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ABSTRACT

This research focuses on the design and implementation of a digital active phase

modulator path of a polar transmitter in the case of orthogonal frequency division

multiplex WLAN application. The phase modulation path of the polar transmit-

ter provides a constant envelope phase modulated signal to the Power amplifier

(PA) , operating in nonlinear high efficient switching mode. The core design of the

phase modulator is based on linear vector-sum phase shifting topology to differential

quadrature input signals. The active phase shifter consists of a DAC that generates

binary weighted currents for I and Q branches and differential signed adder that

vector-sums the generated quadrature currents to generate the phase at the output.6

bits control the phase shifter, creating 64 states with the resolution of 5.625 ◦ for the

whole 360 ◦. The linear (binary weighted) vector-sum technique generates a reduc-

tion in the resultant amplitude that should be taken into consideration in case of

nonlinear PA in polar transmission. On the other hand, the digital phase informa-

tion is applied as the control bits to the phase shifter that determine the weightings

and the signs of the I and Q vectors. The key point is the operation of the phase

modulator in terms of phase accuracy, with the wideband modulation standard such

as OFDM WLAN.

A technique has been proposed to enable the polar phase modulator to operate

with a real-time wideband data and to compensate for the phase shifter output

reduction. Since the reduction in gain is due to vector sum resultant of I and Q

currents, it is compensated by modifying the I and Q currents for each 64 phase

states. The design is implemented using 0.18 um CMOS technology and measured

with maximum data rate of 64 QAM,OFDM modulation of WLAN standard. The

ii



output amplitude of the phase shifter with the correction technique is approximately

constant over the 64 states with maximum variation of 3.5mv from the constant peak

to peak value. The maximum achieved phase error is about 2 ◦ with a maximum DNL

of 0.257.
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1. INTRODUCTION

It is critical to increase the power efficiency while minimizing the off-chip com-

ponents for any radio frequency transmitter [15], [16]. Peak power efficiency of a RF

transmitter directly determines the size of the power supply and heat dissipation,

therefore playing a forceful part on final product miniaturization factor, reliability,

yield, and cost [17],[6]. The efficiency of a transmitter system can be remarkably

improved by using a highly efficient nonlinear RF power amplifier [18] [19]. Nonlin-

ear Saturated or switch-mode PAs are more efficient than linear PAs and they may

be fabricated easier on silicon since the driver stages do not need to be linear. The

nonlinear PAs are also less noisy and less sensitive to changes in operating points

caused by process-voltage-temperature (PVT) variations [16].

A high efficiency TX architecture utilizes the polar modulation techniques with

nonlinear PAs, where the base-band signal is modulated in amplitude and phase do-

main (polar) instead of cartesian in-phase and quadrature (I and Q) domain [20] [21].

The resultant TX system is then called ”polar transmitter”. A number of recent polar

transmitters have demonstrated their advantage through highly-integration systems

[22], [23], [24],[25], but only for narrow band modulation standards such as GSM-

EDGE. More recently, [26] [27] [28] polar architecture has migrated to wideband

standards like WLAN.

The IEEE802.11a , WLAN standard allows high-speed wireless communication

with maximum data rate of 54 Mb/s. Figure 1.1 shows the IEEE802.11a air interface

and OFDM channelization [1]. It can be seen that the higher data rates employ

condenser modulation schemes like OFDM. Also, wireless systems use OFDM to

minimize the delay spread for higher data rates. On the other hand, using high
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BPSK (6.9 Mb/s)

QPSK (12, 18 Mb/s)

16 QAM (24, 36 Mb/s)

64 QAM (48, 54Mb/s)

Baseband

Signal

TDD
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f20
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5 Unused 
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1 Unused 

Subchannels

26 Subchannels 26 Subchannels

IEEE802.11a air interface

OFDM channelization in 11a ( Total 52 subcarriers)

RX

TX

Figure 1.1: IEEE802.11a air interface and OFDM channelization

speed modulation results in tougher requirements on the TX and RX design. OFDM

scheme forces severe linearity requirements on the power amplifiers. This is because

the subcarriers shown in the OFDM channelization, are summed at the final stage

of the whole system before the PA and the summation may be constructive for some

points, creating a large amplitude, or destructive for some other points, generating a

small amplitude. In other words, the peak to average ratio (PAR)that can be defined

as the ratio of the largest value of the square of the signal divided by the average

value of the square of the signal, PAR =
Max[x2(t)]

x2(t)
, as illustrated in Figure 1.2 as

large amplitude variation due to OFDM [1].

In Polar transmitters, the phase modulation is amplified separate from the ampli-
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fc1 t

Average 
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X(t)

OFDM 

Subcarriers

Figure 1.2: Large amplitude variation due to OFDM

tude envelope. So, the high level amplitude modulation that requires sever linearity

specifications is accomplished by the amplitude modulation path and the resultant

modulated amplitude is fed as the supply to the PA. Also, the phase path gen-

erates a constant envelope phase modulated signal with no linearity requirements

which would be the input signals of the PA. As a result, PA that is in the nonlinear

switching-mode, amplifies a constant envelope phase signal and the amplitude infor-

mation is restored by the supply. There are various implementation techniques for

polar transmitters such as using digitally controlled-PLL [4], pulse-modulation using

a PWM generator [29] both for WCDMA applications, using Envelope Tracking (ET)

for WiMAX, or digitally normalized I/Q vector summing [9] for OFDM transmitter.

The proposed transmitter architecture is based on the last one for OFDM WLAN.

The focus of this research is on the design of the phase modulation path of the

polar transmitter, creating a constant envelope phase modulated for the WLAN

OFDM signal with the maximum data rate of 54 Mb/s. The are different types of

phase shifting techniques including LC-based using distributed switches [11], con-

tinuous all-pass networks [12], switch-typed phase shifter with integrated VGA [13],

and active vector sum [14], [30]. Most of the phase shifting architectures are imple-

mented for phased-array applications. Phase shifters in phased-array systems are as

3



beam-steering elements and the real-time high speed phase response is not required.

Whereas, for WLAN OFDM signal with high data rate, a modified version of the

vector-sum architecture is needed to handle the high-speed data. Also, due to the

nature of quadrature vector sum architecture in linear mode,[30] and [14], there will

be an amplitude reduction at the resultant output of the phase shifter. This change

in the output amplitude is detrimental in the case of phase modulated signal for

polar transmitter, since the whole purpose of employing nonlinear efficient PA is to

amplify a constant envelope phase signal. For these two reasons, the vector sum

architecture with a correction block is design to provide the constant envelope phase

signal for the maximum data rate of WLAN OFDM signal with high phase accuracy.

4



2. POLAR MODULATION AND EER

2.1 Polar transmitter and EER concept

Modern wireless data communications have been dominated by the tight compro-

mise between spectral and supply power efficiency for a given transmission data rate.

This led to complex modulation formats where amplitude and phase modulation are

combined to code the source symbols. To achieve that, in-phase and quadrature

(I/Q) versions of the RF carrier are simultaneously modulated with the appropriate

real and imaginary components of the low-pass equivalent modulating envelope in

an I/Q modulator. These two RF modulated signals are then combined to generate

the desired AM and PM modulation format, which is then processed by a suppos-

edly linear RF power amplifier (PA). This architecture is known as the Cartesian

topology to distinguish it from the more recently investigated polar architecture.

Unfortunately, this Cartesian architecture has an important drawback in power sup-

ply efficiency because high fidelity of amplitude modulation formats require highly

linear, but, unfortunately, inefficient, class-A or class-AB PAs [31].

A modulation technique originally called ”Envelope elimination and restoration”

(EER) [32], also known as Khan technique circumvents this difficulty representing the

complex envelope using amplitude and phase signals, respectively. The key concept of

this approach is that the modulation is accomplished by a process in which the phase

modulation component is amplified separate from amplitude envelope which will be

restored at the final amplifier. This method offers very high efficient transmitters

because of the ability to work with a highly nonlinear output stage. EER approach

is more recently known as ”polar modulation” because of processing the signal in

the form of a envelope and phase component.

5



Polar modulation can operate in either a closed-loop or open-loop mode, and the

resulting TX system is typically called as ”polar transmitter”. When one restricts

the polar operation to the signal modulator only but not extending it to the high-

power PA, the transmitter is called a ”small-signal polar transmitter” or a ”polar lite

transmitter”. In this case, the amplitude modulation AM signal at the output of the

I/Q modulator can be read off from an AM detector or directly generated digitally at

the baseband and then fed into the voltage control input of a variable gain amplifier

VGA. The VGA will recreate the amplitude modulation by varying the signal level to

the input of a linear PA. Therefore for the small-signal polar operation, the AM and

phase modulated PM signals are recombined at the VGA. If, however, the AM and

PM signals are recombined at the high-power PA (often off-chip), the transmitter is

called as a ”large-signal polar transmitter” or a ”direct polar transmitter”. When a

polar transmitter applies closed-loop feedback control of both AM and PM portions

of the signal from the high-power PA output, this closed-loop transmitter is called

a ”large-signal closed-loop polar transmitter” or simply a ”polar loop transmitter”.

Strictly speaking, a polar loop TX system can use either large-signal or small-signal

polar modulation and can have one or two feedback paths for AM and/or PM signals.

In general, the advantages of a large-signal polar transmitter include the improved

PA efficiency, reduced wideband output noise floor (leading to elimination of bulky

off-chip filters), and reduced sensitivity to PA oscillation with varying output load

impedance over those of a linear PA system. Large-signal polar transmitters have

recently demonstrated impressive results using the 57-year-old Envelope-Elimination-

and-Restoration (EER; i.e., Kahn’s technique) where the output power is directly

modulated by the drain/collector voltage of the highly efficient nonlinear PA (i.e.,

”plate modulation”). In the past, polar transmitters were mostly used for high-power

base station applications to effectively reduce heat dissipation; however, they have

6



recently become very successful for wireless handset TX design in volume production

due to their significant better efficiency and lower cost [6].

Considering a band-pass signal as Vin(t) = Venv(t)cos[ω0t+ φ(t)], the envelope

component Venv(t) and the phase component φ(t) can be decomposed into envelope

and phase signals. As shown in Figure 2.1,the block diagram of envelope elimination

and restoration, a limiter eliminates the envelope, producing a constant-amplitude,

phase-modulated carrier. The detected envelope is then amplified separately. The

results of phase and amplitude paths are recombined by the amplitude modulation

of the final RF power amplifier that restores the envelope to the phase-modulated

carrier.

The envelope detector generates the amplitude envelope Venv(t) and a limiter pro-

duces the phase signal, containing the carrier, VPhase(t) = V0cos[ω0t+φ(t)]. The key

point is that the final stage amplifies a constant-envelope phase signal and therefore

can be nonlinear that will make the design highly efficient. Nonlinear RF power

amplifiers (e.g., classes C, D, E, and F) offer more efficiency than linear PAs like

classes A and B. High-efficiency high-level amplitude modulation is accomplished by

AF power amplifier in class-S or -G , such as DC-DC converter, [33] while a class

E/F amplifier, such as switching PA in class E amplifies the constant-envelope phase

signal.

Finally, the recombination of phase and envelope paths is typically performed by

applying the envelope signal to the supply voltage of the switching PA such that the

output swing becomes a function of VDD. So, to restore the amplitude, the supply

voltage of the switching PA is modulated by the AM signal. Thereby, although the

PA itself is operated in a nonlinear high-efficiency mode, the total transmitter shows

linear behavior while maintaining the high efficiency.

7



Envelope 

Detector

Limiter

Vin =Venv (t) cos[ω0t + φ(t)]

RL

t

t

Switching PA

VPhase (t)

VEnvelope (t)

A

AF Power 

Amplifier

Figure 2.1: Block diagram of envelope elimination and restoration [1]

2.2 Polar modulation issues

From theoretical point of view, EER is a perfect system. However, it is followed

by a number of difficulties and issues in practice. The EER requires a coordinate

transform of the Cartesian digital in-phase and quadrature (I&Q) signals to polar

amplitude (A) and phase-modulated RF φ signals. An ideal recombination of the

A and signals φ in the output stage of the transmitter yields perfect amplified I&Q

signals in the output of the transmitter. However, any small mismatch of delay

between amplitude and phase paths or any bandwidth restrictions for both paths

reveals the dominant nonlinearity due to the coordinate transform [34]. Therefore,

the significant drawback of EER is that the transformation from Cartesian to polar

coordinates are nonlinear:

A(t) =
√
I(t)2 +Q(t)2 (2.1)

φ(t) = tan−1
Q(t)

I(t)
(2.2)
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And amplitude and phase signals occupy wider bandwidths than the original Carte-

sian signal with in-phase (I) and quadrature (Q) components. While much of the

information of A resides at low frequencies, a much wider bandwidth is required to

reconstruct the original signal in Cartesian with sufficient precision [35]. The analog

(A) and digital (φ) signals with relatively wider bandwidths are processed by cir-

cuits with finite bandwidths; a power supply modulator limits the A signal and a

phase-locked loop (PLL) limits the phase signals. Therefore, A and φ are low-pass

filtered before recombination and information is lost that degrades the fidelity of the

recombined signal. To further study the imperfection of the conversion of I and Q

signals to polar signals, let’s consider the polar conversion is done all digitally in

the following way [2]. Instead of generating a φ(t) signal, two signals Iφ = cos(φ(t))

and Qφ = sin(φ(t)) are used and each of these components are multiplied by ωC

that is the RF carrier. So, when using Cartesian I and Q signals, the complex

digital-modulated signal sD becomes:

sD(t) = I(t)cos(ωCt) + jQ(t)sin(ωCt) (2.3)

Consequently, The EER technique should produce the same digitally modulated

signal at the transmitter output. As mentioned earlier, the A(t) and φ(t) have a

much broader spectra than I and Q signals and after phase modulation, the phase

RF signal would becomes:

sRF (t) = cos(φ(t)) cos(ωCt)− sin(φ(t)) sin(ωCt) = cos(ωCt+ φ(t)) (2.4)

Considering the ideal case that the switching PA operates as a multiplier, it gives
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(a)(a) (b) (b) 

Figure 2.2: (a) Vector diagram of I and Q noise signals, (b) Phase and frequency
variation of I and Q noise signals [2]

out the output signal as:

sD(t) = A(t).SRF (t) (2.5)

sD(t) = A(t).Reejφ(t).ejφ(t) (2.6)

sD(t) = I(t)cos(ωCt) + jQ(t)sin(ωCt) (2.7)

As a result, in the ideal case the amplification is set to one and the sD(t) signal

is equal again in the transmitter’s output, thus, the spectra stays the same.

In reality, the spectral characteristic of the polar A(t) and φ(t) signals can be

shown by the band limited Gaussian-noise-like signals, that have a Rayleigh ampli-

tude distribution. Figure 2.2 (a) shows the vectordiagram of I and Q signals and (b)

phase and frequency variation of I and Q noise signals. As shown in Figure 2.2 (a),

the vector diagram of I and Q noise signals approaches to zero. This causes rapid

changes in the phase and angle that corresponds to frequency deviations, leading to

the frequency peaking shown in Figure 2.2 (b) phase and frequency variation of I

and Q noise signals.
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However, wedges or cusps of the amplitude signal and rapid phase changes of the

phase signal, produce broad spectra of either these signals, and also of the SRF(t)

signal. Also, the broader the spectra are, the worse the compensation in the PA

stage becomes and the more out-of-band(OOB) emission comes up. Out-of-band

emission is also known as adjacent channel power or spectral regrwoth. Thus, a

straightforward idea to avoid all those problems is to punch a hole into the vector

diagram.

It turns out that a ”hole” in the vector diagram of the modulation scheme sig-

nificantly reduces the OOB emissions. In other words, the amplitude and phase

modulated are clipped to reduce the crest factor of the modulated signals. The

amount of the modulated signal below the clipping threshold defines a clipping sig-

nal which is shaped as Gaussian to fit the modulated signals spectra. After wards,

this clipping signal is added in vector mode to the I and Q signals and, thus, results in

a hole into vector diagram as shown in Figure 2.3 (a) an example of vector diagram of

complex noise with a ”hole”. Accordingly, amplitude and phase frequency responses

are improved as shown in Figure 2.3 (b) the spectra of RF phase and modulated

digital RF signal and Figure 2.3 (c) spectra of the I, Q, and, A signals, respectively.

So, the amount of unwanted emissions depends on the type of digital modulation

used in the system and a modulation scheme that already has a ”hole”, like digital

offset modulations, is better suited for EER techniques than others [2].

Another problem associated with EER is that the amplitude and phase paths de-

lays are different. The phase signal that is up converted to RF frequencies, experience

more delay than the amplitude path operating at lower frequencies. These delays

should be matched for accurate reconstruction of the original signal at the output of

the switching PA. Therefore, a very precise synchronization scheme is required.
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(a)

(b) (c)

Figure 2.3: (a) Example of vector diagram of complex noise with a ”hole”, (b) Spectra
of RF phase and modulated digital RF signal, (c) Spectra of the I, Q, and, A signals
[2]

2.2.1 Nonlinear distortion of polar transmitters

Unfortunately, as any other engineering solution, polar architecture does not

follow an ideal distortion-free operation, presenting a series of nonlinear impairment

mechanisms. As aforementioned, two main sources of nonlinear distortion are finite

AM modulator bandwidth and differential delay between the output amplitude ay(t)

modulated signal and the phase φy(t) modulated carrier [33]. However, there are also

other sources such as the amplitude signal ax(t) to ay(t) nonlinear supply voltage

modulator transfer function and ax(t) to φy(t) parasitic AM to PM conversion. These

two other sources of distortion are also known as, vDD(t) to ay(t) nonidealities and

vDD(t) to φy(t) conversion [31].

The finite AM modulator bandwidth was first approximated by assuming an ideal
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brick-wall reconstruction filter [33]. However, the analysis of the finite bandwidth

can be further extended by considering a general reconstruction filter. To study the

effect of finite AM modulation bandwidth, the IMD products that occur as a result

of envelope filtering in an ideal EER system are observed which are derived based

on a two-tone test. Considering two signals with unity amplitudes, with ωm and ωc

being the angular frequencies of the modulating signal and the carrier, respectively.

vi(t) = cos(ωmt) cos(ωct) =
1

2
cos(ωc − ωm)t+

1

2
cos(ωc + ωm)t (2.8)

vi(t) can also be represented as an amplitude and phase modulated wave, i.e.

vi(t) = Ei(t)cos(ωct+ φi(t)) = Ei(t)vx(t) (2.9)

where Ei(t) is the envelope of the input signal and the φi(t) is the phase modu-

lation of the RF carrier. Assuming the angular time by θ = ωmt, for the two-tone

signal, it is easy to see that

Ei(t) = |Ei(t)cos(ωmt)| (2.10)

and

φi(t) =


0, cos(θ) ≥ 0

π, cos(θ) < 0

(2.11)

Figure 2.4 shows the block diagram of the EER two-tone system. In case the of

the two-tone signal, the phase variation φi(t) corresponds to reversals in the carrier

polarity. Therefore, signal vx(t) which is fed to the input of the amplifier can be

simply represented as the original RF carrier multiplied by the switching function
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vx(t)

Sgn(x)
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c(t)

H(jω)
Ei(t) Eo(t)

PA

vo(t)

Figure 2.4: Block diagram of EER two-tone test system

c(θ),

vx(t) = cos(ωct+ φi(t)) = c(θ)cos(ωct) (2.12)

where,

φi(t) =


1, cos(θ) > 0

0, cos(θ) = 0

−1, cos(θ) < 0

(2.13)

Since Ei(θ) and c(θ) are periodic signals, they can be expanded into Fourier series

as

Ei(θ) = a0 +
∑

m=2,4,6,...

(amcos(m(θ))) (2.14)

and
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Figure 2.5: Low pass LR network in the class-E PA in EER system

c(θ) =
∑

m=1,3,5,...

(cncos(n(θ))) (2.15)

To further study the effect of finite bandwidth of AM modulator, let’s consider

the case where the envelope signal is passed through a simple low pass RL network

shown in Figure 2.5 low pass LR network in the class-E PA in EER system. The

LRFC is the DC-feeding inductance which is a consecutive part of circuitry and RA

denotes the resistance that the circuit presents to the supply source in class-E-based

EER.

The transfer function of the lowpass LR network is as follows:

H(jω) =
1

1 + j ω
ωt

= H(ω)ejφ(omega) (2.16)

where ωt = RA/LRFC representing the 3dB frequency of the filter and the ampli-

tude and phase characteristic are,

H(ω) =
1√

1 + ( ω
ωc

)2
(2.17)

and

φ(ω) = −arctan(
ω

ωt
) (2.18)
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The amplitude and phase response of the filter at harmonic frequency of ωm will

be denoted as hk and φk, respectively, where

hk = H(kωm) =
1√

1 + (kωm

ωt
)2
, k = 1, 2, 3, ... (2.19)

and

φk = φ(ω) = −arctan(
kωm
ωt

), k = 1, 2, 3, ... (2.20)

So, due to action of the lowpass RL circuit, the restored envelope of the output

signal will be as following,

Eo(θ) = a0 +
∑

m=2,4,6,...

(amhmcos(m(θ) + φm)) (2.21)

and the reconstructed signal at the output of the power amplifier can now be

observed as the following,

vo(t) = Eo(θ)vx(t) = Eo(θ)c(θ)cos(ωct) = y(θ)cos(ωct) (2.22)

where y(θ) is the modulating function. In order to analyze the IMD products of

the output signal, it is necessary to consider the spectral content of the modulating

function, Eo(θ)c(θ).

y(θ) = [a0 +
∑

m=2,4,6,...

(amhmcos(m(θ) + φm))]
∑

m=1,3,5,...

(cncos(n(θ))) (2.23)

Therefore, the spectral components of the modulating function are the result

of mixing of each of the spectral component in Eo(θ) with each of the spectral
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Figure 2.6: The calculated SB/I response of the EER system to the LR low pass
filter [3]

component of c(θ). The presence of the phase term φm and the gradual roll-off of

the lowpass transfer function require special attention and cause the analysis to be

more complicated. To characterize the IMD behavior, the sideband-to-intermediation

ratio is defined. the SB/I ratio gives a less optimistic picture of the intermodulation

distortion in the EER-based transmitter than a carrier-to-intermodulation, since

information is contained in the sideband product and not in the carrier. The results

obtained from the one-pole low pass filter are shown in Figure 2.6 the calculated SB/I

response of the EER system to the LR low pass filter. The dominant IM products

are of the third and fifth order that have been plotted. At low values of ωm/ωt ,

SB/I3 and SB/I5 have virtually the same values. A rapid drop in the SB/I ratio

can be noted as the frequency of the modulating signal ωm approaches the corner

frequency ωt of low pass filter.

To analyze the IMD due to differential delay between the output amplitude ay(t)

modulated signal and the phase φy(t) modulated carrier, let’s consider first the linear
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process of amplitude signal ax(t) to vDD(t). Also, the envelope amplitude is coded in

a over-sampled 1-bit data stream either with or without quantization noise shaping

in the digital class-S modulator with clock or sampling frequency of ωs. To account

for any possible differential delay τ , between this 1-bit digital signal and the φx(t)

PM signal, it is reasonable to state that the reconstructed analog amplitude signal

that is the supply voltage of the RF PA, will be a linear, but delayed replica of the

AM input vDD(t) = ax(t− τ). Ideally, the low-pass reconstruction filter F (ω) should

only preserve the time-varying component centered on dc, i.e., ax(t− τ), eliminating

all the other spectral replicas that are centered at the harmonics of ωs. As previously

derived, the low-pass filter is not ideal brick-wall filter and will thus introduce linear

amplitude and phase distortions in the ax(t) to vDD(t) characteristics and let pass

high-frequency quantization noise. Hence, the final result of this 1-bit modulation

and demodulation process will be a supply voltage amplitude given by,

vDD(t) =
8A

π

[
1

2
F (0) +

∞∑
n1even

|F (n1ωm)|(−1)
n1−2

2

n1
2 − 1

× cos(n1ωmt+ φ(n1ωm))

]
+ n(t)

(2.24)

where n(t), is the unfiltered high-frequency quantization noise and φ(n1ωm) in-

cludes the F (ω) phase contribution at the n1th even harmonic component of ax(t)

and the constant delay phase component τ as,

φ(n1ωm) = −jln
[
F (n1ωm)

|F (n1ωm)|

]
− n1ωmτ (2.25)

The above analysis indicates that the nonideal low-pass reconstruction filter and

differential delay between the AM and PM paths are the nonlinear impairments of

polar transmitter and should be taken care of in highly linear operations.
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2.3 Different polar transmitter architectures

There are many approaches presented for the phase modulation of the polar

transmitter. Each of them being suitable for different standards and applications.

Here some of the most recent architectures will be presented.

2.3.1 Polar transmitter using all-digital phase-locked-loop (ADPLL)

The simplified block diagram of a polar transmitter using all-digital phase-locked-

loop (ADPLL) is shown in Figure 2.7 simplified ADPLL-based polar transmitter.

The baseband complex-number symbols are generated from the DBB processor at a

rate fsym (in sym/s). They are then up-sampled to a higher rate to be processed by

the transmit (TX) pulse-shaping filter that constraints the transmitted bandwidth in

a manner specified by the chosen communication standard. The symbol oversampling

ratio (OSR) indicates the sampling rate increase. A Coordinate Rotation Digital

Computer (CORDIC) circuit is utilized for the conversion of the Cartesian to polar

complex-number-represented data, which are subsequently handed over to the polar

modulation stage. At the heart of the polar modulator lies an all-digital phase-locked

loop (ADPLL), which operates in the phase domain, Figure 2.8 [4], phase-domain

ADPLL with two-point modulation.

It accepts input digital signals that carry phase/frequency information. The

center frequency of the digitally controlled oscillator (DCO) variable clock (CKV)

signal of frequency fV is determined with respect to the reference clock (FREF)

frequency fR by the frequency command word (FCW).

Due to the existence of two asynchronous clock domains FREF and CKV, re-

timing is performed by oversampling the FREF clock with CKV for synchronization

purposes[36]. The re-timed clock CKR of average frequency is used to synchronize the

ADPLL internal operations. The phase-modulating φ[k] = φ(kT(R))data drive the
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Figure 2.7: Simplified ADPLL-based polar transmitter [4]

Figure 2.8: Phase-domain ADPLL with two-point modulation [4]

ADPLL as φpm[k] using a two-point modulation scheme [37]. The feed-forward path

directly modulates the DCO oscillating frequency, and the resulting accumulated

phase on the feedback path is corrected at the phase detector by the compensation

path. This scheme allows the DCO to settle fast at a selected RF channel and,

more importantly, opens the door to wideband modulation because of the broad

low-pass sinc2(kTR)-type transfer function from the digital phase input to the DCO
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Figure 2.9: Block diagram of the polar transmitter using interleaving PWM [5]

RF output phase. The envelope modulator interpolates the envelope modulating

data r[k] = r(kTR); its transfer function needs to be properly selected so that the

nonlinear recombination of the envelope and phase modulations in the DPA produces

a minimally distorted bandpass signal.

2.3.2 Pulse-modulated polar transmitter (PMPT) using pulse width modulation

The second phase modulation technique for polar transmitters is using pulse

width modulation, shown in the Figure 2.9, the block diagram of the polar transmit-

ter using interleaving PWM . The digital I and Q signals are processed by a digital

signal processor (DSP) to calculate the signal magnitude, M(t) =
√

(I2(t) +Q2(t)),

and normalize the IQ signals as I ′(t) = I(t)√
I2(t)+Q2(t)

= I(t)
M(t)

and Q′(t) = Q(t)√
I2(t)+Q2(t)

=

I(t)
M(t)

. The normalized I’ and Q’ signals can be transformed to a constant-envelope

RF signal by a vector modulator. The magnitude signal is modulated by a PWM

modulator to generate a pulse train with different duty cycles. The pulse train will

control the pulse modulator to modulate the constant-envelope RF signal to obtain

a pulsed constant-envelope RF signal. Since the modulated RF signal has only two

envelope levels (1 and 0), it can be amplified by a highly efficient switch-mode PA.

It has been verified in [29] that the complex-modulated RF signal can be restored

by bandpass filtering this kind of pulse modulated RF signal. The bandpass filtering
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Figure 2.10: Block diagram of the open-loop large-signal polar transmitter (PM path
shown in shaded blocks)[6]

can usually be done by a high-quality surface-acoustic-wave (SAW) filter already in

commercial cellular handsets, such as a duplexer [5].

As shown in Figure 2.10, open-loop large-signal polar transmitter block diagram,

can use feed-forward pre-distortion to linearize the AM-AM and AM-PM distortion

in the PA. This enables elimination of power detectors, couplers, feedback circuits

and many other functions required to support feedback loops. Power consumption

is lower in open loop systems due to reduced complexity and less insertion loss after

the PA. The TX data from the baseband is split into its AM and PM components

with PM path shown in shaded blocks. The PM components are pre-distorted to

compensate for the PLL loop filter roll-off and are then combined with the channel

selection word of the fractional-N synthesizer, which provides the phase modulation of

the 8-PSK (Phase Shift Keying) signal for EDGE modulation. The AM components

are scaled according to the PA ramping control signal applied to the PA controller to

modulate the saturated PA output directly, which PA control block offers a highly

linear amplitude transfer function between the input control signal voltage and the
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Figure 2.11: Block diagram of a RF polar transmitter system using ET technique [6]

output RF voltage. Carrier suppression is excellent as there is no upconversion in

the TX system. This complete GSM/GPRS/EDGE radio system solution achieves

higher functionality at lower cost for cellular handsets than one would obtain using

the traditional I/Q transmitter approach.

2.3.3 Polar transmitter using envelope tracking (ET)

One latest development is to apply the Envelope-Tracking (ET) technique to

implement monolithic large-signal polar transmitters for wireless applications, as

excellent system efficiency and linearity has been demonstrated. Compared to EER-

based large-signal polar TX system, it is found that an ET-based polar TX system

(also known as hybrid-EER or H-EER architecture), and shown in Figure 2.11, the

block diagram of RF polar transmitter system using ET technique , has the following

benefits:

1) Higher gain at low output power. This is because the PA is ”nearly saturated”

but not always fully saturated as in the case of EER,

2) Lower sensitivity to timing mismatch between the RF versus amplitude paths

than EER,

3) Lower bandwidth requirement for the envelope amplifier than that in the case
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of EER. This can be critical as the efficiency of the envelope amplifier can be the

limiting factor for an ET/EER system,

4) Relaxed bandwidth requirement for the circuits used in the RF path versus

that in the case of EER. Since this ET-based polar TX architecture uses the RF

modulation signal as the input to the saturated PA (instead of the PM signal), the PA

needs to cover only the modulation signal bandwidth, making ET more suitable for

broadband wireless applications than EER. The high bandwidth RF limiter required

for EER can also be power hungry, while it is not needed for ET,

5) ET will have less RF feed-through signal that can appear as distortion in

the TX output. Since the drive signal is hard-limited for the case of EER, it has

sidebands that can cause intermodulation distortion (IMD) by the large gate-drain

or base-collector capacitance in the final RF power device to couple to the output to

cause EVM issues ;ET is better in this.

For reasons listed above, this ET architecture can be very attractive for imple-

menting low power portable RF transmitter with excellent PAE [6].

2.3.4 All-digital polar RF modulation transmitter

Shown in Figure 2.12(a), all-digital polar RF modulator block diagram, has been

proven to be susceptible to low-voltage nanoscale CMOS technology. The COordi-

nate Rotation DIgital Computer (CORDIC) circuit transforms the baseband I and

Q data streams to their polar equivalents, amplitude and phase, which gets differ-

entiated to obtain frequency deviation ∆f = ∆θ/∆Ts, where Ts is the sampling

clock period. The frequency deviation is subsequently processed by the digital-to-

frequency converter (DFC), whereas the amplitude signal is processed by the digital-

to-RF-amplitude converter (DRAC). The DFC comprises a frequency modulator and

a digitally-controlled oscillator (DCO). It could be realized, for example, as an all-
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(a)(a) (b)(b)

Figure 2.12: Block diagram of (a) an all-digital polar RF modulator, (b) analog-
intensive polar RF modulator [7]

digital phase-locked loop (ADPLL) that also provides the negative feedback control

of the DCO center frequency drift. The DRAC comprises an amplitude modulator

and digitally-controlled prepower amplifier (DPA).

figure 2.12 (b) shows an analog-intensive polar RF modulator in which the DRAC

is replaced by a digital-to-analog converter (DAC), baseband envelope amplifier and

an external RF high-power PA (HPA). The frequency modulation is replaced there

by the phase modulation using a mixer. This architecture completely avoids all the

issues associated with the circuit limitations of the wideband frequency modulation

by avoiding any phase-to-frequency conversions and performing the phase modulation

directly [7].

2.3.5 EER system with FPGA controlled amplitude and phase commands

Utilizing digitally controlled passive phase shifter in the EER system with FPGA

bias control is another phase modulation technique. Shown in Figure 2.13, block

diagram of the EER system with FPGA controlled amplitude and phase commands,

the FPGA allows the flexibility of generating arbitrary lookup-table-based periodic

envelope and phase waveforms. The dc portions of the envelope is produced by the

FPGA as the dc envelope command which controls the duty cycle of Q1 switch,
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Figure 2.13: Block diagram of the EER system with FPGA controlled amplitude
and phase commands [8]

adjusting the dc value of the envelope signal. The ac portion of envelope is also

generated by the FPGA as 12-bit ac envelope command that passes through a 12-

bit DAC. The dc and ac signals are coupled to obtain the supply voltage for the

class-E PA. The phase of the RF input signal for the PA is controlled by a TriQuint

TGP6336-EEU 5-bit X-band digitally controlled phase shifter. The phase shifter has

around 9-dB loss, requiring a pre-amplifier at the input. The digital phase command

is also generated by the FPGA controller.

The key function in this design is synchronizing the phase and amplitude delay

by the FPGA look-up-table. There are two look-up-tables for envelope and phase

command that both includes 50 samples per period of the equivalent sinusoidal wave

form. Two identical counters are designed to select the envelope or phase sample.
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Figure 2.14: Block diagram of the EER system for OFDM transmitter [9]

Therefore, the phase and the ac envelope signals are synchronized. By shifting the

phase or envelope data up or down in the lookup table, the delay between the envelope

and phase command signals can be controlled in order to compensate for the delay

in the envelope and phase signal paths[8].

2.3.6 EER architecture for WLAN OFDM transmitter

The EER system with the case of an orthogonal frequency division multiplex

(OFDM) signal, the envelope is highly variable (Peak to Average Power Ratio is ma-

jored by N, where N is the number of sub-carriers). After amplification, the recom-

bination of the envelope and phase information is accomplished by drain modulation

of an amplifier such as class E type as illustrated in Figure 2.14, block diagram of

the EER system for OFDM transmitter.

The polar transmitter for WLAN OFDM applications has the problem that the

bandwidth for the envelope is very wide. The RF bandwidth of a WLAN 802.11a/g

signal is 16.6 MHz while it is approximately 36.6 MHz for 802.11n. The envelope
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Figure 2.15: Envelope-spectrum for WLAN 802.11a [10]

bandwidth is much larger due to the nonlinear process of converting I- and Q-data

to envelope data. Figure 2.15 shows the envelope-spectrum of the WLAN 802.11 a

which is very wide, due to spectral regrowth. Efficient DC-DC converters have a too

small bandwidth for coping with such envelope spectra, and can therefore not be

used for WLAN-OFDM polar transmitters [10].

2.4 Phase modulator architectures

The focus of this thesis is mainly on the phase modulator path of the polar

transmitter. First, let’s review some of the state-of-the-art phase modulator designs.

Several design topologies using standard silicon technology have been demonstrated

to realize both digital and analog phase shifters for phase modulation. In general,

digital phase shifters exhibit a high insertion loss and large chip area due to the

cascade of several phase bits. In contrast, in analog phase shifters, the differential
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Figure 2.16: The digital phase shifter with distributed active switches topology [11]

phase shift is varied in a continuous manner by the capacitance change of a varactor

or by the vector sum using active devices.

2.4.1 Digital phase shifter using distributed switches

The digital phase shifter with distributed active switches topology is shown in

Figure 2.16 . The operation of the phase shifter is very similar to that of a traveling-

wave amplifier. However, the circuit is associated with only one input artificial

transmission line, unlike a conventional traveling-wave amplifier, which consists of

input and output lines. The input line consists of a cascaded ladder network with

series inductances and shunt capacitances. The shunt capacitors of the gate line are

supplied by the gate capacitance Cgs of common source MOSFETs. The capacitance

of transistors is related with the per-section phase shift and bandwidth. A low gate

capacitance of transistors results in the high Bragg frequency,i.e. and the low per-

section phase shift. It is beneficial to design high-frequency phase shifters as long as

the of transistors is sufficiently high. A cascode design is chosen for the individual

gain cells of the phase shifter. The cascode arrangement of two MOSFETs provides
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high gain, high output resistance, and high reverse isolation. In addition, the cascode

MOSFET operates as active switch, as the gate bias of the common gate MOSFET

can be used as an effective means of switching between VDD and GND. This enables

the distributed phase shifter to be controlled digitally [11].

The input signal propagates through the gate line, tapping off some of the input

power before being absorbed by a terminating resistor. The input signal sampled

by the gate circuits at different phases is transferred to the output through each

activated cascode cell. By switching the common gate MOSFETs in succession,

the phase shift can be incremented by the steps of the phase constant of the input

artificial transmission line. Therefore, the smallest phase shift is the unit phase shift

of ∆φ and the largest phase shift is (N − 1)∆φ .

An important parameter in phase shifters is the rms phase shift error. Most

MMIC phase shifters exhibit a phase shift error due to manufacturing process varia-

tions and modeling inaccuracies of the circuit elements. For the proposed distributed

phase shifter, the transistor capacitance variation C ′gs or the series inductance vari-

ation L’g results in the unit phase variation ∆φ’. The rms phase error Srms can be

obtained in terms of phase mismatch ∆φerr = |∆φ−∆φ′|. it can also be computed

as

Srms =

√
N(N − 1)

6
∆φerr (2.26)

In addition, the unit phase mismatch can be a function of the number of stages

N needed for a required phase shift range. For a given gate capacitance or series in-

ductance variation α, which is defined as C ′gs/Cgs or L′g/Lg, the unit phase mismatch

can be expressed by
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∆φerr =
φmax
N − 1

|1−
√
α| (2.27)

where φmax is the maximum differential phase shift. As a result, the rms phase

error can be calculated as

Srms =

√
N(N − 1)

6

φmax
N − 1

|1−
√
α| (2.28)

Another important parameter of the phase shifter is the state-to-state variation of

the insertion loss or gain. In practice, the gate voltage wave traveling throughout the

gate artificial line will unequally excite the gates of common source MOSFETs due

to the loss present in the gate artificial transmission line. Each successive common

source MOSFET receives less signal voltage as the signal travels down the gate line.

Hence, the current generators from the drains have different magnitudes. This results

in a significant gain variation of the phase shifter. In order to equalize the current

generators, it is necessary to change the transconductance of each cascode cell by

adjusting the size of the common gate MOSFET. The magnitude of each current

generator decreases as the differential phase shift increases, thereby increasing the

size of the common gate MOSFET.

Figure 2.17 (a), transmission line circuit for the gate of the distributed phase

shifter, shows a simplified equivalent circuit for the gate line of the distributed

phase shifter. The input voltage wave propagating the gate line produces voltages

V1, V2, V3, .., Vn across each gate capacitance Cgs. The voltage at the kth tap of the

gate line is related to the gate lines segment length lg and complex propagation con-

stant γg.If the voltage across the input terminal of the distributed phase shifter is

Vin, then Vn = Vine
−nγglg .

Figure 2.17 (b) shows a simplified small-signal equivalent circuit of a single cas-
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Figure 2.17: (a)Transmission line circuit for the gate of the distributed phase shifter.
(b)Simplified small-signal equivalent circuit of a single cascode cell[11]

code cell. The current generator of each cascode cell can be expressed as Io,n =

Gm,nVn, where Gm,n is the effective small-signal transconductance of each cascode

cell. The available gain of each phase state is given by Gk =

1

2
|Io,k|2ZLoad
1

2
|Vin|2/Zg

where

γg = αg + jβg, in which αg and βg are the attenuation and phase constant of the

gate line, respectively.

The amplitude equalization of the distributed phase shifter is then obtained as

Gm,k = e(k−1)αglgGm,1 and the transconductance of an MOSFET is directly pro-

portional to the
W

L
ratio. The effective transconductance of a cascode cell can be

changed by varying the size of the common gate MOSFET. So, the width of the com-

mon gate MOSFET is given by Wc,k = e(k−1)αglgWc, 1. Indicating that the width of a

common gate MOSFET increases as an exponential function of attenuation constant

assuming that other parasitic losses are not considered. This is explained by the fact
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Figure 2.18: Schematic of the continuous differential active phase shifter [12]

that the input voltage on the gate line decays exponentially.

Process variation can affect the gain of the distributed phase shifter. If the

transconductance of each cascode cell is changed at the same ratio by the process

variation, there is no change of the gain deviation. The absolute gain value of each

phase state can be higher or lower[11].

2.4.2 Continuous active phase shifter design for millimeter-wave phased-arrays

This design is a continuous active phase shifter for millimeter-wave phased-array

transceivers with an all-pass network frequency response that provides continuous

insertion phase control and nearly constant insertion loss regardless of the insertion

phase variation.

Figure 2.18, schematic of the continuous differential active phase shifter, is com-
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posed of two differential amplifiers and a resonant circuit. The main amplifier is

a differential common-source structure implemented using transistors M1 and M2.

The feed-through amplifier is a differential cascode common-source structure imple-

mented using M3, M4, M5, and M6. While the outputs of the main and feed-through

amplifiers are connected to each other, their input terminals are cross-connected to

each other. A resonant circuit implemented by one inductor Lt and one capacitor

Cvar is inserted between the drain node of M3,4 and the source node of M5,6. Cvar is

a varactor and its capacitance value is controlled by voltage control Vcont, that tunes

the frequency response of the tank.

The active phase shifter functions as a second-order all-pass network when gm3,4

is about two to three times greater than gm1,2. The advantage of the all-pass network-

based phase shifter is its lower sensitivity to insertion phase variation. This feature is

beneficial for large bandwidth circuits since its frequency response does not depend

on the insertion phase.

Y-parameters are driven Based on Figure 2.19, the phase shifter small-signal

model to derive the Y-parameter. The Y21(s) of the phase shifter can be defined as

the ratio of the small-signal output current to input voltage with the ac grounded

output terminals. The Y21(ω) of the phase shifter can be defined as,

Y21(ω) = gm1

−ω2 + ω2
a − jωωa

√
Lt

Ca
gm6(1 +

1

gm6Ra

)

−ω2 + ω2
a + jωωa

√
Lt

Ca
gm6(1 +

1

gm6Ra

)
(2.29)

where ωa represents
1√
LtCa

, with the phase response of

< Y21(ω) = −2tan−1(
ωωa

Q(ω2
a − ω2)

) (2.30)

The S21 phase response can be also derived by transforming the Y-parameters to
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Figure 2.19: The phase shifter small-signal model to derive the Y-parameter[12]

S-parameters [12].

2.4.3 Switch-typed phase shifter with integrated VGA

Another topology that is mainly used for RF phased-array systems is switch-type

phase shifter integrated with a low phase-variation variable gain amplifier (VGA).

The main challenge associated with RF phase shifting is the accuracy of phase con-

trol. Using the phase compensation technique, the gain-compensated VGA can pro-

vide appropriate gain tuning with almost constant phase characteristics, thus greatly

reducing the phase tuning complexity in a phased-array system.

When the phase shifter provides different phase-shifting states, the loss will be

different for each state. Consequently, the VGA must provide different gain com-

pensation for different phase-shifting states. Nevertheless, the gain tuning of the

VGA will introduce additional phase variations for the whole phased-array system.

Hence,the phase-compensated VGA is designed to compensate the phase variation
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Figure 2.20: Fixed primary and secondary phase compensation technique[13]

for different gain-compensation states. For the low phase-variation VGA, a simpli-

fied phase-compensation technique can be used shown in Figure 2.20, fixed primary

and secondary phase compensation technique. This technique requires only one

auto gain control in the self-calibration phased-array system, which is using fixed

phase-compensation blocks to simplify the control complexity. With the low phase-

variation VGA and the high-resolution phase shifter, the phased array is suitable for

the applications of satellite communications and radar systems [13].

Figure 2.21: Schematic of the 5-bit switch-type phase shifter[13]
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π-type switch-type phase shifter

T-type switch-type phase shifter

Figure 2.22: (a)π-type switch-type phase shifter. (b) Equivalent circuit when Vc=
0V. (c) Equivalent circuit when Vc=1.2 V. (a)T-type switch-type phase shifter. (b)
Equivalent circuit when Vc= 0V. (c) Equivalent circuit when Vc=1.2 V.(* C2 and C3

are the parasitic capacitors of transistors Q2 and Q3)[13]

The sequence of phase-shifting stages is an important design consideration for

the low phase-variation phase shifter. In order to achieve better EVM performance,

the multiple phase-shifting stages has been chosen to be 5 bits, as shown in Figure

2.21, the schematic of the 5-bit switch-type phase shifter. However, individual stage

performance could be affected by adjacent stages due to loading effects. The small

phase-shifting stage (i.e., 11.25 and 22.5 ) has more mismatch and loading effect than
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the large phase-shifting stage. Hence, the small phase-shifting stages are placed in

between the large phase-shifting stages to reduce loading effects from adjacent stages

and to achieve high phase linearity. Group delay is an important parameter that

describes the phase linearity of transfer networks. For the phased-array systems, low

phase variation, or low group-delay deviation, is required over the entire bandwidth

to ensure the signal integrity during transmission. There are several ways to realize

a switch-type phase shifter. π-type and T-type switches are two of the most popular

topologies, shown in Figure 2.22 (a)π-type switch-type phase shifter. (b) Equivalent

circuit when Vc= 0V. (c) Equivalent circuit when Vc=1.2 V. (a)T-type switch-type

phase shifter. (b) Equivalent circuit when Vc= 0V. (c) Equivalent circuit when Vc=1.2

V.(* C2 and C3 are the parasitic capacitors of transistors Q2 and Q3). To choose

the appropriate topology for designing a low group-delay deviation phase shifter,

the insertion phase and group-delay deviation of the π-type and T-type switch-type

phase shifter for a 90 phase-shifting stage are compared and T-type switch-type phase

shifter has low group delay and low phase deviation.

As shwon in Figure 2.23, the schematic of the 60-GHz 5-bit phase shifter and low

phase variation VGA, to reduce loading effects from adjacent stages, a 360 ◦ phase

shift is implemented by cascading 180 ◦ , 22.5 ◦ , 45 ◦ , 11.25 ◦ , and 90 ◦ , respectively.

For low insertion loss, the input transistor switches have body connected to source.

To achieve a compact chip area and to minimize the influence caused by process

variation, the inductors are implemented with microstrip lines.

The phase-compensation technique is achieved by utilizing the phase-compensation

capacitor Cx and source degeneration inductor LE . Due to the millimeter-wave

(MMW) frequency, all the CMOS parasitic effects of Cx and LE need to be consid-

ered carefully. Cx has a primary effect on phase-variation compensation, while LE

helps to reduce phase variation.
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Figure 2.23: Schematic of the 60-GHz 5-bit phase shifter and low phase variation
VGA [13]

When the control voltage,Vctrl , of the VGA is adjusted, the transconductance

gm and matching conditions will also be varied accordingly. Therefore, the gain

tuning stage is designed in the second stage to minimize the impact on input and

output return loss. The gain tuning and phase compensation stage is composed of a

common-source (CS) and a common-gate (CG) cascode topology. The equations of

maximum and minimum S21 and the gain tuning range of the VGA are given by

S21,max = 20log(gm,maxZL)dB (2.31)

S21,min = 20log(gm,minZL)dB (2.32)

∆S21 = 2− log(
gm,max
gm,min

) (2.33)
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Figure 2.24: Building blocks of the 360 ◦ vector-sum phase shifter[14]

It is worth noted that the gain tuning range in 2.33 is determined by transconduc-

tance gm , which is independent of load impedance. Since a constant gain at different

phase-shifting states is required in the phased-array system, the gain tuning of the

VGA should be wide enough to cover the loss variation of a phase shifter [13].

2.4.4 Vector-sum phase shifter

Another phase shifter topology that is mainly applied in phase array system,

is active vector-sum technique. In the vector sum method, after the generation of

the in-phase/quadrature signal by the I/Q network, the output phase is adjusted by

adding them with appropriate I/Q amplitudes and polarities. A precise quadrature

signal generation is therefore an important circuit element of the active approach

for exact phase shifting. Unfortunately, the generation of quadrature signals using

passive couplers/dividers is not an attractive method on account of their narrow

bandwidth [14].

Building blocks of the 360 ◦ vector-sum phase shifter is illustrated in Figure 2.24.

A differential input signal is split into quadrature phased - and -vector signals using

an I/Q network, which also provides differential 50 Ω matching with the previous
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Figure 2.25: The phase shifter differential vector summing schematic [14]

stage. This stage, which is composed of three all-pass filters, generates very low

quadrature phase error. In order to generate an interpolated output signal, a differ-

ential adder composed of two Gilbert-cell type signed variable gain amplifiers (VGAs)

is used. It adds the I- and Q-inputs from the I/Q network with proper polarities and

amplitude weights, giving an output signal with a magnitude of
√
I20 +Q2

0 and phase

of tan−1(
Q0

I0
). For phase resolution, the different amplitude weightings of each input

of the adder can be accomplished by changing the gain of each VGA differently. A

differential pair does this work by controlling the bias current of the VGAs.

Figure 2.25 shows the phase shifter differential vector summing schematic that

adds the I- and Q-signal together in the current domain at the output node, synthe-

sizing the required phase. The analog differential adder is composed of three blocks.

The core of the network is the vector summation block where the vectors are added

and it consists of eight transistors M1−8. The second block is the quadrant selection

block that switches the tail current from I-side to the Q-side to provide the 180 ◦

phase state. SI and SQ switches determine the quadrant selection. The voltage

gain at the phase shifter output is approximated according to the square-law gain
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dependency on bias current in CMOS as

Av = 20log(k
√
II + IQ) (dB) (2.34)

Where k = constant and, and the output phase θout is determined by the I/Q

current ratio given by

θout = tan−1
√
IQ
II

(deg) (2.35)

In order to obtain the desired phases, the Vector amplitude control block is used

to change the tail current amplitudes. In this block, a differential pair consisting of

PMOS transistors M15 and M16 is biased with a supply current, IA. A DC control

voltage V1 is applied to the gate of M15 to fully steer the IA current from transistor

M15 to M16 which are also the I and Q current branches, respectively.

One major advantage of the active phase shifter is the dependence of output phase

on I-and Q-path bias current ratio rather than the absolute value of the current, so

the ratio of I/Q will track temperature variations, resulting in constant phase versus

temperature [14].

2.5 The proposed active phase modulator design of the polar transmitter for

WLAN 802.11 a application

The proposed phase modulator block diagram is shown in Figure 2.26. The phase

modulator is designed and fabricated in 180 nm CMOS technology. The core of the

phase modulator is an active phase shifter that is digitally controlled by 6-bit phase

information. The differential quadrature (I and Q) input signals of the phase shifter

are created by a divider block that divides the local oscillator (LO) frequency of 1.6

GHz by two. The differential phase signal at 800 MHz is then up-converted to 2.4
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Figure 2.26: The proposed phase modulator block diagram

GHz by an active mixer with the local frequency at 1.6 GHz.

To reduce the local oscillator pulling effect, Local oscillator and the RF frequen-

cies should be made sufficiently far from each other. So, the LO frequency is chosen

to mix with half of its frequency at 0.8 GHz to result in 2.4 GHz RF frequency.

Figure 2.27 shows the mixing of an LO output with half of its frequency to reduce

the LO pulling for the up-conversion architecture. The targeted RF frequency is set

to 2.4 GHz to be compatible with many of the wireless standards ( i.e IEEE 802.11

a/g).

The divider by two generates differential quadrature signals at 0.8 MHz. The

pre-scaling block controls the level of these differential qudrature signals and makes

more accurate sinusoidal I and Q signals at the input of the phase shifter. It will

be shown later on that the linearity of the phase shifter strictly depends on the

input signal power level (i.e P1dB). Three control bits control the voltage division

of capacitances in pre-scaling block (CIN0 CIN1 CIN2). The phase shifter creates a

differential constant phase modulated signal based on the 6-bit of phase information
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Figure 2.27: Mixing of an LO output with half of its frequency to reduce the LO
pulling

(SQ SI S3 S2 S1 S0). For the system analysis of the phase modulator, the 6-bit phase

information is applied to the phase shifter as 64 QAM to make the phase modulated

signal that will be discussed in more detail in next section. A CML driver matched to

50Ω, is designed to monitor the output of the phase shifter before the up-conversion.

The constant phase modulated signal is then up-converted by an active mixer with

LO frequency of 1.6 GHz to generate the RF frequency at 2.4 GHz. The output

signal at 2.4 GHz is then applied to a driver, matched to 50Ω, for measurements.

This driver can also be considered as the PA pre-driver. The circuit design and

fabrication of the phase modulator building blocks will be explained in detail in the

following sections.
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3. PHASE MODULATOR DESIGN AND IMPLEMENTATION

3.1 Phase modulator system design and simulation

The phase modulator system analysis is designed to find out the system response

to real 6-bit phase information of OFDM with 64 QAM modulation. The 6-bit phase

information is extracted as shown in Figure 3.1,64 QAM transceiver block diagram in

Simulink. This system architecture is originally designed to monitor the transmitted

and the received data, assuming a multipath Rayleigh fading channel effect. However

for phase modulation system simulation, the 64 QAM phase information is extracted

from the transmitter part of this system before the OFDM modulation block.

Figure 3.1: 64 QAM transceiver block diagram in Simulink

As shown in the Simulink block diagram, a data source block generates random

data for I/Q mapper block to map the I and Q data 64 QAM constellation. Figure

3.2 shows the 64 QAM data source block diagram. Random integer generator block
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Figure 3.2: 64 QAM data source block diagram

generates random uniformly distributed integers in the range [0,M−1] for the M-ary

number. M in this case is 32 with 96 samples per frame that creates [96x1] frame-

based outputs. Each of the generated integers are then converted to bits. Number

of bits per integer is 6, so the output bit data becomes [576x1]. The convolutional

encoder block encodes a sequence of binary input vectors to produce a sequence of

binary output vectors. The convolutionally encoded binary data in the output of this

block has the [1152x1] vector which is double of the input vector to further create I

and Q data. Eventually, the random interleaver block rearranges the elements of its

input vector using a random permutation.

The generated data is then applied to I/Q mapper, shown in Figure 3.3, the I/Q

mapper block diagram. The purpose of this block is to generate 64 QAM baseband

data. The amplitude and phase information of 64 QAM modulator are shown in Fig-

ure 3.4, 64 QAM constellation generated by Simulink. Finally, the phase information

is extracted from the I and Q constellation.

3.1.1 64 QAM phase data

The extracted phase information is then applied to an ADC in Cadence to create

digital 6 bit information. Since the phase modulator is designed to be compatible
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Figure 3.3: I/Q mapper block diagram

Figure 3.4: 64 QAM constellation generated by Simulink

with the IEEE802.11a standard, the highest data rate of the standard is being used

in simulation to examine the reliability of the system. The IEEE802.11a standard

employs 52 OFDM sub-carriers that 48 of them are for the data. Each of these 48

sub-channels with 64 QAM data and highest data rate of 54 Mb/s, carries the data

rate of (54 Mb/s)/48/6 = 188 kb/s ≈ 200 kb/s. The maximum data rate of 200 kb/s
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Figure 3.5: Phase modulator system test set up with 6 bit phase information of 64
QAM

is applied as the clock frequency of the ADC in cadence. Figure 3.5 shows the phase

modulator system test set up with 6 bit phase information of 64 QAM.

Figure 3.6 illustrates transient signals of 6-bit phase information of 64 QAM.,

outputs of the ADC, applied to the phase shifter switches (SQ SI S3 S2 S1 S0).

These 6 bits are changing with 200 kHz data rate.

3.1.2 6-bit consecutive phase data

As can be seen from the 64 QAM constellation, 6-bit phase information of 64

QAM is gray coded ( i.e. two successive values differ in only one bit). To simulate

the phase shifter with consecutive bits, another approach is applied to create the

6-bit phase data. The method is to apply 6 bit generator sources with the clock

frequency of 200 kHz. So the (SQ SI S3 S2 S1 S0) switches are turning on and off

with 200 kHz frequency.

Table 3.1, shows the generated 16 phase states of a quadrant based on the

S3 S2 S1 S0, the bit stream applied to the input switches of the phase shifter and

the corresponding phase at the output of the phase shifter for each case. The phase

shifter is designed to have the phase step of 5.625 ◦. Four low significant bits of the
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Table 3.1: Generated 16 phase states of a quadrant based on the S3 S2 S1 S0

S3 S2 S1 S0 Phase

0 0 0 0 0
0 0 0 1 5.652 ◦

0 0 1 0 11.25 ◦

0 0 1 1 16.875 ◦

0 1 0 0 22.5 ◦

0 1 0 1 28.125 ◦

0 1 1 0 33.75 ◦

0 1 1 1 36.375 ◦

1 0 0 0 45 ◦

1 0 0 1 50.625 ◦

1 0 1 0 56.25 ◦

1 0 1 1 61.875 ◦

1 1 0 0 67.5 ◦

1 1 0 1 73.125 ◦

1 1 1 0 78.75 ◦

1 1 1 1 84.375 ◦

Figure 3.6: Transient signals of 6-bit phase information of 64 QAM
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Table 3.2: Quadrant selection with SQ and SI switches

SQ SI Quadrant

0 0 1
0 1 2
1 1 3
1 0 4

phase information corresponding to S3 S2 S1 S0 switches of the phase shifter, specify

any of the 16 possible phases with the step of
90 ◦

24
= 5.625 ◦. Two most signifi-

cant bits of phase information corresponding to SQSI switches change the quadrants

(changing the sign of the I and Q) to cover all the phases in 360 ◦. Table 3.2 shows

the quadrant selection with SQ and SI switches and the relationship between the

state of SQ and SI switches.

3.2 Block diagram of the phase modulator design

As shown in the phase modulator block diagram, the differential quadrature signal

at 0.8 MHz is generated by the divider and is applied to the input of the phase shifter.

The phase shifter created the corresponding output phase based on the digital 6 bit

phase information. The differential output phase is then mixed with the LO at 1.6

GHz to generate the RF output signal at 2.4 GHz. The circuit design of the building

blocks of the phase modulation path will be explained in the following.

3.2.1 6-bit active phase shifter design

The proposed active phase shifter adopts an in-phase/quadrature phase (I/Q)

network and exploit phase interpolation between the quadrature signals by adding

them with appropriate I and Q amplitudes and polarities so as to synthesize the

required phase [30]. The block diagram the 6-bit active phase shifter is presented

in Figure 3.7. The differential quadrature signals are created by the divider by two,
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Figure 3.7: Block diagram the 6-bit active phase shifter

since a differential system provides a more convenient way of 360 ◦ phase rotation

than a single-ended design.

A differential signed-adder with gain control and a current DAC are the core

blocks of the phase shifter. In addition to these two main blocks, a current coef-

ficient block is designed to control the reference bias current of the DAC for each

phase. Four least significant bits of the 6-bit phase control S3 S2 S1 S0, determine

the current weightings of each I and Q branches with the phase step of 5.625 ◦. Two

most significant bits of phase command (SQ SI) specify the location between four
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quadrants. Therefore, the I +/- and Q +/- currents are added to create phases

according to the digital phase input. The key function of the proposed phase shifter

is that it generates the output phase with constant amplitude. Although the phase

shifter design is based on linear current weighting method that doesn’t offer a con-

stant output, the output phase signal stays constant with the proposed technique

that changes the reference bias current of the DAC according to each state. Figure

3.8 [38] shows the linear vector summing technique, used in our design, creates the

current vectors for II and IQ in way to create |II |+ |IQ| = B that the B is a constant

value. However, the vector summation of II + IQ doesn’t stay constant and leads

to the square instead of the circle. So, to have a constant output, the relation ship

between two currents should be
√
I2I + I2Q = A that A remains constant. To com-

pensate for the reduction in the output amplitude due to linear vector summation of

I and Q currents, a current coefficient block is designed to change the reference bias

current of the DAC, based on the difference between the output phase amplitude and

A for the 14 phases within the quadrants. The building blocks of the phase shifter
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will be explained in the following sections.
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Figure 3.9: Differential signed adder (I/Q)

3.2.1.1 Differential adder

Two Gilbert-cells are merged at the output to sum I and Q signals in current

mode, shown in the Figure 3.9 the differential signed adder (I/Q). The tail current

generated from the 4-bit current-mode differential DAC, is switched by SQ and SI to

provide 180 ◦ phase state (changing the sign of I and Q). The variable gain function

is done by changing the bias current using the current-mode differential DAC. M13

with M9,10 in I side and M17 with M11,12 in Q side are the cascoded transistors of

the current mirror with 6 × 2um

180nm
and 30 × 2um

180nm
to generate ×5 current. The

53



lower transistors M14 with M15 in I side and M18 with M16 in Q side sizings are

12 × 2um

500nm
and 60 × 2um

500nm
. The lower transistor lengths are chosen to be 500

nm to offer more accurate current mirrors. IBIAS and QBIAS reference currents are

generated by the DAC based on the current weighting coefficients according to 4-bit

digital phase data.

The voltage gain at the phase shifter output is approximated as

Av =

√
µnCox

W

L
(II +QQ)×Rout (3.1)

and the output phase is determined by the control DAC I/Q current ratio of

Θout = tan−1
√
IQ
II

(3.2)

3.2.1.2 4-bit current DAC

The main block of current weighting part is the DAC that generates binary

weighted currents for each phase state. Based on the 6-bit digital phase information

data SQ SI S3 S2 S1 S0, 64 phase shifts with step of 5.625 ◦ is created. As mentioned

earlier, SQ SI switches in the differential adder determine the sign of I and Q current

vectors. The other four bits specify the weight of I and Q currents.

As shown in Figure 3.10, 4-bit current DAC (controlled with S3 S2 S1 S0), four

current mirrors associated with each of S3 S2 S1 S0 switches are weighted binary and

are set such that II+IQ = constant for linear vector summing. To have more accurate

portions for I and Q currents to cover all the phases up to 360 ◦, a constant 1
2
× IREF

current branch is added to I and Q bias current mirrors. This also improves the

settling time, since a zero tail current is never applied to any of the I or Q branches

[39]. The reference current mirror transistor size is 4 × 2um

500nm
and again 500 nm
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Figure 3.10: 4-bit current DAC (controlled with S3 S2 S1 S0)

length is chosen for the mirror transistors to generate more accurate currents.

3.2.1.3 DAC current source correction block

Due to the linear vector summing topology of this design, the output voltage of

the phase shifter doesn’t stay constant and there is a reduction in output phase signal

amplitude for the phases in between the quadrants. Since the II +IQ = constant and

the vector summation of I and Q currents results in the amplitude path on side of

the square instead of the circle as shown in Figure 3.8. To have the constant output

amplitude, II and IQ must fulfill the equation
√
I2I + I2Q = constant, that leads to

the circle in the vector sum diagram.

A current correction circuit is designed to increase the DAC input reference cur-

rent for the cases in which the resultant amplitude reduces due to linear vector

summing (14 phases, when not considering 0 and 90 ◦). As shown in Figure 3.11

DAC reference current weighting correction block, for each phase that specified by

S3 S2 S1 S0 code, the decoder makes one of the 14 current correction branches ON.
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Figure 3.11: DAC reference current weighting correction block

Table 3.3: DAC reference current weighting coefficients

IQ(uA) II(uA)
√
I2I + I2Q(uA) Si Di Ci Ai Resultant (uA) error

7.52 229.7 229.82 1000 0 0 0 229.82 0
22.5 215.1 216.27 1063 63 6 13.78 230.06 0.239
37.46 200.4 203.87 1127 127 13 28.11 231.99 2.16
52.41 185.8 193.05 1190 190 19 38.73 231.79 1.96
67.35 171.1 183.88 1250 250 25 48.26 232.14 2.32
82.27 156.4 176.72 1301 301 30 55.16 231.88 2.064
97.16 141.6 171.73 1338 338 34 60.08 231.81 1.99
112 126.8 169.18 1358 358 36 61.82 231 1.18
126.8 112 169.18 1358 358 36 60.90 230.08 0.26
141.6 97.16 171.73 1338 338 34 57.52 229.25 -0.56
156.4 82.27 176.72 1301 301 30 51.51 228.24 -1.58
171.1 67.35 183.88 1250 250 25 44.18 228.06 -1.76
185.8 52.41 193.05 1190 190 19 34.93 227.99 -1.83
200.4 37.46 203.87 1127 127 13 25.09 228.97 -0.85
215.1 22.5 216.27 1063 63 6 12.23 228.5 -1.31
229.7 7.52 229.82 1000 0 0 0 229.82 0

The correction current is then added to the reference current to result in a current

that compensates for the reduction in the output amplitude. To find out the excess

current that needs to be added to the I and Q currents in each 14 cases, the am-

56



Phase state

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
u

rr
e

n
t 
a

m
p

lit
u

d
e

 (
u

A
)

160

170

180

190

200

210

220

230

240

Phase state

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
u

rr
e

n
t 

(u
A

)

0

40

80

120

160

200

240

22

IQ II 

QIII

Figure 3.12: II and IQ currents and the resultant amplitude of the summation

plitude of the summation of I and Q currents are calculated as shown in Table 3.3,

DAC reference current weighting coefficients. Then, the first (or last) amplitude is

set as the reference amplitude value and the sqrt coefficient in the Table 3.3 is then

calculated by dividing each current amplitude by the reference current amplitude,

times 1000. So, the first and last sqrt coefficient will result in 1× 1000. The differ-

ence between the amplitude of the 14 phases and first phase determines the current

correction coefficient for each case as shown in the last column of the Table 3.3.

Figure 3.12 shows the II and IQ currents and the resultant amplitude of the

summation II + IQ in a quadrant.It can be seen that the current amplitude has

the expected reduction due to the vector summation. To formalize the correction

process, current amplitude for each of 16 phase states of a quadrant can be expressed

as
√
II2i + IQ2

i , i = 0 → 15. So, the sqrt coeff, Si and the difference, Di can be
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calculated as

Si =

√
II20 + IQ2

0√
II2i + IQ2

i

× 1000 (3.3)

Di = Si − S0 i = 0→ 15 (3.4)

Also, a current coefficient, Ci is set for each state, proportional to Di

Ci ∝
Di

10
i = 0→ 15 (3.5)

and the added current is obtained by

Ai =

√
II20 + IQ2

0 × Ci
100

i = 0→ 15 (3.6)

The reference current for DAC is set to 15uA, so the Iin = 150uA that after

division by
1

8
, it results in 15uA. The main branch coefficient of IREF is set to 100

to have decimal values for the correction branch coefficients.

Figure 3.13 shows the current amplitude with and without the correction block.

The corrected amplitude can be found as

√
II2i + IQ2

i + Ai = constant i = 0→ 15 (3.7)

That is approximately constant with the error calculated in the last column of

table 3.3 as the following, shown in Figure 3.14, the corrected current amplitude

error.

error = (
√
II2i + IQ2

i + Ai)−
√
II20 + IQ2

0 i = 0→ 15 (3.8)
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Figure 3.13: Current amplitude with and without the correction block

The phase shifter output is monitored by the phase output CML driver shown in

Figure 3.15 matched to 50Ω. The CML input current is 1.2 mA that gets multiplied

by ×10 to create accurate sinusoidal signal at the output of the driver. The linearity

of the phase driver is IIP3 = 3 dBm from the two tone test.

3.2.2 Active mixer design

The active differential Gilbert-cell mixer is chosen to upconvert the 800 MHz

phase modulated signal, shwon in Figure 3.16, the active mixer schematic. The local

frequency is at 1.6 GHz to result the RF frequency at 2.4 GHz. The output load of

the mixer is an LC band pass filter designed at 2.4 GHz to have a clear output at

this frequency. For better linearity and have more headroom the pseudo differential

architecture is applied in the design of the mixer. The differential IF input of the

mixer at 800 MHz is ac coupled and the bias point is set by the bias circuit. The
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Figure 3.14: The corrected current amplitude error
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Figure 3.16: The active mixer schematic

Table 3.4: Differential inductor sizings

Outer dimension Spiral Width Number of turns Spacing

175 um 3.24 um 4 5 um

reason is that the driver at the output of the phase shifter doesn’t affect the input

of the input signal of the mixer. Also, in the design of the mixer, to have better

linearity and headroom, sizing of M5 and M6 transistors are chosen to result in high

VDS.

The differential inductor with the center tap connected to VDD value is set to 3.9

nH with the sizings shown in Table 3.4 differntial inductor sizings. The capacitance
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value is created by the parallel combination of two 533 fF MIM capacitors with the

plates sizing of W = L = 16.22um.

Figure 3.17: Active mixer PSS simulation results

Figure 3.17 shows the active mixer PSS simulation results that the RF signal at

2.4 GHz is created by mixing between LO signal at 1.6 GHz mixed with the IF at

0.8 GHz. The linearity of the mixer is examined by two tone test with tones at 800

and 810 MHz with -10 dBm power. These tones will create inter-modulated tones at

790 and 820 MHz that are mixed with LO and up-converted to 2.39 and 2.42 GHz.

Figure 3.18 shows the active mixer two tone PSS simulation results. The IIP3 is

calculated from

IIP3 =
∆P

2
+ Pin (3.9)
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Figure 3.18: Active mixer two tone PSS simulation results

That will result in IIP3 =
37.5

2
− 10 ≈ 9dbm.

The phase modulator output is connected to another CML similar to the phase

shifter output driver, matched to 50Ω shown in Figure 3.19 RF output CML driver.

The input current of the buffer is 2mA with linearity of IIP3 = 6 dBm obtained

from the two tone test.

3.2.3 Divider and pre-scaling block design

The Divide by 2 block with I, Q, and input buffers shown in Figure 3.20, consists

of the divider and three self-biased buffers for LO signal at 1.6 GHz and I/Q signals

at 800 MHz. The divider is designed to generate differential quadrature signals for

the input of the phase shifter. The divider schematic is shown in Figure 3.21 which

is the classic Razavi type frequency divider that inherently generates differential

quadrature clock signals [40]. As can be seen in the Figure 3.21 , it consists of

two D-latches in a negative feedback loop. The divider flips for a half period and
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latches for another half, resulting in a 50% duty cycle. The input buffer for the LO

signal which is the main input of the whole phase modulator circuit, is terminated

differentially with 100Ω resistance shown in the input buffers schematic. Figure

3.22 shows the differential LO inputs and the the generated differential guadrature

outputs of the divider at 1.8V level.

The quadrature divider differential outputs are at 1.8 V level. The linearity of

the phase shifter strictly depends on its input levels. So, quadrature signals need to

be scaled down by the capacitor division block, shown in Figure 3.23 the differential

I/Q signals input pre-scaling block. The value of the total scaling capacitance is

determined by the digital input of CIN0 CIN1 CIN2. Each of the switches CIN0 CIN1

CIN2 will add the 0.5pF , 1pF , and 2pF ,respectively. The dc level of the phase

shifter input is set by a bias voltage VB as shown in the Figure 3.22 that is set to

1.3 V.
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Figure 3.22: Differential input and the generated differential guadrature outputs of
the divider

3.3 Simulation results

The transient simulation setup explained in section 3.1 is applied to the phase

modulator. The consecutive digital input SQSIS3S2S1S0 is generated by a 6-bit ADC

that is converting an input ramp with 200 kHz clock rate. Linearity of the phase

shifter circuit is sensitive to the I and Q input levels. To find out a proper input

level, input power is swept for the output phase response in the quadrant shown in

Figure 3.24 the output phase shifts Vs. input signal power. It can be seen that

the maximum input signal level for having no degradation in the phase response is

around -10 dBm. The pre-scaling block, sets the input of the phase shifter to it linear

region. Figure 3.25 shows the scaled differential I and Q signals, IIN − P/N and

QIN −P/N are the inputs of the phase shifterare, scaled down by the factor of 0.03

when all of the CIN0 CIN1 CIN2 switches are ON.

First, let’s consider the phase shifter without the DAC reference current weighting

correction block. Figure 3.26 shows generated I and Q currents by DAC without the
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Figure 3.23: Differential I/Q signals input pre-scaling block

Figure 3.24: Output phase shifts Vs. input signal power
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Figure 3.25: Scaled differential I and Q signals, IIN − P/N and QIN − P/N are
the inputs of the phase shifter

Figure 3.26: Generated I and Q currents by DAC without the DAC reference current
correction block
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Figure 3.27: Output voltage of the phase shifter, without the DAC reference current
correction block

DAC reference current correction block. It can bee seen that the variation of the I

and Q currents in all of the quadrants is completely linear. As mentioned earlier,

the linear summation of I and Q current will reduce the gain of the phase shifter

for the 14 states in between each quadrants. Figure 3.27 shows the output voltage

of the phase shifter, without the DAC reference current correction block and also,

depicts the gain reduction analysis when the DAC correction block is not applied to

the circuit.

To examine the phase shifter response to 64 states, the zero crossing points of

the input and the phase shifted output signal at 800 MHz are plotted versus the

cycle. Number of crossing point in each cycle with 200 kHz rate can be calculated as

800MHz

200kHz
= 4k. Then to find out the exact phase shift in each state, the difference

of these two plots are plotted versus cycle. To convert the Y axis to degrees, the

plot is divided by 1.25ns and multiplied to 360 ◦. Figure 3.28 shows the phase shifter
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Figure 3.28: Phase shifter response to 64 states, without the DAC reference current
correction block

response to 64 states, without the DAC reference current correction block. It can be

seen that the output phase shift response has some deviation due to the linear vector

summation of I and Q currents. The step size should be 5.625 ◦ and any deviation

from this value is calculated to find out the DNL (Differential Nonlinearity) and INL

( Integral Nonlinearity) of the DAC.

Now, let’s consider adding the DAC current correction block that generates addi-

tional current for 14 states in between of each quadrants. Figure 3.29 shows generated

I and Q currents by DAC with the DAC reference current correction block. Compar-

ing this to Figure 3.26, the variation of quadrature currents is nearly sinusoidal and

no longer linear. As a result, the output voltage of the phase shifter stays constant

(moving on the circle, instead of the square), shown in Figure 3.30 output voltage

of the phase shifter, with the DAC reference current correction block. Phase shifter

response to 64 states, with the DAC reference current correction block is demon-
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Figure 3.29: Generated I and Q currents by DAC with the DAC reference current
correction block

Figure 3.30: Output voltage of the phase shifter, with the DAC reference current
correction block

strated in Figure 3.31. The resultant phase shifts of each step from Figure 3.31 is

collected and the difference to 5.625 ◦ is calculated to find out the DNL in each state.
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Figure 3.31: Phase shifter response to 64 states, with the DAC reference current
correction block

Table 3.5: Minimum and maximum phase error and DNL

Max phase error Max phase error Minimum DNL Maximum DNL

0.9 ◦ 0.021 ◦ 0.16 0.003

Table 3.5 summarizes the minimum and maximum phase error and DNL of the phase

shifter for 64 states. Maximum and minimum DNL are calculated for the maximum

and minimum phase errors, respectively. To find out the phase shifter response to

changing quadrants, four phase codes associated with 45 ◦, 135 ◦, 225 ◦, and 315 ◦

are applied with 200 kHz rate. This test changes the quadrants starting from 45 ◦,

creating 90 ◦ phase shifts in between quadrants. Figure 3.32 shows the phase shifter

response to changing quadrants starting from 45 ◦ . The phase shifts and error results

are summarized in Table 3.6 as phase shifts between quadrants. Finally, Figure 3.33

demonstrates transient response of phase shifter constant voltage output of 64 phase

states , with 6bit phase signals at 200kHz rate.

72



Table 3.6: Phase shifts between quadrants

Quadrants 1st and 2nd 2nd and 3rd 3rd and 4th

Phase shift 91.49 ◦ 88.26 ◦ 92.3 ◦

Phase error 1.49 ◦ −1.74 ◦ 2.3 ◦

Figure 3.32: Phase shifter response to changing quadrants starting from 45 ◦

Figure 3.33: Phase shifter constant voltage output of 64 phase states , with 6bit
phase signals at 200kHz rate
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4. PHASE UP CONVERSION PATH FABRICATION AND MEASUREMENT

The phase modulator is implemented in 0.18 um CMOS technology with 6 metal

stacks. In this section, the layout design of each block will be presented with the

post layout simulation of the top chip. Then, the test plan and the PCB design will

be explained. Finally, the measurement results will be compared to the simulation

results.

4.1 Phase modulator layout design and Top chip

Figure 4.1 shows the phase modulator layout design. The position and rotation of

the building blocks are modified to minimize the inter-block routings. In the layout

design, metal 1 is set to Vss and metal 2 is set to Vdd. Also, an effort has been made

not to use more than fourth metal layer for interconnection of the devices in a block.

All of the transistors have the RF layout model, except for the decoder transistors of

the DAC correction block that have the nfetx and pfetx cell module with no guard

ring.

Since the core of the phase modulator is the phase shifter that is based on the

quadrature current summation, the matching between I and Q, let alone the DAC

current mirrors is very critical. Therefore, Inter-digitization and common-centroid

techniques along with dummy transistors are used in the layout design of phase shifter

DAC and adder for better matching between devices. Also, the RF and phase drivers

are placed next to their outputs to avoid any long connection parasitics. Figure 4.2

shows the chip layout with all the routings to the pads. The differential pair routings

from the layout to the pads are drawn very symmetrical to provide the maximum

matching between positive and negative signals. Total chip area is 1362× 1235um2.

Table 4.1 summarizes the pin description of the chip with their design values.
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Figure 4.1: Phase modulator layout design

Table 4.1: Pin description of the chip

Pin names Design value Description

LO-P/N -10dbm @ 1.6 GHz Differential input
Phase-P/N 160mvp-p @ 0.8 GHz Differential Constant output
RF-P/N 100mvp-p @ 2.4 GHz Differential Constant output
IB 150 uA Divider bias current
IBias 500 uA Mixer bias current
IDRV−RF 500 uA Mixer output driver bias current
IDRV−PHASE 600 uA Phase shiter output driver bias current
VB 1.3 V I/Q scaling block bias voltage
SQSIS3S2S1S0 0 or 1.8 V Phase control
CIN2CIN1CIN0 0 or 1.8 V I/Q scaling control

The layout top chip design has total of 21 signal pins and 11 power pins (5 VSS

and 6 VDD ). Six pins of total 21 pins are associated with 3 differential pairs,

LO−P/N, PHASE−P/N and RF−P/N . Nine pins are set for the digital controls,
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Figure 4.2: Chip layout

6 bits for phase and 3 bits for I/Q scaling block. The remaining 6 pins are used for

biasing currents and voltages. After connecting the top chip layout pins to the

package pads, the empty area is filled with decoupling capacitors between VDD and

ground to minimize the parasitics and noise.The top layout is simulated for the DRC

( Design Rules Checking) to be compatible with the fabrication process and also for

the LVS (Layout Vs. Schematic) to verifying the perfect match between the layout

and the schematic design. Figure 4.3 shows the chip microphotograph.
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Figure 4.3: Chip microphotograph

4.2 Post layout simulation results

To verify the functionality of the layout design, parasitics extracted view of the

layout is simulated. The parasitic extraction view of the layout is generated by

running PEX which would add calibre view to the top chip cell. The simulations

with layout parasitics extracted views takes much longer than the schematic view. So,

the transient simulation is run just for a quadrant to verify the layout functionality.

Also, all the DC operating points has been checked to make sure the circuit works
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Figure 4.4: Post layout simulation results of the phase shifter output voltage

properly.

Figure 4.4 shows post layout simulation results of the phase shifter output voltage,

and Figure 4.5 shows post layout simulation results of the phase shifter output phase

Vs. cycle with 200 kHz rate data.

Figure 4.5: Post layout simulation results of the phase shifter output phase Vs. cycle
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4.3 PCB design, test plan, and measurement results

To measure the chip, RF and DC signals are separated into two PCBs. The DC

PCB contains all the biasing currents and voltages and the digital control bits. The

RF PCB contains only three differential pairs for LO, phase, and RF signals and the

chip. Figure 4.6 shows the RF and DC boards. Two pin headers are placed on each

DC PCB board RF PCB board

Figure 4.6: RF and DC boards

side of the RF and DC boards. The pin headers on the RF PCB board are female

and the ones on the DC PCB are male and when they are connected together, all

the bias signals will be connected to the chip located on the RF PCB. Through this

technique, RF signals are not effected directly by the parasitics and noise on the

bias signals. The DC board is hooked on top of the RF board. Two measurement

setups are proposed to measure the phase response and constant envelope output

signal. The first set up is the static phase response where the 6 phase control bits

are changing by hand from zero to 1.8V for all the 64 states.In this setup, after fixing

79



all the DC operating points with DC supplies and potentiometers, a signal generator

with -10 dBm power at 1.6 GHz is applied as the LO input of the phase modulator.
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Figure 4.7: Phase shift error for all the 64 states at the output of the phase shifter,
measurement versus simulation

Also, by using a splitter , a copy of the LO signal is applied to one of the channels

of the oscilloscope as the reference.For each case after setting the SQ SI S3 S2 S1 S0

code, the zero crossing difference between the phase shifter output and the input

which is set as the reference, determines the phase shifts. So, the phase shift is

easily calculated by
∆t× 360 ◦

T
, where T is 1.25 ns at 800 MHz.The same setup and

calculation are used for the RF outputs at 2.4 GHz. The difference between the

obtained value from the measurements and 5.625 ◦ would be the phase shift error.

Figure 4.7 shows the phase shift error for all the 64 states at the output of the phase
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Figure 4.8: Phase shift error for all the 64 states at the RF output of the mixer,
measurement versus simulation

shifter, measurement versus simulation. The same measurement process has been

done at the RF output of the mixer and the results are shown in Figure 4.8, phase

shift error for all the 64 states at the RF output of the mixer, measurement versus

simulation. The output voltage for each case has been also captured and the variation

from the constant value is plotted for each 64 states and shown in Figure 4.9, phase

shifter output voltage variation from the constant envelope for all the 64 states

, measurement versus simulation and Figure 4.10 mixer output voltage variation

from the constant envelope for all the 64 states , measurement versus simulation.

Table 4.2 and Table 4.3 summarize the output phase error and voltage variation of

measurement versus simulation results for the phase shifter and mixer, respectively.

The second measurement setup it to apply dynamic 6-bit digital phase data with
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Table 4.2: Phase shifter output phase error and voltage variation.

Results Max phase error Min phase error Max voltage variation

Simulation 0.9 ◦ 0.12 ◦ 2 mv
Measurement 1.57 ◦ 0.185 ◦ 3.5 mv

Table 4.3: Mixer output phase error and voltage variation.

Results Max phase error Min phase error Max voltage variation

Simulation 0.82 ◦ 0.12 ◦ 2.5 mv
Measurement 2 ◦ 0.15 ◦ 2.25 mv
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Figure 4.9: Phase shifter output voltage variation from the constant envelope for all
the 64 states , measurement versus simulation
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Figure 4.10: Mixer output voltage variation from the constant envelope for all the
64 states , measurement versus simulation

200 KHz rate to the phase shifter. An AVR micro-controller counter is used to

generate the dynamic digital phase data. ATMEGA16 micro-controller has been

chosen with AVR STK500 evaluation board and AVRISP MKII programmer. A

program in C has been written, appendix, and programmed into the AVR to active

its TIMER0 and set 6 bits of PORTA as the output. This counter, counts from 0 to

0XFF and when overflown, starts over again from 0. To set the speed of the counter,

clock fuse bits of the micro-controller are set to divide the AVR core clock frequency

of 1MHz by 5 to result in 200 KHz rate (CKSEL0 = 1, CKSEL1 = 1, CKSEL2 =

1, CKSEL3 = 0). Since the AVR generated outputs are at TTL level (5v), a resistive

division has been applied to set the voltage levels to 1.8 V. The generated 6-bit
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Figure 4.11: Phase shifter response to 200 kHz phase data Vs. cycle

Table 4.4: Phase shifter phase response to 200 kHz phase data

Results Max phase error Min phase error Max DNL Min DNL

Simulation 0.9 ◦ 0.021 ◦ 0.16 0.003
Measurement 1.45 ◦ 0.54 ◦ 0.257 0.096

phase data is then applied to the phase shifter and the output is monitored and

saved by the oscilloscope. Input signal (LO @ 1.6 GHz)from the signal generator is

also saved. The collected data is then applied to MATLAB for post processing. The

zero crossing difference between phase shifter output and input versus cycle for each

of 64 phase states has been calculated and shown in Figure 4.11 as the Phase shifter

response to 200 kHz phase data Vs. cycle. Table 4.4 summarizes the phase shifter

phase response to 200 kHz phase data measurement and simulation results.
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5. CONCLUSION

In this thesis, a phase modulator path of polar transmitter using 6-bit active

phase shifter and an upconversion mixer, for OFDM WLAN applications has been

presented. 6 bits control the phase shifter, creating 64 states with the resolution of

5.625 ◦ for the whole 360 ◦. The design is implemented using 0.18 um CMOS tech-

nology and the entire system is fully analyzed and measured. There have been two

main targeted goals for the phase modulator. The first one has been the generation

of constant envelope phase modulated signal so that it could have been applied to

a polar transmitter with a nonlinear PA. The second goal’s been to achieve a very

high phase accuracy to a real time high speed OFDM data to be compatible with

WLAN applications. The origin design of the phase shifter that’s been based on

the vector sum topology has been modified to provide the constant envelope phase

modulated signal and also to handle the high speed OFDM modulation data. The

64 QAM OFDM modulation data has been applied to the phase modulator using

6 digital bits generated by AVR, Atmega16 micro-controller to examine the phase

shifter response to a real time data with the maximum data rate of 54Mb/s. Phase

response has been interpreted as the zero crossing difference of the system input and

the output of the phase shifter for each cycle. The resultant phase response has the

maximum phase error of 2 ◦ with maximum DNL of 0.257. The phase modulator

output generates an approximately constant envelope phase modulated signal with

the maximum variation of 3.5mv fro the constant peak to peak value.
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APPENDIX

/*****************************************************

This program was produced by the CodeWizardAVR V2.05.3 Standard.

Copyright 1998-2011 Pavel Haiduc, HP InfoTech s.r.l.

http://www.hpinfotech.com

Date : 6/25/2014

Author : Shokoufeh

Company : texas a&m

Chip type : ATmega16L

Program type : Application

AVR Core Clock frequency: 1.000000 MHz

Memory model : Small

External RAM size : 0

Data Stack size : 256

*****************************************************/

include 〈mega16.h〉

// Alphanumeric LCD Module functions

asm

.equ -lcd-port=0x18 ;PORTB

endasm

include 〈lcd.h〉

// Timer 0 output compare interrupt service routine

interrupt [TIM0-COMP] void timer0-comp-isr(void)

{
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PORTA=PORTA+1;

if(PORTA==64)

{

PORTA=0;

}

}

// Declare your global variables here

void main(void)

{

// Declare your local variables here

// Input/Output Ports initialization

// Port A initialization

// Func7=Out Func6=Out Func5=Out Func4=Out Func3=Out Func2=Out

Func1=Out Func0=Out

// State7=0 State6=0 State5=0 State4=0 State3=0 State2=0 State1=0 State0=0

PORTA=0x00;

DDRA=0xFF;

// Port B initialization

// Func7=In Func6=In Func5=In Func4=In Func3=In Func2=In Func1=In Func0=In

// State7=T State6=T State5=T State4=T State3=T State2=T State1=T State0=T

PORTB=0x00;

DDRB=0x00;

// Timer/Counter 0 initialization

// Clock source: System Clock

// Clock value: 1000.000 kHz

// Mode: CTC top=OCR0
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// OC0 output: Disconnected

TCCR0=0x09;

TCNT0=0x00;

OCR0=0x04;

// Timer/Counter 1 initialization

// Clock source: System Clock

// Clock value: Timer1 Stopped

// Mode: Normal top=0xFFFF

// OC1A output: Discon.

// OC1B output: Discon.

// Noise Canceler: Off

// Input Capture on Falling Edge

// Timer1 Overflow Interrupt: Off

// Input Capture Interrupt: Off

// Compare A Match Interrupt: Off

// Compare B Match Interrupt: Off

TCCR1A=0x00;

TCCR1B=0x00;

TCNT1H=0x00;

TCNT1L=0x00;

ICR1H=0x00;

ICR1L=0x00;

OCR1AH=0x00;

OCR1AL=0x00;

OCR1BH=0x00;

OCR1BL=0x00;

94



// Timer/Counter 2 initialization

// Clock source: System Clock

// Clock value: Timer2 Stopped

// Mode: Normal top=0xFF

// OC2 output: Disconnected

ASSR=0x00;

TCCR2=0x00;

TCNT2=0x00;

OCR2=0x00;

// External Interrupt(s) initialization

// INT0: Off

// INT1: Off

// INT2: Off

MCUCR=0x00;

MCUCSR=0x00;

// Timer(s)/Counter(s) Interrupt(s) initialization

TIMSK=0x02;

// USART initialization

// USART disabled

UCSRB=0x00;

// Analog Comparator initialization

// Analog Comparator: Off

// Analog Comparator Input Capture by Timer/Counter 1: Off

ACSR=0x80;

SFIOR=0x00;

// ADC initialization

95



// ADC disabled

ADCSRA=0x00;

// SPI initialization

// SPI disabled

SPCR=0x00;

// TWI initialization

// TWI disabled

TWCR=0x00;

// Global enable interrupts

asm(”sei”)

// Alphanumeric LCD initialization

// Connections are specified in the

// Project—Configure—C Compiler—Libraries—Alphanumeric LCD menu:

// RS - PORTB Bit 0

// RD - PORTB Bit 1

// EN - PORTB Bit 2

// D4 - PORTB Bit 4

// D5 - PORTB Bit 5

// D6 - PORTB Bit 6

// D7 - PORTB Bit 7

// Characters/line: 16

lcd-init(16);

lcd-clear();

lcd-gotoxy(0,0);

lcd-putsf(”Programming complete”);

}
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