502 research outputs found

    Reasoning about real-time repetitions: terminating and nonterminating

    Get PDF
    It is common for a real-time system to contain a nonterminating process monitoring an input and controlling an output. Hence, a real-time program development method needs to support nonterminating repetitions. In this paper we develop a general proof rule for reasoning about possibly nonterminating repetitions. The rule makes use of a Floyd-Hoare-style loop invariant that is maintained by each iteration of the repetition, a Jones-style relation between the pre- and post-states on each iteration, and a deadline specifying an upper bound on the starting time of each iteration. The general rule is proved correct with respect to a predicative semantics. In the case of a terminating repetition the rule reduces to the standard rule extended to handle real time. Other special cases include repetitions whose bodies are guaranteed to terminate, nonterminating repetitions with the constant true as a guard, and repetitions whose termination is guaranteed by the inclusion of a fixed deadline. (C) 2002 Elsevier Science B.V. All rights reserved

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation

    A sequential real-time refinement calculus

    Get PDF
    We present a comprehensive refinement calculus for the development of sequential, real-time programs from real-time specifications. A specification may include not only execution time limits, but also requirements on the behaviour of outputs over the duration of the execution of the program. The approach allows refinement steps that separate timing constraints and functional requirements. New rules are provided for handling timing constraints, but the refinement of components implementing functional requirements is essentially the same as in the standard refinement calculus. The product of the refinement process is a program in the target programming language extended with timing deadline directives. The extended language is a machine-independent, real-time programming language. To provide valid machine code for a particular model of machine, the machine code produced by a compiler must be analysed to guarantee that it meets the specified timing deadlines

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system

    Circus Models for Safety-Critical Java Programs

    Get PDF
    Safety-critical Java (SCJ) is a restriction of the real-time specification for Java to support the development and certification of safety-critical applications. The SCJ technology specification is the result of an international effort from industry and academia. In this paper, we present a formalization of the SCJ Level 1 execution model, formalize a translation strategy from SCJ into a refinement notation and describe a tool that largely automates the generation of the formal models. Our modelling language is part of the Circus family; at the core, we have Z, communicating sequential processes and Morgan’s calculus, but we also use object-oriented and timed constructs from the OhCircus and Circus Time variants. Our work is an essential ingredient for the development of refinement-based reasoning techniques for SCJ

    Specification and Analysis of Resource-Bound Real-Time Systems

    Get PDF
    We describe a layered approach to the specification and verification of real-time systems. Application processes are specified in the CSR application language, which includes high-level language constructs such as timeouts, deadlines, periodic processes, interrupts and exception-handling. Then, a configuration schema is used to map the processes to system resources, and to specify the physical communication links between them. To analyze and execute the entire system, we automatically translate the result of the mapping into the CCSR process algebra. CCSR characterizes CSR\u27s resource-based computation model by a priority-sensitive, operational semantics, which yields a set of equivalence-preserving proof rules. Using this proof system, we perform the algebradc verification of our original real-time system

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    • …
    corecore