
Circus Models for
Safety-Critical Java Programs

Frank Zeyda, Lalkhumsanga Lalkhumsanga,
Ana Cavalcanti and Andy Wellings

Department of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK

Email: frank.zeyda@york.ac.uk,ana.cavalcanti@york.ac.uk,andy.wellings@york.ac.uk

Safety-Critical Java (SCJ) is a restriction of the Real-Time Specification for Java
to support the development and certification of safety-critical applications. The
SCJ technology specification is the result of an international effort from industry
and academia. In this paper, we present a formalisation of the SCJ Level 1
execution model, formalise a translation strategy from SCJ into a refinement
notation, and describe a tool that largely automates the generation of the formal
models. Our modelling language is part of the Circus family; at the core, we have Z,
CSP, and Morgan’s calculus, but we also use object-oriented and timed constructs
from the OhCircus and Circus Time variants. Our work is an essential ingredient
for the development of refinement-based reasoning techniques for SCJ.

Keywords: Circus; real-time systems; formal models; translation; refinement; RTSJ

1. INTRODUCTION

Java is currently one of the most popular programming
languages. Its use in the software industry is extensive.
Java, however, has not been widely adopted for
development of high-integrity systems, in general, and
safety-critical systems, in particular. Concerns about
common programming mistakes mean that safer subsets
of languages like Ada and C are normally the favoured
option. Java, in its full generality, is far too rich a
language, and inadequate for time-critical applications
due to its heap model based on garbage collection and
problems related to prioritisation of threads [1, 2].

As Java implementation technology has matured, the
efficiency of the generated code has improved, and
new real-time garbage collection algorithms have been
developed. As a consequence, some industries have
been using Java for their mission-critical applications.
Financial trading systems, where real-time performance
is critical and applications must be of high-integrity,
are, for instance, discussed in [3].

Vendors that support these real-time Java implemen-
tations (Atego’s Perc Pico product is an example [4])
point out the advantages of using a subset of Java along
with highly efficient virtual machines for hard real-time
and safety-critical applications. In addition, the supple-
ment DO-332 [5] of the recently released DO-178C certi-
fication guidance [6] for the production of airborne soft-
ware has included more details on how object-oriented
programming and virtual machine techniques should be
used. This has provided extra encouragement for those
interested in using Java in this domain [7, 8].

Most of the proposed approaches to using Java in

safety-critical systems build upon real-time extensions
of Java. Initially, real-time extensions to Java were
ad hoc, until the US National Institute of Standards
and Technologies brought the communities together to
define the requirements for a common standard [9]. As a
result, the Real-Time Specification for Java (RTSJ) [10]
emerged. This is a version of Java that includes the
notion of real-time threads and adopts a region-based
memory model [11]. RTSJ has been supported by
academia and industry [12, 13, 14], including Oracle
(Sun) [15] and IBM [16].

RTSJ, however, is still a very rich language, that
encompasses the whole of Java, and includes additional
concepts and constructs. This imposes severe challenges
in the context of applications that require certification,
for instance. As a result, an expert group has been
formed to design SCJ, a Java-based language tailored
for programming certifiable safety-critical systems.

Safety-Critical Java (SCJ) [17] restricts the Java API,
program execution, and memory model in such a way
that programs can be effectively analysed for real-
time requirements, memory safety, and concurrency
issues. This facilitates certification and development
of tools that support analysis and verification. SCJ
reuses some of RTSJ’s concepts and actual API
components, but restricts the programming interface.
The SCJ technology specification [2] comprises informal
descriptions and a reference implementation. Analysis
tools have also been developed to establish compliance
with the restrictions imposed by SCJ [18].

In recognition of the fact that safety-critical soft-
ware varies considerably in complexity, there are
three compliance levels for SCJ programs and VM

The Computer Journal, Vol. ??, No. ??, ????

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Teeside University's Research Repository

https://core.ac.uk/display/322323168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 F. Zeyda et al.

Safelet

Setup

Mission

Initialisation

Mission

Execution

Mission

Cleanup

Safelet

Termination

Execute next Mission

Event

Handlers

Create

ReleaseCall to setUp() Call to tearDown()Call to initialize() Call to cleanup()

Call to handleAsyncEvent()

Call to getNextMission()

FIGURE 1. Life-cycle of a safelet during execution of a Level 1 application

implementations. In this work, we are concerned with
Level 1, which, roughly, corresponds in complexity to
the Ravenscar profile for Ada [19]. Level 1 applications
support periodic as well as aperiodic event handlers.

The informal account of SCJ [2] relies on text and
UML diagrams, and there currently exists no formal
account of a semantics for SCJ. The purpose of our work
is firstly to define a semantics for SCJ in a language
that can be used for refinement (Circus). Secondly, we
support the automatic generation of formal models of
SCJ programs to enable practical use of the semantics
for analysis and refinement-based verification. In
defining a formal semantics, we clarify subtle aspects
of the SCJ programming paradigm, including, for
instance, handler interaction and termination. Our
formalisation, in particular, targets the mission-based
execution model of SCJ.

Circus [20, 21] is a process algebra that integrates
well established notations, namely Z [22], CSP [23], and
Morgan’s refinement calculus [24], to support the devel-
opment of state-rich reactive systems. Significantly, in
Circus we can take advantage of mathematical proof to
verify concurrent systems that are too large for model
checking. Circus is currently being used to verify soft-
ware in aerospace applications, including software for
the Chinese manned lunar lander, and novel virtuali-
sation software by the US Naval Research Laboratory.
Circus has a formal semantics [25], and a refinement the-
ory and strategy [21]. A specialised Circus-based refine-
ment technique permits the analysis of control systems
specified in Simulink [26, 27].

The semantics of Circus is based on the Unifying
Theories of Programming (UTP) [28]. The UTP
supports well the combination of notations like Z and
CSP, and also allows us to consider constructs from
other paradigms. Extensions and variants of Circus
cover, for instance, aspects of time and mobility. We
use its object-oriented variant, OhCircus [29], as our
base notation. OhCircus can be used to model both
data objects and the active behaviour of the SCJ
components. The UTP-based semantics of OhCircus
enables us to combine OhCircus with Circus Time, a
version of Circus with support for timed behaviours.

Our work firstly elicits the conceptual behaviour of
the SCJ framework, and secondly formalises how the

translation of actual SCJ programs into their OhCircus
specifications can be achieved in a traceable manner.
We ignore certain aspects of SCJ, such as the memory
model, which we discuss in a separate paper [30], and
scheduling policy. Our focus is the top-level design
and execution of SCJ programs, and SCJ’s primary
framework and application components.

In our view, the SCJ framework as designed in Java
embeds a general programming paradigm. SCJ adopts
a particular approach to data operations, memory
management, and event-based versus thread-based
program designs [31]. The fact that it can be realised on
top of Java and the RTSJ is a bonus. It is conceivable to
implement specific support based on other mainstream
languages, or even define an entirely new language. Our
model identifies the fundamental concepts of SCJ at a
level at which it can be itself regarded as a language.

Regarding imperative constructs, there are a number
of features of the Java language that reduce clarity
or are otherwise challenging to describe and analyse
formally. An additional contribution of our work is
to identify and exclude such constructs, which are
often similar to those prohibited by subsets of C and
Ada [32] used in the safety industry. We note that
the design of SCJ [2] does not address constraints on
statements. Although we do not claim here to identify
all constructs (the ones that have simple models in
Circus we admit), our work can nevertheless be seen
as a first step in defining a safe subset for SCJ.

We formalise the translation from safety-critical
Java into Circus using a collection of compositional
translation rules. To automate the translation process,
we present an annotation framework and a tool that
can generate models for arbitrary SCJ programs that
satisfy our restrictions and are suitably annotated.

Our work shows that Circus is adequate for capturing
faithfully the semantics of SCJ programs respecting our
restrictions, and that the construction of Circus models
can be automated. This is provided the program code
has been annotated, which requires human interaction.
No in-depth knowledge of Circus is required to drive the
model generation process and the models we produce
can act as the targets for a refinement strategy whose
application provides opportunities for automation, too.

We have validated our Circus models in FDR [33]

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 3

+setUp() : void

+tearDown() : void

+getSequencer() : MissionSequencer

«interface»

Safelet

ACCSafelet ACCMissionSequencer

+getNextMission() : Mission

MissionSequencer

ACCMission

+initialize() : void

+cleanup() : void

+requestTermination() : void

+terminationPending() : boolean

+missionMemorySize() : long

Mission

Engine

+handleAsyncLongEvent(in p : long) : void

+register() : void

AperiodicLongEventHandler

GearWheelShaft Brake Lever

+handleAsyncEvent() : void

+register() : void

PeriodicEventHandler

ThrottleController

+engineOn() : void

+topGearEngaged() : void

+activate() : void

+deactivate() : void

Controller

«instantiates» «instantiates»

½½instantiates¾¾

...

SpeedMonitor

FIGURE 2. UML class diagram for the cruise controller

after translating them into CSP. In doing so, we
managed to show livelock and deadlock freedom
of simple applications. We also used the CZT
parser and type-checker [34] to ensure that the
Circus specifications generated by our tool are valid,
and the tool itself validates the feasibility of our
automatic approach. Recent work [35, 36] reports
on a refinement strategy that transforms abstract,
centralised Circus specifications that are structured in
terms of behavioural and timing requirements into
concrete models that adhere precisely to the structure
of models presented here.

In summary, what we describe in this paper is
first a precise semantics for core elements of SCJ.
This enables formal verification of SCJ applications
beyond the informal validation of statically-checkable
properties currently available [18]. OhCircus provides a
notion for refinement, and our work is an essential step
to justify future development and verification methods
that can produce high-quality SCJ implementations.
For verification, we can construct models of particular
programs, and use the Circus and UTP techniques
for reasoning. For development, we can start from
an abstract specification, and develop implementations
that respect the restrictions of our models [36]. The
latter approach can also be used for verification of a
given program with respect to a specification. For that,
we need to guide the refinement strategy to produce
a Circus model that is syntactically equivalent to the
model of the SCJ program, as it is generated by our
technique and tool. Preliminary results are reported
in [35], and we note that this approach is more flexible
than mere code generation as it enables the verification

of arbitrary programs, and, in particular, supports
hand-coded optimisations.

In comparison to our previous work [37], here we
elaborate and make precise our modelling approach and
formalise its construction. We also modularise and,
in several places, simplify the framework model, which
captures the generic behaviour of the SCJ paradigm.

The structure of the article is as follows. Section 2
discusses preliminary material: SCJ, a cruise controller,
which is used as a running example, and the Circus
family of languages. The next three sections discuss
in detail the Circus model of SCJ: Section 3 explains
the top-level architecture; Section 4 presents the fixed
framework model; and Section 5 presents the program-
specific application model. In Section 6 we present a
formalised translation strategy from SCJ into Circus,
and Section 7 examines issues related to automation
and tool support. Lastly, in Section 8 we conclude and
address related and future work.

2. PRELIMINARIES

Here, we give an overview of the SCJ execution
model and introduce an example: an automotive cruise
controller. Afterwards, we present Circus and OhCircus,
the formal notations in which our models are written.

2.1. Safety-Critical Java

The SCJ programming paradigm is based on the notion
of missions. They are sequentially executed by an
application-defined mission sequencer provided by a
safelet, the top-level entity of an SCJ application. The
life-cycle of a safelet is illustrated in Fig. 1. Conceptual

The Computer Journal, Vol. ??, No. ??, ????

4 F. Zeyda et al.

Throttle

Actuator

System that we model (abstraction layer)

Cruise Controller SCJ Application

Wheel Shaft

Sensor

wheel_shaft set_voltage ! volts

Engine

Sensor

engine_on

engine_off

Gear

Sensor

Brake

Sensor

Lever

Sensor

activate

deactivate

start_acceleration

stop_acceleration

resume

top_gear_engaged

top_gear_disengaged
brake _engaged

brake_disengaged

External

Events

Hardware

Interrupts

Connected to the wheel shaft Connected to the engine

Connected to the cruise

mode command lever
Connected to the brakes Connected to the gearbox

Throttle

Device

Accelerator

Pedal

The throttle device combines both inputs.

Physical System

FIGURE 3. ACC system interactions.

entities are realised by either interfaces or abstract
classes. Namely, they are the Safelet interface, and the
abstract classes MissionSequencer and Mission (see
Fig. 2 for a UML diagram).

As already mentioned, in this work, we consider
only SCJ Level 1 applications. A Level 1 mission
executes in parallel a set of asynchronous event handlers
(both periodic and aperiodic handlers are supported).
Each aperiodic handler is associated with a set of
events: firing one of them causes a handler method to
be scheduled for execution. Periodic event handlers,
on the other hand, are controlled by a timer. Event
handlers are defined by extending abstract classes
whose handling method must be implemented by a
concrete subclass. These classes are, in particular,
PeriodicEventHandler, AperiodicEventHandler and
AperiodicLongEventHandler (see Fig. 2).

2.2. A cruise control system

As an example of an SCJ Level 1 program, and
to illustrate our modelling approach, we present
an implementation of the automotive cruise control
system (ACC) in [10]. The example was first published
as a case study in [38]. It therefore does not reflect the
current state-of-the-art in automotive technology, but
is nevertheless sufficient for illustrating our method.

The purpose of an ACC is to maintain the speed
of a vehicle to a value set by the driver. In
Fig. 3 we give an overview of its main components
and commands. Explicit commands are given by a
lever whose positioning corresponds to the following
instructions: activate, to turn on the ACC if the

car is in top gear, and maintain (and remember)
the current speed; deactivate, to turn off the ACC;
start accelerating , to accelerate at a comfortable rate;
stop accelerating , to stop accelerating and maintain
(and remember) the current speed; and resume to
return to the last remembered speed and maintain it.
When the driver operates the brake pedal, changes gear,
or switches off the engine, the ACC is deactivated.
Besides, when the engine is switched on, the ACC is
initialised in such a way that the resume command
cannot be issued as no speed is initially recorded.

The speed of the vehicle is measured via the rotations
of a shaft that is connected to one of the wheels. The
speed of the car is controlled by the ACC using the
throttle position, which is determined by the depression
of the accelerator pedal and a voltage supplied by the
ACC. The combination of these values is performed by
a mechanism outside the ACC.

Sensors detect external events and generate appro-
priate interrupts, as shown in the diagram in Fig. 3.
Their service routines in the SCJ program determine
the precise interrupting event and fire a corresponding
SCJ event that releases one of the aperiodic handlers.
For the setting of the throttle voltage, communication
of the new voltage value to the throttle actuator is re-
alised in the program using a hardware data register.

Fig. 2 presents a UML class diagram that gives an
overview of the design of the ACC as an SCJ Level 1
safelet. In Fig. 1 we also highlight the sequence of
method calls that are carried out by the SCJ run-time
environment (virtual machine) to execute a safelet. We
next discuss the entities of the ACC individually.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 5

public void initialize() {
/* Create SCJ events and interrupt handlers. */
createEvents();
createISRs();
registerISRs();
/* Create event handlers and shared data. */
WheelShaft shaft = new WheelShaft(shaft_event);
SpeedMonitor speedo = new SpeedMonitor(shaft, 500);
ThrottleController throttle =

new ThrottleController(speedo);
Controller cruise = new Controller(throttle, speedo);
Engine engine = new Engine(cruise, engine_event);
Brake brake = new Brake(cruise, brake_event);
Gear gear = new Gear(cruise, gear_event);
Lever lever = new Lever(cruise, lever_event);
/* Register event handlers with the mission. */
shaft.register();
engine.register();
/* ... */

}

FIGURE 4. Mission initialisation method.

Safelet. ACCSafelet is the entry point for the SCJ
application. This class provides the method get-

Sequencer() that returns the application’s mission
sequencer. The other two methods setUp() and tear-

Down() are provided for initialisation and cleanup tasks.

Mission Sequencer. The ACCMissionSequencer class
constructs instances of the Mission class, by imple-
menting getNextMission(). These instances deter-
mine the missions sequentially executed by the safelet.
We note that in the ACC there is only one mission.

Missions. Concrete subclasses of Mission have to
implement the initialize() and missionMemory-

Size() methods. The former creates and registers the
periodic and aperiodic event handlers of the mission.
Fig. 4 includes the definition of the initialize()

method in the ACC implementation. We first have calls
to methods that create SCJ events and interrupt service
routines (ISRs). The SCJ events are held by instance
variables of the class and we omit a detailed discussion
of the ISRs. The subsequent statements create the
periodic and aperiodic event handlers of the application,
as well as the shared Controller object. Finally, a
cascade of calls to register() on the handler objects
registers them with the current mission.

The two extra methods requestTermination() and
terminationPending() of the mission class are final

and so cannot be overridden. They allow for the mission
to be terminated by one of the handlers. As part of the
termination process, the cleanup() method is called
by the SCJ infrastructure to enable the execution of
application code for mission-specific cleanup tasks.

Handlers. Periodic event handlers implement the
method handleAsyncEvent(), and aperiodic event
handlers implement either handleAsyncEvent() or
handleAsyncLongEvent(int) to specify their be-
haviour when the handler is released, depending on
whether the handler class is derived from Aperiodic-

EventHandler or AperiodicLongEventHandler. The
difference between the latter two is that Aperiodic-

LongEventHandler supports the passing of a long pa-

rameter to the handler method, whereas in Aperiodic-

EventHandler the handler method is parameterless.
In the ACC, we use AperiodicLongEventHandler for

all aperiodic handlers, except only for WheelShaft, and
use the parameter to identify the external event that
caused the release of the handler. Based on its value,
the handler method selects a method to call on the
shared Controller object. The passing of the value
identifying the event to the handler is realised by an
interaction mechanism that is implemented at the level
of interrupt service routines (ISRs). The mechanism
queries the particular sensor that caused the interrupt
and releases the corresponding handler while passing
the corresponding event identifier.

Beyond the ACC example. Fig. 2 does not show all
components of the SCJ API. There are eight classes
that realise the mission framework, twelve classes in the
handler hierarchy, five classes that deal with real-time
threads, seven classes concerned with scheduling, and
ten classes for the memory model. The formal model
that we present here abstracts from all these details
of the realisation of the SCJ Level 1 programming
paradigm in Java. We capture the main concepts of this
novel execution model. This enables reasoning based on
the core components of the SCJ paradigm.

The memory model of SCJ employs the region-based
approach of RTSJ. Since SCJ does not support garbage
collection, (a restricted version of) scoped memory is
permitted, but not heap memory. Scoped memory
has a limited life-span that is controlled by the SCJ
run-time environment. Memory scopes form a tree,
and restrictions on references between scopes effectively
alleviate the problem of dangling references.

At the root of the tree we have immortal memory.
It contains objects that are never deallocated during
the execution of the safelet. Below, mission memory
is created and exists for the duration of executing
a mission, and is used to store objects that are
shared between handlers. Further below, each handler
executes in its own per release memory area whose
life-time is limited to the execution of the handler’s
handleAsyncEvent() method. Additionally, handlers
may create their own private memory areas as needed.

Before considering the formalisation of SCJ pro-
grams, we present our modelling notation next.

2.3. The Circus family of languages

Like in CSP, the key elements of Circus models are
processes that interact with each other and their
environment via communication channels. Unlike CSP,
Circus processes may encapsulate a state. This renders
Circus useful for both model-based and behavioural
specification [39]. In what follows, we introduce
standard Circus and its derivatives OhCircus and Circus
Time. We recall that our modelling notation is indeed
a combination of these three languages.

The Computer Journal, Vol. ??, No. ??, ????

6 F. Zeyda et al.

process ProcName =̂ p : T • begin

state State
c1 : T1

c2 : T2

. . .

Init
State ′

PInit (c′
1, c′

2, . . .)

Op1

∆ State

P1(c1, c2, c′
1, c′

2, . . .)

Op2

∆ State

P2(c1, c2, c′
1, c′

2, . . .)

Act1 =̂ . . .

Act2 =̂ . . .

• MainAct(Init ,Op1,Op2,Act1,Act2, . . .)

end

class ClassName [extends BaseName] =̂ begin

state State
private c1 : T1

private c2 : T2

. . .

initial Init
State ′

CInit (c
′
1, c′

2, . . .)

logical Meth1

∆ State

M1(c1, c2, c′
1, c′

2, . . .)

logical Meth2

∆ State

M2(c1, c2, c′
1, c′

2, . . .)

public Meth3 =̂ . . .

private Meth4 =̂ . . .

end

FIGURE 5. Typical examples of a Circus process (left) and an OhCircus class (right).

2.3.1. Circus
The typical syntax of a Circus process is sketched in
the left diagram of Fig. 5. The name of the process
is ProcName and p is a parameter of type T (in a
parameterless process, p is absent). The process state
is determined by the Z schema in the state paragraph.
This schema is called State here and has the components
c1, c2, and so on, of types T1, T2, and so on. Because
the state is local to the process, it is only visible by
the local schema operations and actions. Here, they are
Init , Op1, Op2, Act1, Act2, and so on, as well as the
main action MainAct at the end after the ‘•’.

A process usually contains an initialisation ac-
tion (Init above). It is typically specified by a Z op-
eration schema whose predicate constrains the values
of dashed variables only. Dashed names, as common in
Z, are used to refer to the value of variables after exe-
cution of some operation. Dashing a schema, as in the
declaration State ′ in Init , renames the components of
that schema to their dashed counterparts.

Actions can be defined using Z data operation
schemas, constructs from CSP, as well as commands
from Morgan’s calculus to modify the state. Data
operations typically change the state, and their
specification constrains the values of the state com-
ponents c1, c2, and so on, and of the corresponding
variables c′

1, c′
2, and so on. The former refer to the

values of the state components before the operation,
and the latter, as mentioned above, represent the values
of the state components after the operation. All these
variables are implicitly declared by ∆ State. We note
that data operations are always atomic in Circus.

The main action (MainAct in Fig. 5) defines the
behaviour of the process. It may reference local
actions, which are introduced primarily for structuring
purposes. Similarly, local actions may reference other
local actions in their bodies, too.

The language of actions provides a rich set of
constructs. Table 1 includes all action constructs
inherited from CSP that are relevant for the models
in this article. As a notational convention, A stands
for an action, c for a channel, x for a variable, T for a
type, cs for a set of channels, ns for a set of variables,
and E for an expression yielding a value. We provide a
brief explanation of each action operator in the sequel,
but postpone a more detailed discussion to where the
operators are first used in our models.

We first have the skip action, which terminates
immediately without changing the state. Next, the
action abort is the bottom of the refinement lattice for
actions and thus represents (program) failure. Prefixes
are used for communication with the environment or
other processes. They can take the form of simple
synchronisations (c −→ A), inputs (c ? x −→ A(x)), or
outputs (c ! E −→ A).

Actions may be combined in various ways. External
choice (A1 @ A2) is a choice that is resolved by the
environment. This means that the first interaction
determines which of the two actions is chosen, and
the communications offered are the ones offered by
either A1 or A2. If the same communication is offered
by both actions, the choice becomes nondeterministic.
Sequential composition (A1 ; A2) has its usual meaning.

Parallelism (A1 J ns1 | cs | ns2 K A2) executes

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 7

Action Syntax Description

Skip skip Immediately terminates without changing the state.

Diverge abort Divergent action: it may not terminate and represents failure.

Synchronisation c −→A Simplest form of an interaction: no value is communicated.

Input Prefix c ? x −→A(x) Binds the variable x to the value read through the channel c.

Output Prefix c !E −→A Outputs the value of the expression E on the channel c.

External Choice A1 @ A2 A choice that is resolved by the environment.

Sequence A1 ; A2 Executes the two actions A1 and A2 in sequence.

Parallelism A1 J ns1 | cs | ns2 K A2 Parallelism in which actions have to synchronise on the channels in cs.

Interleaving A1 ||[ns1 | ns2]||A2 Parallelism where no synchronisation between A1 and A2 is required.

Iterated Interleaving 9 x : S • A(x) Interleaving of all actions A(x) where x ∈ S .

Interrupt A1 4 c −→A2
A synchronisation on c interrupts the execution of A1 and subsequently
transfers control to A2.

Hiding A \ cs Interactions via channels in cs are hidden and take place immediately
when they are enabled.

Recursion µX • F (X) Occurrences of X in F constitute recursive calls.

TABLE 1. Circus action constructs derived from CSP.

two actions concurrently. That is, they may progress
independently but have to synchronise on the channels
in the synchronisation set cs. Importantly, parallel
actions must write to disjoint parts of the process
state to avoid write conflicts. To achieve this, the
name sets ns1 and ns2 determine the state components
that each parallel action is allowed to modify. For
the operator to be well formed, the name sets hence
have to be disjoint. Interleaving of actions, written as
A1 ||[ns1 | ns2]||A2, is a special case of parallelism where
the set of synchronisation channels is empty. We also
have an iterated interleaving that interleaves all actions
A(x) where x ranges over the elements of some set S .

There are two noteworthy points about Circus par-
allelism and interleaving. Firstly, both operators ter-
minate only when all parallel actions have terminated.
Secondly, they enforce non-interference: state changes
become visible only after termination of the operator.
This is important to preserve monotonicity.

An interrupt A1 4 c −→ A2 is used to transfer
control from one action A1 to another action A2 at
any point during the execution of A1. This happens
as a consequence of a synchronisation on the channel
c. In A \ cs, the channels in the set cs are hidden
in the execution of the action A. Synchronisations
on hidden channels take place internally and as soon
as they are enabled, without visibility or participation
of the environment. Lastly, the recursion construct
µX • F (X) names the action F (X) in its body X ,
and so uses of X in F (X) are recursive calls.

State operations can be specified either by Z
operation schemas such as Op1 and Op2 in Fig. 5, or
guarded commands. A list of all guarded commands
used by our models is given Table 2. Assignments
change the value of a state component or local variable.
Local variables are introduced by way of a local variable
block of the form var x : T • A(x), where x becomes a
local variable of type T that A may refer to.

The conditional statement is in Dijkstra’s generalised

form [40], taking a list of guarded commands (the gi are
predicates). A binary conditional if b then A1 else A2

is hence written if b −→ A1 8 ¬ b −→ A2 fi. Lastly,
a value parameter p of type T can be introduced using
val p : T • A(p). This is useful in order to define
parametrised actions.

Processes can be defined explicitly in the form
sketched in Fig. 5, or alternatively, similar to actions,
by virtue of CSP operators over existing process
definitions, like those presented in Table 1. The only
difference in comparison to the action operators is that
parallel composition and interleaving do not require
name sets, since processes fully encapsulate their state.

2.3.2. OhCircus
OhCircus [29] extends Circus with an additional notion
of class. Unlike processes, classes define data objects,
and such objects can be used in arbitrary mathematical
expressions. In contrast, processes are not values and,
because of that, can only be used as static entities of a
model. A semantics to cater for the use of processes
as values introduces considerable complications, in
particular, in dealing with inheritance. The distinction
that is made between processes and classes results in
more tractable models in terms of available reasoning
techniques. In general, processes, with their interacting
capabilities, describe the active behaviour of a model.
Classes model passive data objects, and operations on
these objects are defined by methods of the class.

The typical form of an OhCircus class definition is
sketched in the right diagram of Fig. 5. The access
modifiers public, private and protected are included,
but have no semantic significance apart from controlling
visibility. The modifier logical expresses the intention
of a logical (specification) method, which does not have
to be retained during refinement.

The permissible notation for OhCircus class methods
includes all schema operations, guarded commands,
and some additional object-oriented constructs used

The Computer Journal, Vol. ??, No. ??, ????

8 F. Zeyda et al.

Action Syntax Description

Assignment x := E Changes the value of a state component or local variable.

Local Variable var x : T • A(x) Declaration of a local variable x .

Conditional if g1−→A1 8 g2−→A2 8 . . . 8 gn −→An fi Executes an action whose guard gi is true.

Value Parameter val p : T • A(p) Action with a value-parameter p of type T .

TABLE 2. Circus action constructs used from Morgan’s calculus.

Construct Syntax Description

Current Object this References the current object.

Superclass Object super References the superclass object.

Selection obj . [field / method] Accesses a field or method of an object obj .

Object Creation new Class(args) Creates a new object of class type Class.

Synchronised Method syncMeth(args) =̂ . . . Declares a method Meth as atomic.

Simple Delay wait t Waits for t time units.

Nondeterministic Delay wait t1 . . t2 Waits between t1 and t2 time units.

TABLE 3. Relevant OhCircus and Circus Time constructs.

to instantiate new data objects, invoke methods,
access object fields, and support inheritance. Table 3
includes all OhCircus constructs that are relevant for
the material in this article. We have the new construct
to create a new class object, and the this and super
keywords to refer to fields and methods of the current
and superclass. In summary, the notation for methods
is similar to the notation for actions, but lacks the
CSP operators. Besides, methods can be declared as
synchronised using the modifier sync. Synchronised
methods are an extension we introduce to the OhCircus
language. This enables us to treat method execution as
atomic, just like Z data operations.

2.3.3. Circus Time
Circus Time [41] is an extension of Circus to model timed
behaviours. Subsequently, we make use of two further
operators of Circus Time. They are the wait t and
wait t1 . . t2 statements, also included in Table 3. The
first delays execution by t time units, and the second is
a nondeterministic delay that may wait between t1 and
t2 time units. Apart from the use of Circus Time, object
references from our previous SCJ memory model in [30]
are also used. They are specified at the level of the
Unifying Theories of Programming [28], the common
semantic framework of Circus and its extensions.

In the next three sections, we present our model for
SCJ programs. We have given here a brief overview
of the main features of the Circus family of languages
used in formulating those models. Extra details of the
notation are explained as we discuss the models.

3. MODEL ARCHITECTURE

Our models factor into two dimensions: a generic
framework model, and an application model that
corresponds to a particular concrete SCJ program.
In the framework model, we specify the semantics
of the safelet, mission sequencer, missions, and event

handlers. They are the fundamental building blocks
of Level 1 applications. To illustrate the architecture of
application models, we make use of the cruise controller
example presented in the previous section.

Fig. 6 presents an overview of the structure of the
complete model of a typical SCJ Level 1 application —
here the cruise controller. Each box represents a Circus
process and is labelled by the process name. Boxes
inside the large surrounding rectangle denote a process
that belongs to the framework model. These processes
capture the generic behaviour of the SCJ programming
paradigm. Boxes outside (highlighted in grey) denote
processes that belong to the application model. These
are in direct correspondence with the classes of an SCJ
program. While framework processes (suffix FW) have
fixed names, application processes (suffix App) carry
the names of their respective Java classes. The three
dots indicate that a few of the event handler framework
and application processes of our case study are omitted.
They integrate into the model in a similar fashion as the
handler processes shown in Fig. 6.

The Circus model of the entire SCJ application is
obtained by parallel composition of the framework
and application models. The framework model is
itself a parallel composition, namely of all framework
processes. Similarly, the application model is defined
by a parallelism involving all application processes.

Arrows in Fig. 6 indicate the channels on which
the processes communicate (synchronise). The frame-
work processes SafeletFW and MissionSequencerFW ,
for instance, synchronise on start sequencer and
done sequencer . These two channels control the exe-
cution of the mission sequencer.

We distinguish between control channels and method
channels; the latter are identified by the suffixes Call
and Ret . To give an example, start mission is a
control channel whereas requestTerminationCall and
requestTerminationRet are method channels. All calls
to infrastructure methods are modelled by channel

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 9

activate_handlersactivate_handlers

Framework Process

requestTermination[Call/Ret] terminationPending[Call/Ret]

start_sequencer

SafeletFW MissionSequencerFW

e
n

d
_

s
e

q
u

e
n

c
e

r_
a

p
p

MissionFW

d
o

n
e

_
m

is
s

io
n

 .
 m

s
ta

rt
_
m

is
s

io
n

 .
 m

EventHandlerFW

(ThrottleHId)

EventHandlerFW

(EngineHId)

start_handler . EngineId

stop_handler . EngineId

g
e

tN
e

x
tM

is
s

io
n

C
a

ll

e
n

d
_
s

a
fe

le
t_

a
p

p

e
n

d
_

m
is

s
io

n
_

a
p

p
 .
 m

e
n

te
r_

d
is

p
a

tc
h

 .
 E

n
g

in
e

Id

le
a

v
e

_
d

is
p

a
tc

h
 .

 E
n

g
in

e
Id

e
n

te
r_

d
is

p
a

tc
h

 .
 T

h
ro

tt
le

Id

le
a

v
e

_
d

is
p

a
tc

h
 .

 T
h

ro
tt

le
Id

g
e

tN
e

x
tM

is
s

io
n

R
e

t
.
m

ACCSafeletApp ACCMissionSequencerApp

EngineApp ThrottleControllerAppACCMissionAppEngineInit . obj

done_handler . EngineId

done_sequencer

ThrottleCtrlInit . obj

start_handler . ThrottleId

stop_handler . ThrottleId

done_handler . ThrottleId

in
it

ia
li

z
e

C
a

ll
 .

 A
C

C
M

is
s
io

n
Id

in
it

ia
li

z
e

R
e

t
.
A

C
C

M
is

s
io

n
Id

c
le

a
n

u
p

C
a

ll
 .

 A
C

C
M

is
s
io

n
Id

c
le

a
n

u
p

R
e

t
.
A

C
C

M
is

s
io

n
Id

re
g

is
te

r
.
h

Application

Processes

s
e

tU
p

C
a

ll

te
a

rD
o

w
n

C
a

ll

s
e

tU
p

R
e

t

te
a

rD
o

w
n

R
e

t

FIGURE 6. Structure of the model for the SCJ cruise controller.

communications to enable the framework processes to
trigger or respond to calls to those methods. In the
application processes, a call to requestTermination(),
for instance, has to interact with MissionFW , the
mission framework process. Some of the channel
communications are parametrised by a value (notation
c . x). In Fig. 6 we use m and h as placeholders for
arbitrary mission and handler identifiers.

In the framework model, we have exactly one
process to model execution of the safelet (SafeletFW),
the mission sequencer (MissionSequencerFW) and the
missions (MissionFW). In contrast, we have an in-
stance of the EventHandlerFW framework process for
each handler. This process is parametrised by an
identifier of a given type HandlerId . We introduce one
such identifier for each handler object in the program.

Whereas the FW processes are defined once and
for all, we require a translation technique to construct
the App processes for particular SCJ applications.
Translation entails the definition of channels, channel
sets, processes, and OhCircus classes to model the
SCJ application classes. We note that Fig. 6 does not
include a process for all classes of the cruise controller
application, only those that implement or extend an
SCJ infrastructure class. For this reason, we have no
process for the Controller class which, acting as a data
object, only has a model in terms of an OhCircus class.

To elaborate our account of the architecture further,

Fig. 7 presents a more application-centred view of
the Circus model. Here, the framework model is
characterised by a single process Framework , which
corresponds to the large enclosing box in Fig. 6.
Synchronisations on method channels are, for brevity,
subsumed into single arrows. Fig. 7 also illustrates
some of the data objects. For the mission sequencer,
the mission and each handler, we have an OhCircus
class (suffix Class) that encodes an underlying data
object, and a ControllerClass , which models the
Controller class. All shared data objects are created
by ACCMissionApp during initialisation of the mission.
We omit some of the event handler classes for brevity.

At the system level, all method and control channels
are hidden. The only observable interactions are the
ones with the external environment. We can see in
Fig. 7 that, specifically, the application processes for
handlers engage in these interactions. The external
channels are application-specific and define the interface
of the system. For example, we declare basic channels
engine on and engine off in the cruise controller model
to represent the events that occur when the engine is
switched on and off. Table A.1 in Appendix A includes
all channels that are used for external events of the
cruise controller. The free type LEVER is introduced
to represent the five positions of the command lever.
In the program, these interactions correspond to device
accesses and hardware interrupts (see Fig. 3).

The Computer Journal, Vol. ??, No. ??, ????

10 F. Zeyda et al.

System Process

Framework Process

e
n

d
_

s
a

fe
le

t_
a

p
p

ACCSafeletApp

ACCMissionSequencerApp ACCMissionApp

e
n

te
r_

d
is

p
a

tc
h

 .
 h

le
a

v
e

_
d

is
p

a
tc

h
 .

 h

e
n

d
_

m
is

s
io

n
_

fw

ControllerClass

Object References

EngineApp

EngineClass

ThrottleControllerApp

ThrottleControllerClass

e
n

g
in

e
_
o

n

ACCMissionApp creates handlers and data objects in initilize()

e
n

g
in

e
_

o
ff

s
e

t_
v

o
lt

a
g

e
 .

 v
External Interactions (Device Access)

M
e

th
o

d
 C

h
a

n
n

e
ls

e
n

d
_
s

e
q

u
e

n
c

e
r_

a
p

p

M
e

th
o

d
 C

h
a

n
n

e
ls

e
n

d
_

m
is

s
io

n
_

a
p

p
 .
 m

M
e

th
o

d
 C

h
a

n
n

e
ls

re
g

is
te

r
.

h

M
e

th
o

d
 C

h
a

n
n

e
ls

e
n

te
r_

d
is

p
a

tc
h

 .
 h

le
a

v
e

_
d

is
p

a
tc

h
 .

 h

e
n

d
_

m
is

s
io

n
_

fw

M
e

th
o

d
 C

h
a

n
n

e
ls

... = Circus Process.../ = OhCircus Class...

e
n

d
_

m
is

s
io

n
_

fw

ACCMissionSequencerClass ACCMissionClass

FIGURE 7. System view of the SCJ cruise controller model.

In what follows, we describe each of the processes of
our model in more detail.

3.1. System Process

The System process models the entire application. Its
uniform definition is sketched below.

process System =̂
Frameworku

v
SCJMethChan
∪

AppControlChan

}

~

Application

 \
(

SCJMethChan
∪

AppControlChan

)

Above, Framework and Application refer to the indi-
vidual composite processes that model the framework
and application classes. Two channel sets are used
to define the synchronisation set of the parallelism.
They are SCJMethChan for all method channels and
AppControlChan for control events used by the frame-
work to control the application processes. Internal con-
trol channels of the framework are already hidden in
the Framework process. We hide all method and appli-
cation control channels so that only the channels that
constitute the external interface are exposed.

To define the Application process, we first specify
a process HandlersApp, which combines all handler
application processes in parallel. For the ACC model,

this process is defined as shown below.

process HandlersApp =̂

WheelShaftApp J {| end mission fw |} K
EngineApp J {| end mission fw |} K
BrakeApp J {| end mission fw |} K
GearApp J {| end mission fw |} K
LeverApp J {| end mission fw |} K
SpeedMonitorApp J {| end mission fw |} K
ThrottleControllerApp

The only synchronisation required is on the channel
end mission fw which, beyond other purposes dis-
cussed later on, cumulatively terminates the handler
application processes when the program terminates.

With the above, the Application process is defined by
way of an interleaving (operator 9) as follows.

process Application =̂

ACCSafeletApp

9
ACCMissionSequencerApp

9
ACCMissionApp

9
HandlersApp

In defining Application for the cruise controller, we
account for all grey boxes in Fig. 7. The definition

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 11

process SafeletFW =̂ begin

SetUp =̂ setUpCall −→ setUpRet −→ skip

Execute =̂ start sequencer −→ done sequencer −→ skip

TearDown =̂ tearDownCall −→ tearDownRet −→ skip

• SetUp ; Execute ; TearDown ; end safelet app −→ skip

end

FIGURE 8. Framework process for the safelet.

reflects the four main entities in the mission model: the
safelet, mission sequencer, missions and handlers. In
applications where there is more than one mission, we
construct a process MissionsApp for them just like
HandlersApp. The use of interleaving in the application
model highlights that, although application processes
individually synchronise with the framework, they do
not synchronise with each other. The exception to this
are handlers that are released by the same external
event or handlers that release other handlers. In the
cruise controller, however, there are no such handlers.

Having presented the top-level model view, in
the next two sections we elaborate on the detailed
specification of each framework (Section 4) and
application (Section 5) process.

4. FRAMEWORK MODEL

In this section, we present the framework model for
the safelet, mission sequencer, missions, and handlers.
We recall that the Circus processes in this model are
fixed: they are the same for every SCJ application and
embody the generic behaviour of the SCJ paradigm.

4.1. Safelet

The framework process SafeletFW is given in Fig. 8. It
has no state. The main action sequentially executes
the SetUp, Execute and TearDown local actions. They
initiate and wait for completion of the initialisation,
execution and cleanup phases of the safelet. This is
followed by a synchronisation on end safelet app to
terminate the safelet application process, after which
the safelet framework process itself terminates.

The actions SetUp and TearDown synchronise in
sequence (prefix operator −→) on the setUp[Call/Ret]
and tearDown[Call/Ret] channels, before terminating.
The synchronisations model calls to the methods
setUp() and tearDown() of the SCJ application
class that implements the Safelet interface. To
illustrate the calling mechanism, we recall that in the
system model (Fig. 6), all framework and application
processes are composed in parallel, and in that
parallel composition, SafeletFW and the respective
safelet application process (ACCSafeletApp in Fig. 6)
synchronise on the aforementioned method channels.
Hence, we obtain a behaviour that can be described as
sketched by the parallel action fragment below, though

the actions are embedded in processes.

(setUpCall −→ skip ; setUpRet −→ skip)

J∅ | {| setUpCall , setUpRet , . . . |} | . . . K(
. . . ;
setUpCall −→MethBody ; setUpRet −→ skip ; . . .

)
The left action of the parallelism comes from the SetUp
action of the SafeletFW process, and the right action is
in the safelet application process. The parallel actions
first synchronise on the channel setUpCall , after which
the right parallel action executes the action MethBody
of the method body of the setUp() method. Only then
can the left action make further progress, resulting in a
synchronisation on setUpRet with the left-hand parallel
action terminating.

Since the methods of the safelet are parameterless
and do not return any values, the communications are
synchronisations: there is no input or output. As noted,
the methods themselves are specified in the application
process for the safelet, which is discussed in the next
section. As a convention, we use capitalised names for
actions and lower-case names for channels. In cases
where the names of model entities are derived directly
from identifiers in the program, this does not apply.

Execute also performs synchronisations, but instead
raises two framework events: start sequencer to start
the mission sequencer, and done sequencer to wait for
its termination. The framework process for the mission
sequencer component is specified next.

4.2. Mission Sequencer

The mission sequencer process communicates with the
safelet process to determine when it has to start, and
also to signal its termination. Its specification in Circus
is presented in Fig. 9. The main action executes Start ,
which waits for the mission sequencer to be started,
as signalled by a synchronisation on start sequencer .
Afterwards, execution proceeds as specified by the
recursion in the action Execute. In each iteration,
we synchronise on the channels getNextMissionCall
and getNextMissionRet to obtain the next mission
next . This corresponds to a call to the SCJ method
getNextMission() of the concrete MissionSequencer

application class. Since this call returns a (mission)
object, getNextMissionRet receives as an input a value

The Computer Journal, Vol. ??, No. ??, ????

12 F. Zeyda et al.

process MissionSequencerFW =̂ begin

Start =̂ start sequencer −→ skip

Execute =̂ µX • getNextMissionCall −→ getNextMissionRet ? next −→
if next 6= nullMId −→ start mission .next −→ done mission .next −→ X

8 next = nullMId −→ skip

fi

Finish =̂ end sequencer app −→ end mission fw −→ done sequencer −→ skip

• Start ; Execute ; Finish

end

FIGURE 9. Framework process for the mission sequencer.

next of type MissionId which contains identifiers for
the missions of an application. Mission identifiers are
introduced for all instances of classes of an application
that extend the Mission infrastructure class. They
allow us to uniquely identify objects of those classes. A
special mission identifier nullMId is used to model the
case when the method returns a Java null reference to
signal that there are no more missions to execute.

Again, to illustrate the modelling approach, below we
extract a parallel fragment that captures the behaviour
that emerges from the composition of the mission
sequencer framework and application processes.(

µX • getNextMissionCall −→
getNextMissionRet ? next −→ Acond(next)

)
J∅ | {| getNextMission[Call/Ret], . . . |} | . . . K . . . ;
getNextMissionCall −→ skip;
getNextMissionRet ! ACCMId −→ skip ; . . .

As before, the left action of the parallelism originates
from the framework process, here the Execute action of
MissionSequencerFW (whose conditional has been ab-
breviated by Acond). The right action of the parallelism
is provided by the mission sequencer application pro-
cess ACCMissionSequencerApp as part of implement-
ing the getNextMission() method. Notably, in this
example, we have a synchronisation between an input
prefix (getNextMissionRet ? next−→ . . .) and an output
prefix (getNextMissionRet ! ACCMId−→ . . .). It results
in a value being communicated, namely of a constant
ACCMId of type MissionId . The value is locally bound
by the input prefix to the variable next and hence can
be accessed by the action Acond .

In Execute, a conditional checks the value of next .
If it is not equal to nullMId , synchronisations on
start mission .next and done mission .next control the
mission framework process MissionFW (defined below)
that manages execution of the mission next , and
then Execute recurses to handle the next mission. If
next is equal to nullMId , Execute finishes. We note
that semantically, there is no difference between a
synchronisation c .E−→skip and c ! E−→skip — they
both result in outputting the value of E on channel c.

In the Finish action at the end, first a synchronisation
on end sequencer app is used to terminate the mission
sequencer application process. Next, a synchronisation
on end mission fw terminates the mission framework
process. Finally, synchronisation on done sequencer
acknowledges to the safelet process that the mission
sequencer has finished.

4.3. Mission

The purpose of the mission framework process,
MissionFW , is to record the mission’s event han-
dlers, execute the mission by synchronously start-
ing these handlers, controlling their termination, and
afterwards finishing the mission. Termination of a
mission can be initiated by a handler at any point
during the mission’s execution phase, via a call to
requestTermination(). The MissionFW framework
process thus communicates with the mission sequencer
process (MissionSequencerFW), the mission applica-
tion processes, and the event handler processes.

Fig. 10 presents the definition of MissionFW . Its
state has three components: the identifier mission
of the mission being executed, if any, its finite set
handlers of event handlers, and a flag terminating that
records whether the current mission is in the process
of termination. As previously mentioned, the handlers
are identified by values of a type HandlerId . As with
missions, we statically associate instances of classes that
implement event handlers with unique identifiers.

The action Init defines that, initially, there is no
mission executing, so that mission ′ equals nullMId , and
therefore, the set of handlers is empty. We also set
terminating to FALSE reflecting that, to begin with,
there is no termination request.

In the main action, we use again a modelling pattern
where we have a sequence of actions that define the
different phases of the entity life-cycle, as we already
did in the safelet and mission sequencer models. In
the case of the mission framework process, however,
a recursion (operator µX • F (X), where occurrences
of X in F are recursive invocations) perpetually calls
this sequence of actions, because MissionFW controls

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 13

process MissionFW =̂ begin

state State == [mission : MissionId ; handlers : F (HandlerId); terminating : boolean]

Init == [State ′ | mission ′ = nullMId ∧ handlers ′ = ∅ ∧ terminating ′ = FALSE]

Start =̂ Init ; start mission ? m −→mission := m

AddHandler =̂ val handler : HandlerId • handlers := handlers ∪ {handler}
Initialize =̂ initializeCall .mission −→µX •

register ? h −→ AddHandler(h) ; X

@
initializeRet .mission −→ skip

StartHandlers =̂ 9 h : handlers • start handler . h −→ skip

StopHandlers =̂ 9 h : handlers • stop handler . h −→ done handler . h −→ skip

Execute =̂ StartHandlers ; activate handlers −→(stop handlers −→ StopHandlers ; done handlers −→ skip)

J∅ | {| stop handlers , done handlers |} | {terminating}K
(Methods 4 done handlers −→ skip)

Cleanup =̂ cleanupCall .mission −→ cleanupRet .mission −→ skip

Finish =̂ end mission app .mission −→ done mission .mission −→ skip

requestTerminationMeth =̂
requestTerminationCall −→
if terminating = FALSE −→ (terminating := TRUE ; stop handlers −→ skip)

8 terminating = TRUE −→ skip

fi ;
requestTerminationRet −→ skip

terminationPendingMeth =̂

terminationPendingCall −→ terminationPendingRet ! terminating −→ skip

Methods =̂ µX • (requestTerminationMeth @ terminationPendingMeth) ; X

• (µX • Start ; Initialize ; Execute ; Cleanup ; Finish ; X) 4 end mission fw −→ skip

end

FIGURE 10. Mission framework process.

the execution of all missions in the program, and
so repetitively offers its service. Termination of the
mission cycle is forced by the mission sequencer process
using the channel end mission fw .

The Start action initialises the state and waits for
the mission sequencer to start a mission. Since the
mission framework process can handle any mission,
Start uses the channel start mission to take a mission
identifier m as an input, and records it in the state
component mission. Finish uses that mission identifier
to terminate the application process for the mission
with a synchronisation on end mission app .mission,
and to signal to the mission sequencer that the
mission has finished with done mission .mission. The
channel parametrisations are necessary for the mission
framework processes to establish a communication with
particular missions: each mission application process
synchronises only on the events for that mission.

The Initialize action models the initialisation phase,
which is initiated by the framework by calling

the initialize() method. It is specified using
a recursion that continually accepts requests from
the mission application process, through the channel
register , to add a handler h to the mission; this is
achieved by the parametrised action AddHandler . A
synchronisation on register corresponds in the program
to a call to the register() method of a handler class.
The application process may besides use the event
initializeRet .mission to terminate Initialize at any
time. An external choice (operator A1 @ A2) ensures
that both communications are available, allowing the
mission application process to exercise the choice.

The Execute action captures the main behaviour
in executing a mission. It is a parallelism between
an action that defines the control of handlers and an
action that models infrastructure methods (Methods
action) that are offered during execution. The parallel
actions synchronise on the channels stop handlers and
done handlers . These channels model the signal for
stopping handler execution and the acknowledgement

The Computer Journal, Vol. ??, No. ??, ????

14 F. Zeyda et al.

process EventHandlerFW =̂ h : HandlerId • begin

state State =̂ [active : boolean]

Init =̂ [State ′ | active ′ = FALSE]

StartHandler =̂ start handler . h −→ active := TRUE

ActivateHandler =̂ activate handlers −→ skip

Start =̂ (StartHandler ; ActivateHandler) @ ActivateHandler

DispatchHandler =̂
enter dispatch . h −→ stop handler . h −→
leave dispatch . h −→ done handler . h −→ skip

Execute =̂

if active = TRUE −→DispatchHandler

8 active = FALSE −→ skip

fi

• (µX • Init ; Start ; Execute ; X) 4 end mission fw −→ skip

end

FIGURE 11. Framework process for event handlers.

of handler termination. The name set of the left
parallel action is empty, since it does not modify the
state, whereas the right parallel action may set the
terminating flag. The mission identifier and its handlers
cannot be changed at this stage of mission execution.

As part of the control behaviour, first of all, all han-
dlers are started with a call to the action StartHandlers ,
which uses synchronisations start handler . h to start,
all handlers h recorded in the state in interleaving. Each
process corresponding to a handler h synchronises with
the mission process on start handler . The interleaving
terminates after all synchronisations are performed.

The handlers do not immediately become active after
they are started, that is, they do not respond to external
events immediately. This is because they have to
start execution synchronously, and the action Start
uses a channel activate handlers to ensure this. All
handler processes synchronise on it, but only those
that previously synchronised on start handler proceed
to execute their active behaviours. In this way,
handlers can be registered asynchronously, but start
execution (enter their dispatch loops) synchronously.

Termination of the handlers is initiated by the
requestTerminationMeth action, with a synchronisation
on stop handlers . This action is one of the
choices offered by the Methods action and corresponds
to the requestTermination() method. Handler
application processes call this method by synchronising
on requestTermination[Call/Ret]. This causes the
left parallel action in Execute to call the action
StopHandlers after synchronising on stop handlers .
In case of multiple calls to requestTermination(),
the stop handlers event is only raised once. For
each handler h of the mission, StopHandlers uses
stop handler . h to stop the handler, and then waits for
the event done handler . h acknowledging termination

of the handler. Finally, when all handler processes
of the mission have acknowledged termination, the
interleaving in StopHandlers terminates, and the
done handlers event is raised. This last event forces
the Methods action in the parallelism to be interrupted
due to the interrupt action 4 done handlers −→ skip,
so that Execute altogether terminates, and the mission
can proceed to the cleanup phase.

We note that the use of terminating = TRUE and
terminating = FALSE instead of just terminating and
¬ terminating in the guards of the conditional is due
to the fact that Z distinguishes between predicates and
values. As a consequence, boolean values have to be
introduced by virtue of a free type definition, such as
boolean ::= TRUE | FALSE in our model.

The framework process also supports method calls
to terminationPending() during the execution phase.
This method can be used by a handler to check if we
are currently in the process of terminating a mission. It
simply returns the value of terminating .

Finally, the Cleanup action calls the action of
the mission application process corresponding to its
cleanup() method. Finish is then invoked to report
to the mission sequencer framework process that
the current mission has terminated; this is via a
synchronisation on done mission .mission.

The interrupt in the main action enables the mission
sequencer to terminate the mission framework process
via a synchronisation on end mission fw , namely when
it is no longer needed. This happens during termination
of the mission sequencer and, subsequently, the safelet.

4.4. Event Handlers

The framework process EventHandlerFW for an event
handler is presented in Fig. 11. This process is the same

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 15

process Framework =̂ handlers : F (HandlerId) •

SafeletFW

J{| start sequencer , done sequencer |}K
MissionSequencerFW

J{| start mission, done mission, end mission fw |}KMissionFW

J{| start handler , stop handler , activate handlers , end mission fw |}K
HandlersFW (handlers)

\ {| start sequencer , done sequencer , start mission, done mission,

start handler , stop handler , activate handlers |}

FIGURE 12. Framework process.

for periodic and aperiodic handlers. EventHandlerFW
is parametrised by an identifier that must be provided
when the framework process is instantiated for a
particular handler. For the engine handler, for example,
we use EventHandlerFW (EngineHId).

The state component active of EventHandlerFW
records whether the handler is active in the current
mission or not. The main action defines an iterative
behaviour that is interrupted and terminated by the
event end mission fw , which, as mentioned before,
indicates the end of mission execution.

Each iteration defines the behaviour of the handler
during one mission. First, the state is initialised
using Init , so that the handler is marked as inactive
by default. Afterwards, the handler waits to be
started, which is captured by the action Start . This
action calls StartHandler in external choice with
a synchronisation on activate handlers , offered by
ActivateHandlers . StartHandler synchronises on a
particular start handler event that is determined by
the current handler identifier. Next, StartHandler
also offers a synchronisation on activate handlers
(calling ActivateHandlers), which always occurs prior
to entering the execution phase.

If the start handler event of the handler occurs before
activate handlers , the value of active is TRUE . In
this case, the behaviour of the handler, as defined
by Execute, is to call DispatchHandler , which raises
the enter dispatch . h event of the particular handler
h to notify the respective application process that it
has to enter the dispatch loop. The dispatch loop
can be interrupted after the stop handler . h event, by
synchronising on leave dispatch . h. The subsequent
done handler . h event notifies the mission framework
process that the handler has terminated.

If active is FALSE , Execute terminates, as in that
case the handler is not part of the current mission
and remains idle during its execution. The subsequent
recursive call ensures that the same handler can be run
by multiple missions. Just like the mission process,
a handler process perpetually offers its service until
there are no more missions to be executed, and the

mission framework terminates it by synchronisation
on end mission fw , typically during the course of
terminating the framework and application processes.

We observe that, unlike in the case of the safelet,
the mission sequencer, and the mission framework
processes, there is one instantiation of a handler
framework process for each individual event handler
of an application. The handler framework model is
accordingly the parallel composition of all those process
instances. For readability, we define a parametrised
process HandlersFW that applies to a set of handler
identifiers and yields the aforementioned composition.

process HandlersFW =̂ handlers : F (HandlerId) •
f

h : handlers

{| activate handlers , end mission fw |} •
EventHandlerFW (h)

Here, we have an iterated parallelism over the handler
identifiers h. We recapture that this is an iteration in
the mathematical, and not the Java sense. It composes
in parallel the processes EventHandlerFW (h), where h
ranges over the set handlers provided by the process
parameter. All handlers synchronise on the channels
activate handlers and end mission fw . The handler
framework processes essentially evolve independently,
jointly synchronising only on the these two channels.

4.5. Overall SCJ Framework

To conclude, we define a process Framework that
specifies the entire framework model. It is obtained by
parallel composition of all framework processes. Like
the HandlersFW process, the Framework process is
parametrised by the handler identifiers for a particular
application. For instance, in the ACC model they
are WheelShaftHId , EngineHId , BrakeHId , GearHId ,
LeverHId , SpeedoHId and ThrottleHId .

The composite framework process is presented in
Fig. 12. The control events that start or stop one of
the SCJ components are hidden. Other framework
events, like end mission fw are, however, exposed as
we require application-level processes to synchronise on

The Computer Journal, Vol. ??, No. ??, ????

16 F. Zeyda et al.

Category Type Classes belonging to Category Model

SMMC active classes Safelet, mission sequencer, and mission classes.
Circus process +

OhCircus class

HC active classes Periodic and aperiodic event handler classes.
Circus process +

OhCircus class

DC data objects Classes that model application data. OhCircus class

IC interaction classes Classes for interaction with I/O devices. —

TABLE 4. Encoding of different types of Java classes in the application model.

them. Table A.2 in Appendix A includes a summary
of the channels that are associated with methods,
including their parametrisation.

To illustrate the instantiation of Framework for a
particular application, we define the corresponding
framework process ACCFW for the ACC model.

process ACCFW =̂ Framework(
{WheelShaftHId ,EngineHId ,BrakeHId ,
GearHId ,LeverHId ,SpeedoHId ,ThrottleHId})

Here, we assume that WheelShaftHId , EngineHId ,
BrakeHId , and so on, have been introduced as unique
identifiers of type HandlerId . The name of each
constant is derived from the handler’s class name.
The constants themselves correspond to instances of
a handler in a mission. For example, if we had two
sensors and thus two instances of the WheelShaft

class (counting the rotations of the wheel shaft),
we would require two constants, WheelShaftHId1 and
WheelShaftHId2, chiefly because in this case we require
two separate handler framework processes.

So far, we have presented a formal model for
the general SCJ programming paradigm in executing
missions as realised by a compliant virtual machine.
This model already provides useful insight into the
exact mechanisms that underly the execution of
Level 1 safelets, for instance, with regards to subtle
details of the termination mechanism. Importantly,
our model captures those mechanisms abstractly and
independently of Java. In the next section, we discuss
in detail how models for particular SCJ applications
are constructed and expressed by a collection of Circus
processes and OhCircus classes.

5. APPLICATION MODEL

Our presentation of the application model of SCJ is
yet informal in this section and illustrated using the
cruise controller. As before, we individually discuss the
application processes for the safelet, mission sequencer,
missions, and event handlers. We also discuss the model
for data objects. The purpose of this section is to
highlight the main principles and ideas of the modelling
approach. In Section 6 we take these principles further
by formalising the construction of models for arbitrary
programs by virtue of a translation strategy, captured
by a set of compositional translation rules.

5.1. Categories of Classes

For our modelling technique, we distinguish between
four kinds of classes in an SCJ program (see Table 4).
We consider

1. classes corresponding to the application’s safelet,
mission sequencer or missions;

2. classes corresponding to event handlers;
3. classes corresponding to data objects; and
4. classes for device interaction and I/O.

For readability, we refer to these categories by the
names SMMC, HC, DC, and IC, respectively. The
first and second categories cater for classes that
either implement or extend an SCJ abstract class
or interface for a Level 1 entity. For example, in
the ACC we have ACCSafelet, ACCMissionSequencer,
and ACCMission belonging to SMMC, and Engine,
Brake, ThrottleController, and so on, belonging to
HC. The third category comprises all other classes
that do not belong to IC. Lastly, classes in IC
implement interactions with external devices. They are
not directly modelled and should, together with extra
knowledge about the environment, justify assumptions
regarding those interactions such as synchronicity,
atomicity and instantaneity. These assumptions are
explained in more detail in the next section. In the
ACC, we have only the Controller class in DC.
Classes in IC include interrupt service routines for
hardware interrupts raised by the sensors.

We label the classes in SMMC and HC as
active classes, since their models have to interact
directly with framework processes by way of channel
communications. Such active behaviour is, for instance,
responding to calls to SCJ infrastructure methods that
the application classes override. Therefore, SMMC
and HC classes require process models. The classes
in DC have OhCircus class models, thus they do not
interact through communications with an active class.
Generally, modelling SCJ classes as OhCircus classes
has the advantage that we can treat their instances as
values. On the other hand, in cases where data objects
do interact with devices or the external hardware, we
propose to refactor the code in a such a way that all
interactions are moved into the handler classes; this
seems to be usually possible in our experience so far.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 17

process SCJClassApp =̂ begin

state State == [this : SCJClassClass]

Init =̂ [State ′ | this ′ = new SCJClassClass]

Meth1 =̂ Meth1Call −→ (. . . ; Meth1Ret −→ skip)

Meth2 =̂ Meth2Call −→ (. . . ; Meth2Ret −→ skip)

Meth3 =̂ . . .

Methods =̂ µX • (Meth1 @ Meth2 @ . . .) ; X

• Init ; (Methods 4 end entity app −→ skip)

end

FIGURE 13. Basic process model for the safelet, mission sequencer and mission application classes.

A general basic pattern for the process model of the
classes in SMMC is presented in Fig. 13. The name of
the process is derived from the SCJ class by appending
the class name with App. The state of the process
contains a single component this whose type is that of
an OhCircus class. This class is in direct correspondence
with the respective SCJ class. Whereas the process
SCJClassApp models calls to infrastructure methods,
the class SCJClassClass models the actual data object
and non-infrastructure methods that do not require
interaction with the framework or external devices. We
can hence think of the process as ‘wrapping’ the class
object. Fig. 13 describes the general wrapping pattern.

The behaviour of an application process is first to
initialise the state component this with a new OhCircus
data object (using the action Init) and then to offer
calls to all infrastructure methods (using the action
Methods), until a communication end entity app
occurs that terminates the process. The actual name of
this channel depends on the particular SCJ component.
For instance, for the safelet it is end safelet app, and
for the mission sequencer, end sequencer app.

If the SCJ class does not have any instance variables,
the corresponding process can be simplified by removing
the state paragraph and the Init action. Constructors
of the SCJ class are modelled in the OhCircus class,
by OhCircus constructors. For now, we assume the
presence of only parameterless constructors in SMMC
classes (safelet, mission sequencer, and mission classes).
Handler classes (in HC), as discussed later on, have
a different model and can make unconstrained use of
parametrised constructors.

Specific method actions Meth1, Meth2, and so on,
must be present depending on the SCJ component.
Table A.2 in Appendix A indicates the methods that are
required in each class. The choice offered by Methods is
exercised by the associated framework process or other
application processes that call those methods. We note
that method calls in our model have to respect the
behavioural restrictions of SCJ [2]. That is, certain
methods should only be called during the initialisation
or finalisation phase of the safelet or of a mission.

A method action Methi in Fig. 13 synchronises on
the channel that represents a call to the method and
then executes actions that correspond to the method
implementation, indicated by the dots. If the method is
a pure data operation, we invoke the OhCircus model of
the method using a call this .Methi(args). If the method
interacts through communications, we embed a model
of the method as an action directly into the process.
Before termination, the method action synchronises on
the MethiRet channel to signal the return of the call.
As previously noted, for methods that have parameters
or return a value, the call and return channels are used
to communicate these values. In that case, the shape
of the corresponding Methi action is more elaborate,
following the pattern illustrated below.

Methi =̂

MethiCall ? args −→(
var ret : T • MBodyi(args , ret);
MethiRet ! ret −→ skip

)
Instead of a simple synchronisation, the call is modelled
by an input prefix that receives the arguments args of
the call. The local variable ret holds the return value
and is initialised by the action MBodyi . The return
value is communicated as an output through the return
channel MethiRet , which is also parametrised.

The basic model in Fig. 13 assumes that there is
only a single instance created for each class. This is
the case for the safelet and mission sequencer, however
the same mission class may potentially be instantiated
more than once by the mission sequencer. To support
multiple instances, we modify the main action of the
basic application process as shown below.

(µX • Init ; Methods 4 end entity app −→ X)

4 end mission fw −→ skip

Here, raising the end entity app event causes the
application process to be restarted rather than its
termination because of the recursive call to X . The
framework event end mission fw is used instead to
terminate the process during safelet shutdown.

We next discuss the application model for the various
infrastructure classes of the ACC in detail.

The Computer Journal, Vol. ??, No. ??, ????

18 F. Zeyda et al.

process ACCSafeletApp =̂ begin

setUpMeth =̂(
setUpCall −→ skip;
setUpRet −→ skip

)
tearDownMeth =̂(

tearDownCall −→ skip;
tearDownRet −→ skip

)
Methods =̂ µX • (setUpMeth @ tearDownMeth) ; X

• Methods 4 end safelet app −→ skip

end

FIGURE 14. Application process for the safelet of the cruise controller.

process ACCMissionSequencerApp =̂ begin

state State == [this : ACCMissionSequencerClass]

Init == [State ′ | this ′ = new ACCMissionSequencerClass]

getNextMissionMeth =̂ getNextMissionCall −→(
var ret : MissionId • this .getNextMission(ret);
getNextMissionRet ! ret −→ skip

)
Methods = µX • getNextMissionMeth ; X

• Init ; (Methods 4 end sequencer app −→ skip)

end

FIGURE 15. Application process for the mission sequencer of the cruise controller.

5.2. Safelet

We present the application process for the ACC safelet
in Fig. 14. It is in direct correspondence with the
ACCSafelet class. The specification is trivial here
since setUp() and tearDown() in ACCSafelet do not
contain any code (the actions are just skip). The
process nevertheless illustrates the modelling approach
for SCJ classes belonging to the category SMMC.
The actions offered by Methods are setUpMeth and
tearDownMeth. Termination occurs when the safelet
framework process raises the end safelet app event.
The process definition follows the general pattern in
Fig. 13, however, simplifications have been possible as
the resulting process lacks a state and an initialisation.

5.3. Mission Sequencer

The mission sequencer application process is given in
Fig. 15. It more completely illustrates our approach
to modelling SCJ classes as OhCircus classes and
Circus processes. ACCMissionSequencerApp utilises
the definition of the OhCircus class in Fig. 16. The
OhCircus class is in direct correspondence with the
ACCMissionSequencer SCJ class, shown in Fig. 17.
The instance variables of the SCJ class become state
components of the OhCircus class. Here, we have only
one state component mission done, corresponding to a

variable of the same name in the SCJ class. The action
Init that follows specifies the constructor behaviour.

Methods that are called by the SCJ infrastructure
are defined in both, the Circus process and OhCircus
class, whereas methods that are not called by the
infrastructure are defined in the OhCircus class only if
they are data operations. A special case are methods
that interact with external devices. Those methods
have mere action models, defined in the process.

The method getNextMission(), for instance, is
called by the infrastructure, so it has to be specified
in the application process too (Fig. 15). In the class
definition of the method, we have a conditional that,
depending on the value of mission done returns the
next mission whose identifier is either ACCMId or
nullMId . The result parameter ret of type MissionId
is introduced to hold the return value. The action
model of the method synchronises on the respective
Call channel to wait for a call from the framework, then
invokes the method on the aggregated this class object,
and finally synchronises on the Ret channel to finalise
the method call and communicate its result.

In general, we model methods of SCJ classes by
OhCircus methods where this is possible: methods that
perform data operations become OhCircus methods,
whereas methods that are called by the framework or
interact with external devices become actions.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 19

class ACCMissionSequencerClass =̂ begin

state State == [private mission done : boolean]

initial =̂ mission done := false

public getNextMission =̂ res ret : MissionId •
if mission done = FALSE −→

(mission done := TRUE ; ret := ACCMId)

8 mission done = TRUE −→ ret := nullMId

fi

end

FIGURE 16. OhCircus class for the mission sequencer of the cruise controller.

public class ACCMissionSequencer extends MissionSequencer {

/* Records if the mission has already been executed. */

private boolean mission_done;

public ACCMissionSequencer() {

super(...);

mission_done = false;

}

public Mission getNextMission() {

if (!mission_done) {

mission_done = true;

return new ACCMission();

}

else {

return null;

}

}

}

FIGURE 17. Java class of the mission sequencer of the cruise controller.

5.4. Mission

For mission application processes, we use the modified
form of the basic process model in Fig. 13 as discussed
in Section 5.1. The main action of the ACCMission
process accordingly has the following shape.(

µX • Init;(
Methods 4 end mission app .ACCMId −→ X

))
4 end mission fw −→ skip

The end mission app channel is parametrised to
enable the termination of particular mission application
processes. Here, there is only one mission process which
synchronises on end mission app .ACCMId .

Java methods are encoded as before by a combination
of OhCircus class methods and local actions. Notably,
the encoding of initialize() is only possible as an
action due to its communication with the framework
when registering handlers. Thus, there is no model
of this method in the underlying OhCircus class.
Generally, initialize() creates objects for shared
data and handlers, and registers those handlers with the
framework, which subsequently executes them as part

of the current mission. Below, we include an extract of
its action model for the ACC implementation.

initializeMeth =̂ initializeCall .ACCMId −→

var . . . ; speedo : SpeedMonitorClass ;

throttle : ThrottleControllerClass ;

cruise : ControllerClass ;

engine : EngineClass ; . . . •
. . . ;
throttle := new ThrottleControllerClass(speedo);
ThrottleControllerInit ! throttle −→ skip;
register .ThrottleHId −→ skip

cruise := new ControllerClass(throttle, speedo);
engine := new EngineClass(cruise);
EngineInit ! engine −→ skip;
register .EngineHId −→ skip;
. . . ;
initializeRet .ACCMId −→ skip

The SCJ code of this method can be found in Fig. 4.
Like in the program, local variables are introduced
for handler objects, such as speedo, throttle, and
engine. These variables have a class type, and are
initialised with newly created class objects using a

The Computer Journal, Vol. ??, No. ??, ????

20 F. Zeyda et al.

class EngineClass =̂ begin

state EngineState == [private cruise : ControllerClass]

initial EngineInit =̂ val c : ControllerClass • cruise := c

public handleAsyncLongEvent =̂ val evt : long •
if evt = EngineOn −→ cruise.engineOn()

8 evt = EngineOff −→ cruise.engineOff ()

fi

end

FIGURE 18. OhCircus class for the Engine handler.

suitable constructor. Our modelling approach requires
that handler objects are only created and registered
inside this method. This is enforced by the behavioural
restrictions of SCJ [2]. The two synchronisations
on the channels ThrottleControllerInit and EngineInit
link the handler processes to their underlying data
objects. Specifically, the process ThrottleControllerApp
synchronises on ThrottleControllerInit and the process
EngineApp on EngineInit . Hence the instantiation of a
handler in the program such as, for instance,

engine = new Engine(cruise);

is modelled by a sequence of two statements

engine := new EngineClass(cruise);
EngineInit ! engine −→ skip

where the assignment is implicitly a reference assign-
ment to an object of (class) type EngineClass . The
cruise object is an object of the class Controller that is
shared between the handlers, hence it does not have a
process model, nor do we require a synchronisation on
a channel Init to model its creation.

The Init channels are introduced for all handler
classes, but they are not needed for the safelet, mission
sequencer and mission classes. This is due to the fact
that for the latter classes, the link between a process
and the underlying data object is static with respect to
the model, whereas in case of handlers it is established
dynamically during initialisation of the mission.

To record a periodic or aperiodic handler as part
of the current mission, we have a communication such
as register .EngineHId −→ skip. In the program, this
corresponds to a call to the register() method of the
handler classes of the SCJ infrastructure.

The inherited methods of ACCMission, namely
requestTermination() and terminationPending(),
are provided by the MissionFW framework process
since they cannot be overridden. The cleanup()

method of ACCMission just unregisters ISRs, and hence
is not discussed here.

Our modelling approach requires that there is a one-
to-one relationship between instances of SCJ classes
and their processes at any given time. For handlers,

this assumption is justified if we consider a particular
handler only to be instantiated once per mission.
To cater for multiple instances of the same handler,
multiple instances of both the underlying handler
framework and application processes are necessary.

We recapture that not all classes of an SCJ program
require process models. In particular, those belonging
to DC have mere OhCircus class models, such as
the Controller class. Conversely, SCJ components
without any instance fields do not require a class model
and thus have only a process model.

5.5. Event Handlers

Handler classes belong to the category HC and, as
already noted, their application processes differ in terms
of structure from those of the safelet, mission sequencer
and missions (belonging to category SMMC). Most
significantly, the application process for a handler may
associate external events to it. In addition, it has a
dispatch action Dispatch to release the handler either
when one of these events occurs, or periodically in the
case of periodic handlers. The general pattern, however,
is still that described in Fig. 13.

As with classes belonging to the category SMMC,
the application processes for handlers are factored
into a data object modelled by an OhCircus class,
and a process that aggregates the data object and
releases the handler. Because we treat handlers as
data objects, other data objects can hold a reference
to them and directly call their methods or access
and modify their fields. In the cruise controller, for
instance, the Controller class holds a reference to the
SpeedMonitor and ThrottleController handlers and
thereby is able to acquire the vehicle’s speed and set the
throttle voltage. Since Controller is a data object (not
wrapped by a process), these calls can be modelled
by OhCircus method calls rather than synchronisations.
This simplifies the overall application model.

Fig. 18 presents the OhCircus class for the Engine

SCJ class, included in Appendix B.1. As before, we
have a direct correspondence with instance variables
defined as state components, and the constructor
defined in the initial paragraph. The only difference

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 21

process EngineApp =̂ begin

state EngineState == [this : EngineClass]

Init =̂ EngineInit ? obj −→ this := obj

handleAsyncEventMeth =̂ val evt : EventId •
wait 0 . . EngineBudget ; this .handleAsyncLongEvent(evt)

Execute =̂ enter dispatch .EngineHId −→Dispatch

Dispatch =̂µX •

engine on −→ handleAsyncEventMeth(EngineOnEvtId) ; X

@
engine off −→ handleAsyncEventMeth(EngineOffEvtId) ; X

@
leave dispatch .EngineHId −→ skip

• (µX • Init ; Execute ; X) 4 end mission fw −→ skip

end

FIGURE 19. Application process for the Engine handler.

is that to model the static fields Events.EngineOn and
Events.EngineOff, we use the constants EngineOn
and EngineOff . The Events class provides unique long
values for all external events of the cruise controller as
a collection of public, static and final fields. Although
we do not consider models of static fields and methods
in general, a static and final field that is initialised
upon declaration is modelled by introducing a global
axiomatic constant of the same name. (Issues related
to name clashes, if present, are dealt with by prefixing
the name of the constant with the name of the class in
which the field resides in the program.)

The handler method is parametrised, mirroring
the parameter of handleAsyncLongEvent(int). As
explained in Section 2.2, the parameter is used to
determine the external event that caused the release
of the handler. Based on its value, the handler
method decides by virtue of a switch statement which
method to call on the controller object, and this is
modelled by a conditional in Fig. 18. The classes
used to implement the interrupt service routines that
identify external events and release the corresponding
handlers belong to the category IC and are only
interesting to the model in as far as they guarantee
that the event identifier passed is indeed the one of
the last event raised. How this is achieved (perhaps
in terms of low-level instructions) is not a concern
here, but we discuss this issue further in Section 7.

The process for the Engine handler is presented
in Fig. 19. As described in the wrapping pattern in
Fig. 13, the object for the handler is recorded in a
state component this . The Init action initialises this
component when prompted by a communication on
the designated channel EngineInit of type EngineClass
that provides an object as input. The creation of the
data object that is aggregated by the process takes
place outside the process, namely in the initializeMeth

action of the ACCMission process. Since a handler
may be used by several missions, the application process
repeatedly initialises (Init) and executes (Execute) the
handler in a recursive action.

The Execute action waits for the enter dispatch event
of the handler to occur, and then calls the action
Dispatch, which enters a dispatch loop that repeatedly
waits for the occurrence of one of the external
events associated with the handler. In our example,
they are engine on and engine off . When such an
event occurs, Dispatch calls the handleAsyncEventMeth
action, passing an input value identifying the event. It
also offers a synchronisation on leave dispatch, which is
used to abandon the dispatch loop when the handler is
terminated by its associated framework process.

The handleAsyncEventMeth action simply executes
the corresponding data operation, preceded by a
nondeterministic wait that sets a time budget: the
permissible amount of time the program may take to
execute the operation. Abstract global constants are
introduced for all data operations to refer to their
worst-case execution time. Since OhCircus method
calls are instantaneous, all timing behaviour is specified
explicitly within actions using these constants.

When handleAsync[Long]Event() raises an output
event, it has to be modelled in a different way. For
example, the handler process for the throttle controller
has to perform communications set voltage ! v that
correspond to a device access that takes place inside the
writeVoltage() method. Here, we cannot represent
the method by a data operation as above, but have
to encode writeVoltage() as an action as illustrated
in Fig. 20. The handleAsyncEventMeth action of the
application process reflects the Java code, but outputs
a value where in the SCJ program we have specific
instructions for writing device data.

A consequence of our modelling approach is that

The Computer Journal, Vol. ??, No. ??, ????

22 F. Zeyda et al.

process ThrottleControllerApp =̂ begin

state ThrottleControllerState == [this : ThrottleControllerClass]

Init =̂ ThrottleControllerInit ? obj −→ this := obj

writeVoltageMeth =̂ set voltage ! this .voltage −→ skip

handleAsyncEventMeth =̂

if this .scheduleThrottle = TRUE −→
if this .accelerating = TRUE −→(

wait 0 . . increaseVoltageBudget ; this .increaseVoltage() ; writeVoltageMeth
)

8 this .accelerating = FALSE −→ . . .

fi

8 this .scheduleThrottle = FALSE −→ skip

fi

Execute =̂ enter dispatch .ThrottleHId −→
(Dispatch J {this} | {| release handler |} | ∅ K Release) \ {| release handler |}

Dispatch =̂µX •
release handler .ThrottleHId −→ handleAsyncEventMeth()

@
leave dispatch .ThrottleHId −→ skip

 ; X

Release =̂(

µX •
(

release handler .ThrottleHId −→ skip;
wait this .period

)
; X

)
4 leave dispatch .ThrottleHId −→ skip

• (µX • Init ; Execute ; X) 4 end mission fw −→ skip

end

FIGURE 20. Application process for the ThrottleController handler.

writeVoltageMeth in Fig. 20 cannot be invoked by an
OhCircus method. In the cruise controller this is
not a problem, since no other method except for
handleAsyncEvent() calls it. This, however, hints a
more general issue: methods that carry out some device
access inherently require an action model, and so do
all methods that directly or indirectly call them. Our
technique hence imposes certain restrictions on the SCJ
program designs that we can cater for, and Section 6
examines those restrictions in more detail.

Application processes for periodic handlers differ only
in the definition of Execute and in the presence of an
additional action Release. As illustrated in Fig. 20, the
handler behaviour in this case is defined by a parallelism
between two actions Dispatch and Release. Here, the
handler does not wait for the occurrence of an external
event, but instead invokes handleAsyncEventMeth
when an internal handler-specific timer event is raised.

The parallel action Release generates these timer
events. In its definition in Fig. 20, we have a prefix
that raises the release handler .ThrottleHId event,
which is the timer event for the throttle handler,
followed by a wait this .period action to wait for the
duration of the period. The recursion in Release
ensures that timer events are generated continually
until an interrupt occurs, causing the handler to

leave its dispatch loop. If Dispatch is still executing
handleAsyncEventMeth when Release is ready again to
synchronise on release handler . h, the synchronisation
is delayed until the handler method is completed. Since
the timer event is concealed (hidden) in the system
model, it takes place autonomously and in fact as soon
as possible, that is, when both Dispatch and Release
are ready to synchronise on it.

To increase modularity, we take advantage of
class inheritance by introducing a class for periodic
handlers that has a state component period . This
class somewhat corresponds to the abstract class
PeriodicEventHandler in SCJ. We thus require that
concrete periodic handler classes extend this class also
in the model. The period is set by either passing a value
to the constructor of the base class, or explicitly by
changing the value of period in the subclass constructor.

We observe that the handler application processes in
our example lack a Methods action. This is because
in the ACC, the handlers do not define methods
called by the framework. Furthermore, the call to
handleAsync[Long]Event([int]) takes place within the
process and is modelled by an action call. In general,
however, we do not exclude the possibility of defining
such methods, following the pattern in Fig. 13.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 23

class ControllerClass =̂ begin

state ControllerState
throttle : ThrottleControllerClass
speedo : SpeedMonitorClass
engineActive : boolean
braking : boolean
. . .

initial ControllerInit
ControllerState ′

throttle? : ThrottleControllerClass
speedo? : SpeedMonitorClass

throttle ′ = throttle? ∧ speedo′ = speedo?
engineActive ′ = FALSE ∧ braking ′ = FALSE ∧ . . .

public sync engineOn =̂

engineActive := TRUE ; braking := FALSE ; topGear := FALSE ; cruising := FALSE

public sync activate =̂

if engineActive = TRUE ∧ topGear = TRUE ∧ braking = FALSE −→

cruising := TRUE ;
var cruise speed : int •
cruise speed := speedo.getCurrentSpeed();
throttle.setCruiseSpeed(cruise speed);
throttle.schedule();
. . .

8¬ (engineActive = TRUE ∧ topGear = TRUE ∧ braking = FALSE)−→ skip

fi

public sync deactivate =̂

if engineActive = TRUE ∧ topGear = TRUE ∧ cruising = TRUE ∧ . . .

end

FIGURE 21. OhCircus class definition for the Controller SCJ class.

5.6. Data Objects

As already noted, data objects are modelled by an
OhCircus class only. For illustration, Fig. 21 contains
an extract from the OhCircus class definition for
the Controller SCJ class. We observe that since
this class holds a reference to two handler objects,
we have state components of type SpeedMonitorClass
and ThrottleControllerClass . All methods in this
class are declared as synchronised using the OhCircus
keyword sync explained in Section 2.3.2. Some
state components and methods have been omitted or
abbreviated for brevity.

The Controller class in essence implements a state
machine. The methods are called by aperiodic handlers
in response to external events such as the engine being
switched on or the cruise mode being activated. For
instance, the engineOn() method changes the values of
some of the state components of boolean type. More
interestingly, inside the activate() method we have calls
to methods on the aggregated throttle and speedo class
objects. These calls directly access and modify the data

(state) of the class objects of the respective handlers.
To conclude, in the previous sections we have

examined in detail the construction of a formal model
for an SCJ program, elaborating and refining our
account in [37]. In particular, we have unified the
treatment of behavioural and data aspects by way of
the general pattern in Fig. 13. In the next section, we
formalise a translation strategy that constructs Circus
models of SCJ programs using the approach described.

6. TRANSLATION STRATEGY

Given an SCJ program, the problem we address in this
section is the automatic derivation of its application
model. Not all SCJ programs are translatable by our
approach, and, so far, we have been vague about the
subset of SCJ that we handle, as well as the details
of the model construction process. We now present a
compositional translation strategy.

In Section 6.1, we first specify the admissible subset
of SCJ programs. Section 6.2 then discusses the top-
level translation process. The remaining Sections 6.3

The Computer Journal, Vol. ??, No. ??, ????

24 F. Zeyda et al.

to 6.5 examine in detail the translation of SCJ classes
for the entities of the mission model and data objects.

6.1. Translatable Programs

The programs we accept foremost have to be compilable
with a compliant SCJ class library. Since SCJ is still
evolving, we consider the API published in the first
official draft of the SCJ technology specification [2].
The generality of Java, however, enables us to write
SCJ programs that do not reflect the clean architecture
implied by the SCJ paradigm. To give an example,
the same class can be used as the Safelet and
MissionSequencer of an application. We disallow such
designs and more generally require programs to adhere
to design patterns that embody good programming
practice. Finally, as already noted in the introduction,
the design of SCJ [2] does not address constraints on
statements that make certification (and formal analysis)
feasible. We address this concern by taking restrictions
of SPARK [32] as a guideline. We note that checking
for compliance with the restrictions we introduce can
be automated in a fairly straightforward manner.

In the sequel, we specify our restrictions in more de-
tail. We divide them into three kinds: structural con-
straints, language constraints and feature constraints.

6.1.1. Structural Constraints
Our first structural constraint, as hinted above, is that
the safelet, the mission sequencer, and each mission
and event handler are modelled by a separate class.
This ensures that there is a one-to-one correspondence
between classes that represent components of the SCJ
infrastructure and their respective process descriptions
in the application model. Applications that initially do
not satisfy this constraint can usually be refactored.

A second structural constraint is that we only
consider one level of inheritance in the context of the
SCJ classes. This means that the safelet, mission
sequencer, mission and handler classes of an application
have to be direct subclasses of the respective SCJ API
class or interface. The rationale for this restriction is
that, because these classes belong to either category
SMMC or HC, they have a process model, and there is
currently no notion of process inheritance in OhCircus.
Other classes, namely those belonging to category
DC can make unconstrained use of inheritance (class
inheritance is well supported in OhCircus).

A third constraint is concerned with the places
in the program where we allow interaction with the
hardware and external devices. Confining external
device interaction to the handler classes enforces good
programming practice, resulting in cleaner application
designs with more tractable formal models. We thereby
obtain a clean separation of active classes that interact
with the framework, having process models, and passive
classes that record application data and carry out
computational work. This may possibly be at the cost of

reducing reusability, but, what is important, facilitates
analysis and the refinement of models.

The fourth and last constraint is that we prohibit
the use of inner and anonymous classes. This is not
a serious limitation since such constructs are merely
syntactic sugar and can always be eliminated through
refactoring. Excluding them discharges the burden of
having to define a semantics for them in OhCircus which,
by default, does not cater for such classes.

Together the four constraints determine the structure
of applications for which model generation succeeds.

6.1.2. Language Constraints
As already mentioned, the SCJ technology specifica-
tion [2] does not prescribe what low-level language el-
ements and constructions are permitted in SCJ pro-
grams. In a certification context, it is, however, not
desirable to support the full generality of Java. Our
language restrictions are similar in spirit to the ones
defined by SPARK [32]. They do aid the clarity and
analysability of SCJ programs, but ultimately account
also for limitations implied by our translation strategy.

The following list summarises the elements of the
Java language that we exclude.

1. Expressions with side effects such as (x++)*(y--).
This applies to any type of expression, namely
boolean expressions in conditional statements and
loops. Likewise, none of the arguments of a method
call may have side effects either.

2. Labels as well as stand-alone break and continue.
3. Arbitrarily placed returns: a return statement

must be the last statement in a method, if present.
4. Fall-through behaviour in switch statements. This

means that every case statement must be properly
terminated with a break statement.

5. Program exceptions and hence the use of try,
throw and catch and, in general, also finally.

6. Blocks that are marked as synchronized as well
as the wait() and notify() methods.

7. static methods; static fields are only supported
if they are final and initialised upon declaration.

From (1), it implicitly follows that we do not support
assignments in expressions. We observe though that
expressions with side effects can always be rewritten
into statements to fulfil this constraint: this is by way
of introducing local variables that hold intermediate
results of a calculation. We also point out that (1)
does not exclude assignment statements as stand-alone
commands. For instance, x = x + y; and x++; are
allowed as they do not occur in an expression.

The restrictions (2) and (3) also exist in safe subsets
of Ada and C [32]. The precise reasons for them in
terms of our modelling approach are discussed later
on (page 28). The absence of exceptions (5) is related
to issues of memory utilisation and predictability in
SCJ. Although exceptions can be useful in designing
error catching mechanisms, they may be less essential

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 25

where formal verification techniques are consequently
applied. A limited facility to model exceptions that
raise program errors is provided by the divergent action
abort. We observe that the blocking constructs in (6)
are already excluded by SCJ Level 1. Support for static
methods (7) is work in progress; final and static

fields, on the other hand, can effectively be treated as
constants and are thus already incorporated.

6.1.3. Feature Constraints
Some SCJ Level 1 classes are not covered by our
translation strategy. These classes are typically
either an artifact of the implementation of SCJ or
of program interaction with devices and the external
world. Excluded classes are in particular:

1. Classes such as ManagedEventHandler, which are
an artifact of SCJ’s design on top of RTSJ.

2. The Clock class and all timing-related classes
except for RelativeTime and AbsoluteTime.

3. Classes of the input and output model, like, for
example, ConsoleConnection.

4. The Java Native Interface (JNI).

To explain (1), we note that the original aim of SCJ was
to design it as a restriction of the RTSJ class library.
The RTSJ classes are, however, not directly relevant to
SCJ programs. They merely facilitate the development
of a reference implementation of the SCJ technology
on top of RTSJ. (There are also inclinations in the SCJ
community to depart from this design in future versions
of SCJ, hence it is not desirable to model them here.)

The features (2) and (3) are in principle desirable
to support as future work, but with regards to our
current contribution out of scope. The concession
we make for not supporting (2) is that we exclude
applications that make more sophisticated use of time
control. The classes AbsoluteTime and RelativeTime

are nevertheless supported by way of data objects.
They are used to set the period of periodic handlers.

Support for (3) seems not difficult to achieve, but is
not essential for our case studies. In our experience
so far, there also seems to be no need for (4). This
is due to the abstract view of interactions in terms
of CSP events. We envisage that native code is
only significant in implementing low-level routines for
device interaction and hardware access, and these are
fundamentally not modelled in detail, but instead
captured by events. Where JNI may be used in other
ways, for instance, to exploit performance-enhancing
hardware, future extensions of our translation strategy
are conceivable that incorporate models of JNI methods
that have to be explicitly provided by the user.

The following classes are allowed as part of the IC
category, but we do not provide formal models for them.

1. Classes related to interaction with devices and ex-
ternal events such as InterruptServiceRoutine.

2. Classes related to signals and happenings, such as
POSIXSignal and Happening.

Since we take an abstract view of device interactions
as CSP communications, we do not model the above
classes. We require though that their design justifies
the assumption that device access is atomic. In other
words, the program should not be able to make any
observations about the mechanisms that read (or write)
data from (or to) the hardware, only that the data is
made available as a whole. In particular, this has to
be the case if complex data is communicated via inputs
and outputs. Device access, however, does not have to
be instantaneous, like CSP communications. Common
modelling techniques in CSP can be used to explicitly
model device interactions that take time, namely, as a
pair of communications. Where such interactions can
be regarded as virtually instantaneous, by which we
mean they take a negligible amount of time, we encode
them as single events. Although the implementation
in that case weakens the precise timing behaviour, we
stipulate that a similar argument as devised in [42] for
timed automata can be construed to formally justify
correctness of implementations in Circus, that is, under
weaker notions of refinement such as ε-bisimulation.

To summarise, the SCJ developer has to guarantee
that the program code for device access establishes at
least atomicity of data being read or written. Virtual
instantaneity is required only if device interactions are
modelled by single events. The choice to adopt the
single-event approach is, however, even then an issue
of design that rests with the user of our technique.

We discuss a few basic architectural patterns for
device interaction in Section 7.2, but in general such
patterns are per se not a concern of the translation
strategy. We also note that the language constraints in
Section 6.1.2 do not apply to classes in the category IC
and interaction code, for the reason that they are not
subject to compositional translation.

Despite the restrictions presented in this section, it
turned out to be possible to support our case study here
as well as those in [36, 43] after refactoring. In the next
section, we present our translation strategy applicable
to all programs that fulfil the above constraints.

6.2. Translation Process

Translation is carried out by a three-stage process.

1. Analysis and annotation of the program code.
2. Automatic rewriting to transform program state-

ments into a canonical form.
3. Translation of classes by category-specific rules.

Stage (1) is organised in four steps (1a) to (1d). We
explain each of them next. Stages (2) and (3) are fully
automatable via the rules we present later on.

Step (1a). In the first step, we proceed with an
analysis of the program structure. We categorise all

The Computer Journal, Vol. ??, No. ??, ????

26 F. Zeyda et al.

Type Category Classes

active class SMMC ACCSafelet, ACCMissionSequencer and ACCMission

active class HC WheelShaft, Engine, Brake, Gear, Lever, ThrottleController and SpeedMonitor

data object DC Controller

interaction class IC WheelShaftISR, EngineISR, BrakeISR, GearISR and LeverISR

TABLE 5. Classification of all classes of the cruise controller.

classes of the SCJ program according to Table 4. To
determine the active classes, namely those belonging
to SMMC and HC, it is sufficient to examine the
superclasses and implemented interfaces of a class. For
the remaining classes, we have to make an intelligent
decision whether they are data objects or interaction
classes. Typically, interaction classes derive from
classes of the ‘Interaction with Devices and External
Events’ subclass hierarchy of the SCJ API [2]. There,
we have classes such as InterruptServiceRoutine

or Happening. Nevertheless, we do not categorically
exclude non-SCJ classes being part of interaction
patterns. Therefore, establishing membership of a
class to either DC or IC in general requires insight
and understanding of the program design and code,
although there is scope for automation, too. In
practical terms, the classification between DC or IC
is encoded by custom Java annotations discussed in
the next section. The annotations are an input for the
translation in Stage (3).

Table 5 summarises the classification of the classes of
the ACC. We observe that for each aperiodic handler
(active class) we have a corresponding interrupt service
routine (interaction class), suffixed with ISR, that
releases (fires) the handler. In contrast, there is only
one class Controller for a data object.

Step (1b). In the second step, we identify the
instances (rather than classes) of missions and handlers
of an application and introduce unique identifiers for
each of them (of type MissionId and HandlerId). This
constitutes a second input of the subsequent translation
and again requires understanding of the SCJ program.
As before, we encode this knowledge by way of special
annotations in the program. For the ACC, we have
a single identifier ACCMId of type MissionId for
the single instance of the ACCMission class, and the
identifiers WheelShaftHId , EngineHId , and so on, of
type HandlerId , for the various handler instances.

Step (1c). In a third step, we determine the external
events that cause the release of aperiodic handlers in the
program, and annotate the respective handlers classes
accordingly. This requires inspection of the mission
initialisation methods that create the handlers.

Step (1d). In a final step, all methods of the SMMC
and HC classes are annotated as to whether their
bodies perform device interactions or external hardware
accesses. For methods that do so, our analysis also has

to provide a model for the device access as an action.
Those methods are not translated by our strategy: their
explicit action model is used instead.

Stage (1) is completed when the program is fully
annotated to provide all necessary information to
facilitate the (automatic) translation of the classes in
Stage (3). It is worth noting that although Stage (1)
in general requires human assistance, essentially no
knowledge of formal models and Circus is needed for
the steps (1a) to (1c). We furthermore stipulate that
a tool could be developed to automate the annotation
process, and, if not fully complete it, at least yield a
good approximation. This is ongoing work.

Stage (2). The rewriting rules we apply to program
statements in Stage (2) are summarised in Table 6. We
use the function J . . . KRewrite to capture the rewriting
transformations. (Other functions J . . . K with different
subscripts are defined later on when formalising the
translation.) To highlight meta-variables, we underline
them as in Expr and Meth. The name of the
meta-variable also implicitly determines the syntactic
category of the element matched. The abstract syntax
we consider is the typical one of Java [44].

RW1 deals with local variables (as opposed to
class fields) being initialised upon declaration. RW2a
and RW2b rewrite the shorthand forms for the
increment and decrement operators, which we support
as stand-alone statements. RW3 rewrites compound
assignments into standard assignments. Lastly, RW4
and RW5 deal with truncated forms of the conditional
and switch statements.

In the remainder of this section, we individually
discuss the translation of active classes and data objects
in Stage (3). As mentioned before, interaction classes
are not modelled and thus not translated.

6.3. Active Classes

We have one translation rule for each type of active
class, namely for the safelet, mission sequencer, a
mission or a handler. The translation rule for a
safelet, for example, is presented in Fig. 22. It
matches all classes that implement the Safelet

interface. Meta-variables of the rule, which as before
are underlined, are CName, FieldDecls, InitStmts,
AMethDecl1, AMethDecl2, and so on.

The right-hand side of the rule constructs the process
that models the class (that is, its active behaviour). We
note that in this section, we only consider the process

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 27

Rule Application Result

RW1
J Type Var = E; KRewrite

where the declaration occurs in a statement block.

Type Var;

Var = E;

RW2a J Var ++; KRewrite Var = Var + 1;

RW2b J Var --; KRewrite Var = Var - 1;

RW3 J Var Op = E; KRewrite Var = Var Op E;

RW4 J if (Expr) Stmts KRewrite if (Expr) Stmts else { }

RW5

u

wwwwww
v

switch (Expr) {

case Value1: Stmts1; break;

case Value2: Stmts2; break;

. . .
case Valuen: Stmtsn; break;

}

}

������
~

Rewrite

switch (Expr) {

case Value1: Stmts1; break;

case Value2: Stmts2; break;

. . .
case Valuen: Stmtsn; break;

default: { }

}

TABLE 6. Rewrite rules for transformation into canonical statements.

u

wwwwwwwwwwwwwwwww
v

class CName implements Safelet {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public MissionSequencer getSequencer() {

return new MSName();

}

}

}

�����������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init == [State ′ | this ′ = new J CName KNameClass]

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
µX •

(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
; X

)
• Init ; (Methods 4 end safelet app −→ skip)

end

FIGURE 22. Translation rule for classes implementing the Safelet interface.

model of active components. The associated OhCircus
class, capturing state and data operations, is generated
by the same translation rule that we use for passive
classes and discuss in Section 6.5.

The rule makes use of two auxiliary translation
functions, J . . . KName for translating identifier names
and J . . . KAMethod for translating methods into actions.
Suffixes in the translation functions are used for clarity
and also to avoid ambiguities later on when presenting
complementary rules for passive classes. The function
J . . . KName is used to encode an identifier for a class,
variable, or method into a valid Z identifier. For classes,
this uses the fully-qualified name of the class and
replaces ‘.’ separators by underscores. Other symbols
not permitted in Circus are substituted suitably as well.
The function furthermore ensures that method names
are unique in the presence of method overloading. The
function J . . . KAMethod encodes a class method as a local
action definition. It is applied to all methods of the class
that are modelled by actions. Such methods are, first
of all, the setUp() and tearDown() methods, but also
possibly other methods that interact with devices and

hardware and thus require action models.

Although not made explicit in the rules, rule
matching exploits the presence of annotations that
indicate whether a method is to be translated into
an action or a data operation. We shall not specify
the details of the annotation mechanism here as this
is rather a technical issue for a tool and discussed
in the next section. Instead, we implicitly assume
that AMethDecl1, AMethDecl2, and so on, only match
methods that are annotated to require action models.
Other methods are simply ignored by the matching
process and become significant only in constructing the
class model. The FieldDecls meta-variable is matched
but, not used by the rule in Fig. 22. It is instantiated
with the declaration of instance variables of the class.

In what follows, we individually discuss the elements
of the process resulting from the translation, that is its
State, Init action, method actions, and main action.

Process State. The translation constructs the state
paragraph of the process using a schema State,
which includes a single component this whose type

The Computer Journal, Vol. ??, No. ??, ????

28 F. Zeyda et al.

s
AccessModifier synchronized

RetType MethName(Args) { Body }

{

Method

=̂

J MethName KNameMeth =̂
J MethName KNameCall ? args −→(

var ret : J RetType KType • J Body KStmts ;
J MethName KNameRet ! ret −→ skip

)
FIGURE 23. Translation rule for an interacting method into a local action.

s
AccessModifier synchronized

void MethName() { Body }

{

Method

=̂

J MethName KNameMeth =̂
J MethName KNameCall −→ J Body KStmts ;
J MethName KNameRet −→ skip

FIGURE 24. Alternative rule for an interacting method without arguments and a return value.

is that of the underlying data object. Whereas
the process name is defined by J CName KNameApp,
the name of the respective OhCircus class is defined
by J CName KNameClass . This realises the wrapping
pattern described in Fig. 13. The result of the
translation for our example safelet is exactly the process
in Fig. 14 after a trivial simplification to remove the
empty state paragraph and initialisation action.

Init Action. The initialisation action assigns a new
instance of a class object to this . We note that the
creation of the class object also entails the constructor
being executed, so that the fields of the class object are
suitably initialised. The constructor itself, whose body
is given by InitStmts, is modelled in the corresponding
OhCircus class rather than in the process in Fig. 22.

Method Actions. Interacting and infrastructure meth-
ods of an active class are translated, as already men-
tioned, by J . . . KAMethod . Each method results in the
declaration of a local action with suffix Meth. The cor-
responding rule is in Fig. 23. The rule makes explicit
that we require all methods of active classes to be syn-
chronised. The rule is applicable to methods that have
both a return value and parameters. The name of the
local action is derived from the name of the method in
the program and so are the names of the Call and Ret
channels on which we synchronise to call the method
and to wait for its completion. (We also have transla-
tion rules that introduce those channel pairs.)

We use two further translation functions in the safelet
rule: J . . . KType and J . . . KStmts . The J . . . KType func-
tion encodes a Java type as a corresponding Z (and,
therefore, Circus) type. Its definition is included in
Appendix D.1. We support all primitive types of Java,
although we do not define a model for float and
double at present. Future work may address this, using,
for instance, an axiomatisation of the real numbers
in Z like the one in [45]. Z types are introduced to
represent the various semantic domains for primitive
Java types. Reference types refer to OhCircus classes
that result from the translation of data objects and have
a suffix Class . Arrays are modelled by sequences and
we provide generic functions to construct array types
and to get and set the elements of an array.

The J . . . KStmts function translates a statement block
(here the method body) into an action term; we discuss
it in more detail in the remainder of this section.
The bound variables args and ret are visible by the
translation of the body, and can be used to refer to the
arguments of a call and to set the return value.

Returning from a method results in assigning the
return value to ret . This is captured by the following
translation rule for a return statement.

J return Expr KStmts =̂ ret := J Expr KExpr

The translation function J . . . KExpr translates a (side-
effect free) expression; we discuss it in the sequel. The
suitability of the rule above, as well as the one in Fig. 23
is contingent on no statement(s) following a return.
This is, however, ensured by our structural constraints.

For methods that do not have parameters or a void

return type, we provide rules that take a simpler shape.
There, the input and output prefixes become simple
synchronisations as illustrated in Fig. 24.

Table 7 presents the most interesting rules for state-
ment translation. They cater for assignments (SR1),
local variables (SR2), conditional statements (SR3),
switch statements (SR4), while-loops (SR5) and as-
sertions (SR6). The remaining rules can be found
in Table D.5 of Appendix D. They deal with state-
ment sequences (SR7–SR8), blocks (SR9) and for-
loops (SR10) and are mostly straightforward.

We point out that in SR2, Stmts includes all
remaining statements of the current block. Also, in
the conditional of the right-hand action of SR4, no
nondeterminism can arise since compilation enforces the
values Value1, Value2, and so on, to be distinct. While-
loops (SR5) are modelled by a recursion. Depending
on the value of the loop condition, we either execute the
loop body and recurse, or terminate the loop via a skip
action. The absence of break and continue statements
ensure that this is a correct model.

As an example, we give the translation of part of
the handleAsyncEvent() method in the Throttle-
Controller class. An extract of this method, after
rewriting, is included in Fig. 25. The translation uses
the rule SR3 to translate the if statements, SR1
and SR2 to translate the assignment and variable
declaration, and SR10 and SR11 (Appendix D) to

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 29

Rule Application Result

SR1 J Var = Expr; KStmts J Var KName := J Expr KExpr

SR2 J Type Var; Stmts KStmts var J Var KName : J Type KType • J Stmts KStmts

SR3 J if (Expr) Stmts1 else Stmts2 KStmts

if J Expr KExpr −→ J Stmts1 KStmts

8¬ J Expr KExpr −→ J Stmts2 KStmts

fi

SR4

u

wwwwww
v

switch (Expr) {

case Value1: Stmts1; break;

case Value2: Stmts2; break;

. . .
default: Stmts

}

}

������
~

σ

Stmts

if J Expr KExpr = J Value1 KValue −→ J Stmts1 KStmts

8 J Expr KExpr = J Value2 KValue −→ J Stmts2 KStmts

8 . . .

8 ¬

(
J Expr KExpr = J Value1 KValue ∨

J Expr KExpr = J Value2 KValue ∨ . . .

)
−→ J Stmts KStmts

fi

SR5 J while (Expr) Stmts KStmts µX •

 if J Expr KExpr −→ J Stmts KStmts ; X

8¬ J Expr KExpr −→ skip

fi

SR6 J assert Expr; KStmts if J Expr KExpr −→ skip 8 ¬ J Expr KExpr −→ abort fi

TABLE 7. Translation rules for sequential statements.

translate statement sequences and blocks. The result
of the translation is given by the following action.

handleAsyncEventMeth =̂
if this.schedule throttle = TRUE−→

if this.accelerating = TRUE−→
increaseVoltageCall −→ skip;
increaseVoltageRet −→ skip

8 this.accelerating = FALSE−→
if this.maintainSpeed = TRUE−→

var current speed : int •
current speed := this.speedo.getCurrentSpeed();
if this.cruiseSpeed − current speed > 2−→

increaseVoltageCall −→ skip;
increaseVoltageRet −→ skip

8 this.cruiseSpeed − current speed < − 2−→
resetVoltageCall −→ skip;
resetVoltageRet −→ skip

8¬ (. . .)−→ . . .
fi

8 this.maintainSpeed = FALSE −→ skip
fi

fi
8 this.schedule throttle = FALSE −→ skip
fi

References to instance variables are via the aggregated
class object this . The dots correspond to the translation
of the code that has been omitted in Fig. 25. To
translate calls to the methods increaseVoltage() and
resetVoltage(), we require further rules. These are
given in Table D.6 in Appendix D. The semantics
varies depending on (a) the type of the target object
and (b) whether the invocation assigns the return value
to a variable. In the example above, we use the rule
for a method call in an assignment where the target
is the safelet or mission sequencer (SR11). Since

there is only one safelet and mission sequencer in a
valid SCJ program, the corresponding channels are not
parametrised by a type-specific identifier.

For missions and handlers (SR13 and SR14), we
require an additional channel parameter to identify the
target object, as there potentially may be more than
one, namely if we have multiple missions and handlers.
The association of classes with identifiers is determined,
as already explained, by annotations which are created
during the analysis and configuration in Stage (1).

Finally, to define the behaviour of the application
process, we generate an action Methods (Fig. 22) that
offers to other processes the choice of calling one of the
interacting methods of the class.

Main Action. The main action is completely generic
and always has the same shape, firstly executing the
initialisation action Init , and then offering a call to one
of the methods until the process is terminated. Here,
we take advantage of the structural constraint that all
methods of active classes are synchronized. In cases
where the class does not have instance variables, like
the ACCSafelet class of the ACC, simplifications are
possible. They are obvious and thus their translation
rules are not further discussed here.

In addition to a process for each active class,
we moreover have to introduce declarations for the
method-channel pairs of non-infrastructure methods of
the class, since those are application specific. The
corresponding rules are applied independently of the
rules for translating classes into processes and give rise
to separate specification paragraphs in the generated
models. These rules are not very interesting though,
therefore a detailed discussion is omitted.

The Computer Journal, Vol. ??, No. ??, ????

30 F. Zeyda et al.

public void handleAsyncEvent() {

if (schedule_throttle) {

if (accelerating) {

increaseVoltage();

}

else {

if (maintainSpeed) {

int current_speed;

current_speed = speedo.getCurrentSpeed();

if (cruiseSpeed - current_speed > 2) {

increaseVoltage();

}

else if (cruiseSpeed - current_speed < -2) {

resetVoltage();

}

else { /* Remainder of the code is omitted! */ }

}

}

}

}

FIGURE 25. handleAsyncEvent() method of the ThrottleController class.

The translation rules for the mission sequencer and
missions are included in Appendix C; they are very
similar to the safelet rule just discussed. We have a
minor deviation in the main action of the translation
rule for a mission that ensures that the mission
application process is restarted after termination of the
mission so that the mission can be executed more than
once. The rule for handlers is more interesting: we
discuss it in more detail in the next section.

6.4. Handler Classes

Handler classes are essentially active classes. Their
model slightly differs though in terms of the process
structure. The translation rule for an aperiodic handler
is included in Fig. 26. It defines the translation of han-
dler classes that either extend AperiodicEventHandler

or AperiodicLongEventHandler.
Unlike in the process models for the safelet and the

mission sequencer, the coupling between process and
data object in handler processes is dynamic. Hence, we
introduce a channel communication J CName KNameInit
upon construction of a handler instance (see Fig. 26).
The handler process synchronises on this channel in
the Init action to establish the link to the underlying
OhCircus class object that captures the state and
data operations of the SCJ class. In the model of
the ACC, this is illustrated by the handler processes
in Fig. 19 and Fig. 20. The initialisation channels
these handlers synchronise on are EngineInit and
ThrottleControllerInit . At the point of synchronisation,
the OhCircus class objects have already been created
with their fields initialised by a class constructor.

The execution behaviour of handlers (defined by
Execute) is specified in a way that slightly differs from
the pattern for classes belonging to SMMC. This is

because we require additional active behaviour in order
to release the handler, in addition to offering calls to
interacting methods. As already said, Dispatch takes
care of both method calls and handler releases. It also
enables termination of the handler via a handler-specific
leave dispatch . h event, parametrised by a handler
identifier h. Execution starts with a synchronisation
on enter dispatch .h.

The function BoundEvents in Fig. 26 determines the
bound events of a handler class. For each handler class
of an application, we specify the bound events as part
of the analysis and configuration in Stage (1c).

When an external bound event occurs, the action
handleAsyncEvent , encoding the handler method, is
invoked. Its behaviour is determined by the body
HdlStmts of the handler method. We use an auxiliary
translation function J KHdlBody which is defined by

J HdlStmts KHdlBody =̂

wait J CName KName handleAsyncEventTB ;
this .handleAsyncEvent(inp)

if the handler method is a data operation, and by

J HdlStmts KHdlBody =̂ J HdlStmts KStmts

if the handler method interacts with external devices
or hardware. In the non-interacting case, translation
uses the encoding of the handler method as an OhCircus
method in the underlying OhCircus class. The constant
that is obtained by suffixing the class name with
handleAsyncEventTB specifies the time budget of the
handler. Otherwise, the method is given an action
model using J KStmts like other interacting methods.

The application process for a periodic event handler
requires a modification in the definition of Dispatch and

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 31

u

wwwwwwwwwwwwwwwwwww
v

class CName extends

AperiodicEventHandler {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public void handleAsyncEvent() {

HdlStmts

}

}

}

�������������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init =̂ J CName KInit ? obj −→ this := obj

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂

(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
handleAsyncEvent =̂ val inp • J HdlStmts KHdlBody

Execute =̂ enter dispatch . IdOf (CName)−→Dispatch

Dispatch =̂µX •

Methods @(

@ evt : BoundEvents(CName) •
evt ? inp −→ handleAsyncEvent(inp)

) ; X

@
leave dispatch . IdOf (CName)−→ skip

• (µX • Init ; Execute ; X)4 end mission fw −→ skip

end

FIGURE 26. Translation rule for classes extending the AperiodicEventHandler class.

a supplementary action Release. The corresponding
rule is included in Appendix C (Fig. C.5). There, the
handler is released by an internal handler-specific timer
event release handler . IdOf (CName) rather than an
external event, as it is the case for aperiodic handlers.

Having explained in detail how active classes are
given a process model, in the next subsection we
examine the translation of data objects.

6.5. Data Objects

We next define the translation of classes belonging
to the category DC. They do not interact with the
SCJ infrastructure or external devices. The high-level
translation rule for such classes is presented in Fig. 27.
The result of the translation is an OhCircus class. In
the rule, we assume that the class extends another class
CBase and explicitly calls one of its super constructors.
An alternative rule also exists for the simpler case
where we do not have inheritance. We omit its detailed
specification, which can be obtained by removing the
‘extends’ clauses in Fig. 27. We recall that active
classes, namely those in category SMMC and HC,
are also translated using the rules for data objects
since they give rise to both a process and an OhCircus
class (see Table 5.1). In active classes, however, only the
non-interacting methods are considered and neither do
we consider methods called by other active components.

The name of the OhCircus class is derived from the
name of the of Java class, suffixed with Class . As in the
rule for active classes, we first have a state paragraph
that determines the state of a class object. The state
paragraph is constructed from the declaration of non-
static instance variables of the class. The translation

functions J . . . KFields and J . . . KFieldInit apply to (lists
of) field declarations and are used to generate the
state components and the initialisation schema of the
class. Field initialisation takes place upon declaring
the variables and is captured by the J CName KNameInit
schema operation.

For J . . . KFields we have the rules in Table D.4 in
Appendix D. They make use of the functions J . . . KName

and J . . . KType that have already been mentioned,
and are specified in Appendix D, too. For field
initialisation, we have the rules in Table 8. There,
J FieldType KDefaultInit is defined to yield the default
value of a primitive type. We omit its definition, which
is in line with the Java language specification [44].

AccessModifier stands for any of the access modifiers
public, protected or private. The translation
of access modifiers is trivial as it merely replaces
them by the corresponding OhCircus keywords: public,
protected and private. These keywords enforce
similar visibility restrictions as in the Java language.
Notably, the private keyword reflects the particular
class-based semantics of private access adopted by Java.
We point out that we do not capture package access in
our model. Chiefly, because OhCircus does not have a
structuring notion equivalent to Java packages.

We recall that the function J . . . KExpr translates
an expression. An extract of its definition is in
Table D.3 in Appendix D. This is done in the usual
manner, encoding Java operators using corresponding Z
operators on primitive types. Because of the restrictions
in Section 6.1.2, and prior rewriting, an expression
cannot have side effects unless it is the right-hand of an
assignment. Therefore, all method calls that occur in

The Computer Journal, Vol. ??, No. ??, ????

32 F. Zeyda et al.

u

wwwwwwwwwwwwwwwww
v

class CName extends CBase {

FieldDecls

public CName(Args) {

super(SArgs);

InitStmts

}

DMethDecl1

DMethDecl2

. . .

}

}

�����������������
~

=̂

class J CName KNameClass =̂

extends J CBase KNameClass begin

state State == [J FieldDecls KFields]

FieldInit =̂ [State ′ | J FieldDecls KFieldInit]

initial J CName KNameInit =̂ val J Args KArgs •FieldInit;
J CBase KNameInit(J SArgs KExpr);
J InitStmts KStmts

J DMethDecl1 KDMethod

J DMethDecl2 KDMethod

. . .

end

FIGURE 27. Translation rule for a data object class.

Rule Application Result

IR1
s

FieldDecl
FieldDecls

{

FieldInit

J FieldDecl KFieldInit ∧ J FieldDecls KFieldInit

where FieldDecls is a non-empty list of field declarations

IR2 J AccessModifier FieldType FieldName ; KFieldInit J FieldName KName
′ = J FieldType KDefaultInit

IR3 J AccessModifier FieldType FieldName = Expr ; KFieldInit J FieldName KName
′ = J Expr KExpr

TABLE 8. Translation rules for field initialisations.

an expression can be modelled by OhCircus function
invocations. The corresponding rule for translating
method calls in expressions is as follows.

J Obj.Meth(Args) KExpr =̂

J Obj KExpr . J Meth KName(J Args KExpr)

It only applies to methods that are data operations
(non-interacting). Method calls that do provoke
side effects can only occur in the restricted forms
Obj.Meth(Args); and Var = Obj.Meth(Args); and a
specific rule is applied to the latter that introduces the
assigned value as a result parameter of the method.

The initial paragraph encodes the construction of
the class object. This involves field initialisation, the
invocation of the superclass constructor, and the state-
ments of the constructor. As we support constructors
with arguments, we have to account for them in the
translation. The auxiliary J . . . KArgs function yields the
parameter declarations corresponding to the call signa-
ture of a constructor or method. If applied to an argu-
ment tuple, J . . . KArgs distributes through that tuple. If
applied to a single argument, we have the rule below.

J Type Var KArgs =̂ J Var KName : J Type KType

For example, val J(String name, int age)KArgs eval-
uates to val name : StringClass ; age : int .

The constructor, whose body is given by InitStmts,
is translated into an OhCircus method. The function
J . . . KStmts is used again for this purpose. As before,
it translates a Java statement block. Here, however,

the result is the description of an OhCircus method
rather than an action. The rules in Table 7 nev-
ertheless still apply; for the translation of method
calls (Appendix D.6) we have a different rule that
translates them into OhCircus method calls rather than
synchronisations on Call and Ret channels.

In translating method declarations, we introduce the
function J . . . KDMethod rather than J . . . KAMethod since
there is a fundamental difference with respect to active
classes. It encodes a (non-static) class method as an
OhCircus method rather than an action.

J AccessModifier Type Meth(Args) { Body } KDMethod =̂

val J Args KArgs ; res ret : J Type KType • J Body KStmts

The main difference is that we do not have channel
communications as in Fig. 23. Instead, value and result
parameters are used for passing arguments and setting
the return value. The method body is translated by
J . . . KStmts (defined in Table 7). The rules for object
creation and method calls in Tables D.6 and D.7,
however, do not apply. Instead, we use the new and
method call constructs provided by OhCircus.

To conclude our account on the translation strategy,
we recall that certain methods are excluded from the
application of the translation rules. Namely, these are
the methods that carry out device or hardware accesses.
Here, annotations explicitly provide action models for
the methods, and these models are directly used in the
processes rather than the result of J . . . KAMethod .

In the next section we discuss implementation issues
and examine how translation of the ACC program is

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 33

Java Annotation Parameters Determines

@ActiveData none classes in category SMMC or HC

@PassiveData none classes in category DC

@InteractionClass none classes in category IC

@MissionId(id:String) id – mission identifier identifier of a mission class

@HandlerId(id:String) id – handler identifier identifier of a handler class

@BoundEvent

(
channel:String ,

type:String

)
channel – name of the channel

type – type of channel if present
external event bound to a handler

@BoundEvents BoundEvent[] events – set of events multiple events bound to a handler

@DeviceAccess(model:String) model – Circus model of the access action that models a device access

@InteractionCode(model:String)
model – Circus model if applicable

The default value for model is skip.
fields and methods for interaction code

@Ignore none explicitly ignored program elements

TABLE 9. Java annotations to configure the translation of SCJ programs.

performed automatically by our tool.

7. AUTOMATIC TRANSLATION

To automate the translation of SCJ programs into
Circus models according to the rules presented in
the previous section, we have developed a translation
tool. It takes a translatable program according to the
restrictions in Section 6.1 as an input and produces a
collection of Circus specification files, encoded in the
LATEX mark-up format understood by the Circus parser
of the Community Z Tools (CZT) [34]. Our tool is
freely available from the hiJaC project page: http:

//www.cs.york.ac.uk/circus/hijac/tools.html.
The translator tool is implemented in Java and

takes advantage of a number of third-party utilities
and libraries. They are specifically the Compiler
API of the JDK 7 [46], JSR 308, which extends the
capabilities of Java’s annotation mechanism [47], and
the FreeMarker template engine [48]. Our tool design
facilitates modifications and extensions of the translator
and defines a clean component framework in which the
core translator is traceable to our rules.

The configuration of the translation in Stage (1), as
already explained, is realised by a set of custom Java
annotations. They are summarised in Table 9. We
discuss their individual purpose in the next section.

7.1. Annotation Framework

We can categorise the annotations into four groups.

1. Annotations that determine the categories of Java
classes. In this group, we have @ActiveData for
both SMMC and HC, @PassiveData for DC and
@InteractionClass for IC.

2. Annotations that specify identifiers of SCJ classes
in the Circus model. Here, we have @MissionId and
@HandlerId. These annotations apply to classes
only and have to be provided for all mission and
handler classes of an SCJ application.

3. Annotations that associate external events with the
handlers that are released by them. These are
@BoundEvent and @BoundEvents.

4. Annotations that specify action models for device
access and hardware interaction code. These are
@DeviceAccess and @InteractionCode.

In addition, we included an extra annotation @Ignore

above to tag elements of the program that ought
to be explicitly ignored during model construction.
We apply it, for instance, to method parameters of
type AperiodicEvent, which we do not model, or
calls to super constructors of handlers. We observe
that Java does not allow multiple annotations of the
same type on an element, which is why we require
@BoundEvents in addition to @BoundEvent. The former
simply aggregates annotations of the latter type.

There are no annotations in group (1) to determine
membership of classes to the categories SMMC and
HC per se since this can be easily determined by
examining the class types. Classes that are annotated
by @InteractionClass are ignored by the translator.

We point out that our annotations at present assign
handler and mission identifiers to classes rather than
their instances. For the examples we consider, this is
sufficient. The integration of instance-based identifiers
is work in progress and complicated by the fact that
Java does not permit the annotation of individual
statements such as the construction of an object.

In group (4), the @DeviceAccess annotation allows
us to define an action model for an explicit device
or hardware access. For instance, in the cruise
controller, we have the function writeVoltage() in the
ThrottleController class, which communicates on the
set voltage channel to output a voltage value to the
throttle. The model of the device access is provided to
the annotation as a String, by the model parameter.
It usually is a prefix with possibly additional timing
constraints attached to it. The annotation enables
us to abstract from the low-level mechanics of the

The Computer Journal, Vol. ??, No. ??, ????

34 F. Zeyda et al.

@ActiveData
@MissionId("ACCMId")
class ACCMission extends Mission {

/* Aperiodic Events */
@InteractionCode private AperiodicEvent shaft_event;
@InteractionCode private AperiodicLongEvent engine_event;
@InteractionCode private AperiodicLongEvent brake_event;
@InteractionCode private AperiodicLongEvent gear_event;
@InteractionCode private AperiodicLongEvent lever_event;

/* Interrupt Service Routines */
@InteractionCode private WheelShaftISR shaft_isr;
@InteractionCode private EngineISR engine_isr;
@InteractionCode private BrakeISR brake_isr;
@InteractionCode private GearISR gear_isr;
@InteractionCode private LeverISR lever_isr;

@InteractionCode
private void createEvents() {

shaft_event = new AperiodicEvent();
engine_event = new AperiodicLongEvent();
/* ... */

}

@InteractionCode
private void createISRs() {

shaft_isr = new WheelShaftISR(shaft_event);
engine_isr = new EngineISR(engine_event);
/* ... */

}

@InteractionCode
private void registerISRs() {

shaft_isr.register();
engine_isr.register();
/* ... */

}

@InteractionCode
private void unregisterISRs() {

shaft_isr.unregister();
engine_isr.unregister();
/* ... */

}

public void initialize() {
createEvents();
createISRs();
registerISRs();
/* Create event handlers and data objects. */
WheelShaft shaft = new WheelShaft(shaft_event);
SpeedMonitor speedo = new SpeedMonitor(shaft, 500);
ThrottleController throttle = new ThrottleController(speedo);
Controller cruise = new Controller(throttle, speedo);
Engine engine = new Engine(cruise, engine_event);
Brake brake = new Brake(cruise, brake_event);
Gear gear = new Gear(cruise, gear_event);
Lever lever = new Lever(cruise, lever_event);
/* Register event handlers with the mission. */
shaft.register();
engine.register();
brake.register();
gear.register();
lever.register();
speedo.register();
throttle.register();

}

public void cleanup() {
unregisterISRs();

}

public long missionMemorySize() {
return 131072;

}
}

FIGURE 28. Annotated version of the ACCMission class of the cruise controller.

code as it encapsulates assumptions we make about
the nature of interactions. The obligation to justify
these assumptions rests, as previously noted, with the
engineer writing the annotation and this is one of
the few tasks that require insight and understanding
of the execution environment. We note that the
annotation @InteractionCode, like @DeviceAccess,
permits the optional specification of a model for the
code, too. This is for generality as one may envisage
situations where hardware configuration code performs
initialisation or finalisation steps that correspond to
actual communications with the external environment;
in our example, this is not the case though.

The @InteractionCode annotation enables us to
make a finer distinction in tagging parts of the program
that correspond to code that is needed to configure
interrupts and hardware devices and thus usually
ignored. It applies to methods and fields and typically
identifies methods that create and register interrupt
service routines, either for the entire application, or
alternatively, single missions. Since standard Java
does not support the annotation of individual program
statements, we generally require that such interaction
code is encapsulated cleanly into methods. This can
always be achieved by refactoring, and the annotation
stage normally reveals whether there is a need for it.

As suggested earlier on, it should be feasible to
automate a significant portion of the annotation
process. For instance, certain SCJ classes could by

default be annotated as active objects, like those
derived from Safelet, MissionSequencer, Mission,
and so on. Other classes may similarly be automatically
annotated as interaction classes, like those deriving
from InterruptServiceRoutine. The identifiers for
missions and handlers could, in principle, also be
derived automatically. We observe, however, that the
process could be challenging to automate as a whole
due to the fact that human insight and understanding
of the technology is required to specify the models for
device interaction and to testify that the assumptions
of atomic and instantaneous interactions are met.

In the next section we illustrate the use of the
annotations presented above in the ACC.

7.2. Example: the Cruise Controller

In the ACC program, the classes ACCSafelet and
ACCMissionSequencer require only @ActiveData an-
notations. This is because they have very simple im-
plementations that do not include any code related
to interaction with hardware or configuration of in-
terrupt service routines. More interesting is the class
ACCMission, which is presented in Fig. 28. Apart from
the initialize() and cleanup() methods called by
the infrastructure to initialise and finalise the mission,
several additional methods deal with the creation and
registration of interrupt service routines (ISRs). The
ISRs are held by the instance variables shaft isr,

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 35

@InteractionClass

public class EngineISR extends InterruptServiceRoutine {

protected final AperiodicLongEvent engine_event;

public EngineISR(AperiodicLongEvent event) {

super("EngineISR");

engine_event = event;

}

public void handle() {

disableInterrupts();

/* Determine external event that raised the interrupt. */

long cause = ... ;

engine_event.fire(cause);

/* Interrupts are re-enabled by the aperiodic handler. */

}

public void disableInterrupts() {

/* Disable further interrupts from arriving. */

}

}

FIGURE 29. Example of an interaction class (ISR) in the cruise controller application.

engine isr, and so on. The fields are annotated with
@InteractionCode since we do not model them in the
generated Circus application process and OhCircus class.
Here, the ISRs essentially fire aperiodic (long) events
that are bound to the aperiodic handlers of the mission.
An example of a class for an interrupt service routine
is included in Fig. 29. The constructor of the class is
parametrised in terms of the AperiodicLongEvent in-
stance that must be fired when the interrupt occurs,
and the handler code defined by the handle() method
simply fires this event prior to determining the cause of
the interrupt (the actual code for this is omitted).

We observe that the class EngineISR is annotated
with @InteractionClass to determine its membership
to the category IC of interaction classes; in the
model generation process, it is thus ignored. Likewise,
the four methods createEvents(), createISRs(),
registerISRs() and unregisterISRs() defined inside
the ACCMission class (Fig. 28) are annotated with
@InteractionCode. This tells the translator that we
do not model these methods either.

Importantly, the implementation of the EngineISR

class justifies the assumptions we make about atomicity
of interactions, modelled by synchronisations. We have
a call to disableInterrupts() at the beginning of the
interrupt handler to disable further interrupts from the
engine to guarantee atomicity of the interaction (the
actual code for this is omitted for brevity). We can
moreover think of a few appropriate design patterns
for the ISRs, but ultimately it is the obligation of the
engineer to validate the assumptions. Although this is
an important issue in its own right, a detailed discussion
is beyond the scope and contribution of this article.

Apart from identifying interaction code, we also

have to annotate the ACCMission class with the
identifier of the mission (here ACCMId). Likewise, all
handlers have to be annotated with the identifier of
the respective handler. An example of an annotated
handler class is presented in Fig. B.1 in Appendix B.
We have an annotation @HandlerId to specify the
unique identifier of the handler. In addition, the
@BoundEvent annotation determines the external event
that the handler is bound to. We recapture it below.

@HandlerId("EngineHId")

@BoundEvent(value="engine", type="boolean")

public class Engine extends

AperiodicLongEventHandler {

...

}

External events that release the handler are syn-
chronisations on the channel engine of type boolean.
Apart from this, the handler also contains interac-
tion code that is not modelled. This is the method
enableInterrupts(), which reenables the interrupts
after they have been disabled by the interrupt service
routine. This design ensures that no external event can
intervene between the occurrence of an interrupt and
release of the corresponding handler. As noted before,
it justifies our assumption of atomic interactions. We
note that this mechanism is essential for the correctness
of the program in general. In other words, it was not
introduced for reasons of applying our technique.

A second annotation we require is on one of the
parameters of the constructor, namely engine event

of type AperiodicLongEvent. This is because
we do not model SCJ event classes. In the
program, they are used merely as a means to an
end: whereas interrupts represent the actual external

The Computer Journal, Vol. ??, No. ??, ????

36 F. Zeyda et al.

@DeviceAccess("set_voltage~!~voltage \\then \\Skip")

private synchronized void writeVoltage() {

final long SET_VOLTAGE_REG = 0x1234;

try {

RawIntegralAccess io_port =

RawMemory.createRawIntegralInstance(

RawMemory.IO_PORT_MAPPED, SET_VOLTAGE_REG, 1);

/* Write out voltage to the throttle as a single byte. */

io_port.setByte(0, (byte) (voltage * 10));

}

catch (Exception e) { }

}

FIGURE 30. External device access in the ThrottleController handler.

event being raised, instances of AperiodicEvent and
AperiodicLongEvent are used to release the aperiodic
handler that is associated with the event.

A more interesting example is the periodic handler
ThrottleController. Here, we have an explicit exter-
nal device access, namely to write out the voltage to the
throttle. This is done by a method writeVoltage()

from within the class. Fig. 30 recaptures the definition
of this method. Most importantly, we have an annota-
tion @DeviceAccess that specifies the action model for
the device access: here an output prefix on set voltage.
We observe that the use of a try/catch statement in
the method body is not in contradiction with the lan-
guage constraints in Section 6.1.2 because we permit
such statements in interaction code. Runtime excep-
tions should, however, not be thrown beyond the entry
point of interaction methods. Program error excep-
tions may be thrown, though, and are modelled by the
divergent action abort.

In summary, we conclude that specifying the
annotations for the ACC inherently does not require
notable expertise in the formal modelling notation.
It merely requires the developer to identify code
for interaction and device access. The annotation
framework, due to its generality, also paves the way for
custom extensions to treat other features of SCJ that
are currently not catered for by our modelling approach.
For instance, the @InteractionCode annotation may
be used to specify the behaviour of code that utilises
console I/O. The general benefit of our approach is that
it allows us to abstract from the details of a piece of
SCJ code (encapsulated in a method) by providing a
specification of its behaviour as an action. Exploring
this further is an interesting topic for future work.

7.3. Implementation Issues

The translator takes as its input the annotated SCJ
program, as for now we do not provide any support for
automating the annotation process. In order to match
the high-level translation rules (Appendix C), the tool
has to determine the superclasses and implemented
interfaces of active classes, namely those annotated with

@ActiveData and thus belonging to either SMMC or
HC. We recall that our annotations do not encode the
precise type of an SCJ application class. Specifically,
the type can be extracted from the annotated syntax
tree that is obtained using the Compiler API of the
JDK 7. We extend this analysis further by verifying the
constraints defined in Section 6.1 and the consistency
of the annotations introduced. Inconsistencies or
violations detected by the tool are reported to the
user and abort the model generation process. Such
failures normally reveal the need for refactoring the code
and reviewing the annotations that have been inserted.
The main challenge is to determine whether methods
require action models or can be given a model as a data
operation. In general, action models are required for
the following types of methods.

1. Methods that are called by the SCJ infrastructure.
These are typically methods that override classes
or interfaces of the SCJ component framework.

2. Methods that carry out device or hardware accesses
and, therefore, are correspondingly annotated.

3. Methods that call, directly or indirectly, other
methods that requires an action model.

With regards to (1), we can easily determine methods
that fall into this category by examining their name
and signature. For (2), we can determine the relevant
methods by probing type information in the annotated
syntax tree of the program, as this information retains
annotations defined on the various kinds of program
elements. In order to determine methods of the third
type above, we have to perform a control flow analysis
based on the call-dependency of methods. For this, we
have implemented a general utility to encode binary
relations over arbitrary types and to facilitate efficient
calculation of their closure. Hence, it is possible to
automate the decision whether a method requires an
action model, eliminating the need for annotations.

Model generation combines Stage (2) and Stage (3)
of the translation process. For technical reasons, we
do not rewrite the code in Stage (2), but directly define
translation rules that take the rewrite rules in Fig. 6 into
account during low-level statement translation. APIs

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 37

hijac.scj.analysishijac.scj.compiler hijac.scj.checker hijac.scj.modelgen

hijac.scj.application hijac.scj.collections hijac.scj.comparatorshijac.scj.utils

Annotated

SCJ Program

Circus Application

Model (LaTeX)

Parsing and

Type-checking

Analysis

(Control Flow)

Compliance

Check

Circus Model

Generation

Executable Tool

Application(s)

General Utility

Components Extensions to the Collections API (Relation class).

Applications make use of the above components

Input of the Tool Output of the Tool

FIGURE 31. Top-level package view of your tool architecture.

for automatic code rewriting exist [49], but their use
introduces unnecessary complexity in our tool.

Our tool consists of a number of components that
perform essential processing tasks. They are illustrated
in Fig. 31. The compiler package addresses the parsing
and type-checking of the SCJ program; it uses existing
JDK tools. The analysis package provides a facility
for analysing the parsed program; it infers and records
information that is later needed for the translation.
The checker package performs a validity check of
the SCJ program to ensure it belongs to the subset
of translatable programs as defined in Section 6.1.
The modelgen package provides components that carry
out the actual generation of the model. Finally,
apart from the four packages above, we also have
the application package, which includes the top-level
tool application, as well as the utils package, which
provides various collections of utility functions. The
remaining packages collections and comparators

extend the Java collection API, most notably with an
efficient implementation of mathematical relations.

The translator itself is implemented by virtue of a
framework that realises a plugin architecture. The
translator as a whole therefore consists of a collection
of smaller translator plugins. Each translator plugin
caters for the construction of a particular part of the
model and exhibits a dependency on other translator
plugins that have to be executed before it. Hence,
we have, for instance, plugins that cater for the
definition of channels, the introduction of axiomatic
constants for handler and mission identifiers, and the
construction of processes for active components and
OhCircus classes for data objects. Translator plugins
are provided by implementing an interface Translator

in our tool framework: the implementation determines
applicability of the translator, dependency to other
translators, and the actual output produced, as well

as the file(s) to which the output is appended.

High-level Translation. High-level translation imple-
ments the rules in Appendix C (there is a plugin for
each rule). The plugins make use of string templates
and the FreeMarker library. String templates, in gen-
eral, offer a clean way of isolating static and dynamic
aspects of any kind of textual patterns. Here, in partic-
ular, they offer traceability to the formal specification
of the rules. Template models, which are certain kinds
of classes of the FreeMarker API, make dynamic in-
formation available from within the templates that is
needed by the rules, such as the functions IdOf, TypeOf
or BoundEvents used in the right-hand side of the high-
level translation rules. We take advantage here of the
expressibility and extendibility of the FreeMarker tem-
plate language to deal with special cases, and hence
reduce the number of rules potentially needed.

Low-level Translation. Low-level translation realises
the translation of statements, expressions, values and
types. Although we specify these as templates as before,
the translation is driven by visitors, which are used
by the high-level translator plugins. Visitors are a
general design pattern that supports the traversal of
tree structures, and the JDK Compiler API comes with
its own implementation of the pattern. We make use
of two visitors, one that produces an action model and
one that produces a data operation (OhCircus method).

Overall the translation process and tool seem to
be robust and stable. Clean and sound software
design principles, which isolate concerns like parsing,
analysis, validation and translation into loosely-coupled
components, ensure that the tool can be easily
extended and modified, satisfying future needs of
further elaborating our models by including features of
SCJ that are currently not supported.

The Computer Journal, Vol. ??, No. ??, ????

38 F. Zeyda et al.

8. CONCLUSION

As far as we know, what we have presented here is the
first formalisation of the SCJ paradigm. Our models
capture the essence of its design, and are an essential
asset for analysis and development techniques for SCJ
programs based on refinement. There are a number
of refinement-based techniques that are enabled by the
availability of a formal model of SCJ in a state-rich
process algebra. Particular techniques for Circus are
reported in [21, 39, 50, 51], and techniques for languages
of the same line are also reported in [52, 53, 54, 55].
The translation of the Circus model to work with tools
supporting these techniques is a much easier exercise
than the translation from the SCJ program directly.

Our models are in line with the SCJ technology
specification in the absence of deadline-miss situations,
which we do not consider. We hence assume that
scheduling analysis and environmental assumptions
about external interactions ensure that these situations
essentially cannot occur. Imperfection or imprecision of
timing evidence therefore already has to be accounted
for at the level of scheduling analysis, which is currently
a caveat for using our models.

A notable achievement is our solution to encode
active class behaviour and data objects as independent
dimensions. This increases the modularity of models
and provides opportunities for modular reasoning, but
also emphasises the need for an integrated formalism
including constructs of OhCircus and Circus Time.

To validate the framework and application models,
we have translated the respective Circus processes
into pure CSP models, which we then submitted to
the FDR [33] model checker. The CSP translation
encapsulates all Circus state into process parameters.
Timing aspects are ignored, and so is the detailed
application-level behaviour of handlers. Apart from
this, the CSP model retains exactly the structure of
the corresponding Circus model. CSP processes, like
handlers field below, are used to encapsulate individual
state components of a Circus process.

channel handlers get : Set(HandlerId)
channel handlers set : Set(HandlerId)

handlers field(v) =
handlers get ! v −→ handlers field(v) @
handlers set ? v −→ handlers field(v)

The CSP process handlers field(v) encapsulates, for
instance, the state component handlers of the process
MissionFW in Fig. 10, where v determines its initial
value. Channel communications on handlers get and
handlers set are now used to read and write to the
state component. For each state component of a Circus
process, we define a CSP process similar in shape to
handlers field(v). Their parallel composition yields a
model for the entire state, and that model is further
composed with a translation of the local actions and
main action of the Circus process. (Local definitions

can be easily supported in CSP via let constructs.)
The resulting CSP process, after hiding the channels

used for reading and modifying state components,
exhibits precisely the behaviour of the original Circus
process under CSP’s failure-divergence semantics, and
besides is amenable to model checking and, in addition,
animation via tools such as FDR [33] and ProB [56].

Properties that we examined and validated are
deadlock freedom and termination of several simplified
application scenarios. Carrying out these checks for
the entire ACC model would have been theoretically
possible, but is thwarted by the complexity of the
CSP models due to state explosion. Assertions of the
following form have been used to establish termination.

skip vFD (System J Events K TestEnv) \ Events

The System process refers to the process of the SCJ
application, and Events are the channels used for
external interactions. The TestEnv process provides a
testing environment for the application scenario that
interacts through the external channels.

Our validation efforts proved to be valuable in
identifying subtle issues in earlier versions of our
models. For instance, in the MissionFW process
in Fig. 10, we formerly made use of an interrupt
(. . .) 4 initializeRet .mission −→ skip in the Initialize
action to terminate that action. Model checking
revealed a race condition that can result in a registered
handler not being recorded in the state. Problems
like these are difficult to diagnose a posteriori using
testing-based validation approaches due to the amount
of nondeterminism in SCJ program executions, as it
naturally arises from the parallelism of handlers. Our
models are essentially modular, and this enables and
facilitates model checking to focus on particular parts
of the model in isolation, both in terms of the framework
and application processes.

More generally, there are nonetheless limitations to
translating Circus into CSP. These apply, in particular,
when modelling composite values and data operations.
In our case, however, we could, model the entire SCJ
framework. The feedback we obtained using FDR
increases the confidence in our our models; this is
further enhanced by the many discussions we had with
experts in the SCJ technology.

To validate the tool, we have used it to generate the
model of the ACC. This produces a Circus model that
can be parsed and type-checked. The implementation of
the tool per se supports our claim that models can be
generated automatically. We are currently evaluating
and testing the tool with further examples, in particular
the collision detector in [36].

The direct correspondence between SCJ programs
and our models enables automation in both direc-
tions: the framework processes are the same for all pro-
grams, and the application processes use a fixed mod-
elling pattern. As part of our wider research agenda, we

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 39

are also developing a complementary tool that trans-
lates Circus models into SCJ programs. That tool will
be useful if no implementation is a priori given, but can
be designed ad lib from a specification. The reason we
did not develop that tool first is that our current work
is illuminating in identifying the features of SCJ that
can be supported by our formalisms.

Related Work. Although there are many approaches
and tools to reason about object-oriented programs
and Java [57, 58], they do not cater for the
specificities of concurrency in SCJ. Brooke et al. present
a CSP specification for a concurrency model for
Eiffel (SCOOP) [59]. Their CSP specification shares
some basic ideas with our Circus models, but is
necessarily more complex due to its generality. A recent
work [60] examines test generation with strong coverage
criteria; part of it is a formal specification of classes and
methods in the Real-Time Java API.

Kalibera et al. [61] are concerned with scheduling
analysis and race conditions in SCJ programs, but do
not use proof-based techniques. Instead, exhaustive
testing and model checking is applied.

Annotation-based techniques for SCJ can be found
in [18, 62]. In [18] annotations are used to check for
compliance with a particular level of SCJ, and for safe
use of memory. Haddad et al. define SafeJML [62],
which extends JML [57] to cover timing properties.
It reuses existing technology for worst-case execution-
time analysis in the context of SCJ. Our model is a
conceivable candidate to justify the soundness of checks
supported by the annotations and tools above.

Future Work. Our primary future work is to elaborate
the model and translation to account for additional
features of SCJ that for now have been ignored. This
is, in particular, memory management, timing-related
classes, and the support for active objects, that is,
data objects that interact with either the hardware or
framework. So far we have excluded this possibility as
it did not arise in our examples, but one might envisage
cases where support for such objects is desirable, like,
for instance, a file class that represents data and at
the same time interacts with a physical disk. We are
currently considering a solution that provides a limited
facility to model data objects as a combination of class
and process, just like active components of the SCJ
mission model. Additional restrictions to be imposed
on such objects are still largely an open issue.

Another future work is to tackle issues of robustness
by dealing with missed deadlines. SCJ offers support
to detect and react to such situations in the program.
Or models, however, currently do not formally capture
this feature, mostly as it appears to be more challenging
to integrate and we do not have SCJ applications that
exploit it. Modelling it, however, enables the support
for a larger class of implementations.

Our structural constraints restrict program designs.

In particular, they prevent us from making effective
use of subclassing where SCJ components are involved.
This may have implications on modularisation and
reuse of verification arguments, for instance, in view
of product lines. We also hope to address this issue in
future research once more experience has been gained
in constructing verification arguments.

Our long term goal is the definition of refinement-
based techniques for SCJ program development. Like
in the Circus standard technique [21], we will devise
a refinement strategy to transform centralised abstract
Circus Time models into an SCJ model as described
here. The development of this strategy, and the proof of
the refinement rules that it will require are a challenging
aspect of this endeavour; initial results have been
published in [35]. This involves the identification of
refinement and modelling patterns. All this shall also
provide further practical validation of our model.

ACKNOWLEDGEMENTS

We are grateful to Chris Marriott, Kun Wei, and Jim
Woodcock for useful discussions of our models. This
work is funded by the EPSRC grant EP/H017461/1.

REFERENCES

[1] Søndergaard, H., Thomsen, B., and Ravn, A. P. (2006)
A Ravenscar-Java Profile Implementation. Proceedings
of the 4th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2006,
Paris, France, 11–13 October, pp. 38–47. ACM, New
York, NY, USA.

[2] The Open Group (2011) Safety Critical Java Tech-
nology Specification. Technical Report JSR-302. Java
Community Process. Available from http://jcp.org
/aboutJava/communityprocess/edr/jsr302/.

[3] Cinnober Stockholm, Sweden (2012). The benefits of
using Java as a high-performance language for mission
critical financial applications. White paper available
at http://www.cinnober.com/news/benefits-using-
java-highperformance-language.

[4] atego (2012). Aonix Perc Pico. Product information
and datasheet available at http://www.atego.com/pro
ducts/aonix-perc-pico/.

[5] DO-332 (2011) Object-Oriented Technology and Re-
lated Techniques Supplement to DO-178C and DO-
278A. Technical Report. RTCA Inc., Washington, DC,
USA. Available at http://www.rtca.org.

[6] DO-178C (2011) Software Considerations in Airborne
Systems and Equipment Certification. Technical Re-
port. RTCA Inc., Washington, DC, USA. Available
at http://www.rtca.org.

[7] Walter, A. (2010) Towards Certification of Java
Applications for Safety Critical Projects. Proceedings
of Embedded Real-Time Software and Systems, ERTS2

2010, Toulouse, France, 19–21 May, pp. 1–7. Available
online at http://web1.see.asso.fr/erts2010/Defaul
t.aspx-Id=973-Idd=982.htm.

[8] Hunt, J. (2010) Realtime Java Technology in Avionics
Systems. Proceedings of the 8th International

The Computer Journal, Vol. ??, No. ??, ????

40 F. Zeyda et al.

Workshop on Java Technologies for Real-Time and
Embedded Systems, JTRES 2010, Prague, Czech
Republic, 19–21 August, pp. 138–147. ACM, New York,
NY, USA.

[9] NIST Special Publication 500-243 (2000) Requirements
for Real-time Extensions for the Java Platform: Report
from the Requirement Group for Real-time Extension
for the Java Platform. Technical Report. National
Institute for Standards and Technology, Gaithersburg,
MD 20899-1070, USA. Available at http://www.itl.n
ist.gov/lab/specpubs/sp500.htm.

[10] Wellings, A. (2004) Concurrent and Real-Time Pro-
gramming in Java. Wiley, Hoboken, NJ, USA.

[11] Tofte, M. and Talpin, J.-P. (1997) Region-Based
Memory Management. Information and Computation,
132, 109–176.

[12] Armbruster, A., Baker, J., Cunei, A., Flack, C.,
Holmes, D., Pizlo, F., Pla, E., Prochazka, M., and
Vitek, J. (2007) A Real-Time Java Virtual Machine
with Applications in Avionics. ACM Transactions on
Embedded Computing Systems, 7, 5:1–5:49.

[13] Pizlo, F., Ziarek, L., and Vitek, J. (2009) Real Time
Java on resource-constrained platforms with Fiji VM.
Proceedings of the 7th International Workshop on Java
Technologies for Real-Time and Embedded Systems,
JTRES 2009, Madrid, Spain, 23–25 September, pp.
110–119. ACM, New York, NY, USA.

[14] aicas GmbH Karlsruhe, Germany (2012) JamaicaVM
6.2 — User Manual. Java Technology for Critical
Embedded Systems. Available at http://www.aicas.c
om/jamaica.html.

[15] Bruno, E. J. and Bollella, G. (2009) Real-Time
JavaTMProgramming with Java RTS. Prentice Hall,
Upper Saddle River, NJ, USA.

[16] IBM (2012). WebSphere Real Time. Product
information available at http://www-03.ibm.com/softw
are/products/us/en/real-time.

[17] Henties, T., Hunt, J., Locke, D., Nilsen, K., Schoeberl,
M., and Vitek, J. (2009) Java for Safety-Critical
Applications. Proceedings of the 2nd International
Workshop on the Certification of Safety-Critical Soft-
ware Controlled Systems (SafeCert 2009), York, UK,
29 March.

[18] Tang, D., Plsek, A., and Vitek, J. (2010) Static Check-
ing of Safety Critical Java Annotations. Proceedings of
the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2010,
Prague, Czech Republic, 19–21 August, pp. 148–154.
ACM, New York, NY, USA.

[19] Burns, A. (1999) The Ravenscar Profile. ACM SIGAda
Ada Letters, XIX, 49–52.

[20] Woodcock, J. and Cavalcanti, A. (2001) A Concurrent
Language for Refinement. Proceedings of the 5th Irish
Workshop on Formal Methods, IW-FM’01, Dublin,
Ireland, 16–17 July, pp. 93–115. BCS, Swindon, UK.

[21] Cavalcanti, A., Sampaio, A., and Woodcock, J. (2003)
A Refinement Strategy for Circus. Formal Aspects of
Computing, 15, 146–181.

[22] Spivey, J. M. (1992) The Z Notation: A Reference
Manual. Prentice Hall, Upper Saddle River, NJ, USA.

[23] Hoare, C. A. R. (1985) Communicating Sequential
Processes. Prentice Hall, Upper Saddle River, NJ, USA.

[24] Morgan, C. C. (1998) Programming from Specifications.
Prentice Hall, Upper Saddle River, NJ, USA.

[25] Oliveira, M., Cavalcanti, A., and Woodcock, J. (2009)
A UTP semantics for Circus. Formal Aspects of
Computing, 21, 3–32.

[26] Cavalcanti, A., Clayton, P., and O’Halloran, C. (2011)
From control law diagrams to Ada via Circus. Formal
Aspects of Computing, 23, 465–512.

[27] Marriott, C., Zeyda, F., and Cavalcanti, A. (2012) A
Tool Chain for the Automatic Generation of Circus
Specifications of Simulink Diagrams. Proceedings of
the Third International Conference on Abstract State
Machines, Alloy, B, VDM, and Z, ABZ 2012, Pisa,
Italy, 18–21 June, LNCS, 7316, pp. 294–307. Springer-
Verlag, Berlin.

[28] Hoare, C. A. R. and Jifeng, H. (1998) Unifying Theories
of Programming. Prentice Hall, Upper Saddle River,
NJ, USA.

[29] Cavalcanti, A., Sampaio, A., and Woodcock, J. (2005)
Unifying classes and processes. Software and Systems
Modeling, 4, 277–296.

[30] Cavalcanti, A., Wellings, A., and Woodcock, J.
(2011) The Safety-Critical Java Memory Model: A
Formal Account. Proceedings of the 17th International
Symposium of Formal Methods, FM 2011, Limerick,
Ireland, 20–24 June, LNCS, 6664, pp. 246–261.
Springer-Verlag, Berlin.

[31] Wellings, A. and Kim, M. (2010) Asynchronous Event
Handling and Safety Critical Java. Proceedings of
the 8th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2010,
Prague, Czech Republic, 19–21 August, pp. 53–62.
ACM, New York, NY, USA.

[32] Issue 4.8 (2008) SPARK 95 – The SPADE Ada
95 Kernel. Technical Report. Praxis High Integrity
Systems Ltd, Bath, BA1 1PX, UK.

[33] Formal Systems (Europe) Ltd Oxford, UK (2010)
Failures-Divergence Refinement, FDR2 User Manuel.
Available from http://www.fsel.com/documentation
/fdr2/fdr2manual.pdf.

[34] Malik, P. and Utting, M. (2005) CZT: A Framework
for Z Tools. Proceedings of the 4th International
Conference of Z and B Users, ZB 2005, Guildford, UK,
13–15 April, LNCS, 3455, pp. 65–84. Springer-Verlag,
Berlin. See also http://czt.sourceforge.net.

[35] Zeyda, F., Cavalcanti, A., Wellings, A., Woodcock,
J., and Wei, K. (2012) Refinement of the Parallel
CDx . Technical report. University of York, York, UK.
Available from http://www.cs.york.ac.uk/circus/pub
lications/techreports/index.html.

[36] Cavalcanti, A., Zeyda, F., Wellings, A., Woodcock, J.,
and Wei, K. (2013) Safety-critical Java programs from
Circus models. Real-Time Systems, Currently under
publication, no volume and page number yet.

[37] Zeyda, F., Cavalcanti, A., and Wellings, A. (2011) The
Safety-Critical Java Mission Model: A Formal Account.
Proceedings of the 13th International Conference on
Formal Engineering Methods, ICFEM 2011, Durham,
UK, 26–28 October, LNCS, 6991, pp. 49–65. Springer-
Verlag, Berlin.

[38] Hatley, D. J. and Pirbhai, I. A. (1987) Strategies
for Real-Time System Specification. Dorset House
Publishing, New York, NY 10014, USA.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 41

[39] Oliveira, M. (2005) Formal Derivation of State-
Rich Reactive Programs using Circus. PhD thesis
Department of Computer Science, University of York
York, UK.

[40] Dijkstra, E. W. (1976) A Discipline of Programming.
Prentice Hall, Upper Saddle River, NJ, USA.

[41] Sherif, A., Cavalcanti, A., Jifeng, H., and Sampaio, A.
(2010) A process algebraic framework for specification
and validation of real-time systems. Formal Aspects of
Computing, 22, 153–191.

[42] Bouyer, P., Larsen, K. G., Markey, N., Sankur,
O., and Thrane, C. (2011) Timed Automata Can
Always Be Made Implementable. Proceedings of the
22nd International Conference on Concurrency Theory,
CONCUR 2011, Aachen, Germany, 5–10 September,
LNCS, 6901, pp. 76–91. Springer-Verlag, Berlin.

[43] Cavalcanti, A., Wellings, A., Woodcock, J., Wei, K.,
and Zeyda, F. (2011) Safety-Critical Java in Circus.
Proceedings of the 9th International Workshop on Java
Technologies for Real-Time and Embedded Systems,
JTRES 2011, York, UK, 26–28 September, pp. 20–29.
ACM, New York, NY, USA.

[44] Gosling, J., Joy, B., Steele, G. L., and Bracha,
G. (2005) Java (TM) Language Specification, Third
Edition. Addison-Wesley Professional, Boston, MA,
USA.

[45] Oliveira, W. R. and Barros, R. S. M. (1997) The Real
Numbers in Z. Proceedings of the 2nd BCS-FACS
Northern Formal Methods Workshop, Ilkley, UK, 14–
15 July, pp. 1–15. BCS, Swindon, UK.

[46] Oracle California, USA (2011) Java Platform Standard
Edition 7 Documentation. Available at http://docs.o
racle.com/javase/7/docs/.

[47] Ernst, M. D. (2013) Type Annotations Specification.
Technical Report JSR-308. Java Community Process.
Available at http://jcp.org/aboutJava/communitypr
ocess/edr/jsr308/.

[48] FreeMarker Project (2012) FreeMarker Manual, 2.3.19
edition. Available at http://freemarker.org/docs/.

[49] Fuhrer, R. M., Keller, M., and Kiezun, A. (2007)
Advanced Refactoring in the Eclipse JDT: Past,
Present, and Future. Proceedings of the First Workshop
on Refactoring Tools, WRT 2007, Berlin, Germany, 30
July–3 August, pp. 30–31.

[50] Zeyda, F. and Cavalcanti, A. (2010) Automating
Refinement of Circus Programs. Proceedings of the 13th
Brazilian Symposium on Formal Methods, SBMF 2010,
Natal, Brazil, 8–11 November, LNCS, 6527, pp. 274–
290. Springer-Verlag, Berlin.

[51] Zeyda, F., Oliveira, M., and Cavalcanti, A. (2012)
Mechanised support for sounds refinement tactics.
Formal Aspects of Computing, 24, 127–160.

[52] Abrial, J.-R. (2007) A System Development Process
with Event-B and the Rodin Platform. Proceedings
of the 9th International Conference on Formal
Engineering Methods, ICFEM 2007, Florida, USA, 14–
15 November, LNCS, 4789, pp. 1–3. Springer-Verlag,
Berlin.

[53] Fischer, C. (1997) CSP-OZ: A Combination of Object-
Z and CSP. Proceedings of FMOODS’97, IFIP TC6
WG6.1 International Conference on Formal Methods
for Open Object-based Distributed Systems, Canterbury,

UK, 21–23 July, pp. 423–438. Chapman & Hall Ltd.,
London, UK.

[54] Treharne, H. and Schneider, S. (2000) How to Drive
a B Machine. Proceedings of the First International
Conference of B and Z Users, ZB 2000, York, UK,
29 August–2 September, LNCS, 1878, pp. 188–208.
Springer-Verlag, Berlin.

[55] Schneider, S., Treharne, H., and Wehrheim, H. (2010)
A CSP Approach to Control in Event-B. Proceedings of
the 8th International Conference on Integrated Formal
Methods, IFM 2010, Nancy, France, 11–14 October,
LNCS, 6396, pp. 260–274. Springer-Verlag, Berlin.

[56] Leuschel, M. and Butler, M. (2008) ProB: an auto-
mated analysis toolset for the B method. International
Journal on Software Tools for Technology Transfer, 10,
185–203.

[57] Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry,
J. R., Leavens, G. T., Leino, K. R. M., and Poll,
E. (2005) An overview of JML tools and applications.
International Journal on Software Tools for Technology
Transfer, 7, 212–232.

[58] Beckert, B., Hähnle, R., and Schmitt, P. H. (2007)
Verification of Object-Oriented Software. The KeY
Approach, LNCS, 4334. Springer-Verlag, Berlin.

[59] Brooke, P. J., Paige, R., and Jacob, J. (2007) A
CSP model of Eiffel’s SCOOP. Formal Aspects of
Computing, 19, 487–512.

[60] Ahrendt, W., Mostowski, W., and Paganelli, G.
(2012) Real-time Java API Specifications for High
Coverage Test Generation. Proceedings of the
10th International Workshop on Java Technologies
for Real-Time and Embedded Systems, JTRES 2012,
Copenhagen, Denmark, 24–26 October, pp. 145–154.
ACM, New York, NY, USA.

[61] Kalibera, T., Parizek, P., Malohlava, M., and
Schoeberl, M. (2010) Exhaustive Testing of Safety
Critical Java. Proceedings of the 8th International
Workshop on Java Technologies for Real-time and
Embedded Systems, JTRES 2010, Prague, Czech
Republic, 19–21 August, pp. 164–174. ACM, New York,
NY, USA.

[62] Haddad, G., Hussain, F., and Leavens, G. T. (2010)
The Design of SafeJML, A Specification Language
for SCJ with Support for WCET Specification.
Proceedings of the 8th International Workshop on Java
Technologies for Real-Time and Embedded Systems,
JTRES 2010, Prague, Czech Republic, 19–21 August,
pp. 155–163. ACM, New York, NY, USA.

The Computer Journal, Vol. ??, No. ??, ????

42 F. Zeyda et al.

APPENDIX A. CHANNELS USED IN THE CRUISE CONTROLLER MODEL

Channel Type Description

wheel shaft – occurs with each rotation of the wheel shaft

engine on – engine is switched on

engine off – engine is switched off

brake boolean brake pedal is pressed or released

top gear engaged – driver switches into top gear

top gear disengaged – driver switches out of top gear

lever LEVER driver operates the command lever

set voltage 0..80 sets the voltage on the throttle actuator

TABLE A.1. Channels for external events of the cruise controller model.

Method Channel(s) Class or Interface Target Param Return

setUp[Call/Ret] Safelet – – –

tearDown[Call/Ret] Safelet – – –

getNextMission[Call/Ret] MissionSequencer – – MissionId

initialize[Call/Ret] Mission MissionId – –

cleanup[Call/Ret] Mission MissionId – –

requestTermination [Call/Ret] Mission – – –

terminationPending [Call/Ret] Mission – – boolean

register Managed[Long]EventHandler HandlerId – –

Above Chan[Call/Ret] abbreviates a channel pair ChanCall and ChanRet .

TABLE A.2. Channel pairs for infrastructure methods.

The types of the channels in Table A.2 are determined by the classes that include the methods, and the types of their possible
parameters and return values. The purpose of the target parameter is to disambiguate the use of the channel in the context
of multiple objects. If there are no parameters or return values, the types simplify to Target . And if the method is only called
with the same object as a target, the channels become typeless thus representing simple synchronisations.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 43

APPENDIX B. SCJ PROGRAM CODE

@HandlerId("EngineHId")

@BoundEvent(channel = "engine", type = "boolean")

public class Engine extends AperiodicLongEventHandler {

private Controller cruise;

public Engine(Controller cruise, @Ignore AperiodicLongEvent engine_event) {

super(...);

this.cruise = cruise;

}

public void handleAsyncLongEvent(long param) {

int event = (int) param;

switch (event) {

case ENGINE_ON:

cruise.engineOn();

break;

case ENGINE_OFF:

cruise.engineOff();

break;

}

enableInterrupts();

}

@InteractionCode

public void enableInterrupts() {

/* Program code to re-enable interrupts. */

}

}

FIGURE B.1. Annotated version of the Engine handler class.

APPENDIX C. HIGH-LEVEL TRANSLATION RULES

We use three auxiliary functions in the high-level translation rules for SCJ components.

1. IdOf(type) yields the identifier of a mission or handler class;
2. TypeOf(obj) infers the type of a Java object; and,
3. BoundEvents(type) determines the external events bound to an aperiodic event handler.

u

wwwwwwwwwwwwwwwww
v

class CName implements Safelet {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public MissionSequencer getSequencer() {

return new MSName();

}

}

}

�����������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init == [State ′ | this ′ = new J CName KNameClass]

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
µX •

(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
; X

)
• Init ; (Methods 4 end safelet app −→ skip)

end

FIGURE C.1. Translation rule for classes implementing the Safelet interface.

The Computer Journal, Vol. ??, No. ??, ????

44 F. Zeyda et al.

u

wwwwwwwwww
v

class CName extends MissionSequencer {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

}

}

����������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init == [State ′ | this ′ = new J CName KNameClass]

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
µX •

(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
; X

)
• Init ; (Methods 4 end sequencer app −→ skip)

end

FIGURE C.2. Translation rule for classes extending the MissionSequencer class.

u

wwwwwwwwwwwwwwwww
v

class CName extends Mission {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public int missionMemorySize() {

return Expr ;

}

}

}

�����������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init =̂ J CName KNameInit ? obj −→ this := obj

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
µX •

(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
; X

)

•
(
µX • Init;(

Methods 4 end mission app . IdOf (CName)−→ X
))

4 end mission fw −→ skip

end

FIGURE C.3. Translation rule for classes extending the Mission class.

u

wwwwwwwwwwwwwwwwwww
v

class CName extends

AperiodicEventHandler {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public void handleAsyncEvent() {

HdlStmts

}

}

}

�������������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init =̂ J CName KInit ? obj −→ this := obj

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
handleAsyncEvent =̂ val inp • J HdlStmts KHdlBody

Execute =̂ enter dispatch . IdOf (CName)−→Dispatch

Dispatch =̂µX •

Methods @(

@ evt : BoundEvents(CName) •
evt ? inp −→ handleAsyncEvent(inp)

) ; X

@
leave dispatch . IdOf (CName)−→ skip

• (µX • Init ; Execute ; X)4 end mission fw −→ skip

end

FIGURE C.4. Translation rule for classes extending the AperiodicEventHandler class.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 45

u

wwwwwwwwwwwwwwwwwww
v

class CName extends

PeriodicEventHandler {

FieldDecls

public CName() { InitStmts }

AMethDecl1

AMethDecl2

. . .

public void handleAsyncEvent() {

HdlStmts

}

}

}

�������������������
~

=̂

process J CName KNameApp =̂ begin

state State == [this : J CName KNameClass]

Init =̂ J CName KNameInit ? obj −→ this := obj

J AMethDecl1 KAMethod

J AMethDecl2 KAMethod

. . .

Methods =̂(
J AMethDecl1 KNameMeth @
J AMethDecl2 KNameMeth @
. . .

)
handleAsyncEvent =̂ val inp • J HdlStmts KHdlBody

Execute =̂ enter dispatch . IdOf (CName)−→
(Dispatch J {this} | {| release handler |} | ∅ K Release)

Dispatch =̂µX •

Methods @(

release handler . IdOf (CName)−→
handleAsyncEvent

) ; X

@
leave dispatch . IdOf (CName)−→ skip

Release =̂(
µX •

(
release handler . IdOf (CName)−→ skip;
wait this.period

)
; X

)
4 leave dispatch . IdOf (CName)−→ skip

• (µX • Init ; Execute ; X)4 end mission fw −→ skip

end

FIGURE C.5. Translation rule for classes extending the PeriodicEventHandler class.

The Computer Journal, Vol. ??, No. ??, ????

46 F. Zeyda et al.

APPENDIX D. LOW-LEVEL TRANSLATION RULES

Rule Application Result Addendum

TR1 J boolean KType boolean where boolean ::= TRUE | FALSE

TR2 J byte KType byte where byte =̂ −128 . . 127

TR3 J short KType short where short =̂ −215 . . 215 − 1

TR4 J int KType int where int =̂ −231 . . 231 − 1

TR5 J long KType long where long =̂ −263 . . 263 − 1

TR6 J char KType char where char =̂ 0 . . 216 − 1

TR7 J float KType float where float is a given type

TR8 J double KType double where double is a given type

TR9 J RefType KType J RefType KNameClass where RefType is a reference type

TABLE D.1. Translation rules for Java types.

Rule Application Result Note

VR1 J 0 , 1 , 2 , . . . KValue 0 , 1 , 2 , . . . unsigned numbers

VR2 J 0 , -1 , -2 , . . . KValue 0 , −1 , −2 , . . . signed numbers

VR3 J true KValue TRUE boolean value true

VR4 J false KValue FALSE boolean value false

VR5 J ’c’ KValue ord(c) where ord(c) gives the unicode of character c

VR6 J "Foo" KValue 〈J ’F’ KValue , J ’o’ KValue , J ’o’ KValue〉 strings are encoded as sequences

VR7 J null KValue null encodes null-reference for data objects

TABLE D.2. Translation rules for literal Java values.

Rule Application Result Note

ER1 J Value KExpr J Value KValue where Value is a literal value

ER2 J UnOp Expr KExpr J UnOp KExpr J Expr KExpr where UnOp is a unary operator

ER3 J Expr
1

BinOp Expr
2
KExpr J Expr

1
KExpr J BinOp KExpr J Expr

2
KExpr where BinOp is a binary operator

ER4 J + KExpr , J - KExpr , J * KExpr , . . . +, −, ∗, . . . arithmetic operators

ER5 J&&KExpr , J || KExpr , J ! KExpr ∧, ∨, ¬ translation of logical operators

ER6 J Expr ? Expr
1
: Expr

2
KExpr

if J Expr KExpr = TRUE then

J Expr
1
KExpr else J Expr

2
KExpr

translation of conditional expressions

ER7 J Obj.Meth(Args) KExpr J Obj KExpr . J Meth KName(J Args KExpr) side-effect free call on a data object

ER8 J (Arg1,Arg2, . . .) KExpr (J Arg1 KExpr , J Arg2 KExpr , . . .) translation of argument tuples

TABLE D.3. Translation rules for Java expressions.

The Computer Journal, Vol. ??, No. ??, ????

Circus Models for Safety-Critical Java Programs 47

Rule Application Result

FR1
s

FieldDecl
FieldDecls

{

FieldDecls

J FieldDecl KFields ;
J FieldDecls KFields

where FieldDecls is a non-empty list of field declarations

FR2 J AccessModifier FieldType FieldName ; KFields J FieldName KName : J FieldType KType

FR3 J AccessModifier FieldType FieldName = Expr; KFields J FieldName KName : J FieldType KType

We note that in FR3, we ignore the expression Expr initialising the variable since at this point we only consider the default
initialisation of variables; the function J . . . KFieldInit deals with explicit initialisations separately.

TABLE D.4. Translation rules for field declarations.

Rule Application Result

SR7 J ; KStmts (empty list of statements) skip

SR8 J Stmts1 ; Stmts2 KStmts J Stmts1 KStmts ; J Stmts2 KStmts

SR9 J { Stmts } KStmts (statement block) J Stmts KStmts

SR10 J for (Stmts1; Expr; Stmts2) Stmts KStmts

J Stmts1 KStmts ;µX •

 if J Expr KExpr−→
J Stmts KStmts ; J Stmts2 KStmts ; X

8¬ J Expr KExpr −→ skip

fi

TABLE D.5. Supplementary translation rules for Java statements.

Rule Application Result

SR11
J Obj.Meth (Args); KStmts

For safelet and mission sequencer objects.

J Meth KNameCall ! J Args KExpr −→
J Meth KNameRet −→ skip

SR12
J Var = Obj.Meth(Args); KStmts

For safelet and mission sequencer objects.

J Meth KNameCall ! J Args KExpr −→
J Meth KNameRet ? ret −→ J Var KName := ret

SR13
J Obj.Meth (Args); KStmts

For mission and handler objects.

J Meth KNameCall . IdOf(TypeOf(Obj)) ! J Args KExpr −→
J Meth KNameRet . IdOf(TypeOf(Obj))−→ skip

SR14
J Var = Obj.Meth(Args); KStmts

For mission and handler objects.

J Meth KNameCall . IdOf(TypeOf(Obj)) ! J Args KExpr −→
J Meth KNameRet . IdOf(TypeOf(Obj)) ? ret −→ J Var KName := ret

The function TypeOf (Obj) determines the type of an object, and IdOf(type) the mission or handler identifier of a class type.

TABLE D.6. Translation rules for calls to interacting methods.

Rule Application Result

SR15
J Var = new Class(Args); KStmt

where Class is a safelet or mission sequencer class.
J Var KName := new J Class KNameClass(J Args KExpr)

SR16
J Var = new Class(Args); KStmts

where Class is a mission or handler class.

J Var KName := new J Class KNameClass(J Args KExpr);
J Class KNameInit . IdOf(Class) ! J Var KName −→ skip

TABLE D.7. Translation rules for the creation of active objects.

The Computer Journal, Vol. ??, No. ??, ????

