243 research outputs found

    Radio-Communications Architectures

    Get PDF
    Wireless communications, i.e. radio-communications, are widely used for our different daily needs. Examples are numerous and standard names like BLUETOOTH, WiFI, WiMAX, UMTS, GSM and, more recently, LTE are well-known [Baudoin et al. 2007]. General applications in the RFID or UWB contexts are the subject of many papers. This chapter presents radio-frequency (RF) communication systems architecture for mobile, wireless local area networks (WLAN) and connectivity terminals. An important aspect of today's applications is the data rate increase, especially in connectivity standards like WiFI and WiMAX, because the user demands high Quality of Service (QoS). To increase the data rate we tend to use wideband or multi-standard architecture. The concept of software radio includes a self-reconfigurable radio link and is described here on its RF aspects. The term multi-radio is preferred. This chapter focuses on the transmitter, yet some considerations about the receiver are given. An important aspect of the architecture is that a transceiver is built with respect to the radio-communications signals. We classify them in section 2 by differentiating Continuous Wave (CW) and Impulse Radio (IR) systems. Section 3 is the technical background one has to consider for actual applications. Section 4 summarizes state-of-the-art high data rate architectures and the latest research in multi-radio systems. In section 5, IR architectures for Ultra Wide Band (UWB) systems complete this overview; we will also underline the coexistence and compatibility challenges between CW and IR systems

    Envelope Factorization with Partial Elimination and Recombination, EF-PER, a New Linear RF Architecture

    Get PDF
    In this paper, a new architecture for efficient linear radio frequency transmitters is proposed; it includes envelope-tracking (ET) and envelope-elimination-and-restoration (EER) architectures as special instances. The proposed technique is referred to as Envelope Factorization with Partial Elimination and Recombination (EF-PER). It relies on a decomposition of the RF signal before power amplification as a product of two signals, one of them being the envelope signal elevated to an exponent “α”. Compared to ET or EER architectures, the parameter “α” constitutes a new degree of freedom. This allows one to realize good tradeoffs between different performance criteria such as spectrum use, power efficiency, and transmitter linearity. An intuitive aggregate cost function is introduced to capture the desired tradeoff and turns out to be maximized in α=0.5. The full relevance of EF-PER is sustained both by analytical results and realistic simulations performed for OFDM signals. The EF-PER architecture (with α=0.5) has been simulated under Agilent-ADS with a non-linear transistor model from Avago (E-PHEMT) and compared with ET and EER

    Linearity of Outphasing Radio Transmitters

    Get PDF
    The outphasing transmitter is a promising technique, which can simultaneously achieve high linearity and power efficiency, thereby addressing the major design requirements of next generation transmitters. It employs highly non-linear power ampliïŹer (PA) classes in a linear manner, in principle transmitting a distortion-free signal. Due to symmetric nature of the outphasing architecture, its linearity performance is constrained by any mismatches and non-linear effects encountered in the RF paths. This thesis analyzes the linearity performance of outphasing transmitters (in terms of ACLR speciïŹcation) for LTE base station applications, under the non-linear effects and tolerances present in practical implementations. The system-level model, built in Matlab software, investigates the important non-linear effects present in outphasing transmitters, including gain and phase imbalance, IQ modulator mismatches, delay imbalance, and the non-linear effects of PAs and Chireix combiners. The path and delay mismatches result in only partial cancellation of the wideband quadrature signal, and thus create interference in both the in-band and out-of-band frequency regions. The misalignment in IQ modulators, such as gain/phase imbalance and carrier leakage, introduces amplitude and phase modulation in the outphased signals. The quadrature modulator mismatches, in conjunction with ampliïŹer nonlinearity, result in spectral regrowth around the carrier frequency. The transmitter linearity performance is also affected by mismatches in the non-linear characteristics of the PAs. Realistic square-wave signals, exhibiting ïŹnite rise- and fall- time, also create spectral leakage for distinct rise/fall times in each outphasing branch. Furthermore, the Chireix combiner severely degrades the linearity of outphasing transmitters; it produces ACLR well below the speciïŹed limit for LTE base stations. This makes mandatory the compensation of Chireix combiner induced non-linearity in outphasing transmitters. The strict linearity requirements (for LTE downlink applications) present a small tolerance window for mismatches experienced in practical circuits. The relatively small tolerance margin indicates the need of linearization and compensation techniques in outphasing transmitters

    A 2.4 GHz Phase Modulator for a WLAN OFDM Polar Transmitter in 0.18 um CMOS

    Get PDF
    This research focuses on the design and implementation of a digital active phase modulator path of a polar transmitter in the case of orthogonal frequency division multiplex WLAN application. The phase modulation path of the polar transmitter provides a constant envelope phase modulated signal to the Power amplifier(PA) , operating in nonlinear high efficient switching mode. The core design of the phase modulator is based on linear vector-sum phase shifting topology to differential quadrature input signals. The active phase shifter consists of a DAC that generates binary weighted currents for I and Q branches and differential signed adder that vector-sums the generated quadrature currents to generate the phase at the output.6 bits control the phase shifter, creating 64 states with the resolution of 5:625° for the whole 360°. The linear (binary weighted) vector-sum technique generates a reduction in the resultant amplitude that should be taken into consideration in case of nonlinear PA in polar transmission. On the other hand, the digital phase information is applied as the control bits to the phase shifter that determine the weightings and the signs of the I and Q vectors. The key point is the operation of the phase modulator in terms of phase accuracy, with the wideband modulation standard such as OFDM WLAN. A technique has been proposed to enable the polar phase modulator to operate with a real-time wideband data and to compensate for the phase shifter output reduction. Since the reduction in gain is due to vector sum resultant of I and Q currents, it is compensated by modifying the I and Q currents for each 64 phase states. The design is implemented using 0.18 um CMOS technology and measured with maximum data rate of 64 QAM,OFDM modulation of WLAN standard. The output amplitude of the phase shifter with the correction technique is approximately constant over the 64 states with maximum variation of 3.5mv from the constant peak to peak value. The maximum achieved phase error is about 2° with a maximum DNL of 0.257

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path

    CMOS Integrated Switched-Mode Transmitters for Wireless Communication

    Get PDF

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path

    Linearization techniques to suppress optical nonlinearity

    Get PDF
    This thesis is shown the implementation of the linearization techniques such as feedforward and pre-distortion feedback linearization to suppress the optical components nonlinearities caused by the fibre and semiconductor optical amplifier (SOA). The simulation verified these two linearization techniques for single tone direct modulation, two tone indirect modulation and ultra wideband input to the optical fibre. These techniques uses the amplified spontaneously emission (ASE) noise reduction in two loops of SOA by a feed-forward and predistortion linearizer and is shown more than 6dB improvement. Also it investigates linearization for the SOA amplifier to cancel out the third order harmonics or inter-modulation distortion (IMD) or four waves mixing. In this project, more than 20 dB reductions is seen in the spectral re-growth caused by the SOA. Amplifier non-linearity becomes more severe with two strong input channels leading to inter-channel distortion which can completely mask a third adjacent channel. The simulations detailed above were performed utilizing optimum settings for the variable gain, phase and delay components in the error correction loop of the feed forward and Predistortion systems and hence represent the ideal situation of a perfect feed-forward and Predistortion system. Therefore it should be consider that complexity of circuit will increase due to amplitude, phase and delay mismatches in practical design. Also it has describe the compatibility of Software Defined Radio with Hybrid Fibre Radio with simulation model of wired optical networks to be used for future research investigation, based on the star and ring topologies for different modulation schemes, and providing the performance for these configurations.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • 

    corecore