross-section is 1000 μm, the height 

of the sapphire cylinder 500 μm, and the height of the copper cylinder is 10 μm. 

A 1×100 μm rectangle is considered on top of the cross-section where a single-finger high-

frequency transistor is deposited. The lower face of the cylinder has a fixed-temperature 

boundary condition, and is set to 293.15 K. All the other faces have a convective heat flux 

density boundary condition based on Equation (3.1), where Text is equal to 293.15 K and h, the 

heat transfer coefficient, equals 20 W/m2K. All the simulations are conducted using COMSOL 

Multiphysics. 

𝑄9 = ℎ × (𝑇:;' − 𝑇) (3.1) 

To test the heat dissipation capabilities of the sapphire substrate, a power of 1 W is 

applied to the rectangular section and the heat distribution results are depicted in Fig. 3.2. The 

bar at the right side of the figure indicates the temperature in Kelvin. Looking at the temperature 

gradient profile of this configuration, the maximum temperature of roughly 1080 K is seen at the 

top surface of the sapphire wafer. This high temperature is a result of low thermal conductivity 

of sapphire, and this substrate is not able to dissipate the generated heat. For a HEMT device 

operating at high frequencies, transconductance and drain current are the two vital figures of 

merit which are greatly affected by high temperature gradients. It should also be noted that the 



 49 

thermal stability of sapphire is very high, and this temperature does not damage the structure of 

the wafer. 

 
Fig. 3.1 Sapphire substrate with copper metallization. 

 

Table 3.1 Thermal properties of sapphire and copper 

Material Thermal conductivity (W/m.K) Density (Kg/m3) Heat capacity (J/Kg.K) 

Sapphire 25.2 3980 761 

Copper 385 8940 385 

 

To find a solution, the same simulation is conducted on a thinner substrate. This time the 

sapphire wafer thickness is 100 μm and all the other dimensions stays the same as the previous 

case. The results of this case are shown in Fig. 3.3. The maximum temperature is now 1045 K 

and a subtle decrease in temperature is seen for the thinner substrate. For proving that the results 

obtained from simulation are correct, an approximate analytical approach is proposed. First, the 

thermal resistivity of the cylinder is calculated based on Equation (3.2), where σ is the thermal 

conductivity, l is the thickness of the wafer, and A is the area of the section where the power is 

applied. Using the value for the power or the dissipated heat (Q) inside the substrate, the 

temperature is calculated according to Equation (3.3), where ΔT is the temperature difference 
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between the top surface, where the temperature is maximum, and the fixed-temperature boundary 

condition at the bottom. 

𝑅 = 𝑙/𝜎𝐴 (3.2) 

Δ𝑇 = 𝑄 × 𝑅 (3.3) 

 
Fig. 3.2 Temperature distribution for a 500 μm sapphire substrate with copper metallization (P = 

1 W). 

 

 
Fig. 3.3 Temperature distribution for a 100 μm sapphire substrate with copper metallization (P = 

1 W). 

 

Based on this analytical method, the maximum temperature for the sapphire with the 

thickness of 500 μm and 100 μm are 1165 K and 962 K, respectively. These two figures indicate 

a maximum temperature difference of 203 K, which may be considered quite significant 
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depending on specific applications. This became the initial stage for developing the holistic 

optimization approach and the proposed method seemed to be able to solve the issue of high 

temperature gradients for the case of devices on sapphire wafers and allow sapphire substrates to 

be utilized in higher power densities and frequencies. 

Thinning down the wafer to a thickness of 100 μm or thinner is feasible and is done in 

two ways. The first procedure is applied subsequent to fabrication. The active device is deposited 

on the substrate and after that, the substrate is ground to the desired thickness starting at the 

backside of the wafer. The next method is prior to fabrication where a thinner substrate is used 

for the fabrication process. This substrate is fragile and may not bear the pressure of depositing 

solid-state materials. However, this issue is solved by a layer of thick metal sputtered on the 

backside of the wafer, such as titanium or copper, which provides a mechanical strength to the 

wafer. 

 

3.3 Description of the proposed solution 

The electrical current flow through the channel layer of a power semiconductor device 

leads to generation of a substantial amount of internal heat in an operating environment. The 

internally generated heat has to be removed properly. Otherwise, the temperature for the 

junctions of the semiconductor device would rise to values that may result in degradation of the 

device operation or catastrophic damage to the active region. To maintain the junction 

temperature below the maximum allowed values for a semiconductor device, the substrate must 

have the ability to dissipate the heat by facilitating and enabling the heat flow away from the 

device. 
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The heat transfer model discussed herein is the conduction heat transfer which occurs due 

to temperature gradients in a body. As shown in Fig. 3.4, the conductive heat energy is 

transferred from a hot surface (Face 100) to a cold surface (Face 102). The temperature of the 

object mainly depends on the separation between the two faces and its thermal conductivity. 

Heat transfer rate by conduction through the object can be expressed as Equation (3.4), where A 

is the cross-sectional area of the object, L is the distance between the two faces or the wall 

thickness, ΔT is the temperature difference between the two surfaces, and k is the thermal 

conductivity for the material in W/mK. A parameter called the thermal resistance of the material 

is defined which depends upon the thermal conductivity of the material, material thickness, and 

object area. This parameter is represented according to Equation (3.5). Obviously, the resistance 

can be decreased by increasing the thermal conductivity of the material. 

𝑃 = <=
-
× ∆𝑇 (3.4) 

𝑅" =
-
<=

 (3.5) 

 
Fig. 3.4 Conductive heat flow in an object. 
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Silicon, sapphire, and silicon carbide are examples of semiconductor substrates that are 

used in fabrication of power devices. Most of these power devices have the functionality of 

amplification and thus a great amount of current flows through them. This current will lead to 

generation of high-temperature gradients and the substrate must have the capability of dissipating 

this heat either to the metallization on the backside or any heat sink mounted on the device. Fig. 

3.5 shows an example of the path for the heat flow in a HEMT device. As shown, heat flows 

from channel (220) into the substrate (250), through interlayer (230) and back-barrier (240). 

 

Fig. 3.5 Heat flow path in a GaN HEMT device. 

 

3.4 Heat distribution results 

To study the heat dissipation capabilities of this substrate, another simulation was 

conducted in COMSOL Multiphysics. Fig. 3.6 shows the substrate (300) under test. The 

difference between this configuration and the one shown in Fig. 3.1 is that the material for the 

substrate is silicon and an area of 100×100 μm is considered on top as the section where the 

electric power is applied, which also represents the spot where the multi-finger active device is 
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placed. The lower face (310) is coated with a very thin layer of copper and the same boundary 

conditions are considered. One watt of power is applied to section (350) on top and the 

temperature distribution results are obtained. Fig. 3.7 shows the heat distribution inside the 

substrate. The maximum temperature at point (350) where the power is applied, and the device is 

mounted on is roughly 330 K. It is understood that applying a power of 1 W is not the practical 

case and this is assumed only for the sake of this simulation. However, as many substrates are 

incapable of dissipating the required heat in many devices, this has been a limitation for many 

research groups dealing with high power circuits. 

 

Fig. 3.6 Silicon substrate simulated in COMSOL. 

 

 

Fig. 3.7 Heat distribution in silicon substrate. 
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As discussed earlier, increasing the heat conduction coefficient of an object will result in 

a reduction in thermal resistance of the material. For this purpose, a selective etching process on 

the substrate from the backside is performed. The etching process of microfabrication is defined 

as chemically removing layers from the surface of a wafer during manufacturing [17]. Part of the 

wafer is protected from the etchant by a masking material which resists etching. According to the 

material being used as the substrate, different etching techniques might be used. In wet etching, 

the wafer is immersed in a bath of etchant [18], while in plasma etching, energetic free radicals 

are produced that react at the surface of the wafer [19]. 

There are two figures of merit for the etching process. Selectivity that deals with the 

ability of the etchant to remove the top layer of a multilayer structure without damaging the 

masking or underlying layers and isotropy that defines the direction for the etching process. As 

shown in Fig. 3.5, a semiconductor device (200) comprising a substrate (250) made of a first 

material (270) is provided. Substrate (250) includes a heat sink comprised of a plurality of 

spaced-apart truncated cones (280-285). Truncated cones (280-285) are filled with one or more 

second materials having a heat conductivity greater than first material (270). The second material 

may be comprised of a single material such as copper. 

Fig. 3.8 shows that the substrate (500) is etched to form a truncated cone shape (510), but 

other shapes such as cylinders, circles, and squares may also be used to form depressions 

consisting of etched away material which is filled with highly conductive materials. A truncated 

cone is preferred because it does not require a high figure of merit for the etching process and 

removing a shape with a slope like a truncated cone is pretty straightforward. 

Substrate (500) may be made of Silicon, Gallium Arsenide, Silicon Germanium, Aluminum 

Gallium Nitride, Silicon Carbide, Gallium Nitride or a combination of these materials. 
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Fig. 3.8 Truncated cone shape etched into the silicon substrate. 

 

A consideration behind choosing a truncated cone shape as the etched section is dictated 

by the present etching technology and its methodologies. A cylinder shape as the etched section 

may be used but there are a couple of drawbacks associated with this configuration: 1) In order 

to have an etched section in the shape of a cylinder, a hole needs to be drilled in the back of the 

substrate and today's technology is not capable of drilling on robust substrates such as sapphire. 

Therefore, in this case, the proposed method will lose its generality for all the substrate materials. 

2) Even assuming that drilling a hole on the back of the substrate is practicable, the process of 

filling the etched section with a satisfactory conductor, which is normally done through 

sputtering, will not be feasible. 

Additionally, robustness is one of the characteristics of the general substrates and 

platforms used in high-frequency devices and this feature is very prominent for sapphire 

material. However, when considering the case of etching a 500-micron substrate up to 490 

microns, the section with a thickness of 10 microns will not have enough mechanical strength 



 57 

and may easily break during the etching process. In this case, having a truncated cone shape will 

provide sufficient mechanical support on the sides which prevents this breakage. 

Moreover, etching a truncated cone is based on the etching process itself. If it is assumed 

that a chemical etching is applied on the back of the substrate (which is applicable for all 

materials), even if the process starts on a section with a fairly small diameter, it will eventually 

end up in a larger diameter. The reason is that in the process of chemical etching the chemical 

material not only etches deep inside the substrate but also will have some effects on the sides and 

this is similar to a case when a stone is dropped in water and the ripples are created. 

Consequently, at every level of etching, a small section from the sides of the target area will also 

be affected by this process. The deeper one etches inside the substrate, the larger the effect of 

this phenomenon will be to the sides. Eventually, the shape of the etched volume will look like a 

truncated cone. 

The next stage is to fill the etched section with a combination of conducting materials 

(i.e., multiple layers of different materials) which possesses a high heat conductivity. This is 

done by either electroplating [20] or another process known as sputtering [21]. In the latter 

process, a gaseous plasma is created and then the ions from this plasma are accelerated into the 

target material. The idea of choosing the etched section similar to a truncated cone shape will 

have additional advantages during the sputtering stage. For simplicity, copper is used as an 

example. Filling the backside of the substrate with copper will also produce additional 

mechanical strength and increase the robustness of the wafer. The same simulation is then 

conducted with the new configuration and the power of 1 W is applied to the section on top. 

As shown in Fig. 3.9, the maximum temperature on top of the shape has been reduced to 

324 K. A 20% reduction in the temperature difference between the ambient temperature and the 
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maximum temperature is obtained with the new configuration. The results of the simulation for 

different applied power values are shown in Table 3.2. A consistent reduction in temperature 

difference is observed in all cases. 

 

Fig. 3.9 Heat flow in a 500 μm silicon substrate etched on the backside (applied power=1 W). 

 

Table 3.2 Results for different applied power values for silicon substrate (T = 0.5 mm). 

Silicon substrate Tmax without etching Tmax with etching Reduction in temperature difference 

Power = 1 W 330 324 20% 

Power = 2 W 366 355 18% 

Power = 3 W 402 386 18% 

Power = 4 W 439 417 18% 

Power = 5 W 475 448 18% 

 

The simulations were continued with different dimensions for the truncated cone, and it 

was concluded that the height of the cone is very vital in determining the maximum obtained 

temperature. Table 3.3 shows the simulation results for taller cone shapes etched into the silicon 

substrate. The other dimensions are the same as the previous case and the applied power is 5 W. 



 59 

This reduction of the maximum temperature will eliminate the limitations in a large number of 

power devices, where the generated heat cannot be more than a certain value. The same process 

can be done on different substrates with different thermal conductivities and the temperature 

reduction in these substrates is prominent as well. Based on the application, substrate material, 

substrate thickness, and wafer dimensions may be adjusted. 

 

Table 3.3 Results for different cone heights for silicon substrate (applied power = 5 W and T = 
0.5 mm). 

Silicon substrate Tmax with etching Reduction in temperature difference 

Cone height = 460 μm 441 23% 

Cone height = 470 μm 430 33% 

Cone height = 480 μm 416 48% 

Cone height = 490 μm 395 78% 

 

The same simulation for two different substrate materials was conducted as well. 

Sapphire is utilized in a special technology called Integrated Microwave Photonics (IMWP) 

which incorporates microwave and photonics functions on a single chip. SiC is also a reliable 

substrate for many RF amplifiers working in a frequency range of 30-100 GHz. Due to the fact 

that the thermal conductivity of SiC is much higher than sapphire, this substrate material is 

mostly used in high power, high-frequency operations. Table 3.4 shows the same simulation 

conducted with these substrate materials. The applied power for all cases is 5 W and the 

truncated cone for the case of etched substrates has a height of 490 μm. The high value for the 

temperature reduction shows that the procedure provides consistent results for these cases as 

well. 
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Table 3.4 Results for different substrate materials for a cone height of 490 μm (P = 5 W and T = 
0.5 mm). 

Material Tmax without etching  Tmax with etching Reduction in temperature difference 

Sapphire 1362 569 288% 

SiC 518 405 101% 

 

 

3.5 Conclusion 

The holistic optimization technique evaluates the behavior of the devices based on 

different parameters. After deciding on the type of the device and material to be used based on 

the applications with high frequency operations and high output densities, the first issue 

addressed was the low thermal conductivity of the commonly used sapphire substrate. A model 

for the substrate was simulated in COMSOL Multiphysics. The results obtained from simulation 

was then proved with the calculation results. It was demonstrated that thinning the substrate can 

be a potential technique for solving the heat dissipation problem for sapphire. The research 

continued on developing more accurate analytical techniques for modeling the thermal behavior 

of substrates in high power conditions and a novel method was then proposed to fully cover the 

cases with different substrate materials and dimensions. 

Other than the high-power and high-frequency transistors, solar cells will also greatly 

benefit from the proposed approach. Reducing the manufacturing costs and increasing power 

conversion efficiency are the two main goals in improving solar cells. The most commonly used 

material for fabricating solar cells is crystalline silicon, which is capable of yielding roughly 

30% conversion efficiency in solar panels. The remaining energy is typically converted to 

internal heat and as the solar cell sizes are decreasing, this heat is considered as a bottleneck in 
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conversion efficiency. The proposed design approach provides designs and structures that 

dissipate the internally generated heat, which prevents cell degradation and increases the 

efficiency of the panels. The technology may also extend to a complete elimination or at least a 

reduction in the need for complicated cooling systems, such as water cooling, when fabricating 

panels for solar cells. 
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Chapter 4 

Distributed-model-based approach for electrical and thermal analysis of high-frequency 
GaN HEMTs 

Authors: Amirreza G. Avval, Samir M. El-Ghazaly 

4.1 Introduction 

Wireless communication systems have penetrated almost every aspect of our daily lives 

with applications such as autonomous cars, personalized medicine, monitored healthcare, 

agricultural sensing, and merchandise inventory, to name only a few [1]. High output power and 

high operating frequency are the two most critical properties of the devices that embody the 

future of wireless communication systems in achieving higher data rates. Several examples of 

these systems can be found in 5G applications that are expected to operate at upper millimeter-

wave (mm-wave) bands to meet the broad bandwidths and reconfigurability requirements. In 

general, all the technologies in this area owe their emergence and advancements to the material 

properties of gallium nitride (GaN) utilized in high electron mobility transistor (HEMT) 

devices [2]. High saturation velocity, high electron mobility, high sheet carrier density, and high 

breakdown voltage are some of these characteristics that make GaN a material that meets the 

requirements of building high-power amplifiers (HPAs) capable of working at high operating 

frequencies and temperatures [3]. 

The subject matter has attracted many research groups to enhance the device performance 

for various applications [4]. Consequently, developing accurate modeling techniques for these 

devices is demanded for having a simulation tool that predicts the device behavior and can be 

used at the design stage [5]. Equivalent circuit approach is the most typical transistor model 

which is used extensively in characterizing and designing integrated circuits or individual 

devices. A common high-frequency model of a GaN HEMT device is comprised of intrinsic and 
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extrinsic sections. The elements for the extrinsic section of the model demonstrate the effects of 

the electrode material and dimensions, transistor pads, and all the semiconductor layers under the 

conductors, whereas the intrinsic elements show the innate behavior and characteristics of the 

transistor when operating. 

Many of the reported modeling procedures are based on S-parameter measurement results 

and I-V characteristics of the devices. These processes are considered along with the gate-

forward and pinched-off measurements followed by a de-embedding process to separate the 

extrinsic section from intrinsic parameters [6]. Some techniques utilize the X-parameter 

measurements which eliminates the need for DC measurements and better incorporates the 

nonlinearities in the modeling process [7]. Initially, the parameter extraction techniques used a 

direct methodology with a very high sensitivity to the measurement results, but these methods 

were computationally inexpensive [8]. To address the limitations associated with the direct 

methods, optimization techniques were incorporated which reduces the sensitivity of the method 

to the measurement, provided that the improved technique yields reliable results for 

extraction [9]. A newly developed optimization technique is the Particle-Swarm-Optimization 

(PSO) which is applied to a GaN HEMT device accounting for high-frequency and high-power 

operations of the device by adding more elements to the model [10]. 

Developing system-level simulation tools is the direct outcome of the improved accuracy 

of circuit models [11]. Most of the contemporary devices in the area of advanced microwave 

systems are designed based upon highly varied physical dimensions and are operating in various 

frequency scales. Hence, the topics such as electromagnetic-wave propagations must be 

addressed in the modeling process [12]. Many of the already developed modeling techniques 

require the device fabrication and characterization in order to be able to find the element values 
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in the equivalent circuit model for different operating modes, power levels, and frequency 

ranges [13]. This procedure requires a great amount of processing time and imposes high 

operational costs, which is considered as one of the main limitations with the already reported 

circuit models and extraction techniques. 

The main goal of introducing a modeling technique is to develop a simulation tool that is 

able to help in optimizing the device performance for different applications and operating 

frequencies, and this is supposed to be performed before going through the fabrication process. 

Additionally, the reliability of the results obtained from these techniques is normally satisfied at 

a specific frequency range and drastic changes are made to either the number of elements or the 

parameter values when the device is operating at higher frequencies. This is due to the fact that 

the effects associated with the wave propagation phenomenon are not considered in the process 

which may render the developed model inaccurate at higher frequency bands. The concept of 

distributed equivalent-circuit model that was initially introduced by Heinrich for traveling-wave 

FETs is believed to be the promising modeling approach that addresses the above-mentioned 

problems [14]. 

The limitations regarding the distributed effects when the device width is comparable to 

the wavelength were discussed by El-Ghazaly [15], where an inverted-gate field effect transistor 

was proposed to avoid the phase-cancellations in a common-gate configuration. The air-bridged 

gate MESFET was then proposed by Hammadi to reduce the wave propagation effects at high-

frequency bands by keeping both the input and output signals in-phase along the device 

width [16]. Hammadi explicitly discussed approaches to incorporate the electromagnetic-wave 

effects in full-wave transistor models. Additionally, in [17], Al-Sunaidi proposed a full-wave 

physics-based model which takes into account the effects of wave-particle interactions on the 
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operation of high-frequency devices. Key observations of the research around this subject and 

the associated findings suggest that due to the coupling of the passive and active sections inside 

high-frequency devices and the complexity of the electron dynamics, it is crucial to have the 

required cognizance to the travelling-wave effects in these devices. 

In this chapter, the distributed modeling approach is utilized to develop the small-signal 

equivalent circuit for a recently fabricated GaN HEMT device. This work, which builds upon the 

prior published research in [18-19], starts with discussing the details of the device structure. The 

developed small-signal model is presented and the extraction techniques for obtaining the 

parameter values for all the elements present in the model are discussed. It is also explained how 

the structural dimension of the device is used in the extraction process. The distributed model 

along with details of the utilized numerical method and how this model can be a representative of 

the entire device width are introduced and discussed. For validating the results, different gain 

parameters of the transistor are used to compare the simulation and measurement results obtained 

from the presented GaN HEMT device. The necessity of using the distributed model for wider 

devices operating at higher frequency ranges is also examined. Moreover, a study of the heat 

transfer phenomena for the distributed model developed for the GaN device on sapphire is 

presented here. The experiment demonstrates the heat distribution over the device width, and it is 

explained why the distribution of heat is critical to be considered while developing the equivalent 

circuit model. 

 

4.2 Device configuration and modeling procedure 

The cross-section of the 0.1-μm N-polar oriented GaN MISHEMT (Metal-Insulator-

Semiconductor HEMT), developed by Zheng et al., is demonstrated in Fig. 4.1, which describes 
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the different semiconductor layers with specific thicknesses and the associated doping profiles 

grown on an a-plane sapphire substrate [20]. The main advantage of the nitrogen-polar oriented 

GaN devices is their potential of providing sufficient power amplification in the W-band 

frequency range [21]. The growth technique for this device is the metal-organic chemical vapor 

deposition (MOCVD) and the materials used for the electrodes are gold and titanium. The 

dimensions of the drain and source electrodes are 0.12×6 μm. The gate top and gate stem 

dimensions are 0.53×0.45 μm and 0.22×0.1 μm, respectively. The spacing between the gate and 

source electrode is 0.3 μm which is relatively small compared to the 1.6 μm of gate-drain 

spacing. The attenuation of the signal along the gate electrode was one of the limitations with the 

initially structured HEMT devices due to the presence of a large parasitic resistance on the gate 

electrode. This limitation has been addressed in the recent devices by increasing the cross-

sectional area of the gate metal strip in T- or mushroom-shaped configurations. 

As discussed before, the 5G technology and generally all the wireless communication 

applications are expected to work at the mm-wave frequency range. Consequently, due to the 

current limitations on the device fabrication technologies, the dimensions of the active 

component (specifically the device width) become comparable to the electromagnetic 

wavelength of the propagating signal inside the device. As the input impedance of the transistor 

(gate electrode) is different than the output impedance (drain electrode), the wave propagation 

phenomenon affects the behavior of the device, and it is essential to include this effect in the 

modeling process. In consequence, the device electrodes must be considered as transmission 

lines [15]. This means that the lumped element models will not have sufficient accuracy to 

represent the operation of high-frequency devices. Considering the effects of wave-particle 

interactions in the developed equivalent circuit is the main contribution of the proposed approach 



 69 

compared to the other distributed techniques, which ensures that the final model is independent 

of the operating frequency of the device. 

 
Fig. 4.1 Cross-section of the N-polar oriented GaN MISHEMT device. 

 

The 19-element equivalent circuit model of the presented GaN MISHEMT device is 

demonstrated in Fig. 4.2. The extrinsic bias independent elements represent the passive section 

of the device, whereas the active part is formed by the intrinsic bias dependent components. 

There are specific physical descriptions and explanations associated with the elements of the 

model. RGSi represents the resistance of the channel and RGDi is complementary to that element in 

order to have symmetry in the circuit model. CGSi and CGDi demonstrate the charge modulation 

for the gate electrode when VGS and VDS change, respectively. Gate electrode contact is 

associated with a Schottky barrier and RGe shows the resistance to the flow of current along its 

metal strip. Furthermore, RDe and RSe demonstrate the resistance of the drain and source ohmic 

contacts and the access region [22]. 
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Fig. 4.2 Intrinsic and extrinsic sections of the equivalent circuit model for the GaN MISHEMT 

device [19]. 

 

4.2.1 Extrinsic elements extraction 

The inductors and capacitors for the transmission line section are obtained using a three-

dimensional electromagnetic equation solver. Depending on the device dimensions and the 

anticipated operating frequency band, the quasi-transverse electromagnetic approximations may 

be applied to simplify this step. The validity of this assumption is typically justified when the 

anticipated operating frequency is in the mm-wave range and as the separation between the 

source and drain electrode is quite short (2 µm) and the thickness for the active layer is in the 

range of 0.1 µm, the dominant mode is quasi-transverse electromagnetic [15]. In order to extract 

the values for the extrinsic mutual capacitors (i.e., CGSe, CGDe, and CDSe), the transistor is 

modelled in COMSOL Multiphysics, as the 3D Laplace solver, and all the boundary conditions 

are defined. Based on the fabricated device in [20], the materials used for the electrodes are 

titanium and gold. Since the spacing between the electrodes is very short, most of the energy will 

be accumulated in the gap. In order to find the coupling capacitance between the electrodes, one 

conductor is excited with a defined voltage and then the charge is observed on the other two 

electrodes. 



 71 

The other attribute resulting from the quasi-transverse electromagnetic mode propagation 

is that the semiconductor layers under the conductors do not affect the magnetic field and the 

same procedure applies for solving Laplace equation to obtain the inductors. First, the relative 

permittivity of the entire space, except for the electrodes, is assumed to be equal to free space 

permittivity and then the capacitance on each conductor (self-capacitance) is obtained. In any 

chosen medium and regardless of the geometry of the transmission line, phase velocity is equal 

to the speed of light and the inductance of the line is obtained using Equation (4.1), 

where v denotes the speed of light, C is the capacitance per unit width of the device, and L is the 

inductance per unit width. If the equivalent circuit is defined in such a way that mutual inductors 

are also present, the solution starts with obtaining the mutual capacitance between the lines. 

𝑣 = !
√-"

 (4.1) 

The process for finding the conductance between the lines is very close to obtaining the 

capacitance, except that there is no need to define the magnetic walls as the boundary condition. 

The same structure is arranged, and the electrodes are excited with a voltage and then the current 

on the conductors are observed. To get an exact value for the current, a proper conductivity is 

needed to be defined and Equation (4.2) is used to find this parameter for each semiconductor 

layer present under the electrodes. Assuming that the conductivity is due entirely to 

electrons, σ represents the conductivity, q is the electron charge, μ is the electron mobility, 

and n denotes the carrier concentration. Obviously, thicker layers and the ones that are closer to 

the electrodes will have a more significant effect on the overall conductivity. 

𝜎 = 𝑞𝜇𝑛 (4.2) 

In order to obtain the resistance of the electrodes or conductor loss, Wheeler’s 

incremental inductance rule is applied [23]. Due to the lossy nature of the metal used as the 



 72 

conductor, the magnetic field in the surrounding space will penetrate into the conductor which 

results in an internal inductance. Derivation of this internal inductance using direct methods is 

difficult, but based on the proposed method by Wheeler, it can be obtained using Equation 

(4.3). Lin is the internal inductance, Lext represents the external inductance, and δ denotes the skin 

depth. The internal inductance is the difference between the external inductance for the normal 

case and a case where all sides of the conductor is reduced by an incremental amount equal to 

half the skin depth of the metal. Consequently, as the surface impedance caused by the current 

flow within the conductor has equal reactive and resistive components, the conductor loss is 

related to the internal inductance using Equation (4.4), where ω is the angular frequency and R is 

the resistance of the line. 

𝐿>1 = 𝐿:;'(𝑥) − 𝐿:;' C𝑥 −
?
/
D (4.3) 

𝑅 = 𝜔𝐿>1 (4.4) 

Equation (4.4) illustrates that the resistance of the line is a frequency dependent 

parameter. However, if we consider a case where the electrode dimensions are very small, the 

frequency of operation is in the GHz range, and the metal used for the electrodes has a good 

conductivity, the skin depth may be larger than at least half of the electrode dimension. In this 

case, the incremental inductance rule cannot be applied to obtain the conductor loss anymore and 

we assume that the current flow inside the conductor is uniform for that operating frequency. 

Consequently, the resistance is calculated using the resistivity of the material (ρ), length of the 

conductor (l), and the cross-sectional area (A) as expressed in Equation (4.5). Other than the 

extrinsic parameters for the device itself, the proposed extraction method may also be applied to 

the transistor pads which are used to connect to other devices and their effect cannot be neglected 

in higher frequencies. 
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𝑅 = 𝜌 @
=
 (4.5) 

 

4.2.2 Intrinsic elements extraction 

To estimate the values of the bias dependent intrinsic elements, the fabricated device is 

simulated in SILVACO. All the parameters associated with the different layers along with the 

two-dimensional electron gas (2DEG) density are included in the simulation. At a specific 

operating frequency, the Y-parameters of the device are obtained, and the intrinsic parameter 

values are calculated. There are two more elements, apart from the 7 intrinsic elements, 

associated with the gate-drain and gate-source current leakage, that due to possessing negligibly 

small values have been ignored. The derived Y-parameters and the derivation are accurate 

enough for acquiring all the intrinsic parameters, except the gate-drain resistance for some 

HEMTs with very narrow gate lengths operating at high frequencies. Therefore, an optimization 

scheme is required to fit the Y-parameters. 

 

4.3 Distributed modeling approach and finite difference analysis 

The first step to develop a distributed model is to divide the device width into N sections. 

Each of these sections will be named a unit cell hereafter and has a width of Δz. It is worth 

noting that the device width in a high-frequency HEMT device signifies the direction along the 

electrodes which is perpendicular to the flow of charges. The equivalent circuit model for each 

unit cell has already been demonstrated in Fig. 4.2 and for this model to be valid, the value for N 

and, consequently, Δz must be adjusted in a way that the unit cell width becomes much smaller 

than the propagating wavelength inside the device. All of these unit cells are then cascaded to 

represent the whole width of the device, as demonstrated in Fig. 4.3. The boundary and terminal 
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conditions must also be incorporated in this model, and this is performed according to the top 

view schematic of the device is Fig. 4.4 [21]. The device has two fingers, and the width of each 

finger is 25 μm. The source pad at the end of the device is grounded and a sinusoidal voltage 

source is applied to the gate electrode at the input side of the device. 

 
Fig. 4.3 Distributed model of the GaN MISHEMT device. 

 

 
Fig. 4.4 Top-view schematic of the HEMT device for incorporating the boundary conditions. 

 

The currents and voltages on the gate, drain, and source lines must be obtained at each 

temporal and spatial point based on the governing equations representing the properties of the 

coupled lines and the guided-wave propagations inside the device as demonstrated in 
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Equations (4.6) and (4.7). The superscript t denotes the time, n is the representation of the spatial 

point, and i , j , and k interchangeably show the gate, drain, and source lines. Due to the coupled 

nature of the system and since there are no analytical solutions for analyzing the six presented 

differential equations dominating this system, a finite-difference time-domain (FDTD) approach 

is utilized. In [18], an iterative explicit scheme was used to analyze the device, where a state of 

the system at a later time is calculated based on the current state of the system. As the explicit 

scheme is conditionally stable, there is a limitation associated with the temporal step size in order 

to satisfy the Courant stability condition. This condition is explained as the smaller value of the 

numerical time step compared to the time that the wave needs to travel to the adjacent grid 

point [24]. For analyzing complicated systems, Δt must be extremely small to keep the resultant 

numerical error bounded and this process increases the computation time of the solution. On the 

contrary, the developed iterative implicit scheme in this study involves both the values for the 

later time and the current state while solving the equations and, as a result, the scheme becomes 

unconditionally stable. This scheme allows the usage of larger temporal step sizes and makes the 

solution computationally efficient [25]. For the same practical circuit simulation, the time step 

was increased from 10−16 seconds for the explicit case to 10−13 seconds for the implicit scheme. It 

is also worth noting that for the mentioned schemes, the solution starts with an initial condition 

and then the final response is obtained when the desired convergence is achieved. 
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4.4 Simulation and model validation 

To examine the validity of the simulation, the obtained results from the FDTD method 

are compared with the measurement results from the 2×25 μm N-polar GaN MISHEMT 

presented before. Fig. 4.5 shows the current gain (h21) comparison where the load impedance of 

the model is set to zero and Fig 4.6 presents the comparison results for the maximum stable gain 

(MSG) between the measurement and simulation, in which the input and output impedances are 

matched to the circuit. Due to the fact that these comparisons are being made over the frequency 

range of 0.25-67 GHz, considering two unit cells of width 12.5 μm each is sufficient for this 

simulation. As demonstrated, excellent agreement is achieved for the case of current gain and 

there is a negligibly small average error of roughly 1 dB for the MSG results between the 

measurement and simulation. In consequence, the distributed modeling approach yields accurate 

results, and the validity of the method is proved. Also, based on the developed distributed model 

for the device, the extrinsic-level S-parameter simulation results are obtained, as depicted in Fig. 

4.7, for the same frequency range and bias point. These S parameters exhibit the typical response 

expected from a high-frequency modern GaN HEMT, and phenomenologically agree with 

published results [26]. 

 
Fig. 4.5 Current gain comparison results between measurement and simulation over 0.25-67 

GHz. 
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Fig. 4.6 MSG comparison between the proposed method and the measurement results. 

 

 
Fig. 4.7 S-parameter simulation results for the GaN HEMT device over 0.25-67 GHz frequency 
range. The asterisk on each curve represents the obtained results for the highest operating 
frequency (67 GHz). 

 

To investigate the necessity of using a distributed modeling approach and illustrate the 

convergence of the results, a hypothetical device of width 100 μm is simulated over the 

frequency range of 70–150 GHz. The width and the operating frequency are considered in this 
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way to ensure that the electromagnetic-wave propagation effects are significant and observable 

in this case. The parameter values are adjusted, and the boundary conditions are defined 

accordingly. The current gain and maximum available gain (MAG) results are obtained for 

different number of unit cells in the distributed model and the results are shown in Fig. 4.8 

and Fig. 4.9, respectively. The number of unit cells for each case represents the value for N and 

the unit cell width is equal to 100/N μm. For all of the mentioned cases, the device width is kept 

constant. Only, the number of unit cells and the unit cell width are varied. According to Fig. 4.8, 

the one unit cell case starts to deviate at around 85 GHz and the sensitivity of the current gain 

parameter to the case of two unit cells happens initially at 100 GHz [19]. This implies that since 

the unit cell width for these two cases is not sufficiently small compared to the wavelength of the 

guided wave at those frequency ranges, and due to the electromagnetic wave-propagation effects, 

the yielded results are inaccurate. For the cases of three unit cells and up, the results are 

consistent and the required convergence is achieved. In other words, to obtain accurate results for 

a device width of 100 μm over the frequency range of 70–150 GHz, the distributed equivalent 

circuit model must have at least three unit cells to ensure that the wave-propagation effects are 

taken into account. 

 
Fig. 4.8 Current gain results for different unit cell numbers over 70-150 GHz [19]. 
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Similarly, as demonstrated in Fig. 4.9, the two cases of one and two unit cells are totally 

divergent and inaccurate and the consistency of the results starts from three-unit cells. In 

conclusion, for developing circuit models for wider devices operating at higher frequency ranges, 

it is necessary to use a distributed modeling approach and adjust the required number of unit 

cells accordingly. It is also worth noting that, for the lower frequency range, since the 

wavelength is large, the electrical behavior of the device is not affected by the wave propagation 

and the device can be modelled using lumped element equivalent circuits. This is the main 

reason for observing the device behavior at higher frequency bands. 

 
Fig. 4.9 MAG results for different unit cell numbers over 70-150 GHz. 

 

4.5 Heat distribution effects 

Improvements in fabrication technology have been identified as the primary reason for 

the increase in the speed of semiconductor devices which results in device size reductions. 

However, the dominant limitation for the speed or reduced size of the devices is the thermal 

resistance [27-31]. For high-power transistors, the ability of the device to dissipate the heat is 

one of the most important characteristics [32]. To identify this feature, the thermal resistance 

parameter is utilized which is defined as the temperature increase at the junction divided by the 

dissipated power [33]. When analyzing the device, the maximum power dissipation must be 

specified by determining the temperature that the junction can handle [34-35]. 
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Experiments have shown that for transistors operating at higher frequencies, device 

failures may occur even below the power levels determined by the thermal resistance. Hence, for 

a thorough characterization of semiconductor devices, other than the electronic behavior of the 

transistors, the study of device operations under different temperature ranges is also very 

vital [36-37]. In high-power and high-frequency devices, a great amount of heat is generated in 

the channel layer, which flows through the other layers toward the substrate and affects the 

underlying physics of the device. The thermal limitations multiply when there are more 

interfaces in the device structure which makes it more sensitive to the excess generated heat. 

In order to examine the heat distribution on the GaN HEMT device, an experiment is 

designed based on the configuration explained in Fig. 4.10. The cylinder represents the sapphire 

substrate that the device is grown on, with a circular base radius of 500 μm and a height 

of 100 μm. The cuboid on top of the cylinder is made of GaN to roughly represent all the 

semiconductor layers grown on the substrate. The cross-section of the cuboid is a 200×200 

μm square and the height of that is equal to 2 μm. A rectangular area of 10×100 μm is considered 

on the top surface of this cuboid as the section representing the gate electrode and its vicinity, 

where the majority of the internal heat is generated along the device width while operating. A 

convection boundary condition is defined for all the surfaces except the bottom face of the 

cylinder. Since a heat sink is generally mounted on that side of the substrate, the internally 

generated heat reaching that surface is dissipated to the environment. Hence, that surface is 

defined with a temperature boundary condition set to the ambient temperature. To show the 

effects of heat distribution on the distributed model, another arrangement is considered in which 

the rectangular area on top is divided into five equal sections with a unit cell width of 20 μm. 
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This configuration is shown in the inset of Fig. 4.10. All the other device dimensions, materials 

used, and boundary conditions are defined similar to the typical case. 

 
Fig. 4.10 Device structure for thermal analysis of GaN HEMT device on a sapphire substrate. 

 

Fig. 4.11 shows the cross-section of the simulated model, not drawn to scale, and the 

assumed cut lines on which the temperature distribution is desired to be observed. CL1 (cut-line 

1) is along the device width and CL3, CL4, and CL5 are drawn along the depth of the device. A 

power of 1 W is uniformly applied to the rectangular section of the typical case and 0.2 W to 

each unit cell of the distributed model. The temperature distribution at CL1 is depicted in Fig. 

4.12, which shows the temperature for all the points through the device width. Based on this 

figure, the distribution for the two cases is in good agreement which proves that the distributed 

modeling approach offers consistent results from thermal point of view. 

The unit cells at the two ends of the device show a distinctly different distribution 

compared to the middle unit cell and the temperature difference between the coldest and hottest 
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points of the device is about 118 K. In order to elaborate on this, the temperature distribution is 

also observed on CL3, CL4, and CL5, which are the cut lines over the first, second, and third 

unit cells. The obtained results are shown in Fig. 4.13 and, accordingly, the equivalent circuit 

model for each unit cell will be differently affected based on the thermal properties of the device. 

This phenomenon must be incorporated in extracting the extrinsic and intrinsic parameter values 

of the distributed model. 

 
Fig. 4.11 Cross-section of the device and the cut lines to observe the temperature distribution. 

 

 
Fig. 4.12 The temperature distribution comparison between the typical and distributed model on 

CL1. 

 

Another experiment is also designed to show the effect of the difference between the 

thermal conductivity of GaN and sapphire and how GaN semiconductor layers involve in 
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distributing the generated internal heat. The thermal conductivity parameter for sapphire is 25.2 

W/m.K, whereas for GaN, with either a Wurtzite or Zinc Blende crystal structure, is 130 W/m.K. 

The GaN layer on top of the substrate in Fig. 4.10 is removed and the power of 1 W is applied 

directly to the same section on top of the sapphire substrate. The temperature distribution results 

on CL2 comparing the case when the power is applied to GaN and the other case when it is 

directly applied to sapphire substrate is demonstrated in Fig. 4.14. Despite the fact that the GaN 

layer compared to the sapphire substrate is very thin, due to the notable difference between the 

thermal conductivity of the two materials, the temperature distribution is markedly different. The 

temperature difference of the hottest points between the two cases is 155 K. 

 
Fig. 4.13 Temperature distribution on three different unit cells. 

 

Based on the fact that the width of the discussed GaN HEMT device in previous section, 

for which the electrical behavior was simulated, is relatively small, there was no need for 

parameter adjustments regarding the thermal properties. However, in other devices, the 

distributed model allows for semiconductor device properties to be adjusted at each segment to 

reflect the change in temperature. This is generally performed by either modifying the element 

values in the extrinsic and intrinsic sections of the equivalent circuit or by adding some elements 

to account for the changes. 
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Fig. 4.14 Temperature distribution comparison with and without GaN layer on top of the 

substrate on CL2. 

 

4.6 Conclusion 

The studies conducted in this research explained the significance of using a distributed 

approach in developing an accurate equivalent circuit model valid for various devices operating 

at any frequency range and power level. Moreover, the thermal analysis of the presented device 

demonstrated that incorporating the heat distribution effects is a vital stage when developing the 

modeling techniques for simulating the electrical behavior of the devices. As discussed, the 

presented model is developed solely based upon the physical structure of the device and as long 

as the quasi-TEM approximation is valid, the device is capable of being expanded over all the 

dimensions. It is worth noting that this approximation holds true for all the Microwave and mm-

wave devices for the current and future applications. The distributed modeling approach can also 

be expanded to account for different bias conditions by including the large signal analysis and all 

the typical nonlinearities inside semiconductor devices. 
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Chapter 5 

Increasing transistor gain using metamaterial electrodes 

Authors: Amirreza G. Avval, Samir M. El-Ghazaly 

5.1 Introduction 

The recent progress in semiconductor device fabrication techniques and microwave 

technology, in general, have been the key enablers for the development of high-frequency high-

performance power amplifiers [1-2]. In order to achieve the desired performance at higher 

operating frequency bands, devices tend to be configured in smaller sizes and designed in 

compact structures. Higher cut-off frequency is commonly achieved by utilizing smaller gate 

lengths and is a direct outcome of the reduced gate-source capacitance and electron transit time. 

Moreover, the characteristics of active layers in semiconductor devices have been optimized 

thanks to the innate properties of wide-bandgap materials [3-5]. 

High efficiency, high power density, high gain, and high operating frequency are the 

main attributes of the device technologies utilized as the fundamental elements in developing 

solid-state power amplifiers for many of the microwave and millimeter-wave wireless 

communication applications. Recent millimeter-wave power amplifiers benefit from the 

underlying material properties of gallium nitride (GaN) along with its high electron mobility and 

breakdown voltage, which makes it the desired platform for fabricating devices such as high 

electron mobility transistors (HEMTs) [6]. These devices are now the essential components of 

many systems in applications such as satellite communications, 5G networks, and aerospace 

missions. In order to further optimize and improve these devices for achieving higher data rates 

in the mentioned applications, developing modeling approaches has been considered an 

indispensable stage in the design process. Researchers are seeking physics-based universally 
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satisfactory models to achieve accurate predictions for the performance of individual devices and 

integrated circuits in different operating modes and applications. 

Transistor modeling techniques are generally divided into three groups: physical models, 

behavioral models, and equivalent circuit models [7]. The extraction of the physical models is 

based on the presence of various physical occurrences inside the device. On the other hand, 

behavioral models are developed according to the relations between different input and output 

values. Equivalent circuit models that are widely used for many of the recently developed 

technologies are generally extracted based on the experimental data of the device. However, as 

the various physical behaviors of the devices under different operating modes are understood, 

new terms and conditions must be introduced in order to improve the accuracy of these models. 

This requirement becomes even more complicated when the model is developed for complex 

mm-wave and RF systems with different nonlinearity levels to be taken into account [8]. 

One of the important topics in the contemporary millimeter-wave transistors is the 

electromagnetic wave propagations, which depends on the operating frequency of the device and 

the device dimensions. In general, the longest dimension of the device is the device width, that is 

the direction along the device electrodes, perpendicular to the electron flow. The phenomenon of 

wave propagations is observable when the wavelength of the guided wave inside the device 

becomes comparable to the device width (typically when the device width is larger than λ/10 but 

could be as small as λ/20 in some applications). These effects must be dealt with in two different 

aspects: device fabrication and circuit model development. According to the operating frequency 

of the device to be fabricated, the device width is typically kept at least 10 times smaller than the 

wavelength. This is to ensure that the phase velocity mismatch at the input and output ports of 

the device, which is a result of the wave propagation effects, does not have a significant impact 
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on deteriorating the gain of the device. A wider device relates to the added distributed 

transconductance effects and, hence, higher gain. However, reflections from open-ended device 

structures and the mismatch in phase velocity of the signals on the input and output conductors 

explain the fact that the performance of devices does not indefinitely improve by increasing the 

width. This is inherent to the structure of the device where the impedances on the gate and drain 

electrodes are different, which becomes more observable at higher operating frequency bands 

[9]. Having the required cognizance of this phenomenon provides enough information to 

eliminate its influence by considering some specific design rules [10]. 

As stated, to avoid the phase-cancelation effects, due to phase-velocity mismatch of the 

electromagnetic waves, the device width is kept at very small values compared to the wavelength 

of the guided wave inside the device, typically less than 10% [11]. Consequently, the gain-

frequency relation maintains a linear behavior. However, when the device width becomes 

comparable to the wavelength at higher operating frequencies, the device gain does not decrease 

linearly and demonstrates a nonlinear performance like a sharp decrease or staying at a constant 

value. This imposes severe limitations on the cut-off frequency of the device and the bandwidth 

[12-13]. Accordingly, to obtain the required output, narrower (smaller width) transistors with 

multi-finger structures at device level and multi-stage configurations at amplifier level are 

utilized resulting in added discontinuities, extra transmission line sections, and being affected by 

nonlinear power combining properties [14-15]. This chapter provides insights into how the 

device behavior changes by increasing the frequency and presents solutions to eliminate the 

limitations for mm-wave high-performance devices. 

On the other hand, the electromagnetic wave propagation effects must also be 

incorporated when developing equivalent circuit models for millimeter-wave devices, as it 



 92 

significantly affects the accuracy of the models. When a circuit model for a device at the high-

frequency range is developed without considering these effects, the model remains reliable up to 

a specific frequency range and it requires substantial modifications to yield accurate results at the 

upper frequency band. The concept of distributed modeling approach that was proposed for 

simulating traveling-wave FETs [16], has recently been utilized for this purpose and further 

enhanced for the recent complex device designs [17]. 

The developed equivalent circuit model in this chapter is utilized to accurately simulate 

the device behavior for a recently fabricated GaN MISHEMT (Metal-Insulator-semiconductor 

HEMT). Unlike many of the previously developed techniques, this model does not employ the 

experimental and measurement data of the fabricated device and the parameter extraction process 

is merely based on the physical structure of the device. The structural configuration of the device 

is provided which is utilized to extract the parameter values for the intrinsic and extrinsic 

sections. The concept of the distributed approach is then developed to eliminate the dependence 

of the model on the frequency which ensures the accuracy of the model over a broad operating 

frequency range. The small-signal and large-signal simulations are conducted, and the results are 

validated by measurement. 

 

5.2 Device structure and equivalent circuit model 

The specifications of the fabricated GaN MISHEMT device developed by Zheng et 

al. are demonstrated in Fig. 5.1 [18]. The device is grown on an a-plane sapphire substrate by 

metalorganic chemical vapor deposition (MOCVD). It consists of a semi-insulating GaN buffer, 

a Si-doped AlGaN back-barrier, an AlGaN interlayer, an unintentionally doped GaN channel, 

and an AlGaN cap. The gate electrode is structured in a trapezoidal form with a stem height of 
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220 nm, which ensures that the parasitic resistance on this electrode is sufficiently reduced. The 

device is nitrogen polar oriented which provides a better power amplification functionality 

compared to its gallium-oriented counterparts [19]. 

 
Fig. 5.1 Cross-section of the fabricated GaN MISHEMT device. 

 

When the electromagnetic wavelength of the signal is comparable to the device width and 

since the impedance on the gate electrode (input port) is different than that of the drain electrode 

(output port), the wave propagation effects become observable. Hence, the distributed modeling 

approach in this work starts with considering the effects of the wave-particle interactions in 

developing the equivalent circuit model. This is performed by dividing the device width into N 

segments. Each of these segments is called a unit-cell which has a width of Δz. The number of 

segments and the unit-cell width are adapted according to the operating frequency of the device 

so as to keep the value of Δz much smaller than the wavelength of the propagating signal [20]. 

This way, the developed model will provide a universal equivalent circuit suitable at any 

operating frequency. Eventually, the entire device width will be represented by the cascaded 
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unit-cells. The GaN MISHEMT device has a 2-finger configuration, and the boundary conditions 

are incorporated according to the layout of the fabricated device in [18]. 

The distributed approach and the equivalent circuit representing each unit-cell are 

depicted in Fig. 5.2. The elements in the passive section are the extrinsic bias-independent 

elements and the active part represents the innate device behavior based on the bias-dependent 

components. The passive section represents pieces of transmission lines coupled together with 

three capacitances, each consisting of a pair of conductor planes. The logical sequence of the 

parameter-extraction approach starts with obtaining the per-unit-width values of these coupled 

capacitances. For this purpose, a conformal mapping technique is utilized in which the whole 

space surrounding the conductor planes is mapped onto an upper halfplane and then to the 

internal domain of a rectangle using Schwarz-Christoffel transformation [9,13]. Capacitance 

correction is then applied to account for the metallization thickness and fringing effects 

according to the Cohn’s proposed method in [21]. For quasi-TEM approximation, the basic 

expression in Equation (5.1) can determine the inductance per-unit width of the extrinsic part. 

𝐿 = 𝜇𝜖/𝐶 (5.1) 

To account for the effect of skin penetration at higher frequencies, the per-unit-width 

resistances of the transmission lines are calculated using Wheeler's incremental inductance rule. 

To determine the internal inductance of the transmission line, the external inductance is obtained 

when the thickness of the conductor is reduced incrementally. Then, the per-unit-width resistance 

becomes equal to the amount of incremental change in inductance multiplied by the angular 

operating frequency. Table 5.1 shows the obtained per-unit-width values for the extrinsic 

parameters. The intrinsic parameters are obtained using the Y-parameters obtained for the two-

port network at each bias point according to the proposed technique in [20]. 
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Fig. 5.2 Distributed model and equivalent circuit for each unit-cell of the device width. 

 

Table 5.1 Per-unit-width extrinsic parameter values. 

 
 

5.3 Small-signal analysis 

The fabricated GaN MISHEMT device has a 2-finger configuration, a gate length of 0.1 

μm, gate-source spacing of 0.2 μm, and gate-drain spacing of 1 μm. To compare the small-signal 

measurement and simulation results, two devices with widths of 50 μm (Device A) and 25 μm 

(Device B) are utilized. Device A is biased at a drain-source voltage of 5.5 V and a gate source 

voltage of -4.6 V and Device B is biased at a drain-source voltage of 11 V and gate-source 

voltage of -4.8 V. The current gain simulation results obtained from the distributed modeling 

approach is compared with the measurement results as depicted in Fig. 5.3 for Device A and 
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Device B. Excellent agreement is achieved for the two cases. For these simulations, five unit-

cells are considered for developing the distributed model. This is to ensure that the unit-cell 

width is much smaller than the wavelength of the propagating signal inside the device. 

 
Fig. 5.3 Current gain comparison results for Device A biased at VDS=5.5 V and VGS=−4.6 V and 

Device B biased at VDS=11 V and VGS=−4.8 V over the frequency range of 0.25-67 GHz. 

 

5.4 Large-signal analysis 

After validating the model with the small-signal simulation, the large-signal simulation 

results are also obtained and compared with the measurement results for the same GaN 

MISHEMT device [22]. For this analysis, the width of the device under test is 75 μm and 

structured in a 2-finger configuration. The larger width for this case is to have a higher current 

under high-voltage conditions for a load power match. The large-signal performance is obtained 

under class-AB operation at 10 GHz, with an ID,Q of 100 mA/mm and VDS,Q of 20 V. According 

to the quiescent drain current value and the DC simulation results, the device is biased at a gate-

source voltage of -3.75 V. The required intrinsic parameters for this case are derived and the 

same distributed scheme is utilized to obtain the simulation results. Fig. 5.4 represents the 

comparison results between the simulation and measurement for the output power (in W/mm) of 
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the device over a range of input power values. Similarly, there is a good agreement between the 

measurement and simulation results for the large-signal analysis, which further proves the 

validity of the developed model under different bias conditions. The same set of comparison 

results for the device gain is also demonstrated in Fig. 5.5. 

 
Fig. 5.4 Output power comparison results for the large-signal performance of the GaN 

MISHEMT at 10 GHz. 

 

 

Fig. 5.5 Gain comparison results for the large-signal performance of the GaN MISHEMT at 10 
GHz. 

 

5.5 Operability limitations in mm-wave devices  

To analyze the device behavior in different operating frequency bands, the current is 

observed over the device width. Fig. 5.6 shows the peak-to-peak value of the gate and drain 
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currents over the course of the device width for five different operating frequencies. The phase 

velocity of the signals at different operating frequencies are estimated by the simulator and, 

accordingly, the wavelengths are calculated. Since all the wavelength values are relatively large 

compared to the device width, the current signals for the gate and drain electrodes demonstrate a 

traveling wave pattern along the device. In other words, the electromagnetic wave propagation 

effects are not observable at these frequencies and the device can maintain its operation without 

the mismatch limitations. 

 

Fig. 5.6 Gate and drain currents along the device width for five different operating frequencies 
(traveling wave behavior). 

 

Above a certain operating frequency, the linear relation between the output power and 

operating frequency changes due to the presence of a mismatch phenomenon inside the device. 

In other words, the signal distribution along the device width is shaped by the superposition of 

two or more waves that are propagating at the same frequency. These waves are identified as the 

main signal on one conductor, along with the reflections from the device end and the interactions 

from the signals on other two conductors. The reflection of the current/voltage signal from the 

other end of the device, as one of the reasons for the creation of a so-called standing wave, is 
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normally caused by an impedance mismatch or open-/short-circuit boundary conditions. As a 

result of this behaviour, the power transfer capabilities of the device are degraded, though a good 

portion of this reflection is zeroed by utilizing load pull systems, where the output impedance of 

the device is systematically varied to extract the best performance at the output. 

Another important reason behind the creation of a standing wave for the current/voltage 

signals is the mismatch between the phases of the two signals on the drain and gate conductors. 

These two signals continuously affect each other along the device width which results in 

distortions in the propagating signals. This is considered as the main cause of degradation of the 

device gain where the linear relation between the device output and operating frequency is not 

maintained. Fig. 5.7 shows the current distributions on the gate and drain electrodes at a 

frequency range in which the wave propagation effects and, hence, phase velocity mismatch is 

observable. As shown in this figure, a superposition of a traveling wave and a standing wave is 

recognizable in both input and output currents, which is called a partial standing wave. This 

phenomenon is interpreted from a velocity viewpoint as well. For finding the phase velocity on 

the drain and gate electrodes, the already developed equation of 1/√𝐿𝐶 is utilized, where 𝐿 and 

𝐶 are, respectively, the per-unit width inductance and capacitance of the line for each conductor. 

According to the specifications of the fabricated HEMT, the phase velocities on the gate and 

drain lines have a 20% mismatch. This is mainly due to the large value of the gate-source 

capacitance which is a result of having a wider depletion region in the vicinity of the gate 

electrode and, accordingly, reduction of the phase velocity of the gate signal. 
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5.6 Solution for high-frequency operability 

As already discussed in the previous section, a phase velocity mismatch is an indication 

of observable wave propagation effects inside the device. Fig. 5.8 shows the output power of the 

fabricated HEMT over a broad frequency band. Obviously, the nonlinear relation is observed due 

to the creation of partial standing waves at higher operating frequencies. The dashed line in this 

figure shows the results for a case where the wave propagation effects are compensated. It is 

worth noting that for the normal case, the dispersion of the transconductance is not considered in 

the model as our main goal is to show the effects of the mismatch in the phase velocity of the 

input and output conductors. By removing these effects, the device performance, which is 

demonstrated by the blue line, will be improved to be in the shaded yellow section and the 

maximum improvement (fully linear performance) is depicted by the dashed red line. 

 

Fig. 5.7 Gate and drain currents along the device width for five different operating frequencies 
(partial standing wave behavior). 

 

This compensation is performed based on the configuration of the device model. CGSi 

(intrinsic gate-source capacitance) is the limiting element which suppresses the phase velocity of 

the gate electrode. As the intrinsic section of the device is a representative of the semiconductor 
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layer structure of the device, the overall behavior of the device may change by altering this 

section. Therefore, the solution lies in the values for extrinsic section, where the inductance 

and/or capacitance of the drain electrode (CDSe and LDe) can be increased and adjusted in a way 

that the phase velocity on the drain line becomes almost equal to that of the gate line [23]. In 

other words, the mismatch is imposed by the intrinsic features of the device and optimized 

electrode design alleviates this limitation. 

 

Fig. 5.8 Output power of the HEMT device over 10-250 GHz frequency band. 

 

Fig. 5.9 shows a schematic of how the drain electrode is configured to compensate for the 

phase velocity mismatch. This layout arrangement suggests a defined repeating pattern in order 

to steer the electromagnetic signals inside the device. The air gaps in the structure of the drain 

conductor force an extra capacitance to the overall value, which serves as the velocity adjustment 

tool on the drain electrode. The modified configuration is implemented in the configuration of a 

HEMT device. The typical device demonstrates a 43% phase velocity mismatch between the 

input and output electrodes, with a current gain of 3.85 dB at 60 GHz. However, the modified 

HEMT configuration, where the phase velocity mismatch is eliminated, provides a current gain 

of 8.86 dB at the same operating frequency. Clearly, the proposed configuration results in a 

130% increase in the gain of the device. 
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5.7 Conclusion 

In millimeter-wave devices, the electromagnetic-wave propagation effect is a 

phenomenon that must be taken into account in the device design. The simplest definition for this 

effect is the interaction of the signals on the input and output electrodes. This happens mainly 

due to the phase velocity mismatch between the gate and drain electrodes, which becomes 

prominent when the operating frequency increases beyond a certain point, where the wavelength 

of the propagating signal inside the device and the device physical width become comparable. 

Hence, the device width is kept at very small values for high-frequency operations to avoid any 

degradations of the device output. However, a narrower device results in a reduced gain. A 

solution for making today’s devices to be capable of operating at higher frequency bands must 

compensate for the phase mismatch between the input and output conductors. This is mainly 

performed by focusing on the extrinsic device parameters to maintain equal phase velocities on 

the input and output electrodes. 

 

Fig. 5.9 Redesigned drain for removing the phase mismatch between the input and output. 
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Chapter 6 

Conclusion and future work 

6.1 Conclusion 

A novel modeling approach was developed in this research which is mainly utilized for 

transistors operating in mm-wave range frequency bands. Chapter 2 started with presenting some 

background information about transistors, in general, and different types of these devices utilized 

in various applications. It was also explained how the physical structure of devices determines 

their operating modes. Also, different semiconductor materials employed in fabricating these 

transistors were introduced along with their electrical and thermal properties. From this point, the 

dissertation was mainly focused on GaN HEMT devices as the favorable components for high-

frequency and high-power applications. The characteristics of HEMT devices were then 

discussed and the regions of the device structure that were associated with the passive and active 

sections were explained. Additionally, the energy band diagram of a typical HEMT structure 

before and after contact formation was described. 

Different contact types were also discussed in this chapter, and it was explained how and 

why the gate is a Schottky contact, but the two other conductors, namely drain and source, have 

an ohmic contact with the semiconductor layer. Next, the general fabrication procedure of these 

devices was elaborated, recent HEMT designs were introduced, and the N-polar and Ga-polar 

devices were demonstrated. After providing some introductory materials related to the device 

structure, different modeling approaches utilized for analyzing these devices were presented and 

the small-signal and large-signal schemes were introduced. The main limitations of these 

modeling approaches were also discussed in this section, and it was explained how the current 

solutions for addressing these limitations are computationally expensive. Finally, the motivations 

for this research along with the objectives to be achieved were discussed. 
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Chapter 3 discussed the modeling approach proposed for analyzing the thermal behavior 

of transistors, and, more specifically, transistor substrates. First, different types of semiconductor 

materials utilized in transistor substrates were introduced and limitations of these platforms were 

discussed. A simulation was conducted on a sapphire substrate in COSMOL Multiphysics and 

the temperature distribution inside this substrate was presented while operating. Thinning the 

substrate was the initial step in developing the technique for improving the heat dissipation 

capabilities of the platforms. The simulation was conducted on the thinner substrate and the 

mathematical analysis for finding the thermal resistance of the substrates under test proved the 

claims. The actual proposed approach started with defining the conductive heat flow in a solid 

and the truncated cone etched into the back of the substrate was identified as the solution for 

increasing the thermal conductivity of the substrate. 

Rigorous simulations were then conducted on the normal substrate configuration and the 

proposed new design in order to ensure the validity and efficiency of the technique. Different 

substrate thicknesses, cone heights, and applied power values were tested on silicon, sapphire, 

and silicon carbide as the three main platforms utilized in high-frequency devices and circuits. 

The proposed method yielded promising results for all the cases, where the improvement for the 

sapphire substrate was 288% and for the silicon carbide was 101%. Also, cone height was 

introduced as one of the main factors in determining the efficiency of the method. Different 

applications of the novel approach along with fabrication procedures were also discussed in this 

chapter. 

The small-signal modeling approach and the device analysis in the linear region was 

discussed in Chapter 4. First, a thorough literature review of the available methods was presented 

and the limitations with these approaches were explicitly discussed. Wave propagation effects as 
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one of the main phenomena in high-frequency regions were discussed and it was explained how 

important it is to incorporate it in both device fabrication and modeling. The details of the device 

configuration, which was used for the analysis and validation purposes, were presented and the 

equivalent circuit model was described. The extraction procedure for the capacitance, 

inductance, conductance, and resistance of the extrinsic and intrinsic sections in the developed 

model was explained, which was solely based on the physical structure of the device and 

simulation results. 

Next, the distributed approach was introduced as one of the main contributions of the 

conducted research on this topic. It was also mentioned how the distributed model can take into 

account the effects of wave propagation in the analysis. The governing equations for analyzing 

the device were described and the finite-difference scheme in time-domain was utilized. Current 

gain and maximum available gain parameters were obtained for the presented device and the 

simulation results were compared with the measurements for validation purposes, where the 

excellent agreement proved the claims. The S-parameter values over a wide frequency range 

were also obtained. Additionally, to demonstrate why it is important to incorporate the 

distributed effects in the modeling process, the model was applied to a hypothetical wider device 

over a higher frequency band and the results were compared. 

The heat distribution effects were presented in this chapter as well. A power was applied 

to the active region representing the different phenomena in the vicinity of the gate electrode that 

causes the generation of internal heat. Then, the temperature distribution was analyzed inside the 

semiconductor layers, along the device width, and the transistor substrate by looking into 

multiple cutlines. The obtained results clearly demonstrated that the heat distribution studies 

must be considered when a circuit model is developed for a transistor device operating at the 
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mentioned frequency bands and how the distributed model is capable of taking these effects into 

account. 

All the technical materials related to the nonlinear device modeling and a new transistor 

configuration compensating for the phase cancellations was presented in Chapter 5. This chapter 

started with further elaborating on the wave propagation effects and phase mismatch in higher 

frequency bands. Next, another device structure was introduced and its structural details along 

with the developed circuit model and the obtained parameter values were presented. Before 

going into the nonlinear regions, the small-signal model, developed in Chapter 4, was applied to 

this device and promising results were achieved. The output power and gain of the device 

associated with the large-signal analysis were also demonstrated to show the validity of the 

nonlinear model. The high-frequency operability limitations were discussed in the last section 

and a solution pertaining to equalizing the phase velocity of the signals on the gate and drain 

electrodes was proposed. 

 

6.2 Future work 

The research conducted here can be extended by integrating the introduced modeling 

approaches. The developed distributed modeling approach, as explained in Chapter 5, is capable 

of analyzing the device in the linear and nonlinear regions and the large-signal scheme has the 

small-signal tool included. The developed tool for analyzing the thermal behavior of the 

transistor can also be merged with the electrical model to provide a more comprehensive tool. 

Moreover, despite the fact that the distributed model and the proposed extraction techniques are 

independent of the device configuration and structure, the main focus of the present research was 

on the GaN HEMT devices. Hence, some minor tuning and optimization may be required when 
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utilizing the technique for analyzing other transistor types. The obtained model including the 

mentioned information can then be utilized as a software platform capable of analyzing different 

transistor types operating at higher frequency bands. 
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