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Cyber Physical Processes (CPPs) refer to a new generation
of business processes enacted in many application environ-
ments (e.g., emergency management, smart manufacturing,
etc.), in which the presence of Internet-of-Things devices and
embedded ICT systems (e.g., smartphones, sensors, actua-
tors) strongly influences the coordination of the real-world
entities (e.g., humans, robots, etc.) inhabitating such envi-
ronments. A Process Management System (PMS) employed
for executing CPPs is required to automatically adapt its run-
ning processes to anomalous situations and exogenous events
by minimising any human intervention. In this paper, we
tackle this issue by introducing an approach and an adap-
tive Cognitive PMS, called SmartPM, which combines pro-
cess execution monitoring, unanticipated exception detection
and automated resolution strategies leveraging on three well-
established action-based formalisms developed for reasoning
about actions in Artificial Intelligence (AI), including the sit-
uation calculus, IndiGolog and automated planning. Interest-
ingly, the use of SmartPM does not require any expertise of
the internal working of the AI tools involved in the system.

Keywords: Cyber-Physical Processes, Process Adaptation
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1. Introduction

In the last years, we have witnessed the emer-
gence of new computing paradigms, such as Health 2.0
[69,13], Industry 4.0 [38] and mobile-based emergency
management (e.g., see [17] and the ISCRAM confer-
ence on Information Systems for Crisis Response and
Management, http://www.iscram.org/), in which
the interplay of Internet-of-Things (IoT) devices, i.e.,
devices attached to the Internet, Artificial Intelligence
(AI) based techniques, cloud computing, Software-as-
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a-Service (SaaS), and Business Process Management
(BPM) create the so-called cyber-physical environ-
ments and give rise to the concept of Cyber-Physical
Systems (CPSs). The role of CPSs is to monitor the
physical processes enacted in cyber-physical environ-
ments, create a virtual copy of the physical world and
make decentralized decisions, by introducing methods
of self-optimization, self-configuration, self-diagnosis,
and intelligent support of workers in their increasingly
complex work [64].

A relevant aspect in these environments lies in the
fundamental role played by the processes orchestrat-
ing the different actors (software, humans, robots,
etc.) involved in the CPS. We refer to these pro-
cesses as cyber-physical processes (CPPs), whose en-
actment is influenced by user decision making and cou-
pled with contextual data and knowledge production
coming from the cyber-physical environment. Accord-
ing to [33], Cognitive Process Management Systems
(CPMSs) are the key technology for supporting CPPs.

A conventional Process Management System (PMS)
is a software system that manages and executes pro-
cesses on the basis of process models [20]. The basic
constituents of a process model are tasks, describing
the various activities to be performed by process par-
ticipants. The procedural rules to control such tasks,
described by so-called “routing” constructs such as se-
quences, loops, parallel, and alternative branches, de-
fine the control flow of the process. A PMS, then, takes
a process model (containing the process’ tasks and
control flow) and manages the process routing by de-
ciding which tasks are enabled for execution. Once a
task is ready for execution, the PMS assigns it to those
participants capable of carrying it on. The representa-
tion of a single execution of a process model is called
a process instance [19].

A PMS is said to be cognitive when it involves addi-
tional processing constructs that are at a semantic level
higher than those of conventional PMSs. These con-
structs are called cognitive BPM constructs and tend
to include data-driven activities and constraints, goals,
and plans [33]. Their usage can open opportunities for
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new levels of automation and support for CPPs, such
as - for example - the automated synthesis of adapta-
tion strategies at run-time exploiting solely the process
knowledge and its expected evolution.

During the enactment of CPPs, variations or di-
vergence from structured reference models are com-
mon due to exceptional circumstances arising (e.g., au-
tonomous user decisions, exogenous events, or con-
textual changes), thus requiring the ability to properly
adapt the process behavior. Process adaptation can be
seen as the ability of a process to react to exceptional
circumstances (that may or may not be foreseen) and
to adapt/modify its structure accordingly. Exceptions
can be either anticipated or unanticipated. An antici-
pated exception can be planned at design-time and in-
corporated into the process model, i.e., a (human) pro-
cess designer can provide an exception handler that
is invoked during run-time to cope with the excep-
tion. Conversely, unanticipated exceptions refer to sit-
uations, unplanned at design-time, that may emerge
at run-time and can be detected only during the ex-
ecution of a process instance, when a mismatch be-
tween the computerized version of the process and
the corresponding real-world process occurs. To cope
with those exceptions, a PMS is required to allow ad-
hoc process changes for adapting running process in-
stances in a situation- and context-dependent way.

The fact is that, in cyber-physical environments, the
number of possible anticipated exceptions is often too
large, and traditional manual implementation of excep-
tion handlers at design-time is not feasible for the pro-
cess designer, who has to anticipate all potential prob-
lems and ways to overcome them in advance [58]. Fur-
thermore, anticipated exceptions cover only partially
relevant situations, as in such scenarios many unantic-
ipated exceptional circumstances may arise during the
process instance execution. Therefore, the process de-
signer often lacks the needed knowledge to model all
the possible exceptions at the outset, or this knowledge
can become obsolete as process instances are executed
and evolve, by making useless her/his initial effort.

To tackle this issue, in this paper we present and re-
view our ongoing work on SmartPM1, a CPMS able
to automatically adapt CPPs at run-time when unan-

1The technical content regarding SmartPM follows and im-
proves our previous work [42] by introducing the multi-instance con-
struct (cf. Section 5), whereas the real-world application scenario of
Section 2.1, the conceptual architecture of Section 2.2, the cyber-
physical layer implemented in the SmartPM system to cope with
CPPs of Section 3 and the usability evaluation of Section 6 are spe-
cific to this contribution.

ticipated exceptions occur, thus requiring no specifica-
tion of recovery policies at design-time. The general
idea builds on the dualism between an expected reality
and a physical reality: process execution steps and ex-
ogenous events have an impact on the physical reality
and any deviation from the expected reality results in a
mismatch to be removed to allow process progression.

To that end, we resort to three popular action-based
formalisms and technologies from the field of Knowl-
edge Representation and Reasoning (KR&R): situa-
tion calculus [60], IndiGolog [14], and automated plan-
ning [49,28]. We use the situation calculus logical for-
malism to model the underlying domain in which pro-
cesses are to be executed, including the description of
available tasks, contextual properties, tasks’ precondi-
tions and effects, and the initial state. On top of such
model, we use the IndiGolog high-level agent program-
ming language for the specification of the structure and
control flow of processes. Importantly, we customize
IndiGolog to monitor the online execution of processes
and detect potential mismatches between the model
and the actual execution. If an exception invalidates the
enactment of the processes being executed, an external
state-of-the-art planner is invoked to synthesise a re-
covery procedure to adapt the faulty process instance.

The choice of adopting action-based formalisms
from the KR&R field is motivated by their ability to
provide the right cognitive level needed when dealing
with dynamic situations in which data (values) play a
relevant role in system enactment and automated rea-
soning over the system progress. In the field of BPM,
many other formalisms (in particular Petri Nets-based
and process algebras) have been successfully adopted
for process management, but all of them are some-
how based on synthesis techniques of the control-flow,
when considering their automated reasoning capabili-
ties. This implies the level of abstraction over dealing
with data and dynamic situations is fairly “raw”, when
compared with KR&R methods in which automated
reasoning over data values and situations is much more
developed [59,5,60]. As we will see below, the choice
of KR&R technologies allows us to develop a princi-
pled, clean and simple-to-manage framework for pro-
cess adaptation based on relevant data manipulated by
the process, without compromising efficiency and ef-
fectiveness of the proposed solution.

The rest of the paper is organized as follow. In Sec-
tion 2, after presenting an overview of our application
scenario, i.e., a real CPP enacted in an Italian ceramic-
ware factory, we provide a conceptual architecture for
implementing adaptive CPMSs for CPPs. In Section 3



Supporting Adaptiveness of CPPs through Action-based Formalisms 3

Fig. 1. Overview of the production process of a ceramic sanitary ware factory.

we introduce the general SmartPM approach to han-
dle unanticipated exceptions in CPPs, and we present
the architecture of the implemented SmartPM system.
Then, in Sections 4 and 5, we provide the formaliza-
tion of the SmartPM approach through action-based
formalisms. In Section 6, we investigate the practi-
cal applicability of SmartPM from the user perspective
through a set of experiments performed with real users.
Finally, in Section 7, we discuss the state-of-the-art ap-
proaches to process adaptation, while in Section 8 we
conclude the article by drawing conclusions and dis-
cussing limitations and future work.

2. Cyber-Physical Processes

CPSs are having widespread applicability and
proven impact in multiple areas [53], like aerospace,
automotive, traffic management, healthcare, manufac-
turing, emergency management, entertainments. Ac-
cording to [39], any physical environment which con-
tains computing-enabled devices can be considered as
a cyber-physical environment.

The trend of managing CPPs, i.e., processes enacted
in cyber-physical environments, has been fueled by
two main factors. On the one hand, the recent develop-
ment of powerful mobile computing devices providing
wireless communication capabilities have become use-
ful to support mobile workers to execute tasks in such
dynamic settings. On the other hand, the increased
availability of sensors disseminated in the world has
lead to the possibility to monitor in detail the evolution
of several real-world objects of interest. The knowledge
extracted from such objects allows to depict the con-
tingencies and the context in which processes are car-
ried out, by providing a fine-grained monitoring, min-
ing, and decision support for them.

In this section, we first present a real-world appli-
cation scenario that comes from the smart manufactur-
ing domain to motivate the need of designing an adap-
tive CPMS in cyber-physical environments (cf. Sec-
tion 2.1). Then, we devise a conceptual architecture to
concretely build such a CPMS (cf. Section 2.2).

2.1. Application Scenario

Smart manufacturing is rapidly transforming how
products are invented and manufactured. A modern
manufacturing plant uses sensors, actuators and com-
puterized controls to manage each specific stage of
a manufacturing process. The challenge is to inte-
grate individual stages of manufacturing production
enabling data sharing throughout the plant, with the
purpose to allow complete production lines to run
with real-time flexibility in order to ensure trouble-free
manufacturing and optimize outputs [9].

In a modern ceramic factory, a new product (e.g.
a sanitary item) is first designed with the help of
Computer-Aided Design (CAD) tools, and then passed
to the production line. Fig. 1 shows a fragment of the
real production process of an Italian ceramic sanitary-
ware factory. Each element of the factory is attached
to sensors and actuators, and a process-oriented sys-
tem is used to coordinate the working of the robot arms
and the machinery employed in the various steps of the
production process.

Specifically, starting from a CAD model, an initial
mould model of a ceramic product is generated through
a rotomoulding step. A mould model has an higher vol-
ume (of about 11%-12%) if compared to the final prod-
uct’s volume, since in the subsequent steps of the pro-
duction process, which are the drying, glazing and fir-
ing steps, it will lose part of its volume and will be af-
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fected by deformation influenced by different factors
(gravity, humidity, glazing temperature, etc.).

The BPMN process in Fig. 2(a) describes (in a sim-
plified way) the underlying workflow of such a produc-
tion process. Notice that the process is a sequence of
multi-instance tasks. The purpose of a multi-instance
task is to generate multiple independent instances of
the task that run sequentially (if the task marker in-
cludes three horizontal lines) or concurrently (if the
task marker includes three vertical lines). In our exam-
ple, the number of generated instances for any task is
determined by the number of ceramic elements that are
not broken at the moment of the task execution.

The initial collection of ceramic elements (for the
sake of simplicity we are considering three elements,
denoted as obj1, obj2 and obj3) is delivered through a
specific conveyor belt to the first step of the produc-
tion process, that is rotomoulding, from a starting loca-
tion (denoted as loc start). The same conveyor belt will
also move the ceramic elements between each step of
the production line. After the firing step, each element
is moved in a final location (denoted as loc end).

Each of the steps of the production process is per-
formed by a different static robotic arm or specialized
machinery located in a fixed position of the factory:

– the rotomoulding step is performed by the robotic
arm rb arm 1 that is located in loc rotomoulding;

– the drying step is performed by the drying system
dryer 1 that is located in loc drying;

– the glazing step is performed by the robotic arm
rb arm 2 that is located in loc glazing;

– the firing step is performed by the oven system
oven 1 that is located in loc firing.

When the task associated to any of the steps com-
pletes, a quality check is performed by activating a dig-
ital 3D scanner that analyzes the surface of the ceramic
elements to identify the presence of ruptures or defects.

Finally, a maintenance crew composed by two
skilled technicians, called actors, and a moving robot
rb mv 1, initially all located in a warehouse con-
taining ceramic elements with defects (situated in
loc warehouse), is ready to intervene if something
wrong happens during the enactment of the production
process. For example, actor act1 is able to fix the work-
ing environment parameters of a machinery during the
manipulation of a ceramic element if they may cause
defects to the element itself, while act2 is in charge of
removing debris of broken ceramic elements to keep
the conveyer belt clean. The moving robot rb mv 1, in
turn, is designed to pick up ceramic elements with de-

fects from the conveyor belt and deposit them in the
warehouse. Notice that it is required that at least one
actor is always present in the warehouse for guarantee-
ing a correct coordination of the operations of deposit.
When the battery of a moving robot is discharged, ac-
tor act2 can charge it.

During the enactment of the production process,
there is a wide range of exceptions that can ensue.
Some of these exceptions may be caused by the de-
formation of ceramic materials during the drying and
glazing steps [35], where an incorrect thermal expan-
sion of the body of the ceramic elements may cause
their rupture. While nowadays the data collected by 3D
scanning during the CHECKQUALITY tasks are used for
the optimization of the design of the CAD model off-
line, an intelligent adaptive CPMS could act on-line by
repairing the production process through one or more
recovery procedures that possibly mitigate the conse-
quences of the deformation on the performances of the
whole production process.

For example, in Fig. 2(b), the outcome of the
CHECKQUALITY task denotes that obj3 is broken.
Therefore, if a deformation after the glazing step is
evaluated as critic and not anymore “adjustable”, it
is useless to proceed to the next step of the process,
i.e., to fire the ceramic element. To that end, provided
that rb mv 1 has enough battery charge, the CPMS
may first instruct rb mv 1 to reach loc glazing in or-
der to pick up obj3, and then to move back towards
loc warehouse to deposit obj3 in the warehouse. Then,
actor act2, if free from any other task assignment, may
be instructed to reach loc glazing and clean the con-
veyor belt from possible debris. The corresponding up-
dated process is shown in Fig. 2(b), with the encircled
section being the recovery (adaptation) procedure. No-
tice that after the recovery procedure, the enactment of
the original process can be resumed to its normal flow.

The execution of a manufacturing process can also
be jeopardized by the occurrence of exogenous events.
Indeed, exogenous events could change, in asyn-
chronous manner, some contextual properties of the
environment in which the process is under execution,
hence possibly requiring the process to be adapted ac-
cordingly. In our example, since any step of the pro-
duction process is monitored through the usage of spe-
cific sensors that allow the online tracking of the rele-
vant environmental parameters (temperature, humidity,
pressure, etc.), it may happen that an incorrect value
of one of such parameters affects the quality of the
transformations of the ceramic material. For example,
suppose that during the firing step the environmental
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(a) Main production process

(b) Failed CHECKQUALITY(obj3,loc glazing)

(c) Fix temperature of the oven machine to deal with the exogenous event HIGHTEMP(obj2,loc firing)

Fig. 2. The production process of a ceramic sanitary ware factory and its adaptation.

temperature of obj2 reaches a dangerous value (see
Fig. 2(c)). In such a case, the CPMS needs first to
stop all the running tasks, and then to find a recov-
ery procedure that allows to “normalize” the situation
before it causes defects to the ceramic materials un-
der firing. The corresponding adapted process is shown
in Fig. 2(c), and consists of instructing act1 to reach
loc firing for configuring the oven system to modify its
temperature to a reasonable value (see task FIXTEMP),
for a correct firing of obj2.

The idea underlying the two above (simple) exam-
ples of adaptation is therefore to reason over the big
data generated by the 3D scanners and the sensors and
leave an adaptive CPMS to detect and resolve distur-
bances at run-time before they escalate and result in
product defects, with the target to optimize the whole
production process by reducing the time to production.

The point is that it is not adequate to assume that
the process designer can pre-define all possible recov-
ery activities for dealing with unanticipated exceptions
and exogenous events in environments that are cyber-
physical as the one just described: the recovery pro-

cedure will depend on the actual context (e.g., the po-
sitions of actors and robots, robot’s battery levels, the
range of the sensors, whether a location has become
dangerous to get it, etc.) and there are too many of
them to be considered. Because of that, there is not al-
ways a clear anticipated correlation between a change
in the context and a change in the process.

2.2. A Conceptual Architecture for CPPs

The previous application scenario emphasizes that
the management of a CPP requires additional chal-
lenges to be considered if compared with a traditional
“static” business process. On the one hand, there is
the need of representing explicitly real-world objects
and technical aspects like device capability constraints,
sensors range, actors and robots mobility, etc. On the
other hand, since cyber-physical environments are in-
trinsically “dynamic”, a CPMS providing real-time
monitoring and automated adaptation features during
process execution is required.

To this end, the role of the data perspective be-
comes fundamental. Data, including information pro-
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Fig. 3. A conceptual architecture for CPPs.

cessed by process tasks as well as contextual informa-
tion, are the main driver for triggering process adapta-
tion, as focusing on the control flow perspective only -
as traditional PMSs do - would be insufficient.

In fact, in a cyber-physical environment, a CPP is
genuinely knowledge and data centric: its control flow
must be coupled with contextual data and knowledge
production and process progression may be influenced
by user decision making. This means that traditional
imperative models have to be extended and comple-
mented with the introduction of specific cognitive con-
structs such as data-driven activities and declarative
elements (e.g., tasks preconditions and effects) which
enable a precise description of data elements and their
relations, so as to go beyond simple process variables,
and allow establishing a link between the control flow
and the data perspective.

Starting from the above considerations, coupled
with the experience gained in the area and lessons
learned from several projects involving CPSs (a par-
tial list of such projects is detailed in the Acknowl-
edgments), we have devised a conceptual architec-
ture to build a CPMS for the management of CPPs,
which supports the so-called Plan-Act-Learn cycle
for cognitively-enabled processes [33]. As shown in
Fig. 3, we identified 5 main architectural layers that we
present in a bottom-up fashion.

The cyber-physical layer consists mainly of two
classes of physical components: (i) sensors (such
as GPS receivers, RFID chips, 3D scanners, cam-
eras, etc.) that collect data from the physical environ-
ment by monitoring real-world objects and (ii) actua-

tors (robotic arms, 3D printers, electric pistons, etc.),
whose effects affect the state of the physical envi-
ronment. The cyber-physical layer is also in charge
of providing a physical-to-digital interface, which is
used to transform raw data collected by the sensors
into machine-readable events, and to convert high-level
commands sent by the upper layers into raw instruc-
tions readable by the actuators. The cyber-physical
layer does not provide any intelligent mechanism nei-
ther to clean, analyse or correlate data, nor to compose
high-level commands into more complex ones; such
tasks are in charge of the upper layers.

On top of the cyber-physical layer lies the service
layer, which contains the set of services offered by
the real-world entities (software components, robots,
agents, humans, etc.) to perform specific process tasks.
In the service layer, available data can be aggregated
and correlated, and high-level commands can be or-
chestrated to provide higher abstractions to the upper
layers. For example, a smartphone equipped with an
application allowing to sense the position and the pos-
ture of a user is at this layer, as it collects the raw GPS,
accellerometer and motion sensor data and correlates
them to provide discrete and meaningful information.

On top of the service layer, there are two further lay-
ers interacting with each other. The enactment layer is
in charge of (i) enacting complex processes by decid-
ing which tasks are enabled for execution, (ii) orches-
trating the different available services to perform those
tasks and (iii) providing an execution monitor to detect
the anomalous situations that can possibly prevent the
correct execution of process instances. The execution
monitor is responsible for deciding if process adapta-
tion is required. If this is the case, the adaptation layer
will provide the required algorithms to (i) reason on
the available process tasks and contextual data and to
(ii) find a recovery procedure for adapting the process
instance under consideration, i.e., to re-align the pro-
cess to its expected behaviour. Once a recovery pro-
cedure has been synthesized, it is passed back to the
enactment layer for being executed.

Finally, the design layer provides a GUI-based tool
to define new process specifications. A process de-
signer must be allowed not only to build the pro-
cess control flow, but also to explicitly formalize the
data reflecting the contextual knowledge of the cyber-
physical environment under observation. It is impor-
tant to underline that data formalization must be per-
formed without any knowledge of the internal working
of the physical components that collect/affect data in
the cyber-physical layer. In order to link tasks to con-
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textual data, the GUI-based tool must go beyond the
classical “task model” as known in the literature, by
allowing the process designer to explicitly state what
data may constrain a task execution or may be affected
after a task completion. Finally, besides specifying the
process, configuration files should also be produced to
properly configure the enactment, the services and the
sensors/actuators in the bottom layers.

Based on this conceptual architecture, we realized
an approach – called SmartPM – and an implemented
CPMS for adapting CPPs at run-time, whose details
will be discussed in the next section.

3. The SmartPM Approach and System

SmartPM (Smart Process Management) is an ap-
proach and an adaptive CPMS implementing a set of
techniques that enable to automatically adapt process
instances at run-time in the presence of unanticipated
exceptions, without requiring an explicit definition of
handlers/policies to recover from tasks failures and ex-
ogenous events. SmartPM adopts a layered service-
based approach to process management, i.e., tasks are
executed by services, such as software applications, hu-
mans, robots, etc. Each task can be thus seen as a single
step consuming input data and producing output data.

To monitor and deal with exceptions, the SmartPM
approach leverages on [16]’s technique of adaptation
from the field of agent-oriented programming, by spe-
cializing it to our CPP setting (see Fig. 4). We consider
adaptation as reducing the gap between the expected
reality EXP, the (idealized) model of reality used by
the CPMS to reason, and the physical reality PHY, the
real world with the actual conditions and outcomes.
While PHY records what is concretely happening in
the real environment during a process execution, EXP
reflects what it is expected to happen in the environ-
ment. Process execution steps and exogenous events
have an impact on PHY and any deviation from EXP
results in a mismatch to be removed to allow process
progression. At this point, a state-of-the-art automated
planner is invoked to synthesise a recovery procedure
that adapts the faulty process instance by removing the
gap between the two realities.

To realize the above approach, the implementation
of SmartPM covers the modeling, execution and mon-
itoring stages of the CPP life-cycle. To that end, on the
basis of the conceptual architecture for building CPMS
presented in Section 2.2, the architecture of SmartPM
relies on five architectural layers.

The design layer provides a graphical editor devel-
oped in Java that assists the process designer in the
definition of the process model at design-time. Process
knowledge is represented as a domain theory that in-
cludes all the contextual information of the domain of
concern, such as the people/services that may be in-
volved in performing the process, the tasks, the data
and so forth. Data are represented through some atomic
terms that range over a set of data objects, which depict
entities of interest (e.g., capabilities, services, etc.),
while atomic terms can be used to express properties
of domain objects (and relations over objects). Tasks
are collected in a repository and are described in terms
of preconditions - defined over atomic terms - and
effects, which establish their expected outcomes. Fi-
nally, a process designer can specify which exogenous
events may be caught at run-time and which atomic
terms will be modified after their occurrence. Once a
valid domain theory is ready, the process designer uses
the graphical editor to define the process control flow
through the standard BPMN notation among a set of
tasks selected from the tasks repository.

The enactment layer is in charge of managing
the process execution. First of all, the domain the-
ory specification and the BPMN process are automat-
ically translated into situation calculus [60] and In-
diGolog [14] readable formats. Situation calculus is
used for providing a declarative specification of the do-
main of interest (i.e., available tasks, contextual prop-
erties, tasks preconditions and effects, what is known
about the initial state). Then, an executable model is
obtained in the form of an IndiGolog program to be ex-
ecuted through an IndiGolog engine. To that end, we
customized an existing IndiGolog engine2 to (i) build
a physical/expected reality by taking the initial context
from the external environment; (ii) manage the process
routing; (iii) collect exogenous events from the exter-
nal environment; (iv) monitor contextual data to iden-
tify changes or events which may affect process exe-
cution. Once a task is ready for being executed, the In-
diGolog engine assigns it to a proper process partici-
pant (that could be a software, a human actor, a robot,
etc.) that provides all the required capabilities for task
execution.

The service layer acts as a middleware between pro-
cess participants, the enactment layer and the cyber-
physical layer. Specifically, in the service layer, pro-
cess participants interact with the engine through a
Task Handler, an interactive GUI-based software ap-

2http://sourceforge.net/projects/indigolog/
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Fig. 4. An overview of the SmartPM approach.

plication realized for Android devices that supports the
visualization/execution of assigned tasks by selecting
an appropriate outcome. Possibly such an Android ap-
plication can exploit sensors and actuators (e.g., an Ar-
duino board connected through Bluetooth, as currently
realized in our implementation), thus effectively offer-
ing services over the cyber-physical layer. Every step
of the task life cycle - ranging from the assignment to
the release of a task - requires an interaction between
the IndiGolog engine and the task handlers. The com-
munication between the IndiGolog engine and the task
handlers is mediated by the Communicator Manager
component (which is essentially a web server) and es-
tablished using the Google Cloud Messaging service.

To enable the automated synthesis of a recovery
procedure, the adaptation layer relies on the capabil-
ities provided by a PDDL-based planner component
(the LPG-td planner [29]), which assumes the avail-
ability of a planning problem, i.e., an initial state and
a goal to be achieved, and of a planning domain def-
inition that includes the actions to be composed to
achieve the goal, the domain predicates and data types.
Specifically, if process adaptation is required, we trans-
late (i) the domain theory defined at design-time into
a planning domain, (ii) the physical reality into the
initial state of the planning problem and (iii) the ex-
pected reality into the goal state of the planning prob-
lem. The planning domain and problem are the input
for the planner component. If the planner is able to
synthesize a recovery procedure δa, the Synchroniza-
tion component combines δ′ (which is the remaining
part of the faulty process instance δ still to be exe-
cuted), with the recovery plan δa, builds an adapted
process δ′′ = (δa;δ′) and converts it into an executable
IndiGolog program so that it can be enacted by the In-
diGolog engine. Otherwise, if no plan exists for the cur-

rent planning problem, the control passes back to the
process designer, who can try to manually adapt the
process instance.

The cyber-physical layer is tightly coupled with the
physical components available in the domain of inter-
est. Since the IndiGolog engine can only work with de-
fined discrete values, while data gathered from physi-
cal sensors have naturally continuous values, the sys-
tem provides several web tools that allow process de-
signers to associate some of the data objects defined in
the domain theory with the continuous data values col-
lected from the environment. For example, we devel-
oped several web tools to associate the data collected
from sensors (GPS, temperature, noise level, etc.) to
discrete values. In Section 6.1, we provide a concrete
example of a location web tool that allows process
designers to mark areas of interest from a real map
and associate them to discrete locations. The mapping
rules generated are then saved into the Communication
Manager and retrieved at run-time to allow the match-
ing of the continuous data values collected by the spe-
cific sensor into discrete data objects.

In the following sections, we will first present
the formal approach of SmartPM developed through
action-based formalisms for covering the enactment
and adaptation layers of the architecture, and we then
provide some technical details of the tools and of the
plugins employed in the design and service layers for
concretely interacting with the system.

4. AI Agent Programming and Planning

Before describing the theoretical framework under-
lying SmartPM, we first provide some preliminary no-
tions required to understand the rest of the paper.
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4.1. Situation Calculus and Basic Action Theories

The situation calculus is a logical language de-
signed for representing and reasoning about dynamic
domains [60]. The dynamic world is seen as progress-
ing through a series of situations as a result of various
actions being performed. A situation s is a first-order
term denoting the sequence of actions performed so far.
The special constant S0 stands for the initial situation,
where no action has yet occurred, whereas a binary
function symbol do(a,s) denotes the situation resulting
from the performance of action a in situation s. A situ-
ation s is a sub-situation of s′, denoted s v s′, iff s is a
prefix of s′. Formally, the relation is axiomatized as fol-
lows: sv s′ ≡ [s = s′∨ (∃a,s′′).s′ = do(a,s′′)∧ sv s′′].

In situation calculus, relations and functions whose
value may change from one situation to the next are
modeled by means of so-called relational fluents and
functional fluents. They are denoted by predicate and
function symbols (respectively) taking a situation term
as their last argument. A special predicate Poss(a,s)
is used to state that action a is executable in situa-
tion s, whereas special (situation-independent) predi-
cate Exog(a) is used to denote that a is an exogenous
event originated from the external environment. We
write φ(~x) to denote a formula whose free variables are
among variables~x. A fluent-formula is one whose only
situation term mentioned is situation variable s.

Within this language, one can formulate action the-
ories describing how the world changes as the result of
the available actions. A basic action theory (BAT) [60]
D = Σ∪DS0 ∪D poss∪Dssa∪Duna includes:

Σ domain-independent foundational axioms to de-
scribe the structure of situations and some auxil-
iary relations like v and Executable(s);

Dssa one successor state axiom per fluent capturing the
effects and non-effects (i.e., frame) of actions;

D poss one precondition axiom per action specifying
when the action is executable;

Duna unique name axioms for actions;
DS0 initial state axioms describing what is true ini-

tially in S0, and auxiliary situation independent
axioms for predicate Exog(a).

In particular, the successor state axiom (SSA)
for a relational fluent F(~x,s) is an axiom of the
form F(~x,do(a,s)) ≡ ΨF(~x,a,s),3 where ΨF(~x,a,s)
is a fluent-formula characterizing the dynamics
of fluent F(~x,s). When F(~x,s) is a functional

3Free variables are assumed to be universally quantified.

fluent, its successor state axiom has the form
[F(~x,do(a,s)) = v] ≡ ΓF(~x,a,v,s), where ΓF(~x,a,v,s)
states that the fluent takes value v when ac-
tion a is executed in situation s and satisfies
the functional constraint |= (∀~x,a,s)∃v.ΓF(~x,a,v,s)∧
(∀v′).v′ 6= v ⊃ ¬ΓF(~x,a,v′,s). Importantly, ΨF(~x,a,s)
and ΓF(~x,a,v,s) can accommodate Reiter’s solution
to the frame problem [60], avoiding to represent ex-
plicitly a large number of intuitively obvious non-
effects. In addition, precondition axioms are of the
form Poss(a(~x),s) ≡ Πa(~x,s), where Πa(~x,s) is a
fluent-formula defining the conditions under which ac-
tion a can be legally executed in situation s. Using
Poss, we can define what it means for a situation s to
be executable, using the following definition:

Executable(s)≡ s = S0∨ (∃a,s′).s = do(a,s′)∧
Poss(a,s′)∧Executable(s′).

4.2. The IndiGolog high-level language

On top of situation calculus action theories, logic-
based programming languages can be defined, which,
in addition to the primitive actions, allow the defini-
tion of complex actions. In particular, we focus on In-
diGolog [14], the latest in the Golog-like family of pro-
gramming languages for autonomous agents provid-
ing a formal account of interleaved action, sensing,
and planning. IndiGolog programs are meant to be ex-
ecuted online, in that, at every step, a legal next ac-
tion is selected for execution, performed in the world,
and its sensing outcome gathered. To account for plan-
ning, a special look-ahead construct Σ(δ)—the search
operator—is provided to encode the need for solving
(i.e., finding a complete execution) program δ offline.

IndiGolog allows us to define every well-structured
process as defined in [70]; it is equipped with all stan-
dard imperative constructs (e.g., sequence, conditional,
iteration, etc.) to be used on top of situation calculus
primitives actions. An IndiGolog program is meant to
run relative to a BAT. Here we concentrate on the frag-
ment defined by the following constructs:

a atomic action
φ? test for a condition
δ1;δ2 sequence
πx.δ(x) nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
proc P(~x) do δ(x) endProc procedure
δ1‖δ2 concurrency
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δ1〉〉δ2 prioritized concurrency
〈φ→ δ〉 interrupt
Σ(δ) lookahead search

Test program φ? can be executed if condition φ holds
true, whereas program πx.δ(x) executes program δ(x)
for some nondeterministic choice of a binding for vari-
able x, and δ∗ executes δ zero, one, or more times. The
interleaved concurrent execution of two programs is
represented with constructs δ1‖δ2 and δ1〉〉δ2; the lat-
ter considering δ1 at higher priority level (i.e., δ2 can
perform a step only if δ1 is blocked or completed). The
interrupt construct 〈φ→ δ〉 states that program δ ought
to be executed to completion if φ happens to become
true. Let’s focus on it:

〈 φ→ δ 〉 def
= while Interrupts running do

if φ then δ else false? endIf
endWhile

To see how this works, first assume that the special
fluent Interrupts running is true. When an interrupt
〈φ → δ〉 gets control from higher priority processes,
suspending any lower priority processes that may have
been advancing, it repeatedly executes δ until φ be-
comes false. Once the interrupt body δ completes its
execution, the suspended lower priority processes may
resume. The control release also occurs if φ cannot
progress (e.g., since no action meets its precondition).
Finally, IndiGolog incorporates the so-called search
construct Σ(δ), which performs lookahead reasoning
on δ to guarantee that a full, terminating, execution of
δ will be eventually achieved. Concretely, every step
performed on δ will be one that is part of a terminating
execution (see [14] for its formal semantics).

By properly combining prioritized concurrency and
interrupts, together with IndiGolog’s default online ex-
ecution style, it is possible to design processes that
are sufficiently open and reactive to dynamic environ-
ments. Furthermore, by resorting to the search oper-
ator, one can specify local places in programs where
lookahead reasoning is required. Both aspects will end
up being fundamental for our adaptive process man-
agement framework in the next sections.

4.3. AI Automated Planning

Planning systems are problem-solving algorithms
that operate on explicit representations of states and
actions [49,28]. PDDL [43] is the standard planning
representation language; it allows one to formulate a
planning problem P = 〈I,G,P D〉, where I is the ini-

tial state, G is the goal state, and P D is the planning
domain. In turn, a planning domain P D is built from
a set of propositions describing the state of the world
(a state is characterized by the set of propositions that
are true) and a set of actions that can be executed in
the domain. An action schema a ∈ Ω is of the form
a = 〈Para,Prea,Eff a〉, where Para is the list of input
parameters for a, Prea defines the preconditions under
which a can be executed, and Eff a specifies the effects
of a on the state of the world. Both preconditions and
effects are stated in terms of the propositions in PD .
Propositions can be represented through boolean pred-
icates and numeric fluents.

There exist several forms of planning in the AI lit-
erature. In this paper, we focus on planning techniques
characterized by fully observable, static and determin-
istic domains, i.e., we rely on the classical planning
assumption of a “perfect world description” [74]. Un-
der this assumption, a solution for a planning prob-
lem P is a sequence of actions—a plan—whose exe-
cution transforms the initial state I into a state satis-
fying the goal G. Such a plan is computed in advance
and then carried out (unconditionally). The field of au-
tomated planning has experienced huge advances in
the last twenty years, leading to a variety of concrete
solvers (i.e., planning systems) that are able to create
plans with thousands of actions for problems contain-
ing hundreds of propositions. In this work, we repre-
sent planning domains and planning problems using
PDDL 2.2 [21] (see Section 5.3 for a discussion on
which specific features of the language we employed
in our system).

5. The SmartPM approach through action-based
formalisms

In this section we show how one can put together
the three action-based formalisms and frameworks de-
scribed above to build our adaptive CPMS. Specif-
ically, we first describe how to explicitly formalize
processes in situation calculus, which will be used to
model the contextual information in which the process
is meant to run. Then, starting from this formalization,
we discuss how SmartPM has been coded by the inter-
preter of IndiGolog for devising a technique that auto-
matically detect and recover from failures, and finally
we show how planning systems will support the auto-
mated adaptation of a process when needed.
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5.1. The Framework

5.1.1. SmartPM Basic Action Theory
Following [42], a situation calculus BAT DSmartPM

for a SmartPM application specifies:

1. the tasks and services of the domain of concern;
2. the framework for managing the task life-cycle;
3. the contextual setting in which processes operate;
4. the framework for the monitoring of processes.

To encode tasks and services, we use some non-
fluent “rigid” predicates, i.e., their truth values do not
depend on a situation term:

– Service(srv): srv is a service (i.e., a pro-
cess participant). The predicate can be special-
ized into further predicates, e.g., Actor(srv),
MovingRobot(srv), etc., describing the specific
services’ roles;

– Task(t): t is a task, e.g., GO or CHECKQUALITY,
may denote the tasks of navigating or checking
the quality of ceramic material after a manipula-
tion;

– Capability(c): c is a capability, e.g., camera may
denote the ability to perform a 3D scanning of the
surface of ceramic material;

– Provides(srv,c): service srv provides capability c;
– Requires(t,c): task t requires the capability c.

A service srv is able to perform certain task t iff srv
provides all capabilities required by the task t. This is
captured formally using the following abbreviation:4

Capable(srv, t) def
=

Service(srv)∧Task(t)∧∀c.Requires(t,c)⊃ Provides(srv,c).

To talk about concrete runs of tasks, we associate
them with unique identifiers. A task instance is then a
tuple t : id, where t is a task and id is an identifier.

The life-cycle of a generic task t involves the exe-
cution of four primitive actions executed by the CPMS
and two external actions arising from services:

1. First, the CPMS assigns task instance t : id to
a service srv by performing primitive action
ASSIGN(srv, id, t,~i, ~oe), where~i is an input data
vector associated to t : id and ~oe is a vector of ex-
pected (sensing result) outputs.

4An abbreviation is a predicate (with situation argument s) de-
fined by means of a formula uniform in s. Abbreviations, unlike flu-
ents, are not directly affected by actions.

2. When a service is ready for task exe-
cution, it generates the external action
READYTOSTART(srv, id, t).

3. Next, the CPMS performs primitive action
START(srv, id, t) to authorize the service in ques-
tion to start carrying out the task instance.

4. When the service completes the task, it generates
the external action FINISHED(srv, id, t,~i,~or), with
~or representing a vector of physical actual out-
comes returned by the task execution (we use ε

to denote the empty output).
5. At this point, the CPMS updates the properties

(i.e., the fluents) to reflect the effects of the task
just completed.

6. Finally, the CPMS acknowledges the completion
of the task and releases the task from the service
via primitive actions ACKCOMPL(srv, id, t) and
RELEASE(srv, id, t).

Note that we suppose that in all application domains
services, tasks, input and output data vectors range
over finite values.

The above protocol for the life-cycle of tasks is cap-
tured by means of a set of domain-independent fluents
and actions. For example, fluent Free(srv,s) denotes
whether a service srv is available for task assignments
in situation s.

Free(srv,do(a,s)) def
=

(∃t, id)a = RELEASE(srv, id, t)∨
[Free(srv,s)∧ (∀t, id,~i,~o)a 6= ASSIGN(srv, id, t,~i,~o)];

That is, a service is free (for task assignment) after
the execution of an action a iff a releases the service
from some task assignment, or it was free before the
execution of a and a does not assign a task to it.

Observe that SmartPM employs a push-based ap-
proach to task assignment. Specifically, the system dy-
namically selects an available service qualified for ex-
ecuting a given task and directly allocates the task item
to the selected service. Conversely, traditional PMSs
typically adopt a pull-based approach, with the sys-
tem that offers each task to one or more services qual-
ified for it and a service chooses one task for execu-
tion among the offered items. However, a pull-based
approach to task assignment is not suitable for CPPs
[58], which are usually highly critical and time de-
manding, and the risk exists to have some task(s) wait-
ing indefinitely for being selected and executed. There-
fore, in SmartPM each task is directly assigned to only
one available service at a time, and each service gets
assigned at most one task.
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To record the expected output of task instance t : id
when assigned to a service, we define a functional flu-
ent ExOut(id, t,s), whose SSA is as follows:

ExOut(id, t,do(a,s)) =~o≡
(∃srv,~i)a = ASSIGN(srv, id, t,~i,~o)∨ExOut(id, t,s) =~o.

That is, the expected output of a task instance is deter-
mined by the assignment step (and never changes). Ini-
tial expected outcomes are initialized to “no value” (ε)
via an axiom (∀t, id).ExOut(id, t,S0) = ε in the set of
axioms DS0 . Other similar fluents are used to manage
the life-cycle of tasks.

The BAT shall also contain a set of domain-
dependent fluents, together with their corresponding
precondition and SSAs, capturing the contextual sce-
nario in which the process is meant to be executed. We
call such fluents data fluents. They can be seen as fea-
tures of the world whose value may change from sit-
uation to situation. In general, data fluents will be af-
fected upon the release of an assignment task, that is,
whenever a task is considered fully executed. In addi-
tion, the actual outcome result of a task is used to de-
fine the fluent in question. Importantly, the SSAs will
follow the following template:

F(~x,do(a,s)) = v≡
γF (~x,a,v,s)∨ [F(~x,s) = v∧ (¬∃v)γF (~x,a,v,s)],

(1)

where γF(~x,a,v,s) states the conditions under which
action a executed in situation s will cause data
fluent F(~x,s) to take value v. In the context of
our setting, two type of actions will be mentioned
in γF(~x,a,v,s), namely, (i) actions of the form
FINISHED(srv, id,Tk,~i,~or) reporting the completion of
some task instance Tk : id that would affect the data flu-
ent and (ii) exogenous events that would also affect the
value of the data fluent.

Example 5.1. Suppose that, in our manufacturing sce-
nario, functional data fluent At(srv,s) is used to keep
track of the location of service srv in the domain. The
fluent is affected by tasks GO and MOVE. Hence, the
SSA for the fluent follows the template (1) above with
γF(~x,a,v,s) being instantiated as follows:

γAt(srv,a,v,s) def
=

(∃id, ls, ld , t)
(a = FINISHED(srv, id, t, [ls, ld ], [v])∧
t ∈ {GO,MOVE}∧ (Actor(srv)∨MovingRobot(srv)))∨
(a = PUSHED(srv)∧Actor(srv)∧ v = “lost”).

In words, actor/robot srv is in location v if srv has just
completed the task GO or MOVE whose actual physical

outcome result is v, or if human service actor srv has
just been unexpectedly pushed away from the factory
during her/his working time (with the exogenous event
PUSHED) and v records the fact that we lost track of
its position. Observe that even when a navigation task
has just been finished, the new location v of srv may
happen to be different to the expected (destination) lo-
cation ld .

Besides data fluents, an application will generally
require further domain-dependent rigid predicates to
represent the static properties of a contextual scenario.
Such predicates do not change their value during pro-
cess execution. For example, our application scenario
requires to define a predicate Neigh(loc1,loc2) to ex-
presses the neighborhood property between two loca-
tions of the factory.

Using the core data fluents and static predicates, one
can also define helpful abbreviations, such as the fol-
lowing ones to capture that at least an actor must be
always present (at any point in time) in the warehouse
containing the ceramic materials with defects.

Example 5.2. The abbreviation atLeastOne(s) de-
notes that in any situation at least an actor is present
in the warehouse. This abbreviation will be used for
exception monitoring and is defined as follows:

atLeastOne(s) def
=

∃srv.At(srv,s) = loc warehouse∧Actor(srv).

The abbreviation atLeastAnotherOne(srv,s) is used
to check that at least an actor different from srv is
present in the warehouse. This abbreviation will be
used in the precondition of the navigation tasks for hu-
man actors, and is defined as follows:

atLeastAnotherOne(srv,s) def
=

∃srv2.At(srv2,s) = loc warehouse∧
Actor(srv2)∧ (srv 6= srv2).

Data fluents and abbreviations will be used for defin-
ing the preconditions of domain tasks. By doing so, the
CPMS can reason, at run-time, about the active process
instance relative to the current context. For example,
while we have given above a generic precondition for
assigning tasks to services, one can also incorporate
domain-specific restrictions for task assignment.

Example 5.3. The following precondition axiom de-
fines when the CPMS can assign a navigation task to a
human actor and robot services:
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Poss(ASSIGN(srv, id,GO, [ls, ld ], [le]),s)≡
Free(srv,s)∧Capable(srv,GO)∧
Actor(srv)∧ (At(srv,s) = ls)∧
atLeastAnotherOne(srv,s)∧ (le = ld);

Poss(ASSIGN(srv, id,MOVE, [ls, ld ], [le]),s)≡
Free(srv,s)∧Capable(srv,MOVE)∧
MovingRobot(srv)∧ (At(srv,s) = ls)∧ (le = ld)∧
EnoughBattery(BatteryLevel(srv,s),MoveStep(ls, ld)).

So, besides the service being available and capable of
carrying out the navigation task, it also needs to be an
actor located at the source location ls and another dif-
ferent actor located in the warehouse. In addition, the
expected outcome of the task instance ought to be the
destination location ld . A similar MOVE action can be
used to instruct robots to move between two locations,
though it is also required the robot’s current battery
level is enough to move from source ls to destination
ld . This latter “constraint” is represented through the
abbreviation EnoughBattery, which is defined over the
fluent BatteryLevel (it records the battery charge level
of a robot in a specific situation) and the static predi-
cate MoveStep (it indicates the cost for a robot to move
between two specific locations).

Before addressing the issue of how monitoring is
modeled in CPPs, we provide the full successor state
axiom of another data fluent which is affected by both
actions and asynchronous exogenous events.

Example 5.4. Data fluent Status(ob j,s), which de-
notes the state of ceramic element ob j at situation s,
is affected by three domain tasks as well as by the ex-
ogenous event HIGHTEMP(ob j, l). The latter indicates
that the temperature of ob j during the enactment of one
of the step of the production process (situated at loca-
tion l) is too high if compared with its normal expected
value.

Status(ob j,do(a,s)) = v≡
[(∃srv, id, t, l)a = FINISHED(srv, id, t, [ob j, l], [v])∧

t ∈ {CHECKQUALITY,DEPOSIT, FIXTEMP}]∨
[(∃l)a = HIGHTEMP(ob j, l)∧ v = ’high temperature’]∨
[Status(ob j,s) = v∧
¬(∃srv, id, t, l,v′)(a = FINISHED(srv, id, t, [l], [v′])∧

t ∈ {CHECKQUALITY,DEPOSIT, FIXTEMP})∧
a 6= HIGHTEMP(ob j, l)].

In words, tasks CHECKQUALITY, DEPOSIT and
FIXTEMP are all meant to report the status of the
ceramic element they operate on, upon completion.
Moreover, high temperature events also change the sta-
tus of the corresponding ceramic element.

This concludes the exposition of the first three as-
pects of a SmartPM action theory. Now we will focus
on how our framework is able to deal with exception
monitoring and management.

5.1.2. Exception Monitoring
We now turn our attention to the mechanism for au-

tomatically detecting failures/exceptions. In a nutshell,
an exception occurs when a task does not produce the
expected outcomes or an exogenous event arises.

The “physical” reality captures the actual value of
fluents (and abbreviations) as observed in the sys-
tem, and is encoded via the data fluents (and abbre-
viations), as described above, e.g., fluents At(srv,s),
Status(ob j,s) and abbreviation atLeastOne(srv,s).

The “expected” reality, in turn, is captured with an-
other set of fluents and abbreviations, one for each one
in the physical reality. So, for every data fluent F(~x,s),
a new fluent Fexp(~x,s) (F-expected) is used to represent
the value of F(~x,s) in the “expected” (or “desired”)
execution. Technically, if F(~x,do(a,s)) is a relational
data fluent with successor state axiom F(~x,do(a,s))≡
ΨF(~x,a,s), then we build Fexp(~x,s)’s counterpart as
follows (the one for functional fluent is built in analo-
gous way):

Fexp(~x,do(a,s))≡
[a = ALIGN ⊃ F(~x,s)]∨
[(∃srv, id, t,~i, ~or)a = FINISHED(srv, id, t,~i, ~or)⊃

Ψ∗F (~x, FINISHED(srv, id, t,~i,ExOut(id, t,s)),s)]∨
[a 6∈ {ALIGN, FINISHED} ⊃ Fexp(~x,s)].

(2)

where Ψ∗F(~x,a,s) is obtained by replacing every flu-
ent X mentioned in ΨF(~x,a,s) (the right-hand-side for-
mula of F’s successor state axioms) with its expected
version Xexp.

The first disjunct states that the special action
ALIGN, whose execution is always possible, assigns
the actual value of the fluent to its expected value, thus
providing a synchronization mechanism between the
expected and physical realities.

The second condition states that the expected value
of the fluent is the value that the fluent would get if
all tasks executed so far since the last alignment point
end with their expected output (denoted with term
ExOut(id, t,s)). Basically, when a FINISHED action is
invoked, the F’s successor state axiom is used with the
expected outcome in place of the real outcome (i.e., ~or
is replaced with ExOut(id, t,s)).

Finally, the third condition states that for all other
cases, the expected fluent keeps the value it had before
(i.e., inertia law is applicable).
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Similarly, for each abbreviation A(s) def
= Ψ(s), an ex-

tra abbreviation Aexp(s) is defined as Aexp(s)
def
= Ψ∗(s),

where Ψ∗(s) is obtained by replacing each fluent (or
abbreviation) X in Ψ(s) with its expected version Xexp.

Observe that the value of the expected version of a
fluent is predicated on the assumption that exogenous
action FINISHED will carry the expected output of the
task of concern. This may indeed deviate from the ac-
tual output, thus yielding a mismatch between physical
and expected reality.

Therefore, given a physical reality, an expected re-
ality can be seen as the collection of values of the ex-
pected versions of data fluents and abbreviations.

Example 5.5. Upon (syntactic and semantic) simpli-
fication, the expected version for fluent Atexp(srv,s) is
as follows:

Atexp(srv,do(a,s)) = l ≡
a = ALIGN ⊃ At(srv,s)∨
[(∃id,~i, t, ~or)a = FINISHED(srv, id, t,~i, ~or)⊃

t ∈ {GO,MOVE}∧ (Actor(srv)∨MovingRobot(srv))⊃
l = ExOut(id, t,s))]∨

[a 6= ALIGN ∧ ¬(∃id,~i, t, ~or)a = FINISHED(srv, id, t,~i, ~or)∧
t ∈ {GO,MOVE} ⊃ Atexp(srv,s) = l].

For abbreviation atLeastOne(s), however, we want
to force the constraint/expectation that at least one ac-
tor is always located in the warehouse, and hence we
simply take atLeastOneexp(s)

def
= true.

Next, using the data fluents and their expected ver-
sions, a misalignment can be recognized and a recov-
ery procedure may be needed. However, it may only be
important to check for mismatches among some prop-
erties of the world. So, a data fluent (or abbreviation) is
considered relevant by the process designer if its evo-
lution should be monitored during process enactment.
We assume then that the designer specifies abbrevia-
tion Misaligned(s) to characterize misalignment situa-
tions that would require process adaptation. The gen-
eral form of such an abbreviation is as follows:

Misaligned(s) def
=

∃~x1.ΦF1(~x1,s)⊃ ¬[F1(~x1,s)≡ F1
exp(~x1,s)]∨

...
∃~xn.ΦFn(~xn,s)⊃ ¬[Fn(~xn,s)≡ Fn

exp(~xn,s)],

where F i(~xi,s), with i ∈ {1, . . . ,n}, are all the data flu-
ents and abbreviations used in the SmartPM applica-
tion. Each condition ΦF i(~xi,s) states the conditions un-
der which data fluent F i(~xi,s) is relevant and needs to
be traced for “misalignment.”

Example 5.6. In our case study, we are interested,
among other things, in monitoring the correct location
of human actors, the good “status” of ceramic elements
under transformation and the presence in any moment
of at least one actor in the warehouse. Technically, we
model that as follows:

Misaligned(s) def
=

∃x1.Actor(x1)⊃ ¬[At(x1,s)≡ Atexp(x1,s)]∨
∃ob1.CeramicElement(ob1)⊃
¬[Status(ob1,s)≡ Statusexp(ob1,s)]∨
¬[atLeastOne(s)≡ atLeastOneexp(s)]∨

...

Observe the definition is not concerned about excep-
tions on the location of moving robots, for example.

This concludes the explanation on what type of sit-
uation calculus BAT we shall use in a SmartPM appli-
cation. Let us call such a theory DSmartPM.

5.2. SmartPM High-Level Program

A SmartPM application involves the online execu-
tion of IndiGolog program (SmartPM‖δexog) model-
ing the concurrent execution of the specific applica-
tion with special program δexog = (πa.Exog(a)?;a)∗

accounting for all potential exogenous events that
may arise from the external environment. Algorithm 1
shows a fragment of the IndiGolog program for a
SmartPM application. The program, as any high-level
program, is meant to be executed relative to a DSmartPM

BAT as developed above, which shall give meaning
to conditions and primitive statements in the program
(i.e., actions). We note that the only domain-dependent
part in Algorithm 1 is procedure Process–all other pro-
cedures remain unchanged across applications.

The top-level part of the CPMS involves five in-
terrupts running at different priorities, as long as the
domain process is not yet finished. The highest three
priority programs deal with automated process adap-
tation; the fourth deals with actual process execution;
and the last one forces the system to wait for further
changes.

First, if the system has just been adapted, then the
two realities—expected and actual—must be aligned,
as a new repair plan has been found and a new syn-
chronization point has been reached.

Second, the system checks for a misalignment be-
tween the actual reality and the expected one, as ex-
plained above. If a mismatch is recognized, process
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adaptation is initiated by calling procedure Adapt (see
subsection 5.3 below).

The third interrupt triggers whenever there is a mis-
alignment but the adaptation procedure (in the second
priority interrupt) was not able to find a successful plan
to repair such misalignment. In that case, the whole ex-
ecution waits, for some exogenous events that can al-
low the system to adapt. Though outside the scope of
this paper, another possibility in such cases would be to
resort to alternative orthogonal adaptation techniques,
such as planning from first-principles (as done in [68])
or just require human intervention.

Whenever there is no adaptation process in place,
the CPMS runs the IndiGolog program reflecting the
actual process (fourth interrupt), by executing proce-
dure Process. Recall that the actual CPP (cf.Fig. 2(a))
is indeed modelled as yet another IndiGolog program.
Managing the life-cycle of a task instance—procedure
ManageExec—involves selecting a free service capa-
ble of carrying it out, assigning the task to the chosen
service, allowing the start of the service, acknowledg-
ing its completion and fully releasing the service from
the task. Note the use of the non-deterministic choice
of argument πsrv.δ(srv) to select (any) appropriate ser-
vice, that is, one capable and free to be assigned the
task. Also, the sub-program πid.GETID(id) selects a
“fresh” id, that is, an id not used so far, that will serve
as the process id for the remaining part of the program
ManageExec so that for each task-related action exe-
cution there is a unique id. To keep track of fresh iden-
tifiers, a fluent FreshId(id) is used. The execution of
GETID(id) has the effect of setting FreshId(id) to false.
As expected, the action can only be executed on fresh
ids, that is:

Poss(GETID(id),s)≡ Fresh(id,s).

Finally, at the lowest priority (when the process can-
not advance) the CPMS just waits for an external ac-
tion to arrive from one of the services, e.g., a FINISHED
action signaling the completion of a running task. We
note that, while waiting, the (human) process designer
could also manually intervene (for example, by adding
new services or updating the capabilities of existing
services).

5.2.1. Multi-instance Processes
When modeling a business process, a commonly

used control flow mechanism is multi-instance execu-
tion of sub-processes. Intuitively, the idea is to spawn
the execution of the same process on each object in a
given set. For example, in our domain, a process may

Proc SmartPM
〈¬Finished∧MustAlign→ ALIGN〉 〉〉
〈¬Finished∧Misaligned→ Adapt〉 〉〉
〈¬Finished∧Misaligned→ WAIT〉 〉〉
〈¬Finished→ Process; FINISH〉 〉〉
〈¬Finished→ WAIT〉.

Proc Adapt
Σ[SETMUSTALIGN;(πa.a)∗;¬Misaligned?];

Proc ManageExec(Task, Input,ExpOut)
(π id).

GETID(id);
(π srv).

(Capable(srv,Task)∧Free(srv))?;
ASSIGN(srv, id,Task, Input,ExpOut);
START(srv, id,Task);
ACKCOMPL(srv, id, task);
RELEASE(srv, id, task).

Proc Process
Seq-MultiInstance-1;
Conc-MultiInstance-2;
Conc-MultiInstance-3;

...
Seq-MultiInstance-13.

Proc Seq-MultiInstance-1
for each x in CeramicElement(x)∧Status(x) = ok do∗

ManageExec(CONVEY, [x, loc start,
loc rotomoulding], [loc rotomoulding])

endFor
Proc Conc-MultiInstance-2

for each x in CeramicElement(x)∧Status(x) = ok do‖
ManageExec(MOULD, [x, loc rotomoulding], [ok])

endFor
Proc Conc-MultiInstance-3

for each x in CeramicElement(x)∧Status(x) = ok do‖

ManageExec(CHECKQUALITY, [x, loc rotomoulding], [ok])
endFor
.....

Proc Seq-MultiInstance-13
for each x in CeramicElement(x)∧Status(x) = ok do∗

ManageExec(CONVEY, [x, loc f iring,
loc end], [loc end])

endFor

Algorithm 1. IndiGolog high-level program for CPMS.

instruct every idle robot to navigate to a given location.
There are two versions that are commonly used. In the
sequential case, a given subprocess is executed on each
object one at a time. In turn, in the non-sequential case,
multiple instances of the subprocess, one per relevant
object, are concurrently executed. More concretely, if



16 Supporting Adaptiveness of CPPs through Action-based Formalisms

o1,o2, · · · ,on are the objects of interest (e.g., all cur-
rently idle robots) and δ(x) is the subprocess to be car-
ried out (e.g., navigate to emergency location), a se-
quential multi-instance execution would amount to ex-
ecuting, for example, program δ(o1);δ(o2); · · · ;δ(on),
whereas the non-sequential version would amount to
any execution of program δ(o1)‖ δ(o2)‖ · · ·‖ δ(on).

Unfortunately, while common in business processes
languages, this control flow construct is not provided
by any of the languages in the Golog family. It turns
out, however, that we can realize such control flow
by combining existing constructs together with extra
bookkeeping information in the underlying action the-
ory. Concretely, we first introduce a new construct de-
fined as follows for the sequential version:

for each x in φ(~x) do∗ δ(~x) endFor def
=

πid.STOREφ(id);
[π~x.REMOVEφ(~x, id); δ(~x)]∗;
?(¬∃~xMφ(id,~x))

Here, action STOREφ(id) is used to “save” every in-
stance for which φ(~x) holds true into a distinguished
fluent Mφ(id,~x). By doing this, we are able to then ex-
ecute process δ on each of those instances, regardless
of how formula φ(~x) changes its truth value as actions
are performed. The id’s is used in the auxiliary fluent
Mφ to make sure that different instances of the same
for-loop can be executed without clashing. To achieve
that, the preconditions of the auxiliary actions are as
follows:

Poss(STOREφ(id),s)≡ FreshId(id,s);
Poss(REMOVEφ(id,~x),s)≡Mφ(id,~x,s).

As with action GETID(id), the SSA for FreshId(id) en-
codes the negative effect of action STOREφ(id) on id
object id (i.e., id is not available anymore), and the
SSA for fluent Mφ(id,~x,s) encodes the negative effect
of action REMOVEφ(id,~x) on (id,~x) (i.e., object ~x in
for-each process id has been processed).

Finally, the non-sequential version can be defined as
follows:

for each x in φ(~x) do‖ δ(~x) endFor def
=

πid.STOREφ(id);
[π~x.REMOVEφ(~x, id); δ(~x)]‖;
?(¬∃~xMφ(id,~x))

The last test step in the program is used to enforce
that any execution should process every (complex) ob-

ject ~t for which φ(~x) holds (i.e., any tuple ~t that has
been stored into fluent Mφ).

5.3. CPP Adaptation via Automated Planning

The most interesting part of the procedure involves
procedure Adapt. An adaptation allows to find a se-
quence of actions that will resolve the misalignment.
This is exactly what the code inside the search op-
erator Σ does: pick and execute actions zero, one, or
more times such that abbreviation Misaligned(s) be-
comes false. The action SETMUSTALIGN at the front
of the search construct will just make MustAlign(s)
true, which will trigger (provided an actual adaptation
plan is found) the top-priority program in the main pro-
cedure, where the action ALIGN (whose execution is al-
ways possible) forces an alignment of the two realities,
thus providing a synchronization mechanism between
them. Observe that because the adaptation mechanism
runs at higher priority than the actual process, the re-
covery plan found will be run before whatever part of
the domain process remains to be executed.

Putting it all together, let us formally capture the
type of adaptation realized by our approach.

Definition 5.1. Let S be a ground situation term
such that DSmartPM |= Misaligned(S). We say that
situation S is recoverable if and only if it is the
case that DSmartPM |= ∃s′.S < s′ ∧ Executable(s′) ∧
¬Misaligned(s′).

That is, a given situation can be recovered if there
is an executable sequence of actions from it that will
eventually resolve the misalignment between the phys-
ical and expected realities. Specifically, when the ex-
ecution reaches a misalignment, the SmartPM proce-
dure (i) will not execute the main process (encoded in
procedure Process and running at the fourth priority
level); and (ii) will execute the first action of a plan
to recover the current situation from misalignment, if
such a plan exists (otherwise, the system just waits; see
above).

Importantly, the above result also makes explicit
the limits of our adaptation framework: if there is no
plan able to resolve the existing mismatch, the system
just waits (third point) and other orthogonal adaptation
techniques would need to be used, see discussion in
Section 8.

While this specification of the automated adaptation
procedure turns out to be extremely clean and simple,
the direct use of the native search operator provided by
the IndiGolog architecture [14] poses serious problems
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in terms of efficiency. The fact is that the search opera-
tor provided by IndiGolog amounts to a generic and in-
cremental (i.e., done at every step) search; as a result,
direct implementations are not able to cope with even
extremely easy adaptation tasks.

But, while the search operator is meant to handle
any IndiGolog high-level program (including ones con-
taining nested search operators), our SmartPM system
uses a specific type of program that turns out to encode
a (classical) planning problem. So, leveraging on the
recent progress of classical planning systems, we im-
plement the search operator call in procedure Adapt,
by using an off-the-shelf planner to synthesise the re-
covery plan, and then fit such a plan back into the In-
diGolog framework. Specifically, we used the LPG-td
system [29], one of the many state-of-the-art planning
systems available. The basic search scheme of LPG-td
is inspired by Walksat [65], an efficient procedure for
solving SAT-problems; as expected, it outperforms the
blind search operator by several orders of magnitudes
(cf. [42]). Nonetheless, our approach is orthogonal to
other planning systems.

Since the integration of PDDL planning with situ-
ation calculus and Golog-like languages has been al-
ready analysed in several research works, such as [12,
11,25], we just go over the main ingredients on how we
realized the interface between IndiGolog and LPG-td.

First of all, given a BAT DSmartPM for a CPP applica-
tion, the corresponding PDDL planning domain is built
(and stored) offline. Because we are not concerned
with the external actions generated by services to ac-
knowledge the start and termination of assigned pro-
cesses (i.e., actions READYTOSTART and FINISHED),
we do not model the full assign-start-acknowledge-
release task life-cycle, but just encapsulates them all in
the actual name of the task being handled, e.g., GO. By
doing that, we assume that the life-cycle of a task in-
stance will follow its expected evolution. The SmartPM
BAT will define a form of tasks and services reposi-
tory, which may include entities not used in the current
running process. So, the PDDL domain for our case
study will contain, among others, the following action
schema modeling the GO task:5

(:action go
:parameters (?srv - actor ?from - location

?to - location)
:precondition

(and (provides ?srv movement) (free ?srv)
(at ?srv ?from) (atLeastAnotherOne))

5In PDDL, the variables are distinguished by a ’?’ character at
front, for example ?x1 represents a variable. The dash ’–’ is used to
assign types to the variables.

:effect (and (not (at ?srv ?from))
(at ?srv ?to)))

Note that the task-action in the planning system will
contain the service in charge and its expected effects.

In this work we represent planning domains and
problems making use of the STRIPS fragment of
PDDL 2.2, enhanced with derived predicates and nu-
meric features provided by the level 2 of the same
language. Specifically, derived predicates are em-
ployed to encode all the required user-defined ab-
breviations (for example, see the derived predicate
atLeastAnotherOne used in the preconditions of the
planning action go), whereas numeric features are used
to model non-binary resources (such as, for example,
the battery level of a robot), to keep track of the costs
of planning actions and to synthesize plans satisfying
pre-specified metrics.

Whenever the adaptation program is called in pro-
cedure Adapt, the current physical reality is encoded
as the planning problem initial state (as the set of flu-
ents that are true) and the expected reality is encoded
as the problem goal state (by taking the collection of
relevant fluents to be as their expected versions). Those
two states, together with the planning domain already
pre-computed, are then passed to the LPG-td system.

Finally, if the planner finds a plan that brings
about the (desired) expected reality, such a plan—
built from task names only—is translated into the typi-
cal assign-start-acknowledge-release task life-cycle In-
diGolog program. As stated above, such a plan will run
before the actual domain process, which shall resume
then, hopefully from the expected reality. In our run-
ning example, the full IndiGolog program would en-
code the CPP depicted in Fig. 2(a).

6. Evaluating SmartPM

While the framework presented in Section 5 focuses
on the formalization of the approach through action-
based formalisms (basically, we covered the enactment
and adaptation layers of the SmartPM architecture), in
this section we aim at providing some technical de-
tails on the design and service layers, which consist of
tools and plugins that allow human process designers
to concretely interact with the SmartPM system (see
Section 6.1). Then, we show the results of some ex-
periments performed with real users to investigate the
practical applicability of the SmartPM system to model
real-world CPPs (see Section 6.2).
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(a) The workspace provided by the SmartPM Definition Tool.

(b) The wizard-based editor to build tasks specifications.

(c) The location web tool to mark areas of interest.

Fig. 5. Some screenshots of the SmartPM Definition Tool.
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6.1. Interacting with the SmartPM System

One of the main obstacles in applying AI techniques
to real problems is the difficulty to model the complex-
ity of real-world domains. Let us take, for example,
our SmartPM approach. It is evident that it would be
extremely complex for a process designer to encode a
(even simple) CPP in SmartPM by using directly our
framework based on action-based formalisms.

In the SmartPM system, we have tackled this issue
by developing a GUI-based tool in the range of the
design layer, which is called the SmartPM Definition
Tool. It supports the process design activity by provid-
ing (i) several wizard-based editors that assist the pro-
cess designer in the definition of the process knowl-
edge (i.e., data objects, atomic terms, tasks with pre-
conditions and effects, etc.), and (ii) a graphical editor
to design the control flow of a CPP using a relevant
subset of the BPMN 2.0 notation. The SmartPM Defini-
tion Tool has been developed using the Java SE 7 Plat-
form, and the JGraphX open source graphical library.6

While a screenshot of the workspace of the SmartPM
Definition Tool is provided in Fig. 5(a), in Fig. 5(b)
we show one of the wizard-based editor provided by
SmartPM, specifically the one to build a task specifi-
cation by defining the single conditions composing the
task preconditions and effects.

The SmartPM Definition Tool allows also to make ex-
plicit the connection of implemented processes with
the real-world objects of the cyber-physical environ-
ment of interest. For example, we developed a web tool
that allows a process designer to mark areas of interest
from a real map (by selecting latidude/longitude val-
ues) and associate them to the discrete locations (e.g.,
loc00, loc01, etc.) defined during the design stage of
a process. Fig. 5(c) shows a screenshot of the location
web tool. Similarly, we developed further web tools
for the other developed sensors (temperature, humid-
ity, noise level, etc.).

The interaction between process participants and the
SmartPM system during the enactment of a CPP is per-
formed through a Task Handler that supports the visu-
alization of assigned tasks and enables starting task ex-
ecution and notifying of task completion by selecting
an appropriate outcome. The SmartPM Task Handler is
realized for Android devices from version 4.0 and up.
Each device has an unique ID that matches the service
name defined in the domain theory by the designer. A
screenshot of the Task Handler is shown in Fig. 6.

6http://www.jgraph.com/

Fig. 6. Screenshot of the Task Handler of SmartPM. In the figure,
it is described how the data fluent At(act1) can be used to represent
the effect of the task GO. We show that the output value for At(act1)
(in the example ’loc03’, different from the task’s expected outcome,
that is ’loc33’) can be produced by a sensor (i.e., a GPS device)
supporting the Task Handler.

We created several plugins for the Task Handler to
obtain, for example, location data using built-in GPS
sensors or get the current noise level near the device
using its microphone. In addition, external sensors can
be taken into use to gather automatic measurements -
for prototyping purposes, the Arduino platform7 can
be used. The Task Handler can take advantage of this
technology for gathering environmental data. In fact,
Arduino has a large variety of sensors available to
measure different environmental values, for example
different gas levels in the air, water quality, radiation
level, etc. Arduino can be connected with Android via
Bluetooth for transferring the data.

6.2. Investigating the practical applicability of the
SmartPM system

The SmartPM System has been extensively vali-
dated in our previous work [42] through empirical
experiments based on 3600 different process models
having control flows with different structures and do-
main theories associated to them. On the one hand,
the experiments have confirmed the feasibility of the

7Arduino is an open-source physical computing platform based
on a simple microcontroller board, and a development environment
for writing software for the board, cf. http://arduino.cc/en/
guide/introduction
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planning-based approach of SmartPM for adapting
processes in medium-sized cyber-physical environ-
ments from the timing performance perspective. On
the other hand, SmartPM was able to complete 2537
process instances without any domain expert interven-
tion, corresponding to an effectiveness of about 70,5%
(see [42] for a discussion of such results).

Conversely, in this paper we focused our attention on
evaluating if the SmartPM system is easy to be learnt
and used from non expert users in AI. The final pur-
pose was to demonstrate that the modeling of CPPs
at design-time and their execution with SmartPM does
not require any specific expertise of the internal work-
ing of the AI tools involved in the system. Therefore,
we performed experiments to assess the learnability of
the SmartPM Definition Tool.

In the Human-Computer Interaction community,
learnability is recognized as one of the most relevant
components of usability [18]. Learnability is addressed
in ISO 9126-1 as the capability of the software product
to enable the user to learn its application and applies
to the nature of the performance change of a user when
interacting with a system. The more learnable a system
is, the less time a user takes in order to understand how
to do a specific task without having been previously
trained and without using any documentation.

To measure the learnability of the SmartPM Defi-
nition Tool, we leveraged on the approach developed
in [32], which allows to identify quantitatively how
much the user actions that take place during a run of
the system for achieving a specific objective (for ex-
ample, the creation of a new data object) deviate from
the expected way of achieving the same objective as
foreseen by the system. The weight of such deviations
is quantified through a fitness value, which estimates
how much the actions performed by the users adhere to
the expected way of using the system. The fitness value
can vary from 0 to 1. A value equals to 1 means that the
user was able to achieve perfectly her/his objective as
foreseen by the system. According to [32], the learn-
ability of the system can be estimated by analyzing the
rate of the fitness values corresponding to subsequent
executions of the system over time. An increasing rate
will correspond to a system that is easy to be learnt.

To assess the learnability of SmartPM against the
complexity of realistic cyber-physical environments,
we performed a usability tests with 23 Master students
in Engineering in Computer Science during the univer-
sity course of Seminars in Software and Services for
the Information Society8 (Academic Year 2015-2016),

8https://sites.google.com/a/dis.uniroma1.it/
s4i-ss/

held at Sapienza - University of Rome. After a pre-
liminary training session to describe the usage of the
SmartPM Definition Tool, we provided to the students 4
different homeworks of growing complexity in 4 con-
secutive weeks (one homework per week); each home-
work was targeted to model the domain theory and the
control flow of a realistic CPP through the SmartPM
Definition Tool. The students were requested to com-
plete the homework assigned to them in a specific week
within the end of the week itself. Before the assign-
ment of a new homework, we shown to the students
the optimal solution to perform correctly the previous
homework.

To apply the approach described in [32], we
recorded in a specific log all the user actions per-
formed by the students during their interaction with the
SmartPM Definition Tool. Then, to assess the learnabil-
ity of the system, we replayed such logs over three in-
teraction models of the system describing the expected
ways to achieve three relevant objectives: (i) definition
of a new data object, (ii) generation a new atomic term
and (iii) creation of a new task specification.

The results of the experiments are provided in Fig. 7.
Collected data are organized in 3 diagrams related to
the achievement of the three above objectives. For any
diagram, the x-axis indicates the specific homework
considered, while the y-axis indicates the average fit-
ness value obtained to achieve the specific objective.
Notice that for each homework we represent two bars
for separating the students that performed correctly the
whole homework from the students that were not able
to complete it or to compute a correct solution.

The analysis of the performed experiments points
out some interesting aspects. For example, let us con-
sider the first diagram in Fig. 7, that shows the fitness
values related to the definition of a new data object.
First of all, it is evident that both the rate of the fit-
ness values and the number of students able to cor-
rectly complete an homework increases over time, i.e.,
homework after homework. In fact, while 6 students
out of 23 were not able to complete the first home-
work (around 26% of failure), the third and the fourth
homework were correctly completed by 20 and 21 stu-
dents (percentage of success of 86.95% and 91.3%). It
is interesting to notice a “discontinuity” of this trend
between the first and the second homework, probably
caused by the first relevant increase of complexity.

Concerning the fitness value, we can notice that it
is always higher for those students that completed cor-
rectly the whole homework, even if this gap slightly
decreases in the subsequent homeworks.
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Fig. 7. Analysis of the learnability of the SmartPM Definition Tool.

The above considerations are valid also for the other
diagrams, even if the fitness values emphasize that the
definition of a data object is a simpler task if compared
with the generation of an atomic term or the creation
of a task specification. However, also in this case, this
“complexity gap” seems to decrease over time.

To sum up, the results obtained allow to observe an
increasing rate of the fitness value over time, which
indicates that the students performing the homeworks
were able to efficiently learn the usage of the SmartPM
Definition Tool, without any knowledge of the AI tech-
nologies employed in the system.

7. Related work

Initial research efforts addressing the need for pro-
cess adaptation in PMSs can be traced back to the late
nineties and early two thousands [7,8,22,23,31,36,41].
Although possible sources of exceptions are different
(as outlined in [8,22], they can be attributed to ac-
tivity failures, deadline expirations, resource unavail-
abilities, constraint violations and external events) and
go beyond technical failures, not surprisingly process
adaptation approaches provided by academic proto-
types and commercial PMSs trace and resemble excep-
tion handling mechanisms in programming languages
(e.g., try-catch blocks) [1,10,67].

Typical strategies applied when defining exception
handlers for anticipated exceptions have been system-
atized in the form of exception handling patterns [7,31,
63,40,58], i.e., for any given exception, a predefined
explicit handling logic is defined as a sequence of cor-
rective actions to resolve the issue.

Conversely, the handling of unanticipated excep-
tions does not assume the availability of predefined ex-
ception handlers and relies on the possibility of per-

forming ad hoc changes over process instances at run-
time [73,58]. This requires structural adaptation of the
corresponding process model. As in the case of ex-
ception handling, structural adaptation techniques have
been systematized through the identification of adap-
tation patterns [71], i.e., predefined change operations
for adding, deleting or replacing process activities.

Strong support for structural adaptation is provided
by the ADEPT system and its evolutions [55,47,56,57,
37]. However, while a good level of support can be
provided to ensure correctness and compliance when
structural adaptation is performed, the degree of au-
tomation is generally limited to manual ad hoc changes
performed by experienced users [61].

In an attempt to increase the level of user support,
semi-automated approaches have been proposed [62].
They aim at storing and exploiting available knowl-
edge about previously performed changes, so that users
can retrieve and apply it when adapting a process. Such
an approach has been concretely put into practice using
case-based reasoning techniques [72,45].

When compared with traditional exception handling
approaches, we notice that adaptive PMSs deal with
unanticipated exceptions by automatically deriving the
try block as the situation in which the PMS does not
adequately reflect the real-world process anymore. The
catch block is defined manually or semi-automatically
at run-time and includes those recovery procedures re-
quired for realigning the computerized processes with
the real-world ones. However, in cyber-physical work-
ing environments, analyzing and defining these adapta-
tions “manually” becomes time-demanding and error-
prone. Indeed, the designer should have a global vision
of the application and its context to define appropriate
recovery actions, which becomes complicated when
the number of relevant context features and their inter-
leaving increases. Conversely, our SmartPM approach
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is able to automatically synthesizing at run-time the
catch block, without the need of any manual interven-
tion at run-time, and increases the level of “automa-
tion” in process adaptation.

The issue of having software systems automatically
and autonomously adapt to changing conditions has
been also addressed in the last years under the auto-
nomic and self-healing systems literature [30,52]. In
such research contexts, SmartPM can be considered
as a specific kind of self-healing system addressing
the management of processes through AI-based tech-
niques. In particular, according to what was presented
in [52], its main peculiarities are the use of a context-
and data-aware process engine and the ability to reason
over dynamic contexts, for which the adopted KR&R
techniques are particularly suitable.

A further research area related to process adaptation
is the one of Web service composition [44,4,50,51,2,
66,15]. Notably, most of the approaches to Web ser-
vice composition adopt planning-based techniques, as
the SmartPM approach does. However, there exists a
notable difference in what SmartPM and Web service
composition techniques synthesize through planning.
In Web service composition, given a a set of available
services and a target service, the challenge is to synthe-
size a possible composition (a.k.a. orchestration) of the
available services by preserving their behaviors (which
are in general quite rich, often modeled as transition
systems) in order to obtain the target service. Con-
versely, in the SmartPM approach, the aim is to syn-
thesize a recovery process that repairs the original one
in a specific situation of the world by using a set of
tasks stored in a tasks repository. The main issue here
is to preserve as much as possible the original process,
considering that process tasks are atomic and do not
present rich behaviors to be preserved.

Finally, a number of techniques from the field of AI
have been applied to BPM with the aim of increas-
ing the degree of automated process adaptation at run-
time. One of the first works dealing with this research
challenge is [3], which discusses at high level how
the use of an intelligent assistant based on planning
techniques may suggest compensation procedures or
the re-execution of activities if some anticipated fail-
ure arises during the process execution. In [34] the au-
thors describe how planning can be interleaved with
process execution and plan refinement, and investigate
plan patching and plan repair as means to enhance flex-
ibility and responsiveness.

A goal-based approach for enabling automated pro-
cess instance change in case of exceptions is shown

in [27]. If a task failure occurs at run-time and leads to
a process goal violation, a multi-step procedure is acti-
vated. It includes the termination of the failed task, the
sound suspension of the process, the automatic gener-
ation (through the use of a partial-order planner) of a
new complete process definition that complies with the
process goal and the adequate process resumption. A
similar approach is proposed in [24]. The approach is
based on learning business activities as planning op-
erators and feeding them to a planner that generates
a candidate process model that is able of achieving
some business goals. If an activity fails during process
execution at run-time, an alternative candidate plan is
provided on the same business goals. The major issue
of [27,24] lies in the replanning stage used for adapt-
ing a faulty process instance. In fact, it forces to com-
pletely redefine the process specification at run-time
when the process goal changes (due to some activity
failure), by completely revolutionizing the work-list of
tasks assigned to the process participants (that are often
humans). On the contrary, our approach adapts a run-
ning process instance by modifying only those parts of
the process that need to be changed/adapted and keeps
other parts stable.

The works [26] and [46] provide a formalization and
a regression-based approach to identify when a given
plan, developed for an ultimate specified goal, does not
work anymore and replanning may be required. Such
works adopt a traditional notion of plan, either sequen-
tial [26] or partial-order [46]. Conversely, in SmartPM
plans are seen as recovery processes and we do not
assume the presence of pre-specified goals associated
to the main process under execution. This makes the
regression-based approach of [26] and [46] not di-
rectly applicable to our approach.

In the work [6] the authors propose a goal-driven ap-
proach for service-based applications to automatically
adapt business processes to run-time context changes.
Process models include service annotations describing
how services contribute to the intended goal. Contex-
tual properties are modeled as state transition systems
capturing possible values and evolutions in the case of
precondition violations or external events. Process and
context evolution are continuously monitored and con-
text changes that prevent goal achievement are man-
aged through an adaptation mechanism based on ser-
vice composition via automated planning techniques.
However, this work requires that the process designer
explicitly defines the policies for detecting the excep-
tions at design-time, while in SmartPM the recovery
procedure is synthesized at run-time, without the need
to define any recovery policy at design-time.
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A work dealing with process interference is that of
[68]. Process interference is a situation that happens
when several concurrent business processes depend-
ing on some common data are executed in a highly
distributed environment. During the processes execu-
tion, it may happen that some of these data are mod-
ified causing unanticipated or wrong business out-
comes. To overcome this limitation, the work [68]
proposes a run-time mechanism which uses (i) De-
pendency Scopes for identifying critical parts of the
processes whose correct execution depends on some
shared variables; and (ii) Intervention Processes for
solving the potential inconsistencies generated from
the interference, which are automatically synthesised
through a domain independent planner based on CSP
techniques. While closely related to van Beest’s work,
our account deals with changes in a more abstract and
domain-independent way, by just checking misalign-
ment between expected/physical realities. Conversely,
van Beest’s work requires specification of a (domain-
dependent) adaptation policy, based on volatile vari-
ables and when changes to them become relevant.

8. Concluding Remarks

We are at the beginning of a profound transfor-
mation of BPM due to advances in AI and Cogni-
tive Computing [33]. Cognitive systems offer compu-
tational capabilities typically based on large amount of
data, which provide cognition power that augment and
scale human expertise. The aim of the emergent field
of cognitive BPM is to offer the computational capa-
bility of a cognitive system to provide analytical sup-
port for processes over structured and unstructured in-
formation sources. The target is to provide proactiv-
ity and self-adaptation of the running processes against
the evolving conditions of the application domains in
which they are enacted.

In this direction, our paper has been devoted to de-
fine a general approach, a concrete framework and
a CPMS implementation, called SmartPM, for auto-
mated adaptation of CPPs. Our purpose was to demon-
strate that the combination of procedural and imper-
ative models with cognitive BPM constructs such as
data-driven activities and declarative elements, along
with the exploitation of techniques from the field of
AI such as situation calculus, IndiGolog and classical
planning, can increase the ability of existing PMSs of
supporting and adapting CPPs in case of unanticipated
exceptions.

Existing approaches dealing with unanticipated ex-
ceptions typically rely on the involvement of process
participants at run-time, so that authorized users are al-
lowed to manually perform structural process model
adaptation and ad-hoc changes at the instance level.
However, CPPs demand a more flexible approach rec-
ognizing the fact that in real-world environments pro-
cess models quickly become outdated and hence re-
quire closer interweaving of modeling and execution.
To this end, the adaptation mechanism provided by
SmartPM is based on execution monitoring for detect-
ing failures and context changes at run-time, without
requiring to predefine any specific adaptation policy or
exception handler at design-time (as most of the cur-
rent approaches do).

From a general perspective, our planning-based au-
tomated exception handling approach should be con-
sidered as complementary with respect to existing
techniques, acting as a “bridge” between approaches
dealing with anticipated exceptions and approaches
dealing with unanticipated exceptions. When an excep-
tion is detected, the run-time engine may first check
the availability of a predefined exception handler, and
if no handler was defined it can rely on an automated
synthesis of the recovery process. In the case that our
planning-based approach fails in synthesizing a suit-
able handler (or an handler is generated but its exe-
cution does not solve the exception), other adaptation
techniques need to be used. For example, if the run-
ning process provides a well-defined intended goal as-
sociated to its execution, we could resort to the van
Beest’s work [68] and do planning from first-principle
to achieve such a goal. Conversely, if no intended goal
is associated to the process, a human participant can be
involved, leaving her/him the task of manually adapt-
ing the process instance.

We notice that the SmartPM approach is predicated
on two (strong) assumptions:

– postconditions or intended goals of programs
are not explicitly available/specified. This comes
from the traditional BPM domain where all the
focus is on the structure of the business process.
While the process itself intends to achieve some
goal, this remains implicit and non-specified.
Moreover, the process specified generally en-
codes non-functional requirements that go beyond
the goal being achieved, which means that the
goal needs to be achieved by executing the pro-
cess as specified (cf. [19]);
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– the exogenous events are always considered as
“dangerous”. This also comes from the BPM do-
main, where what is expected is modeled in the
process and everything else is considered “dan-
gerous” (or erroneous). Of course, there exist real
world cases where an exogenous event could be
“helpful” for the final goal.

However, the fact that the SmartPM approach relies
on well founded KR&R formalisms opens the door
for many advanced reasoning tasks upon failure and
amounts to very promising future work, e.g., to as-
sociate goals with processes and subprocesses and
checks that such goals are fulfilled, to exploit “help-
ful” exogenous events that make smarter the synthe-
sis of recovery procedures, or to investigate what parts
of the process can not be repaired or abduce what has
gone wrong in the past, in order to assists the user in
the manual definition of the recovery plan.

Future work will include an extension of our ap-
proach to “stress” the above assumptions and all those
one imposed by the usage of automated classical plan-
ning techniques for the synthesis of the recovery pro-
cedure, which frame the scope of applicability of the
approach for addressing more expressive problems, in-
cluding incomplete information, preferences and mul-
tiple task effects.

We also notice that, even if the SmartPM approach
is able to adapt a process instance at run-time, it does
not allow either to support hierarchical processes or to
evolve the original process model on the basis of ex-
ceptions captured. Therefore, a second future direction
of this work is to provide support for executing hier-
archical processes, with high-level processes achiev-
ing more general goals that can invoke simpler pro-
cesses to achieve some of their subgoals. We argue
that agent-technology (for example, BDI [54], which
stands for “beliefe-desire-intensions”) and hierarchical
planners [48] can provide promising approaches and
methods to address this challenge. In addition, a third
main future work concerns to avoid to consider all de-
viations from the process as errors, but as a natural and
valuable part of the work activity, which provides the
opportunity for learning and thus evolving the process
model for future instantiations. Finally, a further in-
teresting future work is to devise a set of design-time
guidelines that may help the process designer in choos-
ing what fluents/abbreviations should be (or not be)
monitored for misalignment.

The current implementation of SmartPM is devel-
oped to be effectively used by process designers and

practitioners.9 Users define processes in the well-
known BPMN language, enriched with semantic anno-
tations for expressing properties of tasks, which allow
our interpreter to derive the IndiGolog program repre-
senting the process. Interfaces with human actors (such
as specific graphical user applications in Java) and soft-
ware services (through Web service technologies) al-
low the core system to be effectively used for enacting
processes. Although the need to explicitly model pro-
cess execution context and annotate tasks with precon-
ditions and effects may require some extra modeling
effort at design-time (also considering that traditional
process modeling efforts are often mainly directed to
the sole control flow perspective), the overhead is com-
pensated at run-time by the possibility of automating
exception handling procedures. While, in general, such
modeling effort may seem significant, in practice it is
comparable to the effort needed to encode the adap-
tation logic using alternative methodologies like hap-
pens, for example, in rule-based approaches.
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