
Acta Informatica 37, 385–448 (2001)

c© Springer-Verlag 2001

A sequential real-time refinement calculus

Ian J. Hayes1, Mark Utting 2

1 Department of Computer Science and Electrical Engineering, The University of Queens-
land, Brisbane, 4072, Australia (e-mail:ianh@csee.uq.edu.au)

2 Department of Computer Science, School of Computing and Mathematical Sciences,
The University of Waikato, Private Bag 3105, Hamilton, New Zealand
(e-mail:marku@cs.waikato.ac.nz)

Received: 27 September 1997 / 13 June 2000

Abstract. We present a comprehensive refinement calculus for the devel-
opment of sequential, real-time programs from real-time specifications. A
specification may include not only execution time limits, but also require-
ments on the behaviour of outputs over the duration of the execution of the
program.
The approach allows refinement steps that separate timing constraints

and functional requirements. New rules are provided for handling timing
constraints, but the refinement of components implementing functional re-
quirements is essentially the same as in the standard refinement calculus.
The product of the refinement process is a program in the target pro-

gramming language extendedwith timing deadline directives. The extended
language is a machine-independent, real-time programming language. To
provide valid machine code for a particular model of machine, the machine
code produced by a compiler must be analysed to guarantee that it meets
the specified timing deadlines.

Contents

1 Introduction . 386
1.1 Wide-spectrum language overview. 387
1.2 Real-time constraints. 390
1.3 Related work. 392

2 Semantics and laws for language constructs. 394
2.1 Environment. 395
2.2 Predicate transformers and refinement. 395
2.3 Unindexed variables in predicates and expressions. 396
2.4 Specifications. 397

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Queensland eSpace

https://core.ac.uk/display/14983761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

386 I.J. Hayes, M. Utting

2.5 Assumptions. 401
2.6 Sequential composition. 401
2.7 Doing nothing. 403
2.8 Invariant properties. 404
2.9 Assignment . 408
2.10 Reading an external input. 409
2.11 Reading the clock. 409
2.12 Delay until. 410
2.13 Deadline. 410
2.14 Logical constants. 411
2.15 Refinement to a sequential composition. 412
2.16 Prefix and postfix idle commands. 414
2.17 Local variables. 416
2.18 Outputs . 417
2.19 Inputs . 418
2.20 Alternation. 419
2.21 Iteration . 420
2.22 Procedures. 423

3 The extended programming language. 424
4 Feasibility . 426
5 An example specification and refinement. 432

5.1 Specification of a message receiver. 432
5.2 Final program and timing analysis. 434
5.3 Refinement . 438
5.4 The procedure to read a single character. 444
5.5 Timing analysis with procedure calls. 445

6 Conclusions . 446

1 Introduction

Our goal is to provide a method for the stepwise refinement of sequential,
real-time programs from real-time specifications. We follow the refinement
calculus approach [1,2,18,19] of devising a wide-spectrum language that
encompasses both real-time programs and real-time specifications, and the
spectrum in between. Of course time is the all important additional dimen-
sion in our language. The motivation for our work comes from the real-time
refinement calculus of Mahony [12], which allows not only the specification
of real-time systems, but the refinement of a specification into a set of truly
parallel processes. In this paper we address the task of refining an individual
process to sequential code, using the foundations developed by Utting and
Fidge [22].
The remainder of this section overviews the real-time, wide-spectrum

language and introduces the mechanism for dealing with real-time con-
straints in the target code. Sect. 2 gives the details of the wide-spectrum
language and a comprehensive set of refinement laws. Sect. 3 summarises
the extended real-time programming language. Sect. 4 addresses the issue of

A sequential real-time refinement calculus 387

feasibility in the real-time calculus. Sect. 5 gives an example specification,
timing analysis and refinement for a message receiver example.

1.1 Wide-spectrum language overview

A key change from the standard refinement calculus is our treatment of
variables; they are modelled as functions from time to their value at that
time. This allows a real-time specification command to constrain not only
the final value of variables, but also their values over time. We also intro-
duce a number of time-related commands, such as a delay command and
a deadline command. The deadline command is novel to our approach and
allows timing constraints to be expressed abstractly in an extended program-
ming language. A separate program analysis is required to guarantee that
the deadlines are met by the machine code generated for the program by a
compiler.

Inputs, outputs and local variables.In a real-time system there are both
external inputs, whose valuemay vary independently of the direct control of
the program, and outputs, whose value over time is to be controlled by the
program. Of course, by controlling an output, the program may indirectly
control a related input. In addition to inputs and outputs, there are also
variables local to the program.
Inorder to capture the time-varyingnatureof variables, theyaremodelled

as functions from time to their value at that time [12,14,15]. For example,
a variable representing the level of water in a mine, and a boolean variable
to control a mine pump, are modelled as

level : Time" Depth
pump: Time" boolean (1)

where the typesTimeandDepthare modelled by the nonnegative real num-
bers (real+). To distinguish betweenTimeandDepthwe make use of di-
mensions of measurement.Timehas dimensionT (for time), andDepthhas
dimensionL (for length).

Time=̂ real+ � T
Depth=̂ real+ � L

The operator ‘�’ takes a magnitude and a dimension and forms a dimen-
sioned type [7].
Although our underlying model treats variables as functions of time, it

is convenient to abbreviate the declaration of a variable by just giving the
type of the range of the variable; the type of the domain is alwaysTime.
Additionally, we distinguish between inputs, outputs and local variables

388 I.J. Hayes, M. Utting

via the keywordsinput, output andvar, respectively. In all cases the
variables are implicitly functions of time. For example, instead of (1) we
write the following.

input level : Depth
output pump: boolean

For many purposes outputs and local variables are treated similarly because
their values are under the direct control of the program. We refer to out-
puts and local variables collectively asprogram variables. Because external
inputs vary independently of the direct control of a program, it cannot be
assumed that they will remain stable just because the program does not
modify them. Hence we treat external inputs quite differently to program
variables. For example, the guard of a loop cannot access an external input.
That ensures that the evaluation of the guard is independent of the order of
access to variables and how long it takes to evaluate the guard. Such restric-
tions greatly simplify reasoning about programs. Access to external inputs
is restricted to a special read command.
Constants do not vary over time. Hence their definition is standard. For

example, limits on the water level (in metres) in the mine and the minimum
rate of change in the level (in metres of depth per second) may be defined
as follows.

const limit =̂ 1 m ; minlevel=̂ 0.1 m ; minpumpratê= 0.01 m s−1

Assumptions.In the standard refinement calculus, assumptions allow state-
ments about the state of the program at the point at which they occur. In the
real-time refinement calculus assumptions are generalised to allow proper-
ties about variables over time, as well as at the point at which they appear
within the program. For example, the following assumption states that at
any time, if the pump has been turned on for one second, then the water
level in the mine is decreasing (its rate of change is negative) at a rate of at
leastminpumprate.

�

{∀ t : Time•
pump�\t − 1 s ...t]� = {true} ⇒ (s level)(t) < −minpumprate

}
(2)

where\t − 1 s ...t] is the closed interval of real numbers fromt minus one
second tot, inclusive;pump�S� is the set of all values ofpump(x) for x ∈ S;
ands level is the derivative oflevelwith respect to time. In this paper we
prefix constructs in the real-time language by a ‘�’ to differentiate them from
the corresponding constructs of the standard refinement calculus.
Assumptions allow one to state properties about the behaviour of vari-

ables in the environment. That restricts the range of behaviours that a pro-
gram has to cope with.

A sequential real-time refinement calculus 389

Specifications.A real-time specification command,��x:
[
P, R

]
, consists

of a set of variables,�x, called theframe, that may be modified by the com-
mand; a predicate,P, giving theassumptionsthe commandmaymake about
the environment; and a predicate,R, giving theeffect the command is to
achieve. A command can modify only program variables, and not external
inputs. Hence the frame�x must be completely contained within the pro-
gram variables. The special variableτ , of typeTime, is introduced to refer
to thecurrent time. Within the assumptions,τ refers to the start time of
the command, and within the effect,τ0 andτ refer to the start and finish
times, respectively; the assumptions may not refer toτ0. For example, in the
context of the assumption (2) the following is a specification of one activity
of a mine pump controller.

�pump:
[
level(τ) > limit ,

level(τ) ≤ limit ∧
(∀ t : \τ0 ... τ] • level(t) ≥ minlevel)

]
(3)

In this case, no timeboundsarespecified for theexecution time,but examples
later in the paper show how this can easily be done.
The predicates used as assumptions and effects may refer to both ex-

ternal and local variables of the program. Such variables are modelled as
functions of time. To reference the value of variablev at timet one simply
indexesv by t, i.e.,v(t). Because many references to variables, especially
program variables, within the assumptions refer to values of the variables at
the start time of the command, we introduce a convention that an unindexed
occurrence of a variable,v, in a context where an indexed occurrence is ex-
pected, stands forv(τ), i.e., the value ofv at the start time of the command.
For example, the assumption in (3) may be abbreviated tolevel> limit .
A similar convention is used within the effect where an unindexed oc-

currence of a variablevalso stands forv(τ), where in this caseτ is the finish
time of the command. For example, the first conjunct in the effect of (3) can
be abbreviated tolevel≤ limit . Within the effect there may also be refer-
ences to the initial values of variables. Hence we introduce the convention
thatv0 stands forv(τ0), i.e., the value ofv at the start time of the command.
This convention is consistent with that used by Morgan [18].
As well as constraining the value of variables at termination time, the

effectmayconstrain thevalueof variablesover time.Forexample, thesecond
conjunct in the effect of (3) requires that thewater level bemaintained above
a minimum level for the entire duration of the command. The assumptions
may also include predicates over the values of variables over time, typically
stating assumptions about the properties of external inputs.
The effect of a specification command defines the possible range of

behaviours required. In achieving that effect only variables in the frame
may be modified, and it may be assumed that the environment satisfies the
assumptions of the specification command.

390 I.J. Hayes, M. Utting

1.2 Real-time constraints

The program development process begins with a specification and refines it
step-by-step until a program written in the target programming language is
reached. Real-time specifications can include timing constraints. Hence it
is essential that the refinement process handles timing constraints.
A fundamental problem with developing real-time programs is that the

actual timing performance of a program is determined by both the compiler
for the language and the particularmodel ofmachine onwhich the generated
code executes. No analysis of just the higher-level program can take into
account low-level aspects such as register allocation and code optimisation
within a compiler, or instruction pipelining and cachememories within pro-
cessors, which together can affect the timing characteristics of a program
by an order of magnitude.
By definition, specification commands achieve their stated effect, includ-

ing any real-time constraints. However, the executable subset of the wide-
spectrum language does not include general specification commands. The
objective of our real-time refinement process is to derive program code that
satisfies a given specification, including any real-time constraints. There is
an obvious gap between a specification command,which by definitionmeets
its real-time requirements, and program code, which may or may not meet
the real-time requirements depending on the compiler and target machine.
To tackle this incompatibilitywe introducean intermediateprogramming

language that extends the target programming language to allow real-time
constraints to be expressed within program code. The program develop-
ment process is then split into two phases: refining a real-time specification
to code in the extended programming language; and performing a timing
analysis on the code generated by a compiler to ensure that it meets all
the real-time constraints. The extended programming language enjoys the
advantage of being both machine and compiler independent, which is one
of the most significant advantages claimed for high-level programming lan-
guages in general. This allows the formal refinement process to be treated
in a machine/compiler independent fashion.
However, there is a catch: there is no guarantee that one can compile

a program in the extended language so as to guarantee all the real-time
constraints are met. The compiled program must be analysed to determine
whether it meets all the timing constraints. If the program passes the timing
analysisphase, it is avalid implementation,but if it fails, it shouldbe rejected.
Logically the timing analysis phase can be viewed as part of a compiler for
the extended real-time programming language. Note that we refer to three
different levels of language in this paper:

– the target programming language, which is a standard programming
language that does not include timing deadlines;

A sequential real-time refinement calculus 391

– theextended programming languagethat includes timing deadlines; and
– thewide-spectrum language, which includes all languages features, in-
cluding specification commands.

The extended programming language.To allow timing constraints to be
expressed we make a minimal extension to an existing programming lan-
guage. The main extension is a novel command of the form,deadlineD,
which on ‘execution’ guarantees to terminate by timeD. This command
allows timing constraints to be incorporated into programs, but the dead-
line command can not be directly implemented by a compiler. Consider the
following fragment of a program, in whichd is a program variable of type
time.

�
{
τ ≤ d

}
; (4)

delay until d; (5)

“commands which do not updated” ; (6)

deadline d+ 1 ms (7)

The assumption (4) states that the code is assumed to begin execution by
time d. The delay command (5) guarantees to terminate after timed. The
deadline directive (7) adds the constraint that the time at which it completes
is before timed plus one millisecond.
To determine whether the above fragment meets its deadline, one needs

to analyse the machine code generated for the delay command (5) and the
other commands (6). The delay command is guaranteed to terminate after
time d, but it may overrun past timed. The maximum time by which it
may overrun is referred to as itslateness. If the lateness of the delay plus
the maximum execution time of the machine code generated for the other
commands (6) is guaranteed to be less than or equal to onemillisecond, then
the deadline is guaranteed to be met for all executions for which the initial
assumption (4) holds.
The deadline command can be viewed as a directive to the compiler for

the programming language. If the compiler can determine by analysing the
machine code generated for (5) and (6) that they will always take less than
one millisecond to execute on the target machine, then the compiler will
successfully generate machine code for them. In that case the deadline is
guaranteed to be met, and hence it can be discarded. On the other hand, if
the compiler cannot guarantee that (5) and (6) will always take less than
one millisecond, then it cannot guarantee to satisfy (7). In that case the
compiler should reject the program because it is unable to guarantee its
timing correctness on the given targetmachine; the compiler can also supply
details indicating which deadline cannot be met, and by what margin it is
missed. Note that a deadline directive defines a hard deadline that must be

392 I.J. Hayes, M. Utting

met. It is not acceptable to generate code that tests whether the deadline was
reached in time and raises an exception if it was missed. Timing analysis is
examined in more detail in Sect. 3 and in the example in Sect. 5.2.
The combination of a delay until command and a deadline directive al-

lows one to add quite detailed timing constraints to a program, and thus
provides an effective real-time programming language. Given the extended
programming language, our goal is to develop programs from specifications
that include timing requirements, using a process of stepwise refinement.
For the purposes of this paper we have chosen Dijkstra’s guarded command
language [3] as our base programming language, because that has been used
as the basis for other refinement calculus work. However, the real-time ex-
tensions introducedhere couldequallywell beapplied toother programming
languages, such as Ada. Interestingly, the nondeterministic language con-
structs found in Dijkstra’s language are not problematical with the approach
taken here.

1.3 Related work

We concentrate our comparison with related work on approaches that de-
velop real-time programs from abstract specifications. The two approaches
we consider are Scholefield’s Temporal Agent Model (TAM) [20,21], and
Hooman’s assertional specification and verification of real-time programs
[9]. Both these approaches also support concurrency, but because our focus
in this paper is just sequential programs, we ignore the concurrent constructs
in this comparison.
All the methods introduce some form of time variable that allows ref-

erence to the start and finish times of commands, and that can be used to
specify timing constraints and relationships. The twomain features that dis-
tinguish our work are the addition of the deadline command, and the use of
timed traces for inputs, outputs and local variables.
TAM provides a real-time refinement calculus. If we compare the se-

quential aspects of TAM with our approach, the main difference is in the
treatment of deadlines. In TAM, deadlines are specified as a constraint on the
execution time allowed for a command. This restricts deadlines to the com-
mand structure of the TAM language. In comparison, we express deadlines
via a separatedeadline command. This allows more flexibility in spec-
ifying timing constraints. In addition to being able to specify constraints
that match the structure of the language, one can also specify constraints on
execution paths that cross the boundaries of language constructs, e.g., a path
that begins before an alternation command and ends within one branch of
the alternation, or a path from a point within the body of a loop back around
to a point within the body of the loop on its next iteration.

A sequential real-time refinement calculus 393

A consequence of the TAM approach to deadlines is that it is necessary
to specify a constant representing the evaluation time for all guards of an
alternation, even though in practice the guard evaluation time is different for
different branches of an alternation. In our approach there is no need for such
a constant: guard evaluation is just considered to be part of the execution
time of each path on which the guard appears. The real constraints are the
overall constraint on each path. There is no necessity to have an additional,
more restrictive, constraint on the guard evaluation.

Another difference is in the treatment of inputs and outputs. TAM pro-
vides shunts for communication between processes and for communication
with the environment. Our approach treats inputs and outputs as traces over
time. One of the main application areas we see for our work is in the spec-
ification and refinement of systems with continuous variables, such as the
levelof water in the mine shaft. In order to be able to give a top-level spec-
ification of such systems, we need to use timed traces. Within this paper
we define a simpleread command, that samples an input, but because we
use timed traces, more complex input commands, such as analog-to-digital
conversion can be handled within the same framework.

Hooman’s work [9] on assertional specification and verification extends
the use of traditional Hoare logic triples to real-time systems. The real-
time interface of the program with the environment can be specified using
primitives denoting the timing of observable events. The interpretation of
triples has been adapted to require the postcondition to hold for terminating
and non-terminating computations.

Each of the atomic commands in Hooman’s language has an associated
constant representing its execution time, and the compound commands, such
as if-then-elsehave constants representing the time to evaluate the guard.
For example, Hooman [9, page 126] introduces a constant,Ta, representing
the execution time of an assignment command. An obvious problem is that
not all assignments take the same amount of time, but further, given a single
assignment command, its execution timemay vary greatly (due to the effects
of pipelines or caches) depending upon the preceding commands on the
path. Timing constraints on program components must be broken down into
timing constraints on the individual commands. The overall approach is
similar to that used in TAM and suffers in the same ways in comparison
to the use of adeadline command to specify timing constraints on paths.
Hooman also provides non-terminating loops, which we have not attempted
within this paper.

The seemingly small addition of thedeadline command in ourwork has
had a significant impact on thewhole developmentmethod, and importantly,
has allowed developments to treat real-time constraints in a more realistic
and practical manner than in the other approaches.

394 I.J. Hayes, M. Utting

– During the refinement process,deadline commands can be used to sep-
arate out timing constraints, leaving behind a requirement to be met that
does not explicitly contain timing constraints. The standard refinement
calculus can be used to develop such components.

– The timing constraints are on execution paths through the program and
are not necessarily constrained to the phrase structure of the program-
ming language. This allows more realistic timing constraints to be de-
vised.

– A timing constraint is on a whole execution path rather than each com-
mand in the path, and hence is less restrictive in terms of allowable
implementations.

A deadline command could be added to the standard refinement calculus
extended with a time variable,τ , but not using timed traces for variables.
Suchanextensionwouldprovide thebenefits listedabove.However, itwould
not allow the top-level specification of systems involving continuous inputs
within the same framework.
Sect. 2 contains a comprehensive presentation of definitions of real-time

programming constructs and associated refinement laws. A reader wishing
to get an idea of how the calculus is used may prefer to skip directly to
Sections 3 and 5 and refer back to Sect. 2 as needed.

2 Semantics and laws for language constructs

Because we treat variables as functions from time to their value at that time,
we cannot directly use the standard refinement calculus [1,2,18,19] for real-
time refinement. However, Utting and Fidge [22,23] introduced a way to
encode the real-time refinement calculus as a standard refinement calculus
that changes only time. In the encoding, variables in the real-time calculus
are explicitly declared as functions of time in the standard calculus; a special
standard variable,τ , (not itself a function of time) is introduced to stand for
time; and all the constructs in the programming language are replaced with
their real-time equivalents. The encoding should not be seen as a way of
implementing the real-time language, but rather as a device for showing the
relationship between the standard and real-time calculi. It also allows the
reuse of the existing standard theory to build the new real-time theory.
In the encoding, program variables are created with their value initially

unconstrained over all time, except that the value is of the declared type.
The ‘execution’ of commands in the language may constrain the values of
variables. At the specification level, arbitrary constraints are allowed, but
at the level of executable code, the primitive commands of the language
can only constrain the value of program variables during the time period

A sequential real-time refinement calculus 395

over which they execute. Without this constraint it would not be feasible to
implement such constructs [23]. (See Sect. 4 for more details.)

2.1 Environment

An environment defines finite and disjoint sets of inputs, outputs and local
variables. Identifier names for variables are chosen from the setIdent, and
� Identstands for the set of all finite subsets ofIdent.

Env
in,out, local : � Ident

in ∩ out= out∩ local = local∩ in = �

Such an environment could be extended to include the type of each variable,
but because the typing aspects are not novel, we have chosen to elide them
in this paper. It is useful to be able to determine the set of all variables in
an environment,var(ρ), and the set of program variables: variables that are
either outputs or local variables (but not inputs),pvar(ρ).

var : Env"� Ident
pvar : Env"� Ident

var(ρ) = ρ.in ∪ ρ.out∪ ρ.local
pvar(ρ) = ρ.out∪ ρ.local

As an abbreviation we writêρ for pvar(ρ).

2.2 Predicate transformers and refinement

As for the standard refinement calculus, the semantics are given in terms of
predicate transformers,PTran, which are monotonic functions from predi-
cates (effects) to predicates (assumptions):

PTran=̂ {PT : Pred" Pred |
∀P,Q : Pred • (P� Q)⇒ (PT(P) � PT(Q))}

where ‘�’ is the universal quantification over all states of the corresponding
implication, as used byMorgan [18]. However, we need to take into account
the environment of the command being defined. Hence we define ameaning
function,M, that given an environment and a command, defines a predicate
transformer,

M : Env" (Command� PTran)

396 I.J. Hayes, M. Utting

whereCommandis the set of syntactic commands.Wewrite theenvironment
parameter toM as a subscript. Refinement is defined with respect to an
environment,ρ,

C �ρ C
′ =̂Mρ (C) �Mρ

(
C′) (8)

where ‘�’ is standard refinement:
S� S′ =̂ (∀G : Pred • S(G) � S′(G)) (9)

Refinement equivalence is defined by

C ��ρ C
′ =̂ (C �ρ C

′ ∧ C′ �ρ C) (10)

2.3 Unindexed variables in predicates and expressions

The assumption and effect predicates in a specification may include unin-
dexed references to variables using the conventions outlined in Sect. 1.1. In
an effect, unindexed variables of the formv stand forv(τ), and unindexed
variables of the formv0 stand forv(τ0).We introduce the notationR@(τ0, τ)
to stand for the predicateRwith every unindexed occurrence of a variable,v,
replaced byv(τ) and every unindexed occurrence ofv0 is replaced byv(τ0).
In fact, we generalise this notation so thatτ0 andτ are just parameters. We
make use of the same conventions for expressions.

Definition 1 (at times)Given a predicate or expression, R, R@ (x, y) is
defined to be R with all unindexed occurrences of the form v0 replaced by
v(x) and all unindexed occurrences of v replaced by v(y), and as well, all
occurrences ofτ0 andτ in R are replaced by x and y, respectively.

When the ‘@’ operator is used in the formR@(τ0, τ), the replacements ofτ0
andτ have no effect. Note thatRmay contain explicit indexed references to
variables at times other thanτ ; these are not affected by the ‘@’ operator. The
operator ‘@’ hasa lower precedence thanall thenormal logical operators, but
a higher precedence than ‘≡’ and ‘�’. For predicates, such as assumptions,
that do not contain any zero-subscripted variables, we use the notationP@x.

Definition 2 (at time)Given a predicate or expression, P, P@ x is defined
to be P with all unindexed occurrences of a variable v replaced by v(x), and
any occurrences ofτ replaced by x.

If there are no occurrences ofτ0 or zero-subscripted variables inP then
P@ (τ0, τ) ≡ P@ τ . The operator ‘@’ distributes over logical operators.
For example, the following identities hold.

(P ∧ Q@ x) ≡ (P@ x) ∧ (Q@ x)
(P ∨ Q@ x) ≡ (P@ x) ∨ (Q@ x)
(¬ P@ x) ≡ ¬ (P@ x)

A sequential real-time refinement calculus 397

Aside:One interestingapproach to provingproperties of predicatesusing
the conventions outlined above, is to prove entailment between predicates
treating unindexed variables as variables of their range type. This allows
simpler proofs of properties that do not involve explicit time indices. For
example, from

x = y� x− y = 0

we may deduce that

x = y@ τ � x− y = 0 @ τ

also holds. We note that this allows one to treat proof obligations that do
not involve time indices in a manner very close to the proof obligations in
Morgan’s calculus [18]. This lifting property is not essential to the calculus
presented in this paper; it is treated in more detail in [6].
In the remainder of this section we introduce the constructs in the wide-

spectrum language along with related refinement laws. On the first reading
the proofs of laws may be skipped over unless the reader is uncertain about
a given law.

2.4 Specifications

A real-time specification command can be defined in terms of a standard
specification command using the conventions introduced by Utting and
Fidge [22]. The equivalent standard specification command allows time
to increase, and insists that all program variables that are not in the frame
remain stable (unchanged) for the duration of the command.

Definition 3 (stable)Given a variable, v, and a set of times, S,

stable(v,S) =̂ (∀ t,u : S• v(t) = v(u))

Within this paper we allow a set of variables to be used as the first parameter
tostable, with themeaning that every variable in the set is stable over the set
of times. The notation,�x, stands for a vector of variables; we allow a vector
to be used where a set is expected, with the meaning that it stands for the
set of variables contained in the vector.
The assumptions of a specification command determine the range of pos-

sible values of variables over time, as well as the start time of the command.
The effect further constrains the values of variables over time, as well as
constraining the finish time of the command.

Definition 4 (specification)A specification command,��x:
[
P, R

]
, is well

formed in an environment,ρ, provided

398 I.J. Hayes, M. Utting

– the frame,�x, is a vector of program variables,�x ⊆ ρ̂ (remember̂ρ is an
abbreviation for the program variables ofρ),

– P is a predicate involving the variables in the environment plusτ , and
– R is a predicate involving variables in the environment plusτ0, τ and
zero-subscripted versions of variables in the environment.

The meaning of a well-formed specification command is given by the fol-
lowing

Mρ
(
��x:

[
P, R

])
=̂

τ :
[
P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
whereρ̂ \�x stands for the set̂ρ with any elements in the frame�x removed.

Note thatτ , unlike other variables, is not itself a function of time. The frame
of the real-time command,�x, does not appear in the frame of the equivalent
standard command. Instead, thoseprogramvariables that are not in the frame
are constrained to be stable for its duration, and the program variables in
the frame are only constrained by the effect of the specification,R. The use
of traces, and their exclusion from the frame, leads to interestingfeasibility
issues, which are discussed in Sect. 4. In the assumption and effect of a
specification command it is permissible to include both explicitly indexed
references and unindexed references to the same variable.
The definitions of many of the remaining commands can be given in

terms of equivalent specification commands. The environment used for the
equivalent command is usually the same as that for the command being
defined. Hence, we introduce the abbreviation

C =̂ρ C′

to stand for

Mρ (C) =̂Mρ (C′)

We use the abbreviation that the default assumption in a specification
command istrue.

Definition 5 (default assumption)Given an environmentρ, provided�x is
contained in the program variables,̂ρ, and R is a predicate as defined in
Def. 4 (specification), then

��x:
[
R

]
=̂ρ ��x:

[
true, R

]
For the remainder of the paper, we assume that the frame and the predicates
in the assumptions and effects of specification commands satisfy the well-
formedness constraints outlined in Def. 4 (specification). In addition, we

A sequential real-time refinement calculus 399

make use of Def. 5 (default-assumption) without explicit reference to its
definition.
The refinement rules for weakening an assumption and strengthening an

effect carry over to the real-time refinement calculus.

Law 6 (weaken assumption)Given an environment of variables,ρ, pro-
vided P@ τ � P′ @ τ ,

��x:
[
P, R

] �ρ ��x:
[
P′, R

]
.

When applying this law we can use the fact that fromP � P′ one can
deduce thatP@ τ � P′ @ τ . That gives a special case of the law for dealing
with properties that are not time dependent. This special case is identical to
the weaken-precondition law of Morgan’s calculus [18].

Proof. The law follows from the equivalent standard refinement calculus
law.

Mρ
(
��x:

[
P, R

])
�� Def. 4 (specification)

τ :
[
P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
� Standard weaken precondition

τ :
[
P′ @ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Def. 4 (specification)
Mρ

(
��x:

[
P′, R

]) ��
Law 7 (strengthen effect)Given an environment,ρ, provided

(P@ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ]) ∧ (R′ @ (τ0, τ))
� R@ (τ0, τ)

then

��x:
[
P, R

] �ρ ��x:
[
P, R′] .

This law is often used to replace an effectRby anotherR′ that is equivalent
under the assumptionsP. In that case the refinement is an equivalence. In
the case where the properties are not time dependent, a special case of the
proviso is the following

P0 ∧ R′ � R

whereP0 stands for the predicateP with all occurrences ofτ replaced by
τ0, and all unindexed occurrences of every variable,v, that is in the frame
or is an external input, replaced byv0. This corresponds to the equivalent
law in Morgan’s calculus [18].

400 I.J. Hayes, M. Utting

Proof. The law follows from the equivalent standard refinement calculus
law.

Mρ
(
��x:

[
P, R

])
�� Def. 4 (specification)

τ :
[
P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
� From the proviso using standard strengthen postcondition

τ :
[
P@ τ , R′ @ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Def. 4 (specification)
Mρ

(
��x:

[
P, R′]) ��

A requirement that a variable in the frame remains stable for the duration
of a command can be achieved by removing the variable from the frame.

Law 8 (contract frame) Given an environment,ρ, and disjoint vectors of
program variables,�x and�v,

��x,�v:
[
P, R∧ stable(�x,\τ0 ... τ])

] ��ρ ��v:
[
P, R

]
Proof.

Mρ
(
��x,�v:

[
P, R∧ stable(�x,\τ0 ... τ])

])
�� Def. 4 (specification)

τ :
[
P@ τ ,

R@ (τ0, τ) ∧ stable(�x,\τ0 ... τ]) ∧
τ0 ≤ τ ∧ stable(ρ̂ \ (�x,�v),\τ0 ... τ])

]
�� As�x is stable and�x and�v are disjoint

τ :
[
P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�v,\τ0 ... τ])

]
�� Def. 4 (specification)
Mρ

(
��v:

[
P, R

]) ��

A variable can always be removed from the frame.

Law 9 (remove from frame)Given an environment,ρ, and disjoint vectors
of program variables,�x and�v,

��x,�v:
[
P, R

] �ρ ��v:
[
P, R

]
Proof.

��x,�v:
[
P, R

]
�ρ Law 7 (strengthen-effect)

��x,�v:
[
P, R∧ stable(�x,\τ0 ... τ])

]
��ρ Law 8 (contract-frame)

��v:
[
P, R

] ��

A sequential real-time refinement calculus 401

2.5 Assumptions

Assumptions may state properties of the variables at the point at which they
occur. Hence in an assumption, an unindexed reference to a variable,v,
is interpreted asv(τ). Assumptions can also state properties of the value
of variables at other times by using explicit indices. Assumptions take no
time, and hence there is no need forτ0 or zero-subscripted variables, within
assumptions.

Definition 10 (assumption)An assumption,�
{
P

}
, is well-formed pro-

vided P does not refer toτ0 or zero-subscripted variables. Given an en-
vironment,ρ, an assumption is equivalent to a specification command that
takes no time and has the assumption as its precondition.

�
{
P

}
=̂ρ �

[
P, τ0 = τ

]
From this definition we can deduce

Mρ
(
�

{
P

})
�� Def. 10 (assumption)
Mρ

(
�

[
P, τ0 = τ

])
�� Def. 4 (specification)

τ :
[
P@ τ , τ0 = τ

]
�� Standard contract frame[

P@ τ , true
]

�� Standard refinement calculus{
P@ τ

}
The last line above represents a standard refinement calculus assumption,
while the first line is an assumption in the real-time refinement calculus.
For the remainder of this paper we assume that all assumptions are well-

formed, i.e., they do not refer toτ0 or to zero-subscripted variables.

Law 11 (weaken assumption command)Given an environment,ρ, pro-
vided P@ τ � P′ @ τ ,

�
{
P

} �ρ �
{
P′}

Proof. The law follows directly from Def. 10 (assumption) and Law 6
(weaken-assumption).��

2.6 Sequential composition

The definition of sequential composition carries over from the standard
refinement calculus, provided we assume that the start time of the second
component is identical to the finish time of the first component.

402 I.J. Hayes, M. Utting

Definition 12 (sequential composition)Given an environment,ρ,

Mρ (C; D) =̂ (Mρ (C)) ◦ (Mρ (D))

where‘◦’ is used here to represent standard sequential composition, i.e.,
functional composition of the predicate transformers.

Law 13 (separate assumption)Given an environment,ρ,

��x:
[
U ∧ P, R

] ��ρ �
{
U

}
; ��x:

[
P, R

]
Proof.

Mρ
(
��x:

[
U ∧ P, R

])
�� Def. 4 (specification)

τ :
[
U @ τ ∧ P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Standard refinement calculus{

U @ τ
} ◦ τ :

[
P@ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Def. 10 (assumption); Def. 4 (specification)
Mρ

(
�

{
U

}) ◦Mρ
(
��x:

[
P, R

])
�� Def. 12 (sequential-composition)
Mρ

(
�

{
U

}
; ��x:

[
P, R

]) ��
Law 14 (establish assumption)Given an environment,ρ, and a predicate
V, such that neitherτ0 nor zero-subscripted variables occur in V, provided
R@ (τ0, τ) � V @ τ then

��x:
[
P, R

] ��ρ ��x:
[
P, R

]
; �

{
V

}
For time independent properties, we can use the provisoR� V as a special
case of this law, because from that we can deduce thatR@(τ0, τ) � V@ τ .

Proof.

Mρ
(
��x:

[
P, R

])
�� Def. 4 (specification)

τ :
[
P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Standard refinement calculus

τ :
[
P@ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
◦ {
V @ τ

}
�� Def. 4 (specification); Def. 10 (assumption)
Mρ

(
��x:

[
P, R

]) ◦Mρ
(
�

{
V

})
�� Def. 12 (sequential-composition)
Mρ

(
��x:

[
P, R

]
; �

{
V

}) ��

A sequential real-time refinement calculus 403

2.7 Doing nothing

The identity of sequential composition is the command that changes no
variables and takes no time.

Definition 15 (skip) For any environment,ρ,

�skip =̂ρ �
[
τ0 = τ

]
In terms of a standard specification command,�skip has an empty frame,
and hence is equivalent toskip in the standard refinement calculus.

Mρ (�skip) �� τ :
[
τ0 = τ

] �� [
true

] �� skip

Law 16 (skip identity) For any environment,ρ,

�skip; C ��ρ C ��ρ C; � skip

Proof.

Mρ (�skip; C)
�� Def. 12 (sequential-composition)
Mρ (�skip) ◦Mρ (C)

�� Def. 15 (skip)
skip ◦Mρ (C)

�� Standard refinement calculus
Mρ (C)

�� Standard refinement calculus
Mρ (C) ◦ skip

�� Def. 15 (skip)
Mρ (C) ◦Mρ (�skip)

�� Def. 12 (sequential-composition)
Mρ (C; � skip) ��
An assumption may be removed by refining it to�skip and then using

Law 16 (skip-identity).

Law 17 (remove assumption)For any environment,ρ,

�
{
P

} �ρ �skip

Proof.

�
{
P

}
��ρ Def. 10 (assumption)

�
[
P, τ0 = τ

]
�ρ Law 6 (weaken-assumption)

�
[
τ0 = τ

]
��ρ Def. 15 (skip)

�skip ��

404 I.J. Hayes, M. Utting

A command that does nothing, but may take time, isidle.

Definition 18 (idle) For any environment,ρ,

idle =̂ρ �
[
true

]
In terms of a standard specification command we have

Mρ (idle) �� τ :
[
τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
Henceidle ��ρ �

[
τ0 ≤ τ

]
.

Law 19 (skip idle) For any environment,ρ,

idle �ρ �skip

Proof.

idle
��ρ Def. 18 (idle)

�
[
true

]
�ρ Law 7 (strengthen-effect)

�
[
τ0 = τ

]
��ρ Def. 15 (skip)

�skip ��

2.8 Invariant properties

Many properties are invariant over the execution of particular commands.
Two interesting cases are predicates that are invariant over the execution of
anidle command, and predicates that are invariant over the execution of a
specification command with frame�x. We refer to these asidle-invariantand
frame-invariantpredicates, respectively. In fact, idle-invariant predicates are
the special case of frame-invariant predicates when the frame is empty.

Definition 20 (frame invariant) Given an environment,ρ, a predicate, P,
that contains no references toτ0 or zero-subscripted variables, isframe-
invariantwith respect to frame�x, if and only if

(P@ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ]) � P@ τ

Definition 21 (idle invariant) Given an environment,ρ, a predicate, P, is
idle-invariantif and only if P is frame-invariant with respect to the empty
frame.

A sequential real-time refinement calculus 405

For both types of properties there are syntactic checks that are sufficient
(but not necessary) to ensure that the properties are invariant. A property,
P, is idle-invariant if it is invariant over the execution of anidle command.
During the execution of anidle command, the program variables (outputs
and local variables) are stable. Hence, if the property only refers to program
variables, it is invariant. If the property refers toτ , the property may be
invalidated because theidle command may take time. For example, the
propertyτ ≤ D is not invariant if theidle commandexecutes until after time
D. For this reason our syntactic check disallows references toτ . Similarly,
references to external inputs are not guaranteed stable over time. Hence we
exclude unindexed references to external inputs as well. For frame-invariant
properties we add the restriction that there are no unindexed references to
variables in the frame.

Law 22 (frame-invariant property) Given an environment,ρ, a frame,�x,
such that�x ⊆ ρ̂, and a predicate, P, then P is frame-invariant with respect to
the frame�x, provided P does not involveτ0, τ or zero-subscripted variables,
and has no unindexed references to program variables that are in the frame,
�x, or to external inputs.

Proof. According to Def. 20 (frame-invariant), becauseP does not contain
τ ,P@τ0 isPwith every occurrence of an unindexed variable,v, replaced by
v(τ0). However, every suchv is a program variable that is not in the frame,
and hence is stable, sov(τ0) = v(τ). ThereforeP@τ0 � P@τ as required.
��

Law 23 (idle-invariant property) Given an environment,ρ, and a predi-
cate, P, then P is idle-invariant, provided P does not involveτ0, τ or zero-
subscripted variables, and has no unindexed references to external inputs.

Proof. The proof follows directly fromDef. 21 (idle-invariant), and Law 22
(frame-invariant-property) with an empty frame.��

Law 24 (frame invariant) Given an environment,ρ, a frame,�x, and a
predicate, P, that is frame invariant with respect to�x, then

��x:
[
P ∧ Q, P ∧ R] ��ρ ��x:

[
P ∧ Q, R

]
Proof. The refinement from right to left is a trivial application of strength-
ening the effect. The refinement from left to right is also an application of
strengthening the effect. The proviso for the latter is

(P ∧ Q@ τ0) ∧ (R@ (τ0, τ)) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])
� (P ∧ R@ (τ0, τ))

406 I.J. Hayes, M. Utting

but asP is frame invariant with respect to�x,

(P@ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ]) � P@ τ

and hence the proviso holds.��
Idling only changes time so any property invariant over time is main-

tained byidle.

Law 25 (idle invariant) Given an environment,ρ, if P is an idle-invariant
predicate, then

�
[
P, P

] �ρ idle

Proof. If P is idle-invariant, then by definition it is frame-invariant for the
empty frame. Hence, we use Law 24 (frame-invariant) with an empty frame
andQ andRbothtrue.

�
[
P, P

]
��ρ Law 24 (frame-invariant)

�
[
P, true

]
�ρ Law 6 (weaken-assumption)

�
[
true

]
��ρ Def. 18 (idle)

idle ��
Assumptions that are invariant over time and do not depend on variables

in the frame are invariant over the execution of a specification command.

Law 26 (frame-invariant assumption)Given an environment,ρ, a frame,
�x, and a predicate, P, that is frame-invariant with respect to�x, then

�
{
P

}
; ��x:

[
Q, R

] ��ρ �
{
P

}
; ��x:

[
Q, R

]
; �

{
P

}
Proof.

�
{
P

}
; ��x:

[
Q, R

]
��ρ Law 13 (separate-assumption)

��x:
[
P ∧ Q, R

]
��ρ Law 24 (frame-invariant)

��x:
[
P ∧ Q, P ∧ R]

��ρ Law 14 (establish-assumption)
��x:

[
P ∧ Q, P ∧ R]

; �
{
P

}
��ρ Law 24 (frame-invariant)

��x:
[
P ∧ Q, R

]
; �

{
P

}
��ρ Law 13 (separate-assumption)

�
{
P

}
; ��x:

[
Q, R

]
; �

{
P

} ��

A sequential real-time refinement calculus 407

Law 27 (idle-invariant assumption)Givenanenvironment,ρ, andan idle-
invariant predicate, P, then

�
{
P

}
; idle ��ρ �

{
P

}
; idle; �

{
P

}
Proof. The law follows from Law 26 (frame-invariant-assumption) with an
empty frame and Def. 18 (idle).��

Definition 28 (frame-stable expression)Given an environment,ρ, and a
frame,�x, then an expression, D, that contains no references toτ0 or zero-
subscripted variables, isframe stablewith respect to�x, if and only if

τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ]) � (D@ τ0) = (D@ τ)

Law 29 (frame-stable expression)Given an environment,ρ, and a frame,
�x, an expression, D, is frame stable with respect to�x, provided D contains
no occurrence ofτ0, τ , or zero-subscripted variables, and has no unindexed
references to variables in the frame,�x, or unindexed references to external
inputs.

Proof. BecauseD does not containτ , D @ τ0 is D with every unindexed
variable,v, replaced byv(τ0), but becauseD does not contain unindexed
references to variables in the frame or external inputs, each suchv is stable,
sov(τ0) = v(τ). Hence,D@ τ0 = D@ τ . ��

Definition 30 (idle-stable expression)Given an environment,ρ, an ex-
pression, D, isidle stable, if and only if D is a frame-stable expression with
respect to the empty frame.

Law 31 (idle-stable expression)Given an environment,ρ, an expression,
D, is idle stable, provided D contains no occurrence ofτ0, τ , or zero-
subscripted variables, and has no unindexed references to external inputs.

Proof. The proof follows from Def. 30 (idle-stable-expression) and Law 29
(frame-stable-expression) with an empty frame.��

There is a difference between a predicate being idle-invariant and a
(Boolean) expression being idle-stable. For an idle-invariant predicate, if
it is true before an idle, then it must be true after the idle, but it may be
false before the idle and become true on executing the idle. However, for
an idle-stable (Boolean) expression, it must have the same value before and
after the idle. For example, ifD is an idle-stable expression, thenD ≤ τ is
idle-invariant, but not idle-stable becauseD ≤ τ being false atτ does not
preclude it being true at some later time.

408 I.J. Hayes, M. Utting

2.9 Assignment

Because the evaluation of the expressions in an assignment takes time, we
require that the expressions in assignments are idle-stable.

Definition 32 (assignment)Given an environment,ρ, a frame,�x, such that
�x ⊆ ρ̂, and a vector,�D, of idle-stable expressions, where the lengths of�x
and�D are the same and the types of the corresponding elements in�x and�D
are assignment compatible

�x := �D =̂ρ ��x:
[
(�x@ τ) = (�D@ τ0)

]

For all assignment commands in the remainder of this paper we assume that
the lengths of the vectors�x and�D are the same, and that the corresponding
elements are assignment compatible.

Law 33 (assignment)Given an environment,ρ, a frame,�x, and a vector,
�D, of idle-stable expressions, provided

(P@ τ0) ∧ (�x@ τ) = (�D@ τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])
� R@ (τ0, τ)

then

��x:
[
P, R

] �ρ �x := �D.

If the properties do not involve time then the following special case of the
proviso can be used

P0 ∧ �x = �D0 � R

whereP0 andD0 are the same asP andD, respectively, but with every
unindexed occurrence of a variable,v, that is in the frame or is an external
input, replaced byv0.

Proof.

��x:
[
P, R

]
�ρ Law 7 (strengthen-effect) using proviso; Law 6 (weaken-assumption)

��x:
[
(�x@ τ) = (�D@ τ0)

]
��ρ Def. 32 (assignment)

�x := �D ��

A sequential real-time refinement calculus 409

2.10 Reading an external input

An external input may change without the action of the program directly
causing the change. For example, an input buffer register may change when
an input is received. The commandx : read(v) reads the external variable
v and places its value in the program variablex. The value selected is any
of the values thatv takes during the execution of the command. In practice,
one often requires thatv is stable for the duration of the command, so that
the value read is uniquely defined.

Definition 34 (read)Given an environment,ρ, provided x is contained in
the program variables,̂ρ, and v is an external input (v∈ ρ.in),

x : read(v) =̂ρ �x:
[
x ∈ v�\τ0 ... τ]�

]
where v�\τ0 ... τ]� is the image of the set\τ0 ... τ] through v, i.e., all the
values of v during the closed interval fromτ0 to τ .

2.11 Reading the clock

Thegettime command returns the current time. The value returned is be-
tween the start and finish times of the command. Because we use real num-
bers to model time, we cannot have a type in the programming language
corresponding exactly toTime. To overcome this we introduce the program-
ming language typetime , wheretime ⊂ Time(althoughtime may be
represented within the implementation as an integer in some appropriate
units, e.g., nanoseconds).

Definition 35 (gettime)Given an environment,ρ, provided x is a program
variable (x∈ ρ̂) of typetime ,

x : gettime =̂ρ �x:
[
x ∈ \τ0 ... τ]

]
Note that we assume a perfect clock with no drift, or perhaps we should
say that the time base of our system is that provided by the implementation
of gettime, rather than some more global time, such as Universal Time
Coordinated (UTC).
Also note that we assume that a clock tick will occur during the exe-

cution of thegettime command, so that there exists an element oftime
in the range\τ0 ... τ]. This is a reasonable assumption provided the clock
resolution is fine enough— close to the machine instruction time— but for
a larger clock resolution the definition may have to be modified to take the
clock resolution into account. In that case we could definegettime by

x : gettime =̂ρ �x:
[
x ∈ \τ0 − resolution... τ]

]

410 I.J. Hayes, M. Utting

whereresolutionis the time between clock ticks. For the remainder of this
paper we assume the simpler definition.
There is also the problem of the finite bound on the implementation of

typetime . We assume that the implementation of typetime is sufficiently
large (at least well beyond the year 10,000) that this will not be a prob-
lem in practice. In practice, an implementation only guarantees to meet the
specification until the end oftime , not until the end ofTime.

2.12 Delay until

A delay command guarantees that its completion is after the specified time.

Definition 36 (delay)Given an environment,ρ, providedD is an idle-stable
time-valued expression,

delay untilD =̂ρ �
[
D ≤ τ

]
.

2.13 Deadline

The deadline directive allows a time deadline to be specified. It is the com-
piler’s responsibility to ensure the deadline is met by the generated code. If
the compiler cannot, it must report a compile-time error.

Definition 37 (deadline)Given an environment,ρ, provided D is a time-
valued expression, which may include references to logical constants but no
references toτ0 or zero-subscripted variables,

deadlineD =̂ρ �
[
τ0 = τ ∧ τ ≤ D

]
.

Because thedeadline command takes no time, there is no need to require
D to be idle-stable. From the definition of the specification command we
have

Mρ (deadlineD)
�� τ :

[
τ0 = τ ∧ τ ≤ D@ τ ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
�� As \τ0 ... τ] = {τ}

τ :
[
τ0 = τ ∧ τ ≤ D@ τ

]
�� [

τ ≤ D@ τ
]

In refinement calculus terms, a deadline directive is a coercion. A timing
path analysis is required to show that the deadline directive is always reached
before its deadline. In that context the directive can be eliminated.Otherwise
the program cannot be successfully compiled. For more discussion on the
deadline directive see Sections 1.2, 3 and 5.2.

A sequential real-time refinement calculus 411

2.14 Logical constants

Logical constants carry over from the standard refinement calculus. Note
that, unlike variables, logical constants are not implicit functions of time.
The definition of a logical constant block is given in terms of a predicate
transformer, whose goal may not contain free occurrences of the introduced
name. To account for this, the definition also includes the ability to system-
atically change the name of a logical constant to some fresh name.

Definition 38 (logical constant)Given an environment,ρ, provided u does
not occur free in G or var(ρ),

Mρ (|[conu : T • C]|) (G) =̂ (∃u : T • Mρ (C) (G))

and provided y does not occur free in C,

|[conu : T • C]| ��ρ |[con y : T • C [y
u

]
]|

Law 39 (logical constant)Given an environment,ρ, provided u does not
occur in C or var(ρ), and(∃u : T • P@ τ),

C ��ρ |[conu : T • �
{
P

}
; C]|

Proof. Assumeu does not occur free inG (otherwise changeu to a fresh
name).

Mρ
(|[conu : T • �

{
P

}
; C]|) (G)

≡ Def. 38 (logical-constant)
(∃u : T • Mρ

(
�

{
P

}
; C

)
(G))

≡ Def. 12 (sequential-composition); Def. 10 (assumption)
(∃u : T • P@ τ ∧Mρ (C) (G))

≡ u does not occur free inC orG or var(ρ), and henceMρ (C) (G)
(∃u : T • P@ τ) ∧Mρ (C) (G)

≡ from assumption
Mρ (C) (G) ��

Law 40 (remove logical constant)Given an environment,ρ, provided u
does not occur in C or var(ρ), and T is non-empty,

|[conu : T • C]| ��ρ C

Proof. This is a special case of Law 39 (logical-constant) withP the predi-
catetrue. ��

412 I.J. Hayes, M. Utting

2.15 Refinement to a sequential composition

The refinement of a specification command to a sequential composition
of specification commands follows the same approach as in the standard
refinement calculus. Onemust devise an intermediate predicateQ that holds
on termination of the first component, and hence also for the assumption
of the second component. Because we have assumed that there is no time
delay between the execution of the two commands,τ in the effect of the
first component refers to the same time asτ in the assumption of the second
component. We would also like to allow references toτ0 within the effect
of the first component. However, references toτ0 are not allowed within
the assumptions of the second component. To cope with this we use the
approach used by Morgan [18] to handle zero-subscripted variables within
a sequential composition and introduce a logical constantu to stand for the
start timeof the first component, and replaceall occurrencesofτ0 byuwithin
the assumptions of the second component. In the desired overall effect,R,
τ0 refers to the commencement of the whole sequential composition (not
the commencement of the second component). Hence the references toτ0
in the effect of the second component are also replaced byu.

Law 41 (sequential composition)Given an environment,ρ, provided u is
a fresh name,

��x:
[
P, R

]
�ρ

|[conu : Time• ��x:
[
u= τ ∧ P, Q

]
; ��x:

[
Q@ (u, τ), R@ (u, τ)

]
]|

Qmay contain unindexed references to variables. For example, a reference
to v is treated asv(τ). Becauseτ is the finish time withinQ in the first
command as well as being the start time withinQ in the second command,
references tovwithin the two occurrences ofQ refer to the value ofv at the
same time.

Proof.

��x:
[
P, R

]
��ρ Law 39 (logical-constant);u fresh
|[conu : Time• �

{
u= τ

}
; ��x:

[
P, R

]
]|

We proceed by refining the body of the block.

Mρ
(
�

{
u= τ

}
; ��x:

[
P, R

])
�� Law 13 (separate-assumption); Def. 4 (specification)

τ :
[
u= τ ∧ P@ τ , R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
�� Standard strengthen postcondition

A sequential real-time refinement calculus 413

τ :
[
u= τ ∧ P@ τ , R@ (u, τ) ∧ u≤ τ ∧ stable(ρ̂ \�x,\u ... τ])

]
� Standard sequential composition

τ :
[
u= τ ∧ P@ τ ,

Q@ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \�x,\u ... τ])

]
◦

τ :
[
Q@ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \�x,\u ... τ]) ,

R@ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \�x,\u ... τ])

]
� Standard strengthen postcondition (twice)

τ :
[
u= τ ∧ P@ τ ,

Q@ (τ0, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \�x,\τ0 ... τ])

]
◦

τ :
[
Q@ (u, τ) ∧ u≤ τ ∧
stable(ρ̂ \�x,\u ... τ]) ,

R@ (u, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \�x,\τ0 ... τ])

]
� Def. 4 (specification); standard weaken precondition
Mρ

(
��x:

[
u= τ ∧ P, Q

]) ◦
τ :

[
Q@ (u, τ) @ τ ,

R@ (u, τ) @ (τ0, τ) ∧ τ0 ≤ τ ∧
stable(ρ̂ \�x,\τ0 ... τ])

]
� Def. 4 (specification)
Mρ

(
��x:

[
u= τ ∧ P, Q

]) ◦Mρ
(
��x:

[
Q@ (u, τ), R@ (u, τ)

])
�� Def. 12 (sequential-composition)
Mρ

(
��x:

[
u= τ ∧ P, Q

]
; ��x:

[
Q@ (u, τ), R@ (u, τ)

]) ��
If QandRdo not involveτ0 or zero-subscripted variables, the above rule

can be simplified.

Law 42 (simple sequential composition)Given an environment,ρ, pro-
vided Q and R do not involveτ0 or zero-subscripted variables,

��x:
[
P, R

] �ρ ��x:
[
P, Q

]
; ��x:

[
Q, R

]
Proof.

��x:
[
P, R

]
�ρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[conu : Time• ��x:

[
P, Q

]
; ��x:

[
Q@ (u, τ), R@ (u, τ)

]
]|

��ρ from provisoQ@ (u, τ) = Q@ (τ0, τ) and similarly forR
|[conu : Time• ��x:

[
P, Q

]
; ��x:

[
Q, R

]
]|

�ρ Law 40 (remove-logical-constant)
��x:

[
P, Q

]
; ��x:

[
Q, R

] ��
A timing deadline in the effect of a specification command may be sep-

arated out into a deadline command.

Law 43 (separate deadline)Givenanenvironment,ρ, providedD is a time-
valued expression, which may include references to logical constants but no
references toτ0 or zero-subscripted variables,

��x:
[
P, R∧ τ ≤ D

] �ρ ��x:
[
P, R

]
; deadlineD

414 I.J. Hayes, M. Utting

Proof.

��x:
[
P, R∧ τ ≤ D

]
�ρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[conu : Time•

��x:
[
P, R

]
; ��x:

[
R@ (u, τ), (R∧ τ ≤ D) @ (u, τ)

]
]|

��ρ asτ0 does not occur inD; Law 9 (remove-from-frame)
|[conu : Time• ��x:

[
P, R

]
; �

[
R@ (u, τ), R@ (u, τ) ∧ τ ≤ D

]
]|

�ρ Law 7 (strengthen-effect)
|[conu : Time•

��x:
[
P, R

]
; �

[
R@ (u, τ), R@ (u, τ) ∧ τ0 = τ ∧ τ ≤ D

]
]|

�ρ Law 7 (strengthen-effect); Law 6 (weaken-assumption)
|[conu : Time• ��x:

[
P, R

]
; �

[
τ0 = τ ∧ τ ≤ D

]
]|

�ρ Law 40 (remove-logical-constant); Def. 37 (deadline)
��x:

[
P, R

]
; deadlineD ��

2.16 Prefix and postfix idle commands

In this section we examine the properties required by specification com-
mands in order to be able to prefix (postfix) themwith anidle command. To
prefix a specification by anidle command, the assumption of the specifica-
tion must be idle-invariant, and additionally, the effect of the specification
must be able to tolerate the prefix of theidle command.We refer to an effect
with this property as beingpre-idle-invariant.

Definition 44 (pre-idle-invariant) Given an environment,ρ, a predicate R
(which may involveτ0 and zero-subscripted variables) ispre-idle-invariant,
if and only if for any u not occurring in R or var(ρ),

R@ (τ0, τ) ∧ u≤ τ0 ∧ stable(ρ̂,\u ... τ0]) � R@ (u, τ)

Law 45 (pre-idle-invariant property) Given an environment,ρ, if a predi-
cateRhasno references toτ0 andall references tozero-subscriptedvariables
in R are to program variables, then R is pre-idle-invariant.

Proof. As R does not containτ0, R@ (u, τ) is R with every occurrence
of a zero-subscripted variable,v0, replaced byv(u), but all such variables
are stable over the interval\u ... τ0], and hencev(u) = v(τ0). Therefore,
R@ (τ0, τ) � R@ (u, τ). ��
Law 46 (idle before)Given anenvironment,ρ, providedP is idle-invariant,
and R is pre-idle-invariant, then

��x:
[
P, R

] ��ρ idle; ��x:
[
P, R

]

A sequential real-time refinement calculus 415

Proof. The refinement from right to left is a straightforward application of
Law 19 (skip-idle) followed by Law 16 (skip-identity). The refinement from
left to right follows.

��x:
[
P, R

]
�ρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[conu : Time• ��x:

[
P, P ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ])

]
;

��x:
[
P@ (u, τ) ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

�ρ Law 9 (remove-from-frame); Law 7 (strengthen-effect); noτ0 in P
|[conu : Time•

�
[
P, P

]
; ��x:

[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

�ρ Law 25 (idle-invariant)
|[conu : Time•

idle; ��x:
[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R@ (u, τ)

]
]|

�ρ Law 7 (strengthen-effect);Rpre-idle-invariant
|[conu : Time• idle; ��x:

[
P ∧ u≤ τ ∧ stable(ρ̂,\u ... τ]), R

]
]|

�ρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)
idle; ��x:

[
P, R

] ��
An idlecommandmaybepostfixed toaspecificationcommandprovided

the effect of the specification tolerates theidle command.We refer to effects
with this property as beingpost-idle-invariant.

Definition 47 (post-idle-invariant) Given an environment,ρ, a predicate
R ispost-idle-invariantif and only if for any u not occurring in R or var(ρ),
R@ (u, τ) is idle-invariant. That is,

R@ (u, τ0) ∧ τ0 ≤ τ ∧ stable(ρ̂,\τ0 ... τ]) � R@ (u, τ)

Law 48 (idle after) Given an environment of variables,ρ, provided R is
post-idle-invariant,

��x:
[
P, R

] ��ρ ��x:
[
P, R

]
; idle

Proof. The refinement from right to left follows from Law 19 (skip-idle)
followedbyLaw16 (skip-identity). The refinement from left to right follows.

��x:
[
P, R

]
�ρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[conu : Time• ��x:

[
P, R

]
; ��x:

[
R@ (u, τ), R@ (u, τ)

]
]|

�ρ Law 9 (remove-from-frame)
|[conu : Time• ��x:

[
P, R

]
; �

[
R@ (u, τ), R@ (u, τ)

]
]|

�ρ Law 25 (idle-invariant);Rpost-idle-invariant
|[conu : Time• ��x:

[
P, R

]
; idle]|

�ρ Law 40 (remove-logical-constant)
��x:

[
P, R

]
; idle ��

416 I.J. Hayes, M. Utting

2.17 Local variables

The definition of a local variable block in the real-time language involves
expanding the set of program variables for the command within the block.
Hence we need to give the definition in terms of the meaning functionM
introduced in Sect. 2.2, instead of using the abbreviated form of definition.
Because allocating and deallocating a local variable may take time,idle
commands are used to represent possible time delays. In the definition of
AddVar below, a fresh variable name,v′, is used in place of the namev
in order to allow the local variable to have the same name as an existing
variable. The renaming is necessary because the local variable block must
ensure the stability of the existing variable. Of course, ifv itself is a fresh
name, the renaming is unnecessary.

Definition 49 (local block)Given an environment,ρ, provided that the type
T is nonempty,

|[var v : T • C]| ��ρ idle; AddVarv:T(C); idle

where AddVarv:T is defined as follows: provided v′ is a fresh name (v′ /∈
var(ρ)), and v′ does not occur free in the goal predicate, G,

Mρ (AddVarv:T(C)) (G) =̂ (∀ v′ : Time" T • Mρ′
(
C

[
v′
v

])
(G))

whereρ′ is the environmentρ with its local variables extended by v′, that is,
ρ′ = ρ +l v′ where

+l : Env× Ident" Env

(ρ +l v′ = ρ′)⇔
(ρ′.in = ρ.in ∧ ρ′.out= ρ.out ∧ ρ′.local = ρ.local∪ {v′})

An alternative approach is not to treat local variables as timed traces, but
asstandard refinement calculus local variables.With thealternativeapproach
one can only usev andv0 to reference the value of local variables, but it
does allow an expand frame law [18].

Law 50 (introduce variable) Given an environment,ρ, and a variable
name, v, provided v does not occur free within P or R or�x, T is nonempty,
P is idle-invariant and R is both pre- and post-idle-invariant, then

��x:
[
P, R

] ��ρ |[var v : T • �v,�x:
[
P, R

]
]|

Proof. First we introduce theidle commands in Def. 49 (local-block).

��x:
[
P, R

]
��ρ Law 46 (idle-before); Law 48 (idle-after)

idle; ��x:
[
P, R

]
; idle

A sequential real-time refinement calculus 417

Next we show thatAddVarv:T(�v,�x:
[
P, R

]
) is equivalent to��x:

[
P, R

]
.

Let ρ′ = ρ +l v′ and assumev′ does not occur free inG.

Mρ
(
AddVarv:T(�v,�x:

[
P, R

])
(G)

≡ Definition ofAddVar; v does not occur inP, Rand�x
(∀ v′ : Time" T • Mρ′

(
�v′,�x:

[
P, R

])
(G))

≡ Def. 4 (specification)
(∀ v′ : Time" T • P@ τ ∧

(∀ τ • R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable((ρ̂, v′) \ (v′,�x),\τ0 ... τ])
⇒ G))

≡ asv′ does not occur inP, R,G or�x; v′ is disjoint fromρ̂; T nonempty
P@ τ ∧ (∀ τ • R@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])⇒ G)

≡ Def. 4 (specification)
Mρ

(
��x:

[
P, R

])
(G) ��

Example: Relative delay.A relative delay of lengthD, whereD is an idle-
stable time-valued expression, can be specified by the following command.

�
[
τ0 + D ≤ τ

]
It canbe implementedbygetting thecurrent timeand thenusingan (absolute)
delay until command to delay until the current time plusD.

�
[
τ0 + D ≤ τ

]
�ρ Law 50 (introduce-variable);τ0 + D ≤ τ pre- and post-idle-invariant

|[var c : time • �c:
[
τ0 + D ≤ τ

]
]|

�ρ Law 41 (sequential-composition)

|[var c : time • |[conu : Time•
�c:

[
u= τ , τ0 ≤ c

]
; � c:

[
u≤ c, u+ D ≤ τ

]
]|]|

�ρ Law 7 (strengthen-effect); Law 9 (remove-from-frame)

|[var c : time • |[conu : Time•
�c:

[
u= τ , c ∈ \τ0 ... τ]

]
; �

[
u≤ c, c+ D ≤ τ

]
]|]|

�ρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)

|[var c : time • �c:
[
c ∈ \τ0 ... τ]

]
; �

[
c+ D ≤ τ

]
]|

�ρ Def. 35 (gettime); Def. 36 (delay)

|[var c : time • c : gettime; delay until c+ D]|

2.18 Outputs

Like local variables, outputs are programvariables, but they differ from local
variables in that they are externally visible.

418 I.J. Hayes, M. Utting

Definition 51 (output)Given an environment,ρ, provided v/∈ var(ρ), then
for all goal predicates, G, whichmay include references to v,

Mρ (output v : T • C) (G) =̂ (∀ v : Time" T • Mρ+ov (C) (G))

where

+o : Env× Ident" Env

(ρ +o v = ρ′)⇔
(ρ′.in = ρ.in ∧ ρ′.out= ρ.out∪ {v} ∧ ρ′.local = ρ.local)

Note that, unlike local variables, it is not possible to change the name of
an output, and that the goal,G, may refer to the output,v. The only other
difference between local variables and output variables is that output vari-
ables are global (not stack-allocated), so we assume that no time is needed
to allocate or deallocate them.

2.19 Inputs

External inputs are not under the control of the program. Hence they are
not considered to be program variables. In addition, external inputs are
externally visible. The onlyway a programcanaffect the value of an external
input is bymodifyinganoutput, that indirectly controls thevalueof the input,
via the environment.

Definition 52 (input) Given an environment,ρ, provided v/∈ var(ρ), then
for all goal predicates, G,

Mρ (input v : T • C) (G) =̂ (v ∈ Time" T) ∧Mρ+i v (C) (G)

where

+i : Env× Ident" Env

(ρ +i v = ρ′)⇔
(ρ′.in = ρ.in ∪ {v} ∧ ρ′.out= ρ.out ∧ ρ′.local = ρ.local)

The purpose of declaring inputs is to introduce them as part of the name
space, as well as declare their type. Note that, unlike local variables, it is not
possible to change the name of an input, and that the goal,G, may refer to
the input,v.

A sequential real-time refinement calculus 419

2.20 Alternation

An alternation is defined in terms of a standard alternation. The guards
are required to be idle-stable expressions so that they are stable during their
evaluation. For the definition we use their value at the start time of the whole
alternation. The time taken to evaluate the guards and to exit a branch of the
alternation is accounted for by includingidle commands at the beginning
and end of each branch of the alternation. Although theidle commands are
defined to allow an arbitrary delay,deadline commands placed elsewhere
in the program ensure that they cannot take too long.

Definition 53 (alternation)Given an environment,ρ, provided B0, . . . ,Bn
are idle-stable Boolean-valued expressions, then

Mρ




� if B0 → C0
...
[] Bn→ Cn
fi


 =̂

if B0 @ τ →Mρ (idle; C0; idle)
...
[] Bn @ τ →Mρ (idle; Cn; idle)
fi

Introducing an alternation is similar to the standard refinement calculus
rule.

Law 54 (alternation) Given an environment,ρ, provided P is an idle-
invariant predicate, B0, . . . , Bn are Boolean-valued idle-stable expressions,
and R is a predicate that is both pre- and post-idle-invariant, then

��x:
[
P ∧ (B0 ∨ . . . ∨ Bn), R

]
�ρ

� if B0 → ��x:
[
P ∧ B0, R

]
[] . . . [] Bn→ ��x:

[
P ∧ Bn, R

]
fi

Proof. The introduction of the standard alternation relies on the equivalence
of P ∧ (B0 ∨ . . . ∨ Bn) @ τ and(P@ τ) ∧ ((B0 @ τ) ∨ . . . ∨ (Bn @ τ)).

Mρ
(
��x:

[
P ∧ (B0 ∨ . . . ∨ Bn), R

])
�� Def. 4 (specification)

τ :
[
P ∧ (B0 ∨ . . . ∨ Bn) @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
� Standard alternation introduction

if B0 @ τ → τ :
[
P ∧ B0 @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
...

[] Bn @ τ → τ :
[
P ∧ Bn @ τ ,

R@ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
fi

�� Def. 4 (specification)

420 I.J. Hayes, M. Utting

if B0 @ τ →Mρ
(
��x:

[
P ∧ B0, R

])
...
[] Bn @ τ →Mρ

(
��x:

[
P ∧ Bn, R

])
fi

�� Law 46 (idle-before); Law 48 (idle-after)
if B0 @ τ →Mρ

(
idle; ��x:

[
P ∧ B0, R

]
; idle

)
...
[] Bn @ τ →Mρ

(
idle; ��x:

[
P ∧ Bn, R

]
; idle

)
fi

�� Def. 53 (alternation)
Mρ

(
� if B0 → ��x:

[
P ∧ B0, R

]
[] . . . [] Bn→ ��x:

[
P ∧ Bn, R

]
fi

) ��

2.21 Iteration

An iteration is defined in terms of a standard iteration. The guard is restricted
so that it is stable during its evaluation. To account for the delay to evaluate
the guard and iterate or exit the loop,idle commands are introduced. To
allow for loop exit overheads, including the case when the guard is initially
false, anidle is added after the loop.

Definition 55 (iteration) Given an environment,ρ, and a Boolean-valued
idle-stable expression, B, which does not contain references toτ0 or zero-
subscripted variables,

Mρ (�doB→ C od)
=̂
doB@ τ →Mρ (idle; C; idle) od ◦Mρ (idle)

A multi-branch iteration may be defined in a similar manner. Introducing
an iteration is similar to the standard refinement calculus rule.

Law 56 (iteration timing) For the introduction of a loop one needs to
supply a Boolean-valued guard expression, B, an invariant, INV, and a
variant expression, V, which evaluates to an element of a well-founded
set with ordering≺, provided INV and B hold. Given an environment,ρ,
provided B and V are idle-stable expressions, and INV is idle-invariant, and
none of B, V and INV contain references toτ0 or zero-subscripted variables,
and u is a logical constant,

��x:
[
INV ∧ u= τ , ¬ B ∧ INV′]

�ρ

�doB→ ��x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od

A sequential real-time refinement calculus 421

where INV′ =̂ INV ∧ u≤ τ ∧ stable(ρ̂\�x,\u ... τ])andV0 isV with every
unindexed reference to a variable, v, replaced by v0, and every occurrence
of τ replaced byτ0.

Proof. As the first step in the proof, we introduce theidle command at the
end of Def. 55 (iteration). The introduction relies on¬ B ∧ INV′ being
post-idle-invariant.

��x:
[
INV ∧ u= τ , ¬ B ∧ INV′]

��ρ Law 48 (idle-after)
��x:

[
INV ∧ u= τ , ¬ B ∧ INV′] ; idle

We now proceed to refine the first component.

Mρ
(
��x:

[
INV ∧ u= τ , ¬ B ∧ INV′])

�� Def. 4 (specification)
τ :

[
INV ∧ u= τ @ τ ,

¬ B ∧ INV′ @ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
� Definition of INV′

τ :
[
INV′ @ τ , ¬ B ∧ INV′ @ τ

]
� Standard iteration with variantV @ τ

doB@ τ → τ :
[
B ∧ INV′ @ τ , (INV′ @ τ) ∧ (V @ τ ≺ V @ τ0)

]
od

� Definition of INV′; strengthen withτ0 ≤ τ
doB@ τ →

τ :
[
B ∧ INV′ @ τ ,

INV′ ∧ V ≺ V0 @ (τ0, τ)
∧ τ0 ≤ τ ∧ stable(ρ̂ \�x,\τ0 ... τ])

]
od

�� Def. 4 (specification)
doB@ τ →Mρ

(
��x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

])
od

We now concentrate on the body of the loop. The following step relies on
the fact thatB ∧ INV′ is idle-invariant, and thatINV′ ∧ V ≺ V0 is both pre-
and post-idle-invariant.

��x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
��ρ Law 46 (idle-before); Law 48 (idle-after)

idle; ��x:
[
B ∧ INV′, INV′ ∧ V ≺ V0

]
; idle

Combining the above together we get the following.

doB@ τ →
Mρ

(
idle; ��x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
; idle

)
od ◦Mρ (idle)

�� Def. 55 (iteration)
Mρ

(
�doB→ ��x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od

) ��

422 I.J. Hayes, M. Utting

A simpler rule for iteration does not involve timing aspects.

Law 57 (iteration) For the introduction of a loop one needs to supply a
Boolean-valued guard expression, B, an invariant, INV, and a variant ex-
pressionV,whichevaluates toanelementof awell-foundedsetwithordering
≺, provided INV and B hold. Given an environment,ρ, provided B and V
are idle-stable expressions, and INV is idle-invariant, and none of B, V and
INV contain references toτ0 or zero-subscripted variables,

��x:
[
INV, ¬ B ∧ INV]

�ρ

�doB→ ��x:
[
B ∧ INV, INV ∧ V ≺ V0

]
od

where V0 is V with every unindexed reference to a variable, v, replaced by
v0, and every occurrence ofτ replaced byτ0.

Proof. We let INV′ =̂ INV ∧ u ≤ τ ∧ stable(ρ̂ \ �x,\u ... τ]), whereu is
a fresh logical constant, and make use of Law 56 (iteration-timing).

��x:
[
INV, ¬ B ∧ INV]

�ρ Law 39 (logical-constant); Law 13 (separate-assumption)
|[conu : Time• ��x:

[
u= τ ∧ INV, ¬ B ∧ INV]

]|
��ρ Law 7 (strengthen-effect)
|[conu : Time• ��x:

[
u= τ ∧ INV, ¬ B ∧ INV′]]|

��ρ Law 56 (iteration-timing)
|[conu : Time• �doB→ ��x:

[
B ∧ INV′, INV′ ∧ V ≺ V0

]
od]|

��ρ Law 7 (strengthen-effect); Law 6 (weaken-assumption)
|[conu : Time• �doB→ ��x:

[
B ∧ INV, INV ∧ V ≺ V0

]
od]|

��ρ Law 40 (remove-logical-constant)
�doB→ ��x:

[
B ∧ INV, INV ∧ V ≺ V0

]
od ��

Example: Absolute delay.As an example of a real-time refinement using
a loop we give an implementation of a delay until command in terms of an
iteration involving thegettime command and a primitive delay command,
tick, that delays for at least some fixed timeε > 0.

tick =̂ρ �
[
τ0 + ε ≤ τ

]
We begin from the specification of an absolute delay.

�
[
D ≤ τ

]
��ρ Law 50 (introduce-variable); Law 7 (strengthen-effect)
|[var c : time • �c:

[
D ≤ c≤ τ

]
]|

�ρ Law 42 (simple-sequential-composition)
|[var c : time • �c:

[
c≤ τ

]
; � c:

[
c≤ τ , D ≤ c≤ τ

]
]|

�ρ Law 7 (strengthen-effect); Def. 35 (gettime)
|[var c : time • c : gettime; � c:

[
c≤ τ , D ≤ c≤ τ

]
]|

A sequential real-time refinement calculus 423

The remaining specification command refines to an iteration, with invariant,
c ≤ τ , and variant,

⌊
D−c

ε

⌋
. For this refinement we make use of the fact

that the loop introduction rule only requires the variant to be a member of
the well-founded set (in this case the natural numbers) provided both the
invariant and the loop guard hold.

�c:
[
c≤ τ , D ≤ c≤ τ

]
�ρ Law 57 (iteration)

�do c< D→ �c:
[
c< D ∧ c≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c0

ε

⌋]
od

The body of the loop can be refined as follows.

�c:
[
c< D ∧ c≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c0

ε

⌋]
�ρ Law 41 (sequential-composition); Law 6 (weaken-assumption)
|[conu : Time• �c:

[
c< D ∧ c≤ τ , c0 ≤ τ0 ∧ τ0 + ε ≤ τ

]
;

�c:
[
c(u) ≤ u ∧ u+ ε ≤ τ , c≤ τ ∧

⌊
D−c

ε

⌋
<

⌊
D−c(u)

ε

⌋]
]|

�ρ Law 9 (remove-from-frame); Law 7 (strengthen-effect)
|[conu : Time• �

[
c< D ∧ c≤ τ , τ0 + ε ≤ τ

]
;

�c:
[
c(u) ≤ u ∧ u+ ε ≤ τ , c ∈ \τ0 ... τ]

]
]|

�ρ Law 6 (weaken-assumption); Law 40 (remove-logical-constant)
�

[
τ0 + ε ≤ τ

]
; � c:

[
c ∈ \τ0 ... τ]

]
�ρ Definition of tick; Def. 35 (gettime)

tick; c : gettime

The collected code for the absolute delay follows.

|[var c : time • c : gettime;
�do c< D→ tick; c : gettime od]|

The refinement of an absolute delay has been given here as a simple, but
interesting, example of a real-time refinement involving a loop. In practice,
the explicit use of the commandtick is unnecessary because the time taken
by the loop overhead is bounded below by some constantε > 0. One could
allow for such overheads in Def. 55 (iteration) by replacing the firstidle
command by atick, and developing a more complex refinement rule. This
has been done for the development of a loop introduction rule that uses a
fixed deadline to guarantee termination [8].

2.22 Procedures

A procedure call may involve delays due to the overheads of entering and
exiting the procedure.

424 I.J. Hayes, M. Utting

Definition 58 (procedure call)Consider a procedure C defined via

C =̂ procedureS

where S is the specification of C. A call on the procedure,�callC, is defined
to be equivalent to executing some implementation of the procedure, but
with delays before and after to allow for calling overheads.

idle; S; idle �ρ �callC

Law 59 (procedure call) Given an environment,ρ, provided P is idle-
invariant, and R is both pre- and post-idle-invariant, then, if a procedure C
is defined via

C =̂ procedure ��x:
[
P, R

]
then

��x:
[
P, R

] �ρ �callC

Proof.

��x:
[
P, R

]
��ρ Law 46 (idle-before); Law 48 (idle-after)

idle; ��x:
[
P, R

]
; idle

�ρ Def. 58 (procedure-call)
�callC ��
Parameters to procedures can be handled in the same way as in the

standard calculus [17] (the timing analysis must account for any additional
overhead).

3 The extended programming language

Theextendedprogramming languagecontainsall the commands in thewide-
spectrum language, except for the specification command. In addition, the
extended language has the following restrictions:

– the variables in the frame of an assignment, aread, or a gettime
command should be program variables, not external inputs;

– the variable being read by aread command should be an external input;
– expressions appearing in assignments, guards and delays should be pro-
gramming language expressions, that is, they may only reference pro-
gram variables (outputs and local variables) but may not reference exter-
nal inputs orτ0 or τ or logical constants or zero-subscripted variables;

A sequential real-time refinement calculus 425

– the expression in a deadline command should be a programming lan-
guage expression, except that it may also reference logical constants
(but recall that deadline directives must be removed by a timing analysis
process before the program is finally code);

– the programmay contain logical constants, provided the only references
to logical constants are in assumptions and deadline commands.

The deadline command is quite different from the other primitive com-
mands because, if the deadline has already passed when the command is
reached, it is infeasible. In general, such a command cannot be considered
part of the executable subset of the language. However, if one can show that
the deadline command is always guaranteed to be reachedbefore its deadline
passes, then it can be eliminated. In standard refinement calculus terms the
deadline command,deadlineD, is a coercion of the form

[
τ ≤ D

]
. The

standard refinement calculus rule for removing an assumption-coercion pair
can be applied to a deadline command.{

τ ≤ D
}

;
[
τ ≤ D

] � skip

That allows a deadline command to be eliminated, provided the time at
which it is reached is before its deadline,D.
For the purposes of real-time refinementwe retain the deadline command

as a primitive command in our extended programming language. We rely
on a timing analysis being performed on themachine code generated for the
program. If the analysis guarantees that all deadlineswill be reached in time,
the deadlines may be elided and the resulting program is executable, but if
the timing analysis fails, the program is rejected. The failure of the analysis
could either be because the program contains unmet deadlines, or because
the analysis is not sophisticated enough to determine that all deadlines are
met. In the latter case the program, although correct, is still rejected because
it has not been shown to met all deadlines. Timing analysis is discussed in
more detail in the example in Sect. 5.2.
Inorder to specify somedeadlines it is advantageous toallow thedeadline

command to refer to logical constants. For example, the following specifies
that the assignment,x := 3, takes at most 10 attoseconds to execute.

|[con s : Time• �
{
τ = s

}
; x := 3; deadline s+ 10attoseconds]| (11)

Logical constants are not code, but they may be removed provided there are
no references to them within the program. In the above example the timing
analysis, if successful, will remove the deadline command and hence one
reference to the logical constant. The other reference to the logical constant
is in the assumption, but assumptions can always be removed. Hence a
successful timing analysis of the above fragment allows all references to
s to be removed, and hences can be removed. In order to accommodate

426 I.J. Hayes, M. Utting

fragments such as that above, we allow the extended language to include
logical constants, provided the only references to logical constants are in
assumptions and deadline commands.
In some cases the timing analysis fails because the code generated for

the target machine takes too long and fails to meet the deadline. In such
cases a faster machine or a better compiler or a combination of both may be
able to meet the deadline. In other cases it may be impossible to generate
code to meet the deadline for any machine. For example, the sequence

delay until d;
deadline d− 1 s

has a timing constraint of minus one second. It is impossible to meet this
deadline on any machine. For our refinement theory we do not need to
distinguish whether deadlines are impossible or not, but we hope that the
vigilant programmer will not generate code with impossible deadlines. Of
course, the analysis process can be applied to detect intrinsically impossible
deadlines before the program is even compiled. That form of analysis can
be applied to partially refined programs at any stage to check for impossible
deadlines. Indeed, analysis of partially refined programs may be used at
any stage to assist the engineer to determine the timing constraints on the
partially refined code, and hence determine whether an implementation is
likely to meet its deadlines. It may highlight the paths with the tightest
constraints, where the most care needs to be taken.

4 Feasibility

The reader may be familiar with the notion of feasibility and Dijkstra’slaw
of the excluded miraclefrom the standard refinement calculus [3]. The def-
inition of feasibility for the standard refinement calculus is not appropriate
for the real-time calculus. In this section we develop a definition ofreal-
time feasibilityand show its relationship to standard feasibility. This section
may be skipped by those readers more interested in the application of the
refinement calculus; the following sections do not rely on it.
An unusual feature of our semantics (Def. 4 (specification)) is that each

command operates by updatingonly the special time variableτ . All other
program variables are timed traces and are simplyconstrainedby the com-
mand. This means that most of our commands areinfeasiblein the standard
refinement calculus. For example,

�v:
[
τ ≤ 9, τ ≤ 10 ∧ v(τ) = 3

]
is equivalent to the standard specification command

τ :
[
τ ≤ 9,

τ ≤ 10 ∧ v(τ) = 3
∧ τ0 ≤ τ ∧ stable(ρ̂ \ v,\τ0 ... τ])

]
(12)

A sequential real-time refinement calculus 427

which is only feasible if the tracev already has the constant value3 (at least
up to time 10) in the initial state, because the tracev does not appear in the
frameof the equivalent standard specification command, so the specification
cannot update it. Yet according to our refinement laws, this specification can
be implemented by the assignmentv := 3, plus a deadline of one second,
so intuitively the specification should be feasible.
It is quite common in the standard refinement calculus for valid devel-

opments to include some infeasible program fragments [16]. They typically
appear in some context that avoids the infeasible part of their behaviour, so
that thewhole surroundingprogram remains feasible.However, according to
the standard test (Dijkstra’s Law of the ExcludedMiracle: S(false) = false),
virtually all commands are infeasible with our semantics. The standard test
is inappropriate for our calculus for the following two reasons:

1. We designed the semantics to exclude program output and local traces
from the frame. This means that most of our refinements are done in the
‘magical’ portion of the predicate transformer lattice, but it allows us to
use total traces (avoiding undefinedness issues), and gives amore elegant
semantics than alternative approaches, where each commandextendsor
overwritesa segment of the traces [23].

2. Our real-time variables are modeled as traces over time, and most pro-
gram fragments constrain only a small segment of the traces, typically
in the range{t : Time| τ0 < t ≤ τ}, which we shall write asXτ0 ... τ].
We want programs that constrain traces outside this range of times to be
treated as infeasible. We view output traces as being observable (up to
the current time,τ), from outside the system, so do not want programs to
be able to change history! That is, any program that constrains an output
tracevat timet ≤ τ0 should be infeasible, because it is attempting to fur-
ther constrain an output that may have already been observed. Similarly,
programs that attempt to make time go backwards should be infeasible.

The standard feasibility test is too coarse to make these distinctions that
we want for our real-time calculus. So we now propose a more suitable
feasibility test.
For an environment,ρ, recall that̂ρ stands for the program variables (i.e.,

the outputs and local variables) ofρ. Wewould like to quantify over (partial)
traces over the variables inρ andρ̂. We use ‘∀ ρ : Time" Tρ’ to stand for
quantification over traces of all variables inρ; Tρ stands for the type of the
variables inρ. Similarly, ‘∀ ρ̂ : Xτ0 ... τ]"Tρ̂’ stands for the quantification
over partial traces fromτ0 to τ of all program variables.
We define a test for identifying predicates that depend upon traces of

program variables only up to timeτ , not on the future portion of those
traces [23].

428 I.J. Hayes, M. Utting

Definition 60 (Future-Independent)Given an environment,ρ, a predicate
Q on the variables ofρ is future independentaccording to the following
definition.

FutureIndependentρ(Q) =̂
(∀ ρ : Time" Tρ; τ0, τ, τ

′ : Time• τ0 ≤ τ ≤ τ ′ ⇒
(∀ ρ̂′ : Xτ ... τ ′]" Tρ̂ • Q⇔ Q

[
ρ̂⊕ρ̂′

ρ̂

]
)))

whereρ̂⊕ ρ̂′ stands for the tracêρ overridden by the partial tracêρ′ in the
interval for whichρ̂′ is defined, i.e.,Xτ ... τ ′].

All of our real-time commands are defined in terms of conjunctive predi-
cate transformerswith frameτ . From relational-decomposition results in the
standard refinement calculus [13] we know that every conjunctive command
C (in an environmentρ) is equivalent to a specification command

τ :
[
assumpρ(C), effectρ(C)

]
where

assumpρ(C) =̂Mρ (C) (true)
effectρ(C) =̂ (¬Mρ (C) (τ != τ ′))

[
τ,τ0
τ ′,τ

]
The assumption of the specification command is just the condition under
which it is guaranteed to terminate. In general, for a predicate transformer,
PT,¬ PT(¬ R), characterises those states fromwhichPT is not guaranteed
to achieve¬ R, that is, it characterises those states from which it is possible
for PT to achieveR. The definition ofeffectρ(C), characterises those states
from which there exists a timeτ ′ such that it is possible forC to terminate
with τ equal toτ ′. The renaming is used to convert the predicate in terms
of τ for the start time andτ ′ for the finish time, into a predicate withτ0 for
the start time andτ for the finish time. See [13] for more details.
Hence for a conjunctive command,C,

Mρ (C) (R) ≡ assumpρ(C) ∧ (∀ τ : Time• effectρ(C)⇒ R)
[

τ
τ0

]
For example, in the case of a real-time specification command,��v:

[
A, E

]
,

theassumpρ(. . .) andeffectρ(. . .) terms can be derived fromA andE.

Theorem 1 For any specification command,��v:
[
A, E

]
, in an environment

ρ, we have:

assumpρ(��v:
[
A, E

]
) ≡ A@ τ

effectρ(��v:
[
A, E

]
) ≡

A@ τ0 ⇒ E@ (τ0, τ) ∧ τ0 ≤ τ ∧ stable(ρ̂ \�v,\τ0 ... τ])

A sequential real-time refinement calculus 429

Proof. The theorem follows from Def. 4 (specification) plus the definitions
of assumpρ(C) andeffectρ(C) above. ��

The assumption of a real-time feasible command should depend on the
value of the program variables only up to the start time of the command,
and the effect of a command should depend on the value of the program
variables only up to the completion time of the command. In addition, for a
command to bereal-time feasible, for any trace,̂ρ, of program variables that
satisfies the assumption of the command, there must exist a partial trace,ρ̂′
of the program variables over the execution interval of the command, such
that the effect of the command holds for the traceρ̂ updated over the interval
Xτ0 ... τ] with the partial tracêρ′, i.e., the effect should hold for̂ρ⊕ ρ̂′.

Definition 61 (RTFeasible)Given an environmentρ, and a conjunctive
command, C,

RTFeasibleρ(C) =̂
FutureIndependentρ(assumpρ(C)) ∧
FutureIndependentρ(effectρ(C)) ∧
(∀ τ0 : Time; ρ : Time" Tρ •

assumpρ(C)
[τ0

τ

] ⇒
(∃ τ : Time; ρ̂′ : Xτ0 ... τ]" Tρ̂ • effectρ(C)

[
ρ̂⊕ρ̂′

ρ̂

]
))

ApplyingRTFeasibleto example (12) above (withρ.in = {}, ρ̂ = {v}), we
see that the assumption and effect are both future-independent, so we get:

RTFeasibleρ(�v:
[
τ ≤ 9, τ ≤ 10 ∧ v(τ) = 3

]
)

≡ (∀ τ0 : Time; v : Time"
 • τ0 ≤ 9 ⇒
(∃ τ : Time; v′ : Xτ0 ... τ]"
 •

(τ ≤ 10 ∧ v(τ) = 3 ∧ τ0 ≤ τ)
[
v⊕v′
v

]
))

≡ true

It is interesting to look at howRTFeasiblejudges other simple specifica-
tions. Assume that the environmentρ has a single input variableeand two
output variables,x andy, and that the predicateE is future independent.

430 I.J. Hayes, M. Utting

1. RTFeasibleρ(�x:
[
false, E

]
) = true

2. RTFeasibleρ(�x:
[
true, true

]
) = true

3. RTFeasibleρ(�x:
[
true, false

]
) = false

4. RTFeasibleρ(�x:
[
true, τ = τ0 − 1

]
) = false

5. RTFeasibleρ(�x:
[
true, τ < 9

]
) = false

6. RTFeasibleρ(�x:
[
τ < 8, τ < 9

]
) = true

7. RTFeasibleρ(�x:
[
true, y(τ) = 2

]
) = false

8. RTFeasibleρ(�x:
[
true, x(τ) = 2

]
) = true (∗)

9. RTFeasibleρ(�x:
[
true, x(τ) = y(τ)

]
) = true (∗)

10. RTFeasibleρ(�x:
[
τ < 8, τ < 9 ∧ x(τ) = e(10)

]
) = true (∗)

11. RTFeasibleρ(�x:
[
τ < 8, τ ≤ 9 ∧ x(τ) = e(9)

]
) = true (∗)

12. RTFeasibleρ(�
[
true, τ0 = τ ≤ 9

]
= false

The starred lines show whereRTFeasiblediffers from standard feasibil-
ity. Note that in all the examples,y is not in the frame, so is required to be
stable during\τ0 ... τ]. Specifications 8, 9 and 10 are feasible becausex
is in the frame, so the∃ in the definition ofRTFeasibleallows thex trace
to be updated during timesXτ0 ... τ]. Specification 8 could be refined to
x := 2 and 9 could be refined tox := y (no deadlines are required, since the
specifications do not give any upper bound for the finish time,τ).
It is interesting to note that specification 10 passes the feasibility test

even though it refers to the inputeat time10, which is in the future, since it
terminates withτ < 9. This illustrates that our feasibility test allows some
non-causal specifications (where informationmayneed to flowbackwards in
time) to be treated as feasible, even though it may not be possible to generate
code for such specifications. In our experience, specifications often refer to
future input values to express assumptions about how those inputs change
over time, and there is no simple test that distinguishes such innocuous future
references from those that imply non-causal behaviour.
Although example 11 passes the feasibility test, in practice it cannot be

refined to our target language. One reason for this is that our target language
does not provide any command for reading an input value at an exact time
(only sometime betweenτ0 andτ) – such a command would be impossible
to implement without knowing more about how the value ofe varies over
time. Even if there were such a command, specification 11 requires the read
of e to be done at timeτ , which would leave no time to store the value into
x (this problem would be detected when the code is submitted to the timing
analysis phase of our methodology).
This again illustrates that our feasibility test provides only an approxi-

mation to practical feasibility. Any program that is rejected by our feasibility
test is definitely not implementable. However, some programs that pass the
feasibility test may still not be implementable, because the specification
language can express relationships and properties (like references to future

A sequential real-time refinement calculus 431

input values, or other non-causal effects) that are not expressible in the target
programming language or because timing requirements are too tight. This
is as expected, we want specification languages to be more expressive than
implementation languages and the analysis of code timings is deferred to a
later stage. The ultimate assurance of feasibility comes only when a specifi-
cation has been refined to code and all the timing requirements of that code
have been checked.
In the final example, 12, the command is equivalent todeadline 9.

As expected, this fails the real-time feasibility test, but that does not mean
that programs that contain deadline commands are infeasible. The extended
programming language allows deadline commands, but in order to get to
code in the target programming language, all deadlines must be removed by
a timing analysis phase that shows that the generated code will reach each
deadline command before its stated deadline.
The next theorem relatesRTFeasibleρ(C) to the standard feasibility of

an entire process. Any top-level process can be written as a conjunctive
command,C, within a block that declares the inputs and outputs for the
process:|[input x : S; output v : T • C]|. If the body of a process
satisfiesRTFeasible, then the whole process is feasible in the traditional
sense. Intuitively, this result validates our definition ofRTFeasible.

Theorem 2 (Process-Feasibility)Given a conjunctive command, C, if C is
real-time feasible then the top-level process containing just C, with all the
inputs and outputs in C’s environment explicitly declaredwithin the process,
is (standard) feasible.

RTFeasibleρ(C) �
Mφ (|[input x : S; output v : T • C]|) (false) = false

whereφ is the empty environment, andρ = φ +i x+o v.

Proof. AssumeRTFeasibleρ(C).

Mφ (|[input x : S; output v : T • C]|) (false)
≡ Def. 52 (input); Def. 51 (output)
x ∈ Time" S∧ (∀ v : Time" T • Mρ (C) (false))

� drop first conjunct

(∀ v : Time" T • Mρ (C) (false))
≡ SinceC is conjunctive

(∀ v : Time" T • assumpρ(C) ∧ (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
)

≡ distributing∀ over∧
(∀ v : Time" T • assumpρ(C)) ∧

432 I.J. Hayes, M. Utting

(∀ v : Time" T • (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
� Rewritingassumpρ(C) using definition ofRTFeasibleρ(C)

(∀ v : Time" T •
(∃ τ : Time; v′ : Xτ0 ... τ]" T • effectρ(C)

[
v⊕v′
v

]
)
[

τ
τ0

]
) ∧

(∀ v : Time" T • (∀ τ : Time• ¬ effectρ(C))
[

τ
τ0

]
)

� Using last conjunct (withv beingv⊕ v′) to rewriteeffectρ(C)
[
v⊕v′
v

]
.

(∀ v : Time" T • (∃ τ : Time; v′ : Xτ0 ... τ]" T • false))
� false ��

In conclusion, the definition ofRTFeasibleprovides a useful check that
can be applied to detectmost infeasible specifications, even though it ismore
complex than the standard feasibility test. Fortunately, it is not essential to
check real-time feasibility when developing a program by refinement. If
the refinement process ends with code, then because code, with the notable
exception of the deadline command, is real-time feasible, there is no need to
check feasibility except for the deadline commands. Feasibility of deadline
commands comes down to ensuring that the deadline command is reached
at a time before its deadline. To check this we need to check the actual
execution time of the code leading up to the deadline via a timing analysis
process. The role of the deadline command is discussed in more detail in
Sections 3 and 5.2.

5 An example specification and refinement

In this section we illustrate the use of sequential real-time refinement on the
simple example of a message receiver.

5.1 Specification of a message receiver

The environment.Before giving the specification of the operation to be
performed, we need to set up the environment of the receiver. The receiver
takes input from an input buffer register,in, that is assumed to hold the
characters of the message over time. The message is to be assembled and
placed in the local variablemsg, which is a sequence of characters with
indices starting from one.

input in : char ; varmsg: seq char

A sequential real-time refinement calculus 433

Each character of the message is available in the input buffer for only 80
microseconds and the characters appear in the input buffer at intervals of
100 microseconds.

const chsep= 100 µ s; chdef= 80 µ s

The receiver begins execution at timestart, which corresponds to the time at
which a start-of-text character was identified in the input stream. The char-
acters of the message follow the start-of-text character at regular intervals
of durationchsep.

con start : Time

The ith character of the message is therefore available in the input buffer
during the interval fromstart+ chsep∗ i until start+ chsep∗ i + chdef.

let interval =̂
(λ i : nat • \start+ chsep∗ i ... start+ chsep∗ i + chdef]) (13)

Thelet construct introduces a syntactic abbreviation.
Wewould like to state that the input buffer is stable over every interval up

to the first interval that contains an end-of-text (ETX) character. However, in
general there may be more than one character in the input buffer during an
interval. Hence we first introduce the relationchin, that relates each index,
i, to every character in the input buffer during theith interval. (Later we will
see thatchin is a function up to the first end-of-text character.)

let chin =̂ {i : nat ; ch : char | ch∈ in�interval(i)� • i #→ ch} (14)

The receiver assumes that an end-of-text (ETX) character appears in the
input stream.

�
{∃ i : nat • i != 0 ∧ ETX∈ in�interval(i)�} (15)

This assumption does not depend onτ . We state it once as an assumption,
rather than including it explicitly in theassumptionof the specification (i) be-
low and numerous specification commands within the refinement. Because
the assumption is frame-invariant, it can be distributed through the refine-
ment using Law 26 (frame-invariant-assumption), but we do not bother to
show these steps explicitly.
The message to be received consists of all the characters in the input

stream up until the first end-of-text character. We introducemx to stand for
that position.

let mx =̂ min{i : nat | i != 0 ∧ ETX∈ in�interval(i)�} (16)

434 I.J. Hayes, M. Utting

The receiver also assumes that the input buffer is stable (with the appropriate
character of themessage) for each character timeupuntil the first end-of-text
character.

�
{∀ i : 1 . .mx• stable(in, interval(i))} (17)

From the above properties we can deduce that the stream of input characters
up to the first end-of-text character is uniquely defined, that is, the relation
chin, with its domain restricted to indices in the range 1 through tomx,
inclusive, relates each such index to a single character, and hence it is a
sequence of characters.

((1 . .mx)� chin) ∈ seq char (18)

The binary operator ‘�’ takes a set and a relation and returns the relation
with its domain restricted to the elements in the set.

Thespecification.Given theaboveenvironment, the receiver should extract
the characters from the input stream up to, but not including, the first end-
of-text character, and place them in the variablemsg. The receiver process
is assumed to start at timestart, and is required to complete within one
character time of the first end-of-text character.

�msg:
[
start= τ ,

msg= (1 . .mx− 1)� chin∧
τ ≤ start+ chsep∗ (mx+ 1)

]
(i)

5.2 Final program and timing analysis

In order to give the reader an idea of the way in which the delay and deadline
commands are used in practice, we present the final code for the receiver
(Fig. 1) before detailing the refinement of the receiver specification. The
receiver program determines an (upper bound) approximation to the start
time in the variablest, and then proceeds to read all the characters of the
message until an end-of-text character is found. The program in Fig. 1 is not
the most efficient implementation of the specification. Its form was chosen
to make the relationship between the original specification and the refined
program as simple as possible.
The final program includes deadline commands. These cannot be com-

piled to machine code, and an analysis of the program is required to de-
termine whether the deadlines are met. The analysis is performed in two
phases. Firstly, paths of the program that end at a deadline command are
analysed to determine the timing constraint on each path. In the second
phase the machine code generated for each program path is analysed to de-
termine whether or not it meets the constraint on the path. In this section we
concentrate on the first phase of determining the paths and their associated
timing constraints.

A sequential real-time refinement calculus 435

A :: �
{
start= τ

}
;

|[var st : time •
B :: st : gettime;

C :: �
{
start≤ st

}
;

|[var n : nat ; ch : char •

let INV =̂

(
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧ ch= chin(n)

)
•

n,msg:= 1, 〈〉;
D :: delay until st+ chsep∗ n;

ch : read(in);

E :: deadline start+ chsep∗ n+ chdef;

�do ch
= ETX→
n,msg:= n+ 1,msg� 〈ch〉;

F :: delay until st+ chsep∗ n;
ch : read(in);

G :: deadline start+ chsep∗ n+ chdef

od ;

�
{
n= mx

}
]|

]|;
H :: deadline start+ chsep∗ (mx+ 1)

Fig. 1 The receiver program (without procedurereadchar)

Determining timing path constraints.To make life simpler in the analysis,
we require that delay commands are reached before their specified delay
times. That allows delays to be used as the starting point of paths. This is a
stricter requirement than necessary and, although it simplifies the analysis,
it may lead to a valid program failing the analysis.

The first path we consider is the path fromA to D in Fig. 1. It consists
of the allocation of the local variablest, reading the current time intost,
allocatingn andch, and assigning initial values ton andmsg. The starting
time of the path isstart, and the path should finish beforest+chsep∗n, if the
delay is to be reached before its specified delay time. In the pathn is assigned
the value 1. Hence the deadline is actuallyst+ chsep. The time available to
execute the path is the difference between the starting and finishing times:
st+ chsep− start. This expression contains the variablest, which contains
the retrieved clock time. The minimum, and hence most pessimistic, value
for the path time is whenst is minimal. The smallest feasible value ofst

436 I.J. Hayes, M. Utting

is start plus the minimum execution time for the pathA–B. Hence we can
express the time constraint for the pathA–D as

start+min(A–B) + chsep− start= min(A–B) + chsep

Aside: A better bound on the minimum value ofst can be determined at
the level of machine code, where the internals of the implementation of
gettime are available. We do not consider such refinements of the path
analysis techniques in this paper.
Having determined the constraint on pathA–D in order to ensure that

D is reached before its delay time, we may assumeD is reached before its
delay time for the analysis of the remainder of the program. The next path
we consider is fromD to E. It includes the lateness of the delay command
(D), and the read command. Execution must reachE beforestart+ chsep∗
n+ chdef. Hence the time constraint for this path is

start+ chsep∗ n+ chdef− (st+ chsep∗ n) = start+ chdef− st
Again this contains the variablest, but this time the constraint is minimal
whenst is maximal. An upper bound on the value ofst is start plus the
maximum execution time of the pathA–C. Hence the time constraint on the
pathD–E is

start+ chdef− (start+max(A–C)) = chdef−max(A–C)

For our analysis we require the delay command atF to be reached before
its delay time. Hence we consider the path fromD to F, which consists of
the lateness of the delay atD, the read command, evaluating the loop guard
(to true), and updating the values ofnandmsg. The starting time for the path
is st+ chsep∗n. The finishing time is alsost+ chsep∗n, but along the path
nhas been incremented. To allow for the increment we express the finishing
time in terms of the values of the variables at the start of the path; that gives
the finishing time asst+ chsep∗ (n+ 1). Hence the time constraint on the
path is

st+ chsep∗ (n+ 1)− (st+ chsep∗ n) = chsep

The path fromF toG has the same time constraint as the pathD–E.
The next path we consider is from the delay atF, through the remainder

of the body of the loop, looping back to the start of the loop, and then back
down toF. Its starting and finishing times are bothst+ chsep∗ n, but along
the pathn has been incremented. Hence the timing constraint for this path
is the same as for pathD–F.
Thenext pathweconsider begins atF, executes the remainder of thebody

of the loop, loopsback to thestart of the loopandevaluates theguard (to false)

A sequential real-time refinement calculus 437

and exits the loop; it then exits the two local variable blocks, deallocating
the associated variables, before reachingH. The path has a starting time of
st+ chsep∗ n and a finishing time ofstart+ chsep∗ (mx+ 1). That gives
a constraint ofstart+ chsep∗ (mx+ 1) − (st+ chsep∗ n). On exit from
the loop we know thatn = mx from the assumption just after the loop.
That assumption was generated as part of the refinement (Sect. 5.3) in order
to allow the timing analysis access to that information. The assumption,
n= mx, allows the constraint to be simplified to

start+ chsep∗ (n+ 1)− (st+ chsep∗ n) = start+ chsep− st
As with the pathD–E, this is minimal whenst is maximal. This gives the
time constraint

start+ chsep− (start+max(A–C)) = chsep−max(A–C)

The final path we need to consider is fromD toH. It corresponds to the
case when the loop guard is false on its first evaluation, and the body of the
loop is never entered. The constraint on the path is

start+ chsep∗ (mx+ 1)− (st+ chsep∗ n)
This is the same constraint as for the pathF–H.

Timing analysis of machine code paths.Having determined constraints on
every timing path in the program, the final phase is to analyse the machine
code generated by the compiler for each path to determine whether it meets
its time constraint. In order to perform the analysis, the timing points in the
high-level language program need to be mapped by the compiler to points
in the generated machine code. In addition, any optimisations performed by
the compiler need to take into account the position of timing points; code
involving accesses or updates to external inputs or outputsmaynot bemoved
across a timing point. These issues are discussed in more detail in [10], and
timing analysis of machine code sequences is discussed in [11].

Timing path constraints and refinement.Note that determining the timing
constraints on paths is, in general, a non-trivial process. Finding all the
deadline directives and extracting their deadline times is straightforward,
but determining a suitable corresponding starting point for the path requires
some intelligence. In addition, simplifying the timing constraint on a path
may require theuseof non-trivial propertiesof theprogram.Theseproperties
need to be passed from the refinement process to the timing analysis process
via assumptions in the program code. For example, in the receiver program
theproperty thatn= mxon terminationof the loop is required to simplify the
timing constraints on paths exiting the loop. The assumptions on a path give

438 I.J. Hayes, M. Utting

a collection of constraints that can be used to simplify its timing constraint.
Timing constraint determination can be automated provided the programs
being analysed are of a sufficiently simple form. See [5] for a more detailed
discussion of timing constraint analysis and [4] for preliminary work on
automation of constraint determination.
The integration of refinement and timing analysis into the one devel-

opment process makes it possible to use higher-level program properties to
assist in the timing analysis, and hence simplify constraints that could not be
resolved using just the program code. That may require modification of the
refinement of a program in order to include assumptions that enable timing
path constraints to be simplified.
In the receiver example all the timing constraints can be simplified to

constant values. This is because we have taken care to generate a program
with sensible timing constraints. The refinement process does not preclude
the generation of non-constant timing constraints, such as data dependent
time constraints. However, it is possible for a refinement to generate time
constraints that are so complex that an automated timing analysis process
cannot resolve them. In such cases, the timing analysis process should fail,
and identify the reason for failure.
In the receiver program, the analysis of timing constraints has been sim-

plifiedby the fact that there isa timingpoint inside the loop,whicheffectively
cuts the cycle in the loop. Without a cut point in a loop, the whole of the
loop becomes part of a path. One would not expect the timing constraint on
a path containing a loop to be constant. Instead it would be an expression
involving a variable that corresponds to the number of times the loop is
executed. In such a case, determining the timing constraint expression is no
different to a path that does not involve a loop, but the analysis of the time
taken by the machine code for the loop also needs to take into account the
number of times the loop is executed.

5.3 Refinement

In the refinement we do not generate exactly the code given in Fig. 1, instead
we introduceaprocedure,readchar,whichcorresponds to the taskof reading
a single character. The code including the procedure is given in Fig. 2. We
return to timing path analysis with procedures in Sect. 5.5.
For the refinement we assume the environment described in Sect. 5.1.

The refinement begins from the specification (i) from Sect. 5.1, which we
repeat here.

�msg:
[
start= τ ,

msg= (1 . .mx− 1)� chin∧
τ ≤ start+ chsep∗ (mx+ 1)

]
(i)

A sequential real-time refinement calculus 439

readchar=̂ procedure � ch:
[
start≤ st, ch= chin(n)

]
�ρ |[I :: delay until st+ chsep∗ n;

ch : read(in);
J :: deadline start+ chsep∗ n+ chdef

]|
K :: �

{
start= τ

}
;

|[var st : time •
L :: st : gettime;

M :: �
{
start≤ st

}
;

|[var n : nat ; ch : char •

let INV =̂

(
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧ ch= chin(n)

)
•

n,msg:= 1, 〈〉;
N :: �call readchar;

�do ch
= ETX→
n,msg:= n+ 1,msg� 〈ch〉;

O :: �call readchar

od ;

�
{
n= mx

}
]|

]|;
P :: deadline start+ chsep∗ (mx+ 1)

Fig. 2 Message receiver program with procedure

Separate out the finishing deadline.The second conjunct of the effect of
the specification is clearly a time deadline. This can be separated out.

(i)

�ρ Law 43 (separate-deadline)

�msg:
[
start= τ , msg= (1 . .mx− 1)� chin

]
; (ii)

deadline start+ chsep∗ (mx+ 1)

At this stage of the refinement, one can perform a trivial timing analysis of
the partially refined program. It gives a timing constraint ofchsep∗(mx+1)
for the whole receiver process. As this is linear in the number of characters
to be read, it does not raise any alarms.

Capture the starting time.The starting time of the program is given by the
logical constantstart. Although deadline directivesmaymake use of logical

440 I.J. Hayes, M. Utting

constants, other commands in thefinal programcode, suchasdelays,maynot
reference logical constants. The next few refinement steps are done with the
foresight that the variablest is required as an (upper bound) approximation
to the value ofstart. (The obvious initial refinement is to usestart instead
of st, but then to get code one needs to then eliminate all references to
start.) The application of Law 50 (introduce-variable) relies on the fact
that the predicate,start ≤ τ , is idle-invariant, and the predicate,msg=
(1 . .mx− 1)� chin, is both pre- and post-idle-invariant.

(ii)

�ρ Law 13 (separate-assumption); Law 6 (weaken-assumption)

�
{
start= τ

}
; �msg:

[
start≤ τ , msg= (1 . .mx− 1)� chin

]
�ρ Law 50 (introduce-variable) forst

�
{
start= τ

}
;

|[var st : time •
�st,msg:

[
start≤ τ , msg= (1 . .mx− 1)� chin

]
(iii)

]|

We separate out the capture of the start time via a sequential composition.

(iii)

�ρ Law 42 (simple-sequential-composition)

�st,msg:
[
start≤ τ , start≤ st

]
; (iv)

�st,msg:
[
start≤ st, msg= (1 . .mx− 1)� chin

]
(v)

Reading the current time gives an upper bound on the start time.

(iv)

�ρ Law 9 (remove-from-frame) onmsg; Law 7 (strengthen-effect)

�st:
[
start≤ τ , st ∈ \τ0 ... τ]

]
�ρ Law 6 (weaken-assumption); Def. 35 (gettime)

st : gettime

Set up for loop. To read in the characters of the message, a loop that se-
quences through the characters is required. Local variablesch andn are
introduced to keep track of the current character and index in the message.
The following makes use of the fact that the predicate,start ≤ τ , is idle-
invariant, and the predicate,msg= (1 . .mx− 1) � chin, is both pre- and
post-idle-invariant, for the application of Law 50 (introduce-variable).

A sequential real-time refinement calculus 441

(v)

�ρ Law 9 (remove-from-frame) onst; Law 50 (introduce-variable)

|[var ch : char ; n : nat •
�ch,n,msg:

[
start≤ st, msg= (1 . .mx− 1)� chin

]
(vi)

]|

The loop invariant indicates that the characters up to positionn− 1 have
been placed in themessage and thatch is the next (nth) character in the input
stream. In addition,n remains within the range 1 tomx, andst is an (upper
bound) approximation tostart. A sequential composition corresponding to
the loop initialisation and the loop itself is introduced.

(vi)

�ρ Law 7 (strengthen-effect)

let INV =̂
(
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧ ch= chin(n)

)
•

�ch,n,msg:
[
start≤ st, INV ∧ n= mx

]
�ρ Law 42 (simple-sequential-composition)

�ch,n,msg:
[
start≤ st, INV

]
; (vii)

�ch,n,msg:
[
INV, INV ∧ n= mx

]
(viii)

Initialisation. The initialisation for the loop is performed via a sequential
composition, which first establishes the first three conjuncts ofINV, and
then establishes the last conjunct.

(vii)

�ρ Law 42 (simple-sequential-composition)

�ch,n,msg:
[
start≤ st,

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st

]
; (ix)

�ch,n,msg:
[
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st

, INV
]

(x)

The initialisation ofn andmsgestablishes all but one requirement of the
loop invariant.

(ix)

�ρ Law 9 (remove-from-frame) onch; Law 33 (assignment)

n,msg:= 1, 〈〉

442 I.J. Hayes, M. Utting

Read one character.The final requirement of the loop invariant is to read
the first character intoch.

(x)

�ρ Law 9 (remove-from-frame) onn andmsg

�ch:


msg= (1 . . n− 1)� chin∧

1 ≤ n≤ mx∧ start≤ st
,
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧
ch= chin(n)




�ρ Law 24 (frame-invariant); Law 6 (weaken-assumption)

�ch:
[
start≤ st, ch= chin(n)

]
(xi)

At this point rather than perform the refinement of the above specification
command, we introduce a procedure corresponding to the command. The
introduction of this procedure is donewith the foresight that we need it again
later in the refinement.

readchar=̂ procedure � ch:
[
start≤ st, ch= chin(n)

]
(xii)

Now the specification command can be implemented by a call on the pro-
cedure. The introduction of the call makes use of the fact that the predicate,
start ≤ st, is idle-invariant, and the predicate,ch = chin(n), is both pre-
and post-idle-invariant.

(xi)

�ρ Law 59 (procedure-call)

�call readchar

Loop guard. The obvious termination condition for a loop refining (viii)
is n = mx. However,mx is an abbreviation which, if expanded, contains a
reference to the external inputin. That is not permitted in a guard. However,
mxcorresponds to the position of the first end-of-text character in the input
stream. From the loop invariantn is less than or equal tomx. Hence, from
(16),n= mxif andonly ifchin(n) = ETX.However, from the invariantch=
chin(n). Hencen = mx if and only if ch = ETX. Because the assumption
�

{
n= mx

}
is required for the timing analysis performed in Sect. 5.2, it is

separated out before being replaced bych= ETX in the effect.

(viii)

�ρ Law 14 (establish-assumption); Law 7 (strengthen-effect)

�ch,n,msg:
[
INV, INV ∧ ch= ETX

]
; (xiii)

�
{
n= mx

}

A sequential real-time refinement calculus 443

Introduce loop. The variant expression for the loop ismx−n. Because the
loop invariant boundsnbymx, this expression is always a natural number (a
well-founded set). The introduction of the loopmakes use of the fact that the
predicateINV is idle-invariant, and the expressionsch != ETX andmx− n
are idle-stable.

(xiii)

�ρ Law 57 (iteration)

�do ch != ETX→
�ch,n,msg:

[
ch != ETX∧ INV, INV ∧ mx− n< mx− n0

]
(xiv)

od

Loop body. The body of the loop must make progress by increasingn. It
must also maintain the loop invariant. We introduce a sequential compo-
sition, in which the first component establishes all the required conditions
exceptch= chin(n). The latter is re-established by the second component.

(xiv)

�ρ Law 41 (sequential-composition)

|[conu : Time•

�
ch,n,
msg:


u= τ ∧
ch != ETX∧
INV

,
msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧
mx− n< mx− n0


 ; (xv)

�
ch,n,
msg:


msg= (1 . . n− 1)� chin∧

1 ≤ n≤ mx∧ start≤ st ∧
mx− n< mx− n(u)

,
INV ∧
mx− n< mx− n(u)


 (xvi)

]|
In the application of Law 41 (sequential-composition), the logical constant
u is introduced to represent the start time of the sequential composition.
Hence in the effect of the first componentn0 = n(τ0) = n(u), and in the
second componentn(u) is used throughout to refer to the value ofn at the
commencement of the whole composition.
The next character of the message is already inch; this can be appended

to the message. When that action is combined with incrementingn, the
first two conjuncts of the effect, as well as the decrease of the variant are
established. Becausest is not modified, the conjunctstart≤ st is invariant.

(xv)

�ρ Law 9 (remove-from-frame) onch; Law 33 (assignment)

n,msg:= n+ 1,msg� 〈ch〉

444 I.J. Hayes, M. Utting

The remaining conjunct of the invariant that needs to be re-established is
ch= chin(n).

(xvi)

�ρ Law 9 (remove-from-frame) onn andmsg

�ch:



msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧
mx− n< mx− n(u)

,

msg= (1 . . n− 1)� chin∧
1 ≤ n≤ mx∧ start≤ st ∧
mx− n< mx− n(u) ∧
ch= chin(n)




�ρ Law 24 (frame-invariant); Law 6 (weaken-assumption)

�ch:
[
start≤ st, ch= chin(n)

]
�ρ Law 59 (procedure-call)

�call readchar

That completes the refinement of the receiver, except for the refinement
of the procedurereadchar.

5.4 The procedure to read a single character

We start from the specification of the procedurereadchar, which we repeat
here.

readchar=̂ procedure � ch:
[
start≤ st, ch= chin(n)

]
(xii)

A delay is required until the start of the time interval corresponding to the
nth character. From definitions (13) and (14) in Sect. 5.1, the start of thenth
character isstart+ chsep∗ n.
(xii)

�ρ Law 42 (simple-sequential-composition)

�ch:
[
start≤ st, start+ chsep∗ n≤ τ

]
; (xvii)

�ch:
[
start+ chsep∗ n≤ τ , ch= chin(n)

]
(xviii)

In order that the delay is code, it must not reference logical constants. Hence
the (upper bound) approximation,st, to start is used.

(xvii)

�ρ Law 9 (remove-from-frame); Law 7 (strengthen-effect)

�
[
start≤ st, st+ chsep∗ n≤ τ

]
�ρ Law 6 (weaken-assumption); Def. 36 (delay)

delay until st+ chsep∗ n

A sequential real-time refinement calculus 445

The character must be read before the end of the interval corresponding to
thenth character, which from (13) isstart+ chsep∗ n+ chdef.

(xviii)

�ρ Law 7 (strengthen-effect)

�ch:
[
start+ chsep∗ n≤ τ ,

ch∈ in�\τ0 ... τ]� ∧
τ ≤ start+ chsep∗ n+ chdef

]
�ρ Law 6 (weaken-assumption); Law 43 (separate-deadline)

�ch:
[
ch∈ in�\τ0 ... τ]�

]
; (xix)

deadline start+ chsep∗ n+ chdef

The external inputin can only be accessed via theread command.

(xix)

�ρ Def. 34 (read)

ch : read(in)

The final program is collected in Fig. 2. We note that the program still
includes references to the logical constantstart, but becausestart is only
referenced in assumptions and deadline directives, we have a valid program
in our extended programming language.

5.5 Timing analysis with procedure calls

The timing analysis of the program containing the procedurereadchar is
similar to that for the program without the procedure. We illustrate the
difference by examining a few corresponding paths. We use the notationN:I
to refer to positionI in the procedure called from positionN in the program.
The pathA–D in Fig. 1 corresponds to the pathK–N:I in Fig. 2. The latter
path consists of the allocation of the variablest, the command to get the
current time, allocation ofn andch, initialisation ofn andmsg, and the call
entry overhead of procedurereadcharatN. Both paths have the same time
constraint.
The pathI–J in the versionwith procedures corresponds to both the paths

D–EandF–G. These paths all contain the same code and have the same time
constraint. The pathD–F in the version without procedures corresponds to
the pathN:I–O:I in the version with procedures. That is the path starting
from I that reads a character, exits the call on procedurereadcharatN, eval-
uates the loop guard (totrue), updatesn andmsg, and enters the procedure
readcharfor a second time atO. The timing constraint on this path is the
same as forD–F. The remaining paths in the version with procedures are
analysed in a similar fashion. The only differences are the overheads for
entering and exiting the procedure.

446 I.J. Hayes, M. Utting

6 Conclusions

The main advantage of the sequential real-time refinement calculus pre-
sented here is that, to developers, it appears to be a straightforward extension
of the standard refinement calculus. Although it has a different underlying
semantics, most of the standard refinement laws carry over, and the real-
time extended programming language is a superset of the standard target
language.
Our conventions of usingx andx0 as abbreviations forx(τ) andx(τ0)

are intended to make refinements of functional components (i.e., not in-
volving time) as close to Morgan’s calculus [18] as possible. In practice,
a development in the real-time calculus is similar to standard refinement
calculus development, but with the addition of steps to separate out tim-
ing constraints and refine them into real-time language constructs. It is the
ability to partition refinements into components dealing with time and those
dealing with functional requirements that allows conventional refinement of
the functional requirements [6].
The specifications provided by our approach are quite general. Not only

do they allow time limits to be specified, but they also allow the detailed
specification of the behaviour of outputs over time, as well as assumptions
about the behaviour of inputs over time.
Real-time specifications may contain timing deadlines, both explicitly

and implicitly. To be able to refine such specifications to code in a real-
time programming language, it toomust includemechanisms for specifying
deadlines in the code. The approach we have taken is to extend a real-time
programming language with the deadline directive. This extension provides
amachine-independentsequential real-time programming language. An ad-
vantage of our approach is that deadlines are associated with paths through
the code. This is more flexible and realistic than over specifying deadlines
by requiring each language construct to have a maximum execution time.
Of course to compile a program in our extended programming language,

we must ensure that the compiled code meets all timing deadlines. This
requires a sophisticated timing analysis procedure. Hence our seemingly
simple extension of adding a deadline directive leads to a more complex
‘compilation’ process. However, such analysis is essential to any approach
toensuringdeadlinesaremet by themachinecodeof ahard real-timesystem.
In general, the analysis may need tomake use of quite general properties

of a program.For example, in theanalysis of theexit path from the loop in the
receiver example, the assumption,n= mx, generated during the refinement,
was essential to be able to simplify the timing constraint on the exit path. The
combinationof refinementand timinganalysiswithinone framework, allows
such properties to be passed from the refinement to the timing analysis as
assumptions in the code. Even so, resolving timing constraints is non-trivial.

A sequential real-time refinement calculus 447

Details of techniques for extracting timing path constraints are given in [5].
Analysing machine code to determine worst-case execution time bounds is
dealt with by [11].
In this paper we have developed a refinement calculus for a real-time

extension of Dijkstra’s language. Interestingly, the techniques are able to
cope with the nondeterministic constructs in the language. We believe that
the techniquesmay be applied to develop a real-time refinement calculus for
other sequential, real-time programming languages, such as Ada. Of course,
we only consider the sequential subset of Ada, and additional research is
required to copewith Ada exceptions, etc. Another construct that is common
in real-time programming languages is the time-out; that is an area for future
work.
The motivation for the definition of the specification command comes

from Mahony’s real-time refinement calculus [12]. That calculus allows
specification of system behaviour over all time, and allows refinement of
a specification to a set of truly parallel processes. The sequential real-time
refinement calculus could be used to refine each such process to sequential
code, but more work is required to properly integrate concurrency into our
calculus.

Acknowledgements.We would like to thank Colin Fidge, Stephen Grundon, Jim Grundy,
Brendan Mahony, Raymond Nickson, Trevor Vickers and Luke Wildman for feedback on
earlier draftsof thispaper; themembersof IFIPWorkingGroup2.3onProgrammingMethod-
ology for feedback on this topic; and the anonymous refereeswhose feedback led to a number
of improvements in the paper and the inclusion of Sect. 4. Ian Hayes would like to acknowl-
edge the support of the the Australian Research Council (ARC) Large Grant A49801500,
A Unified Formalism for Concurrent Real-time Software Development, The University of
Queensland Special Studies Programme for the second half of 1996, and the hospitality of
both theOxfordUniversity Computing Laboratory and theDepartment of Computer Science
at the Australian National University. Part of Mark Utting’s contribution was funded by the
Information Technology Division of DSTO.

References

1. R.-J. Back: Correctness preserving program refinements: Proof theory and applications.
Tract 131, Mathematisch Centrum, Amsterdam, 1980

2. R.-J. Back, J. von Wright: Refinement Calculus: A Systematic Introduction. Berlin
Heidelberg New York: Springer 1998

3. E.W. Dijkstra. A Discipline of Programming. Englewood Cliffs, N.J.: Prentice-Hall
1976

4. S. Grundon: Timing constraint analysis for real-time programming. Honours thesis,
Department of Computer Science, The University of Queensland, November 1996

5. S. Grundon, I. J. Hayes, C. J. Fidge: Timing constraint analysis. In: C. McDonald (ed.)
Computer Science ’98: Proc. 21st Australasian Computer Science Conf. (ACSC’98),
Perth, 4–6 Feb., pp. 575–586. Berlin Heidelberg New York: Springer 1998

448 I.J. Hayes, M. Utting

6. I. J. Hayes: Separating timing and calculation in real-time refinement. In: J. Grundy,
M.Schwenke,T.Vickers (eds) InternationalRefinementWorkshopandFormalMethods
Pacific 1998, pp. 1–16. Berlin Heidelberg New York: Springer 1998

7. I. J. Hayes, B. P. Mahony: Using units of measurement in formal specifications. Formal
Asp. Comput. 7(3): 329–347 (1995)

8. I. J. Hayes, M. Utting: Deadlines are termination. In: D. Gries, W.-P. de Roever (eds)
IFIPTC2/WG2.2, 2.3 InternationalConferenceonProgrammingConceptsandMethods
(PROCOMET’98), pp. 186–204. London: Chapman and Hall 1998

9. J. Hooman: Assertional specification and verification. In: M. Joseph (ed.) Real-time
Systems: Specification, Verification and Analysis, Chap. 5, pp. 97–146. Englewood
Cliffs, N.J.: Prentice Hall 1996

10. K. Lermer, C. J. Fidge: A methodology for compilation of high-integrity real-time pro-
grams. In: C. Lengauer, M.Griebel, S. Gorlatch (eds) Euro-Par’97: Parallel Processing,
volume 1300 of Lecture Notes in Computer Science, pp. 1274–81. Berlin Heidelberg
New York: Springer 1997

11. Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul Min,
Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, Chong Sang Kim:
An accurate worst case timing analysis for RISC processors. IEEE Trans. Software
Eng. 21(7): 593–604 (1995)

12. B. P. Mahony: The Specification and Refinement of Timed Processes. PhD thesis,
Department of Computer Science, The University of Queensland, 1992

13. B. P. Mahony: Calculating the least conjunctive refinement and promotion in the re-
finement calculus. Formal Asp. Comput. 11: 75–105 (1999)

14. B. P. Mahony, I. J. Hayes: A case study in timed refinement: A central heater. In:
Proc. BCS/FACS Fourth Refinement Workshop, Workshops in Computing, pp. 138–
149. Berlin Heidelberg New York: Springer 1991

15. B. P. Mahony, I. J. Hayes: Using continuous real functions to model timed histories.
In: P. A. Bailes (ed.) Proc. of the 6th Australian Software Engineering Conference
(ASWEC91), pp. 257–270. Australian Computer Society, July 1991

16. C. C. Morgan: Data refinement using miracles. Inform. Process. Lett. 26(5): 243–246
(1988)

17. C.C.Morgan: Procedures, parameters, andabstraction:Separateconcerns. Sci.Comput.
Program. 11(1): 17–28 (1988)

18. C. C. Morgan: Programming from Specifications, 2nd edn. Englewood Cliffs, N.J.:
Prentice Hall 1994

19. J.M. Morris: A theoretical basis for stepwise refinement and the programming calculus.
Sci. Comput. Program. 9(3): 287–306 (1987)

20. D. J. Scholefield: A Refinement Calculus for Real-Time Systems. PhD thesis, Depart-
ment of Computer Science, University of York, U.K., 1992

21. D. J. Scholefield, H. Zedan, He Jifeng: A specification-oriented semantics for the
refinement of real-time systems. Theor. Comput. Sci. 131: 219–241 (1994)

22. M. Utting, C. J. Fidge: A real-time refinement calculus that changes only time. In:
He Jifeng (ed.) Proc. 7th BCS/FACS Refinement Workshop, Electronic Workshops in
Computing. Springer, July 1996. URL http://www.springer.co.uk/eWiC/Workshops/
7RW.html

23. M. Utting, C. J. Fidge: Refinement of infeasible real-time programs. In: Proc. Formal
MethodsPacific ’97,DiscreteMathematics andTheoreticalComputerScience, pp. 243–
262, Wellington, New Zealand, July 1997. Springer

