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Preface

This volume contains the invited papers, research papers, case studies, and po-
sition papers presented at the International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS 2011), that was held October 5-7, 2011
in Torino, Italy. Post-conference proceedings with revised versions of selected
papers will be published within Springer’s Lecture Notes in Computer Science
series after the conference.

Formal software verification has outgrown the area of academic case studies,
and industry is showing serious interest. The logical next goal is the verification
of industrial software products. Most programming languages used in industrial
practice are object-oriented, e.g. Java, C++, or C]. FoVeOOS 2011 aimed to
foster collaboration and interactions among researchers in this area.

FoVeOOS was organised by COST Action IC0701 (www.cost-ic0701.org),
but it went beyond the framework of this action. The conference was open to
the whole scientific community. All submitted papers were peer-reviewed, and
of the 28 submissions, the Programme Committee selected 19 for presentation
at the conference.

We wish to sincerely thank all the authors who submitted their work for
consideration. We would also like to thank the Program Committee members as
well as the additional referees for their great effort and professional work in the
review and selection process. Their names are listed on the following pages.

In addition to the contributed papers, the programme of FoVeOOS 2011 in-
cluded four excellent keynote talks. We are grateful to Alan Mycroft (Cambridge
University), James J. Hunt (aicas incorporated), Anindya Banerjee (IMDEA
Software) and Peter Wong (Fredhopper) for accepting the invitation to address
the conference.

It was a team effort that made the conference so successful. We particularly
thank Sarah Grebing and Vladimir Klebanov for their hard work and help in
making the conference a success. In addition, we gratefully acknowledge the
generous support of COST Action IC0701, the Karlsruhe Institute of Technology,
the Museo Regionale di Scienze Naturali (MRSN) of Torino, and the University
of Torino.

October 2011

Bernhard Beckert
Ferruccio Damiani

Dilian Gurov
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Abstracts of Invited Talks

Local Reasoning for Verification of Object-Based Programs
using First-Order Assertions

Anindya Banerjee

IMDEA Software
anindya.banerjee@imdea.org

Shared mutable objects pose challenges in reasoning, especially for data ab-
straction and modularity. We present a logic for error-avoiding partial correctness
of programs featuring shared mutable objects. Using a first order assertion lan-
guage, the logic provides heap-local reasoning about mutation and separation,
via ghost fields and variables of type ”region” (finite sets of object references).
We show the logic in use in proving the correctness of the composite design
pattern. We also show how the logic can be used to reason about the hiding
of internal invariants in a procedure specification and how to perform client
reasoning in a manner that does not invalidate the internal invariants.

Joint work with David A. Naumann and Stan Rosenberg (Stevens Institute
of Technology).

Using Kilim’s Isolation Types for Multicore Efficiency

Alan Mycroft

Cambridge University
am@cl.cam.ac.uk

We identify a ‘memory isolation’ property which enables multi-core programs
to avoid slowdown due to cache contention. We give a tutorial on existing work
on Kilim and its isolation-type system building bridges with both substructural
types and memory isolation.
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The Practical Application of Formal Methods:
Where is the Benefit for Industry?

James J. Hunt

aicas GmbH
Haid-und-Neu-Str. 18, D-76131 Karlsruhe, Germany

jjh@aicas.com
http://www.aicas.com/JamesJeffersHunt.html/

Abstract. Though the use of formal methods for software verification
has progress tremendously in the last ten year, its take up in industry
has been meager, but with the right emphasis this could change dra-
matically. Software certification standards have started to take formal
methods seriously as an alternative to testing. By focusing on practical
issues such as common specification languages, adaption to industrial
processes for safety certification, scalability, training, and synergies be-
tween tools, common reservations about using formal methods could be
lain to rest. This could help formal methods become the center of soft-
ware engineering in the coming decade.

1 Introduction

Though the use of formal methods for software verification has progress tremen-
dously in the last ten year, its take up in industry has been meager. There appear
to be three main reasons for this: the perceived difficult of using formal methods,
the focus of the formal methods community on theoretically interesting prob-
lems rather than the engineering work needed for applying formal methods to
the practical concerns of applying those methods, and the lack of cooperation
between different groups within formal methods community. The question is,
how can these issues be resolved?

2 Application Domains

Before answering this question, one must first understand which applications
areas are most likely to yield positive results. Software engineers are notorious
for not wanting to change the way they do their development. Anyone who has
ever tried to change the development process will understand this. Unless the
team already has a problem that is causing pain, most team members will find
any excuse not to change. There are areas tough, where one can expect that
there will be pain.

Technical Report, KIT, 2011-26 2



2.1 Security

An obvious area is security. This has always been the area where formal methods
has been most appreciated. The US Department of Defense has been a major
source of funding for investigating the application of formal methods to security.
Banks have also shown interested for certain types of applications, as illustrated
by the Mondex case study[12]. The main goal is to ensure that a given sys-
tem guarantees some aspect of ensuring that information is only visible to the
agents with the proper privileges and the actions on that data are correctly exe-
cuted. This is mainly a question of information access and transmission, identity
management, and program functional correctness. In some sense, security is a
special case of safety, i.e., safety with some special system requirements. The
highest Evaluation Assurance Level (EAL) of the Common Criteria for Infor-
mation Technology Security Evaluation, an international standard for certifying
security relevant systems (ISO/IEC 15408), requires the use of formal methods
at the highest level.

2.2 Safety

System safety is not just interesting as a basis for security, but also for the
preservation of human life and livelihood. Ensuring the safe operation of systems,
particularly embedded systems, is becoming increasingly necessary as ever more
systems are automated. Likewise, safety-standards are increasingly recognizing
the need, or at least the value of formal methods for ensuring safety. Avionics
software certification standards are a good example of this.

The current software certification standards for avionics (DO-178B/ED-12B
and DO-278/ED-109) are based on the implicit use of procedural programming
languages and specification-base verification through testing. The recently ap-
proved replacements (DO-178C/ED-12C and DO-278A/ED-109A) have technol-
ogy specific supplements on object-oriented technology (ED-217), formal meth-
ods (ED-218), and model-based development (ED-216), as well as a companion
document on tool qualification (ED-215)1. What is interesting for the use of
formal methods for object-oriented system design and development is that there
is now a clear role for the use of formal methods in verifying such systems and
a means of qualifying the formal-methods-based tools for this use.

The Object-Oriented Technology and Related Techniques Supplement[7] ad-
dress those aspects of certification that are specific to object-oriented technology
as well as some related techniques that are commonly associated with but not
limited to object-oriented languages. One central issue, is the use of dynamic
dispatch with inheritance. Here the supplement clearly identifies Liskov Sub-
stitution Principle (LSP) as the primary means of ensuring proper subclassing
and substitution to minimizing the testing burden. Formal methods is clearly
identified as a sufficient means for verifying LSP without the need for additional
testing.

1 The DO numbers for the US have not yet been assigned.

J. J. Hunt
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The Formal Methods Supplement[8] proscribes how formal methods can be
used for verification. In the past, formal methods might only be used to reduce
the need for code inspection, but we not permitted to be used to reduce the need
for testing. The new supplement provides clear guidelines for replacing testing
with formal analysis. Issues of soundness and completeness of the tools used
are addressed. Some testing will always be required, because that is the only
verification environment that takes the complete system, processor, memory,
I/O, etc., and the external environment into account. This is particularly true of
integration testing. Still much of unit testing could be eliminated, which should
reduce overall cost. The supplement also makes clear that certain properties of
a system are best addressed with the help of formal methods.

Finally, the Software Tool Qualification Considerations[6] standard describes
how tools used in the software development process should be qualified. Formal
analysis tools are not part of an aviation application, but they do either con-
tribute to the code or make important determination about the quality of code.
Tool qualification is about the processes necessary to demonstrate that tools
functions correctly and the degree to which a tools needs to fulfill the same cer-
tification requirements as actual flight software. This also depends on whether
or not the output of the tool can be independently verified.

Table 1. Tool Qualification Categories

DO-178B / ED-12B Tool DO-178C / ED-12C Tool
Category & Definition Qualification Criteria & Definition

Development tools: tools whose
output is part of airborne software
and thus can introduce errors.

Criteria 1: tool whose output is part of the
resulting software and could insert errors.

Verification tools: Tools that
cannot introduce errors, but may
fail to detect them.

Criteria 2: A tool that automates the ver-
ification process and thus could fail to de-
tect an error, and whose output is used to
justify the elimination or reduction of

– verification process not automated by
tool or

– development process which could im-
pact the resulting software.

Criteria 3: A tool that, within the scope
of its intended use, could fail to detect an
error.

The Tool Qualification supplement breaks tools down according to how their
output is used in the software certification process. In DO-178B, only two cate-
gories of tools where considered: tools that contributed to the executable code
in an avionics system and tools that are use to verify this code. In DO-178C,

The Practical Application of Formal Methods: Where is the Benefit for Industry?
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there is a new category of tools: those that automate parts of the verification
process. Table 1 describes these three tool criteria.

Table 2. Tool Qualification Levels

Software Criteria
Level 1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

These criteria are used to determine the level of work necessary to qualify
a given tool for use in creating and certifying aviation software. Table 2 de-
picts the relationship between the software criticallity level of the software being
developed, the criteria level of the tool and the tool qualification level (TQL)
governing the qualification of the given tool. There are five tool qualification
levels 1 through 5, which are equivalent to software criticallity levels A though E
respectively. For example, a criteria one tool used for producing level A software
must be developed with the same rigor as any level A software, whereas a criteria
3 tool must to be developed with the rigor of level C software.

Table 3. Tool Qualification Equivalences

DO-178B/ED-12B DO-178B/ED-12B DO-178C/ED-12C
Qualification Type Software Level Qualification Level

Development A 1

Development B 2

Development C 3

Development D 4

Verification All 4 or 5

For criteria one tools, this is no different than the rules for DO-178B; but for
the other criteria, it represents a rigor that more explicitly aligns to that of the
software being developed with the tool (Figure 3).

More importantly, the tools qualification supplement also provides guidance
for tool reuse. Figure 1 depicts the process of deciding what needs to be done
at the planning level when a tool is reused in a new project. When no change
has been made, the tool can be reused easily; when the operation environment
changes, only revalidation is needed; otherwise, any changes will require changes
to requirements to justify code changes, as well as revalidation.

J. J. Hunt
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Fig. 1. Tool Reuse

2.3 Multicore

Aside from safety and security, the advent of multicore systems will give software
developers a reason to reevaluate the way software is written. As the number of
cores in a processor increase, so does the scope for parallel execution. This means
the developers will be increasingly faced with errors due to missing or improper
synchronization yielding deadlocks, livelocks, and data corruption. These kinds
of errors typically require a global view of program execution, which is both hard
to see with inspection and hard to test. Formal methods can provide both better
paradigms for design and coding parallelism and better tools for analyzing these
global concerns.

3 Impedances

There are several commercial companies that sell so called static analysis tools
to the software development community. So called not because they are static
analysis tools, since most formal verification tools are static as well, but because
the term is misused to refer to just tools that do not used any formal approach.

The Practical Application of Formal Methods: Where is the Benefit for Industry?
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An informal survey by the author seems to suggest that most tools available are
informal, not because the developers do not understand issues of soundness and
completeness, but rather that uses are not keen on formal tools.

At first glance, this may appear strange. One would expect that a software
engineer would like to produce the best possible product and that formal meth-
ods could help them do this is a short period of time. Unfortunately, human
nature play a strong role. It is actually quite understandable that developers
would resist using formal methods. Firstly, most engineers do not really under-
stand the background, so there is a large learning curve. This is hard, not just
because no one likes to feel like they do not understand their own business, but
also because they may not believe they have the time to devote to understanding
formal methods. Secondly, it would probably mean rethinking how a system is
structured in the first place, which becomes more costly as development pro-
gresses.

A good example of this is to discuss Liskov Substitution Principle (LSP) with
a software developer. It should be clear that the testing required to show that a
system is correct is reduced by LSP’s application, but most software developers
do not understand this. This is in part because of the seductive effect of using
subclassing for code reuse. More importantly, the realization that type checking
only a partial check is lacking. After all, the type system of a language is just a
proxy for the categories of objects behind the type system. In an object-oriented
language, it is up to the user to specify and maintain the consistency of the
categories with respect to their types as used in the type system. Most problems
with fulfilling LSP can be resolved with architectural changes.

Pattern-based checkers fit the current engineering mind set better. They
run quickly and can point out errors that are simple to fix. They also do not
require much in the way of additional understanding. This makes it easy for the
engineer to say that they used the tools and could prevent these errors from
being propagated to test. They do not require restructuring of the application
to fix what are often considered to be theoretical problems. One does not want
to be confronted with a deep architectural problem late in the design phase.

This means that part of the solution is education. It is not enough for people
to understand what formal methods are and for that they are good, but also
what design principle should one consider when building a system. For example,
if one thinks about it, it may be obvious that conforming to LSP has an impact
on the architecture of a system; but how many people have though about this
enough that considering LSP during system modeling comes naturally? There are
certainly other principles as well. In fact, relying on design principles established
from experience with formal methods may be the only way of building complex
parallel systems that are reliable.

J. J. Hunt
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4 Usability

Once one is convinced that formal methods are necessary for building robust
and reliable system, then comes the next hurdle. There are many tools available,
but then come the questions.

– What is the best tool or tools to use?
– How do they fit into my process?
– Are they integrated into my IDE?
– Are they integrated into my build service?
– Can I understand their results?
– When must a user intervene?
– Can a developer understand what to do when intervention is necessary?
– How do I know that I can rely on their results?
– What happens to existing work when the tool is updated?

There are surely others as well. It all boils down to can the theory be used to
improve software robustness and reliability in practice?

A tool or a set of tools is not enough. One needs to understand how the tools
work in the software development process and where they fit into their process.
What new steps must be included? Are the cost of these new steps worth the
results? Where in the process should they be applied? What analysis needs to
be done when a requirement, a model, or some part of the code are changed?

Formal methods must become part of the software engineering process and
formal-methods-based tools have to be developed with a software engineering
process. There is a certain bootstrapping problem here. It would be advantageous
to use a tool in its own software development process and validate itself, but
bringing the further development of a tool into such a process later is also good.
The closer this process is to a process acceptable for safety-critical software
community the better.

This move would provide a wealth of experience with using each tool in a
software development process. It should also demonstrate that the given tool is
scalable. This may well require the specification of a large set of library code,
but this will be needed for other systems as well.

The reason for targeting a safety-critical software development process is that
using formal methods should make the process less costly so that other domains
might be tempted to use formal methods as well. After all, using formal methods
should result in a reduced need for testing as well as be able to cover attributes
of design that are not easy to find via testing. This should also encourage the
combination of formal-methods-based tools in the process.

When a group uses its own tools the initiated can easily use the tools and
cross fertilization would also be enhanced, but what about other practitioners? It
is already difficult enough to take a C programmer and have him start developing
in Java, but what about making him learn to use Coq or Isabelle? Languages and
tools need to be designed for the intended users. That means bringing formal
methods to the users domain not visa verse. It does not help the user much if the
program is first translated into an unfamiliar language before it can be proven
to be correct.

The Practical Application of Formal Methods: Where is the Benefit for Industry?
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5 Languages

Despite what the UML and Model Driven Engineering community believes, lan-
guage is still important, not only for software development, but also for specifi-
cation. The choice of languages effects both the difficulty of generating code and
verifying code correctness. There is no sense waisting effort on poorly designed
languages.

5.1 Implementation

Some argue that the most popular programming languages should be supported
by the formal methods community, but this is not necessarily a wise choice. Cer-
tainly, a focus on languages that are actually in use helps acceptance, but some
languages are so poorly design that they are more apt end up supporting the
criticism that formal methods cannot be used on “real” programming languages.
Even a successful attempt will require extensive effort to circumvent poor syntax
and semantics.

C and C++ are good examples, as they are often used for embedded system.
However, for safety-critical systems, one is expected not to allocate memory
dynamically and only use a subset of the language such as defined by MISRA[5].
With these restrictions, one may well be able to model the program as a state
machine or a pushdown automaton, where a domain specific language may be a
better choice.

In any case, both language have poorly designed semantics with no well
defined memory model. On top of that, they use a preprocessor with a syntax
that is not compatible with the base language, which adds additional complexity
to the analysis problem. Perhaps one should consider defining a variant of C for
low-level programming that resolves these issues and just say no to C++.

More complex programs are better done with a language that has some run-
time support. This should include

– a memory model,

– a well defined syntax and semantics,

– static typing, and

– a realtime garbage collector.

It should not include

– pointer manipulation, and

– a preprocessor.

These attributes should make both generating code from models and analysis
code correctness simpler.

J. J. Hunt
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5.2 Specification

More important than the implementation language is specification languages.
The sooner one uses a formal notation for specification, the easier it is to use
formal methods to ensure program correctness, for both functional and nonfunc-
tional aspects of a system. Once a formal specification exists, it must be refined
during the development process. Currently, this refinement process is poorly
supported.

There are different languages available for each of the development process
stages. One might use a language such as Z Notation[11] or Alloy[3] for the initial
or high-level specification. Then one might use Object Constraint Language[2]
(OCL) at the modeling level, where the specification can be related to the system
architecture. Finally, one mightuse Java Modeling Language[4] (JML) during
code development and maybe even Bytecode Modeling Language (BML) for the
bytecode. But how can one refine one to the next?

The easiest refinement is from JML to BML, though this is hardly a refine-
ment at all, but a representation change. Still recoding JML as Java annotations
and using the annotation internal format to represent BML would be a good step
in the right direction. The annotation mechanism would itself need extension,
but this is just a standardization problem not a technical one. One could even
imaging extending BML to machine code by providing an encoding for ELF files.
Other languages such as Scala that compile to Java Bytecode could use a similar
approach.

By having the specification at the source code, bytecode, and machine code
level, different tools can share specification information. For example, a proof
checker at the machine code level could not only ensure that the code one has
actually fulfills the proof provided with it, one could also rule out the possibility
that the compiler inserted some error. One could also minimized the tool qual-
ification effort by qualifying the proof checker instead of the verification tool
itself. As another example, a resource analysis tool could use general program
attributes such as loop and recursion invariants encoded in a specification lan-
guage for bounding execution contexts, while a program verification tool could
prove the correctness of these attributes.

More difficult is the refinement from initial specification to model specifica-
tion and code specification. To start with, neither OCL nor JML have a clear
separation of specification and proof support information such as loop invariants.
Still, there should be a subset of JML and OCL that are equivalent for speci-
fying the behavior of a method and invariants on a class, but this subset along
with the translation from one language to the other needs a formal specification.
The refinement from an initial specification to a model specification is still more
difficult.

6 Synergies

No one technique, formal or not, can cover all verification issues. There is a
tendency to try to use ones own tool for as many problems as possible. Though
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interesting for comparison purposes, it is not half as useful as showing which tool
is best for solving with verification or transformation problem and how various
tools can be combined to provide a complete design process.

As can be seen from the Formal Methods Supplement to DO-178C/ED-12C
and DO-278A/ED-109B, testing will always be part of the process, but formal
methods can also be used to assist testing directly. For instance, the KeY tool[1],
a deductive program verification tool originally from the University of Karlsruhe,
has been adapted for generating specification based tests and test vectors. By
using the KeY verification engine to identify all paths through the code for
generating test vectors and JML postconditions to generate code to evaluated
the results of a test, a full set of unit tests for a given method can be generated.
By using this tool, a significant amount of manual test writing could be avoided.
The side benefit is to get developers to consider writing specification in a formal
language, thus making the next step easier.

The HATS project is a good starting point for putting together a full set of
tools. Still, much more needs to be done to see what tools work well together
and how they can be integrated into the software development process. A good
exercise is to ask what role can a given tool play in the avionics software certifi-
cation process, what effort is needed to qualify the tool, what other tools could
be used for support tool qualification and avionics software certification, and
what must be done to make the tool usable in the process?

7 Conclusion

It is the authors opinion that computer science is not really a science, but an
engineering discipline. There is the same relationship between physics and other
engineering disciplines as there is with mathematics and computer science. This
is just as true for formal methods as any other computer science discipline.
Theory is not enough. Without solid engineering and experimentation, formal
methods will not take its proper place in the software engineering toolkit. The
theory is now well enough advanced that the focus should be one engineering and
demonstrating tangible results. To make formal methods more useful in practice,
the main focus should be on

– using common specification languages,

– implementation languages that are not just well know but well suited to
formal analysis,

– industrial processes for safety certification,

– scalability (which may include having a body of prespecified libraries),

– finding synergies between tools, and

– eating your own dog food, i.e., using your tool on your tool.

Conferences such as this one should support this change by asking for more
practical results.

J. J. Hunt
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Abstract. The HATS project aims at developing a model-centric engi-
neering methodology for the design, implementation and verification of
distributed, concurrent and highly configurable systems. Such systems
also have high demands on their dependability and trustworthiness. The
HATS approach is centered around the Abstract Behavioural Specifi-
cation modelling language (ABS) and its accompanying tools suite. The
HATS approach allows precisely specifying and analyzing the abstract be-
haviour of distributed software systems and their variability. The HATS
project measures its success by applying its framework not only to toy
examples, but to real industrial scenarios. In this paper, we evaluate the
HATS approach for modelling an industrial scale case study provided
by the eCommerce company Fredhopper. In this case study we consider
Fredhopper Access Server (FAS). We model the commonality and vari-
ability of FAS’s replication system using the ABS language and provide
an evaluation based on our experience.

Keywords: Variability modelling; Software product lines; Industrial case study;
Formal modelling and specification; Evaluation

1 Introduction

Software systems evolve to meet changing requirements over time. Evolving soft-
ware systems may require substantial changes to the software and often result
in quality regressions. After a change in a software system, typically some work
is needed in order to regain the trust of its users. The “Highly Adaptable and
Trustworthy Software using Formal Models” (HATS) project aims at developing
tools, techniques and a formal software product line (SPL) development method-
ology [10, 34] for rigorously engineering distributed software systems are subject
to changes.

? This research is partly funded by the EU project FP7-231620 HATS: Highly Adapt-
able and Trustworthy Software using Formal Models (http://www.hats-project.eu).
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The HATS approach is centered around the Abstract Behavioural Specifica-
tion (ABS) modelling language [23, 13], an accompanying ABS tool suite [11,
36] and a formal engineering methodology for developing SPL [10]. ABS facil-
itates to model precisely SPLs of distributed concurrent systems, focusing on
their functionality, while providing the abstraction to express concerns, such as
available resources, deployment scenarios and scheduling policies. In particular,
the language of ABS provides modelling concepts for specifying SPL’s variability
from the level of feature models down to object behaviour. This permits large
scale reuse within SPLs and rapid product construction during the application
engineering phase of the SPL engineering methodolody [10].

In this paper, we evaluate the application of the HATS approach to an indus-
trial SPL case study of the Fredhopper Access Server (FAS) product line. FAS,
developed by Fredhopper B.V. (www.fredhopper.com), is a distributed service-
oriented software system for Internet search and merchandising. In particular
we consider FAS’s replication system; the replication system ensures data con-
sistency across the FAS deployment. We use this case study to evaluate the HATS
approach with respect to the following criteria, derived during the requirement
elicitation activity conducted at the beginning of the HATS project [17]:

Expressiveness We evaluate the ABS language with respect to its practical
language expressiveness. We investigate from the user’s perspective how
readily and concisely ABS allows users to express program structures and
behavior, and its capability to capture variability in SPLs.

Scalability We evaluate the ABS language with respect to the size and the
complexity of the modelled system. It is important to provide mechanisms
at the language level that permit separations of concerns, reuse and compo-
sitional development of SPLs.

Usability We evaluate the HATS approach with respect to its overall usability,
focussing on the ease of adoption and learnability. We take into account the
tool support, as well as the language’s syntax and semantics.

The structure of this paper is as follows: Section 2 briefly presents the HATS
approach; Section 3 describes the functionality of the Fredhopper Access Server
(FAS) product line and its replication system; Section 4 considers how to model
the replication system’s commonality using ABS; Section 5 considers how to
model the replication system’s variability using ABS. We present an evaluation
based on our experience using ABS in Section 6. We provide an overview of the
existing approaches to model and analyse concurrent distributed systems with
variabilities in Section 7 and a summary of this paper in Section 8.

2 HATS approach

The HATS approach is designed as a formal methodology for developing SPL [10].
The HATS methodology is a combination of the ABS language, a set of well-
defined techniques and tool suite for ABS, and a formal methodology to bind
them to specific steps in a SPL development process. ABS comprises a core
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language with specialised language extensions, each focusing on a particular
aspect of modelling SPLs, while respecting the separation of concerns principle
and encouraging reuse.

The Core ABS is a strongly typed, concurrent, object-based modelling lan-
guage with a formal executable semantics and a type system [23]. The Core
ABS consists of a functional and a concurrent object levels: The functional level
provides a flexible way to model internal data in concurrent objects, while sepa-
rating the concerns of internal computation from the model; this is an important
language feature for scalability. The functional level supports user-defined para-
metric data types and functions with pattern matching. The concurrent object
level is used to capture concurrent control flow and communication in ABS mod-
els; the concurrency model of the Core ABS is based on the concept of Concurrent
Object Groups. A typical ABS model consists of multiple object groups at run-
time. These groups can be regarded as autonomous, runtime components that
are executed concurrently, share no state and communicate asynchronously. The
core ABS’s object-based model structure provides a good fit with UML mod-
elling approaches, while its type system guarantee type safety at runtime for
well typed core ABS models. The core ABS’s executable semantics supports
early verification and validation.

The ABS then extends the Core ABS with the following specialised exten-
sions [13].

– The Micro Textual Variability Language (µTVL), based on Classen et al.’s
TVL [14], expresses the variability of SPL at the level of feature models
during the family engineering phase of the SPL engineering process.

– The Delta Modeling Language (DML), based on delta modelling [33], models
variability of SPL at the level of object behavior during the family engineer-
ing phase of the SPL engineering process. The variability at the behavioral
level is represented by a set of delta modules that contain modifications of
the ABS model of software artifacts in SPL, such as additions, modifications
and removals of model entities. Delta modules provides the capability to
define generic software artifacts in SPL.

– The Product Line Configuration Language (CL) connects the variability of
SPL from feature models down to object behavior by specifying the relation-
ship between features and delta modules. Each delta module is associated
with one or more feature in the feature model, thereby allowing reuse delta
modules across features in the SPL.

– The Product Selection Language (PSL) specifies individual products in the
SPL by providing a particular feature selection along with its initialization
code.

The ABS tools suite [36] includes an ABS compiler front end, which takes
a complete ABS model of the SPL as input, checks the model for syntax and
semantic errors and translates it into an internal representation. The front end
supports automatic product generation, variability of the SPL can be resolved
by applying the corresponding sequence of delta modules to its core ABS model
at compile time; variability resolution is one of the core activities during the
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Fig. 1. An example of a FAS deployment

application engineering phase of the SPL. Different back ends translate the
internal representation into Maude or Java, allowing ABS models to be exe-
cuted and analyzed. The tools suite also includes a plug-in for the Eclipse IDE
(www.eclipse.org). The plugin provides an Eclipse perspective for navigating,
editing, visualizing, and type checking ABS models, and an integration with the
back ends, so that ABS models can be executed or simulated directly from the
IDE.

3 Fredhopper Access Server

The Fredhopper Access Server (FAS) is a component-based and service-oriented
distributed software system. It provides search and merchandising services to e-
Commerce companies such as large catalogue traders, travel agencies, etc. Each
FAS installation is deployed to a customer according to the FAS deployment
architecture. Figure 1 shows an example setup. A detailed presentation of FAS’s
individual components and its deployment model can be found in the HATS
project report [18].

A FAS deployment consists of a set of live and staging environments. A live
environment processes queries from client web applications via web services. FAS
aims at providing a constant query capacity to client-side web applications. A
staging environment is responsible for receiving data updates in XML format,
indexing the XML, and distributing the resulting indices across all live environ-
ments according to the replication protocol.

Implementations of the replication protocol are provided by the replication
system. A replication system consists of a set of computation nodes; one of
which is the synchronization server residing in a staging environment, while
all other nodes are synchronization clients residing in the live environments.
The synchronization server takes care of determining the schedule of replication,
as well as the content of each replication item. The synchronization client is
responsible for receiving data and configuration updates. A replication item is a
set of files and represents a single unit of replicable data.

Modelling Adaptable Distributed Object Oriented Systems
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Fig. 2. Class diagram of (a) synchronisation server and (b) synchronisation client

The synchronization server communicate to clients via connection threads
that serve as the interface to the server-side of the replication protocol. On the
other hand, synchronization clients schedule client jobs to handle communica-
tions to the client-side of the replication protocol. In our ABS model, both con-
nection threads and client jobs belong to separate concurrent object groups [23]
(a mechanism to structure the object heap into separate units) and communicate
via asynchronous method invocations. Cooperative multitasking and strict data
encapsulation between the concurrent object groups prevent deadlocks and race
conditions.

As part of the FAS product line, the replication system defines variability on
the types of replication items, the coordination policy of replication and the re-
source consumption during replication. This allows members of the product line
to be tailored for FAS deployments with specific data requirement and platform
resource constraints.

4 Modelling Commonality

In this section, we present how to model the replication system’s commonality
using the Core ABS. Figures 2(a) and (b) show the UML class diagram of the
synchronization server and client respectively. The synchronization server con-
sists of an acceptor, several connection threads, a coordinator, a SyncServer and
a replication snapshot. The synchronization client consists of a SyncClient and
one or more client jobs. Listing 1.1 shows the ABS interfaces for the core com-
ponents of the synchronization server and clients. For brevity, we have omitted
ABS class definitions.

P. Y. H. Wong, N. Diakov, I. Schaefer
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The Acceptor component is responsible for accepting connections from the
synchronization clients and is specified by the interface Acceptor. The interface
provides a method for a client job to obtain a reference to a connection thread,
as well as methods to enable and disable the synchronization server to accept a
new client job connection.

interface ConThread { Unit command(Command c); }

interface Acceptor {

ConThread getConnection(Job job);

Bool isAcceptingConnection();

Unit suspendConnection();

Unit resumingConnection(); }

interface Coordinator {

Unit process();

Unit startUpdate(ConThread worker);

Unit finishUpdate(ConThread worker);}

interface SyncServer {

Acceptor getAcceptor();

Coordinator getCoordinator();

Snapshot getSnapshot();

DB getDataBase(); }

interface Snapshot {

Unit refreshSnapshot(Bool r);

Unit clearSnapshot();

Set<Item> getItems();}

interface Item {

FileEntry getContents();

ItemType getType();

Id getAbsoluteDir();

Unit refresh();

Unit cleanup();}

interface SyncClient {

Acceptor getAcceptor();

DB getDataBase();

Unit becomesState(State state);

Unit setAcceptor(Acceptor acceptor);}

interface Job {

Bool registerItems(CheckPoint checkpoint);

Maybe<FileSize> processFile(Id id);

Unit processContent(File file);

Unit receiveSchedule();}

Listing 1.1. ABS interfaces of the replication system
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Fig. 3. Feature model of the Replication System

The connection thread and the client job are specified by interfaces ConThread

and Job, respectively. Each connection thread is instantiated by the Acceptor com-
ponent. After the Acceptor receives a connection from a client job, it instantiates
a ConThread to carry out the replication protocol. A connection thread is speci-
fied by the interface ConThread. The ConThread component has a single method
command(), which is asynchronously invoked by Job objects to determine the
current state of a replication. The Coordinator component is responsible for coor-
dinating the connections that the Acceptor accepts from synchronization clients.
It also provides methods for preparing and clearing replication items before and
after replication sessions. The SyncServer component starts the Acceptor and the
Coordinator components. It also keeps a reference to the relevant replication snap-
shot, i.e., the data that is currently being replicated.

Listing 1.1 also shows the ABS interfaces of the components that are part of
the synchronization clients. A SyncClient communicates with the SyncServer via job
scheduling. At initialization time, the SyncClient schedules a client job to acquire
a replication schedule from the server. Using this schedule, the client job creates a
new client job for performing the actual replication. Each client job, thereafter, is
responsible to request replication schedules and to set up the subsequent jobs for
further replication. Each client job receives replication items from a connection
thread and updates the synchronization client’s files (configuration and data).
The client job is specified by interface Job.

5 Modelling Variability

As part of FAS product line, the replication system defines variability on the
types of replication item and replication strategy. We capture this variability
using the ABS language extensions described in Section 2.

Figure 3 shows the feature diagram of the replication system and Listing 1.2
shows the corresponding µTVL model. Specifically, the replication system has
three main features: JobProcessing, RepItem and Load.
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The feature JobProcessing requires an alternative choice between the two sub
features Seq and Concur, capturing the choice between sequential and concurrent
client job processing, respectively.

The feature RepItem allows choosing between three replication item types
represented by the features Dir, File and Journal. The Dir feature is mandatory,
that is, all versions of the replication system support replicating complete file
directories. The File feature is optional and is selected to support replicating a
file set, whose files’ name matches a particular pattern. the Journal feature is
optional and is selected to support replicating database journal. In particular,
the Journal feature requires the feature Seq which means that variants of the
replication system that support database journal replication may only schedule
client jobs sequentially.

root ReplicationSystem {

group allof {

JobProcessing { group oneof { opt Seq, opt Concur }},

RepItem { group [1..*] { Dir, opt File, opt Journal { require: Seq; }}},

opt Load {

group [1..3] {

Client { Int c in [1 .. 20]; Seq -> c < 10; },

CheckPoint { Int cp in [1 .. 10]; Seq -> cp < 10; },

Schedule {

group [0..3] {

SSchedule { Int s in [1 .. 5]; },

FSchedule { Int f in [1 .. 5]; requires: File; },

JSchedule { Int l in [1 .. 5]; requires: Journal; }

}}}}}}

Listing 1.2. Feature model of the replication system in µTVL

The feature Load is an optional feature that configures the load of the repli-
cation system. It offers sub features Client, CheckPoint and Schedule. The feature
Client configures the number of synchronisation clients, and defines the constraint
such that if client job processing is sequential, the number of clients must be less
than ten. The feature CheckPoint configures the number of updates allowed per
execution, defines the constraint such that if the client job processing is sequen-
tial, the number of updates must be less than five. The feature Schedule configures
the number of locations in the file system at which changes to different replica-
tion item types are monitored. It is an optional feature that offers sub-features
SSchedule, FSchedule and JSchedule to record the number of locations for directory,
file set, and journal replication respectively. Note that FSchedule and JSchedule

cannot be selected unless features File and Journal are selected respectively.
The basis replication system supports sequential client job processing. This

functionality is implemented by the active class JobImpl. A partial ABS class def-
inition of JobImpl is shown in Listing 1.3. Each instance of the JobImpl class ini-
tialises the Boolean field newJob to False and invokes its run method. This method
in turn invokes scheduleNewJob() asynchronously. The method scheduleNewJob()

waits for field newJob to become True before creating a new instance of Job. Set-
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ting newJob to True at the end of the run method ensures that each client job is
scheduled sequentially.

The lower half of Listing 1.3 defines the delta module Concurrent. A delta
module specifies changes to a basis ABS model, such as the addition, modifica-
tion or removal of classes, in order to define the shape of the model in another
system variant. The delta module Concurrent specifies a class modifier for the
class JobImpl that contains a method modifier. The method modifier removes the
await statement from the method scheduleNewJob() such that a new instance of
the class Job is created as soon as the current Job instance releases the lock of
this object group. This allows scheduling client jobs concurrently.

class JobImpl(SyncClient c, JobType job) implements Job {

Bool nj = False;

Unit newJob() { await nj; new JobImpl(this.c,Replication); }

Unit run() { .. this!newJob(); .. nj = True; .. }

Unit state(State state) { .. } ..

}

delta Concurrent {

modifies class JobImpl {

modifies Unit newJob() { new JobImpl(this.c,Replication); }}}

Listing 1.3. Modeling job processing

class Dirs(Id q, DB db) implements Item { .. }

class SnapshotImpl(DB db, Schedules ss)

implements Snapshot {

Set<Item> items = EmptySet;

Unit item(Schedule s) {

if (isSearchItem(s)) {

Item item = new Dirs(left(item(s)),this.db);
this.items = Insert(item,this.items);}..}}

Listing 1.4. Partial implementation of replication item

Listing 1.4 shows a partial definition of the classes DirectoryItem and
SnapshotImpl. The class DirectoryItem defines a replication item for a complete file
directory. The class SnapshotImpl represents a replication snapshot. The method
item defined in the class SnapshotImpl takes a replication schedule, creates a cor-
responding Item object and adds it to the set of replication items. By default,
this method only handles replication schedules for complete file directories.

In Listing 1.5, two delta modules are shown that contain the necessary func-
tionality and modifications to handle other types of replication items. The delta
module FileDelta is applied for file set replication and has three class modifiers.
The first modifier adds the class FItem, implementing the interface Item, for
handling replication file sets that match a regular expression. The second class
modifier changes the class SnapshotImpl by updating the method item to handle
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replication schedules with file sets; here the statement original(s) calls the previ-
ous version of the method SnapshotImpl.item(s). The third class modifier changes
the initial Main by introducing a new instance field files that records a list of
schedules for file set replications. Similarly, the delta module JournalDelta con-
tains the necessary modifications for handling database journal replication. It
has three class modifiers to add a new implementation of interface Item, to up-
date the method item to handle replication schedules with data base journals
and to add new instance field logs that records a list of schedules for database
journal replications.

delta FileDelta {

adds class FItem(Id q, String p, DB db)

implements Item { .. }

modifies class SnapshotImpl {

modifies Unit item(Schedule s) {

original(s);
if (isFileItem(s)) {

Pair<Id,String> it = right(item(s));

Item item = new FItem(fst(it),snd(it),this.db);
items = Insert(item,items);

}}}

modifies class Main { adds List<Schedule> files = ... }

}

delta JournalDelta {

adds class Journals(..) implements Item { .. }

modifies class SnapshotImpl { .. modifies Unit item(..) ..}}

modifies class Main { adds List<Schedule> logs = ... }

Listing 1.5. Deltas for replication items

Listing 1.6 shows the configuration of the replication system product line
using the product line configuration language CL. The product line configura-
tion links the modifications contained in the listed delta modules to product
features and determines for which feature configurations the modifications have
to be applied. In the considered example, the features Dir and Seq are the fea-
tures provided by the core system. The application condition for delta module
FileDelta states that this delta module is applied if feature File is selected, while
the application condition for the delta module FSched states that the module is
applied if feature FSchedule is selected and that it must be applied after delta
module SSched should its corresponding feature be selected.

Listing 1.6 also shows two example product selections for the replication
system product line specified in the product selection language PSL. Product
P1 defines the basis variant of the replication system that supports the basic
set of features, and product P2 that supports both directory and file set replica-
tion, concurrent client job scheduling and deploys three SyncClients for receiving
replications.
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productline ReplicationSystem {

features Dir, File, Journal, Seq, Concur, Client, Schedule, CheckPoint,

SSchedule, FSchedule, JSchedule;

delta FileDelta when File;

delta JournalDelta when Journal;

delta Concurrent when Concur;

delta CD(Client.c) when Client;

delta CP(CheckPoint.cp) when CheckPoint;

delta SSched(SSchedule.s) when SSchedule;

delta FSched(FSchedule.f) after SSched when FSchedule;

delta JSched(JSchedule.l) after FSched when JSchedule;

}

product P1 (Dir, Seq);

product P2 (Dir, File, Concur, Client({c=3}));

Listing 1.6. Product configuration and selection

6 Evaluation

This section presents an evaluation of the HATS approach with respect to the
ABS language’s expressiveness, scalability and usability. The specific criteria
have been derived from the HATS project’s requirement elicitation activity [17].

6.1 Expressiveness

We evaluate the practical expressiveness and the modeling capabilities of the
ABS language. Specifically we investigate 1) how readily and concisely the ABS
language expresses various kinds of program structures and behaviours, and 2)
its capabilities to express variabilities behaviourally.

Data types Using ABS’s algebraic data type, we were able to provide a high-
level model of the replication system that abstracts from the underlying
physical environment such as operating system, file storage and data base.

Functions Using the combination of ABS’s algebraic data types and functions,
we were able to use abstract data types such as lists, sets and maps, and
subsequently define data types to abstract from the underlying environment
such as file storage. We have also found functions to be useful as they guar-
antee to be free of side-effects and are more amenable to formal reasonsing.
However, the ABS language does not support higher order functions. This
means we cannot abstract certain behaviour, limiting reusability of function
definition. This also implies that we cannot pass functions as parameters to
methods.
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Polymorphism ABS’s algebraic data types and functions support parametric
polymporhism, allowing data types and functions to be data-independently
defined. However, this ABS classes and methods are not parametrically poly-
morphic, hence one has to specialise the types of method parameters, reduc-
ing the reusability of method implementations.

Syntactic Sugaring To model communications between active ob-
jects in ABS we often define the sequence of statements
Fut<A> f = o!m(); await f?; A v = f.get; in an active object to model in-
voking method m() of object o asynchronously, yielding the thread control
of its object group and blocking its own execution until the method call
returns. We believe the usability of the language could be improved by
providing syntactic sugaring to this kind of patterns of behaviours, and at
the time of writing we know this types of sugaring are being added to the
ABS language.

Concurrency We were able to model the replication system’s concurrent be-
haviour in terms of asynchronous method invocation, this ABS model pro-
vides a high level view of the communication between synchronisation server
and clients, thereby separating the concerns of the physical communication
layers between them and hence reducing the complexity of the model con-
siderably. Another advantage of the cooperative scheduling offered by ABS’s
concurrency model is that we can safely define a method that modifies a
state of an object without the need to explicitly enforce mutual exclusion
on that state. Nevertheless, due to inherent nondeterministic scheduling be-
tween COGs as well as active objects within a COG [23], it is not possible
to enforce fairness over competing active objects when simulating an ABS
model. At the time of writing an implementation of a real-time extension of
the ABS language is being developed [24]. This would provide the mechanism
to specify schedules on the asynchronous method invocations, and allow us
to enforce orders of execution to avoid starvation.

Variability Delta Modelling Language offers the expressivity to specify vari-
ability at the level of object behaviour. Together with Product Line Con-
figuration, Product Selection and µTVL Language, the ABS language offers
a holistic approach to expressing variabilities as features and relating them
to object behaviour. We were able to use ABS to incrementally and compo-
sitionally develop the replication system product line that yields members
that are well-typed and valid with respect to the product line’s variability.
Nevertheless, the current implementation of DML does not support modifi-
cation of functions and data types, and this means we cannot capture their
variabilities in the same way as classes and interfaces. At the time of writing,
we know the implementation of DML is being improved to support functions
and data types.

6.2 Scalability

We evaluate the ABS language with respect to scalability and reusability.
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Data types Using ABS’s algebraic data types, we separate the concern of the
replication system’s physical environments such as operation system, file
storage and data bases from its ABS model. This allows us to scale the
replication system product line model, such as increasing the number of
SynClients, without being constrained by the physical environment.

Modularity The module system allows us to model both the commonality and
the variability of the replication system separately and incrementally. Specif-
ically, we started modeling the commonality of the product line independent
from the product line’s variability and individual components of the repli-
cation system commonality are modeled in separate modules (and files).
Moreover, we modeled the product line’s variability in terms of delta mod-
ules, this allows variation to be modeled incrementally while dividing delta
modules in terms of the components which variations are to be resolved.

Code reusability DML provides the mechanism to express variability at the
level of behaviour. This together with functional and object composition,
the ABS language provides a wide range of mechanism for code reuse. In
particular the combination of object composition and delta modelling allows
us to achieve code reusability similar to that of class inheritance. In addition,
the ABS module system also allows more generic definitions such as data
types and functions to be reused across the ABS model of the product line.
Nevertheless, while the current implementation of DML supports original()

in method modifiers, which invokes that method’s previous implementation,
it does not support original() of a specific implementation, this has reduced
code reusability when resolving conflict [12]. At the time of writing, DML is
being improved to support delta-specific original().

Timing and resource information The current ABS semantics does not take
time and the environment’s resources into consideration. This separation of
concerns allows one to focus on functional and partial correctness. Never-
theless, at the time of writing, an implementation of a real-time extension
of the ABS language is being developed [24]. This would allow ABS mod-
els to express behavioural constraints due to timing information as well as
the resources of the environment. This would enable one to analyse an ABS
model with specific environment constraints such as process speed, memory
etc.

6.3 Usability

In this section we evaluate ABS with respect to its overall usability, focusing on
the ease of adoption and learnability, and taking into account the ABS tool suite
as well as the language’s syntax and semantics.

Note that the case study has been conducted in tandem with the development
of the ABS language and tool suite, the case study, which has been conducted
over the span of 14 months, has consequently led to many enhancement and fixes.
Specifically, the HATS project employs an open source ticket tracking system
(http://trac.edgewall.org/) to track bugs and feature requests, and the case
study has brought about ten enhancements and over sixty fixes. As the ABS
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tool suite has been at development stage during the case study, our evaluation
of usability would take this into account.

Syntax and semantics ABS has been designed to be as easy to learn as pos-
sible by building on language constructs well known from mainstream pro-
gramming languages. Both functional and sequential imperative fragments of
ABS can be easily acquainted by users with a working knowledge of any func-
tional and object-oriented languages. However, it seems not as easy at first
to learn the concurrent fragment of ABS, especially for those who are used
to the multithreaded concurrency model. We believe this issue is remedied
in twofold: 1) the availability of literature such as the technical papers [23,
13], the tutorial chapter [11] and case studies [18], and 2) the support of the
ABS tool suite [36].

Compiler front end The ABS tool suite comes with a front end that takes an
ABS model, performs parsing and type checking, and outputs the model’s
Abstract syntax tree (AST). The design of the ABS language and the avail-
ability of the front end guarantees that the ABS model constructed in the
case study is well-typed. Moreover, the front end allows product derivation
based on the the ABS model’s product line configuration and product selec-
tion.

Maude/Java back ends The current version of the ABS tool suite comes with
a back end for Maude and Java: The Maude back end takes the type checked
AST of an ABS model and outputs the corresponding Maude model that
can be then simulated using the Maude engine (maude.cs.uiuc.edu). Us-
ing both the front end and the Maude back end, we were able to quickly
simulate multiple versions of the replication system. The ABS tool suite also
provides a Java back end that takes the type checked AST of an ABS model
and outputs the corresponding Java source codes that can be compiled and
executed independently. We have found the Java back end to be particularly
useful when used in conjunction with the ABS debugger.

Eclipse plugin – The ABS Eclipse plugin provides syntax highlighting, content
completion and code navigation similar to those provided by the Eclipse
JDT (www.eclipse.org/jdt) for Java. The plugin also integrates the front
end and back ends as a singe source technology such that construction,
compilation and simulation of ABS models can be carried out directly via the
Eclipse IDE. We have found the availability of the IDE greatly increases the
scalability of the HATS approach during modeling. The ABS Eclipse plugin
can be installed as a bundle via its Eclipse update site tools.hats-project.
eu/update-site. A recent version of the ABS Eclipse plugin provides the
capabilities to import and navigate ABS packages; ABS packages are JAR
files containing ABS source codes. We believe this feature increases ABS’s
applicability in the industry where collaborative software development is
prevalent and third party libraries are heavily used.

Debugger The ABS Eclipse plugin offers a debugging perspective for debugging
ABS models. The novelty of this perspective is that users can define explicitly
the order in which asynchronous method invocations are executed within a
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concurrent object group. The debugger also offers the option to save and
replay histories of asynchronous method invocations. These facilities greatly
ease our task of debugging and reproducing bugs during the case study.

Visualization Through the ABS Eclipse plugin’s debugging perspective, the
ABS tool suite offers a visualization tool that generates UML sequence di-
agrams of asynchronous communications between concurrent object groups
during the debugging session. Sequence diagrams provide high-level views of
the communications between components in the replication system, and this
increases our understanding of the system’s concurrent behaviour.

7 Related work

In this section we consider related work in the context of abstract behavioural,
variability modelling, and evaluating SPL engineering methodologies.

The ABS language is a modelling language that aims to close the gap be-
tween design-level notations and implementation languages. The concurrent ob-
ject model of ABS based on asynchronous communication and a separation of
concern between communication and synchronization is part of a trend in pro-
gramming languages today, due to the increasing focus on distributed systems.
For example, the recent programming language Go (http://golang.org, pro-
moted by Google) shares in its design some similarities with ABS: a nominal type
system, interfaces (but no inheritance), concurrency with message passing and
non-blocking receive. The internal concurrency model of concurrent objects in
ABS stems from the intra-object cooperative scheduling introduced in Creol [16]
This model allows active and reactive behavior to be combined within objects
as well as compositional verification of partial correctness properties [1].

Existing approaches to express variability in modelling and implementation
languages can be classified into two main categories [35, 25]: annotative and
compositional. As a third approach, model transformations are applied for rep-
resenting variability mainly in modelling languages.

Annotative approaches consider one model representing all products of the
product line. Variant annotations, e.g., using UML stereotypes in UML mod-
els [19] or presence conditions [15], define which parts of the model have to be
removed to derive a concrete product model. The orthogonal variability model
(OVM) proposed in Pohl et al. [31] models the variability of product line ar-
tifacts in a separate model where links to the artifact model take the place of
annotations. Similarly, decision maps in KobrA [7] define which parts of the
product artifacts have to be modified for certain products.

Compositional approaches, such as delta modelling [33], associate model frag-
ments with product features that are composed for a particular feature config-
uration. A prominent example of this approach is AHEAD [9], which can be
applied on the design as well as on the implementation level. In AHEAD, a
product is built by stepwise refinement of a base module with a sequence of fea-
ture modules. Design-level models can also be constructed using aspect-oriented
composition techniques [21, 35, 30]. Apel et al. [2] apply model superposition to
compose model fragments.
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In feature-oriented software development (FOSD) [9], features are considered
on the linguistic level by feature modules. Apart from Jak [9], there are various
other languages using the feature-oriented paradigm, such as FeatureC++ [3],
FeatureFST [4], or Prehofer’s feature-oriented Java extension [32]. In [29, 4], com-
binations of feature modules and aspects are considered. In [5], an algebraic rep-
resentation of FOSD is presented. Feature Alloy [6] instantiates feature-oriented
concepts for the formal specification language Alloy.

Model transformations are used to represent product variability mainly on
the artifact modelling level. The common variability language (CVF) [20] repre-
sents the variability of a base model by rules describing how modelling elements
of the base model have to be substituted in order to obtain a particular product
model. In [22], graph transformation rules capture artifact variability of a single
kernel model comprising the commonalities of all systems.

There have been interests to evaluate SPL methodologies using case stud-
ies [26, 27]. In Lopez-Herrejon et al. work [26], for example, they propose the
Graph Product Line (GPL) as a standard problem to implement for evaluating
SPL methodologies. In this work they compare qualities such as performance and
lines of code between implementations of GPL using the GenVoc SPL methodol-
ogy [8]. There are also evaluation strategies that focus on other concerns such as
tool support. For example, Matinlassi [28] compares several SPL methodologies
with respect to qualities such as tool support, guidance and application domains.

8 Summary

In this paper, we presented an evaluation on the HATS approach by conducting a
case study on an industrial-scale software product line of a distributed and highly
configurable software system using the ABS language and its accompanying ABS
tools suite. We modelled the replication system’s commonality using Core ABS
and the replication system’s variability using the Full ABS. At the time of writing
the replication system product line ABS model consists of 5000 lines of code, and
defines 40 classes, 43 interfaces, 15 features, 8 deltas and 288 products. Based
on the case study we provided an evaluation of the ABS language with respect
to practical expressiveness and modeling capabilities, scalability and usability.

By performing the case study in tandem the development of the HATS ap-
proach, we were able to provid timely feedback on language expressiveness and
the applicability of the modeling tools. The work on the case study has influ-
enced decisions in the design of the ABS language, and in both the enhancements
and fixes to the tools suite. As the HATS approach continues to mature, we aim
to extend the replication system case study to capture further variabilities and
evolution scenarios, and to conduct formal validation and verification of the
replication system using the formal analysis tools developed for ABS models.
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34. I. Schaefer and R. Hähnle. Formal methods in software product line engineering.
IEEE Computer, 44(2):82–85, Feb. 2011.

35. M. Völter and I. Groher. Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In SPLC, pages 233–242, 2007.

36. P. Y. H. Wong, E. Albert, R. Muschevici, J. Proença, J. Schäfer, and R. Schlatte.
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Abstract. We present an algorithm to extract flow graphs from Java
bytecode, focusing on exceptional control flows. We prove its correctness,
meaning that the behaviour of the extracted control-flow graph is an
over-approximation of the behaviour of the original program. Thus any
safety property that holds for the extracted control-flow graph also holds
for the original program. This makes control-flow graphs suitable for
performing different static analyses.
For precision and efficiency, the extraction is performed in two phases.
In the first phase the program is transformed into a BIR program, where
BIR is a stack-less intermediate representation of Java bytecode; in the
second phase the control-flow graph is extracted from the BIR repre-
sentation. To prove the correctness of the two-phase extraction, we also
define a direct extraction algorithm, whose correctness can be proven
immediately. Then we show that the behaviour of the control-flow graph
extracted via the intermediate representation is an over-approximation
of the behaviour of the directly extracted graphs, and thus of the original
program.

Keywords: Software Verification, Static Analysis, Program Models

1 Introduction

Over the last decade software has become omnipresent, and in parallel, the de-
mand for software quality and reliability has been steadily increasing. Different
formal techniques are used to reach this goal, e.g., static analysis, model check-
ing and (automated) theorem proving. A major remaining problem is that the
state space of software is enormous (and often even infinite). Thus, appropriate
abstractions make the formal analysis tractable. It is important for such abstrac-
tions that they are sound w.r.t. the original program: if a property holds over
the abstract model, it should also be a property of the original program.

A common abstraction is to extract a program model from code, only pre-
serving information that is relevant for the property at hand. In particular,
control-flow graphs (CFGs) [4] are a widely used abstraction, where only the
flow information is kept, and all program data is abstracted away. Concretely,
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in a control-flow graph, the nodes represent the control points of a method, and
the edges represent the instructions that make the transitions between control
points. Usually, CFG is not a suitable abstraction for verifications that need
data.

The literature contains several approaches to extract control-flow graphs au-
tomatically from program code. However, typically no formal argument is given
why the extraction is property-preserving. This paper fills this gap: it defines a
flow graph extraction algorithm for Java bytecode (JBC) and it proves that the
extraction algorithm is sound w.r.t program behaviour. The extraction algorithm
considers all the typical intricacies of Java, e.g., virtual method call resolution,
the differences between dynamic and static object types, and exception handling.

The analysis of exceptional flows is a major complication to extract control-
flow graphs of Java bytecode for two distinct reasons. First, the stack-based
nature of the Java Virtual Machine (JVM) makes it hard to determine the type
of explicitly thrown exceptions, thus making it difficult to determine to which
(exceptional) control point the program will flow. Second, the JVM can raise
(implicit) run-time exceptions, such as NullPointerException and IndexOutOf-
BoundsException; to keep track of where such exceptions can be raised requires
much information. This paper covers the explicitly thrown instructions, and a
significative subset of run-time exceptions.

Two different extraction algorithms are presented. The first extraction algo-
rithm (in Section 3) creates flow graphs directly from Java bytecode. Its cor-
rectness proof is quite direct, but the resulting control-flow graph is large: in
bytecode, all operands are on the stack, thus many instructions for stack manipu-
lation are necessary, which all give rise to an internal transfer edge in the control-
flow graph. Moreover, because the operands of a throw instruction are also on
the stack, the exceptional control-flow is significantly over-approximated. This
algorithm produces a complete map from the JBC instructions to the control-
flow of the program, however, it is not so efficient for control-flow safety verifiers
(e.g. to verify whether a sequence of method calls is correct).

As an alternative, we also present a two-phase extraction algorithm using
the bytecode Intermediate Representation (BIR) language [5]. BIR is a stack-
less representation of JBC. Thus all instructions (including the explicit throw)
are directly connected with their operands and this simplifies the analysis of
explicitly thrown exceptions. Moreover the representation of a program in BIR
is smaller, because operations are not stack-based, but represented as expres-
sion trees. As a result, the CFGs are efficient. BIR has been developed by De-
mange et al. as a module of SAWJA [8], a library for static analysis of Java
bytecode. Demange et al. have proven that their translation from bytecode to
BIR is semantics-preserving with respect to observable events, such as throwing
exceptions and sequences of method invocations. Advantages of using the trans-
formation into BIR are that (1) it is proven correct, and (2) it generates special
assertions that indicate whether the next instruction could potentially throw a
run-time exception. Our indirect extraction algorithm first generates BIR from
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JBC (using the transformation of Demange et al.), and then our own algorithm
to extract control-flow graphs from BIR.

There is no behavior definition for BIR. Therefore, to prove the correctness
of the indirect extraction, we connect the BIR CFGs to the CFGs produced by
the direct algorithm. We show that every BIR CFG structurally simulates the
JBC CFG. This allows us to exploit an existing result that structural simulation
induces behavioural simulation. Further, we prove that the CFG produced by
the direct algorithm behaviourally simulates the original Java bytecode program,
and from this we can conclude that the behaviours of the CFG generated by the
indirect algorithm (BIR) also are a sound over-approximation of the original
program behaviour. Thus, the control-flow graph extraction algorithm is sound.

Organization The remainder of this paper is organized as follows. First, Sec-
tion 2 provides the necessary background definitions for the algorithm and its
correctness proof. Then, Section 3 discusses the direct extraction rules for control
flow graphs from Java bytecode, while Section 4 discusses the indirect extraction
rules via BIR and proves its correctness. Finally Sections 5 and 6 present related
work and conclude.

2 Preliminaries

2.1 Java bytecode and the Java Virtual Machine

The Java compiler translates a Java source code program into a sequence of
bytecode instructions. Each instruction consists of an operation code, possibly
using operands on the stack. The Java Virtual Machine (JVM) is a stack-based
interpreter that executes such a Java bytecode program.

Any execution error of a Java program is reported by the JVM as an ex-
ception. Exceptions also can be thrown explicitly by instruction athrow. Each
method can define exception handlers. If no appropriate handler can be found
in the currently executing method, its execution is completed abruptly and the
JVM continues looking for an appropriate handler in the caller context. This pro-
cess continues until a correct handler is found or no calling context is available
anymore. In the latter case, the execution terminates exceptionally.

Freund and Mitchell propose a formal framework for Java bytecode [6]. A
JBC program is modeled as an environment Γ , which is a partial map from class
names, interface names and method signatures to their respective definitions.
Subtyping in an environment is indicated by Γ ` τ1 <: τ2, meaning τ1 is a
subtype of τ2 in environment Γ . Let Meth be a set of method signatures. A
method m ∈Meth in an environment Γ is represented as Γ [m] = 〈P,H〉, where
P denotes the body and H the exception handler table of method m. Let Addr
be the set of all valid instruction addresses in Γ . Then Dom(P ) ⊂ Addr is the
set of valid program addresses for method m and P [k] denotes the instruction at
position k ∈ Dom(P ) in the method’s body. For convenience, m[k] = i denotes
instruction i ∈ Dom(P ) at location k of method m.
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In this formal model, a JVM execution state is a configuration C = A;h,
where A denotes the sequence of activation records and h is the heap. Each
activation record is created by a method invocation. Formally the sequence is
defined as follows:

A ::= A′ | 〈x〉exc.A′ ; A′ ::= 〈m, pc, f, s, z〉.A′ | ε

Here, m is the method signature of the active method, pc is the program
counter, f is a map from local variables to values, s is the operand stack, and
z is initialization information for the object being initialized in a constructor.
Finally, 〈x〉exc is an exception handling record, where x ∈ Excp denotes the
exception: in case of an exception, the JVM pushes such a record on the stack.

To handle exceptions, the JVM searches the exception table declared in the
current method to find a corresponding set of instructions. The method’s excep-
tion table H is a partial map which has the form 〈b, e, t, %〉, where b, e, t ∈ Addr
and % ∈ Excp. If an exception of subtype % in environment Γ is thrown by
an instruction with index i ∈ [b, e) then m[t] will be the first instruction of the
corresponding handler. Thus, the instructions between b and e model the try

block, while the instructions starting at t model the catch block that handles the
exception. In order to manage finally blocks, a special type of exception called
Any is defined. The instructions in a finally block always have to be executed
by the JVM, therefore all exceptions are defined as a subtype of Any.

2.2 Program Model

Control-flow graphs present an abstract model of a program. To define the struc-
ture and behavior of a control-flow graph we follow Gurov et al. and use the
general notion of model [7, 9].

Definition 1 (Model, Initialized Model). A model is a (Kripke) structure
M = (S,L,→, A, λ) where S is a set of states, L a set of labels, → ⊆ L×S×L
a labeled transition relation, A a set of atomic propositions, and λ : S → P(A) a
valuation, assigning to each state s ∈ S the set of atomic propositions that hold
in s. An initialized model S is a pair (M,E) with M a model and E ⊆ S a set
of entry states.

Method specifications are the basic building blocks of flow graphs. To model
sequential programs with procedures and exceptions, method specifications are
defined as an instantiation of initialized models as follows.

Definition 2 (Method Specification). A flow graph with exceptions for m ∈
Meth over sets M ⊆Meth and E ⊆ Excp is a finite modelMm = (Vm, Lm,→m

, Am, λm) with Vm the set of control nodes of m, Lm the set of the labels which
can be any instantiation to indicate the labels, Am = {m, r} ∪ E, m ∈ λm(v)
for all v ∈ Vm, and for all x, x′ ∈ E, if {x, x′} ⊆ λm(v) then x = x′, i.e., each
control node is tagged with the method signature it belongs to and at most one
exception. Em ⊆ VM is a non-empty set of entry control point(s) of m.
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A node v ∈ Vm is marked with atomic proposition r to indicate that it is
a return node of the method. The labeling set Lm is not specified intentionally
to accept any instantiation. For example, figure 1 shows a sample program with
corresponding CFG in which on the contrary to internal transitions, method
calls are important. So Lm is instantiated as Lm = M ∪ {ε}.

even

even

even,r

even

even,r

odd even

odd

odd

odd,r

odd

odd,r

public class Number {

    public static boolean even(int n){

        if(n==0)

            return true;

        else

            return odd(n-1);

    }

    public static boolean odd(int n){

        if(n==0)

            return false;

        else

            return even(n-1);

    }

}

Fig. 1. Method specifications of methods even and odd

Every flow graph comes with an interface that defines which methods are
provided to and required from the environment.

Definition 3 (Flow Graph Interface). A flow graph interface is a triple I =
(I+, I−, E,Me), where I+, I− ⊆ Meth are finite sets of provided and required
method signatures, and E ⊆ Excp is a finite set of exceptions and Me ⊆Meth is
the set of entry methods (starting points of the program), respectively. If I− ⊆ I+

then I is closed.

A flow graph of a program is the disjoint union of the flow graphs of all the
methods defined in the program.

Definition 4 (Flow Graph Structure). Flow graph G with interface I, writ-
ten G : I is inductively defined by:

– (Mm,Em) : ({m},M, E) if (Mm,Em) is a method specification for m over
M and E,

– G1 ] G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

Definition 5 (Weak Simulation over Models). Let a =⇒ b be a sequence

of silent transitions (possible zero) from a to b, and a
β

=⇒ b a sequence contain-
ing a single visible transition β, and zero to many silent transitions. A weak sim-
ulation over a model (S,L,→, A, λ) is a binary relation Rw over S (Rw ⊆ S×S)
such that ∀p, q ∈ S, if (p, q) ∈ Rw then λ(p) = λ(q) and ∀β ∈ L,∀p′ ∈ S, if

p
β

=⇒ p′ implies that there is a q′ ∈ S such that q
β

=⇒ q′ and (p′, q′) ∈ Rw.
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We use the following proposition to prove the weak simulation relation. The
proof is trivial and we omit it.

Proposition 1. Rw is a weak simulation if and only if ∀(p, q) ∈ Rw
if p→ p′ then exists q′ ∈ S such that q =⇒ q′ ∧ (p′, q′) ∈ Rw.

if p
β→ p′ then exists q′ ∈ S such that q

β
=⇒ q′ ∧ (p′, q′) ∈ Rw.

3 Extracting Control-Flow graphs from bytecode

CFG construction rules use bytecode instructions to build the graph. Depending
on the instruction at a given address, edges between the current control node
and the possible next control nodes are constructed.

For convenience, we group the different JBC instructions into disjoint sets:
RetInst is the set of normal return instructions (e.g. return); CmpInst is the
set of simple computational instructions (e.g. push v, pop); CndInst is the set
of conditional instructions (e.g. ifeq q); JmpInst is the set of jump instruc-
tions (e.g. goto q); XmpInst is the set of instructions that potentially can raise
an exception (e.g. div, getfield f); InvInst is the set of method invocation
instructions (e.g. invokevirtual (o,m)); and ThrInst = {throw X}, where
instruction throw X is the result of a stack analysis of the JBC. In JBC, athrow
does not accept any argument and the type of the exception is determined at
run-time (as the top of the stack). Stack analysis of the JBC can generate an
exception variable to be thrown at run-time. We over-approximate the type of
the exception using a set X that contains the static type of the variable, which
is the result of the stack analysis and all its subtypes.

We define a JBC method body as a sequence of address and instruction pairs:

S ::= ` : inst ; S | ε ` ∈ Addr, inst ∈ Inst

The nodes in a method CFG, define a map of the method’s execution state,
covering all possible JVM configurations. All nodes are tagged with pairs of an
address and a method signature. The set of the addresses is extended by adding
symbol [ to denote the abort state3 of a program. Based on Definition 2, to
construct the nodes we have to specify Vm, Am and λm. For a node v ∈ Vm
indicating control point ` ∈ Addr[ of method m, we define v = (m, `). The
labeling function λm specifies Am for a given v ∈ Vm. If m[`] ∈ RetInst then
the node is tagged with r. If the node is an exceptional node (an exception is
raised) then it is marked with the exception type x ∈ E. The corresponding
method signature is the default tag for all the method’s control nodes. If ` = 0
then the node will be a member of Em.

Two nodes are equal if they specify the same control address of the same
method with equal atomic proposition sets. We use the following notation: v � x
3 The JVM’s attempt to find a proper handler for an exception is unsuccessful and

the program terminates abnormally.
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mG(S1;S2, H) = mG(S1, H) ∪ mG(S2, H)
mG((p, i), H) = {(◦pm, ig, ◦succ pm )} if i ∈ CmpInst
mG((p, i), H) = {(◦pm, ig, ◦qm)} if i ∈ JmpInst
mG((p, i), H) = {(◦pm, ig, ◦succ pm ), (◦pm, ig, ◦qm)} if i ∈ CndInst
mG((p, i), H) =

˘
{(◦pm, ig, •p,xm )} ∪ Hxp | x ∈ X

¯
if i = throw X

mG((p, i), H) = {(◦pm, ig, ◦succ pm )} ∪ Eip if i ∈ XmpInst
Eip =

˘
{(◦pm, ig, •p,xm )} ∪ Hxp | x ∈ X (i)

¯
mG((p, i), H) = {(◦pm, ig, •p,%Nm )} ∪ Rip ∪ H%Np ∪ N x

p if i ∈ InvInst
Rip = {(◦pm, call (τ, n), ◦succ pm ) | τ ∈ RecΓ (i)}
N x
p =

˘
{(◦pm, handlen, •p,xm )} ∪ Hxp | •q,x,rn ∈ mG(n), n ∈ resαΓ (o, n)

¯
( Γ ` x <: y ) =⇒ Hxp =

8<:
{(•p,xm , handle, ◦tm)} ~Γ [m](p, y) = t 6= 0
{(•p,xm , handle, •p,x,rm )} ~Γ [m](p, y) = 0 ∧ m /∈Me

{(•p,xm , handle, •[,x,rm )} ~Γ [m](p, y) = 0 ∧ m ∈Me

Fig. 2. CFG Construction Rules

means that node v is tagged with exception x; •`,xm indicates an exceptional
control node and ◦`m denotes a normal control node.

The CFG extraction rules for method m in environment Γ use the imple-
mentation of the method, Γ [m] = 〈P,H〉. For each instruction in Γ [m], the rules
build a set of labeled edges connecting control nodes.

Definition 6 (Method Control-Flow Graph Extraction). Let V be the set
of nodes and Ig = Instg ∪ {handle}, where Instg is any mapping from Inst to
the corresponding instruction. Let Π be a set of environments. Then the control-
flow graph extraction of method m is mG : Π×Meth→ P(V × Ig×V ), defined
in Figure 2 (where succ denotes the next instruction address function).

The construction rules are defined purely syntactically, based on the method’s
instructions. However, intuitively they justify the instruction’s operational se-
mantics. The first rule decomposes a sequence of instructions into individual
instructions. For each individual instruction, a set of edges is computed.

For simple computational instructions, a direct edge to the next control ad-
dress is produced. For jump instructions, an edge to the jump address (q, spec-
ified in the instruction) is generated. For conditional instructions two edges are
generated: to the next control address and to the address specified for the jump
(q). For instructions in XmpInst edges for all possible flows are added: successful
execution, and exceptional execution, with edges for successful and failed excep-
tion handling, as defined by function Hxp . This function constructs the outgoing
edges of the exceptional nodes by searching the exception table for a suitable
handler of exception type x at position p. If there is such a handler, it returns
a transition edge from an exceptional node to a normal node. Otherwise it pro-
duces a transition to an exceptional return node. Function ~ seeks the proper
handler in the exception handling table; it returns 0 if there is no entry for the
exception at the specified control point. The function X : XmpInst→ P(Excp)
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is to determine possible exceptions of a given instruction. The throw instruction
is handled similarly, where X is the set of possible exceptions, identified by the
transformation algorithm.

To extract edges for method invocations, function RecΓ (i) determines the
set of possible receivers of a method call in environment Γ . For invokevirtual,
the receiver is determined by late binding, and the virtual method call (VMC)
resolution function resαΓ will be used, where α is a standard static analysis
technique to resolve VMC.

RecΓ (i) =

{
{staticT (o)} if i ∈{invokespecial (o,n), invokestatic (o,n)}
resαΓ (o, n) if i = invokevirtual (o,n)

Suppose that VMC resolution uses the RTA algorithm, i.e., α = RTA, then the
result of the resolution for object o and method n in environment Γ will be:

resαΓ (o, n) = {τ | τ ∈ ICΓ ∧ Γ ` τ <: staticT (o) ∧ n = lookup(n, τ)}
where ICΓ is the set of instantiated classes in environment Γ , staticT (o) gives
the static type of object o and lookup(n, τ) corresponds to the signature of n,
i.e., τ is a subtype of o’s static type and method n is defined in class τ .

Given the set of possible receivers, calls are generated for each possible re-
ceiver. For each call, if the method’s execution terminates normally, control will
be given back to the next instruction of the caller. If the method terminates
with an uncaught exception, the caller has to handle this propagated exception.
If the current method is an entry method, me, then the program will terminate
abnormally. The CFG extraction rules for method invocations produce edges for
both %N=NullPointerException and for all propagated exceptions.
Rip is the set of the edges for normal terminating calls, H%Np is the set of

edges to handle %N , and N x
p defines the set of edges to handle all uncaught

exceptions from all possible callees. We put the callees signature as an index of
the handle label to differentiate between propagated exceptions from method
calls and exceptions raised in the current method. Similar to generating outgoing
edges for exceptional control points, Hxp generates edges for successful/failed
handlers for all exceptional nodes in CFGn which is the CFG of method n ∈
resαΓ (o, n).

The CFG of a Java class C, denoted cG(C) : Class→ P(V × Instg × V ), is
defined as the disjoint union of the CFGs of the methods in C. The CFG of a
program P , denoted G(P ) : Π → P(V × Instg × V ), is the disjoint union of all
CFGs of the classes in P .

3.1 CFG Correctness

In order to prove the soundness of the extracted flow graph we need to define
the behavior of the flow graph. The following extends the behavior definition of
flow graphs from [9], based on our extraction rules.

Definition 7 (CFG Behavior). Let G = (M,E) : I be a closed flow graph
with exceptions such that M = (V,L,→, A, λ). The behavior of G is described
by the specification b(G), where Mg = (Sg, Lg,→g, Ag, λg) such that:
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– Sg ∈ V × (V )∗, i.e., states are pairs of control nodes and stacks of control
nodes,

– Lg = {τ} ∪ LCg ∪ LXg where LCg = {m1 l m2 | l ∈ {call, ret, xret},m1,m2 ∈
I+} (the set of call and return labels) and LXg = {l x | l ∈ {throw, catch}, x ∈
Excp} (the set of exceptional transition labels).

– Ag = A and λg((v, σ)) = λ(v)
– →g ⊂ Sg × Sg is the set of transitions in CFGm with the following rules:

[call] (v1, σ)
m1 call m2−−−−−−−−→g (v2, v1.σ) if m1,m2 ∈ I+, v1

call m2−−−−−→m1 v
′
1,

v′1 ∈ next(v1), v1 2 Excp
v2 � m2, v2 ∈ E, v1 � ¬r

[return] (v2, v1.σ)
m2 ret m1−−−−−−−→g (v′1, σ) if m1,m2 ∈ I+, v2 � m2 ∧ r

v1 � m1, v
′
1 2 Excp, v′1 ∈ next(v1)

[xreturn] (v2, v1.σ)
m2 xret m1−−−−−−−−→g (v′1, σ) if m1,m2 ∈ I+, v2 � m2, v1 � m1

v2
handle−−−−→m2 v

′
2, v1

handle−−−−→m1 v
′
1

v2 � x, v′2 � x ∧ r, v1 2 x, v′1 � x, x ∈ Excp

[transfer] (v, σ)
τ−→g (v′, σ) if m ∈ I+, v

ig−→m v′, v � ¬r, v 2 Excp, v′ 2 Excp

[throw] (v, σ)
throw x−−−−−→g (v′, σ) if m ∈ I+, v

ig−→m v′, v � ¬r, v′ � Excp

[catch] (v, σ)
catch x−−−−−→g (v′, σ) if m ∈ I+, v

handle−−−−→m v′, v � ¬r ∧ Excp, v′ 2 r, v′ 2 Excp

Consider again the flow graph in Figure 1. One example run through its
(branching, infinite-state) behavior, from an initial to a final configuration, is:

(v0, ε)
τ−→ (v1, ε)

τ−→ (v2, ε)
even call odd−−−−−−−−−→ (v5, v3)

τ−→ (v6, v3)
τ−→ (v8, v3)

odd ret even−−−−−−−−→ (v3, ε)

To show the correctness of the extraction algorithm, we show that the ex-
tracted CFG of method m can match all possible moves during execution of m.
In order to do this, we first define a mapping θ that abstracts JVM configura-
tions to CFG behavioural configurations. Using θ, we can then prove that the
behaviour of a CFG simulates the behaviour of the corresponding method in
JBC.

Definition 8 (Abstraction Function for VM States). Let Vmc be the set
of JVM execution configurations and Sg the set of states in mG. Then θ : Vmc→
Sg is defined inductively as follows:

θ(〈m, p, f, s, z〉.A;h) = 〈◦pm, θ(A;h)〉
θ(〈m, p, f, s, z〉.ε;h) = 〈◦pm, ε〉

θ(〈x〉exc.ε;h) = 〈•[,x,rm , ε〉
θ(〈x〉exc.〈m, p, f, s, z〉.A;h) = 〈•p,xm , θ(A;h)〉

Now we can prove correctness of the CFG construction. Function θ specifies
the corresponding JVM state in the extracted CFG. In order to match relating
transitions we use simulation modulo relabeling: we map JVM transition labels
Inst ∪ {ε} to the CFG transition labels in CFG Instg ∪ {handle}. Transition
ε in the JVM labeling set denotes silent transitions: transitions of the JVM to
handle raised exceptions.
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expr ::= c | null (constants)
| expr ⊕ expr (arithmetic)
| tvar | lvar (variables)
| expr.f (field access)

lvar ::= l | l1 | l2 | . . . (local var.)
this

tvar ::= t | t1 | t2 | . . . (temp. var.)

target ::= lvar
| tvar
| expr.f

Assignment ::= lvar := expr | expr.f :=expr
TempAssign ::= tvar := expr

Return ::= vreturn expr | return
MethodCall ::= expr.m(expr,..., expr)

| target := expr.m(expr,...,expr)
NewObject ::= target := new C(expr,...,expr)
Assertion ::= notnull expr | notzero expr

instr ::= nop | if expr pc | goto pc

| throw expr | mayinit C

| Assignment | TempAssign
| Return | MethodCall
| NewObject | Assertion

Fig. 3. Expressions and Instructions of BIR

Theorem 1 (CFG Simulation). For a closed program P and corresponding
flow graph G, the behavior of G simulates the execution of P .

Proof. For every possible JVM configuration c and instruction i, we establish
the possible transitions to a set of configurations C based on the operational
semantics. We apply θ to all elements in C, denoted Θ(C), to determine the
abstract CFG configurations. Then we use the CFG construction algorithm to
determine which edges are established for instruction i. These edges determine
the possible transitions paths from θ(c) to the next CFG states S, and we show
that the set S corresponds to the configurations Θ(C). To show that this indeed
holds, we use a case analysis on Vmc. For more details we refer to Amighi’s
Master thesis [2]. �

4 Extracting Control-Flow Graphs from BIR

This section presents the two-phase transformation from Java bytecode into
control-flow graphs using BIR as intermediate representation. First we briefly
present BIR and the transformation from JBC into BIR. Then, we present the
transformation from BIR into control-flow graphs and prove its correctness.

4.1 The BIR language

The BIR language is an intermediate representation of Java bytecode. The main
difference with standard JBC is that BIR instructions are stack-less, i.e., they
have explicit operators and do not operate over values stored in the operand
stack. This subsection gives a brief overview of BIR, for a full account we refer
to [5].

Syntax and Expression trees Figure 3 summarizes the BIR syntax. Its instruc-
tions operate over expression trees, i.e., arithmetic expressions composed of con-
stants, operations, variables, and fields of other expressions (expr.f). BIR does
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not have operations over strings and booleans,these are transformed into meth-
ods calls by the BC2BIR transformation. The transformation algorithm discussed
below reconstructs expression trees, i.e., it collapses one-to-many stack-based
operations into a single expression. As a result, a program represented in BIR
typically has fewer instructions than the original JBC program.

There are two kinds of variables in BIR: var and tvar. The first are identi-
fiers that are also present in the original bytecode; the latter are new variables
introduced by the transformation. Both variables and object fields can be target
of an assignment.

Many of the BIR instructions have an equivalent JBC counterpart, e.g., nop,
goto and if. A vreturn expr ends the execution of a method with return value
expr, while return ends a void method. The throw instruction explicitly trans-
fers control flow to the exception handling mechanism. Method call instructions
are represented by the method signature. For non-void methods, the instruction
assigns the result value to a variable.

In contrast to JBC, object allocation and initialization happen in a single
step, during the execution of the new instruction. However, Java also has class
initialization, i.e., the one-time initialization of a class’s static fields. To pre-
serve this class initialization order, BIR contains a special mayinit instruction.
This behaves exactly as a nop, but indicates that at that point a class may be
initialized for the first time.

Assertions The support for run-time exceptions in BIR is implemented in the
form of special instructions called assertions. These instructions are inserted
during the transformation of bytecode instructions that can potentially raise
exceptions, as defined in the Java Virtual Machine specification.

We define RE as the set of supported run-time exceptions in BIR (follow-
ing [3]). Figure 4 shows this set, and the function χ̄ : Assertion→ RE that maps
the assertion to the run-time exception it guards. Along the text we exemplify
the use of assertions using [notnull] and [notzero] only, and its corresponding
exceptions.

Assertion RE Assertion RE
[notnull] NullPointerException [notzero] ArithmeticException

[checkbound] IndexOutOfBoundsException [checkcast] ClassCastException
[notneg] NegativeArraySizeException [checkstore] ArrayStoreException

Fig. 4. χ̄: Mapping of Assertions and Runtime Exceptions

The [notzero] expr assertion is placed before all instructions containing an
expression with division operation. It checks whether the divisor expr evaluates
to zero, thus potentially raising an ArithmeticException. The [notnull] expr
assertion is placed before any access to a reference and checks whether expr

evaluates to a dereferenced object, thus raising a NullPointerException. In cases
the assertion is successful, it behaves as a [nop], and control-flow passes to
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the next instruction. In case of a failure, control is transferred to the exception
handling mechanism, just like for a [throw] instruction. If a suitable exception
handler is found, control is moved to the first instruction of this handler.

BIR Programs A BIR program is organized exactly the same way as a Java
bytecode program. A program is a set of classes, ordered by an inheritance
hierarchy. Every class consists of a name, methods and fields. A method’s code
is stored in an instruction array. However, in contrast to JBC, in BIR the indexes
in the instruction array are sequential, starting with 0 for the entry control point.

4.2 Transformation from Java bytecode into BIR

Next we give a short overview of the BC2BIR transformation. In some points,
the algorithm is quite complex, because it has to maintain consistency between
object references and BIR variables. However, since the flow-graph extraction
abstracts away from all data, these complex points are not relevant and we do
not discuss them here. Instead we focus on the transformation of instructions,
i.e., the BC2BIRinstr function. For the complete algorithm, we refer to [5].

The transformation BC2BIR transforms a complete JBC program into BIR by
symbolically executing the bytecode using an abstract stack. This stack is used
to reconstruct expression trees. Moreover, it also stores references to uninitial-
ized objects, used to correctly match them with the corresponding initialization
instruction, and differentiate the to constructor of the super class.

Definition 9 (Abstract Stack). Let UR = {URCpc|C ∈ C, pc ∈ N} be the set of
references to uninitialized objects with static type C, allocated at program counter
pc. Let Expr be the set of expression trees in the BIR language. Then the abstract
stack is defined as

AbsStack = (Expr ∪ UR)∗

The symbolic execution of the individual instructions is defined by a function
BC2BIRinstr that given a program counter, a JBC instruction and an abstract
stack, outputs a set of BIR instructions and a modified abstract stack. In case
there is no match for a pair of bytecode instruction and stack, the transforma-
tion function returns the Fail element, and the BC2BIR algorithm aborts. The
function BC2BIRinstr is defined as follows.

Definition 10 (BIR Transformation Function). The rules defining the in-
struction-wise transformation BC2BIRinstr : N× instr ×AbsStack → (instrBIR ∗
×AbsStack) ∪ Fail from Java bytecode into BIR are given in Figure 5.

As a remark, JBC instructions with similar semantics, but working on dif-
ferent types of operands (e.g., adiv and fdiv) are grouped as single instructions
(e.g., div). As a convention, we use brackets to distinguish BIR instructions from
their JBC counterpart. At several places, the transformation function introduces
new variables tipc that maintain consistency between values on the stack and the
value that it represents.
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Input Output

Instr Stack Instrs Stack

nop as ∅ as
pop e:as ∅ as
push c as ∅ c:as
dup e:as ∅ e:e:as
load x as ∅ x:as
add e1:e2:as ∅ e1+e2:as
div e1:e2:as [notzero e2] e1/e2::as

Input Output

Instr Stack Instrs Stack

if pc’ e:as [if e pc’] as
goto pc’ as [goto pc’] as
return as [return] as
vreturn e:as [return e] as
athrow e:as [throw e] as
new C as [mayinit C] UR C

pc:as
getfield f e:as [notnull e] e:f:as

Input Output Condition

Instr Stack Instrs Stack

store x e:as [x:=e] as x /∈ as
[t0pc:=x;x:=e] as[t0pc/x] x ∈ as

putfield f e′:e:as [notnull e;FSave(pc,f,as);e.f:=e′ ] as[tipc/ei]
invokevirtual m e′1...e

′
n:e:as [notnull e;Hsave(pc,as)]

[e.m(e′1...e
′
n)] as[tjpc/ej] m is void

[t0pc:=e.m(e
′
1...e

′
n)] t0pc:as[t

j
pc/ej] m not void

invokespecial m e′1...e
′
n:e:as [Hsave(pc,as);t0pc:=new C(e′1...e

′
n)] as[tjpc/ej] e = UR C

pc

[notnull e;Hsave(pc,as);e.m(e′1...e
′
n)] as[tjpc/ej] otherwise

Fig. 5. Rules for BC2BIRinstr

JBC instructions if, goto, return and vreturn are transformed into cor-
responding BIR instructions (using the top of the stack as condition argument
for the if instruction). The new instruction adds an unallocated object on the
stack, and produces a mayinit instruction. The getfield f instruction reads
a field from the object reference at the top of the stack. This might produce a
NullPointerException, thus the transformation produces a notnull instruction.

For the store x instruction there are two cases. If the variable x is not yet
on the stack, the assignment of the expression on the top of the stack to x is
returned. Otherwise, first the current value of x is assigned to a newly created
variable t0

pc, and all occurrences of x on the stack are replaced by this new
variable (denoted as[t0pc/x]).

The putfield f outputs a set of BIR instructions: first, a notnull assertion,
to check if the accessed reference is made to a valid object. Then the auxiliary
function FSave introduces a set of Assignment instructions to temporary vari-
ables, for all occurrences of f on the stack; finally it creates the assignment
instruction to the field (e.f).

The rule for virtual method calls (invokevirtual) generates a sequence of
instructions. First there is a [notnull] assertion. Then any reference to objects
on the stack that access the heap must be stored into newly introduced variables
to remember its value, because objects on the heap can be altered during the
method invocation. This is defined as function Hsave. Finally, there is the call
instruction itself. If the method returns a value, a new variable is introduced to
store the return value, and this is added to the abstract stack.

The transformation of invokespecial searches for an uninitialized reference
on the stack after the method arguments to check if such call targets an object
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constructor. If such reference is not found , the transformation acts similarly to
the case of virtual method calls. However if an uninitialized reference is found,
it replaces the UR C

pc reference to the uninitialized object – added by the trans-

formation of the new instruction – with a new variable t
j
pc.

Figure 6 shows the JBC and BIR representations for the method even, pre-
sented in Figure 1. The example contains both a local variable ($bcvar1) and
a new variable introduced by the transformation ($irvar1). We can observe re-
constructed expression trees as the argument to the method invocation, and as
the operand to the [if] instruction. The [notnull this] instruction is trivial,
since it checks if the reference to the current object is valid, but it illustrates
how assertions are placed before instructions that can raise exceptions.

Java bytecode BIR
public boolean even(int); public bool even(int)
0: iload 1 0: if ($bcvar1 != 0) goto 2

1: ifne 6 1: vreturn 1

4: iconst 1 2: notnull this

5: ireturn 3: $irvar1 := this.odd($bcvar1-1)

6: aload 0 4: vreturn $irvar1

7: iload 1
8: iconst 1
9: isub

10: invokevirtual boolean odd(int)
13: ireturn

Fig. 6. Comparison of method in JBC and BIR

4.3 Transformation from BIR into Control-Flow Graphs

The setup of the extraction algorithm is similar to that of BC2BIR. It iterates
over the instructions of a method, using the transformation function bG. Each
iteration outputs a set of triples of the form V × Instr × V . The extraction
algorithm bG takes as input a program counter and an instruction array for a
BIR method. It outputs a set of edges. The set of edges can then be directly
transformed in a control-flow graph as defined in Definition 6.

To define bG, we introduce auxiliary functions and definitions similar to the
ones introduced in the direct extraction (in Section 3). H̄ is the exceptions table
from a given method. It contains the same entries as the JBC table, but has its
control points translated to the BIR. The function ~H̄(pc, x) searches for the first
handler for the exception x (or a subtype) at position pc. The function resαb (o, n)
returns all possible receivers for a method call, given the object reference and
the method signature. The function H̄pcx returns an edge after querying ~ for
exception handlers. Also, N̄ pc

n returns edges to exceptional flows for the method
invocations that can terminate due to an uncaught exception, and consequently
propagate it.
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H̄pcx =


(•pc,xm , handle, ◦tm) ~H̄ = t 6= 0
(•pc,xm , handle, •pc,x,rm ) ~H̄ = 0

N̄ pc
n = {(◦pcm, handlen, •pc,xm ), H̄pcx |•pc,x,rn ∈ bG(n), n ∈ resαb (o, n)}

bG((pc, i), H̄) = ∅ if i ∈ TempAssign

bG((pc, i), H̄) = {(◦pcm, ib, ◦pc+1m )} if i ∈ {[nop],[mayinit]}
bG((pc, i), H̄) = {(◦pcm, ib, ◦pc+1m )} if i ∈ Assignment

bG((pc, i), H̄) = {(◦pcm, ib, ◦pc+1m ), ◦pcm, ib, ◦pc’m )} if i = [if expr pc’]

bG((pc, i), H̄) = {(◦pcm, ib, ◦pc’m )} if i = [goto pc’]

bG((pc, i), H̄) = {(◦pcm, ib, ◦pc,rm )} if i ∈ Return

bG((pc, i), H̄) = {(◦pcm, call(τ, n), ◦pc+1m ), (◦pcm, ib, •pc,%Nm )} ∪ if i ∈ NewObject
{H̄pc%N} ∪ N̄n

pc

bG((pc, i), H̄) = {(◦pcm, call(τ, n), ◦pc+1m ) | ∀τ ∈ resαb } ∪ N̄n
pc if i ∈ MethodCall

bG((pc, i), H̄) = {(◦pcm, ib, •pc,xm ), H̄pcx | x ∈ X} if i = [throw X]

bG((pc, i), H̄) = {(◦pcm, ib, ◦pc+1m ), (◦pcm, ib, •pc,χ̄(i)
m ), H̄pc

χ̄(i)} if i ∈ Assertion

Fig. 7. Extraction rules for Control-flow graphs from BIR

Definition 11 (Control Flow Graph Extraction). The control-flow graph
extraction function bG : (N× Instr)× H̄ → P((V, Ib, V )) is defined by the rules
in Figure 7, where Ib = Instr ∪ {handle}.

The control-flow graph for a method m is defined as bG(m) =⋃
∀ipc∈instrm bG(pc, ipc, H̄m), where instrm is the instruction array for method

m, and ipc is the instruction with array index pc. The control-flow graph for a
closed program p is defined as bG(p) =

⊔
∀m∈pc bG(m).

The extraction rules work as follows. Assignments to a newly introduced
temporary variables, denoted by the TempAssign set, do not produce edges. Such
instructions are produced by the BIR transformation to keep data consistent,
but they do not have a correspondent edge on the direct extraction, thus we can
ignore them. For the instructions in Assignment set, [nop] and [mayinit] a
normal transition to the next control node is generated. The conditional jump
[if expr pc’] produces a branch in the CFG: control can go either to the
next control point, or to the branch point pc’. The unconditional jump goto

pc’ adds a single transition to control point pc’. The [return] and [vreturn

expr] instructions generate an internal transition to a return node, i.e., a node
with the atomic proposition r. Notice that, although both nodes are tagged
with the same pc, they are different, because their sets of atomic propositions
are different.

The extraction rule for calls to constructors ([new C]) produces a single nor-
mal edge, since there is only one possible receiver for the call. Also, we produce
a pair of edges relatives to NullPointerException. The BIR transformation does
not produce a correspondent [notnull] instruction for such case, and at first we
should not support such exceptional flows. However the direct algorithm con-
templates such case, thus we produce these two exceptional edges for the sake
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of soundness. Moreover, N̄ pc
n returns transitions to exceptional nodes due to un-

caught exceptions, together with the appropriate exception handling transitions.
The extraction rule for method calls is similar to that of the direct extraction

(in Section 3). Again, we assume that an appropriate virtual method calls res-
olution is used. We add a normal edge for each possible receiver returned from
resαb . Again, N̄ pc

n returns a pair of transitions for uncaught exceptions.
The [throw x] instruction, similarly to virtual method call resolution, de-

pends on some kind of static analysis to find out the possible exceptions that
can be thrown. The BIR transformation only provides the static type of the
exception x . We define X as the set containing the static type of x and its
subtypes. Thus we add one exceptional edge for each element of X, together
with its correspondent edge after querying the exception table.

Finally, we cite the rule for assertion instructions. In this case, we create a
normal edge, indicating that the execution was successful, one exceptional edge
to mark the raise of an exception, a third edge, which shows if the instruction
has an associated entry in the exceptions table.

4.4 CFG Extraction Correctness Proof

We now enunciate the correctness proof theorem for control-flow graphs ex-
tracted from the composition of BC2BIR and bG algorithms. We prove that given
the same JBC program, the control-flow graph generated with the composition
of algorithms simulates structurally the control-flow graph generated using the
mG direct algorithm.

Theorem 2 (Structural Simulation of Control-Flow Graphs). Let P be
an arbitrary Java bytecode closed program. Then bG◦BC2BIR(P ) weakly simulates
mG(P ), considering the set RE.

The proof is stated using case analysis over the Java bytecode instructions
set, and is available on-line 4. Based on the previous proof that structural simu-
lation implies behavioral simulation [9], we can conclude that the correctness of
structural simulation of mG(P ) by the control-flow graph produced in BC2BIR(P )
implies also behavioural simulation.

5 Related Work

Sinha et. al. [13, 14] propose criteria for testing exception handling constructs in
Java programs (Java source code). They consider the effect of exception prop-
agation and exceptions type conversion. The proposed algorithm for CFG con-
struction traverses the (Abstract Syntax Tree) AST of the program and then
inter-procedural CFG (ICFG) is established. Normal CFG is constructed using
algorithms proposed in [1].

4 Available at http://www.csc.kth.se/~pedrodcg/files/foveoos11-proof.pdf
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In a similar work Jiang [11] propose an algorithm to extract exceptional
control-flow graph (ECFG) of C++ programs. In the proposed model of the pro-
grams implicit control-flow of exceptions and exceptions propagation is repre-
sented. Based on the inter-procedural ECFG (ICFG) they described techniques
for path testing and definition-use testing of C++ programs.

Jo and Chang [12] propose a method to construct CFG by computing sep-
arately normal flow and exception flow of Java programs (Java source code).
Using a set-constraints of exceptions and iterative fix-point method they com-
pute exception propagation paths. They show that CFG of a program can be
constructed by merging an exception flow graph onto a normal flow graph.

Our CFG extraction rules use the results of inter-procedural analysis and
exception propagation from above mentioned work, however, none gives formal
extraction rule and correctness proof.

6 Conclusion

This paper presents an efficient and precise control-flow graph extraction al-
gorithm, and shows the proof outline of its correctness. To the best of our
knowledge, this is the first control-flow graph extraction algorithm that has been
proven correct. The proof is presented in pencil-and-paper style, but paves the
ground for a second version using automated reasoning.

The algorithm is efficient and precise, because it uses an intermediate stack-
less representation. This allows to generate precise information about exceptional
control-flow, and it keeps the generated control-flow graphs relatively small.

To prove correctness of the algorithm, i.e., to show that any behaviour of
the extracted control-flow graph is an over-approximation of the program’s be-
haviour, a second extraction algorithm is used that works directly on the byte-
code. It is easy to prove correctness of this direct algorithm. To prove correct-
ness of the indirect algorithm we show that the flow graphs it generates simulate
structurally the flow graphs generated by the direct algorithm. Since structural
simulation implies behavioural simulation, this gives us the desired result.

As future work, we are studying how the extraction algorithm could be
adapted to a modular setting. Currently, only flow-graphs for complete programs
can be extracted. However, our intention is to use the extracted flow-graphs as
input for CVPP [10], a tool set for compositional verification of control-flow
safety properties. In this setting, one often wishes to generate a flow-graph from
an incomplete program. In addition, we are also studying how the techniques
used in this paper can be used to prove correctness of an extraction algorithm
that preserves some data of the original program, and how to use it for programs
with multiple threads of execution.
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Abstract. In previous work we have shown that more precise type anal-
ysis can be achieved by exploiting union types and static single assign-
ment (SSA) intermediate representation (IR) of code.
In this paper we exploit static single information (SSI), an extension
of SSA proposed in literature and adopted by some compilers, to allow
assignments of more precise types to variables in conditional branches.
In particular, SSI can be exploited rather easily and effectively to assign
more precise static types in presence of explicit runtime typechecking,
a necessity that occurs rather often in statically typed object-oriented
languages, and even more than often in dynamically typed ones.
We show how the use of SSI form can be smoothly integrated with ab-
stract compilation, our approach to static type analysis. In particular,
we define abstract compilation based on union and nominal types for a
simple dynamically typed Java-like language in SSI form with a runtime
typechecking operator, to show how precise the proposed analysis can
be.

1 Introduction

In previous work [6] we have shown that more precise type analysis can be
achieved by exploiting union types and static single assignment (SSA) [7] in-
termediate representation (IR) of code. Most modern compilers (among others,
GNU’s GCC [13], the SUIF compiler system [12], and JIT compilers including
Java HotSpot [11], and Java Jikes RVM [9]) implement efficient algorithms for
translating code in SSA IR [8], therefore focusing on analysis of SSA IR not
only allows more precise results, but also favors reuse of compiler technology,
and better integration with existing compilers. In particular, we have studied
how abstract compilation [5, 4, 6] can naturally take advantage of SSA IR when
union types are considered. Abstract compilation aims to reconcile static type
analysis and symbolic execution: one can check whether the execution of a cer-
tain expression e is type safe, when variable contents range over possibly infinite
sets of values (represented by types), by solving a goal, obtained by abstract
compilation of e, w.r.t. the coinductive1 semantics of the constraint logic pro-
gram automatically generated from the source program in which the expression
is executed.
1 Coinduction allows proper treatment of recursive types and methods [5].
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Abstract compilation fosters plug-and-play static type analysis since one can
provide several compilation schemes for the same language, each corresponding
to a different kind of analysis, without changing the inference engine that im-
plements the coinductive semantics of constraint logic programs [15, 14, 4]. For
instance, in previous work we have defined compilation schemes for Java-like lan-
guages based on union and structural object types, to support parametric and
data polymorphism, (that is, polymorphic methods and fields) that allow quite
precise type analysis, and a smooth integration with the nominal type annota-
tions contained in the programs [5]; other proposed compilation schemes aim to
detect uncaught exceptions for Java-like languages [4], or to integrate SSA IR in
presence of imperative features [6].

In this paper we exploit static single information (SSI), an extension of SSA
proposed in literature [2, 17], to allow assignments of more precise types to vari-
ables in conditional branches. SSI has been already adopted by compilers as
LLVM [18], PyPy [3], and SUIF [16], and proved to be more effective than SSA
for performing data flow analysis, program slicing, and interprocedural analysis.

In particular, we show how SSI can be exploited rather easily and effectively
by abstract compilation to assign more precise static types in presence of explicit
runtime typechecking, a necessity that occurs rather often in statically typed
object-oriented languages [19], and even more than often in dynamically typed
ones.

To this aim, we formally define the operational semantics of a simple dynami-
cally typed Java-like language in SSI form equipped with a runtime typechecking
operator, and then provide an abstract compilation scheme based on union and
nominal types supporting more precise type analysis of branches guarded by
explicit runtime typechecks.

The paper is structured as follows: Section 2 introduces SSA and SSI IRs
and motivates their usefulness for type analysis; Section 3 formally defines the
SSI IR of a dynamically typed Java-like language equipped with an operator
instanceof for runtime typechecking. Section 4 presents a compilation scheme for
the defined IR, based on nominal and union types, and Section 5 concludes with
some considerations on future work. Abstract compilation of the code examples
in Section 2 together with the results of the resolution of some goals can be
found in an extended version of this paper.2

2 Type analysis with SSA and SSI

In this section SSA and SSI IRs are introduced and their usefulness for type
analysis is motivated.

Type analysis with static single assignment form

Method read() declared below, in a hypothetical dynamically typed Java-like
language, creates and returns a shape which is read through method nextLine()

2 Available at ftp://ftp.disi.unige.it/person/AnconaD/foveoos11long.pdf
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that reads the next available string from some input source. The partially omit-
ted methods readCircle() and readSquare() read the needed data from the in-
put, create, and return a new corresponding instance of Circle or Square.

c lass ShapeReader {

...

nextLine () {...}

readCircle () { ... return new Circle (...); }

readSquare () { ... return new Square (...); }

read() {

st = this .nextLine ();
i f (st.equals("circle")) {

sh = this .readCircle ();
this .print("A circle with radius ");

this .print(sh.getRadius ());
}

else i f (st.equals("square")) {

sh = this .readSquare ();
this .print("A square with side ");

this .print(sh.getSide ());
}

else throw new IOException ();

this .print("Area = ");

this .print(sh.area ());
}

}

Although method read() is type safe, no type can be inferred for st to cor-
rectly typecheck the method; indeed, when method area() is invoked, variable
st may hold an instance of Circle or Square, therefore the most precise type
that can be correctly assigned to st is Circle ∨ Square. However, if st has type
Circle ∨ Square, then both sh.getRadius() and sh.getSide() do not typecheck.

There are two different kinds of approaches to solve the problem shown above.
Either one defines a rather sophisticated flow-sensitive type system able to
associate different types with different occurrences of the same variable, or one
can typecheck the SSA IR in which the method is compiled.

In an SSA IR the value of each variable is determined by exactly one assign-
ment statement [7]. To obtain this property, a flow graph is built, and a suitable
renaming of variables is performed to keep track of the possibly different versions
of the same variable; following Singer’s terminology [17] we call these versions
virtual registers. Conventionally, this is achieved by using a different subscript
for each virtual register corresponding to the same variable. For instance, in the
SSA IR of method read() (Figure 1) there are three virtual registers (sh0, sh1

and sh2) for the variable sh.

To transform a program into SSA form, pseudo-functions, conventionally
called ϕ-functions, have to be inserted to correctly deal with merge points. For
instance, in block 5 the value of sh can be that of either sh0 or sh1, therefore a
new virtual register sh2 has to be introduced to preserve the SSA property. The
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st
0
=this.nextLine() 

st
0
.equals("circle")
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block 1

    sh
0
=this.readCircle()

    this.print ("...")
    this.print(sh

0
.getRadius())  

 st
0
.equals("square")

 sh
1
=this.readSquare()

 this.print ("...")
 this.print(sh

1
.getSide())

  sh
2
=φ(sh

0
,sh

1
)

  this.print("Area = ")
  this.print(sh

2
.area())

true false

true false

block 2 block 3

block 4

block 5

throw new IOException()

block 6

Fig. 1. Control flow graph corresponding to the body of method read

expression ϕ(sh0,sh1) keeps track of the fact that the value of sh2 is determined
either by sh0 or sh1.

At the level of types ϕ-functions naturally correspond to the union type
constructor (Figure 2): arrows correspond to data flow and, as usual, to ensure
soundness the type at the origin of an arrow must be a subtype of the type the
arrow points to. In the figure, τ0, τ1 ≤ τ0 ∨ τ1 ≤ τ2.

The transformation of a source program into its SSA IR is standard [7], and
there exists a quite efficient algorithm to perform it [8], therefore it is more
convenient to define abstract compilation for programs in SSA IR. While flow
graphs are used for generating SSA IR, here we adopt a textual language more
suitable for defining an abstract compilation scheme. For instance, the SSA IR
of method read() is the following:

read() {

b1:{st0 = this .nextLine ();
i f (st0.equals("circle"))

jump b2;

else
jump b3;}

b2:{sh0= this .readCircle ();
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Fig. 2. Type theoretic interpretation of ϕ-functions and σ-functions

this .print("A circle with radius ");

this .print(sh0.getRadius ());

jump b5;}

b3:{ i f (st0.equals("square"))

jump b4;

else
jump b6;}

b4:{sh1= this .readSquare ();
this .print("A square with side ");

this .print(sh1.getSide ());

jump b5;}

b5:{sh2=ϕ(sh0,sh1);

this .print("Area = ");

this .print(sh2.area ());

jump out;}

b6:{throw new IOException ();}

out:{return sh2;}

}

The body of a method in IR is a sequence of uniquely labeled blocks; each block
ends with either a conditional or unconditional jump, a return or a throw3. For
simplicity, we require that only the last block4 contains the return statement.

Type analysis with static single information form

Let us consider method largerThan(sh) of class Square, where instanceof is ex-
ploited to make the method more efficient in case the parameter sh contains an
instance of (a subclass) of Square.

c lass Square {

...

largerThan(sh) {

i f (sh instanceof Square)

3 In the formal treatment that follows we omit exceptions for simplicity.
4 This can be always obtained by introducing new virtual registers and inserting a
ϕ-function in case of multiple returned values.
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return this .side > sh.side;

else
return this .area() > sh.area ();

}

}

The method is transformed in the following SSA IR:

largerThan(sh0) {

b1:{ i f (sh0 instanceof Square)

jump b2;

else
jump b3;}

b2:{r0= this .side > sh0.side;

jump out;}

b3:{r1= this .area() > sh0.area ();

jump out;}

out:{r2=ϕ(r0,r1);

return r2;}

}

Since variable sh is not updated, both blocks b2 and b3 refer to the same virtual
register sh0. As a consequence, the only possible type that can be correctly
associated with sh0 is Square, thus making the method of little use. However,
this problem can be encompassed if one considers the SSI IR of the method [2,
17].

largerThan(sh0) {

b1:{ i f (sh0 instanceof Square) with (sh1,sh2) = σ(sh0)

( this1, this2) = σ( this0)

jump b2;

else
jump b3;}

b2:{r0= this1.side > sh1.side;

jump out;}

b3:{r1= this2.area() > sh2.area ();

jump out;}

out:{r2=ϕ(r0,r1);

return r2;}

}

SSI is an extension of SSA enforcing the additional constraint that all variables
must have different virtual registers in the branches of conditional expressions;
such a property is obtained by a suitable renaming and by the insertion of
σ-functions at split points. As a consequence, suitable virtual registers and σ-
functions have to be introduced also for the read-only pseudo-variable this.

The notion of σ-function is the dual of ϕ-function (Figure 2); the type the-
oretic interpretation of σ depends on the specific kind of conditional context. If
such a context is of the form (sh0 instanceof Square) as in the example, then
σ splits the type τ0 of sh0 in the type τ0∧Square, assigned to sh1, and in the
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type τ0\Square, assigned to sh2, where the intersection and the complement op-
erators have to be properly defined (see Section 4). For instance, if sh0 has type
Square∨Circle, then sh1 has type (Square∨Circle)∧Square=Square, and sh2 has
type (Square∨Circle)\Square=Circle, therefore Square∨Circle turns out to be
a valid type for the parameter sh0 of the method largerThan. For what concerns
this, in this particular example no real split is performed: if we assume that
this0 has type Square, then Square is split in (Square,Square), and both this1
and this2 have type Square.

3 Language definition

In this section we formally define an SSI IR for a simple dynamically typed
Java-like language equipped with an instanceof operator for performing runtime
typechecking.

prog ::= cd
n

e

cd ::= class c1 extends c2 { f
n

md
k } (c1 6= Object ,Bool , c2 6= Bool)

md ::= m(xn) {bn}
b ::= l :e
r ::= xi
e ::= r | false | true | new c(en) | e.f | e0.m(en) | e1; e2 | r = e

| e1.f = e2 | jump l | r = ϕ(rn) | return r

| if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2

Syntactic assumptions: inheritance is not cyclic, method bodies are in correct SSI
form and are terminated with a unique return statement, method and class names are
disjoint, no name conflicts in class, field, method and parameter declarations, new c(en)
allowed only if c 6= Bool , and declared parameters cannot be this.

Fig. 3. SSI intermediate language

A program is a collection of class declarations followed by a main expression
e with no free variables. The notation cd

n
is a shortcut for cd1, . . . , cdn. A class

declares its direct superclass (only single inheritance is supported), its fields, and
its methods. Two predefined classes are available: Object , the usual root class
of the inheritance tree, and Bool , the class of the two literals false and true;
such a class cannot be extended, and does not provide any constructor.

Every class, except Bool , comes equipped with the implicit constructor with
parameters corresponding to all fields, in the same order as they are inherited
and declared, but for simplicity no user declared constructors can be added.

Method bodies are sequences of uniquely labeled blocks that contain se-
quences of expressions. We assume that all blocks contain exactly one jump,
necessarily placed at the end of the block. Three different kinds of jumps are
considered: local unconditional and conditional jumps, and returns from meth-
ods. Method bodies are implicitly assumed to be in correct SSI IR: each virtual
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register is determined by exactly one assignment statement, and all variables
must have different virtual registers in the branches of conditional expressions.
Finally, all method bodies contain exactly one return expression, which is always
placed at the end of the body.

The receiver object can be referred inside method bodies with the special
implicit parameter this; besides usual statements and expressions, we consider
ϕ and σ pseudo-function assignments.

In r = ϕ(rn), n ≥ 2 and all virtual registers rn occurring in ϕ are assumed
to refer to the same variable, denoted by var(r1) = . . . = var(rn).

All σ-functions are used in association with conditional jumps; each virtual
register r occurring in either branches has to be split into two new distinct
versions used in the blocks labeled by l1, and l2, respectively. The conditions
we consider are only of the form (r instanceof c) since our aim is studying
how type analysis can be enhanced by SSI in the presence of explicit runtime
typechecks; however, more elaborated forms of conditions can be expressed in
terms of the more primitive form (r instanceof c) by simple transformations
performed by the compiler front-end. For instance, the statement

i f (x.m1() instanceof A && y.m2() instanceof B) e1 else e2

can be transformed in the equivalent SSI IR

b0 : {z0=xk.m1();

i f (z0 instanceof A) with ... jump b1 else jump b3;}

b1 : {w0=yn.m2();

i f (w0 instanceof B) with ... jump b2 else jump b3;}

b2 : {e′1}
b3 : {e′2}

where z0 and w0 are fresh, e′1 and e′2 are the SSI IRs of e1 and e2, respectively,
and σ-functions assignments (that depend on e1 and e2) have been omitted. De-
pending on the types and abstract compilation scheme under consideration, there
could be other kinds of conditions for which SSI would improve type analysis;
for instance, if an abstract compilation scheme allows analysis of null references,
such an analysis could be enhanced by SSI in the case of conditional expressions
with conditions of the form (x == null). On the other hand, for conditions of
the form (x1 < x2) SSI does not help refine type analysis as long as the abstract
compilation scheme maps numeric values to the standard primitive types int,
float, and double; in this case the type theoretic interpretation of σ-functions
is the loosest one: σ(τ)=(τ,τ) (hence, no split is actually performed).

Semantics: To define the small step semantics of the language we first need to
specify values v (see Figure 4), which are either the literals false and true (recall
that they are predefined instances of the Bool class) or identities o of dynamically
created objects. Furthermore, we add frame expressions ec{e}, where ec is an
execution context; frame expressions are runtime expressions, that is, expressions
that represent intermediate evaluation steps and that are needed for defining
the small step semantics of method calls. An execution context ec is a pair
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consisting of a stack frame fr and a code address a. A frame expression 〈fr , a〉{e}
corresponds to the execution of a call to a method m declared in class c, where e
is the residual expression (yet to be evaluated) of the currently executed block,
fr is the stack frame of the method call, a = µ.l is the address of the current
block, where µ = c.m is the fully qualified name of the method, and l is the
label of the current block.

Stack frames fr map variables and virtual registers to their corresponding
values. These frames are represented by a pair of lists of associations, x 7→ v
and r 7→ v, where variables and virtual registers are all distinct. Keeping track
of the values of both virtual registers and their associated variable allows for a
simple semantics, as discussed below.

Heaps H map object identifiers o to objects, that is, pairs consisting of a
class name c and the set of field names f with their corresponding value v.

Figure 5 shows the execution rules. The main evaluation judgment has shape
H ` e → H′, e ′, meaning that e rewrites to e ′ in H, yielding the new heap
H′. Furthermore, rule (ctx-closure) uses the auxiliary judgment H, ec ` e →
H′, ec′, e ′, meaning that redex e rewrites to e ′ in H and ec, yielding the new
execution context ec′ and heap H′. Both judgments, and all auxiliary functions
should be parametrized by the whole executing program, cd

n
, which is kept

implicit. The execution of the main expression of a program starts from an
empty heap εH and an empty stack frame ε, annotated by the pair 〈⊥,⊥〉, since
the main expression is not actually contained in any block/method.

The main evaluation judgment is defined by the three rules (meth-call) (a
new frame is pushed on the stack), (ctx-closure) (evaluation continues in the
currently active frame), and (return) (the current active frame is popped from
the stack).

In rule (meth-call), the object referenced by o is retrieved in order to find
its class, c. Then, the auxiliary functions firstBlock and params return the first
block of the method and its parameter names, respectively. The result of the
evaluation is a frame expression, where the new stack frame maps parameters
to their corresponding passed arguments, and this to the reference o, and the
code address is the fully qualified name of the invoked method, c.m, plus the
label of its first block, l . Finally, the resulting expression is the context applied
to the body of the first block.

Rule (ctx-closure) performs a single computation step in the currently active
frame (corresponding to the most nested frame expression). The execution con-
text is extracted by currentEC ;5 then, if the redex e rewrites to e ′ yielding H′

and ec′ (see the other rules defining the auxiliary evaluation judgment), then
the expression C[e] rewrites to C′[e ′], yielding the new heap H′; context C′[ ]
is obtained from C[ ] by updating the frame expression corresponding to the
currently active frame with the new execution context ec′.

In rule (return) the currently active frame is removed, and the resulting ex-
pression is the context applied to the value associated with the returned virtual
register r in the frame.

5 The straightforward definitions of currentEC and updateEC have been omitted.
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Rule (var) models the access to a virtual register (this is considered a special
read-only local variable), by simply extracting the corresponding value from the
stack frame fr ; this works because of the way the assignment is handled in
Rule (var-asn).

Variable and field assignments evaluate to their right values; rule (var-asn)
models virtual register assignments, and has the side effect of updating, in the
current stack frame fr , the values of both the virtual register r and its associ-
ated variable x . This implements a cache write-through strategy, where virtual
registers cache values that are to be stored in the memory location correspond-
ing to the variable to which virtual registers refer to; in this way evaluation of
ϕ-function is simpler (see comments below).

Rule (fld-asn) models field assignments; in that case, the object referenced
by o is retrieved from the heap, and its value updated.

Rule (seq) models the fact that a value is discarded when followed by another.
Rule (phi) models the assignment of a phi-function, which accesses to a (set

rn of different versions of the same) local variable x , by assigning the value
contained in x (this is correct because of the write-through semantics of the
Rule (var-asn)) to the virtual register r ′.

Rule (new) models object creation; a new object, identified by a fresh refer-
ence o, is added to the heap H. The fields f

n
of the newly created object are

initialized by the value passed to the constructor.
Rule (fld-acc) models field accesses; its evaluation is quite trivial: the object is

retrieved from the heap, and the resulting expression is the value of the selected
field.

Rules (jump) and (if) model unconditional and conditional jumps, respec-
tively. These are the only rules that modify the label-part of the execution con-
text. The evaluation of a jump, which, by construction, is known to be the last
expression of a sequence, corresponds to replacing the jump expression itself
with the expression e contained in the block labeled l ′ and updating the stack
frame annotation accordingly.

The conditional jump (rule (if)) has to both choose which branch to execute
and which virtual registers have to be updated, depending on whether the value
of the register r (contained in fr(r)) is a reference to an object of a subclass of
c. If the referenced object is indeed an instance of c, then the target label is l1
and the virtual registers r ′n are updated; otherwise, the target label is l2 and
the virtual registers r ′′n are updated.

4 Abstract compilation

In this section we define an abstract compilation scheme for programs in the SSI
IR presented in Section 3. Programs are translated into a Horn formula Hf (that
is, a logic program) and a goal B ; type analysis amounts to resolve B w.r.t. the
coinductive semantics (that is the greatest Herbrand model) of Hf [5].

In previous work we have defined compilation schemes based on union and
structural object types, to support parametric and data polymorphism, (that
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v ::= false | true | o (values)
e ::= ec{e} | . . . (runtime expressions; that is, frame expressions plus

source expressions as defined in Figure 3)
ec ::= 〈fr , a〉 (execution context)

fr ::= x 7→ vjr 7→ vk (stack frames)
a ::= µ.l (block addresses, where µ are full method names c.m)

H ::= o 7→ 〈c, f 7→ v
j〉

k

(heaps)

C[·] ::= [·] | ec{C[·]} | new c(vn, C[·], ej) | C[·].f | C[·].m(ek) | v0.m(vj , C[·], ek)
| C[·]; e | v; C[·] | x = C[·] | C[·].f = e | v.f = C[·]
| if (C[·]) with (x ′, x ′′) = σ(x ′′′)

n
jump l1 else jump l2

Fig. 4. Syntactic definitions instrumental to the operational semantics

(meth-call)

H(o) = 〈c, 〉
firstBlock(c.m) = l : e
params(c.m) = rn

fr = r 7→ vn, this0 7→ o

H ` C[o.m(vn)]
→ H, C[〈fr , c.m.l〉{e}]

(ctx-closure)

currentEC (C[·]) = ec
H, ec ` e → H′, ec′, e ′

C′[·] = updateEC (C[·], ec′)

H ` C[e]→ H′, C′[e ′]

(return)H ` C[〈fr , a〉{return r}]
→ H, C[fr(r)]

(fld-acc)
H(o) = 〈c, f 7→ v

n〉 f = fj
H, ec ` o.f → H, ec, vj

(var)H, 〈fr , a〉 ` r → H, 〈fr , a〉, fr(r)
(new)

o fresh in H
fieldNames(c) = f

n

H, ec ` new c(vn)

→ H[〈c, f 7→ v
n〉/o], ec, o

(seq)H, ec ` v1; v2 → H, ec, v2
(var-asn)

x = var(r) x 6= this

H, 〈fr , a〉 ` r = v
→ H, 〈fr [v/r , v/x ], a〉, v

(fld-asn)

H(o) = 〈c, f 7→ v
n〉

f = fj if i = j then v′i = v
else v′i = vi

H, ec ` o.f = v

→ H[〈c, f 7→ v′
n〉/o], ec, v

(jump)
block(µ.l ′) = l ′ : e

H, 〈fr , µ.l〉 ` jump l ′

→ H, 〈fr , µ.l ′〉, e

(phi)
v = fr(var(r1))

H, 〈fr , a〉 ` r ′ = ϕ(rn)→ H, 〈fr [v/r ′], a〉, v

(if)

H(fr(r)) = 〈c′, 〉
if c′ ≤ c then l ′ = l1, fr ′ = fr [fr(r ′′′)/r ′n]

else l ′ = l2, fr ′ = fr [fr(r ′′′)/r ′′n]
block(µ.l ′) = l ′ : e

H, 〈fr , µ.l〉 ` if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n

jump l1 else jump l2
→ H, 〈fr ′, µ.l ′〉, e

Fig. 5. Small-step semantics
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is, polymorphic methods and fields) that allow quite precise type analysis, but
pose problems in terms of termination of the resolved goals. In this paper we
present a simpler compilation scheme based on union and nominal object types,
that allows a less precise type analysis on the one hand (but still more precise
than that obtained with the standard type systems of mainstream languages as
Java and C#) but, on the other hand, avoids non termination problems with
goal resolution, since the space of all possible valid types for a given program is
always bounded. Therefore, while coinductive constraint logic programming [4]
(where constraints are expressed in terms of the subtyping relation) is needed
for structured types to ensure termination of the resolution of some goals, here
would only allow more precise and efficient analysis; however, here subtyping is
treated as an ordinary predicate to make the presentation simpler.

Summarizing, here we use nominal rather than structured types for the fol-
lowing reasons: SSI allows more precise type analysis even in the presence of
less expressive types, the presentation is simpler, and, last but not least, we take
advantage of the plug-and-play facility offered by the abstract compilation ap-
proach by providing yet another compilation scheme; in practice, more advanced
compilations schemes could be adopted, including structural [5, 6] and exception
types [4] (see further comments in the conclusion).

The compilation of programs, class, and method declarations is defined in
Figure 6. We follow the usual syntactic conventions for logic programs: logical
variable names begin with upper case, whereas predicate and functor names
begin with lower case letters. Underscore denotes anonymous logical variables
that occur only once in a clause; [ ] and [e|l] respectively represent the empty
list, and the list where e is the first element, and l is the rest of the list.

(prog)
∀ i = 1..n cd i  Hf i e  (t |B)

cd
n

e  (Hf d ∪Hf
n|B)

(class)
∀ i = 1..k md i in c1  Hf i inhFields(c1) = f ′h

class c1 extends c2 { f
n

md
k } Hf

k∪8>><>>:
class(c1 )← true.
extends(c1 , c2 )← true.

dec field(c1 , f )
n ← true.

new(CE , c1 , [T ′h ,T
n
])← new(CE , c2 , [T ′h ]),field upd(CE , c1 , f ,T )

n
.

9>>=>>;
(meth)

b
n  (t |B)

m(rn){bn} in c  
dec meth(c,m)← true.
has meth(CE , c,m, [This0 , r

n ], t)← subclass(This0 , c),B .

ff

(body)
∀ i = 1..n bi  Bi

b
n

l :return r  (r |Bn
)

Fig. 6. Compilation of programs, class, and method declarations and bodies.
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Each rule defines a different compilation judgment. The judgment cd
n

e  
(Hf d ∪Hf

n|B) means that the program cd
n

e is compiled into the pair (Hf d ∪
Hf

n|B), where Hf d ∪Hf
n

is a Horn formula (that is, a set of Horn clauses), and
B is a goal6. Static analysis of the program corresponds to resolving the goal B
w.r.t. the coinductive semantics of Hf d∪Hf

n
. The Horn formula Hf d contains all

generated clauses that are invariant w.r.t. the program (see Figure 8), whereas
each Hf i is obtained by compiling the class declaration cd i (see below); the goal
B is obtained from the compilation of the main expression e (see below); the
term t corresponding to the returned type of e is simply ignored here, but it is
necessary for compiling expressions (see comments on Figure 7).

The compilation of a class declaration class c1 extends c2 { f
n

md
k } is

a set of clauses, including each clause Hf i obtained by compiling the method
md i (see below), clauses asserting that class c1 declares field fi, for all i = 1..n,
and three specific clauses for predicates class, extends, and new . The clause for
new deserves some explanations: the atom new(ce, c, [t

n
]) succeeds iff the invo-

cation of the implicit constructor of c with n arguments of type t
n

is type safe
in the global class type environment ce. The class environment ce is required
for compiling field access and update expressions (see Figure 7): it is a finite
map (simply represented by a list) associating class names with field records,
which are finite maps (again simply represented by lists) associating all fields
of a class with their corresponding types. Class environments are required be-
cause of nominal types: abstract compilation with structural types allows data
polymorphism on a per-object basis, whereas here we obtain only a very limited
form of data polymorphism on a per-class basis. Type safety of object creation
is checked by ensuring that object creation for the direct superclass c2 is correct,
where only the first h arguments corresponding to the inherited fields (returned
by the auxiliary function inhFields whose straightforward definition has been
omitted) are passed; then, predicate field upd defined in Figure 8 checks that
all remaining n arguments, corresponding to the new fields declared in c1, have
types that are compatible with those specified in the class environment. The
clause dealing with the base case for the root class Object is defined in Figure 8.

The judgment m(rn){bn} in c  Hf means that the method declaration
m(rn){bn} contained in class c compiles to Horn clauses Hf . Just two clauses
are generated per method declaration: the first simply states that method m is
declared in class c (and is needed to deal with inherited methods, see Figure 8),
whereas the second is obtained by compiling the body of the method. The atom
has meth(ce, c,m, [t0, t

n
], t) succeeds iff in class environment ce method m of

class c can be safely invoked on target object of type t0, with n arguments of
type t

n
and returned value of type t . The predicate subclass (defined in Figure 8)

ensures that the method can be invoked only on objects that are instances of c
or of one of its subclasses. For simplicity we assume that all names (including

6 For simplicity we use the same meta-variable B to denote conjunctions of atoms (that
is, clause bodies), and goals, even though more formally goals are special clauses of
the form false ← B .
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this) are translated to themselves, even though, in practice appropriate injective
renaming should be applied [5].

The compilation of a method body b
n

l :return r consists of the type of the
returned virtual register r , and the conjunction of all the atoms generated by
the compilation of blocks b

n
.

Figure 7 defines abstract compilation for blocks, and expressions.

(block)
e  (t |B)

l :e  B
(seq)

e1  (t1 |B1) e2  (t2 |B2)

e1; e2  (t2 |B1,B2)

(c-jmp)

if var(r ′′′
i ) = var(r)

then t ′i = T, t ′′i = F
else t ′i = r ′′′

i , t
′′
i = r ′′′

i T, F fresh

if (r instanceof c) with (r ′, r ′′) = σ(r ′′′)
n
jump l1 else jump l2 in  

(void | inter(r , c, T ), diff (r , c, F ), var upd(r ′, t ′), var upd(r ′′, t ′′)
n
)

(var-upd)
e  (t |B)

r = e  (t |B , var upd(r , t))
(jmp)

jump l  (void | true)

(field-upd)
e1  (t1 |B1) e2  (t2 |B2)

e1.f = e2  (t2 |B1,B2,field upd(CE , t1, f , t2))

(phi)
r = ϕ(rn) (∨rn | var upd(r ,∨rn))

(new)
∀ i = 1..n ei  (ti |Bi)

new c(en) (c |Bn
,new(CE , c, [t

n
]))

(field-acc)
e  (t |B) R fresh

e.f  (R |B ,field(CE , t , f , R))

(invk)
∀ i = 0..n ei  (ti |Bi) R fresh

e0.m(en) (R |B0,B
n
, invoke(CE , t0,m, [t

n
], R))

(var)
r  (r | true)

(bool)
v ∈ {true, false}
v  (bool | true)

Fig. 7. Compilation of blocks and expressions

Compiling a block l :e returns the conjunction of atoms obtained by compiling
e; the type t of e is discarded.

The compilation of e1; e2 returns the type of e2 and the conjunction of atoms
generated from the compilation of e1 and e2.

The compilation of an unconditional jump generates the type void and the
empty conjunction of atoms true. A conditional jump has type void as well, but
a non empty sequence of predicates is generated to deal with the splitting per-
formed by σ-functions; predicates inter and diff (defined in Figure 9) correspond
to intersection T and difference F between the type of r and c, respectively, and
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predicate var upd (defined in Figure 8) ensures that the type of virtual registers
r ′
i and r ′′

i are compatible with the pairs of types returned by the σ-functions. In
case r ′′′

i refers to the same variable of r the types of such a pair are the com-
puted intersection T and difference F , respectively, otherwise the pair (r ′′′

i , r
′′′
i )

is returned (hence, no split is actually performed).

Compilation of assignments to virtual registers and fields yields the conjunc-
tion of the atoms generated from the corresponding sub-expressions, together
with the atoms that ensure that the assignment is type compatible (with predi-
cates var upd and field upd defined in Figure 8). The returned type is the type
of the right-hand side expression.

Compilation of ϕ-function assignments to virtual registers is just an instan-
tiation of rule (var-upd) where the type of the expression is the union of the
types of the virtual registers passed as arguments to ϕ.

Compilation rules for object creation, field selection, and method invocation
follow the same pattern: the type of the expression is a fresh logical variable
(except for object creation) corresponding to the type returned by the specific
predicate (new , field , and invoke defined in Figure 8). The generated atoms are
those obtained from the compilation of the sub-expressions, together with the
atom specific of the expression.

Rules (var) and (bool) are straightforward.

Figure 8 and Figure 9 define the set Hf d used in compilation rule (prog)
corresponding to all generated clauses that are invariant w.r.t. the compiled
program.

Clauses in Figure 8 deserve some comments for what concerns the subtyping
relation (predicate subtype); as expected, classes c1 and c2 are both subtypes of
c1 ∨ c2, but no subclass of c1 or c2 is a subtype of c1 ∨ c2, because subclassing
is not subtyping, since no rules are imposed on method overriding. Consider for
instance the following source code snippet:

c lass Square {

...

equals(s){return this .side==s.side;}
...

}

c lass ColoredSquare extends Square {

...

equals(cs){return this .side==cs.side&& this .color==cs.color;}
...

}

According to our compilation scheme, the expression s1.equals(s2) has type
Bool if s1 and s2 have type Square and Square∨ColoredSquare, respectively,
but the same expression is not well-typed if s1 has type ColoredSquare (hence,
ColoredSquare6≤Square), since s2 may contain an instance of Square for which
field color is not defined. Subtyping is required for defining the predicates
var upd and field upd for virtual register and field updates: the type of the
source must be a subtype of the type of the destination.
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class(object)← true.
class(bool)← true.
extends(bool , object)← true.
subclass(X ,X )← class(X ).
subclass(X ,Y )← extends(X ,Z ), subclass(Z ,Y ).
subtype(T ,T )← true.
subtype(T1 ∨ T2 ,T )← subtype(T1 ,T ), subtype(T2 ,T ).
subtype(T ,T1 ∨ T2 )← subclass(T ,T1 ).
subtype(T ,T1 ∨ T2 )← subclass(T ,T2 ).
field(CE ,C ,F ,T )← has field(C ,F ), class fields(CE ,C ,R),field type(R,F ,T ).
field(CE ,T1 ∨ T2 ,F ,FT1 ∨ FT2 )← field(CE , T1, F, FT1),

field(CE , T2, F, FT2).
class fields([C : R|CE ],C ,R)← no def (C ,CE).
class fields([C1 : |CE ],C2 ,R)← class fields(CE ,C2 ,R),C1 6= C2 .
field type([F :T |R],F ,T )← no def (F ,R).
field type([F1 : |R],F2 ,T )← field type(R,F2 ,T ),F1 6= F2 .
no def ( , [ ])← true.
no def (K1 , [K2 : |Tl ])← no def (K1 ,Tl),K1 6= K2 .
invoke(CE ,C ,M ,A,RT )← has meth(CE ,C ,M , [C |A],RT ).
invoke(CE ,T1 ∨ T2 ,M ,A,RT1 ∨ RT2 )← invoke(CE ,T1 ,M ,A,RT1 ),

invoke(CE ,T2 ,M ,A,RT2 ).
new( , object , [ ])← true.
has field(C ,F )← dec field(C ,F ).
has field(C ,F )← extends(C ,P), has field(P ,F ),¬dec field(C ,F ).
has meth(CE ,C ,M ,A,R)← extends(C,P ), has meth(CE , P,M,A,R),

¬dec meth(C,M).
var upd(T1 ,T2 )← subtype(T2 ,T1 ).
field upd(CE ,C ,F ,T2 )← field(CE ,C ,F ,T1 ), subtype(T2 ,T1 ).

Fig. 8. Clauses defining the predicates used by the abstract compilation

Predicate field looks up the type of a field in the global class environment, and
is defined in terms of the auxiliary predicates has field , class fields, field type,
and no def . In particular, predicate has field checks that a class has actu-
ally a certain field, either declared or inherited. The definitions of class fields,
field type, and no def are straightforward (no def ensures that a map does not
contain multiple entries for a key), whereas the clause for has field dealing with
inherited fields is similar to the corresponding one for invoke (see below).

If the target object has a class type c, then the correctness of method invo-
cation is checked with predicate has meth applied to class c and to the same list
of arguments where, however, the type c of this is added at the beginning. If the
target object has a union type, predicate invoke checks that method invocation
is correct for both types of the union, and then merges the types of the results
into a single union type.

Finally, the clause for has meth deals with the inherited methods: if class c
does not declare method m, then has meth must hold on the direct superclass
of c.
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inter(C1 ,C2 ,C1 )← subclass(C1 ,C2 ).
inter(T1 ∨ T2 ,C , IT1 ∨ IT2 )← inter(T1 ,C , IT1 ), inter(T2 ,C , IT2 ).
inter(T1 ∨ T2 ,C , IT1 )← inter(T1 ,C , IT1 ),¬inter(T2 ,C , ).
inter(T1 ∨ T2 ,C , IT2 )← inter(T2 ,C , IT2 ),¬inter(T1 ,C , ).
diff (C1 ,C2 ,C1 )← class(C1 ),¬subclass(C1 ,C2 ).
diff (T1 ∨ T2 ,C , IT1 ∨ IT2 )← diff (T1 ,C , IT1 ), diff (T2 ,C , IT2 ).
diff (T1 ∨ T2 ,C , IT1 )← diff (T1 ,C , IT1 ),¬diff (T2 ,C , ).
diff (T1 ∨ T2 ,C , IT2 )← diff (T2 ,C , IT2 ),¬diff (T1 ,C , ).

Fig. 9. Clauses defining type intersection and difference

Predicates inter and diff define type splitting for σ-functions; the asymmetric
definition for inter is due to the fact that subclass is not subtyping: if r has type
c1, then it means that it contains an object that is an instance of c1, therefore
the condition (r instanceof c2) is false when c2 is a proper subclass of c1. Both
predicates fail if the returned type is empty, therefore a conditional jump is
not considered correct if either branches are dead (that is, not reachable). In
practice, it would be better to avoid this kind of failures by introducing an
explicit empty type constant to be able to detect dead code without any failure.
Such an alternative option does not pose any technical issue, but since it is more
verbose (a new clause dealing with the empty type must be added for most
predicates) has not been considered here, just for space limitations.

5 Conclusion

We have defined the small step operational semantics of a simple Java-like lan-
guage in SSI IR, equipped with an instanceof operator for runtime typechecks,
and shown how precise type analysis of branches guarded by runtime typechecks
can be achieved by abstract compilation in the presence of union and nominal
types, and by suitably defining two predicates inter and diff that provide the
type theoretic interpretation of σ-functions.

Despite the use of nominal types, the analysis is more precise than that
we would get from the type system of a statically typed language as Java and
C#; however, using structural types to trace the type of each field object leads
to a more precise analysis, as already shown in previous work [5, 6]. Here we
have preferred to keep the presentation simpler, but we envisage no problems in
extending the compilation scheme and the definition of the predicates inter and
diff to accommodate structural types.

For what concerns future developments, we are planning to extend the ab-
stract compilation scheme proposed here to support subtyping constraints, to
make the analysis more precise and efficient; we do not expect major problems
in implementating in CHR [10] a constraint solver for subtyping between set of
nominal types [1].

The approach proposed here seems promising also for other kinds of condi-
tions occurring often in object-oriented programs; for instance, SSI can enhance
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static analysis of null pointer references when branches are guarded by conditions
of the form (r == null).
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Abstract. Strings are commonly used in a large variety of software. And
yet, they are a common source of bugs involving invalid memory accesses
arising due to misuses of the string manipulation API. These bugs are
often remotely exploitable, leading to severe consequences. Therefore,
the static detection of invalid memory accesses due to string manipula-
tions has received much attention, especially for C programs using the
standard C library functions. More recently, software development is in-
creasingly being performed in object-oriented languages such as C++
and Java. However, the need to interact with legacy C code and C-based
system-level APIs often necessitates the use of a mixed programming
paradigm that combines features of high-level object-oriented constructs
with calls to standard C library functions. While such programs are com-
monplace, there has been little research on static analysis of such code.
We present heap-aware memory models for C++ programs, with an em-
phasis on modeling features such as dynamically allocated memory, use
of null-terminated buffers as strings, C++ standard template library
(STL) classes and interactions between these features. We use standard
verification tools such as abstract interpretation and model checking to
verify properties over these models to find potential bugs. Our tool can
find several previously unknown bugs in open-source projects. These bugs
are primarily due to the intricate C++ programming model and subtle
interactions with legacy C string functions.

1 Introduction

Buffer overflows are common in systems code. They can lead to memory cor-
ruption and application crashes. They are particularly dangerous if they can be
exploited by malicious users to deny service by crashing a system or escalate
privileges remotely. A large number of overflows are present in deployed com-
mercial as well as open-source software [18]. A significant volume of research on
buffer overflow prevention has focused on the detection of overflows in C code.

Software development teams have shifted their development from C to object-
oriented languages including C++ and Java. The benefits of using an object-
oriented language include reusability, better maintainability, encapsulation and
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the use of inheritance. In particular, C++ is often chosen due to its ability to
interact with legacy C-based systems, including system-level C libraries. Thus,
development in C++ often necessitates a mixed programming style combining
object-oriented constructs with lower-level C code. Whereas a large volume of
work on verification has focused on C programs, there has been comparatively
little work on the verification of C++ programs. The modeling of objects in the
heap is a key component of such verification. In this paper, we present heap-aware
static analysis techniques that can verify memory safety of C/C++ programs.
Our approach focuses on the modeling of strings in C/C++ and buffer overflow
errors due to the interaction and misuse of string manipulation functions.

class Object

{

A: /* Returns object not ref. */

B: std :: string section_name (unsigned int shndx)

C: { return this -> do_section_name (shndx); }

...

};

class Relobj : public Object { ... } ;

1: void Icf :: find_identical_sections(

2: const Input_objects * input_objects , Symbol_table * symtab ){

...

4: for ( Input_objects :: Relobj_iterator p =

input_objects ->relobj_begin ();

p != input_objects ->relobj_end (); p++) {

... /* (*p) is of type RelObj* */

6: const char* section_name =(*p)-> section_name (i). c_str ();

/*(*p)-> section_name (.) resolved to Object :: section_name ()*/

7: if ( !is_section_foldable_candidate(section_name ) )

/* invalid use */

...

}

Fig. 1. Motivating example from GNU binutils v2.21.

Motivating example. A typical “interaction bug” is shown in Figure 1. The
code snippet is taken from the gold project, part of the GNU binutils (binary
utilities) package (v2.21). Gold is a linker that is more efficient for large C++
programs than the standard GNU linker. For convenience, we have added labels
to denote line numbers of interest. Consider the call to c_str() in line 6 of the
function find_identical_sections. The call (*p)->section_name(i) creates
a temporary object (see labels A-C in class Object). The call to the c_str()

method thus obtains a pointer to a C string, pointing into the temporary object.
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However, the subsequent uses of that string, stored in the variable section_name,
are invalid. The temporary object (including the pointed to C string) is destroyed
immediately following the call to c_str(). Under certain conditions the freed
memory may be re-used, leading to segmentation fault or memory corruption.
Thus, the call to is_section_foldable_candidate(), and further uses of the
variable not shown here, produce unexpected behavior.

This example shows some typical C++ code. Note that just considering the
call to c_str() is not enough to find this bug. If Object::section_name()

(lines A-C) had returned a reference, this use of c_str() would likely have been
legal. Due to the hidden side effects in C++ and the interaction with legacy
C APIs, such bugs are easy to commit and hard to find. Furthermore, the bug
in binutils had gone unnoticed for at least a year in spite of rigorous testing
(the bug was introduced before the release of v2.20, which was officially released
in October 2009). It is likely that under normal runtime deployment or during
unit testing, the pointer assigned to section_name still contains the original
string even after it is destroyed. However, under large resource constraints, this
bug may manifest itself likely through a segmentation fault upon a later use
of section_name. Finally, note that a static analysis needs to handle numerous
C++ specific issues including STL classes, complex inheritance, and iterators.

Our Approach. Given a program and the properties to check, we use an
abstraction to model the memory used by arrays, pointers, and strings. The
memory model abstraction only tracks the attributes and operations that are
relevant to the properties under consideration. We focus on providing precise
and scalable memory model for the usage of C and C++ strings. In particular,
we address the intricate interplay between C and C++ strings.

Instead of providing a universal memory model, we partition the set of poten-
tial bugs into various classes, and use different models for the different classes.
Tailoring the memory models to the class of bugs makes the analysis and verifi-
cation more scalable. For instance, while checking for NULL-pointer dereferences
and use-after-free bugs, we use an abstraction that only tracks the status of the
pointer, and does not keep track of buffer sizes and string lengths. On the other
hand, we use a more precise analysis model that keeps track of allocated memory
regions and string lengths for checking buffer overflows.

One particular distinguishing feature of our memory models is that we pro-
vide a unified framework that addresses correct usage of C-based strings, the
C++ STL string class, as well as the interaction between the C++ string class
and C strings through conversions from one to the other. Whereas heap aware
models for C programs have been well studied [10,19,20,22,26,30], our model
handles C++ objects including memory allocation using new/delete, the string
class in STL and the interaction of these features in C++. To deal with the inter-
action of C and C++ strings, we introduce a notion of non-transferable ownership
of a C-string. We utilize this ownership notion to find dangling pointer accesses
of C-strings that were obtained through a conversion from a C++ string.

The memory models are weaved into the program under consideration and is
then verified using various static analysis and model checking techniques. First,
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we employ abstract interpretation [16] to prove properties using a variety of nu-
merical abstract domains [15,17,28]. The proved properties are eliminated, which
enables us to simplify the model of the program. Then, we use a model checker,
in particular a bit-accurate SAT-based bounded model checker [7,14], to find
proofs and violations for the remaining properties. The model checker outputs
concrete witnesses that demonstrate (a) the path taken through the program to
produce the violation and (b) concrete values for the program variables.

The major contributions of this paper are as follows:

p We present sophisticated, yet scalable, heap-aware memory models for ana-
lyzing overflow properties of C and C++ programs that use features includ-
ing arrays, strings, pointer arithmetic, dynamic allocation, multiple inheri-
tance, exceptions, casting, and standard library usage.

p Our approach tackles the interaction of C and C++ strings, thus enabling
our tool to discover subtle bugs in the interaction between the different
string kinds. We separate the checks into two classes: a pointer-validity-based
checking class and a string-length-based checking class. We also introduce a
notion of non-transferable ownership or origination of a C-string for strings
obtained through conversion from the C++ string class.

p We implemented our models and demonstrate their usefulness on real code,
where we found previously unknown bugs in open-source software. To find
these bugs, our tool uses abstract interpretation for proving properties and
bit-precise model checking for finding concrete witness traces.

2 Preliminaries

We provide an overview of our analysis framework for C, and present a taxonomy
of bugs related to the usage of C++ strings. This taxonomy will be used to guide
our subsequent modeling of the string class and its interaction with C strings.

2.1 Overview of Analysis Framework

In the past, we have developed a general analysis framework for C programs
called F-Soft [26]. It uses both abstract interpretation and bounded model
checking to find bugs in the source code under analysis. F-Soft contains a
number of “checkers” for various memory safety issues. These include a mem-
ory leak checker (MLC), a pointer validity checker (PVC) and an array buffer
overflow checker (ABC). These checkers use different levels of abstraction, and
thus, explore different trade-offs between scalability and their ability to reason
about intricate pointer accesses. For example, PVC targets bugs such as use-
after-free, accesses of a NULL pointer, freeing of a constant string, etc. On the
other hand, ABC targets violations that require reasoning about sizes of arrays
and strings, and whether strings are null-terminated. To improve scalability of
ABC, properties that could be checked using PVC are not considered by ABC.
In this paper, we omit discussion of other checkers available in our tool for sake
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of brevity. These include checkers for the use of uninitialized memory (UUM)
and an exception analysis (EXC) that computes exceptional control flow paths in
C++ programs, for example. The EXC checker can also find uncaught exception
violations [32]. Ultimately, all checkers generate a model of the program with
embedded properties that can be checked by the subsequent analysis engines.

Program
Model
Construction

Model
Abstract
Interpreter

Model
Checker

alarms

proofs var. range proofs unresolved

Fig. 2. Main analysis components

Figure 2 depicts the major analysis modules used in our tool. The overall
flow is geared towards maximizing the number of property proofs and concrete
witnesses of property violations. After model construction for a given program,
we analyze the model using abstract interpretation in an attempt to prove that
assertions are never violated. Assertions that can be proved safe are removed
from the model, and the final model is sliced based on the checks that remain
unresolved. In practice, the sliced model is considerably smaller than the origi-
nal. The model is then analyzed by a series of model-checking engines, including
a SAT-based bounded model checker. At the end of model checking, we obtain
concrete traces that demonstrate property violations in the model. These viola-
tions are mapped back to the source code and displayed using an HTML-based
interface or a programming environment such as Eclipse(tm). We briefly describe
the major components in the flow:

Abstract Interpreter Abstract interpretation [16] is used in our flow as
the main proof engine. Our abstract interpreter is inter-procedural, flow- and
context-sensitive. Currently, we have implementations of abstract domains such
as constants, intervals [15], octagons [29], and polyhedra [17]. These domains are
organized in increasing order of complexity. After each analysis is run, the proved
properties are removed and the model is simplified using slicing. The resulting
model is then analyzed by a more complex domain.

Model Checker The model checker creates a finite state machine model
of the simplified program after abstract interpretation. Each integer variable is
treated as a 32 bit entity, character variables as 8 bits and so on. However, the
range information provided by the abstract interpreter for program variables is
used to reduce the number of bits significantly. We use bit-accurate representa-
tions of all operators, ensuring that arithmetic overflows are modeled faithfully.

The model checker verifies the symbolic model for the reachability of the
embedded properties. We primarily use SAT-based bounded model checking [7].
This technique unrolls the program upto some depth d > 0 and searches for the
presence of a bug at that depth by compilation into a SAT problem. The depth
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d is increased iteratively until a bug is found or resources run out. The model
checker generates a counterexample (witness trace) which vastly simplifies the
user inspection and evaluation of the error.

2.2 C++ String Class Usage Issues

C++ STL strings provide a safer alternative to developers when compared to
C strings. However, as shown in the motivating example (see Figure 1), mis-
takes are still easy to make, especially in the interaction with C-based standard
library functions. The string class contains a number of built-in features such
as modification routines (append, replace, etc), operations such as substring
generation, iterators, and others. Additionally, the methods c_str() and data()

can be called to obtain a buffer containing a C string, which is null-terminated
for c_str() and not null-terminated for data(). Our description focuses on
the c_str() method, but is applicable to data() as well. Moreover, the data()

method is even more error-prone due to it returning a non null-terminated string.
We classify common bugs related to the use of strings below:

(1) Generic bugs: Memory leaks, uncaught exceptions (eg., std::bad_alloc) [32].
(2) String class manipulation errors:

(a) Out of bounds access. std::out_of_range exception thrown by the at

and operator[] methods of the string class.
(b) Use of a string object after it has been destroyed.
(c) Use of a stale string iterator.

(3) Interaction between C and C++ strings
(a) Access of C-string returned by string::c_str(), after the correspond-

ing C++ object is destroyed.
(b) Certain C library functions called on strings obtained through c_str().
(c) Manipulation of a C-string returned by string::c_str().
(d) C-based buffer overflows on C-string obtained through string::c_str().

3 Program Modeling and Memory Checkers

We now discuss the memory models used in our approach. Our approach sup-
ports a hierarchy of memory models ranging from models that simply track few
bits of allocation status for each pointer to the full-fledged tracking of allocated
bounds, string sizes, region aliasing of arrays, and so on. We describe two models
within this spectrum: the pointer validity model that uses simple pointer type
states, and the pointer bounds model that attempts to track allocated bounds,
positions of various sentinels, and contents of cells accurately.

3.1 Pointer Validity Model

The validity model instruments for each pointer a validity status ptrVal(p) to
denote the type of the location pointed-to in memory. These values include null
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indicating a null pointer; invalid for a non-NULL pointer whose dereference may
cause a segmentation violation; static for pointers to global variables, arrays and
static variables; stack for pointers to local variables, alloca calls, local arrays,
formal arguments; heap for pointers to dynamically allocated memory on the
heap; and code for code sections, such as string constants.

The validity model does not track addresses of pointers. It also ignores ad-
dress arithmetic. A pointer expression p+i has the same validity status as its base
pointer p. A dereference ∗p yields an assertion check that is violated if ptrVal(p)
is null or invalid. Similarly, relevant checks are done for other operations. We
distinguish between null and invalid in order to allow delete NULL, which is
allowed per C++ standard, as well as optionally allow free(NULL), which is
handled gracefully by standard compilers such as gcc. Finally, note that it is
easy to extend this model to find invalid de-allocations, such as the case where
memory that was allocated using new is released using free. This can be ac-
complished by separating the validity status heap into sub-regions according to
their allocation method, such as heap−malloc, heap− new and heap− new[].

3.2 Pointer Bounds Model

The bounds model tracks various attributes for each pointer, including allocation
sizes and sentinel positions, which subsumes information tracked by the validity
model. For a pointer p, the main modeling attributes are as follows (see Figure 3):

1. ptrLo(p), which corresponds to the base address of a memory region that p
currently points to;

2. ptrHi(p), which corresponds to the last address in the memory region cur-
rently pointed to by p that can be accessed without causing a buffer overflow;

3. strLen(p) which corresponds to the remaining string length of the pointer p,
which is the distance to the next null-termination symbol starting at p.

char *s=malloc(10);

if (!s) exit(-1);

strcpy(s,"FoVeOOS");

char *t= s+4;

M M + 5 M + 10

\0
xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

s
t

ptrLo(s) ptrLo(t)

strLen(t)

strLen(s) = 7
ptrHi(s)

ptrHi(t)

Fig. 3. The memory model for the pointer bounds model after successfully executing
the four statements on the left-hand side: The successful allocation returns a pointer
to some new address M , and the lower bound addresses ptrLo(s) = ptrLo(t) = M . The
higher bound addresses are ptrHi(s) = ptrHi(t) = M +9. Finally, the string lengths are
determined using the size abstraction, namely strLen(s) = 7 and strLen(t) = 3. The
dotted memory region denotes out-of-bound memory regions for the pointers s and t.
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For each pointer p, we track its “address”, and its bounds [ptrLo(p), ptrHi(p)],
representing the range of values of the pointer p such that p may be legally
dereferenced in our model. If p ∈ [ptrLo(p), ptrHi(p)] then p[i] underflows iff
p+ i < ptrLo(p). Similarly, p[i] overflows iff p+ i > ptrHi(p).

Dynamic Allocation We assign bounds for dynamic allocations with the
help of a special counter pos(L) for each allocation site L in the code. It keeps
track of the maximum address currently allocated. Upon each call to a func-
tion such as p := malloc(n), our model assigns the variable pos(L) to p and
ptrLo(p). It increments pos(L) by n, and sets ptrHi(p) + 1 to this value.

C String Modeling Conventionally, strings in C are represented as an
array of characters followed by a special null-termination symbol. String library
functions such as strcat, and strcpy rely on their inputs to be properly null-
terminated and the allocated bounds to be large enough to contain the results.
We extend our model to check for such buffer overflows using a size abstraction
along the lines of CSSV [22]. The major differences are described in Section 6.

For each character pointer p, we use an attribute strLen(p) to track the posi-
tion of the first null-terminator character starting from p. The updates to string
length can be derived along similar lines as those for the pointer bounds. For
instance, calls to the method strcat that append its second argument to the
first lead to assertion checks in terms of the pointer bounds and string lengths
that guarantee its safe execution. Next, the update to the strLen attribute of
the first argument is instrumented. Our approach currently has instrumentation
support for about 650 standard library functions. It provides support for parsing
constant format strings in order to model effects of functions such as sprintf.
We elide the details for lack of space and focus here on the modeling of C++
strings and their interaction with C.

4 Modeling the STL String Class

We now present a model for C++ strings that allows us to capture common bugs
arising from the misuse of STL strings. Note that, for the sake of brevity, we
omit the presentation of string iterator related issues in this paper. Furthermore,
we will not discuss issues due to uncaught exceptions when utilizing the C++
string class. Details on our exception handling can be found in [32].

As in Section 3, we separate verification into a light-weight pointer validity-
based checker and a more heavy-weight buffer overflow checker tracking accurate
string lengths using an extension of the pointer bounds model. Finally, it should
be noted that we model a wider class of C++ STL strings than alluded to so
far. For example, we also model the templated class std::basic_string<T>, of
which std::string is just a particular instantiation.

4.1 Pointer and String Object Validity

Section 3.1 introduced a memory model that focusses on validity of pointers.
Here, we extend it by introducing a new validity status that is used to model
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status ∗ free delete delete[] if-NULL return ~()

null z (z?) null null null null null z
invalid z z z z z invalid z
stack stack z z z N/A invalid invalid

global global z z z N/A global z
code zon write z z z N/A code z
env. env. invalid invalid invalid null env. invalid

heap-malloc heap-malloc invalid z z N/A heap-malloc z
heap-new heap-new z invalid z N/A heap-new z
heap-new[] heap-new[] z z invalid N/A heap-new[] z
ownerM. zon write z z z N/A ownerM. z

Table 1. Overview of pointer and string object validity model. This table shows the
effect of operations on different validity statuses. A potential error is marked using the
symbol z. Upon error, the validity status changes to invalid. If the update is safe, the
table provides the resulting status after the client code operation. The entry N/A denotes
that a particular step is not possible in our model. Operation “∗” denotes a pointer or
object read/write, “return” denotes the end of a functional scope, “if-NULL” denotes
a pointer equals null check, “~()” denotes a destructor call. Allocation (malloc, new),
initialization operations (constructor calls), and other details are omitted for brevity.

the interaction of C++ strings with C-based strings. We check most issues re-
lated to the interaction of C++ and C strings by developing an extended pointer
and string object validity checker rather than additionally burdening the pointer
bounds model. To do so, we model calls to string::c_str() such that they re-
turn C strings whose validity status is set to a new status that behaves roughly
like the code status, denoting constant strings. A key difference is that the owning
class instance, which returned the string in the first place, is allowed to manip-
ulate this string, while no manipulations are permissible for constant strings.

This naturally leads to a notion of ownership [9,12] of pointers that is a com-
mon programming idiom. Thus, we introduce a new status ownerMutable. Prior
work used transferable ownership models to find memory leaks in C++ code [23].
However, we only consider C-strings obtained from C++-strings. Thus, we limit
ourselves to a non-transferable ownership model, which tracks the relationship
between originating C++-string and owned C-string. This allows us to declare
such ownerMutable strings as stale (that is, invalid), when the originating C++
object that owns it is modified using a method call.

We summarize the pointer and string object validity checker in Table 1. It
shows the effect of various operations in the client code on the defined validity
statuses. The handling of many operations including initialization, allocation,
destructor calls and so on are omitted from the table in order to avoid clutter.

Figure 4 shows a partial sketch of our custom string object validity model.
The internal assertion checks are represented as calls to a member function
isValid(operation), which can be thought of as utilizing the information in
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class string { /* pointer and string object validity model */

private: char *p ;

public: ...

string () {

p = new char [1]; /* assumed to not fail */

}

string(const string &s) {

ASSERT(s.isValid(READ -OP ));

p = new char [1]; /* assumed to not fail */

}

~string () {

ASSERT(this.isValid( DESTRUCT ));

delete[] p;

}

string substr(size_t p=0, size_t n=MAX) const{

ASSERT(this.isValid(READ -OP);

return string () ;

}

void push_back (char c) {

ASSERT(this.isValid(WRITE -OP ));

delete[] p ; /* used to invalidate stale pointers */

p = new char [1] ; /* assumed to not fail */

}

const char *c_str() const {

ASSERT(this.isValid(READ -OP ));

setValid (p,OWNER_MUTABLE );

return (const char *) p;

}

};

Fig. 4. Partial string object validity model sketch

Table 1. The sketch shows the use of a setValid(void*,status) method that
can be thought of as setting the validity status for arbitrary pointers. The non-
const function push_back(c) shows how we invalidate C-strings that may have
been obtained through c_str() earlier. Finally, note that we separate the issue
of allocation failures through new from the string validity checking. As mentioned
in the comments, we assume that each new operation succeeds.

Example 1. Figure 5 shows a simple C++ function that manipulates a C++
string and converts it to a C string. It proceeds to call strlen on this C string.
A variety of intermediate transformations are performed on the C++ source
code including transformations that make calls to constructors and destructors
explicit. Figure 5 also shows the result of this transformation for method cutLen,
which we call cutLenX. Note the use of a temporary variable as a result of
our transformation, which is initialized using the copy-constructor, and then
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// Simple C++ string use

int cutLen(const string &s,size_t i,size_t n){

const char *str = s.substr(i,n). c_str ();

return strlen(str);

}

// Simplified representation of cutLen

int cutLenX(const string &s,size_t i,size_t n){

const string tmp = string(s.substr(i,n)) ;

const char *str = tmp.c_str();

tmp.~ string () ; // also invalidates str!

return strlen(str);

}

Fig. 5. A simple example illustrating the interaction of C and C++ strings.

stmt &s &tmp str

substr(.,.) stack stack —

c_str() stack stack ownerM.

tmp.~string() stack invalid invalid

strlen(.) stack invalid z

stmt &s s.p str

initially stack heap-new[] —

str=s.c_str() stack ownerM. ownerM.

s.pushback(’a’) stack heap-new[] invalid

strlen(str) stack heap-new[] z
(a) (b)

Fig. 6. (a) Updates to the validity status for the simplified code shown in Figure 5,
assuming that the input string s was initially allocated on the stack. The destruction
of the temporary object tmp.~string() also invalidates the pointer str through alias-
ing. (b) Updates to the validity status for another sequence of statements shown in
the column labeled stmt. The pushback operation first passes the required assertion,
then invalidates the pointer str, and finally resets the internal pointer s.p to a fresh
allocated region. The subsequent call to strlen(str) thus raises an error.

destroyed using an explicit call to ~string(). The bug in the code can thus be
detected using the model of Figure 4 (see Figure 6 (a)).

4.2 Pointer and string bounds model

The array bounds model for C strings is extended by tracking the logical size
of each C++ string. This size is used to handle calls to string::c_str() and
string::data(). Therein, we create valid C strings of the appropriate string
length and allocation size, and null-termination status.

Figure 7 shows a simplified model for the c_str() method. Note that we
do not check whether the string object is valid during calls to c_str() in this
checker. These checks are already performed in the pointer validity model. Simi-
larly, we do not worry that this model leaks memory for calls to c_str() since it
is only used for ABC. It should be highlighted that due to the use of the efficient
validity checker, we can simplify the model for the array bound checking model
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class string { /* array bound model */

private: size_t size ;

public: ...

const char *c_str const {

char *res=new[size +1]; /* should not fail */

strLen(res)= size ; /* thus null -terminated */

return (const char *) res;

}

};

Fig. 7. Array bound model for the string::c_str method.

to only consider the size abstraction. Issues that are related to failed allocations
are, as mentioned before, relegated to the special purpose exception checker.

5 Experiments

We have implemented our methods in an in-house extension of CIL [31] called
CILpp, which handles C++ programs. We present a number of experiments on
some C and C++ benchmarks, and describe some of the previously unknown
bugs in C++ programs discovered by our analysis.

The models described thus far are able to find a wide variety of memory
related issues in C/C++ source code. Since the focus of this paper is on the
modeling of the interaction of C and C++ strings, we first present experiments
that target only this particular aspect. To do so, we have performed experiments
on open-source software packages that contain such interactions. Our analysis
is performed in a scope-bounded fashion [5,25,34]. A simple pre-processing tech-
nique is used to identify potential error sites. For the interaction analysis, these
are centered around calls to string library functions and error-prone functions
such as calls to the string::c_str() method. This enables us to choose a set
of objects and methods to be analyzed. We present a number of bugs that have
been uncovered by our experiments, thus far. As our tool is being improved, we
are applying our techniques to more open-source software.

Motivating example Recall the code fragment presented as Figure 1 in Sec-
tion 1. The released version of the GNU binutils package at the time of the experi-
ments was v2.21 (official releases are available at ftp.gnu.org/gnu/binutils),
which was released in December 2010. The bug described earlier was already
present in v2.20 released in October 2009. Our tool discovered the bug in March
2011. The developers of the gold package confirmed this bug. However, the de-
velopers have been aware of this bug internally about a month before our report.
A fix for this bug was finally released with v2.21.1 in June 2011.

Stale uses of c_str-created C-strings In our experiments, we found that
the issue of dangling pointer accesses due to stale uses of C++-to-C converted
strings is the main bug category of interest. We have found many incarnations
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void IO:: FixSlashes (char *str) {

for (uint8 i=0; i<= strlen(str); i++) {

if ((str[i]==’\\ ’ || str[i]==’/’) &&

str[i+1]==’\0 ’) {

str[i] = ’\0’ ; /* invalid write */

return ;

}

if (str[i] == ’\0 ’) return ;

}

}

void IO:: FixPatches () {

...

FixSlashes ((char *)cfg -> mysqlpath .c_str ());

FixSlashes ((char *)cfg -> wowpath.c_str ());

}

Fig. 8. Invalid string manipulation

of this bug pattern in addition to the motivating example, which can be found
using the validity-based abstraction model.

We have observed the same issue in a variety of other open-source bench-
marks, including in unit tests for ICU4C (see icu-project.org/apiref/icu4c/),
which provides portable unicode handling capabilities for software globalization
requirements. Similarly, we noticed three uses of a dangling C-string pointer
obtained through string::c_str() in Mosh, a fast interpreter for Scheme as
specified in R6RS, which is the latest revision of the Scheme standard. After we
informed the developers of this actively maintained project about these three
dangling pointer violations, they have confirmed the issue and have fixed them
in the source repository (see http://bit.ly/gCdwva).

Manipulation of ownerMutable strings We also observed rare cases of
direct string manipulation of C-strings obtained through c_str(). As discussed
earlier, this is in explicit violation of the STL C++ string specification. Multiple
such scenarios occurred in the datatrap project, one of which is shown in Figure 8.

Buffer overflows due to string conversions In our experiments, we have
also observed rare cases of potential buffer overflows using strings obtained from
a C++ string object. One such example is shown in Figure 9, which is from a
library that transliterates text between different representations. Note that this
warning awaits confirmation, since in our scope-bounded analysis we are not
aware of any global constraint on the maximum size of a string to be converted.

Erlang/OTP Case Study Erlang (see erlang.org) is a programming lan-
guage used to build massively scalable soft real-time systems with requirements
on high availability. Erlang’s runtime system has built-in support for concur-
rency, distribution and fault tolerance. OTP is a set of Erlang libraries pro-
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char *convert (const char *in , mode_t mode ,

parse_func_t parse , output_func_t output) {

static char buf [4096];

...

std :: ostringstream sout ;

(* output )( tokens ,sout ,mode );

sout << ’\0’ ;

std :: strcpy(buf ,sout .str (). c_str ()); /* buffer overflow ? */

return buf;

}

Fig. 9. Potential buffer overflow

viding middle-ware to develop such systems. It includes a distributed database,
applications to interface towards other languages, debugging tools, etc.

We analyzed relevant C and C++ source code of the current Erlang/OTP
release R14B01 (December 2010). The Orber application is a CORBA compliant
Object Request Broker (ORB), which provides CORBA functionality in an Er-
lang environment. Essentially, the ORB channels communication or transactions
between nodes in a heterogeneous environment.

typedef std :: stringstream STRINGSTREAM ;

typedef std :: stringbuf STRINGBUF ;

void InitialReference :: createIOR (

STRINGSTREAM & byte , long length) {

STRINGBUF *stringbuf ;

STRINGSTREAM string;

int i;

const char *c;

const char *bytestr = byte .str (). c_str();

for(i = 0,c = bytestr; i<length; c++, i++){

b = *c; /* invalid access */

...

}

delete bytestr ; /* invalid call to delete */

/* iorString is a member field */

iorString = (char *) string.str (). c_str();

}

Fig. 10. Erlang/OTP Orber application code

Figure 10 shows a part of the C++ source code for the InitialReference

class in Orber. The code generates a reference for an Interoperable Object Refer-
ence (IOR), which simplifies the initial reference access from C++. However, the
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C++ interface contains a number of invalid uses of C-strings from a C++ string
object in the central createIOR method. Our analysis discovered the invalid
access inside the for-loop, and also reported the invalid call to delete.

We analyzed the complete C++ code inside the Orber module. As is typical
for C++, complexity of the analysis is increased due to standard header files.
While the Orber module only contained about 300 LOC, the effective LOC after
including the relevant headers is about 3k LOC. Our tool analyzed 7 functions of
interest, and reported only the above 2 witnesses using the pointer and string ob-
ject validity checker. The array bound checker did not find any witnesses in this
case study. For one of the functions, the analysis using abstract interpretation
and bounded model checking timed out (we limit the analysis for each function
to 10 minutes). Overall, for 14 function and checker pairs, our tool reported over
40 property proofs, and spent about 20 minutes for the analysis.

However, our tool did not report a third issue, where a dangling pointer is
assigned to the iorString member field. We discovered this issue when inspect-
ing neighboring code to reported warnings. This likely violation of the object
invariant, that all member fields be pointing to valid memory regions, was not
discovered since our scope-bounded analysis did not find a read of the iorString
field. In the future, we would like to extend our analysis to automatically check
for object consistency after method invocations, in order to discover such issues.

The c-icap project The c-icap project is an open-source implementation of
ICAP (Internet Content Adaptation Protocol), a protocol aimed at supporting
HTTP content adaptation. ICAP allows arbitrary content-filtering and on-the-
fly content modification. A common application running ICAP are anti-virus
scanners, for example. The development of the c-icap project started in 2004,
and the project is still actively maintained (see c-icap.sourceforge.net).

Bug category Checker Reported Known Fixed Important

NULL access PVC 23 0 22 1

Memory leak MLC 7 1 6 0

Uninitialized condition UUM 2 0 2 1

Array underflow ABC 1 0 1 0

Partially initialized memory UUM 1 0 1 1

Total 34 1 32 3

Table 2. Experimental results for c-icap for various checkers (see Section 2.1)

We analyzed the complete c-icap project with our tool, by analyzing individ-
ual modules separately. The tool analyzed over 24k lines of source code written
in C, which includes about 4k lines of header files. The complete analysis, in a
scope-bounded fashion, using abstract interpretation and model checking for all
checkers completes in a few hours. The full investigation of all witnesses found
by the model checker took one expert user about 3 hours.
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The experimental results are summarized in Table 2. The investigation yielded
34 unique bugs that were communicated to the developer of c-icap. 32 of the 34
reported issues have been fixed so far. Three of the reported bugs were deemed
very important by the developer, including one deep inter-procedural NULL ac-
cess. The two bugs that have not been fixed yet have been acknowledged as bugs
as well, and are to be addressed in future releases. Further details are available
at www.nec-labs.com/~ivancic/bugs/c-icap.htm.

The MeCab project The MeCab project provides a customizable Japanese
morphological analyzer, which is applied to a variety of natural language pro-
cessing tasks. Its source code (without any header files) contains 6.6k LOC of
C++ code. A verification engineer discovered four bugs using this approach. This
includes 3 paths with invalid NULL accesses, which were found using the pointer
validity checker. Additionally, one uninitialized memory read was discovered.

6 Related Work

Buffer overflows can cause memory corruption which may be hard to detect in-
stantly. Cowan et al. survey different buffer overflow attacks and some attempts
at prevention and detection [18]. Static approaches use pointer analysis, range
analysis and constraint solvers at various degrees of precision. Wagner et al.
transform the overflow check elimination problem into one of solving interval con-
straints over integers [36]. Rugina and Rinard provide a powerful summary-based
approach that reduces interval analysis problems into linear programming [33].
Many of the early approaches do not completely handle complications involving
dynamic memory allocation, heap data-structures, array contents, type-casting,
etc. Recently, there has been work on more comprehensive approaches, that han-
dle many of the complications mentioned above [4,11,22,35]. However, we are not
aware of any prior work on addressing buffer overflows due to the interaction of
C++ and C string usage. Recently, size-based abstractions for strings have been
proposed for other languages, such as PHP, as well [37].

The CSSV tool [22] implements a comprehensive approach to overflow de-
tection of C code. It constructs a memory model that tracks pointer bounds,
and string lengths of arrays. A precise region-based points-to analysis handles
overlaps between strings. Our memory model is fundamentally similar to that of
CSSV. By combining abstract interpretation with SAT-based model checking in
a scope-bounded fashion [25], we obtain scalable analysis for programs that are
much larger than those reported by Dor et al.

Our approach uses the theory of abstract interpretation [16] along with nu-
merical domains such as Intervals [15], Octagons [28], Polyhedra [17] and other
numerical domains of intermediate precision and complexity. Abstract inter-
pretation has been used in tools such as PolySpace [3], Astrée [8], and so on.
These tools focus on checking embedded applications with special features such
as simple aliasing, no dynamic allocation, simple control flow and no recursion.
However, our approach is designed to be more general purpose. The CoVerity
verifier [1] has also been successfully applied to large industrial and open-source
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projects. From published reports, most uncovered defects pertain to static buffers
and are intraprocedural. Our effort is more ambitious in nature; we focus on ac-
curate memory modeling to detect more complex bugs. CodeSonar from Gram-
maTech [2] is another related commercial tool. Recently, the static analysis of
STL container classes was proposed [21]. However, we are not aware of any tool
that directly targets the interaction of C and C++ strings.

There have been past approaches to model check programs for buffer over-
flows using various model checking techniques. The CBMC tool due to Clarke
et al. [14] uses SAT-based bounded model checking (BMC) to unroll a given pro-
gram upto a fixed depth into a SAT problem, which is checked for the presence
of a violation upto that depth [7]. Our tool uses SAT-based BMC at its back-
end. However, we also use abstract interpretation up front to vastly simplify the
model and obtain a more scalable approach. Predicate abstraction using auto-
matic counterexample-guided abstraction refinement (CEGAR) [13,27] has lead
to important tools such as SLAM [6], BLAST [24], and many others. These tools
have been mainly used to find API usage violations. However, our own experi-
ence with predicate abstraction refinement suggests that for properties such as
buffer overflows and strings, the automatic refinement leads to a large number
of predicates and too many refinement iterations.
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Abstract. Modular deductive verification of software systems is a com-
plex task: the user has to put a lot of effort in writing module specifica-
tions that fit together when verifying the system as a whole. In practice,
this involves several iterations of writing and correcting auxiliary speci-
fications, as well as guiding the verification system in finding a correct-
ness proof. In particular at the beginning of this process, when not many
auxiliary specifications have been written yet, it is hard to get sensible
feedback from the verification tool.
In this paper, we propose a combination of deductive verification and
software bounded model checking (SBMC), where SBMC is used to sup-
port the user in the specification and verification process, while deductive
verification provides the final correctness proof. SMBC provides early –
as well as precise – feedback to the user. Unlike modular deductive ver-
ification, the SBMC approach is able to check annotations beyond the
boundaries of a single module – even if other relevant modules are not
annotated (yet). This allows to test whether the different module spec-
ifications in the system match the implementation at every step of the
specification process.

1 Introduction

Deduction-based methods for software verification and systematic debugging
have seen a tremendous progress in recent years. Up to the nineties, the main
focus in these areas was on fundamental research – the methods developed during
this period were applicable only to small, academic software systems. Since the
beginning of this century, a set of new techniques emerged that puts into reach
the application of these techniques to real-world software systems.

What is needed now are methods and tools to help the user in writing modu-
lar specifications for complex systems and support the verification process. The
size of real-world systems, together with a possibly huge amount of interde-
pendencies of functions and data structures in the system make them hard to
specify – even if they are decomposed into small modules. Modular verification
is a commonly used technique to help the user in verifying large systems. It is
supported (or even required) in most current deductive verification tools. De-
spite this, tracking interdependencies between a large amount of modules still
seems to be beyond the compass of the human mind.
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The disadvantage of verifying each module in isolation is that the specifica-
tion of a module may not fit the other parts of the system where the module is
used. This may result in many iterations of changes to the specification of all
modules until a fix-point is reached that allows verification of the full system.

On the other hand, approaches like software bounded model checking are
able to analyze a system beyond module boundaries, providing a more global
view of the system at hand. This ability, however, does not come for free: The
specification languages of BMC tools are not as expressive, and they have less
precision as compared to deductive verification systems.

In this paper, we propose a combination of deductive verification and software
bounded model checking (SMBC), where SBMC is used to support the user in
the specification and verification process while deductive verification provides
the final correctness proof. For this, auxiliary specifications that the user adds
as annotations to the system are translated into input for the SBMC tool. As
the user’s annotations are aimed at deductive verification, the SBMC tool may
not be able handle them, but in many cases it can provide early feedback. In
particular, SBMC can check the appropriateness of the specifications beyond the
boundaries of a single module – even if other relevant modules are not specified
(yet). This allows to test early on whether the different module specifications in
the system match the implementation at every step of the specification process.

In Section 2, we give a brief introduction to deductive verification. This is fol-
lowed by a description of the problems one encounters when deductively verifying
software systems in practice (Section 3). Section 4 contains a short explanation
of software bounded model checking and its relation to deductive verification.
Section 5 presents the main contribution of this work, namely the integration of
annotation-based deductive verification and software bounded model checking.
This is followed by a brief description of how to translate from the annotation-
based specification used in deductive verification into input of the BMC frame-
work in Section 6. Subsequently, in Section 7 an extended example is given
describing the advantages of this combination. Finally, Sections 8 and 9 are
concerned with related work, conclusion, and future work.

As the basis for the work presented in this paper and for the experiments,
we used the deductive verification tool VCC [4] and the software bounded model
checker LLBMC [14]. Accordingly, the verification targets we use are C programs,
and annotations are written in VCC’s specification language. Nevertheless, the
ideas presented here should apply equally well to other annotation-based deduc-
tive verification tools and languages.

2 Basics of Deductive Verification

2.1 The Annotation-based Verification Paradigm

Annotation-based deductive verification allows to obtain a rigorous mathemat-
ical proof for the correctness of a software system w.r.t. its formal functional
specification. Verification tools that fall into this category are based on a spe-
cific style of user interaction, called auto-active [9]. Proof construction is not
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interactive, but all information needed for finding a correctness proof, including
all auxiliary specifications, have to be provided by the user before the verifica-
tion tool is run – there is no provision for manual intervention during the proof
construction process.

Specifications are written directly in the source code as annotations in a way
that does not alter the normal compilation process nor execution of the software
system. Often, these annotations feature a syntax that is close to the syntax
of expressions of the target programming language, enriched by constructs of
first-order logic.

The auto-active paradigm has several implications:

– specification and verification has to be modular in order for the back-end
prover to perform well, and

– proof guidance, as well as auxiliary specifications (like loop invariants) have
to be provided by the user as annotations.

A typical example for an annotation-based verification system is VCC [4],
developed by Microsoft Research. VCC is a deductive verification tool for con-
current C programs. It uses the Boogie tool [1] to generate verification conditions
in first-oder logic. The generated FOL formula has the property that it is unsat-
isfiable iff the program fulfills its specification. An automated theorem prover,
in this case Z3 [5], is then used to show unsatisfiability of the formula. If the
formula is satisfiable, Z3 can often find models for it, which can be translated
back to traces of the program that violate the specification [11]. As said above,
VCC was used as the basis for the work presented in this paper.

2.2 Verification Targets

In the following, we consider the verification targets to be C programs, contain-
ing a set of function definitions. We consider these functions to be the modules
of the program. Our approach is not restricted to procedural programming lan-
guages like C, though. In particular, it can be applied to verify programs writ-
ten in object-oriented programming languages like Java or C++. Abstract types
(interfaces), e.g., can be dealt with by providing suitable contracts for these in-
terfaces or by giving a set of concrete instantiations. Dynamic typing can be
taken into account by replacing method calls by case discrimination over the
possible dynamic types. The fundamental problem of how to engineer suitable
annotations for verification remains largely unchanged compared to procedural
languages.

We say that a C function fA depends on a function fB iff the function body
of fA (syntactically) contains a function call to fB . This dependency relation,
together with the set of functions of the system forms a directed graph. These
graphs may contain arbitrary cycles depending on the implementation of the
functions. In the following, for simplicity, we assume the graphs to be acyclic.
In practice, mutually recursive functions would have to be specified together in
one step and the verification methodology has to ensure that no cyclic reasoning
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occurs. For longer cycles in the call graph, techniques such as program slicing
would allow us to split the graph and consider acyclic parts separately.

Similar to the notion of a root in a tree, we define as the roots in the depen-
dency graph any node without a parent. The depth of a node is defined as the
length of the longest path from this node to any of the roots in the graph. The
set of all functions that a function f depends on is called children(f); conversely,
the set of all functions that depend on f is called parents(f).

The depth of a node can be used to introduce a (topological) ordering ≺ on
the nodes of the graph: f1 ≺ f2 iff depth(f1) < depth(f2). In the following, we
identify functions with their corresponding nodes in the dependency graph, and
we use the terminology of order theory for functions where appropriate.

2.3 Annotations and their Semantics

In modular deductive verification, the specification SPEC of a software system S
is composed of the specifications of its modules (C functions) and data structures.
We assume that SPEC is a set of annotations, where each annotation consists of
(a) one or more expressions of the specification language (pre-/post-conditions,
invariants, assertions, etc.) and (b) the position of the annotation in the program.
We further assume that each annotation is local to a single function of the
specified system, i.e., SPEC is the disjoint union SPEC = SPEC 1∪ . . .∪SPECn

of specifications SPEC i for each of the functions fi of which S consists.
The binary relation |= between programs and (sets of) annotations denotes

the semantics of specifications, i.e., S |= SPEC iff the software system S satisfies
the specification SPEC according to the definition of the specification language.
Since the specification languages we consider are modular, we have

S |= SPEC iff f1 |= SPEC 1, . . . , fn |= SPECn .

Also, the relation |= is monotonic w.r.t. adding annotations:

S |= SPEC ∪ SPEC ′ implies S |= SPEC .

This monotonicity condition requires, for example, that a pre-condition is not
considered to be an annotation on its own but only in combination with a post-
condition. Adding a lone pre-condition may weaken a specification while adding
a pre-/post-condition pair always strengthens it.

2.4 Deductive Verification Systems

To prove that a software system satisfies its specification, we use a verification
system V (in our case the VCC tool). The relation S `V SPEC denotes that V
is able to prove that S satisfies SPEC . We assume the verification system to be
sound, i.e.,

S `V SPEC implies S |= SPEC
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Any such sound verification system has to be incomplete as any non-trivial
system property is undecidable due to Rice’s Theorem. Instead, verification sys-
tems are supposed to be relatively complete, in the sense that they would be
complete if there was available an oracle for validity of first-order formulas with
arithmetic. In practice, this is rarely an issue: the amount of verification prob-
lems where there doesn’t exist a proof is negligible compared to the far larger
class of problems where the performance of the verification system is the reason
a proof is not found in time. For the latter case, the user of a verification tool
is prepared to give the prover further hints in form of auxiliary annotations in
order to be able to verify a software system to satisfy its specification.

Moreover, all of today’s deductive verification systems presuppose certain
types of additional, non-requirement annotations to be given by the user. It
is neither given nor expected that an annotation-based verification system is
relatively complete. In practice, completeness of a verification system means
that if the program is correct w.r.t. its given requirement specification REQ ,
then some auxiliary specification AUX exists allowing to prove this. In our
terminology, SPEC covers both types of annotations, thus in the following SPEC
is a synonym for REQ ∪AUX .

The goal of the process presented in this work is to obtain a full functional
specification SPEC of the system S. For this, we assume that the user can refer
to some kind of natural language specification of the system in order to produce
the requirement specification REQ in form of annotations.

2.5 The Verification Task

Given a software system S, consisting of the functions f1, . . . , fn and a require-
ment specification REQS , such that S |= REQS , the task of the user is to find
a set of annotations AUX S , s.t.

S ` REQS ∪AUX S .

Typically, these auxiliary annotations include loop and object invariants,
lemmas, as well as program code that updates a separate specification memory
(which is not visible from the C program during execution).

We tacitly assume that an already proved auxiliary annotation a ∈ AUX S

can be used in subsequent proofs for other annotations in REQS and AUX S .
Thus, by using such auxiliary annotations as lemmas, proofs for elements of
REQS may be greatly simplified or may even become possible at all in a given
verification system.

Note that both REQS and AUX S are composed of specifications for each of
the functions fi in S, i.e.,

REQS = REQ1 ∪ . . . ∪ REQn and AUX S = AUX 1 ∪ . . . ∪AUX n .

Assuming soundness of the verification system,

S ` REQS ∪AUX S implies S |= REQS ∪AUX S ,

B. Beckert, T. Bormer, F. Merz, C. Sinz

89 Technical Report, KIT, 2011-26



and due to the requirement that |= is monotonic w.r.t. adding annotations, a
solved verification task (i.e. S ` REQS ∪AUX S) implies

S |= REQS .

If, on the other hand, S does not satisfy REQS , the verification task has no
solution, i.e., no appropriate AUX S exists. In that case, the verification system
may still give the user feedback that helps to correct the requirement specification
and/or the implementation.

2.6 The Modular Verification Process

The set of annotations of a function f consists of two parts: one part can be used
in the correctness proof for calling functions of f (e.g., pre-/post-conditions of f),
while the rest can only be used in the verification of the function f itself (e.g.,
loop invariants). We call the former set of annotations the external specifica-
tion f , while the latter is named the internal specification of f . Which kind of
annotation belongs to which of these categories is determined by the verification
methodology built into the verification tool and the verification task at hand.

When verifying a function f using a modular verification approach, the ex-
ternal specifications of the children f ′ of f are used in the correctness proof of f
instead of their implementation. Thus, the external parts of the auxiliary speci-
fication AUX ′ of f ′ are not only relevant for the verification of f ′ but can also
be used as lemmas in the proof of other functions, which in some sense breaks
the modularity of the verification process. There exist dependencies between the
auxiliary annotations for the different functions, which makes finding a complete
set of auxiliary annotations to solve a verification task a difficult problem.

2.7 Top-down and Bottom-up Verification

The user of a deductive verification system may chose different orders in speci-
fying and verifying the modules of a system. The extreme cases are:

Top-down verification The process starts with specifying and verifying the
top-level functions with minimal depth in the dependency tree, before pro-
ceeding to verify functions with greater depth.

Bottom-up verification The process starts with specifying and verifying func-
tions with maximal depth (leaves in the dependency tree) and proceeds to
functions with smaller depth.

In an ideal world, given a prover that never fails due to time-outs, the modular
software verification process would proceed top-down, starting with the require-
ment specification of a top-level function f . All children of f are then specified
using the strongest possible contract (which by definition must be sufficient if
any annotation is sufficient). Then, f can be proven to be correct with the help
of auxiliary internal annotations given by the user. The process repeats with the
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children of f , until all functions of the system are verified to be correct w.r.t.
their specifications.

In a similar fashion, this process could be performed bottom-up: the user
annotates each leave in the dependency tree with its strongest possible contract.
This contract is always sufficient to prove any parent function correct w.r.t.
its specification (if there is no bug in the program or specification). Again, the
annotation process is repeated until all maximal functions have been verified to
be correct w.r.t. its specification.

Unfortunately, we do not live in an ideal world, and using strongest contracts
is not a good idea in practice. They are (a) hard to find and (b) hard to prove.
So, in practice, the solution to a verification task is a set of auxiliary annotations
that are just (barely) strong enough. To support the user in the long process of
finding a solution and making the search less chaotic is the goal of the work
presented in this paper.

3 Deductive Verification of Large Software Systems

In practice, a verification attempt may fail for a number of reasons. One signifi-
cant problem is the performance of available verification tools, which may lead
to time-outs. A verification attempt can have the following possible outcomes:

1. Verification of the program w.r.t. its specification succeeds.
2. Verification fails and a counterexample is returned by the prover. In this

case, either the program does not satisfy the specification or the auxiliary
annotations are not sufficient for the existence of a proof.

3. Verification fails because of a lack of resources (memory or time) and no
further indication is given whether the program is correct w.r.t. its specifi-
cation.

Recall that in modular verification a function is verified using the external
specifications of its children. If the verification of a function f succeeds (Case 1
above), then that does not imply that its children are correct w.r.t. their speci-
fications. In case a child function f ′ does not satisfy its specification, there may
or may not be a different auxiliary specification for f ′ that is both satisfied by f ′
and sufficient to verify f .

In a similar manner, in Case 2 above, the external specifications of a child f ′
may be insufficient to verify f . Again, there may or may not be an alternative
specification for f ′ that solves the problem.

When adhering strictly to a bottom-up verification process, one will never
encounter the case that one of the children does not satisfy its specification, but
it may very well happen that the specification of a child is insufficient to verify its
parent. On the other hand, when verifying top-down, one will never end up with
insufficient specifications of the children, but a specification of a child f ′ that is
not satisfied by f ′ may very well occur. That is, independently of the order in
which functions are specified and verified, one of the two problems remains.

B. Beckert, T. Bormer, F. Merz, C. Sinz

91 Technical Report, KIT, 2011-26



1 int sqrt(int x)
2 _(requires x ≥ 0)
3 _(ensures
4 \result^2 ≤ x ∧
5 (\result+1)^2 > x)

1 int sqrt(int x)
2 _(requires x ≥ 0)
3 _(ensures
4 ∀y; (y ≤ \result ⇒ y^2 ≤ x^2) ∧
5 ∀z; (z > \result ⇒ z^2 > x^2))

Fig. 1: Two alternative contracts for the sqrt function.

Even always using the strongest possible contract for all functions is not an
option here: while providing a stronger contract for a function f ′ may help in
the verification of the parents of f ′, it also makes verifying f ′ more difficult. In
practice, the user has to provide a specification for f ′ that is strong enough to
verify all parent functions of f ′ and weak enough to verify f ′ itself.

Moreover, the logical strength of a contract is not its only relevant property
but its syntactic form is just as important.

Example 1. Consider the two contracts for the function sqrt that computes (an
approximation of) the square root of an integer shown in Fig. 1. While both
contracts are logically equivalent, i.e., specify the same behaviour of sqrt, one
of the two contracts may be much more useful than the other one, depending on
the verification tool used and the properties that are needed in the verification
of a caller of sqrt.

As it is hard to foresee which specification of a function f is the most appro-
priate without paying attention to all call sites in the parents, in practice, neither
a strict top-down nor a strict bottom-up approach is applied. Instead during the
process a continuous adaptation of the specification takes place during which
the specifications of calling and called functions are changed in alternation un-
til verification of the software as a whole succeeds – this process is shown in
Fig. 2a. A further possibility, which is not shown in the figure, is that the verifi-
cation process fails because the implementation does not satisfy the requirement
specification (in which case refining the annotations cannot help). Then, the im-
plementation and/or the requirement specification need to be changed and the
verification process restarted. The iterative process shown in Figure 2a is often
applied locally, i.e., only one pair of caller and callee is considered at a time. As
other functions may also use the callee and depend on its contract, changes in
this contract may have to be propagated to various other parts of the system.

4 Software Bounded Model Checking

Software bounded model checking (SBMC), like deductive verification, is a for-
mal method aimed at reasoning about behavior and correctness of software sys-
tems. In contrast to deductive software verification techniques, it is based on an
exhaustive search for a counterexample to the desired properties, rather than on
constructing a deductive proof.
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and assertions are used for post-conditions. Compared with VCC’s specification
language, this specification method is quite restricted. It only allows what is ex-
pressible in C, which means, e.g., that quantifiers are not (directly) supported.
For an existential quantifier it is often possible, however, to mimic its behavior
by providing an explicit construction of the element satisfying the given prop-
erty. Finite universal quantifiers might be replaced by a loop ranging over all
elements. This comes at an increased cost in checking the property, though.

LLBMC implements SBMC by first removing cycles in the control flow. This
is done by inlining all function calls and by unrolling all loops. For this first
step to terminate, a fixed upper bound on the number of inlining and unrolling
operations is required. Thus SBMC is only applicable to fixed-bound execution
traces. It is a complete verification methodology only if for a given software
system a bound exists, such that no loop is executed more often than this bound,
and the function call depth is never deeper than that bound. Creating an acyclic
control flow graph is essential for the high performance of SBMC, but it also
makes SBMC non-modular.

5 The Integrated Verification Process

In the following, we describe how to integrate software bounded model checking
into the annotation-based deductive verification process, thereby taking advan-
tage of the strengths of both methods. As said above, we use the tools VCC
and LLBMC to illustrate our approach.

The central idea of our method is to use SBMC to support the process of
finding a set of auxiliary annotations, AUX , for a given system S that allows
the deductive verification tool to prove that S satisfies its requirement specifica-
tion REQ . The resulting integrated process is illustrated in Fig. 2b. The name
CEGMAR is inspired by the counterexample-guided abstraction refinement (CE-
GAR) technique [3] used in model checking – though in CEGMAR annotations
are refined instead of abstractions.

Note, that we do not use the term refinement in its strict mathematical
meaning here. Instead we have a more colloquial interpretation in mind, where
refinement simply means iterations towards a specification which is fit for its
purpose. Also note that this kind of refinement contains a manual component,
which makes CEGMAR a machine-supported verification process, not a fully
automatic algorithm.

CEGMAR aims at finding suitable auxiliary specifications for the full sys-
tem S, but at any given point in time, some function f is in the focus of the
process. The process starts from the given requirement specification REQf for
a function f and a (possibly empty) set AUX f of auxiliary annotations.

In Step 1 (Fig. 2b), the annotated C code relevant for proving f correct w.r.t.
its (requirement and auxiliary) specification is passed to VCC for verification.
The result of VCC’s verification attempt for f is given to LLBMC (Step 2
in Fig. 2b). Then, in case both VCC and LLBMC agree that f satisfies its
specification, the refinement-loop for f ends successfully (Step 3b). After this,
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some other function moves into focus or, if all functions have been verified, the
verification task has been successfully completed.

Otherwise, if one of the tools (or both) fails to verify f , the user has to
refine some of the auxiliary annotations (Step 4), using the feedback of VCC and
LLBMC (from Step 2 resp. 3a). After refining the auxiliary annotations in Step 4,
the next iteration starts with Step 1. If changing the auxiliary specifications is
not sufficient according to the feedback from the tools, i.e., there is a problem in
the implementation or the requirement specification, then the refinement loop
for f terminates and can only be restarted after the implementation and/or the
requirements have been fixed.

In Step 2, using VCC, the correctness of f is only proven locally, i.e., the
external specifications for children(f) are used without checking that they are
satisfied. Feedback from VCC is either (a) the statement that f is correct w.r.t.
its specification or (b) a list of annotations that cannot be proven (possibly
together with counterexamples). In contrast, LLBMC is used in our integrated
approach to check correctness of a function f globally, i.e., the implementation
of all functions called by f (directly or indirectly) is taken into account. We
identified three different properties to be checked with LLBMC:
A. f satisfies its specification;
B. all functions in children(f) satisfy their external specifications;
C. the pre-condition of f holds at all points where f is called in parents(f)

(invocation contexts).

Each of the three checks A–C has three possible outcomes: either (a) the property
in question holds up to a certain bound on the length of traces, or (b) LLBMC
provides an error trace falsifying the property, or (c) there is a time out.

The three checks differ in which part of the implementation and annotations
are given to LLBMC, as well as the consequences of the check for the verification
process, as described in the following.

A: Checking that f satisfies its specification. For this, the implementations of
f and all descendants of f are passed to LLBMC for model checking. The im-
plementation of f is checked w.r.t. all annotations of f that VCC reports to be
violated. LLBMC can provide the user with feedback on which unproven specifi-
cations are indeed violated by the implementation and which are likely satisfied
(because no counterexample was found within the given bound), but just not
provable by VCC without refining the annotations.

Even if VCC could verify that f is correct (based on the external specification
of functions called by f), LLBMC is still applied. This allows to discover cases
where VCC’s correctness proof for f only succeeded due to an erroneous external
specification of a child of f .

B: Checking that child functions satisfy their external specification. The imple-
mentations of all descendants of f are passed to LLBMC for model checking.
The functions in children(f) are checked to satisfy their external specifications.
This check helps to rule out correctness proofs for f that are erroneous because
they rely on faulty specifications of f ’s children.
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C: Checking Invocation Contexts. For each function g ∈ parents(f), the im-
plementations of g and all descendants of g are passed to LLBMC. Here, the
property to check is the pre-condition of f . Checking the invocation contexts
helps to avoid writing specification for f that cannot be used in the proofs for
other functions in the system.

Note that in all these cases, LLBMC is not used to check whether a function
satisfies an annotation in general, but to check that the function satisfies the
annotation in the context in which it is called. The context may be defined by
the function’s pre-condition or by the context in one of its parents.

The benefit of the proposed integration of SBMC into deductive verification
results mainly from the fact that SBMC is not modular. During the verification
of a function f , LLBMC uses the implementation of the children and parents of
f instead of (only) using the external specification of the children as VCC does.
Because of this difference, LLBMC and VCC can provide the user with different
information about the functions and their annotations (e.g. counterexamples).
For the verification process, the information provided by LLBMC is a valuable
addition to the information provided by VCC.

In Section 7, we give an example on how this additional information improves
the verification process.

6 Translation of Specification into LLBMC Input

As explained in Section 4, LLBMC’s specification formalism is different from
VCC’s, so VCC specifications have to be translated into equivalent LLBMC
input. Because LLBMC’s assertions cannot contain quantifiers, all quantifier-ex-
pressions have to be emulated by C loops that explicitly enumerate the domain
of quantification. By applying these transformations, VCC’s declarative specifi-
cation style is turned into an imperative specification style.

For pre- and post-conditions, VCC’s ensures are translated into one or
more assert statements, and VCC’s requires are translated into one or more
assumes. Usually, a special verification driver function is written for this (to a
large fraction this can be automatized), which has the same function parameters
as the function under check. Thereby, all parameters are considered as uninitial-
ized variables, and the check runs over all possible values for these variables. The
driver function first executes the assumes corresponding to the pre-condition,
then the function itself, and finally the assert statements corresponding to the
post-condition. LLBMC is then applied to this verification driver function.

Other annotations are similarly translated and inserted into the C code. For
example, if loop invariants need to be checked, corresponding assert statements
are inserted before the loop, and at the end of each loop body execution, making
sure that the loop invariant indeed holds.

For a first evaluation, the translation from VCC specifications to LLBMC’s
assumes and asserts was accomplished manually. To fully exploit the strength
of the integrated process, we are planning to automatize this translation pro-

Integration of Bounded Model Checking and Deductive Verification

Technical Report, KIT, 2011-26 96



cess as far as possible (automatic loop generation for quantifiers may pose a
restriction, however).

A partial VCC specification of the function copyNoDuplicates (from the
example in Section 7) and the translation of that specification into LLBMC
input is shown in Fig. 3.

//no ’new’ items in result
_(ensures \result != NULL ==>
∀ uint i; i < \result->count ==>
(∃ uint j; j < source->count ∧
\result->items[i] ==
source->items[j]))

//no duplicate items in result
_(ensures \result != NULL ==>
∀ uint i; ∀ uint j;
(i < \result->count ∧
j < \result->count ∧
\result->items[i] ==
\result->items[j]) ==> i == j)

cnt = result->count;
//no ’new’ items in result
if (result != NULL)
for (i = 0; i < cnt; ++i) {
int found = 0;
for (j = 0; j < cnt; ++j)
if (result->items[i] ==

source->items[j])
result = 1;

assert(found == 1);
}

//no duplicate items in result
if (result != NULL)
for (i = 0; i < cnt; ++i)
for (j = 0; j < cnt; ++j)
if (result->items[i] ==

result->items[j])
assert(i == j);

Fig. 3: Partial requirement specification of copyNoDuplicates (left) and its translation
into LLBMC input (right).

7 A Typical Specification Scenario

7.1 The System to be Verified

In the following we present an example that demonstrates the issues of modular
verification mentioned before and how integration of software bounded model
checking into the verification process can help attenuate these.

Consider the following C data structure implementing a sequence data type:

1 typedef struct queue_t {
2 int *items;
3 int count, capacity;
4 } queue, *pQueue;

Here, count denotes the length of the sequence and capacity the fixed size
of memory that has been allocated to store the items of the sequence. In our
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1 pQueue copyNoDuplicates(pQueue source) {
2 pQueue dest = initQueue(5);
3 for (int i = 0; i < source->count; i++)
4 {
5 int sVal = source->items[i];
6 int j = 0, contained = 0;
7 while(j < dest->count && dest->items[j] <= sVal) {
8 if (dest->items[j] == sVal) {
9 contained = 1;

10 break;
11 }
12 j++;
13 }
14 if (!contained) insert(dest, sVal);
15 }
16 return dest;
17 }

Fig. 4: Implementation of copyNoDuplicates.

case, the items of the sequence are integers and are stored in the array that
starts at the memory address items.

The top-level function we want to verify is copyNoDuplicates (see Fig. 4),
but in total there are three functions involved in the verification process:

– pQueue copyNoDuplicates(pQueue q)
Given a queue q, this function returns a new queue q′, which is a copy of q,
except that duplicate elements of q occur only once in q′.

– pQueue initQueue(int capacity) (not shown)
Allocates memory for a new queue structure as well as the appropriate
amount of memory for storing capacity number of items. It also initial-
izes the queue data structure to correspond to the empty sequence. This
function is called by copyNoDuplicates.

– void insert(pQueue q, int val) (shown in Fig. 5)
Inserts an item val into a queue q in such a way that if the queue is in ascend-
ing order, it remains ordered. This function is called by copyNoDuplicates.

There are two peculiarities about this implementation of copyNoDuplicates
that the verification engineer might not be aware of:

1. Queues maintain their elements in sorted order, and the algorithm for copy-
ing without duplicates relies on insert retaining sortedness of the queue.
This is because the algorithm stops searching for a matching element as soon
as a greater element is encountered.

2. Inserting into a queue fails silently if the capacity of the queue is reached.

In the following, we will use the example to show why a user who is not
supported by software bounded model checking will have trouble identifying
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1 void insert(pQueue q, int val)
2 {
3 if (q->count == q->capacity) return;
4

5 int i,j;
6 for (i = 0; i < q->count && val > q->items[i]; i++) {}
7 for (j = q->capacity-1; j>i; j--)
8 q->items[j] = q->items[j-1];
9

10 q->items[i] = val;
11 q->count++;
12 return;
13 }

Fig. 5: Implementation of insert.

these problems during verification, independently of whether a top-down or a
bottom-up approach is chosen.

7.2 Bottom-up Verification of copyNoDuplicates

When verifying bottom-up, the first two functions that are to be verified correct
in our case are initQueue and insert. Because we are mainly interested in
interaction between copyNoDuplicates and insert, from now on we assume
that initQueue has been verified and does not need to be considered further.

The second issue mentioned in the previous subsection (finite capacity of the
queue) is identified quickly with a bottom-up approach and therefore not further
discussed. The first issue (sortedness) is considerably harder to identify, though.

Suppose that no requirement specification is given for insert, so any spec-
ification of insert is auxiliary. It is likely that the user correctly specifies that
the item passed to insert is indeed inserted in the given queue. However, it
is also likely that the verification engineer on the first try is not aware of the
importance of sortedness and, consequently, the specification does not mention
that insertion of elements retains sortedness of the queue. In that case, the spec-
ification of insert is not strong enough and verification of copyNoDuplicates
will fail. But that is only noticed after insert has been successfully verified and
the verification process has moved on to copyNoDuplicates.

Once copyNoDuplicates could not be proven correct, the verification engi-
neer has to identify the cause for this. The too weak specification of insert is
hard to spot, and the user may be tempted to believe copyNoDuplicates is not
correctly implemented. The counterexample provided by VCC usually does not
contain all necessary information to understand the issue.

LLBMC on the other hand states, using Check A from Section 5, that
copyNoDuplicates does indeed satisfy its requirement specification and the
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relevant loop invariants – at least up to a certain size of the queue1. This indi-
cates to the user that copyNoDuplicates is likely correct and the problem is
either that the specification of insert is too weak or the auxiliary annotations
are not enough to allow VCC to verify the property. This is an important cue
towards the right direction and can therefore speed up the verification process.

7.3 Top-down Verification of copyNoDuplicates

In a top-down verification approach, the top-level function copyNoDuplicates
is the first to be verified. The first issue (sortedness of the queue) is found early
in the process, as the verification of copyNoDuplicates will already uncover it.
Instead, the second issue (finite capacity of the queue) is now causing problems.

Consider a requirement specification of copyNoDuplicates consisting of an
empty pre-condition and the following post-condition stating that all elements
of the source queue are also contained in the resulting queue (in fact, this is only
part of the actual requirement specification because it does not state that the
result should not contain duplicates):

1 ∀i; i ≥ 0 ∧ i < source->count =⇒
2 ∃j; j ≥ 0 ∧ j < \result->count ∧
3 source->items[i] == \result->items[j]

In order to verify the implementation of copyNoDuplicates to satisfy this re-
quirement, the user has to provide auxiliary specifications for the helper functions
initQueue and insert. The verification of these auxiliary specifications is post-
poned in the top-down approach until after the contract of copyNoDuplicates is
proven. Nevertheless they are already used in the proof for copyNoDuplicates.

If the user annotates insert he/she may easily overlook the case where
the queue has reached its capacity and insertion of yet another element fails
(signaled by insert by returning an error code). Now, because of this omission,
the specification of insert is too strong, which allows VCC to prove the contract
of copyNoDuplicates – even though it is in fact not satisfied. Only when the
verification of the contract of insert fails, this error is detected.

Then, after fixing the specification of insert, the verification engineer has to
go back to copyNoDuplicates and re-verify that function, taking the modified
specification of insert into account. In practice, the top-down approach results
in numerous iterations until a function and all of its children are verified.

Using LLBMC can help resolve this issue early on, as LLBMC directly takes
the implementation of insert into account, and not just its (too strong) specifi-
cation. LLBMC uncovers the problem as soon as copyNoDuplicates is checked
– even though VCC cannot detect any problem at this point.

1This size is determined by the bound applied during model checking.
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8 Related Work

Our work is related to previous work about combinations of model checking and
deductive verification, improvements to the software verification process, as well
as to tools and techniques that help understand failed verification attempts.

Various combinations of model checking and deductive verification have been
proposed and studied in the past, e.g., [2, 8]. An extensive overview of the work
published until 2000, with a focus on the verification of reactive systems,2 is
given in [16]. Since then, research in this area seems to have slowed down.

Some papers use a combination of model checking and deductive verification
techniques to improve performance and generality of existing verification tools,
such as [13]. Others use deductive methods specifically to extend model checking
approaches to infinite-state systems, e.g. [10, 15, 6].

Most of these papers focus on improving performance of the tools or cre-
ating more powerful verification tools. In contrast to this we focus entirely on
improving the process of annotation-based deductive software verification.

On a different note, Müller and Ruskiewicz use debuggers to address the
problem of understanding failed verification attempts [12]. They, too, provide
concrete counterexamples that illustrate why verification did not succeed. While
error traces are an important part of our contribution to the deductive verifica-
tion process, the proposed process is not restricted to counterexamples.

Similarly, Vanoverberghe et al. use symbolic execution techniques to generate
test cases when the prover fails [17]. They also generate test cases that can be
executed in a debugger to analyze the failed verification for a concrete example.

Alex Groce et al.’s tool explain [7] provides additional information about
counterexamples generated by the bounded model checker CBMC. The tool itself
uses CBMC’s software bounded model checking engine to generate executions
similar to an existing counterexample that do not fail, and additional counterex-
amples that are as different as possible but do still fail. The approach does not
seem to be directly applicable to deductive verification techniques due to the
lack of a concrete counterexample to start with.

9 Conclusion and Future Work

Integrating software bounded model checking into the deductive verification pro-
cess can give the user of deductive verification tools early feedback, thereby de-
creasing the verification effort and improving the overall verification process.
We showed that SBMC can help in finding insufficient or wrong annotations.
An example was provided showing that SBMC can help both in top-down and
bottom-up verification. It can also help in identifying specifications that are ei-
ther too weak or too strong. In the future we plan to further integrate VCC and
LLBMC, so that specifications in VCC can be fully automatically translated

2The combination of temporal logic properties and an infinite-state system makes
reactive systems a fitting application for combinations of model checking and deductive
verification.
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into to LLBMC input, so that larger case studies can be carried out. Ideas from
the area of instrumenting code for run-time checking specifications will be useful
here. We also expect that it will be necessary to extend LLBMC’s specification
language and possibly LLBMC itself in order to allow for a more complete trans-
lation of VCC specifications. In the long term, LLBMC could also be used to
automatically derive simple annotations – such as non-nullness of pointers and
simple ownership relations – thereby speeding up the specification process.
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Abstract. Creol is an executable, formally defined modeling language
with advanced object-oriented features, tailored for modeling software
systems consisting of physically distributed components, each running
on its own processor and communicating by means of asynchronous
method calls. In this paper we propose a probabilistic extension of Creol,
called PCreol, and give its operational semantics by means of probabilis-
tic rewrite theories. The extension is motivated by the need to model:
a) communication over networks of different quality, b) software compo-
nents running randomized algorithms, c) independent processor speeds,
or d) an open environment exhibiting probabilistic behavior. The syn-
tax of PCreol therefore includes a probabilistic choice operator, random
assignment and means for modeling random numbers. The semantics of
Creol is also extended to model lossy communication. We give details
on the implementation of a prototype PCreol interpreter—on top of the
existing one for Creol—which is executable in Maude. Furthermore, we
integrate PCreol with the VeStA tool, to support probabilistic reasoning
of PCreol models by statistical model checking and quantitative anal-
ysis. This way, representative runs of a PCreol model are more easily
obtained by discrete-event simulation and the model checking problem
of large models becomes feasible. We also provide concrete examples of
PCreol models and show how VeStA can be used to reason about them.

1 Introduction

Software systems of today are often distributed, consisting of independent and
concurrently executing units which communicate over networks of different qual-
ity, and which are supposed to work in open and evolving environments. Due to
nondeterminism, it is non-trivial to design, model and program such systems,
and in particular to analyze system properties and reliability. For such systems,
non-functional properties expressing probabilistic behaviour are valuable.

At the modeling level there is a need for high-level syntactic constructs mak-
ing interaction and process control more manageable. There is also a need for

? Partially supported by the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Models (http://www.hats-project.eu).
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methodology and tools that can be used to investigate system properties and
robustness. Creol is an executable modeling language introduced in [12, 15, 13]
that tries to address these challenges. It is tailored for modeling software systems
made up of physically distributed components, each running on its own processor
and communicating with one another by means of asynchronous method calls.
A Creol system runs in an open environment in which components may appear
or disappear. In addition, components may change their functionality during ex-
ecution. The language features conditional and unconditional processor release
points, allowing an object to suspend the execution of a process until a later
time, and resume the execution of another (enabled) process.

In this paper, we extend the syntax and semantics of Creol with probabilis-
tic features, to be able to model lossy communication, independent processor
speeds, software components running randomized algorithms, or an open en-
vironment exhibiting probabilistic behaviour; this extension is given the name
PCreol. We introduce new syntactic constructs—probabilistic choice operators,
random assignment, and means for modeling random numbers—and give their
operational semantics by means of probabilistic rewrite theories [17].

Furthermore, model checking Creol models can currently only be achieved
using Maude’s LTL model checker [9] and its breadth-first state exploration fa-
cilities. The disadvantage is that even average-sized Creol models lead to state
space explosion, making it infeasible to model check them using Maude. We
have therefore integrated PCreol with VeStA [22], which allows for probabilis-
tic reasoning of PCreol models via statistical model checking and quantitative
analysis—an approach that scales well with the size of the model. This integra-
tion is essentially achieved by refining the original Creol operational semantics,
so that representative runs of a Creol model are more easily obtained by discrete-
event simulation. The model checking problem of large PCreol models therefore
becomes feasible since breadth-first search is avoided and replaced by repeated
simulation of different representative runs, controlled probabilistically.

PMaude [3] is a language for specifying probabilistic object systems by means
of equations and probabilistic rewrite rules. The technique that we use to refine
the operational semantics of PCreol is essentially the same as in [3] for obtaining
executable PMaude modules from possibly nondeterministic ones, and includes
adding an explicit notion of time to the global configuration of the model, as
well as scheduling objects to execute at random instants of time. This resolves
all nondeterminism in the interpreter, allowing VeStA to run discrete-event sim-
ulations and do statistical analysis of PCreol models.

Related Work. The generalized probabilistic choice operator, as well as the ran-
dom assignment in PCreol are inspired by similar syntactic constructs in a prob-
abilistic version of ProMeLa [11] called ProbMeLa [6]. For instance, our gener-
alized probabilistic choice operator can be expressed using the pif . . . ifp con-
struct in ProbMeLa. However, PCreol is an object-oriented modeling language
with advanced features like inheritance, future variables and asynchronous com-
munication, which ProbMeLa lacks. PRISM [18] is another similar modeling
language without object-oriented features, but which comes with powerful, ex-
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act probabilistic model checking tools that PCreol is missing since VeStA is a
non-exact (statistical) probabilistic model checker.

The paper is structured as follows: Section 2 contains preliminaries on proba-
bilistic rewrite theories, PMaude and VeStA, and Section 3 provides an overview
of the Creol modeling language, focusing on the features that we extend to the
probabilistic setting. Section 4 gives the syntax and the operational semantics
of PCreol by means of probabilistic rewrite theories. In Section 5 we provide
concrete examples of PCreol models and show how VeStA can be used to reason
about them. Section 6 provides details on the actual Maude implementation of
the PCreol interpreter, and Section 7 suggests several topics for future work.

2 Preliminaries

Using rewriting logic [19] the static parts of a system (e.g., data types, functions,
etc.) can be defined equationally and its transitions can be specified by labeled
conditional rewrite rules of the form l : t −→ t′ if cond , where t and t′ are
terms over typed variables and function symbols, l is a rule label, and cond is
a conjunction of equalities, sort memberships, and rewrites. Typing is given in
terms of sorts and subsorts, and each sort belongs to a kind. Such rules specify
conditional local transitions from an instance of the term t to the corresponding
instance of the term t′, where the condition cond must be satisfied by the sub-
stitution instance in order for the transition to take place. In what follows, we
give a formal definition to rewrite theories and their probabilistic extension.

Given a set K of kinds, a many-kinded signature Σ contains a set of function
declarations of the form f : k1 . . . kn → k, where n ≥ 0 and k1, . . . , kn, k ∈ K.
In membership equational logic (MEL) [20] each kind k has an associated set of
sorts Sk. A MEL theory consists of a MEL signature (K,Σ, {Sk | k ∈ K}), also
denoted Σ, and a set E of (possibly) conditional equations (∀~x) t = t′ if cond
and membership axioms (∀~x) t : s if cond , where t and t′ are Σ-terms of
the same kind k, s is a sort of kind k, cond is a conjunction of equalities and
sort memberships, and ~x denotes the set of variables in these axioms. We write
vars(t) for the set of variables occurring in a term t; if vars(t) = ∅, then t is
called a ground term. If (Σ,E ∪ A) is a MEL theory, where A is a collection of
structural axioms specifying properties of function symbols, like commutativity,
associativity, etc., and E is terminating, confluent and sort-decreasing modulo
A, then CanΣ,E/A denotes the algebra of A-equivalence classes of ground terms
fully simplified by the equations E, i.e., CanΣ,E/A is the algebra of canonical
terms, or “normal forms.” We denote by [t]A the A-equivalence class of a fully
simplified term t. Under suitable assumptions, each normal form can therefore
be assigned the least possible sort among those of all other equivalent terms. An
equation is sort-decreasing if the sort of the right-hand side is smaller than that
of the left-hand side.

An E/A-canonical ground substitution for a set of variables ~x is a function
[θ]A : ~x→ CanΣ,E/A that assigns a fully simplified ground term to each variable
in ~x. We denote by CanGSubstE/A(~x) the set of all such functions. A rewrite
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theory [19] is a tuple R = (Σ,E,L,R), where Σ is a MEL signature, (Σ,E) is
a MEL theory (E also contains the set of structural axioms A), L is a set of
labels, and R is a set of labeled conditional rewrite rules

(∀~y) l : t −→ t′ if cond , (1)

where l ∈ L is a label, t and t′ are terms of the same kind, cond is a conjunction
of equalities, memberships and rewrites, and ~y = vars(t)∪ vars(t′)∪ vars(cond).
Maude [9] can be used to verify and simulate systems specified as rewrite theories.

Let Ω be a nonempty set. If Ω is countable, a probability mass function, or
probability distribution over Ω is any mapping p : Ω → [0, 1] with the property
that

∑
ω∈Ω p(ω) = 1; we denote by Dist(Ω) the set of all probability distributions

over the set Ω. In [17] rewrite theories are extended to probabilistic rewrite
theories, in which the right-hand side t′ of a rewrite rule l : t −→ t′ if cond
may contain variables ~p that do not occur in t. These new variables are assigned
values according to a probability distribution taken from a family of probability
distributions—one for each instance of the variables in t—associated with the
rule. Formally, a probabilistic rewrite theory is a pair (R, π), whereR is a rewrite
theory and π is a function which assigns to each rule r ∈ R of the form (1), with
vars(t) = ~x, vars(cond) ⊆ vars(t), and vars(t′) \ vars(t) = ~p, a mapping1

πr : Jcond(~x)K→ Dist
(
CanGSubstE/A(~p)

)
,

where Jcond(~x)K is the set of all E/A-canonical ground substitutions for ~x that
satisfy the condition cond . That is, for each substitution θ of the variables
in t which satisfies cond , we get a probability distribution πr ([θ]A) that de-
fines how the new variables ~p are instantiated. A rewrite rule r ∈ R of the
form (1) with vars(t′) \ vars(t) 6= ∅, together with its associated probabil-
ity distribution function πr is called a probabilistic rewrite rule and is written
l : t −→ t′ if cond with probability πr. If Jcond(~x)K = ∅ due to ~p being
empty, we say that πr defines a trivial distribution. Probabilistic rewrite theories
can therefore express both probabilistic and fully nondeterministic behavior.

Probabilistic rewrite rules are nondeterministic due to the new variables in
their right-hand sides, rendering them nonexecutable in Maude. However, Maude
can be used to simulate probabilistic rewrite theories, provided that all the
new variables are replaced with actual values sampled from the corresponding
probability distribution. In [3] actor PMaude modules are introduced, which
can be used to create executable PMaude specifications, that are free from any
nondeterminism. This is achieved by considering the current state of the system
as a multiset of actors and messages, in which time is made explicit through
a global real value. When creating an executable PMaude specification from
a nondeterministic one, all actors in the original specification are scheduled to
execute at random moments of time, with the interval between two consecutive

1 In [17] the definition of probabilistic rewrite theories uses the more general notion
of probability measures on a σ-algebra over CanGSubstE/A(~p). To simplify the ex-
position, we only consider probability mass functions.
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Syntactic
categories.
C, I,m in Names
t in Label
g in Guard
s in Stmt
x in Var
e in Expr
o in ObjExpr
b in BoolExpr

Definitions.

IF ::= interface I [inherits I]begin [with I Sg] end

CL ::= classC [(x : I)] [inherits C] [implements I]

begin varx : I [:= e] [with I]M end

M ::= Sg == [var x : I [:= e]; ] s

Sg ::= op m ([in x : I][out x : I])
g ::= b | t? | g ∧ g | g ∨ g
s ::= begin s end | s; s | x := e | x := new C [(e)]
| if b then s [else s] end | while b do s end | await g
| [t]![o.]m(e) | t?(x) | await g | [await][o.]m(e;x)

Fig. 1. The syntax of Creol. The terms denoted by e, x, and s represent lists over
terms of the corresponding syntactic categories, and [. . .] denotes optional elements.
Elements in a list are separated by a comma, while statements in a statement list are
separated by semicolon.

executions following a continuous, exponential probability distribution with a
fixed rated parameter. Therefore, the probability that two actors are scheduled
at the same time is zero.

The VeStA tool [22] can be used to generate execution traces from executable
actor PMaude modules in which all nondeterminism has been resolved. It allows
to statistically model check these modules against probabilistic temporal formu-
las expressed in Continuous Stochastic Logic [5], giving an alternative to Maude’s
search and model checking commands. Due to its statistical nature, the result
of the model checking procedure is given with some level of confidence, which
can be tweaked; higher confidence requires a larger number of execution traces.
VeStA also allows the quantitative analysis of executable PMaude modules, via
quantitative temporal expressions given in the QuaTEx logic [3] which is more
expressive than Probabilistic Computation Tree Logic (PCTL) [10]. These ex-
pressions relate the current state of the system to a numerical quantity, through
a formula defined equationally in rewriting logic. VeStA estimates the average
value of such an expression, within a given confidence interval.

3 Overview of Creol

We provide a brief introduction to the syntax and semantics of the Creol object-
oriented modeling language. A summary of the language syntax is given in Figure
1, as it appears in [13]. For a detailed introduction to Creol we refer to [12]. In
this paper, we extend the syntactic category Stmt of Creol statements.

Among the main Creol statements we mention those which we extend to the
probabilistic setting: nondeterministic choice with the syntax s1 � s2, where
s1 and s2 are statement lists, and asynchronous method calls with the syntax
t!o.m(e), where o is the callee, m the called method with actual parameter e,
and t is a label variable that can be used to query for the return value of this
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method call. A label variable t is similar to a future variable [1], except that it is
used locally and cannot be passed as a parameter. However, in the operational
semantics it appears as an implicit parameter, called label. Creol methods are
declared in the context of a cointerface, given by the surrounding with clause. In
a Creol method, the predefined caller parameter gives access to the caller ob-
ject, allowing type-correct call-backs, assuming caller supports the cointerface.
In what follows, we give the operational semantics for these Creol statements
that we extend with probabilistic features.

The operational semantics of Creol is given in rewrite logic (see [12]) and
its implementation is executable through Maude [9]. Following the Actor model
[2], the system configuration of a Creol model is a multiset of objects, classes
and messages, where the objects concurrently execute (remaining parts of) lo-
cal method activations (called processes), and communicate by means of asyn-
chronous message passing. We use empty syntax to denote the associative and
commutative multiset concatenation operator. At each execution step, the Creol
model makes a transition from one configuration to another, which results from
all possible local transitions between its subconfigurations. Local transitions of
the model are therefore expressed by conditional rewrite rules of the form:

subconfiguration1 −→ subconfiguration2 if condition.

When defining the operational semantics of Creol by means of rewrite theories,
objects are denoted by constructs of the form

< O : Ob | Cl, Pr, PrQ, Att, Lvar, EvQ, Lcnt >

where O is the object’s identifier of sort Oid, Cl its corresponding class, Pr
its active process code, PrQ a multiset of pending processes, Att the object’s
attributes, Lvar the local variables including method parameters, EvQ a multiset
of unprocessed messages, and Lcnt a counter used to generated label values
identifying method calls. Creol classes are defined by terms of the form

< C : Cl | Par, Att, init, Mtds, Ocnt >

where C is the class identifier, Par is the list of class parameters, Att is the
list of attributes, init contains the Creol code for the constructor of class C,
and Mtds is the multiset of class methods, including run, a special method
that is automatically executed after the class constructor. Also, Ocnt gives the
current number of instances of class C. Messages sent between objects are the
asynchronous invocation and completion messages with the syntax invoc(o1, o2,
m, `, in) and comp(o1, `, out), respectively, where ` is a label. The meaning
of such a pair of messages is that object o1 calls method m of object o2, with
arguments in, and the result is stored in the out parameter of the completion
message. We omit the object o1 sending or receiving a message, whenever it is
understood from the context.

The semantics for the nondeterministic choice operator is given through the
following conditional rewrite rule, using the commutativity and associativity
properties of this operator,
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< O : Ob | Pr : (s1 � s2) ; s3, PrQ : q, Lvar : l, Att : a >

−→
< O : Ob | Pr : s1 ; s3, PrQ : q, Lvar : l, Att : a >

if ready(s1, (a ; l), q)

where O is an arbitrary object and ready is a predicate whose value tells whether
the given process s1 is ready for execution, in the context of the variable bindings
(a ; l) and the object’s multiset of pending processes q. Note that, when giving
the semantics by rewrite rules, we omit irrelevant attributes in the style of Full
Maude [9]. The above rewrite rule therefore applies to instances O of any class,
since the class attribute Cl is omitted.

The operational semantics for asynchronous invocation messages is given by

< O : Ob | Pr : t!x.m(e); s, Lvar : l, Att : a, Lcnt : n >

−→
< O : Ob | Pr : t := n; s, Lvar : l, Att : a, Lcnt : next(n) >

invoc(eval(x, (a; l)), m, (O, n, eval(e, (a; l))))

where n is the label value used to identify the future variable t and where eval is
a function used for evaluating expressions. A separate rule takes the invocation
message into the process queue PrQ of the called object. Similarly, the semantics
for asynchronous completion messages is given through the rewrite rule

< O : Ob | Pr : return(v); s, Lvar : l, Att : a >

−→
< O : Ob | Pr : s, Lvar : l, Att : a >

comp(eval((caller, label, v), (a; l)))

which adds a new completion message to the current configuration. This message
only appears in the right-hand side of the rule, but not in its left-hand side, to
specify the “production” of a new term that is added to the configuration. The
caller and label are reserved formal parameter names (bound in l) referring
to the caller and label values of the call, and v contains the formal return values.
A separate rule takes a completion message comp(O, n, out) into the event queue
EvQ of the calling object O, thereby enabling guards on a label with value n.

4 Syntax and Semantics of PCreol

This section provides an overview of the main probabilistic features that extend
the syntax and semantics of Creol. We start with the random statement, which
allows us to specify random values in a Creol model. Then we provide the oper-
ational semantics for a probabilistic choice operator together with some possible
generalizations, followed by the description of random assignment statements,
and the operational semantics for probabilistic lossy communication.
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Modeling random numbers. We introduce a random statement, which models
uniformly distributed random numbers in the unit interval, i.e., such that all
values in [0, 1) have an equal chance to be sampled. This is implemented in the
interpreter by a rewrite rule that generates fresh pseudo-random numbers with
each use of the random command.

Probabilistic choice operator. We first consider adding an infix probabilistic
choice operator �p to the syntactic category of Creol statements. This oper-
ator has the syntax s1 �p s2 where p ∈ [0, 1] is a fixed real value in the unit
interval, and s1, s2 are two arbitrary lists of statements. The informal seman-
tics of s1 �p s2 is that, whenever it is encountered throughout the control flow,
the list of statements s1 is selected for execution with probability p, while s2 is
selected with probability 1− p. However each list of statements is executed pro-
vided that it is ready, i.e. if its corresponding process may be woken up, which
is checked through the ready predicate.

Denote by BERNOULLI(p) the Bernoulli discrete probability distribution
with parameter p, that samples the value true with probability p, and false

with probability 1 − p. If both statements in the probabilistic choice are ready
for execution, the formal semantics for the �p operator is given by the following
probabilistic conditional rewrite rule:

< O : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q >

−→
if B then

< O : Ob | Pr : s1 ; s3, Lvar : l, Att : a, EvQ : q >

else
< O : Ob | Pr : s2 ; s3, Lvar : l, Att : a, EvQ : q >

fi
if ready(s1, (a ; l), q) and ready(s2, (a ; l), q)
with probability B := BERNOULLI(p)

When only one of the statements is ready for execution, this statement is
automatically selected and the suspended one is dropped. This is achieved by
simplification with respect to the conditional equations

< O : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q >

=
< O : Ob | Pr : s1 ; s3, Lvar : l, Att : a, EvQ : q >

if ready(s1, (a ; l), q) and not(ready(s2, (a ; l), q))

for the case when only the first statement is ready, and

< O : Ob | Pr : (s1 �p s2) ; s3, Lvar : l, Att : a, EvQ : q >

=
< O : Ob | Pr : s2 ; s3, Lvar : l, Att : a, EvQ : q >

if not(ready(s1, (a ; l), q)) and ready(s2, (a ; l), q)

when only the second statement is ready. The case when neither one of the
statements is ready for execution is not handled, neither through conditional
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rewrite rules nor via conditional equations. Hence, a probabilistic choice is only
made as soon as at least one of the statements becomes ready for execution.

In the following, we consider generalizing the probabilistic choice operator,
motivated by the need to naturally express random selection of a statement list
from a set of statement lists, and refer to the technical report [8] for the semantics
of these generalized operators. For example, in order to randomly choose between
four assignments x := 3, x := 5, x := 7 and x := 11, each with an equal chance
of being selected, the binary probabilistic choice operator can be used as follows:

x := 3 �1/4 (x := 5 �1/3 (x := 7 �1/2 x := 11)). (2)

However, this does not naturally express the fact that the four assignments are
selected for execution with the same probability. Instead, the probabilities 1/4,
1/3 and 1/2 in (2) need to be derived from the uniform distribution:

(
3 5 7 11

1/4 1/4 1/4 1/4

)
.

A more natural solution is to consider a mixfix uniform probabilistic choice op-
erator �u that takes as input a variable number of statement lists and selects
either one of them for execution, each with equal probability. Thus, the fair
selection statement (2) can more easily be expressed using the �u operator as:

x := 3 �u x := 5 �u x := 7 �u x := 11. (3)

Furthermore, we may introduce a mixfix generalized probabilistic choice operator
that takes as input a list of values in [0, 1] summing up to a value in [0, 1], as
well as the statement lists whose probabilities of being selected are given by
these values. Therefore, the binary probabilistic choice operator is generalized
to n ≥ 3 statements, with the syntax

s1 �p1 s2 �p2 . . . sn−1 �pn−1
sn (4)

for values p1, p2, . . . , pn−1 ∈ [0, 1] such that
∑n−1
i=1 pi ≤ 1. The informal semantics

for this operator is a natural generalization both of the binary case n = 2 and of
the case of uniform random selection, when p1 = p2 = . . . = pn−1 = 1/n. There-
fore, whenever an expression of the form (4) is encountered in the control flow,
the statement list si is selected with probability pi, for each i ∈ { 1, 2, . . . , n−1},
provided that it is ready for execution. The last statement list sn is selected for
execution with probability 1−∑n−1

i=1 pi. Note that using parentheses in (4) to put
together two statement lists may cause the binary probabilistic choice operator
to be used instead. Therefore, we recommend that an expression involving the
generalized probabilistic choice operator should contain no parentheses.

As an example, consider the problem of expressing the random selection from
the four assignments considered before x := 3, x := 5, x := 7 and x := 11, where
this time the probabilities for assigning each of the given values to the variable
x are given by the following non-uniform distribution:

(
3 5 7 11

1/6 1/3 1/6 1/3

)
.
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In this case, the generalized probabilistic choice operator can be used as follows:

x := 3 �1/6 x := 5 �1/3 x := 7 �1/6 x := 11. (5)

Random assignment. We add an uniform random assignment operator with the
syntax

x := random([e1, e2, . . . , en]),

that randomly selects an expression from the list E = [e1, e2, . . . , en] and as-
signs it to the specified variable x, where each expression in E has an equal
chance of being selected. Thus, the fair selection statement (3) using the uni-
form probabilistic choice operator �u can be more easily expressed as:

x := random([3, 5, 7, 11]).

This operator may also be generalized, by considering arbitrary, possibly non-
uniform distributions over the list E. The syntax for this generalized random
assignment is

x := random([e1, e2, . . . , en], [p1, p2, . . . , pn]),

where pi ∈ [0, 1] denotes the probability of assigning ei to x, for each i ∈
{1, 2, . . . , n}. Also, to satisfy the axioms of probability theory, it must also be
the case that

∑n
i=1 pi = 1. Similar to uniform random assignment, we can use

the generalized random assignment in order to express the non-uniform random
assignment (5) in a more compact way:

x := random([3, 5, 7, 11], [1/6, 1/3, 1/6, 1/3]).

Due to space constraints, we refer to [8] for the operational semantics of these
random assignment commands.

Lossy communication. In order to specify lossy inter-object communication, the
semantics for the invocation and completion messages need to be extended, by
redefining the rewrite rules for lossless communication. We have two cases, de-
pending on the nature of the messages. Lossy invocation with α ∈ [0, 1] proba-
bility of successful delivery has the following semantics

< O : Ob | Pr : t!x.m(e); s, Lvar : l, Att : a, Lab : n >

−→
if B then

< O : Ob | Pr : t := n; s, Lvar : l, Att : a, Lab : next(n) >

invoc(eval(x, (a; l)), m, (O, n, eval(e, (a; l))))
else

< O : Ob | Pr : s, Lvar : l, Att : a, Lab : n >

fi
with probability B := BERNOULLI(α)

where n is a new label used to identify the future variable t. Also, lossy com-
pletion with β ∈ [0, 1] probability of successful message delivery is given by the
probabilistic rewrite rule:
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< O : Ob | Pr : return(v); s, Lvar : l, Att : a >

−→
if B then

< O : Ob | Pr : s, Lvar : l, Att : a >

comp(eval((caller, label, v), (a; l)))
else

< O : Ob | Pr : s, Lvar : l, Att : a >

fi
with probability B := BERNOULLI(β)

5 Examples

A client-server example. Consider modeling the interaction between a client
and a server, in the following scenario. The first object that is created is an
instance of class Main. This instance, in turn, creates a Server and a Client

object. The Client class is parameterized by an integer parameter value and a
Server class parameter s, representing the server with which the client is going
to communicate. The Server class has an attribute v, storing its current value.
As soon as the Client object starts running, it executes a while loop of 10
iterations. At each iteration the client makes a call to the server’s add or sub

method with its argument equal to the value parameter of the Client class. The
server responds either by adding or by subtracting its current value with the
value parameter sent by the client. A probabilistic choice is made between the
two alternatives. In this example we assigned a probability of 0.8 for selecting
addition and a probability of 1 − 0.8 = 0.2 for selecting subtraction. Below we
give a complete listing of the PCreol model corresponding to this example:

interface Server begin with Any op add_or_sub(in value: Int) end

interface Client begin end

class Server implements Server

begin

var v : Float

op init == v := 0

with Any

op add_or_sub(in value: Int) == v := v + value � 0.8 v := v - value

end

class Client(value : Int, s: Server) implements Client

begin

var i : Int

op run ==

i := 0;

while i < 10 do s.add_or_sub(value;); i := i + 1 end

end

class Main

begin

var s : Server, c : Client

op init == s := new Server; c := new Client(1, s)

end

We use a QuaTEx query asking for the expected value of the Server object,
as soon as the execution terminates. VeStA gives the following answer:

L. Bentea, O. Owe

113 Technical Report, KIT, 2011-26



Result: 6.14

Running time: 82.344 seconds

States sampled: 15500

The value stored by the Server object when the execution terminates is equal to
the value of a simple random walk over the integers, starting at 0 (the value that
the Server object is initialized to in its constructor) and taking 10 unit steps,
where each step is either taken to the right with probability 0.8 (addition) or to
the left with probability 0.2 (subtraction).

We also consider a predicate G : S → {false, true} on the set of states of the
model that returns true provided that the server’s value is above −1 and false

otherwise. We used VeStA to statistically model check our model against the
CSL formula P≥0.9[♦ G], with the meaning that the server’s value eventually
becomes greater than −1 with probability greater than 0.9. Notice that the ♦
operator is unbounded, i.e., it does not have any time constraints. The result of
the statistical model checking is

Result: true

Running time: 77.931 seconds

States sampled: 16318

which agrees with the intuition that, given a random walk which takes positive
steps with probability 0.8 and negative steps with probability 0.2, it is more
likely that the value of the random walk after 10 steps is found in the positive
part of the interval [−10, 10] than in its negative part.

A simple authentication protocol. We also show how a simplified version of the
Needham-Schroeder authentication security protocol [21] can be specified as an
object-oriented PCreol model, where messages can be lost with some probability
due to a probabilistic environment. We consider a protocol in which two agents–
Alice and Bob–must decide on a shared key, and they proceed as follows. Alice
generates a new random key K, encrypts it together with her ID tag, using
the public key of Bob, and sends it to Bob. (Only Bob is able to decrypt this
message.) Bob decrypts the message and learns the shared key K; he also knows
that the message came from Alice by looking at the ID tag. Then Bob answers
to Alice by sending her the key K together with his ID, encrypted with Alice’s
public key. Formally, this simple protocol can be described as follows

A→ B : 〈A, {K}pk(B)〉
B → A : 〈B, {K}pk(A)〉

and its PCreol specification is given below, where the content of all messages is
assumed to be of type Float, and the variables and methods that come before
the with Any statement in class Agent are private to that class. Notice the use
of the random command in the generateKey method and that of the probabilistic
choice operator � 0.6 in the sendKey method, modeling a lossy communication
channel between Alice and Bob such that messages are lost with probability 0.4.
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interface Agent

begin with Any

op generateKey // generates a random shared key

op getPublicKey(out key: Float) // returns the public key of the current agent

op sendKey(in someAgent: Agent) // sends the encrypted shared key to the given agent

op receiveMessage(in msg: Float) // processes the message on the communication channel

op waitMsg // waits for a message on the communication channel

end

class Agent(publicID: Float, publicKey: Float) implements Agent

begin

var secretKey: Float := 0.1568983, // the secret key of this agent

sharedKey: Float, // the key to share with another agent

hasNewMsg: Bool := false, // true if a new message appears on the channel

newMsg: Float // the new message

op encrypt(in msg: Float, encKey: Float; out encMsg: Float) ==

encMsg := ... // an encryption scheme

op decrypt(in msg: Float; out decMsg: Float) ==

decMsg := ... // the corresponding decryption scheme

with Any

op generateKey == sharedKey := random

op getPublicKey(out key: Float) == key := publicKey

op sendKey(in x: Agent) ==

var encKey: Float, encMsg: Float;

x.getPublicKey(; encKey); encrypt(sharedKey, encKey; encMsg);

x.receiveMessage(encMsg; ) � 0.6 skip

op receiveMessage(in msg: Float) == hasNewMsg := true; newMsg := msg

op waitMsg == // listen on the channel and wait for a new message

await hasNewMsg; // (explicit processor release point)

decrypt(newMsg; sharedKey); // decrypt the message and store it as the shared key

hasNewMsg := false // set the flag to wait for another message

end

class Main

begin

op run ==

var a: Agent, b: Agent; a := new Agent(1, 0.67125); b := new Agent(2, 0.58769);

// create two agents with some public keys

a.generateKey(;); // a generates a random key to share with b

!b.waitMsg(); // b waits for a message from a (asynchronous method call)

a.sendKey(b;); // a sends the encrypted key to b

b.sendKey(a;) // b sends back the encrypted key to a

// this method call does not execute before b receives a message from a,

// due to the await statement in the "waitMsg" method

end

Notice that the execution of the above model terminates with probability 0.6
due to the probabilistic choice � 0.6 in method sendKey and the processor release
point in method waitMsg. Indeed, we used VeStA to statistically model check
our model against the formula P≥0.5[♦ T ] meaning that the execution eventu-
ally terminates with probability greater than 0.5 (T is a predicate for checking
termination), and we obtained the following result, with a confidence of 99.5%:

Result: true

Running time: 3450.891 seconds

States sampled: 160106
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6 Implementation of the PCreol Interpreter

This section describes the Maude implementation of the PCreol operational se-
mantics, which is available for download from [7] and can be executed using the
latest versions of Maude. We use a refinement technique based on the stochastic
time model introduced in [3] to resolve all nondeterminism in the interpreter
and allow the VeStA tool to statistically model check and analyze quantitative
properties of PCreol models.

Our prototype PCreol interpreter is implemented on top of the current one for
Creol, and it allows us to test part of the features described in Section 4, namely
modeling random numbers, binary probabilistic choice and lossy communication
(invocation, completion). The probabilistic rewrite theories framework that we
use allows us to formulate a natural probabilistic extension to Creol’s operational
semantics, in which all of Creol’s operational rules are kept the same, without the
need to translate them. In this respect, the implementation of our probabilistic
extension to Creol can be seen as a patch to the Creol interpreter, making it
easy to keep in sync with the latest version of Creol.

The following paragraphs give precise meaning to the mechanism that we use
to schedule the execution of PCreol objects, which is essentially the same as for
scheduling objects in actor PMaude [3]. As in Creol, each object has a sequence of
statements to execute, running on its own processor. The execution traces of the
concurrent system are represented by interleavings of executions performed by
different objects. Standard model checking goes through all possible interleavings
of the concurrent model, causing state space explosion. One possible solution
to this problem is to obtain a series of random interleavings by discrete-event
simulation. These can then be used in statistical model checking and quantitative
analysis algorithms, as implemented in VeStA. It can easily be shown that a
sufficient condition for the state space corresponding to a concurrent object-
based system to be checked in a fair manner using statistical model checking is
that the waiting times of all objects must be exponentially distributed with a
fixed rate parameter.

We briefly give the implementation details for this stochastic time model.
First, we make Float a subsort of the configuration, to be able to explicitly
specify time as part of the global system state. We then define execution marks
as terms of sort ExecMark, introduced as a subsort of the configuration:

subsort ExecMark < Configuration .

op execute(_) : Oid -> ExecMark .

To control the execution of objects in PCreol, we introduce execution marks,
which identify the currently active object in the system configuration. An ob-
ject is active if it has an associated execution mark and has at least one enabled
rewrite rule. In the operational semantics, execution marks will now be part of
the left-hand side of each rewrite rule. The execution of non-active objects is con-
trolled by scheduled execution marks, which include a time parameter indicating
when an object should become active:

subsort ScheduledExecMark < Configuration .

op [_,_] : Float ExecMark -> ScheduledExecMark .
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By randomly assigning time values to each scheduled execution marks, using a
continuous probability distribution, we ensure that only one object can execute
at a given time. In this way, non-determinism is resolved in the operational
semantics. Finally we add a tick operation that makes the system evolve by
unwrapping the scheduled execution marks into unscheduled ones and rendering
exactly one object active

op tick : Config -> Config .

where Config is a sort whose terms are obtained from terms of sort Configuration
by adding a pair of curly brackets2:

op {_} : Configuration -> Config [ctor] .

This is to ensure compatibility with the VeStA tool. The semantics of the tick
operation is the same as in the actor PMaude model [3], selecting the next object
for execution in chronological order3:

op tickAux : Float ExecMark Configuration -> Config .

var CF : Configuration .

vars T1 : Float .

vars E E1 : ExecMark .

eq tick([T, E] CF) = tickAux(T, E, CF) .

eq tick(CF) = CF [owise] .

ceq tickAux(T, E, [T1, E1] CF) = tickAux(T1, E1, [T, E] CF) if T1 < T .

eq tickAux(T, E, CF T1) = E CF T [owise] .

To ensure compatibility with VeStA, we also add an initial state term, giving
the state in which the PCreol model is initially found:

op initState : -> Config .

The initState term needs to be defined for each particular PCreol model.
The execution mark technique that we use can be described as follows. In

order to resolve all nondeterminism, we adjust the implementation of the original
Creol interpreter by adding execution marks in the left-hand side of each rewrite
rule. For example, the rewrite rule giving the operational semantics for the skip
statement is changed from

rl < O : C | Att: S, Pr: {L | skip; SL}, PrQ: W, Lcnt: F >

=> < O : C | Att: S, Pr: {L | SL}, PrQ: W, Lcnt: F > .

to

rl < O : C | Att: S, Pr: {L | skip; SL}, PrQ: W, Lcnt: F > execute(O) T

=> < O : C | Att: S, Pr: {L | SL}, PrQ: W, Lcnt: F >

[T + sampleExpWithRate(1.0), execute(O)] T .

2 The ctor attribute is used to specify that the operator {_} is a constructor, i.e., an
operator appearing in the normal forms of the term algebra.

3 The owise attribute added to an equation specifies that the equation should be
applied in all other cases in which the rest of the (possibly conditional) equations
cannot apply.
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by adding an execution mark and also the global time to the left-hand side of
the rule, as well as adding a scheduled execution mark and the global time to its
right-hand side. This makes the new subconfiguration (and the object O) active
at a later time, after a random interval of time has passed, and represents the
main idea of the execution mark technique.

In all updated rules the delay follows an exponential probability distribution
with a fixed rate parameter of 1. The random time interval is generated using the
sampleExpWithRate operation in Maude [9]. The other rewrite rules are adjusted
in a similar manner. Note that in the current implementation of the PCreol
interpreter the rates corresponding to the waiting times of all scheduled execution
marks are equal to 1. However, we may provide an implementation in which the
rates depend on the object with which they are associated, thus modeling the
fact that different components have different processor speeds.

To fully integrate the implementation of the PCreol interpreter with the
VeStA tool, we also add an operation giving the current time of the global
configuration:

op getTime : Config -> Float .

eq getTime(T CF:Configuration) = T .

Furthermore, we define the predicates and valuations that map the current con-
figuration of a PCreol model into a Boolean value and a floating point value, re-
spectively. Thus, consider a set of atomic propositionsAP = { sat0, sat1, . . . , satn }
and a labeling function L : S → 2AP mapping each state s ∈ S of the PCreol
model into the subset of atomic propositions L(s) ⊆ AP that are true in s. This
labeling function is used in the statistical model checking process of VeStA and
is implemented by an operation

op sat : Nat Config -> Bool .

from which L(s) is obtained by constructing the set { sati | sat(i, s) == true }.
Also, let V1, V2, . . . , Vk : S → R be a set of k ≥ 1 valuation functions. These are
implemented in the PCreol interpreter by means of an operation

op val : Nat Config -> Float .

from which Vi(s) is obtained as val(i, s), for all 1 ≤ i ≤ k.
Currently, after compiling a PCreol model into its corresponding Maude spec-

ification, the predicates, as well as the valuation functions need to be manually
added to the compiled code and explicitly defined by the user to be able to use
VeStA and determine whether the PCreol model satisfies the desired properties.

7 Conclusions and Future Work

The main contribution of this paper is to introduce PCreol, an extension of the
Creol object-oriented modeling language which allows the specification of prob-
abilistic open distributed systems, and to provide the Maude implementation of
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a prototype interpreter for PCreol models. We used the semantic framework of
probabilistic rewrite theories to define the operational semantics of PCreol. Our
implementation allowed us to integrate PCreol with the VeStA tool for statisti-
cal model checking and quantitative analysis, to be able to check properties of
PCreol models, as well as to extract desired quantitative information from them.

We have integrated PCreol with VeStA by refining the implementation of
the Creol interpreter using the stochastic time model introduced in [3] for actor
PMaude modules. This technique can also be used to adapt interpreters of the
recent ABS modeling language [14], which is in many ways similar to Creol. We
may also attempt to integrate PCreol with the recent parallelization of the VeStA
tool called PVeStA [4]. Also, as shown in our examples, the statistical tests that
VeStA uses have large running times and require a large number of samples.
This is because VeStA is designed to handle complex property checking, e.g.,
nested operators, whereas our properties are in general simpler. It is therefore
worth investigating other, more suitable and more efficient approaches as in [16].

Another possible direction for future work is the exact (non-statistical) veri-
fication of probabilistic distributed systems modeled in PCreol. The integration
of PCreol with exact probabilistic model checkers like PRISM [18] would be
of great value. On a similar note, we may investigate the use of proof systems
based on probabilistic extensions of Hoare logic (e.g., [10]) to prove different
facts about PCreol models.
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1. Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description
of an object-oriented language with futures and promises. J. Log. Algebr. Program.
78(7), 491–518 (2009)

2. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA (1986)

3. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Science
153(2) (2006)

4. Alturki, M., Meseguer, J.: PVeStA: A parallel statistical model checking and quan-
titative analysis tool. To appear in Proc. CALCO’11 (2011)

5. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T. (eds.) Computer Aided Verification, Lecture
Notes in Computer Science, vol. 1102, pp. 269–276. Springer Berlin / Heidelberg
(1996)

6. Baier, C., Ciesinski, F., Grosser, M.: PROBMELA: a modeling language for com-
municating probabilistic processes. In: Proceedings of The Second ACM and IEEE
International Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE ’04. pp. 57 – 66 (2004)

L. Bentea, O. Owe

119 Technical Report, KIT, 2011-26



7. Bentea, L., Owe, O.: The implementation of the prototype PCreol interpreter
(2010), http://www.ifi.uio.no/~lucianb/projects/pcreol/

8. Bentea, L., Owe, O.: Towards an object-oriented modeling language for prob-
abilistic open distributed systems (2010), http://www.ifi.uio.no/~lucianb/

publications/2010/pcreol.pdf

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L.: All About Maude - A High-Performance Logical Framework, How to Specify,
Program and Verify Systems in Rewriting Logic, LNCS, vol. 4350. Springer (2007)

10. den Hartog, J.: Probabilistic Extensions of Semantical Models. Ph.D. thesis, Vrije
Univ., Amsterdam (2002)

11. Holzmann, G.: The Spin model checker: Primer and reference manual. Addison-
Wesley Professional, first edn. (2003)

12. Johnsen, E., Owe, O.: An asynchronous communication model for distributed con-
current objects. Software and Systems Modeling 6(1), 39–58 (2007)

13. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-object versus inter-
object: Concurrency and reasoning in Creol. In: Proc. 2nd Intl. Workshop on
Harnessing Theories for Tool Support in Software (TTSS’08). Electronic Notes
in Theoretical Computer Science, vol. 243, pp. 89–103. Elsevier (2009)
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Abstract. Software today is often developed for deployment on vary-
ing architectures. In order to model and analyze the consequences of
such deployment choices at an early stage in software development, it
seems desirable to capture aspects of low-level deployment concerns in
high-level models. In this paper, we propose an integration of a generic
cost model for resource consumption with deployment components in
Timed ABS, an abstract behavioral specification language for executable
object-oriented models. The actual cost model may be user-defined and
specified by means of annotations in the executable Timed ABS model,
and can be used to capture specific resource requirements such as pro-
cessing capacity or memory usage. Architectural variations are specified
by resource-restricted deployment scenarios with different capacities. For
this purpose, the models have deployment components which are para-
metric in their assigned resources. The approach is demonstrated on an
example of multimedia processing servers with a user-defined cost model
for memory usage. We use our simulation tool to analyze deadline misses
for given usage and deployment scenarios.

1 Introduction

Software systems often need to adapt to different deployment scenarios: operating
systems adapt to different hardware, e.g., the number of processors; virtualized
applications are deployed on varying (virtual) servers; and services on the cloud
need to adapt dynamically to the underlying infrastructure. Such adaptability
raises new challenges for the modeling and analysis of component-based systems.

In general, abstraction is seen as a means to reduce complexity in a model [21].
In formal methods, the ability to execute abstract models was initially consid-
ered counter-productive because the models would become less abstract [13,15],
but recently abstract executable models have gained substantial attention and
also been applied industrially in many different domains [30]. Specification lan-
guages range from design oriented languages like UML, which are concerned
with structural models of architectural deployment, to programming language
close specification languages such as JML [6], which are best suited to express

? Partly funded by the EU project FP7-231620 HATS: Highly Adaptable and Trust-
worthy Software using Formal Models (http://www.hats-project.eu).
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functional properties. Abstract executable modeling languages are found in be-
tween these two abstraction levels, and appear as the appropriate abstraction
level to express deployment decisions because they abstract from concrete data
structures in terms of abstract data types, yet allow the faithful specification of
a system’s control flow and data manipulation. For the kind of properties we are
considering in this paper, it is paramount that the models are indeed executable
in order to have a reasonable relationship to the final code.

The abstract behavioral specification language ABS [7, 17] is such an exe-
cutable modeling language with a formally defined semantics and a simulator
built on the Maude platform [8]. ABS is an object-oriented language in which
concurrent objects communicate by asynchronous method calls and in which
different activities in an object are cooperatively scheduled. In recent work, we
have extended ABS with time and with a notion of deployment component in
order to abstractly capture resource restrictions related to deployment decisions
at the modeling level. This allows us to observe, by means of simulations, the
performance of a system model ranging over the amount of resources assigned
to the deployment components, with respect to execution capacity [19, 20] and
with respect to memory [2]. This way, the modeler gains insight into the resource
requirements of a component, in order to provide a minimum response time for
given client behaviors. In the approach of these papers, the resource consump-
tion of the model was fixed by the ABS simulator (or derived by the COSTA
tool [1]), so the only parameter which could be controlled by the modeler was
the capacity of the deployment components.

In this paper, we take a more high-level approach to the modeling of resource
usage and consider a generic cost modelM. We propose a way for the modeler to
explicitly associate resource costs to different activities in a model via optional
annotations in the language. This allows simulations of performance at an early
stage in the system design, by further abstraction from the control flow and data
structures of the system under development. Resource usage according to M
may be specified abstractly (e.g., for whole methods), or more fine-grained and
following the control flow in parts of the model which are of particular interest; it
can also be refined along with the model. Resource annotations are specified by
means of user-defined expressions; e.g., depending on the input parameters to a
method in the model. Given a model with explicit resource annotations, we show
how our simulation tool for Timed ABS may be used for abstract performance
analysis of formal object-oriented models, to analyze the performance of the
model depending on the resources assigned to the deployment components. The
proposed approach and associated tool are illustrated on an example of a multi-
media processing service with a cost model for memory allocation.

Paper overview. Section 2 introduces the Timed ABS modeling language,
Section 3 presents the semantics of Timed ABS with user-defined resource an-
notations. Section 4 presents an application and simulation results of a photo
and video processing service in Timed ABS. Section 5 discusses related work and
Section 6 concludes the paper.
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2 Models of Deployed Concurrent Objects in Timed ABS

Timed ABS is an abstract behavioral specification language for distributed con-
current objects, a successor and extension of the Creol language used in some
of our previous work. Characteristic features of Timed ABS are that: (1) it al-
lows abstracting from implementation details while remaining executable; i.e.,
a functional sub-language over abstract data types is used to specify internal,
sequential computations [17]; (2) it provides flexible concurrency and synchro-
nization mechanisms by means of asynchronous method calls, release points in
method definitions, and cooperative scheduling of method activations [9,18]; (3)
it supports user-provided deadlines to method calls to express local QoS require-
ments [10]; and (4) it features deployment components with parametric resources
to model deployment variability [2, 19, 20]. Compared to previous work on de-
ployment components, we here extend the syntax and semantics of Timed ABS
with user-defined annotations to express general cost-models for resource usage.

A Timed ABS model P defines interfaces, classes, data types, and functions,
and has a main block {T x; s} to configure the initial state. Objects are dy-
namically created instances of classes; their declared attributes are initialized to
arbitrary type-correct values, but may be redefined in an optional method init.
This paper assumes that models are well-typed, so method binding is guaranteed
to succeed [17]. Intuitively, concurrent objects in Timed ABS have dedicated pro-
cessors and live in a distributed environment with asynchronous and unordered
communication. All communication is between named objects, typed by inter-
faces, by means of asynchronous method calls. (There is no remote field access.)
Calls are asynchronous as the caller may decide at runtime when to synchronize
with the reply from a call. Method calls may be seen as triggers of concurrent
activity, spawning new activities (so-called processes) in the called object. Ac-
tive behavior, triggered by an optional run method, is interleaved with passive
behavior, triggered by method calls. Thus, an object has a set of processes to be
executed, which stem from method activations. Among these, at most one pro-
cess is active and the others are suspended in a process pool. Process scheduling
is non-deterministic, but controlled by processor release points in a coopera-
tive way. Deployment components restrict the natural concurrency of objects
in Timed ABS by introducing resource-restricted execution contexts to capture
different deployment scenarios. Every object in Timed ABS is associated with
one deployment component.

The functional level of Timed ABS defines user-defined parametric datatypes
and functions, as shown in Fig. 1. The ground types T consist of basic types
B (such as Bool, Int, and Resource), as well as names D for datatypes and I
for interfaces. In general, a type A may also contain type variables N (i.e.,
uninterpreted type names [26]). In datatype declarations Dd , a datatype D has
a set of constructors Cons, which have a name Co and a list of types A for
their arguments. Function declarations F have a return type A, a function name
fn, a list of parameters x of types A, and a function body e. Expressions e
include Boolean expressions b, variables x, values v, the self-identifier this,
constructor expressions Co(e), function expressions fn(e), and case expressions
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Syntactic categories.
T in Ground Type
A in Type
x in Variable
e in Expression
b in Bool Expression
v in Value
br in Branch
p in Pattern

Definitions.
T ::= B | I |D |D〈T 〉
A ::= N | T |N〈A〉

Dd ::= data D[〈A〉] = [Cons];

Cons ::= Co[(A)]

F ::= def A fn[〈A〉](A x) = e;

e ::= b | x | v | Co[(e)] | fn(e) | case e {br}
| this | thiscomp | deadline | now

v ::= Co[(v)] | null
br ::= p⇒ e;

p ::= _ | x | v | Co[(p)]

Fig. 1. Syntax for the functional level of Timed ABS. Terms e and x denote possibly
empty lists over the corresponding syntactic categories, and square brackets [ ] optional
elements.

Syntactic categories.
C, I,m in Name
g in Guard
s in Stmt
an in Annotation

Definitions.
P ::= Dd F IF CL {T x; s}
IF ::= interface I { [Sg] }
CL ::= [[an]] classC [(T x)] [implements I] { [T x; ]M}
Sg ::= T m ([T x])

M ::= [[an]] Sg {[T x; ] s }
an ::= Deadline: e | Cost: e | Free: e
g ::= b | x? | duration(e) | g ∧ g
s ::= s; s | [[an]] s | skip | if b { s } [else { s }] | while b { s }
| x = rhs | suspend | await g | duration(d) | return e

rhs ::= e | new C (e) [in e] | component (e) | e.get | o!m(e)

Fig. 2. Syntax for the concurrent object level of Timed ABS.

case e {br}. In Timed ABS, the expression deadline refers to the remaining
permitted execution time of the current method activation, which is initially
given by a deadline annotation at the method call site or by default. We assume
that message transmission is instantaneous, so the deadline expresses the time
until a reply is received; i.e., it corresponds to an end-to-end deadline. The
expression now returns the current time (explained below) and thiscomp the
deployment component to which the current object is associated. Values v are
constructors applied to values Co(v) or null. Case expressions have a list of
branches p⇒ e, where p is a pattern. Branches are evaluated in the listed order.
Patterns include wild cards _, variables x, values v, and constructor patterns
Co(p). For simplicity, operator overloading is not considered.

The concurrent object level of Timed ABS is given in Figure 2. An interface
IF has a name I and method signatures Sg . A class CL has a name C, interfaces
I (specifying types for its instances), class parameters and state variables x of
type T , and methodsM . (The class attributes are both the parameters and state
variables.) A signature Sg declares the return type T of a method with name m
and formal parameters x of types T .M defines a method with signature Sg , local
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variables x of types T , and a statement s. Statements may access attributes of
the current class, locally defined variables, and the method’s formal parameters.

Right hand side expressions rhs include object and component creation,
method calls o!m(e) where o denotes the callee and e the actual paramters to the
call, future dereferencing x.get, and (pure) expressions e. Method calls and fu-
ture dereferencing are explained in detail below. An object may be created in the
current deployment component, written new C(e), or in a named component e,
written new C(e) in e. Deployment components are created by component(e),
where e reflects the amount of resources assigned to the component.

Statements are standard for sequential composition s1; s2, and skip, if,
while, and return constructs. The statement suspend unconditionally re-
leases the processor, suspending the active process. In await g, the guard g
controls processor release and consists of Boolean conditions b and return tests
x? (see below). Just like pure expressions e, guards g are side-effect free. If g
evaluates to false, the processor is released and the process suspended. When
the execution thread is idle, any process pr may be selected from the pool of
suspended processes if pr is ready to execute.

Communication in Timed ABS is based on asynchronous method calls, de-
noted by assignments x = o!m(e) to future variables x. (Local calls are written
this!m(e).) After making an asynchronous call x = o!m(e), the caller may
proceed with its execution without blocking on the method reply. Here o is an
object expression, and e are (data value or object) expressions providing actual
parameter values for the method invocation. A future variable refers to a return
value which has yet to be computed. There are two operations on future vari-
ables, which control synchronization in Timed ABS. First, the guard await x?
suspends the active process unless a return to the call associated with x has ar-
rived, allowing other processes in the object to execute. Second, the return value
is retrieved by the expression x.get, which blocks all execution in the object un-
til the return value is available. Standard usages of asynchronous method calls
include the statement sequence x = o!m(e); v = x.get which encodes a blocking
call, abbreviated v = o.m(e) (often referred to as a synchronous call), and the
sequence x = o!m(e); await x?; v = x.get which encodes a non-blocking,
preemptible call, abbreviated await v = o.m(e). As usual, if the return value of
a call is of no interest, the call may be written as a statement o!m(e). In Timed
ABS, it is the decision of the caller whether to call a method synchronously or
asynchronously, and when to synchronize on the return value of a call.

Time. In Timed ABS, we work with a discrete time model. The local pas-
sage of time is explicitly expressed using duration statements and duration
guards. The statement duration(e) expresses the passage of e time units, and
blocks the whole object. Similarly, the guard await duration(e) suspends the
current process for e time units. Note that time can also pass during synchro-
nization with a method invocation; this can block one process (via await f?)
or the whole object (via x = f .get). All other statements (normal assignments,
skip statements, etc.) do not cause time to pass.
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Deployment Components can be understood as resource-restricted execution
contexts which allow us to specify and compare different execution environments
for Timed ABS models. Deployment components are parametric in the amount
of resources they make available to their objects, which makes it easy to compare
the behavior of a model under different resource assumptions. Deployment com-
ponents were originally introduced for processing resources in [20]. In contrast,
resources in this paper are general, and it is up to the modeller to define a cost
model which fits with the specific targeted resource.

Deployment components are integrated in Timed ABS as follows. Resources
are understood as a quantitative measure of cost and modeled by the basic data
type Resource which extends the integers with an “unlimited resource” ω. We
define addition and subtraction for resources as for integers and by ω + n = ω
and ω−n = ω (for integers n). In Timed ABS, variables x of type Component refer
to deployment components and allow deployment components to be dynamically
created by the statement x=component(e), which assigns a given quantity e
of resources to the component referred to by x. All objects in a Timed ABS
model belong to some deployment component. The number of objects residing
on a component may grow dynamically through object creation. The ABS syntax
for object creation is therefore extended with an optional clause to specify the
targeted deployment component; in the expression new C(e) in x, the new C
object will reside in the component x. Objects generated without an in-clause
reside in the same component as their parent object. The behavior of a Timed
ABS model which does not statically declare deployment components is captured
by a root deployment component with ω resources.

The execution inside a deployment component is restricted by the number
of available resources in the component; thus the execution in an object may
need to wait for resources to become available. In general, the usage of resources
for objects in a deployment component depends on a specific cost model M,
which expresses how resources are used during execution. In Timed ABS, cost
models are expressed by the user by associating resource usage with the execu-
tion of different statements in the model. During the execution of a statement
with cost n, the associated component consumes n resources. In a deployment
component with ω resources, a transition can always be executed immediately.
In a deployment component with less than n assigned resources, the object per-
manently blocks. Otherwise, the object needs to wait until sufficient resources
become available. When time advances, resources which are no longer in use
by an object may be returned to its deployment component, as determined by
the cost model M. For example, for processor resources, all resources may be
returned to the deployment component when time advances. In contrast, for
memory resources, the time advance corresponds to deallocating memory cells
(e.g., by running a garbage collector), and will return the used stack memory
and possibly some portion of the heap. (Remark that the memory deallocated
after a transition may be larger than the memory allocated before the transition,
which corresponds to transitions which reduce the size of the heap.)
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Technically, for a cost model M and a transition from state t to t′, the re-
sources to be consumed by the transition are given by a function costM(t, t′) and
the resources to be returned by time advance are given by a function freeM(t, t′).
The time advance will return to the deployment component the accumulated
number of returned resources, as determined by the sum of freeM(t, t′) for all
transitions in that component since the last time advance. For example, for pro-
cessor resources, all resources are available in each time step so costM(t, t′) =
freeM(t, t′). For memory resources, freeM(t, t′) = costM(t, t′) + size(t′)− size(t)
if we denote by size(t) the size of the heap for state t. The cost model M is
determined by the exact definitions of costM(t, t′) and freeM(t, t′) for the state-
ments in the language. In order to give the modeler explicit control over the use
of resources, the statements of Timed ABS have zero cost by default, which can
be overridden by annotations defining the cost model.

Annotations. In this paper, we propose to extend the syntax of Timed ABS
with the following resource and deadline annotations: Cost: e, Free: e, and
Deadline: e. Annotations an are optional and may be associated with class
and method declarations, as well as with statements. Deadline annotations in-
teract with time to reflect soft end-to-end deadlines for method activations; i.e.,
deadlines may be violated in the model. The annotation Deadline: e specifies
the relative time before which a method activation should complete its execution.
Method calls without annotations get the infinite deadline by default.

Resource annotations interact with time and deployment components to ex-
press the resource consumption of a given cost model M. Cost and free anno-
tations have a default value of zero, which means that e.g., the execution of a
statement without explicit resource annotations has no effect on the deployment
component. For statements s, the annotations Cost: e and Free: e may be used
to override the default resource consumption associated with the execution of s
and the resources to be freed after finishing its execution. For class declarations
the annotations Cost: e and Free: e may be used to specify the resource con-
sumption associated with the creation of an object of that class and the resources
to be freed after the object creation. For method declarations, the annotation
Cost: e may be used to override a default resource consumption reflecting the
method activation, and Free: e may be used to override the default amount of
resources to be freed after method activation. The exact semantics can be seen
in Fig. 6.

3 Semantics

This section presents the operational semantics of Timed ABS as a transition
system in an SOS style [27]. Rules apply to subsets of configurations (the stan-
dard context rules are not listed). For simplicity we assume that configurations
can be reordered to match the left hand side of the rules (i.e., matching is modulo
associativity and commutativity as in rewriting logic [22]). A run is a possibly
nonterminating sequence of rule applications.
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cn ::= ε | obj | comp |msg | fut | cn cn
obj ::= o(σ, pr, q)

comp ::= dc(av , fr , tot)
msg ::= m(o, v, f, d)
fut ::= f | f(v)
tcn ::= {cn cl(t)}

s ::= timer(v) | . . .
v ::= o | f | dc | . . .
pr ::= {σ|s} | idle
σ ::= x 7→ v | σ ◦ σ
q ::= ε | pr | q ◦ q

Fig. 3. Runtime syntax; here, o and f are object and future identifiers, d and c are the
deadline and cost annotations.

The evaluation rules for the functional level of Timed ABS are standard and
have been omitted for brevity.

3.1 Runtime Configurations

The runtime syntax is given in Figure 3. We add identifiers for objects, compo-
nents, and futures to the values v and an auxiliary statement timer(v) to the
statements s. Configurations cn are sets of objects, components, messages, and
futures. A timed configuration tcn adds a global clock cl(t) to a configuration
(where t is a time value). Timed configurations live inside curly brackets; thus,
in {cn cl(t)}, the variable cn captures the entire system configuration at time
t. The associative and commutative union operator on (timed) configurations
is denoted by whitespace and the empty configuration by ε. An object obj is a
term o(σ, pr, q) where o is the object’s identifier, σ a substitution representing
the object’s fields, pr a process, and q a pool of processes. A substitution σ is
a mapping from variables x to values v. For substitutions and process pools,
concatenation is denoted by σ1 ◦ σ2 and q1 ◦ q2, respectively. A process pr is a
structure {σ|s}, where s is a list of statements and σ a substitution representing
the local variables, plus destiny (storing the future for the process’s return value)
and deadline, assuming no name conflicts. A process with an empty statement
list is denoted by idle.

A component comp is a structure dc(av , fr , tot) where dc is the component’s
identifier, av the unallocated resources, fr the deallocated resources, and tot the
resources initially assigned to the component. An invocation message msg is a
structure m(o, v, f, d), where m is the method name, o the callee, v the call’s
actual parameter values, f the future to which the call’s result is returned, and
d the provided deadline of the call. A future fut is either an identifier f , or a
term f(v) with an identifier f and a reply value v. For simplicity, classes are
not represented explicitly in the semantics, but may be seen as static tables for
object layout and method definitions.

3.2 A Transition System for Timed Configurations

General Expressions. Expressions are evaluated in the context of the attributes
a of an object, the local variables l of a process, and a time t. For simplicity,
we let this and thiscomp be appropriately bound attributes, and let destiny and
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(Skip)

o(a, {l|skip; s}, q)
→ o(a, {l|s}, q)

(Suspend)

o(a, {l|suspend; s}, q)
→ o(a, idle, {l|s} ◦ q)

(Tick)

canAdv(cn, t)

{cn cl(t)}
→ {Adv(cn) cl(t+ 1)}

(Schedule)

ready(pr, a, cn, t) pr ∈ q
{o(a, idle, q) cl(t) cn} →
{o(a, pr, (q \ pr)) cl(t) cn}

(Assign1)

v = [[e]]ta◦l x ∈ dom(l)

o(a, {l|x = e; s}, q) cl(t)→
o(a, {l[x 7→ v]|s}, q) cl(t)

(Assign2)

v = [[e]]ta◦l x ∈ dom(a)

o(a, {l|x = e; s}, q) cl(t)→
o(a[x 7→ v], {l|s}, q) cl(t)

(Await1)

[[e]]t,cna◦l
{o(a, {l|await e; s}, q) cl(t) cn}
→ {o(a, {l|s}, q) cl(t) cn}

(Await2)

¬[[e]]t,cna◦l
{o(a, {l|await e; s}, q) cl(t) cn} →

{o(a, {l|suspend;await e; s}, q) cl(t) cn}

(Duration1)

v = [[e]]ta◦l
o(a, {l|duration(e); s}, q) cl(t)

→ o(a, {l|timer(v); s}, q) cl(t)

(Timer)

v ≤ 0

o(a, {l|timer(v); s}, q)
→ o(a, {l|s}, q)

(Read-Fut)

f = [[e]]ta◦l
o(a, {l|x = e.get; s}, q) f(v) cl(t)

→ o(a, {l|x = v; s}, q) f(v) cl(t)

(Return)

v = [[e]]ta◦l f = l(destiny)

o(a, {l|return(e); s}, q) f cl(t)

→ o(a, {l|s}, q) f(v) cl(t)

(Cond1)

[[e]]ta◦l
o(a, {l|if e {s1} else {s2}; s}, q) cl(t)

→ o(a, {l|s1; s}, q) cl(t)

(Cond2)

¬[[e]]ta◦l
o(a, {l|if e {s1} else {s2}; s}, q) cl(t)

→ o(a, {l|s2; s}, q) cl(t)

Fig. 4. Non-annotated transitions in the semantics of ABS.

deadline be appropriately bound local variables, assuming no name conflicts.
We denote by [[e]]tσ the result of evaluating e in the context σ[now 7→ t]. (For
simplicity, this evaluation is assumed to converge.)

Evaluating Guards. A guard g is evaluated to determine whether a given
process starting with await g is ready to be scheduled. Given a substitution
σ, a time t, and a configuration cn, we denote by [[g]]t,cnσ an evaluation function
which reduces guards g to Boolean values, defined as follows: [[b]]t,cnσ = [[b]]tσ,
[[g1 ∧ g2]]t,cnσ = [[g1]]t,cnσ ∧[[g2]]t,cnσ , [[duration(e)]]t,cnσ = true iif [[e]]tσ ≤ 0, [[x?]]t,cnσ =
true if [[x]]tσ = f and f(v) ∈ cn for some value v, otherwise f ∈ cn and [[x?]]t,cnσ =
false.

Transition rules transform (timed) configurations into new (timed) config-
urations, and are given in Figs. 4 and 6. Note that we need to pass the clock
through all transition rules in which general expressions or guards are evaluated.
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We denote by a the substitution which represents the attributes of an object and
by l the substitution which represents the local variable bindings of a process. In
the semantics, different assignment rules are defined for side effect free expres-
sions (Assign1 and Assign2), object and component creation (New-Object1,
New-Object2, and New-Component), method calls (Async-call), and future
dereferencing (Read-Fut). Rule Skip consumes a skip in the active process.
Here and in the sequel, the variable s will match any (possibly empty) statement
list. Rules Assign1 and Assign2 assign the value of expression e to a variable x
in the local variables l or in the fields a, respectively. Rules Cond1 and Cond2
cover the two cases of conditional statements in the same way. (We omit the rule
for while, which unfolds into the conditional.)

Scheduling. Two operations manipulate a process pool q; pr◦q adds a process
pr to q and q \pr removes pr from q. If pr is a process, σ a substitution, t a time
value, and cn a configuration, we denote by ready(pr, σ, cn, t) a predicate which
checks if pr is ready to execute (in the sense that the processes will not directly
suspend or block the object’s processor [18]). Scheduling is captured by the rule
Schedule, which applies when the active process is idle and schedules some new
process pr for execution if it is ready. Note that in order to evaluate guards on
futures, the configuration cn is passed to the ready function. This explains the
use of brackets in the rules, which ensures that cn is bound to the rest of the
global system configuration. The same approach is used to evaluate guards in
the rules Await1 and Await2 below. Rule Suspend suspends the active process
to the process pool, leaving the active process idle. Rule Await1 consumes the
await g statement if g evaluates to true in the current state of the object, rule
Await2 adds a suspend statement in order to suspend the process if the guard
evaluates to false.

Durations. In rule Duration1, a statement duration(e) is reduced to the
runtime statement timer(v), in which the expressios e have been reduced to a
value. This statement blocks execution on the object until the best case execution
time v has passed and Timer becomes applicable; i.e., until at least the duration
v has passed. Time advance decrements the values of v (see below). Remark that
time cannot advance beyond duration v before the statement has been executed.

Time advance. To simplify the logging of resource consumption, we consider
a discrete time model in which time always advances by one unit. Rule Tick
specifies how time advances in the system. In order to capture timed concurrent
behavior with an interleaving semantics, we use a run-to-completion approach
in which a transition must occur at the current time if possible. We follow the
approach of Real-Time Maude [23, 24] and let time advance uniformly through
the configuration cn. Auxiliary functions, defined in Fig. 5, specify the advance-
ment of time and its effect: the predicate canAdv determines whether time may
advance at the current state, reflecting the run-to-completion approach. The
function Adv(cn) specifies how the advancement of time affects different parts of
the configuration cn. Both canAdv and Adv have the whole configuration as in-
put but mainly consider objects and deployment components since these exhibit
time-dependent behavior. The function Adv updates the active and suspended
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canAdv(cn′, t) = true cn’ contains no objects or messages
canAdv(msg cn, t) = false messages are instantaneous
canAdv(o(a, {l|[cost:e, an] s}, q) dc(av, fr , tot) cn, t) not enough resources

= canAdv(o(a, {l|[an] s}, q) dc(av , fr , tot) cn, t) (other annotations ignored)
∧ a(thiscomp) = dc ∧ [[e]]ta◦l = c ∧ c > av

canAdv(o(a, {l|x = e.get; s}, q) f cn, t) o is blocked and
= canAdv(f cn, t) ∧ [[e]]ta◦l = f no value is available

canAdv(o(a, {l|timer(v); s}, q) cn, t) o must wait
= canAdv(cn, t) ∧ v > 0

canAdv(o(a, idle, q) cn, t) no ready processes
= canAdv(cn, t) ∧ ¬ready(pr, a, cn, t) for all pr ∈ q

canAdv(obj cn, t) = false otherwise

Adv(o(a, pr, q) cn) = o(a,Adv1(pr),Adv2(q)) Adv(cn)
Adv(dc(av , fr , tot) cn) = dc(av + fr , 0, tot) Adv(cn)
Adv(cn) = cn otherwise

Adv1(idle) = idle
Adv1({l|[an]s}) = {l[deadline 7→ l(deadline)− 1]|Adv3(s)}
Adv2(∅) = ∅
Adv2({l|[an]s} ◦ q) = {l[deadline 7→ l(deadline)− 1]|[an]Adv4(s)} ◦Adv2(q)

Adv3(s) =

8>><>>:
timer(v − 1) if s = timer(v)
await Adv5(g) if s = await g
Adv3(s1) if s = s1; s2
s otherwise

Adv4(s) =

8<:
await Adv5(g) if s = await g
Adv4(s1) if s = s1; s2
s otherwise

Adv5(g) =

8<:
Adv5(g1) ∧Adv5(g2) if g = g1 ∧ g2
timer(v − 1) if g = timer(v)
g otherwise

Fig. 5. Functions controlling the advancement of time.

processes of all objects, decrementing all deadline values as well as timer state-
ments and guards at the head of the statement list in processes.

Annotations and Resources. Figure 6 presents the transition rules related to
the creation of deployment components and resource annotations. We consider
three kinds of annotations in this paper: deadline, cost, and free. The deadline an-
notation is associated with method calls, and is handled by the rule Async-Call
(explained below). The activation of a method and the creation of a class may af-
fect the resources at both the sender and receiver side. Receiver side annotations
are associated with the declaration of methods and classes, while sender side an-
notations may be associated with any statement in the model. A statement with
an empty list of annotations is handled as a statement without annotations by
rule No-Annotations. Cost annotations are controlled by rule Cost-Annotation
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(New-Component)

fresh(dc) v = [[e]]ta◦l
o(a, {l|x = component(e); s}, q) cl(t)

→ o(a, {l|x = dc; s}, q) dc(v, 0, v) cl(t)

(New-Object1)

v = a(thiscomp)

o(a, {l|x = new C(e); s}, q)→
o(a, {l|x = new C(e) in v; s}, q)

(Async-Call)

fresh(f) an = deadline:e′

o′ = [[e]]ta◦l v = [[e]]ta◦l d = [[e′]]ta◦l
o(a, {l|[an]x := e!m(e); s}, q) cl(t)→

o(a, {l|x := f); s}, q) cl(t) m(o′, v, f, d) f

(New-Object2)

fresh(o′) a′ = atts(C, [[e]]ta◦l, o
′, [[e]]ta◦l)

{l′|s′} = init(C) annotations(init, C) = an

o(a, {l|x = new C(e) in e; s}, q) cl(t)→
o(a, {l|x = o′; s}, q) o′(p′, a′, {l′|[an] s′}, ∅) cl(t)

(Activation)

class(o) = C

annotations(m,C) = an

{l|s} = bind(m,C, v̄, f, d)

o(a, pr, q) m(o, v̄, f, d)

→ o(a, pr, {l|[an] s} ◦ q)

(Cost-Annotation)

c ≤ av [[e]]ta◦l = c a(thiscomp) = dc

{o(a, {l|[an] s}, q) dc(av − c, fr , tot) cl(t) cn}
→ {o(a′, pr′, q′) dc(av ′, fr ′, tot) cl(t) cn′}

{o(a, {l|[cost:e, an] s}, q) dc(av , fr , tot) cl(t) cn}
→ {o(a′, pr′, q′) dc(av ′, fr ′, tot) cl(t) cn′}

(No-Annotations)

{o(a, {l|s}, q) cn}
→ {o(a′, pr′, q′) cn′}
{o(a, {l|[ε] s}, q) cn}
→ {o(a′, pr′, q′) cn′}

(Free-Annotation)

[[e]]ta◦l = f

a(thiscomp) = dc

{o(a, {l|[an] s}, q) dc(av , fr , tot) cl(t) cn}
→ {o(a′, pr′, q′) dc(av ′, fr ′, tot) cl(t) cn′}

{o(a, {l|[free:e, an] s}, q) dc(av , fr , tot) cl(t) cn}
→ {o(a′, pr′, q′) dc(av ′, fr ′ + f, tot) cl(t) cn′}

Fig. 6. Annotated transitions in the semantics of ABS.

and remove the specified amount e of resources from the available resources of the
deployment component in which the execution occurs. Observe that execution
can only occur if there are enough resources available, given by the constraint
c ≤ av. Free annotations are similarly controlled by rule Free-Annotation and
add the specified amount e of resources to the resources which may be freed in
the deployment component at the next time advance.

Auxiliary functions. Let class(o) denote the class of an object with identifier
o and let bind(m,C, v, f, d) return a process resulting from the activation of m in
class C, with actual parameters v, associated future f , and deadline d. If binding
succeeds, the method’s formal parameters are bound to v, the reserved variables
destiny and deadline are bound to f and d, respectively. Let annotations(m,C)
return the receiver side annotations associated with the definition of m in C.
If m is init , the annotations of the class definition are returned. If there are no
associated annotations, it returns ε. Let atts(C, v, o, dc) return the initial state
of an instance of class C, in which the formal class parameters are bound to v
and the reserved variables this and thiscomp are bound to o and dc. Let init(C)
return an activation of the init method of C, if defined, and call the run method,
if defined. Otherwise it returns idle.
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Method Calls. Rule Async-Call sends an invocation message of method m
to [[e]]ta◦l with actual parameters [[e]]ta◦l, the unique identity f of a new future
(since fresh(f)), and a deadline obtained from the (possibly default) annotation.
The identifier of the new future is placed in the configuration, and is bound to a
return value in Return. In rule Activation the function bind(m,C, v̄, f, d) binds
a method call to object o in the class of o and annotations(m,C) returns the an-
notations associated with the method declaration. This results in a new process
{l|[an]s} which is placed in the queue, where l(destiny) = f , l(deadline) = d,
and where the formal parameters of m are bound to v. Rule Return places the
evaluated return expression in the future associated with the destiny variable
of the process. Rule Read-Fut dereferences the future f(v). Note that if the
future lacks a return value, the reduction in this object is blocked.

Creation of Objects and Deployment Components. Rule New-Object1 re-
duces to an object creation in the current deployment component (thiscomp).
Rule New-Object2 creates a new object with a unique identifier o′ in a deploy-
ment component dc. The object’s fields are given default values by atts(C, v, o′, dc),
extended with the actual values v for the class parameters, o′ for this, and dc for
thiscomp. In order to instantiate the remaining attributes, the process init(C) is
scheduled, with the appropriate class annotations. Rule New-Component cre-
ates a new deployment component with a specified number of resources e, which
are initially available.

4 Example

The semantics of Section 3 have been implemented in rewriting logic to be ex-
ecutable in the Maude tool [8]. This section briefly presents a working example
and simulation results. Consider the model of a service for processing a job con-
sisting of a number of work packets, e.g., batch-converting a number of photos or
video frames (Figure 7). A client calls the request method of a Server object;
the number of frames, and a deadline for processing are given as parameters to
the request method, as are (specifications of) the time and memory processing
cost for each work unit. These last two parameters can be seen as abstractions
of the size of the image. The class ClientImp can be used to simulate specific
workloads, dispatching jobs of a given size with a certain frequency to the server.

4.1 Simulating Resource-Restricted Behaviors

A very simple scenario shows the principle of simulating resource restricted ex-
ecution in Timed ABS. Starting a client as follows:

new ClientImp (s, 1, 1, 3, 3, 3, Duration(8));

(1 job with 3 frames, t = 3 and cost 3 for each frame, deadline 8), with the
server s running in a deployment component with 3 memory units results in one
missed deadline. Since the available memory allows only one process to run at a
time, the three frames are processed in sequence and the last one cannot meet
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interface Server {
Bool request(Int nFrames, Int bc, Int wc, Duration dl);
Bool processframe(Int bc, Int wc);

}
class ServerImp implements Server {

Bool request(Int nFrames, Int bc, Int wc, Duration dl) {
List<Fut<Bool>> results = Nil;
Bool result = True;
while (nFrames > 0) {

[Deadline: dl] Fut<Bool> r = this!processframe(bc, wc);
results = Cons(r, results);
nFrames = nFrames - 1;
}

while (~(results == Nil)){
await (head(results))?;
Bool fr = head(results).get; result = result && fr;
results = tail(results);

}
return result;

}
Bool processframe(Int bc, Int wc) {

[MCost: wc] await duration(bc) ;
[MFree: wc] return deadline() > 0;

}
}

interface Client { }
class ClientImp (Server s, Int frequency, Int nJobs, Int nFrames,

Int bc, Int wc, Duration dl)
implements Client {

Unit run() {
if (nJobs > 0) {
Fut<Bool> res = s!request(nFrames, bc, wc, dl);
await duration(frequency);
nJobs = nJobs - 1;
this!run(); await res?;
}

}
}

Fig. 7. Photo and video processing example.

the deadline. Increasing available memory to 6 allows the job to run within the
specified deadline.

Figure 8 shows the results of a more involved scenario: two clients running
a job with 10 frames every 6 time units, for a total of 10 jobs, which would be
done in time t = 60 for an unconstrained server. The amount of missed deadlines
varies with the amount of memory available for processing, up to 75 memory
units which are enough to process the given workload scenario without deadline
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Fig. 8. Deadline misses as a function of memory size (left); deadline misses over time
for memory size=55 (right)

misses. The behavior of the server over time can also be visualized; Figure 8 also
shows deadline misses over time on memory size 55 for the same scenario.

5 Related Work

The concurrency model provided by concurrent objects and Actor-based com-
putation, in which software units with encapsulated processors communicate
asynchronously, is increasingly getting attention due to its intuitive and compo-
sitional nature [3, 14, 29]. This compositionality allows concurrent objects to be
naturally distributed on different locations, because only the local state of a con-
current object is needed to execute its methods. In previous work [2,19,20], the
authors have introduced deployment components as a modeling concept which
captures restricted resources shared between a group of concurrent objects, and
shown how components with parametric resources may be used to capture a
model’s behavior for different assumptions about the available resources.

Techniques for prediction or analysis of non-functional properties are based
on either measurement or modeling. Measurement-based approaches apply to
existing implementations, using dedicated profiling or tracing tools like JMeter
or LoadRunner. Model-based approaches allow abstraction from specific system
intricacies, but depend on parameters provided by domain experts [11]. A survey
of model-based performance analysis techniques is given in [4]. Formal systems
using process algebra, Petri Nets, game theory, and timed automata have been
used in the embedded software domain (e.g., [5,12]), but also to the schedulability
of processes in concurrent objects [16]. The latter work complements ours as it
does not consider restrictions on shared deployment resources, but associates
deadlines with method calls with abstract duration statements.

Work on modeling object-oriented systems with resource constraints is more
scarce. Using the UML SPT profile for schedulability, performance, and time,
Petriu and Woodside [25] informally define the Core Scenario Model (CSM) to
solve questions that arise in performance model building. CSM has a notion
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of resource context, which reflects an operation’s set of resources. CSM aims to
bridge the gap between UML and techniques to generate performance models [4].
Closer to our work is M. Verhoef’s extension of VDM++ for embedded real-
time systems [28], in which architectures are explicitly modeled using CPUs
and buses. The approach uses fixed resources targeting the embedded domain,
namely processor cycles bound to the CPUs, while we consider more general
resources for arbitrary software.

6 Discussion and Future Work

We have described a generic way of adding resource constraints to a executable
behavioral model. This expands on previous work, where the cost of execution
was bound to a specific resource and directly fixed in the language semantics.
In contrast, this paper generalized the approach by enabling the specification of
resource costs as part of the software development process, supported by explicit
user-defined cost statements expressed in terms of the local state and the input
parameters to methods. This way, the cost of execution in the model can be
adapted by the modeler to a specific cost scenario. Our extension to ABS allows
us to abstractly model the effect of deploying concurrent objects on deployment
components with different amounts of assigned resources at an early stage in the
software development process, before modeling the detailed control flow of the
targeted system.

This approach gives the modeler all freedoms, at the cost of manual resource
tracking. For specific kinds of resources, more specialized notations can make
expressing resource constraints easier – for example, for CPU (processing) re-
sources, cost and free are always the same amount, while for power consumption
resources are never freed, except when modeling an operator recharging a bat-
tery. Alternatively, our approach can be supported by a cost analysis tool such as
COSTA [1]). In collaboration with Albert et al., this was implemented for mem-
ory analysis of ABS models [2]. However, the generalization of that work for
general, user-defined resources and its integration into the software development
process remains future work.

Another extension of this work is to strengthen the available analysis methods
via a number of language extensions: User-defined schedulers for ABS, proba-
bilistic scheduling and load balancing of resources and objects will provide more
precise simulation results given knowledge of the deployment platform and show
the range of possible behaviors wrt performance of the system. Prototype im-
plementations of these features exist, and our current work is dedicated to inte-
grating them in the base language and tools.
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Automated Detection of Non-Termination and
NullPointerExceptions for Java Bytecode?
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Abstract. Recently, we developed an approach for automated termina-
tion proofs of Java Bytecode (JBC), which is based on constructing and
analyzing termination graphs. These graphs represent all possible pro-
gram executions in a finite way. In this paper, we show that this approach
can also be used to detect non-termination or NullPointerExceptions.
Our approach automatically generates witnesses, i.e., calling the program
with these witness arguments indeed leads to non-termination resp. to
a NullPointerException. Thus, we never obtain “false positives”. We
implemented our results in the termination prover AProVE and provide
experimental evidence for the power of our approach.

1 Introduction

To use program verification in the software development process, one is not
only interested in proving the validity of desired program properties, but also in
providing a witness (i.e., a counterexample) if the property is violated.

Our approach is based on our earlier work to prove termination of JBC [4,
6, 17]. Here, a JBC program is first automatically transformed to a termination
graph by symbolic evaluation. Afterwards, a term rewrite system is generated
from the termination graph and existing techniques from term rewriting are used
to prove termination of the rewrite system. As shown in the annual International
Termination Competition,1 our corresponding tool AProVE is currently among
the most powerful ones for automated termination proofs of Java programs.

Termination graphs finitely represent all runs through a program for a certain
set of input values. Similar graphs were used for many kinds of program analysis
(e.g., to improve the efficiency of software verification [7], or to ensure termi-
nation of program optimization [22]). In this paper, we show that termination
graphs can also be used to detect non-termination and NullPointerExceptions.

In Sect. 2, we recapitulate termination graphs. In contrast to [4, 6, 17], we
also handle programs with arrays and we present an algorithm to merge abstract
states in a termination graph which is needed in order to keep termination graphs
finite. In Sect. 3 we show how to automatically generate witness states (i.e., suit-
able inputs to the program) which result in errors like NullPointerExceptions.
Sect. 4 presents our approach to detect non-termination. Here, we use an SMT

? Supported by the DFG grant GI 274/5-3, the G.I.F. grant 966-116.6, and the DFG
Research Training Group 1298 (AlgoSyn).

1 See http://www.termination-portal.org/wiki/Termination_Competition
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solver to find different forms of non-terminating loops and the technique of Sect. 3
is applied to generate appropriate witness states.

Concerning the detection of NullPointerExceptions, most existing tech-
niques try to prove absence of such exceptions (e.g., [15, 23]), whereas our ap-
proach tries to prove existence of NullPointerExceptions and provides coun-
terexamples which indeed lead to such exceptions. So in contrast to bug finding
techniques like [2, 9], our approach does not yield “false positives”.

Methods to detect non-termination automatically have for example been
studied for term rewriting (e.g., [11, 19]) and logic programming (e.g., [18]). We
are only aware of two existing tools for automated non-termination analysis of
Java: The tool Julia transforms JBC programs into constraint logic programs,
which are then analyzed for non-termination [20]. The tool Invel [24] investigates
non-termination of Java programs based on a combination of theorem proving
and invariant generation using the KeY [3] system. In contrast to Julia and
to our approach, Invel only has limited support for programs operating on the
heap. Moreover, neither Julia nor Invel return witnesses for non-termination. In
Sect. 5 we compare the implementation of our approach in the tool AProVE with
Julia and Invel and show that our approach indeed leads to the most powerful
automated non-termination analyzer for Java so far.

Moreover, [14] presents a method for non-termination proofs of C programs.
In contrast to our approach, [14] can deal with non-terminating recursion and in-
teger overflows. On the other hand, [14] cannot detect non-periodic non-termina-
tion (where there is no fixed sequence of program positions that is repeated in-
finitely many times), whereas this is no problem for our approach, cf. Sect. 4.2.

There also exist tools for testing C programs in a randomized way, which can
detect candidates for potential non-termination bugs (e.g., [13, 21]). However,
they do not provide a proof for non-termination and may return “false positives”.

2 Termination Graphs

public class Loop {
public static void main(String [] a){
int i = 0;
int j = a.length;
while (i < j) {
i += a[i]. length (); }}}

Fig. 1. Java Program

main(String [] a):
00: iconst_0 #load 0 to stack
01: istore_1 #store to i
02: aload_0 #load a to stack
03: arraylength #get array length
04: istore_2 #store to j
05: iload_1 #load i to stack
06: iload_2 #load j to stack
07: if_icmpge 22 #jump to end if i >= j
10: iload_1 #load i to stack
11: aload_0 #load a to stack
12: iload_1 #load i to stack
13: aaload #load a[i]
14: invokevirtual length #call length ()
17: iadd #add length and i
18: istore_1 #store to i
19: goto 05
22: return

length ():
00: aload_0 #load this to stack
01: getfield count #load count field
04: ireturn #return it

Fig. 2. JBC Program

We illustrate our approach by the
main method of the Java program in
Fig. 1. The main method is the en-
try point when starting a program. Its
only argument is an array of String
objects corresponding to the argu-
ments specified on the command line.
To avoid dealing with all syntactic
constructs of Java, we analyze JBC
instead. JBC [16] is an assembly-like
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object-oriented language designed as intermediate format for the execution of
Java. The corresponding JBC for our example, obtained automatically by the
standard javac compiler, is shown in Fig. 2 and will be explained in Sect. 2.2.

The method main increments i by the length of the i-th input string until i
exceeds the number j of input arguments. It combines two typical problems:

(a) The accesses to a.length and a[i].length() are not guarded by appropri-
ate checks to ensure memory safety. Thus, if a or a[i] are null, the method
ends with a NullPointerException. While this cannot happen when the
method is used as an entry point for the program, another method could for
instance contain String[] b = {null}; Loop.main(b).

(b) The method may not terminate, as the input arguments could contain the
empty string. If a[i] = "", then the counter i is not increased, leading
to looping non-termination, as the same program state is visited again and
again. For instance, the call java Loop "" does not terminate.

We show how to automatically detect such problems and to synthesize appropri-
ate witnesses in Sect. 3 and 4. Our approach is based on termination graphs that
over-approximate all program executions. After introducing our notion of states
in Sect. 2.1, we describe the construction of termination graphs in Sect. 2.2.
Sect. 2.3 shows how to create “merged” states representing two given states.

2.1 Abstract States

Our approach is related to abstract interpretation [8], since the states in termi-
nation graphs are abstract, i.e., they represent a (possibly infinite) set of concrete
system configurations of the program. We define the set of all states as States =
(PPos×LocVar×OpStack)∗ × ({⊥} ∪Refs)×Heap×Annotations.

Consider the program from Fig. 1. The initial state A in Fig. 3 represents all
system configurations entering the main method with arbitrary tree-shaped (and
thus, acyclic) non-null arguments. A state consists of four parts: the call stack,
exception information, the heap, and annotations for possible sharing effects.

00 |a :a1 |ε
a1:String[ ] i1 i1: [≥0]

Fig. 3. State A

The call stack consists of stack frames, where several
frames may occur due to method calls. For readability, we
exclude recursive programs, but our results easily extend to
the approach of [6] for recursion. We also disregard multi-

threading, reflection, static fields, static initialization of classes, and floats.
Each stack frame has three components. We write the frames of the call stack

below each other and separate their components by “|”. The first component of
a frame is the program position, indicated by the number of the next instruction
(00 in Fig. 3). The second component represents the local variables by a list of
references to the heap, i.e., LocVar = Refs∗. To avoid a special treatment of
primitive values, we also represent them by references. In examples, we write the
names of variables instead of their indices. Thus, “a :a1” means that the value of
the 0-th local variable a is the reference a1 (i.e., a1 is the address of an array ob-
ject). Of course, different local variables can point to the same address. The third
component is the operand stack that JBC instructions work on, where OpStack
= Refs∗. The empty stack is “ε” and “i6, i4” is a stack with i6 on top.
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Information about thrown exceptions is represented in the second part of
our states. If no exception is currently thrown, this part is ⊥ (which we do not
display in example states). Otherwise it is a reference to the exception object.

Below the call stack, information about the heap is given by a partial func-
tion from Heap = Refs → (Integers ∪ Unknown ∪ Instances ∪ Arrays
∪ {null}) and by a set of annotations which specify possible sharing effects.

Our representation of integers abstracts from the different bounded types
of integers in Java and considers arbitrary integer numbers instead (i.e., we
do not handle overflows). To represent unknown integer values, we use possibly
unbounded intervals, i.e., Integers = {{x ∈ Z | a ≤ x ≤ b} | a ∈ Z∪{−∞}, b ∈
Z∪{∞}, a ≤ b}. We abbreviate (−∞,∞) by Z and intervals like [0,∞) by [≥ 0].
So “i1: [≥0]” means that any non-negative integer can be at the address i1.

Classnames contains the names of all classes and interfaces in the program.
Types = Classnames∪ {t[ ] | t ∈ Types} contains Classnames and all re-
sulting array types. So a type t[ ] can be generated from any type t to describe
arrays with entries of type t.2 We call t′ a subtype of t iff t′ = t; or t′ extends3

or implements a subtype of t; or t′ = t̂′[ ], t = t̂[ ], and t̂′ is a subtype of t̂.

The values in Unknown = Types×{?} represent tree-shaped (and thus
acyclic) objects and arrays where we have no information except the type. For
example, for a class List with the field next of type List, “o1 : List(?)” means
that the object at address o1 is null or of a subtype of List.

Instances represent objects of some class. They are described by the values
of their fields, i.e., Instances = Classnames×(FieldIDs→ Refs). For cases
where field names are overloaded, the FieldIDs also contain the respective class
name to avoid ambiguities, but we usually do not display it in our examples. So
“o1 : List(next = o2)” means that at the address o1, there is a List object and
the value of its field next is o2. For all (cl , f) ∈ Instances, the function f is
defined for all fields of the class cl and all of its superclasses.

In contrast to our earlier papers [4, 6, 17], in this paper we also show how to
handle arrays. An array can be represented by an element from Types×Refs
denoting the array’s type and length (specified by a reference to an integer value).
For instance, “a1:String[ ] i1” means that at the address a1, there is a String

array of length i1. Alternatively, the array representation can also contain an
additional list of references for the array entries. So “a2 : String[ ] i1 {o1, o2}”
denotes that at the address a2, we have a String array of length i1, and its entries
are o1 and o2. Thus, Arrays = (Types×Refs) ∪ (Types×Refs×Refs∗).

In our representation, no sharing can occur unless explicitly stated. So an
abstract state containing the references o1, o2 and not mentioning that they
could be sharing, only represents concrete states where o1 and the references
reachable from o1 are disjoint4 from o2 and the references reachable from o2.
Moreover, then the objects at o1 and o2 must be tree-shaped (and thus acyclic).

2 We do not consider arrays of primitives in this paper, but our approach can easily
be extended to handle them, as we did in our implementation.

3 For example, any type (implicitly) extends the type java.lang.Object.
4 Disjointness is not required for references pointing to Integers or to null.
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Certain sharing effects are represented directly (e.g., “o1 :List(next=o1)” is
a cyclic singleton list). Other sharing effects are represented by three kinds of an-
notations, which are only built for references o where h(o) /∈ Integers∪ {null}
for the heap h. The first kind of annotation is called equality annotation and has
the form “o1 =? o2”. Its meaning is that the addresses o1 and o2 could be
equal. We only use such annotations if the value of at least one of o1 and o2
is Unknown. Joinability annotations are the second kind of annotation. They
express that two objects “may join” (o1 %$ o2). We say that a non-integer and
non-null reference o′ is a direct successor of o in a state s (denoted o→s o

′) iff
the object at address o has a field whose value is o′ or if the array at address o
has o′ as one of its entries. The meaning of “o1 %$ o2” is that there could be an
o with o1 →∗s o ←+

s o2 or o1 →+
s o ←∗s o2, i.e., o is a common successor of the

two references. However, o1 %$ o2 does not imply o1 =? o2. Finally, as the third
type of annotations, we use cyclicity annotations “o!” to denote that the object
at address o is not necessarily tree-shaped (so in particular, it could be cyclic).

2.2 Constructing Termination Graphs

Starting from the initial state A, the termination graph in Fig. 4 is constructed
by symbolic evaluation. In the first step, we have to evaluate iconst 0, i.e., we
load the integer 0 on top of the operand stack. The second instruction istore 1

stores the value 0 on top of the operand stack in the first local variable i.5

After that, the value of the 0-th local variable a (the array in the input
argument) is loaded on the operand stack and the instruction arraylength

retrieves its (unknown) length i1. That value is then stored in the second local
variable j using the instruction istore 2. This results in the state B in Fig. 4.
We connect A and B by a dotted arrow, indicating several evaluation steps (i.e.,
we omitted the states between A and B for space reasons in Fig. 4).

From B on, we load the values of i and j on the operand stack and reach
C.6 The instruction if icmpge branches depending on the relation of the two
elements on top of the stack. However, based on the knowledge in C, we cannot
determine whether i >= j holds. Thus, we perform a case analysis (called integer
refinement [4, Def. 1]), obtaining two new states D and E. We label the refine-
ment edges from C to D and E (represented by dashed arrows) by the reference
i1 that was refined. In D, we assume that i >= j holds. Hence, i1 (corresponding
to j) is ≤ 0 and from i1 : [≥ 0] in state C we conclude that i1 is 0. We thus
reach instruction 22 (return), where the program ends (denoted by �).

In E, we consider the other case and replace i1 by i2, which only represents
positive integers. We mark what relation holds in this case by labeling the eval-
uation edge from E to its successor with 0 < i2. In general, we always use a
fresh reference name like i2 when generating new values by a case analysis, to

5 If we have a reference whose value is from a singleton interval like [0, 0] or null,
we replace all its occurrences in states by 0 resp. by null. So in state B, we simply
write “i :0”. Such abbreviations will also be used in the labels of edges.

6 The box around C and the following states is dashed to indicate that these states
will be removed from the termination graph later on.
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00 |a :a1 |ε
a1:String[ ] i1 i1: [≥0]

A

05 |a :a1, i :0, j : i1 |ε
a1:String[ ] i1 i1: [≥0]

B

07 |a :a1, i :0, j : i1 | i1,0
a1:String[ ] i1 i1: [≥0]

C

07 |a :a1, i :0, j :0 |0,0
a1:String[ ] 0

D07 |a :a1, i :0, j : i2 | i2,0
a1:String[ ] i2 i2: [>0]

E

13|a :a1, i :0, j : i2 |0,a1,0
a1:String[ ] i2 i2: [>0]

F

a1[0] : o1
13|a :a1, i :0, j : i2 |0,a1,0
a1:String[ ] i2 i2: [>0]
o1:String(?) a1 %$ o1

G

14|a :a1, i :0, j : i2 |o1,0
a1:String[ ] i2 i2: [>0]
o1:String(?) a1 %$ o1

H 14|a :a1, i :0, j : i2 |o2,0
a1:String[ ] i2 i2: [>0]
o2:String(count=i3, . . .)
i3: [≥0] a1 %$ o2

K

14|a :a1, i :0, j : i2 |null,0
a1:String[ ] i2 i2: [>0]

I

exception: o3
14|a :a1, i :0, j : i2 |null,0
a1:String[ ] i2 i2: [>0]
o3:NullPointerExc(. . .)

J

00|this :o2 |ε
17|a :a1, i :0, j : i2 |0
a1:String[ ] i2 i2: [>0]
o2:String(count=i3, . . .)
i3: [≥0] a1 %$ o2

L

05|a :a1, i : i4, j : i2 |ε
a1:String[ ] i2 i2: [>0]
i4: [≥0]

M

05|a :a1, i : i4, j : i6 |ε
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

N

07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

O

T:07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

P

F:07|a :a1, i : i4, j : i6 | i6,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

Q

13|a :a1, i : i4, j : i6| i4,a1,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

R

a1[i4] : o4
13|a :a1, i : i4, j : i6| i4,a1,i4
a1:String[ ] i6 i6: [≥0]
o4:String(?) a1 %$ o4
i4: [≥0]

S

14|a :a1, i : i4, j : i6 |o4,i4
a1:String[ ] i6 i6: [≥0]
o4:String(?) a1 %$ o4
i4: [≥0]

T
14|a :a1, i : i4, j : i6|null,i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0]

V

exception: o6
14|a :a1, i : i4, j : i6|null,i4
a1 : String[ ] i6 i6 : [≥0]
i4: [≥0]
o6:NullPointerExc(. . .)

W

14|a :a1, i : i4, j : i6 |o5,i4
a1:String[ ] i6 i6: [≥0]
o5:String(count=i7, . . .)
i4: [≥0] i7: [≥0] a1 %$ o5

U

04|this :o5 | i7
17|a :a1, i : i4, j : i6 | i4
a1:String[ ] i6 i6: [≥0]
o5:String(count=i7, . . .)
i4: [≥0] i7: [≥0] a1 %$ o5

X

17|a :a1, i : i4, j : i6 | i7 , i4
a1:String[ ] i6 i6: [≥0]
i4: [≥0] i7: [≥0]

Y

05|a :a1, i : i8, j : i6 |ε
a1:String[ ] i6 i6: [≥0]
i8: [≥0]

Z

{i1}{i1}

0 < i2

{a1, 0}

0 ≤ 0, 0 < i2

{o1}

{o1}
i4= i3+0

{i4, i6} {i4, i6}

i4 < i6

{a1, i4}

0 ≤ i4, i4 < i6

{o4}

{o4}

i8 = i7 + i4

Fig. 4. Termination Graph

ensure single static assignments, which will be useful in the analysis later on. We
continue with instruction 10 and load the values of i, a, and i on the operand
stack, obtaining state F . To evaluate aaload (i.e., to load the 0-th element from
the array a1 on the operand stack), we add more information about a1 at the
index 0 and label the refinement edge from F to G accordingly. In G, we created
some object o1 for the 0-th entry of the array a1 and marked that o1 is reachable
from a1 by adding the joinability annotation a1 %$ o1.7

Now evaluation of aaload moves o1 to the operand stack in state H. When-
ever an array access succeeds, we label the corresponding edge by the condition
that the used index is ≥ 0 and smaller than the length of the array.

In H, we need to invoke the method length() on the object o1. However, we
do not know whether o1 is null (which would lead to a NullPointerException).

7 If we had already retrieved another value o′ from the array a1, it would also have
been annotated with a1 %$ o′ and we would consequently add o1 %$ o′ and o1 =? o′

when retrieving o1, indicating that the two values may share or even be equal.
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Hence, we perform an instance refinement [4, Def. 5] and label the edges from
H to the new states I and K by the reference o1 that is refined. In I, o1 has
the value null. In K, we replace the reference o1 by o2, pointing to a concrete
String object with unknown field values. In Fig. 4, we only display the field
count, containing the integer reference i3. In this instance refinement, one uses
the special semantics of the pre-defined String class to conclude that i3 can only
point to a non-negative integer, as count corresponds to the length of the string.
In I, further evaluation results in a NullPointerException. A corresponding
exception object o3 is generated and the exception is represented in J . As no
exception handler is defined, evaluation ends and the program terminates.

In K, calling length() succeeds. In L, a new stack frame is put on top of the
call stack, where the implicit argument this is set to o2. In the called method
length(), we load o2 on the operand stack and get the value i3 of its field count.
We then return from length(), add the returned value i3 to 0, and store the re-
sult in the variable i. Afterwards, we jump back to instruction 05. This is shown
in state M and the computation i4 = i3 + 0 is noted on the evaluation edge.

But now M is at the same program position as B. Continuing our symbolic
evaluation would lead to an infinite tree, as we would always have to consider the
case where the loop condition i < j is still true. Instead, our goal is to obtain a
finite termination graph. The solution is to automatically generate a new state N
which represents all concrete states that are represented by B or M (i.e., N re-
sults from merging B and M). Then we can insert instance edges from B and M
to N (displayed by double arrows) and continue the graph construction with N .

2.3 Instantiating and Merging States

To find differences between states and to merge states, we introduce state po-
sitions. Such a position describes a “path” through a state, starting with some
local variable, operand stack entry, or the exception object and then continu-
ing through fields of objects or entries of arrays. For the latter, we use the set
ArrayIdxs = {[j] | j ≥ 0} to describe the set of all possible array indices.

Definition 1 (State Positions SPos). Let s=(〈fr0, . . . , frn〉, e, h, a) be a state
where each stack frame fr i has the form (ppi, lvi, osi). Then SPos(s) is the
smallest set containing all the following sequences π:

• π = lvi,j where 0≤ i≤n, lvi = 〈oi,0, . . . , oi,mi
〉, 0≤j≤mi. Then s|π is oi,j.

• π = osi,j where 0≤ i≤n, osi = 〈o′i,0, . . . , o′i,ki〉, 0≤j≤ki. Then s|π is o′i,j.
• π = exc if e 6= ⊥. Then s|π is e.
• π = π′ v for some v ∈ FieldIDs and some π′ ∈ SPos(s) where h(s|π′) =

(cl , f) ∈ Instances and where f(v) is defined. Then s|π is f(v).
• π = π′ len for some π′ ∈ SPos(s) where h(s|π′) = (t, i) ∈ Arrays or
h(s|π′) = (t, i, d) ∈ Arrays. Then s|π is i.
• π = π′ [j] for some [j] ∈ ArrayIdxs and some π′ ∈ SPos(s), where
h(s|π′) = (t, i, 〈r0, . . . , rq〉) ∈ Arrays and 0 ≤ j ≤ q. Then s|π is rj.

For any position π, let πs denote the maximal prefix of π such that πs ∈ SPos(s).
We write π if s is clear from the context.
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For example, in state K, the position π = os0,0 count refers to the reference
i3, i.e., we have K|π = i3 and for the position τ = lv0,0 len, we have K|τ = i2.
As the field count was introduced between H and K by an instance refinement,
we have π 6∈ SPos(H) and πH = os0,0, where H|π = o1. We can now see that
B and M only differ in the positions lv0,0 len, lv0,1, and lv0,2.

A state s′ is an instance of another state s (denoted s′ v s) if both are at the
same program position and if whenever there is a reference s′|π, then either the
values represented by s′|π in the heap of s′ are a subset of the values represented
by s|π in the heap of s or else, π /∈ SPos(s). Moreover, shared parts of the heap
in s′ must also be shared in s. As we only consider verified JBC programs, the
fact that s and s′ are at the same program position implies that they have the
same number of local variables and their operand stacks have the same size. For
a formal definition of “instance”, we refer to [5, 4].8

For example, B is not an instance of M since hB(B|lv0,2) = [0,∞) 6⊆ [1,∞) =
hM (M |lv0,2) for the heaps hB and hM of B and M . Similarly, M 6v B because
hM (M |lv0,1

) = [0,∞) 6⊆ {0} = hB(B|lv0,1
). However, we can automatically

synthesize a “merged” (or “widened”) state N with B v N and M v N by
choosing the values for common positions π in B and M to be the union of
the values in B and M , i.e., hN (N |π) = hB(B|π) ∪ hM (M |π). Thus, we have
hN (N |lv0,2) = [0,∞) ∪ [1,∞) = [0,∞) and hN (N |lv0,1) = {0} ∪ [0,∞) = [0,∞).

Algorithm mergeStates(s, s′):
ŝ = new State(s)
for π ∈ SPos(s) ∩ SPos(s′):

ref = mergeRef(s|π, s′|π)
ĥ(ref ) = mergeVal(h(s|π), h′(s′|π))
ŝ|π = ref

for π 6= π′ ∈ SPos(s):

if (s|π = s|π′ ∨ s|π =? s|π′)
∧ h(s|π) /∈ Integers∪{null}:
if π, π′ ∈ SPos(ŝ):

if ŝ|π 6= ŝ|π′: Set ŝ|π =? ŝ|π′

else:

Set ŝ|π %$ ŝ|π′

if s|π %$ s|π′ : Set ŝ|π %$ ŝ|π′

for π ∈ SPos(s):
if s|π!: Set ŝ|π !
if ∃ρ 6=ρ′:πρ,πρ′∈SPos(s) ∧ s|πρ=s|πρ′
∧ ρ, ρ′ have no common prefix 6= ε
∧ h(s|πρ) /∈ Integers∪{null}:
if πρ, πρ′ ∈ SPos(ŝ) ∧ ŝ|πρ 6= ŝ|πρ′ :

Set ŝ|π!
if {πρ, πρ′} 6⊆ SPos(ŝ): Set ŝ|π !

. . . same for SPos(s′) . . .
return ŝ

Fig. 5. Merging Algorithm

This merging algorithm is illus-
trated in Fig. 5. Here, h, h′, ĥ refer to
the heaps of the states s, s′, ŝ, respec-
tively. With new State(s), we cre-
ate a fresh state at the same program
position as s. The auxiliary func-
tion mergeRef is an injective map-
ping from a pair of references to
a fresh reference name. The func-
tion mergeVal maps two heap val-
ues to the most precise value from
our abstract domains that represents
both input values. For example,
mergeVal([0, 1], [10, 15]) is [0, 15],
covering both input values, but also
adding [2, 9] to the set of represented
values. For values of the same
type, e.g., String(count=i1, . . . ) and
String(count=i2, . . . ), mergeVal re-
turns a new object of same type with
field values obtained by mergeRef,
e.g., String(count=i3, . . . ) where i3
= mergeRef(i1, i2). When merging
values of differing types or null, a

8 The “instance” definition from [4, Def. 3] can easily be extended to arrays, cf. [5].
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value from Unknown with the most precise common supertype is returned.
To handle sharing effects, in a second step, we check if there are “sharing”

references at some positions π and π′ in s or s′ that do not share anymore in
the merged state ŝ. Then we add the corresponding annotations to the maximal
prefixes ŝ|π and ŝ|π′ . Furthermore, we check if there are non-tree shaped objects
at some position π in s or s′, i.e., if one can reach the same successor using
different paths starting in position π. Then we add the annotation ŝ|π !.

Theorem 2. Let s, s′ ∈ States and ŝ = mergeStates(s,s′). Then s v ŝ w s′.9
In our example, we used the algorithm mergeStates to create the state N

and draw instance edges from B and M to N . Since the computation in N also
represents the states C to M (marked by dashed borders), we now remove them.

We continue symbolic evaluation in N , reaching state O, which is like C. In C,
we refined our information to decide whether the condition i >= j of if icmpge

holds. However, now this case analysis cannot be expressed by simply refining
the intervals from Integers that correspond to the references i6 and i4 (i.e., a
relation like i4 ≥ i6 is not expressible in our states). Instead, we again generate
successors for both possible values of the condition i >= j, but do not change
the actual information about our values. In the resulting states P and Q, we
mark the truth value of the condition i >= j by “T” and “F”. The refinement
edges from O to P and Q are marked by the references i4 and i6 that are refined.
P leads to a program end, while we continue the symbolic evaluation in Q. As
before, we label the refinement edge from Q to R by i4 < i6.

R and S are like F and G. The refinement edge from R to S is labeled by
a1 and i4 which were refined in order to evaluate aaload (note that since we
only reach R if i4 < i6, the array access succeeds). As in H, we then perform
an instance refinement to decide whether calling length() on the object o4
succeeds, leading to U and V . From V , we again reach a program end after a
NullPointerException was thrown in W . From U , we reach X by evaluating
the call to length(). Between X to Y , we return from length(). After that,
we add the two non-negative integers i7 and i4, creating a non-negative integer
i8. The edge from Y to Z is labeled by the computation i8 = i7 + i4.

Z is again an instance of N . We can also use the algorithm mergeStates

to determine whether one state is an instance of another: When merging s, s′

to obtain a new state ŝ, one adapts mergeStates(s, s′) such that the algorithm
terminates with failure whenever we widen a value of s or add an annotation to ŝ
that did not exist in s (e.g., when we add ŝ|π =? ŝ|π′ and there is no s|π =? s|π′).
Then the algorithm terminates successfully iff s′ v s holds. After drawing the
instance edge from Z to N (yielding a cycle in our graph), all leaves of the graph
are program ends and thus the graph construction is finished.

We now define termination graphs formally. We extend our earlier definition
from [4] slightly by labeling edges with information about the performed refine-
ments and about the relations of integers. Let RelOp = {i ◦ i′ | i, i′ ∈ Refs, ◦ ∈
{<,≤,=, 6=,≥, >}} denote the set of relations between two integer references
such as i4 < i6 and ArithOp = {i = i′ ./ i′′ | i, i′, i′′ ∈ Refs, ./ ∈ {+,−, ∗, /,%}}
9 For all proofs, we refer to [5].

M. Brockschmidt, T. Ströder, C. Otto, J. Giesl
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denote the set of arithmetic computations such as i8 = i7 + i4.
Termination graphs are constructed by repeatedly expanding those leaves

that do not correspond to program ends. Whenever possible, we use symbolic

evaluation
SyEv−→ . Here,

SyEv−→ extends the usual evaluation relation for JBC such
that it can also be applied to abstract states representing several concrete states.

For a formal definition of
SyEv−→ , we refer to [4, Def. 6]. In the termination graph,

the corresponding evaluation edges can be labeled by a set C ⊆ ArithOp∪RelOp
which corresponds to the arithmetic operations and (implicitly) checked relations
in the evaluation. For example, when accessing the index i of an array a succeeds,
we have implicitly ensured 0 ≤ i and i < a.length and this is noted in C.

If symbolic evaluation is not possible, we refine the information for some
references R by case analysis and label the resulting refinement edges with R.

To obtain a finite graph, we create a more general state by merging whenever
a program position is visited a second time in our symbolic evaluation and add
appropriate instance edges to the graph. However, we require all cycles of the
termination graph to contain at least one evaluation edge. By using an appro-
priate strategy for merging resp. widening states, we can automatically generate
a finite termination graph for any program.

Definition 3 (Termination Graph). A graph (V,E) with V ⊆ States, E ⊆
V ×

(
({Eval}× 2ArithOp∪RelOp)∪ ({Refine}× 2Refs)∪ {Ins}

)
× V is a termi-

nation graph if every cycle contains at least one edge labeled with some EvalC
and one of the following holds for each s ∈ V :

• s has just one outgoing edge (s,EvalC , s
′), s

SyEv−→ s′, and C is the set of
integer relations that are checked (resp. generated) in this step
• the outgoing edges of s are (s,RefineR, s1), . . . , (s,RefineR, sn) and {s1,
. . . , sn} is a refinement of s on the references R ⊆ Refs
• s has just one outgoing edge (s, Ins, s′) and s v s′
• s has no outgoing edge and s = (ε, e, h, a) (i.e., s is a program end)

We refer to [6, 17] for methods to use termination graphs for termination
proofs and to [4] for soundness proofs which show that if c is a concrete state
with c v s for some state s in the termination graph, then the JBC evaluation of
c is represented in the termination graph. In Sect. 3 and 4 we show how to use
termination graphs to detect NullPointerExceptions and non-termination.

3 Generating Witnesses for NullPointerExceptions

In our example, an uncaught NullPointerException is thrown in the “error
state” W , leading to a program end. Such violations of memory safety can be
immediately detected from the termination graph. In particular, if the graph
does not contain any such exceptions, then memory safety is proved.10

To report a possible violation of memory safety to the user, we now show

10 In languages like C, memory safety (or pointer safety) means absence of (i) accesses
to null, (ii) dangling pointers, and (iii) memory leaks [25]. In Java, (ii) and (iii) are
ensured by the JVM and only NullPointerExceptions can destroy memory safety.
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how to automatically generate a witness (i.e., an assignment to the arguments
of the program) that leads to the exception. Our termination graph allows us
to generate such witnesses automatically. This technique for witness generation
will also be used to construct witnesses for non-termination in Sect. 4.

So our goal is to find a witness state A′ for the initial state A of the method
main w.r.t. the “error state” W . This state A′ describes a subset of arguments,
all of which lead to an instance of W , i.e., to a NullPointerException.

Definition 4 (Witness State). Let s, s′, w ∈ States. The state s′ is a witness

state for s w.r.t. w iff s′ v s and s′
SyEv−→ ∗ w′ for some state w′ v w.

To obtain a witness state A′ for A automatically, we start with the error
state W and traverse the edges of the termination graph backwards until we
reach A. In general, let s0, s1, . . . , sn = w be a path in the termination graph
from the initial state s0 to the error state sn. Assuming that we already have a
witness state s′i for si w.r.t. w, we show how to generate a witness state s′i−1 for
si−1 w.r.t. w. To this end, we revert the changes done to the state si−1 when
creating the state si during the construction of the termination graph (i.e., we
apply the rules for termination graph construction “backwards”). Of course, this
generation of witness states can fail (in particular, this happens for error states
that are not reachable from any concrete instantiation of the initial state s0). So
in this way, our technique for witness generation is also used as a check whether
certain errors can really result from initial method calls.

In our example, the error state is W . Trivially, W itself is a witness state for
W w.r.t. W . The only edge leading to W is from V . Thus, we now generate a
witness state V ′ for V w.r.t. W . The edge from V to W represents the evaluation
of the instruction invokevirtual that triggered the exception. Reversing this
instruction is straightforward, as we only have to remove the exception object
from W again. Thus, V is a witness state for V w.r.t. W .

The only edge leading to V is a refinement edge from T . As a refinement
corresponds to a case analysis, the information in the target state is more precise.
Hence, we can reuse the witness state for V , since V is an instance of T . So V
is also a witness state for T w.r.t. W . 13|a :a2, i :0, j :1|0,a2,0

a2:String[ ] 1 {null}
Fig. 6. State R′

To reverse the edge between T and S, we have to undo
the instruction aaload. This is easy since S contains the
information that the entry at index i4 in the array a1 is o4. Thus the witness state
S′ for S w.r.t. W is like S, but here o4’s value is not an unknown object, but null.
Reversing the refinement between S and R is more complex. Note that not every
state represented by R leads to a NullPointerException. In S we had noted the
relation between the newly created reference o4 and the original array a1. In other
words, in S we know that a1[i4] is o4, where o4 has the value null in the witness
state S′ for S. But in R, o4 is missing. To solve this problem, in the witness state
R′ for R, we instantiate the abstract array a1 by a concrete one that contains
the entry null at the index i4. We use a simple heuristic11 to choose a suitable

11 Such heuristics cannot affect soundness, but just the power of our approach (choosing
unsuitable values may prevent us from finding a witness for the initial state).
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length i6 for this concrete array, which tries to find “minimal” values. Here, our
heuristic chooses a1 to be an array of length one (i.e., i6 is chosen to be 1),
which only contains the entry null (at the index 0, i.e., i4 is chosen to be 0).
The resulting witness state R′ for R w.r.t. W is displayed in Fig. 6.

0|a :a2|ε
a2:String[ ] 1 {null}

Fig. 7. State A′

Reversing the evaluation steps between R and Q yields
a witness state Q′ for Q w.r.t. W . From O to Q, we have a
refinement edge and thus, Q′ is also a witness for O.

The steps from N to O can also be reversed easily. In N , we use a heuristic
to decide whether to follow the incoming edge from Z or from B. Our heuristic
chooses B as it is more concrete than Z. From there, we continue our reversed
evaluation until we reach a witness state A′ for the initial state A of the method
w.r.t. W , cf. Fig. 7. So any instance of A′ evaluates to an instance of W , i.e., it
leads to a NullPointerException. If the main method is called directly (as the
entry point of the program), then the JVM ensures that the input array does not
contain null references. But if the main method is called from another method,
then this violation of memory safety can indeed occur, cf. problem (a) in Sect. 2.

The following theorem summarizes our procedure to generate witness states.
If there is an edge from a state s1 to a state s2 in the termination graph and we
already have a witness state s′2 for s2 w.r.t. w, then Thm. 5 shows how to obtain
a witness state s′1 for s1 w.r.t. w. Hence, by repeated application of this construc-
tion, we finally obtain a witness state for the initial state of the method w.r.t. w.
If there is an evaluation edge from s1 to s2, then we first apply the reversed rules
for symbolic evaluation on s′2. Afterwards, we instantiate the freshly appearing
references (for example, those overwritten by the forward symbolic evaluation)
such that s′1 is indeed an instance of s1. If there is a refinement edge from s1 to
s2, then the witness state s′1 is like s′2, but when reading from abstract arrays
(such as between R and S), we instantiate the array to a concrete one in s′1. If
there is an instance edge from s1 to s2, then we intersect the states s1 and s′2 to
obtain a representation of those states that are instances of both s1 and s′2.

Theorem 5 (Generating Witnesses). Let (s1, l, s2) be an edge in the termi-
nation graph and let s′2 be a witness state for s2 w.r.t. w. Let s′1 ∈ States with:

• if l = EvalC , then s′1 is obtained from s′2 by applying the symbolic evaluation
used between s1 and s2 backwards. In s′1, we instantiate freshly appearing

variables such that s′1 v s1 and s′1
SyEv−→ s′2 holds.

• if l = RefineR, then s′1 v s′2.
• if l = Ins, then s′1 = s1 ∩ s′2 (for the definition of ∩, see [6, Def. 2]).

Then s′1 is a witness state for s1 w.r.t. w.

4 Proving Non-Termination

Now we show how to prove non-termination automatically. Sect. 4.1 introduces
a method to detect looping non-termination, i.e., infinite evaluations where the
interesting references (that determine the termination behavior) are unchanged.
Sect. 4.2 presents a method which can also detect non-looping non-termination.
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4.1 Looping Non-Termination

For each state, we define its interesting references that determine the control flow
and hence, the termination behavior. Which references are interesting can be
deduced from the termination graph, because whenever the (changing) value of
a variable may influence the control flow, we perform a refinement. Hence, the
references in the labels of refinement edges are “interesting” in the corresponding
states. For example, the references i4 and i6 are interesting in the state O.

We propagate the information on interesting references backwards. For eval-
uation edges, those references that are interesting in the target state are also
interesting in the source state. Thus, i4 and i6 are also interesting in N .

When drawing refinement or instance edges, references may be renamed. But
if a reference at position π is interesting in the target state of such an edge, the
reference at π is also interesting in the source state. So i8 = Z|lv0,1

and i6 =
Z|lv0,2

are interesting in Z, as i4 = N |lv0,1
and i6 = N |lv0,2

are interesting in N .
Furthermore, if an interesting reference i of the target state was the result

of some computation (i.e., the evaluation edge is labeled with i = i′ ./ i′′), we
mark i′ and i′′ as interesting in the source state. The edge from Y to Z has the
label i8 = i7 + i4. As i8 is interesting in Z, i7 and i4 are interesting in Y .

Definition 6 (Interesting References). Let G = (V,E) be a termination
graph, and let s, s′ ∈ V be some states. Then I(s) ⊆ {s|π | π ∈ SPos(s)} is the
set of interesting references of s, defined as the minimal set of references with

• if (s,RefineR, s
′) ∈ E, then R ⊆ I(s).

• if (s, l, s′) ∈ E with l ∈ {RefineR, Ins}, then we have {s|π | π ∈ SPos(s) ∩
SPos(s′), s′|π ∈ I(s′)} ⊆ I(s).
• if (s,EvalC , s

′) ∈ E, then I(s′) ∩ {s|π | π ∈ SPos(s)} ⊆ I(s).
• if (s,EvalC , s

′) ∈ E, i = i′ ./ i′′ ∈ C and i ∈ I(s′), then {i′, i′′} ⊆ I(s).

Note that if there is an evaluation where the same program position is visited
repeatedly, but the values of the interesting references do not change, then this
evaluation will continue infinitely. We refer to this as looping non-termination.

To detect such non-terminating loops, we look at cycles s = s0, s1, . . . , sn−1,
sn = s in the termination graph. Our goal is to find a state v v s such that
when executing the loop, the values of the interesting references in v do not
change. More precisely, when executing the loop in v, one should reach a state
v′ with v′ vΠ v. Here, Π are the positions of interesting references in s and vΠ
is the “instance” relation restricted to positions with prefixes from Π, whereas
the values at other positions are ignored. The following theorem proves that if
one finds such a state v, then indeed the loop will be executed infinitely many
times when starting the evaluation in a concrete instance of v.

Theorem 7 (Looping Non-Termination). Let s occur in a cycle of the ter-
mination graph. Let Π = {π ∈ SPos(s) | s|π ∈ I(s)} be the positions of interest-

ing references in s. If there is a v v s where v
SyEv−→+ v′ for some v′ vΠ v, then

any concrete state that is an instance of v starts an infinite JBC evaluation.

We now automate Thm. 7 by a technique consisting of four steps (the first
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three steps find suitable states v automatically and the fourth step checks whe-
ther v can be reached from the initial state of the method). Let s = s0, s1, . . . ,
sn−1, sn = s be a cycle in the termination graph such that there is an instance
edge from sn−1 to sn. In Fig. 4, N, . . . Z,N is such a cycle (i.e., here s is N).

1. Find suitable values for interesting integer references. In the first step, we
find out how to instantiate the interesting references of integer type in v. To this
end, we convert the cycle s = s0, . . . , sn = s edge by edge to a formula ϕ over
the integers. Then every model of ϕ indicates values for the interesting integer
references that are not modified when executing the loop.

Essentially, ϕ is a conjunction of all constraints that the edges are labeled
with. More precisely, to compute ϕ, we process each edge (si, l, si+1). If l is
RefineR, then we connect the variable names in si and si+1 by adding the
equations si|π = si+1|π to ϕ for all those positions π where si|π is in R and
points to an integer. Thus, for the edge from O to Q, we add the trivial equations
i4 = i4 ∧ i6 = i6, as the references were not renamed in this refinement step.

If l = EvalC , we add the constraints and computations from C to the formula
ϕ.12 Thus, for the edge from Q to R we add the constraint i4 < i6, for the edge
from S to T we add 0 ≤ i4 ∧ i4 < i6, and the edge from Y to Z yields i8 = i7+i4.
If l is Ins, we again connect the reference names in si and si+1 by adding the
equations si|π = si+1|π for all π ∈ SPos(si+1) that point to integers. Thus, for
the edge from Z to N , we get i6 = i6 ∧ i8 = i4. So for the cycle N, . . . , Z,N , ϕ
is i4 < i6 ∧ 0 ≤ i4 ∧ i8 = i7 + i4 ∧ i8 = i4 (where tautologies have been removed).

To find values for the integer references that are not modified in the loop,
we now try to synthesize a model of ϕ. In our example, a standard SMT solver
easily proves satisfiability and returns a model like i4 = 0, i6 = 1, i7 = 0, i8 = 0.

2. Guess suitable values for interesting non-integer references. We want to find
a state v v s such that executing the loop does not change the values of inter-
esting references in v. We have determined the values of the interesting integer
references in v (i.e., i4 is 0 and i6 is 1 in our example). It remains to determine
suitable values for the other interesting references (i.e., for a1 in our example)

05|a :a3, i :0, j :1|ε
a3:String[ ] 1

Fig. 8. State Z′

To this end, we use the following heuristic. We instantiate
the integer references in sn−1 according to the model found
for ϕ, yielding a state s′n−1 v sn−1. So in our example (where

sn = s is N and sn−1 is Z), we instantiate i6 and i8 in Z by 1 resp. 0, resulting
in the state Z ′ in Fig. 8 (i.e., here s′n−1 is Z ′).

05|a :a3, i :0, j :1|ε
a3:String[ ] 1 {o6}
o6:String(count=0, . . .)

Fig. 9. State N ′

Afterwards, we traverse the path from sn−1 back-
wards to s0 and use the technique of witness generation
from Sect. 3 to generate a witness v for s0 w.r.t. s′n−1

(i.e., v v s0 such that v
SyEv−→ + v′ for some v′ v s′n−1). In our example,13 the

12 Remember that we use a single static assignment technique. Thus, we do not have
to perform renamings to avoid name clashes.

13 During the witness generation, one again uses the model of ϕ for intermediate integer
references. So when reversing the iadd evaluation between Y and Z, we choose 0 as
value for the newly appearing reference i7.
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witness generation results in the state N ′ in Fig. 9. Note that the witness gen-
eration technique automatically “guessed” a suitable instantiation for the array
(i.e., it was instantiated by a 1-element array containing just the empty string).

Indeed, N ′ v N and N ′
SyEv−→ + v′ for an instance v′ of Z ′ (i.e., in our example

s0 = s is N and v is N ′). Here, v′ is like Z ′, but instead of “a3:String[ ] 1”, we
have “a3:String[ ] 1 {o6}” and “o6:String(count=0, . . .)”. Thus, v′ = N ′.

3. Check whether the guessed values for non-integer references do not change in
the loop. While our construction ensures that the interesting integer references
remain unchanged when executing the loop, this is not ensured for the interesting
non-integer references. Hence, in the third step, we now have to check whether
v′ vΠ v holds, where Π are the positions of interesting references in s.

To this end, we adapt our algorithm mergeStates(v,v′) such that it termi-
nates with failure whenever we widen a value of v or add an annotation that did
not exist in v at a position with a prefix from Π. Then the algorithm terminates
successfully iff v′ vΠ v. In our example where v = v′ = N , we clearly have v′ vΠ
v. Hence by Thm. 7, any instance of v (i.e., of N ′) starts an infinite execution.

4. Check whether the non-terminating loop can be reached from the initial state.
In the fourth step, we finally check whether N ′ can be reached from the initial
state of the method. Hence, we again use the witness generation technique from
Sect. 3 to create a witness state for A w.r.t. N ′. This witness state has the
stack frame “00 | a : a3 | ε” where a3 is a 1-element array containing just the
empty string. In other words, we automatically synthesized the counterexample
to termination indicated in problem (b) of Sect. 2.

4.2 Non-Looping Non-Termination

static void nonLoop(
int x, int y) {
if (y >= 0) {

while(x >= y) {
int z = x - y;
if (z > 0) {

x--;
} else {

x = 2*x + 1;
y++; }}}}

Fig. 10. nonLoop(x,y)

A loop can also be non-terminating if the values of in-
teresting references are modified in its body. We now
present a method to find such non-looping forms of non-
termination. In contrast to the technique of Sect. 4.1,
this method is restricted to loops that have no sub-loops
and whose termination behavior only depends on integer
arithmetic (i.e., the interesting references in all states of
the loop may only refer to integers). Then we can con-

struct a formula that represents the loop condition and the computation on each
path through the loop. If we can prove that no variable assignment that satisfies
the loop condition violates it in the next loop iteration, then we can conclude
non-termination under the condition that the loop condition is satisfiable.

The method nonLoop in Fig. 11 does not terminate if x ≥ y ≥ 0. For example,
if x = 2, y = 1 at the beginning of the loop, then after one iteration we have
x = 1, y = 1. In the next iterations, we obtain x = 3, y = 2; x = 2, y = 2; and
x = 5, y = 3, etc. So this non-termination is non-looping and even non-periodic
(since there is no fixed sequence of program positions that is repeated infinitely
many times). Thus, non-termination cannot be proved by techniques like [14].

Consider the termination graph, which is shown in a simplified version in
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Fig. 11. A node in a cycle with a predecessor outside of the cycle is called a
loop head node. In Fig. 11, A is such a node. We consider all paths p1, . . . , pn

. . . |x : i4, y : i2 | . . .
i4:Z i2: [≥0]

B

. . . |x : i1, y : i2 | . . .
i1:Z i2: [≥0]

A

. . . |x : i6, y : i7 | . . .
i6:Z i7: [>0]

C

i1 ≥ i2, i3 = i1 − i2,
i3 > 0, i4 = i1 − 1

i1 ≥ i2, i3 = i1 − i2,
i3 ≤ 0, i5 = 2 · i1,
i6 = i5 + 1, i7 = i2 + 1

Fig. 11. Graph for nonLoop

from the loop head node back to itself (without
traversing the loop head node in between), i.e.,
p1 = A, . . . , B,A and p2 = A, . . . , C,A. Here, p1
corresponds to the case where x ≥ y and z =
x − y > 0, whereas p2 handles the case where
x ≥ y and z = x − y ≤ 0. For each path pj , we
generate a loop condition formula ϕj (expressing
the condition for entering this path) and a loop
body formula ψj (expressing how the values of the
interesting references are changed in this path).

The formulas ϕj and ψj are generated as in
Step 1 of Sect. 4.1, where we add relations fromRelOp to ϕj and constraints from
ArithOp to ψj . In our example, ϕ1 is i1 ≥ i2 ∧ i3 > 0 and ϕ2 is i1 ≥ i2 ∧ i3 ≤ 0.
Moreover, ψ1 is i3 = i1− i2 ∧ i4 = i1− 1 and ψ2 is i3 = i1− i2 ∧ i5 = 2 · i1 ∧ i6 =
i5 + 1 ∧ i7 = i2 + 1. To connect these formulas, we use a labeling function `k

where for any formula ξ, `k(ξ) results from ξ by labeling all variables with k. We
use the labels 1, . . . , n for the paths through the loop and the label r for the resul-
ting variables (in the second run, leaving the loop). We construct the formula

ρ(p1, . . . , pn) = µ|{z}
invariants

∧ (
_n

j=1
(`j(ϕj) ∧ `j(ψj) ∧ ιj))| {z }

first run through the loop

∧ (
^n

j=1
(¬`r(ϕj) ∧ `r(ψj)))| {z }

second run, leaving the loop

Here, µ is a set of invariants that are known in the loop head node. So as we
know “i2: [≥0]” in state A, µ is i2 ≥ 0 for our example. The formula ιj connects
the variables labeled with j to the unlabeled variables in µ and to the variables
labeled with r in the formulas for the second iteration. So for every integer
reference i in the loop head node, ιj contains i = ij . Moreover, if i is an integer
reference at position π in the loop head node s and i′ is at position π in the
predecessor s′ of s (where there is an instance edge from s′ to s), then ιj contains
i′j = ir. For our example, ι1 is i1 = i11 ∧ i2 = i12 ∧ i14 = ir1 ∧ i12 = ir2.

Intuitively, satisfiability of the first two parts of ρ(p1, . . . , pn) corresponds
to one successful run through the loop. The third part encodes that none of
the loop conditions holds in the next run. Here, we do not only consider the
negated conditions ¬`r(ϕj), but we also need `r(ψj), as ϕj can contain variables
computed in the loop body. For example in nonLoop, `r(ϕ1) contains ir3 > 0.
But to determine how ir3 results from the “input arguments” ir1, i

r
2, one needs

`r(ψ1) which contains ir3 = ir1 − ir2. If an SMT solver proves unsatisfiability
of ρ(p1, . . . , pn), we know that whenever a variable assignment satisfies a loop
condition, then after one execution of the loop body, a loop condition is satisfied
again (i.e., the loop runs forever). Note that we generalized the notion of “loop
conditions”, as we discover the conditions by symbolic evaluation of the loop.
Consequently, we can also handle loop control constructs like break or continue.

So unsatisfiability of ρ(p1, . . . , pn) implies that the loop is non-terminating,
provided that the loop condition can be satisfied at all. To check this, we use an
SMT solver to find a model for σ(p1, . . . , pn) = µ∧ (

∨n
j=1(`j(ϕj)∧ `j(ψj)∧ ιj)).

Automated Detection of Non-Termination and NullPointerExceptions for Java Bytecode

Technical Report, KIT, 2011-26 154



Theorem 8 (Non-Looping Non-Termination). Let s be a loop head node in
a termination graph where I(s) only point to integer values and let p1, . . . , pn be
all paths from s back to s. Let ρ(p1, . . . , pn) be unsatisfiable and let σ(p1, . . . , pn)
be satisfiable by some model M (i.e., M is an assignment of integer references to
concrete integers). Let c v s be a concrete state where every integer reference in c
has been assigned the value given in M . Then c starts an infinite JBC evaluation.

From the model M of σ(p1, . . . , pn), we obtain an instance v of the loop head
node where we replace unknown integers by the values in M . Then the technique
from Sect. 3 can generate a witness for the initial state of the method w.r.t. v. For
our example, i1 = i11 = i13 = 1, i2 = i12 = ir2 = i14 = ir1 = 0 satisfies σ(p1, . . . , pn).
From this, we obtain a witness for the initial state with x = 1 and y = 0, i.e.,
we automatically generate a non-terminating counterexample.

5 Evaluation and Conclusion

Based on termination graphs for Java Bytecode, we presented a technique to
generate witnesses w.r.t. arbitrary error states. We then showed how to use
this technique to prove the reachability of NullPointerExceptions or of non-
terminating loops, which we detect by a novel SMT-based technique.

We implemented our new approach in the termination tool AProVE [12], using
the SMT solver Z3 [10] and evaluated it on a collection of 325 examples. They
consist of all 268 JBC programs from the Termination Problem Data Base that
is used in the annual International Termination Competition,14 all 55 examples
from [24] used to evaluate the Invel tool, and the two examples from this paper.
For our evaluation, we compared the old version of AProVE (without support
for non-termination), the new version AProVE-No containing the results of the
present paper, and Julia [20]. We were not able to obtain a running version of
Invel, and thus we only compared to the results of Invel reported in [24].

Invel Ex. Other Ex.
Y N F T R Y N F T R

AProVE-No 1 51 0 3 5 204 30 12 24 11
AProVE 1 0 5 49 54 204 0 27 39 15
Julia 1 0 54 0 2 166 22 82 0 4
Invel 0 42 13 0 ?

We used a time-out of 60 sec-
onds for each example. “Yes” and
“No” indicate how often termina-
tion (resp. non-termination) could
be proved, “Fail” states how often
the tool failed in less than 1 minute,
“T” indicates how many examples
led to a Time-out, and “R” gives the average Runtime in seconds for each
example. The experiments clearly show the power of our contributions, since
AProVE-No is the most powerful tool for automated non-termination proofs of
Java resp. JBC programs. Moreover, the comparison between AProVE-No and
AProVE indicates that the runtime for termination proofs did not increase due
to the added non-termination techniques. To experiment with our implementa-
tion via a web interface and for details on the experiments, we refer to [1].
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M. Brockschmidt, T. Ströder, C. Otto, J. Giesl

155 Technical Report, KIT, 2011-26



2. N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh. Using
static analysis to find bugs. IEEE Software, 25(5):22–29, 2008.
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Abstract. Most object-oriented programming languages provide some
way to clone objects — to produce a new object that is a copy of an
existing object. Typically this is either a shallow clone that clones only
one object, or a deep clone that clones objects recursively. In practice,
programmers have to write custom cloning methods for each of their
classes, and this boilerplate code is tedious to write and requires care
to write correctly. Inspired by ownership types, we propose a system
that annotates classes to express how their instances should be cloned.
Furthermore, we show how these annotations can be used to generate
cloning methods for these classes.

1 Introduction

Background Ownership types were first suggested in 1998; their aim was to
characterise aliases, and thus to control the topology of objects on the heap [19].
Since then, they have attracted tremendous interest; they have been developed
in several brands and variations, and they have been put to several different
uses, e.g. memory management, encapsulation, effect systems, avoidance of race
conditions, locations, parallel programming, program verification etc.

One example given in the seminal ECOOP paper [19], was cloning, whereby
all the objects “inside” a certain other object would automatically be copied
when the enclosing object was copied.

The aim of supporting cloning, although appealing, has — to our knowledge
— not been further pursued in the context of static ownership types. Interest-
ingly, this aim was recently pursued in the static analysis world [14], whereby
copy policies are expressed by annotating code so as to specify the maximally
allowed sharing between an object and its clone, and a type and effects system
checks whether the copy policy is adhered to.

In this paper we propose the opposite approach: the copy code is generated
out of clone annotations given with the types of fields, and thus, adherence to
the copy policy is automatically guaranteed.
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domination[8], or restrict who may modify the objects[16], or guarantee common
de-allocation[1]. In our current work, the boxes guarantee that cloning the object
which owns the box will also clone all objects in that particular box.

Note that the diagram in Fig. 1 presents a “ghost view” of the objects; the
boxes, i.e., the cloning domain information is not available at runtime. All the
information we have is that StudentList will have a pointer field called head

that points to its nodes; those Nodes have two pointer fields, one called next that
points to the next Node and another called student that points to its Student.

To clone an object, we have to answer this question: for each object we reach,
considering each of its fields in turn, without the runtime topological ownership
information shown in Fig. 1: should we clone the object to which the field refers?

Organisation of our paper In Sect. 2 we describe our solution — clone annotated
types — and give an example. In Sect. 3 we describe how clone annotated types
can be used to decide whether or not a particular pointer should be cloned,
and then in Sect. 4 we show how to generate the appropriate cloning methods.
In Sect. 5 we describe the guarantees provided by our approach. In Sect. 6 we
discuss related work and conclude.

2 Cloning Annotations

We propose to answer the question by introducing cloning annotations on field
types. These annotations follow the tradition of ownership types [6, 8]. Every
class is defined so as to take one or more formal cloning parameters, c. Thus,
cloning annotated types have the form C<c1,...cn>, where C is a class, and
c1, ... cn are the cloning parameters. The type C<c1,..,cn> expresses that the
object has class C, and that it will be cloned whenever the object standing for
c1 is cloned; the remaining copy annotations, c2,..,cn may be used to annotate
fields from that object and so describe when they are to be cloned.

The class definition determines the scope of these parameters — similarly to
generic parameters. As in traditional ownership types, these parameters stand
for objects. Again as in traditional ownership type systems, types are formed
by classes followed by actual cloning parameters, ca, which may be any cloning
parameter which is in scope, or this. The syntax is shown in Fig. 2.

ClassDecl ::= class C〈c〉
{ FieldDecl MethDecl }

FieldDecl ::= FieldType f
FieldType ::= C〈ca〉
c ::= Identifier clone parameters
ca ::= c | this clone arguments

Fig. 2. Syntax extracts
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Note that the syntax of clone arguments does not allow any annotations
which indicate that the cloning domain is unknown; thus, we do not support
annotations such as norep from [10], or any from [9] or existentially bound
arguments as in [2].

We use the term cloning domain of an object o to describe all the objects
which have to be cloned when o is cloned. The first cloning parameter, c1, in
the annotation of a field f determines that the object pointed at by f belongs
to the cloning domain of c1: thus f must be cloned whenever c1 is cloned. The
remaining cloning parameters are used to determine cloning for the fields of f.

class Node<c1, c2>{

Node<c1,c2> next;

Student<c2> student;

}

class StudentList<c>{

Node<this,c> head;

}

class Union<c>{

StudentList<this> students;

College<c> college;

}

Fig. 3. Lists example

Fig. 3 shows cloning annotated class declarations that match the structure
from Fig. 1. When a Node is cloned, then a new object of class Node needs to
be created, and its fields need to be initialised according to those of the old
object. When a StudentList is cloned, then a new object of class StudentList
needs to be created, and all accessible Nodes will have to be cloned — this is
denoted by the head field’s first cloning parameter being this. Finally, when a
Union is cloned, then the StudentList will be cloned, all accessible Nodes and
all accessible Students will have to be cloned.

3 Cloning Domains and Cloning Paths

Cloning domains have no runtime representation. In order to clone objects, we
can only access their subordinate objects via cloning paths traced through ob-
jects’ fields.

Inspecting Fig. 1 and Fig. 3 we can see how cloning paths lead to objects
in different cloning domains. Consider paths beginning from a StudentList ob-
ject. The objects at the paths this.head, or this.head.next, or this.head.

next.next belong to the cloning domain of that StudentList object, but the ob-
ject reachable through this.head.next.student does not. For paths starting at
a Union object, objects reachable at this.students, or at this.students.head,
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or through this.students.head.next, and finally also at this.students.head.
next.next.student belong to the cloning domain of the Union object.

Note that cloning domains are nested, and thus object may belong to more
than one cloning domain. For example, for a Union object, this.students,
this.students.head and this.students.head.next all belong to the Union’s
cloning domain. On the other hand, the objects at this.students.head and
this.students.head.next also belong to the cloning domain of the StudentList
at the this.students, as well as to the Union’s cloning domain. Furthermore,
it is possible for an object to be reachable from only one other object, but not
belong to its cloning domain. For example, this.head.next is only reachable
via this.head, but it does not belong to this.head’s cloning domain.

We now formalise the notion of cloning paths and cloning domains. We first
define paths and path types as follows:

p ::= this | p.f paths
PT ::= C〈cap〉 path types
cap ::= ca | p actual path cloning parameters
Path types express types which are relative to the current object this, and

where paths can be used as actual cloning parameters. For example Node〈this.
students, this〉 describes an object of class Node, which belongs to the cloning
domain of the object at this.students, and whose student field belongs to the
cloning domain of this.

In Fig. 4 we define a judgment of the form C ` p : D〈cap1, ...capn〉 which
says that from an object of class C, the path p leads to an object in the cloning
domain of cap1. Furthermore, the actual path cloning parameters cap1, ... capn
may be used to characterize the cloning domain of p.f , where f is a field of p.

class C〈c1, ...cn〉{ ... }
C ` this : C〈c1, ...cn〉

class D〈c1, ...cm〉{ ... E〈ap1, ...apn 〉 f ... }
C ` this.f : D〈cap1, ...capm〉

C ` this.f.f : E〈 ap1, ...apn[cap1, ...capm/c1, ...cm][this.f/this] 〉

Fig. 4. Path types for paths

The first rule says that in class C the path this has the type given by the
cloning parameters of the class C. This gives, for example, that Union ` this :
Union〈c〉.

The second rule says that from class C the path this.f.f has the type of f as
given in f’s declaration, but where c1, ...cm, the cloning parameters of the class
declaring field f, are replaced by cap1, ...capm, the actual cloning parameters for
this.f. Moreover, any occurrence of this in the type of f is replaced by this.f.
The first replacement is standard in the literature, and the second replacement is
novel. This rule gives Union ` this.students : StudentList〈this〉 and Union `
this.students.head : Node〈this.students, this〉.
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Here are some more examples of the path type judgment:

Node ` this.next.next : Node〈c1, c2〉
StudentList ` this.head.next.next : Node〈this, c〉
StudentList ` this.head.student : Student〈c〉

Union ` this.students.head : Node〈this.students, this〉
Union ` this.students.head.student : Student〈this〉

Union ` this.college : College〈c〉
Note that the judgments only talk about paths, and makes no requirement

about consistent views of the heap. So far, nothing precludes two paths p1 and
p2, which are aliases at runtime, but which have different path types, eg C `
p1 : D〈cap1, ...capn〉 and C ` p2 : D〈cap′1, ...cap′n〉 and cap1 6= cap′1. However, as
we see in section 5.3, we require consistent views on the heap in order to obtain
completeness, i.e., that all objects which should be cloned, are, indeed, cloned.

We can now characterise for a given class C the set of paths to the objects in
their cloning domain, ClnDom(C). This set consists of this, and all these paths
p.f whose path-type has as first argument another path p′ (remember that all
paths start at this), i.e., C ` p.f : D〈p′,...〉, and which lie exclusively within the
cloning domain of C, i.e., p ∈ ClnDom(C).

ClnDom(C) = { this } ∪ { p.f | C ` p.f : D〈p′,...〉 for a class D, and a path p′,
and where p ∈ ClnDom(C) }

Thus, we obtain that
this.next.next 6∈ ClnDom(Node)

this.head.next.next ∈ ClnDom(StudentList)
this.college 6∈ ClnDom(Union)

this.students.head.next.next.student ∈ ClnDom(Union)

The requirement that the complete path should lie within the cloning domain
(i.e that p ∈ ClnDom(C)) is relevant for the case where the cloning-owners are
not dominators. For example, if the College object had a field f to some object
which lied under the StudentList object, then this.college.f would not belong
to ClnDom(Union).

4 Generating cloning methods

We have seen that the cloning behaviour of an object depends on the originator
of the cloning action. For example, cloning a Node behaves differently when called
as a result of cloning a Union or cloning a StudentList. This means that a single
clone() method defined on each object cannot clone that object correctly in all
contexts.

One approach would be to write a cloning method for every class that not only
clones the object itself, but also clones every object within its cloning domain.
Such a clone method would have to navigate through the appropriate paths and
duplicate the appropriate objects. This approach is highly non-modular, since it
exposes the internals of potentially every class.
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Instead, we propose an overloaded parametric clone(...) method for each
class, with additional Boolean actual parameters to describe whether or not its
additional cloning domains should be cloned. For a class C〈c1, ..cn〉, we gener-
ate one overloaded parametric method, clone(Boolean s1, ...Boolean sn, Map m).
The value of si determines whether objects from the cloning domain ci are to
be cloned too. The original clone method can then be reimplemented to call
the parametric cloning method, requesting only the object itself is cloned, by
passing false to the additional cloning parameters.

The Map m formal parameter to the cloning method is to ensure that we clone
the current object only if it has not already been cloned. We use the conventional
solution of maintaining a table mapping original to cloned objects — something
like a Smalltalk IdentityDictionary or Java 1.4’s IdentityHashMap is ideal.
If the object is not yet in the map, then the method will call the corresponding
clone methods for all fields which need to be cloned, and will make aliases to
all other fields — otherwise we simply use the clone stored in the map.

We show some examples of cloning methods in subsection 4.1 and then define
the general case in subsection in 4.2.

4.1 A clone method for our example

For class Node, the basic clone method is called when the originator is the node
itself, and simply delegates to the parametric cloning method. This method will
be part of the interface of the cloning library.

Node clone( ){

this.clone(false, false, new IdentityHashMap())

}

The parametric cloning method distinguishes whether the cloning domains
of the clone parameters are to be cloned too, and accepts a Map to ensure each
object is only cloned once. This method is internal to our system, and will not
be visible outside the cloning library.

Node clone(Boolean s1, Boolean s2, Map m){

Object n = m.get(this);

if ( n != null) then {

return (Node)n;

} else {

Node clone=new Node();

m.put(this,clone);

clone.next= s1 ? this.next.clone(s1,s2,m) : this.next;

clone.student= s2 ? this.student.clone(s2,m) : this.student;

return clone;

}

}
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4.2 Code generation for clone

In Fig. 5 we show the generation of the basic cloning method for a class C. It
calls the parametric cloning method on itself, where all the boolean parameters
are set to false. This indicates that except for the cloning domain of the currnt
object, no other cloning domains are “active”.

In Fig. 6 we show the generation of the parametric cloning method for C.
As a first step, in the first four lines of the method, we need to determine

whether the object is to be cloned. If the object is the outcome of a previous
cloning action, i.e. is in the lookup table m, then nothing happens. Otherwise, a
new object of that class is created, and entered into the table.

C clone(){
return this.clone(false1, ...falseq, newIdentitityHashMap());

}
where q is the number of clone parameters of class C

Fig. 5. The function clone() for class C

C clone(Boolean s1...Boolean sq, Map m){
Object o = m.get(this)
if o 6= null then

return (C)o;
else{

C o′ = new C();
m.put(this, o′);
o′.f1 = s1,1 ? this.f1.clone(s1,1...s1,k1, m) : this.f1;

... = ...
o′.fn = sn,1 ? this.fn.clone(sn,1...sn,kn, m) : this.fn;

return o′;
}

}
where
{f1, ...fn} are the fields defined in class C

and where, for all i ∈ 1..n :
(fType(C〈s1...sn〉, fi))[true/this]=Ci〈si,1...si,ki〉

for some classes C1,.. Cn.

Fig. 6. The function clone(s1 . . . sn, m) for class C

As a second step, we need to initialize the fields of the newly crated ob-
ject, and determine which further objects have to be cloned. We assume that
{f1, ...fn} are all the fields defined in class C. Consider any field fi. We cal-
culate the type of fi, and because anything that belongs to the cloning do-
main of the current object also belongs to the cloning domain of the owner
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of the current object, we replace any occurrence of this by true. This gives
that Ci〈si,1...si,ki〉 = fType(C〈s1...sn〉, fi)[true/this] for some Ci. We find the
cloning parameter corresponding to si,1: If si,1 is true, then the object at fi has
to be cloned and the result has to be assigned to the field fi. If si,1 is false,
then the object at fi should not be cloned, but the field fi of the new object
needs to alias its value. This is why we emit the the conditional expression:

o′.fi = si,1 ? this.fi.clone(si,1...si,ki, m) : this.fi.

5 Guarantees of cloning

We now discuss the properties of our cloning operation, namely

– termination,
– soundness, i.e., the objects which are cloned are those which are reachable

through paths in the cloning domain,
– completeness, i.e., if the system also guarantees a consistent view of the heap

then all objects from the cloning domain will be cloned.

We do not present an operational semantics, because our system works for
any imperative object oriented language with the standard meaning for field read
and write, conditional expressions and method calls. Because the system works
on the basis of statically known paths and their types, the runtime representation
of objects does not need to be enhanced with cloning domain information - we
do not even need any ghost information for the purposes of the formal argument.

Nevertheless, we expect an operational semantics of form H,φ, expr H ′, v,
where H and H ′ are heaps, φ is a stack frame, expr is an expression, v stands for
values, that values include null the booleans true and false, and addresses;
and that addresses are represented as ι, ι′ etc. Furthermore, we expect that
H(ι, f) returns the value of field f of the object at ι, that H stores the class for
each object, and that the stack frames φ map identifiers to values. Finally, we
expect that expressions include field read, filed write, conditional expressions,
and that these have the standard meaning.

The guarantees we describe in this section are applicable to richer languages,
such that e.g., support exceptions, or re-entrant method calls, or in fact, any
further sequential control features. This is so, because our work makes guarantees
about the effect of the code produced by our approach. This code only uses the
language features listed above, and does not call any user-defined functions.
The guarantees about the effects of the code remain valid regardless about the
features used in the context that may be calling the generated clone methods,
provided that this context is in the sequential setting.

In the following, we distinguish between the original call of the clone()

method — without any arguments — and the subsequent recursive calls of the
clone(...) methods which have at least one argument.

5.1 Termination

Lemma 1. For all heaps H and variables x ∈ dom(φ) there exists an address ι
and a heap H ′, such that H,φ, x.clone() H ′, ι.
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Proof Sketch We can show that during execution of clone() the values of
fields in the objects in the original heap H do not change, and that all receivers
of any of the recursive calls of the clone(..) methods were accessible from the
originator object, ι, through a path p in the original heap H.

Therefore, the transitive calls of the clone method do not clone objects from
the original heap H more than once, and do not clone any of the newly created
objects. This gives a finite upper bound to the possible number of calls to the
recursively called clone(...) methods. Since these methods do not contain any
iteration, the fact that the number of possible recursive calls is finite, guarantees
termination.

5.2 Soundness

With respect to the new heap, the cloning operation H,φ, x.clone()  H ′, ι,
makes the following four guarantees:

1. It creates a new object for the object x,
2. H ′, the new heap, is homomorphic to H, the old heap,
3. In H ′ there is a self-contained part that corresponds to the old heap,
4. In H ′ there is a part that corresponds to the part in the old heap, which had

to be copied according to the ClnDom function.

In order to express the last point formally, we define the set of objects that
should be copied, as follows:

ToCopy : Addr ×Heap→ Power(Addr)
ToCopy(ι)H = {H(ι.f) = ι′ | this.f ∈ ClnDom(C), and C the class of ι in H }
We can now express soundness of the clone operation as follows:

Lemma 2. If H,φ, x.clone() H ′, ι, then there exists a mapping α : dom(H ′)→
dom(H) such that

1. ι is new in H, and α(ι) = φ(x),
2. α(H ′(ι′, f)) = H(α(ι′), f)) for all ι′ ∈ dom(H ′) and fields f.
3. α|dom(H) is the identity function, and α|dom(H′)\dom(H) is injective. 3

4. α(dom(H ′)\dom(H)) ⊆ ToCopy(φ(x))H . 4

Proof Sketch: We can show that during execution of clone for the newly
created Map object m, that the range of m is the original heap H, and that
any object being mapped comes from the new heap H ′, i.e., for all objects ι′,
ι′′, if m.get(ι′′) = ι′ then ι′′ /∈ dom(H), and ι′ ∈ dom(H). Furthermore, we
can show that the lookup m.get(...) is injective, i.e., for all objects ι′, ι′′, if
m.get(ι′) = m.get(ι′′) then ι′=ι′′.

3 Notation: For an f which is a mapping from A to B, and for A′ ⊆ A, we use the
term f |A′) to the function f as restricted to the domain A′.

4 Notation: For an f which is a mapping from A to B, and for A′ ⊆ A, we use the
term f(A′) to describe the image of f from A′.
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Because of injectivity, we can construct the mapping α(ι′) as the inverse of m
in the cases where ι′ is the image of an original object in H (ie m.get(ι′) 6= null),
and the identity otherwise.

Parts 1 and 3 follow from the construction of α and from the properties of
the Map object mentioned above.

Part 2 follows from the body of the methods clone(...).

For Part 4, we show that for any recursive application of any of the clone(...)
methods, all the objects cloned so far are reachable from x through a path which
lies completely within ClnDom(C), where C is the class of the object at x.

The latter follows from the following two facts

– All receivers of one of the recursive calls of the clone(...) methods are
reachable from φ(x) through a path that lies within ClnDom(C). This fact
can be shown by induction on the recursive calls as follows:

• The base case is easy.

• For the inductive step, consider an object ι′′ which executes a method
clone(...) as part of the n-th recursive call, and which calls a method
clone(...) on an object ι′′′.
Then, by construction of the clone(...) method, we know that the
former call has the shape clone(true, b2, ...bq) and q ≥ 2, that the lat-
ter call has the shape clone(b′1, ...b

′
r) and r ≥ 2, and that b′1 = true

such that H(ι′′, f)=ι′′′, and where fType(C′ < true, b2, ...bq >, f) =
D < b′′1 , .., b

′′
r > for some b′′1 , .., b

′′
r , s.t. b′′1 , .., b

′′
r [true/this] = b′1, .., b

′
r,

and where C′ is the class of the object ι′′.
From the inductive hypothesis, we obtain that there exists a path from
φ(x) to ι′′, which lies within ClnDom(C), i.e., that C ` p : C′ < p′, ... >
for some path p′. Furthermore, the fact that b′1 = true = b′′1[true/this]
gives that fType(C′ < c1, c2, ...cq >, f) = D < ca1, .., car > such that
ca1 = this, or that there exists an m such that ca1 = cm and bm = true.
In the first case, by definition of the judgment, we obtain that C ` p.f :
D < p′, ... >, while in the second case we obtain C ` p.f : D < p, ... >. In
either case, the path p.f lies within ClnDom(C).

– Only the objects that received one of the recursive calls of clone(...) may
be have been cloned.

5.3 Completeness

Note, that Lemma 2 only guarantees that all cloned objects come from ToCopy(ι)H ,
and does not guarantee that all objects from ToCopy(ι)H have been cloned. How-
ever, we can obtain this stronger property, if the system guarantees consistent
views of the heap.

We first define consistent views of the heap to say that different paths leading
to the same object must have the same path type.
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Definition 1. We say that a type system gives consistent views of the heap, if
for all classes C, paths p1 and p2, and for all heaps H and stack frames φ which
may arise through execution of well-typed expressions, if p1 and p2 are aliases
in H and φ, and φ(this) is an object of class C, then

Γ ` p1 : T1 and Γ ` p2 : T2 imply T1 = T2

For example, if we had a system with consistent views of the heap, and if in
our Fig. 1 the object of class StudentList contained a field called last which
pointed to the same object as this.head.next.next, then, for typing environ-
ments Γ1 and Γ2, such that Γ1(this) = StudentList and Γ2(this) = Union, we
would also have that Γ1 ` this.last : Node < this, c > — this follows because
of Γ1 ` this.head.next.next : Node < this, c >. Furthermore, we would also
have that Γ2 ` this.students.last.student : Student < this > — this follows
because of Γ2 ` this.students.head.next.next.student : Student < this >.

The requirement of consistent views guarantees that the underlying type sys-
tem restricts field assignment so that paths pointing to separate cloning domains
cannot be aliases. Such requirements are satisfied by any sound ownership type
systems, e.g., as early as the system in [8].

Consistency in the views of the heap implies consistency in the path types:

Lemma 3. If a type system gives consistent views of the heap, then, for all
classes C, paths p1 and p2, and for all heaps H and stack frames φ which may
arise through execution of well-typed expressions, if p1 and p2 are aliases in H
and φ, and φ(this) is an object of class C, then

C ` p1 : PT1 and C ` p2 : PT2 imply PT1 = PT2

Continuing our example from above, cosistent views of the heap would give
us that Union ` this.students.last : Node < this.students, this >, because
Union ` this.students.head.next.next : Node < this.students, this >.

Lemma 4. Assume that the type system gives consistent views of the heap. If
H,φ, x.clone() H ′, ι, then the mapping α : dom(H ′)→ dom(H) described in
lemma 2 has the property that α(dom(H ′)\dom(H)) = ToCopy(φ(x))H

Proof Sketch: We show by induction on n, that when considering the
breadth first view of recursive applications of the clone(...) methods at depth
n, then all objects which are reachable from x through a path of length at most
n which lies within ClnDom(C′), have been cloned – with C′ the class of the
object at x.

In order to prove the above, we strengthen the assertion to say that for all
n:

1. For all paths p and p′, where p ∈ ClmDom(C′), and p has length at most
n such that C′ ` p : D < p1, cap2...capm >, if H(φ(x), p) = ι, then within the
breadth first view of recursive applications of the clone(...) methods at
depth n there is a call of clone(true, b2, ..bm) on ι, where bi=true if capi
has the form this.f , and false otherwise.
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2. For any calls of clone(true, b2, ..bm) on an object ι within the breadth first
view of recursive applications of the clone(...) methods at depth n, there
is a path p from φ(x) to ι, such that C′ ` p : D < p1, cap2...capm >, and
bi=true if capi has the form this.f , and false otherwise.

We now sketch the proof of the proposition from above:

– The base case is trivial.
– For the inductive step, we look at the two assertions separately:

1. Consider any object ι′ which is reachable from φ(x) through a path
p.f of length n + 1 such that p.f ∈ ClmDom(C′), and C′ ` p.f :
D < p′, cap2...capm > for some further path p′. Therefore, there exists
a further object ι′′, reachable from φ(x) through p, such that C′ ` p :
E < cap′1, cap

′
2...cap

′
r >, and that H(ι′′, f) = ι′, and cap′1 has the form

of a path.
By application of the inductive hypothesis part 1., we know that when
considering the breadth first view of the recursive applications of the
clone(...) methods at depth n, the object ι′′ will have received the
recursive method call clone(b1, b2, ...br) such that bi is true, if cap′i
has itself the form of a path, and otherwise bi is false.
We now inspect the first lines of the code of the clone(...) method.
At the point of execution of the method call clone(b1, b2, ...br) on ι′ it
is possible that the object ι′ already had been entered in the map table
m. By inspection of the clone(...) methods, this implies that ι′ had
already received the method call clone(b′1, b

′
2, ...b

′
r) for some b′1, b

′
2, ...b

′
r.

By application of the inductive hypothesis part 2, we know that there ex-
ists a path p’’ from φ(x) to ι′′, such that C′ ` p′′ : E < p′′1 , cap

′′
2 ...cap

′′
m >,

and b′i=true if cap′′i has the form this.f , and false otherwise.
By application of the consistent view property and lemma 3, we obtain
that b′i = bi. We now inspect the remaining lines of the code of the
clone(...) method. These will give that the object ι′ will receive the
method call clone(true, b′′2 , ...b

′′
m ) where b′′i is true if if capi has itself

the form of a path, and otherwise b′′i is false.
2. This assertion is proven by induction on the depth of method calls of

clone(...), and analysis of the body of the method.

6 Related Work and Conclusions

In this paper we have sketched a way of specifying cloning policies by annotat-
ing the fields of objects, and then deriving code for cloning which satisfies the
cloning policy. Our lemma 2 guarantees that the derived cloning code produces a
faithful copy of the cloned object, and that cloned objects are within the domain
expressed by the types, while lemma 4 guarantees that if the types give consis-
tent views of the heap, then all objects within the domain expressed by the types
will be cloned. We have not yet dealt with subclasses, but we do not expect this
to be challenging, because the cloning method will be bound dynamically to the
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class of the receiver. We plan to develop a detailed formal system and its proofs
in further work.

Our work was inspired by Jensen et al.’s secure cloning policies [14]. Unlike
the secure cloning policies, our work generates cloning methods, rather than
simply checking them, and is based on ownership types, rather than a series of ad-
hoc annotations. Compared with most ownership systems [5, 10, 9] our system is
descriptive [3] in that it captures object relationships, rather than prescriptively
ensuring invariants over the heap. We do not require or enforce heap properties
(e.g., clone/owners as dominators or owners as modifiers), nor even that the
paths support a consistent view of the heap. In fact, owners as dominators could
be too strong a requirement for cloning purposes, as it would unnecessarily
forbid many programs, e.g. cloning a list with iterators. A consistent view of
the heap may be enforced by the type system in the usual way [5]. We want to
investigate in how far such a consistent view is the usual idiom, or whether there
are situations where consistency is too restrictive from the practical perspective
[15].

The relationship between ownership and cloning was first identified in a dy-
namic ownership setting, where every object knows its owner at runtime [17].
These ownership-based clones are called ”sheep clones”, as they are intermediate
between shallow (single object) clones and deep (fully recursive) clones. Cloning,
and programming models and languages based on cloning, have of course been
studied more generally [4, 18, 20, 23]. Ownership type techniques have also been
applied to other problems closely related to cloning, in particular object initial-
isation [11, 22], as cloning creates and initialises a new object — and ownership
transfer [7], as transfer can be modelled by cloning an object then deleting the
original. Cloning objects is also similar to comparing objects [12, 13] and gener-
ating hash codes [21].

As well as completing the formal model, in further work we plan to investigate
whether it is possible to derive more efficient versions of the clone function, so
as to avoid the use of the Map object when possible. We also want to support
generics, and existential (unknown) clone parameters.
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Towards the verification of efficient BDD
algorithms

Mathieu Giorgino and Martin Strecker

IRIT, Université de Toulouse

Abstract. This paper is an extended case study using a high-level ap-
proach to the verification of graph transformation algorithms: To repre-
sent sharing, graphs are considered as trees with additional pointers, and
algorithms manipulating them are essentially primitive recursive traver-
sals written in a monadic style. With this, we achieve almost trivial
termination arguments and can use inductive reasoning principles for
showing the correctness of the algorithms. We illustrate the approach
with the verification of a BDD package which is modular in that it can
be instantiated with different implementations of association tables for
node lookup. We have also implemented a garbage collector for freeing
association tables from unused entries. Even without low-level optimiza-
tions, the resulting implementation is reasonably efficient.

Keywords: Verification of imperative algorithms, Pointer algorithms,
Modular Program Development, Binary Decision Diagram

1 Introduction

There is now a large range of verification tools for imperative and object-oriented
(OO) languages. Most of them have in common that they operate on source
code of a particular programming language like C or Java, annotated with pre-
/ postconditions and invariants. This combination of code and properties is then
fed to a verification condition generator which extracts proof obligations that
can be discharged by provers offering various degrees of automation (see below
for a more detailed discussion).

This approach has an undeniable success when it comes to showing that a
program is well-behaved (no null-pointer accesses, index ranges within bounds,
deadlock-freedom of concurrent programs etc.). Program verification in this sense
essentially amounts to showing the absence of undesirable situations with the aid
of a property language that is considerably more expressive than a traditional
type system, but nevertheless has a restricted set of syntagmas that cannot be
user-extended.

These limitations turn out to be a hindrance when one has to build up a
larger “background theory” capable of expressing deeper semantic properties of
the data structures manipulated by the program (such as the notions of inter-
pretation and validity of a formula used in this paper). Even worse, high-level
mathematical notions (such as “sets” and “trees”) are often not directly available
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in the specification language. Even if they are, recovering an algebraic data type
from a pointer structure in the heap is not straightforward: one has to ensure,
for example, that a structure encoding a list is indeed an instance of a data type
and not cyclic.

In this paper, we explore the opposite direction: we start from high-level data
structures based on inductive data types, which allows for an easy definition of
algorithms with the aid of primitive recursion and for reasoning principles based
on structural induction. References are added explicitly to these data structures,
which makes it possible to express sharing of subtrees as well as a simple notion
of reference equality. The notion of state is manipulated with a state monad
(see Section 2), thus allowing for a restricted form of object manipulation (in
particular object creation and disposal).

We illustrate our approach with the development of a Binary Decision Di-
agram (BDD) package. After recalling the basic notions and the semantics of
BDDs in Section 3, we describe a first, non-optimized version of the essential
algorithms in Section 4 and the implementation of lookup tables in Section 6.

As compared to our preliminary report [15] on this subject, the current work
is based on a different memory model and includes a garbage collector and
memoization (Section 5), which lead to a substantial speed-up.

As formal framework, we use the Isabelle proof assistant [23] and its extension
Imperative HOL [8], together with its Isabelle-to-Scala code extractor. Our al-
gorithms are therefore executable in Scala and, as witnessed by the performance
evaluation of Section 7, within the realm of state-of-the-art BDD packages.

A further gain in efficiency might be achieved by mapping our still rather
coarse-grained memory model to a fine-grained memory model, which would
allow us to to introduce bit-level optimizations. Such a multi-level refinement
has been reported for the verification of a microkernel [10] which achieves a
similar performance as non-verified hand-crafted implementations. Even though
such a refinement is compatible with our approach, we have refrained from it
here. It would lead to a considerable increase in complexity, because it requires
a simulation proof between the two levels of abstraction.

We conclude in Section 8 with a discussion of the general limitations and
current weaknesses of our approach and a wish-list for future enhancements.

The formal development is available on the authors’ home pages [14].

Related work – program verification: There are roughly two broad classes of
program verifiers - those aiming at a mostly automatic verification, as Spec#
[1], VCC [11], Frama-C [13] or Why3 [3], or at mostly interactive proofs, such as
the ones based on Dynamic Logic [2,19] or codings of programming languages
and their associated Hoare logics in proof assistants [12,28]. The borderline is
not clear-cut, since some of the “automatic” tools can also be interfaced with
interactive proof assistants such as Coq and Isabelle, as in [4].

The work that comes closest to ours is the extension of Isabelle with OO fea-
tures, in an encoding [5,6]. It is at the same time more complete and considerably
more complex, since it has the ambition to simulate genuine OO capabilities such
as late binding, which requires, among others, the management of dynamic type
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tags of objects. Our approach remains confined to what can be done within a
conventional polymorphic functional type system. Our aim is not to be able
to verify arbitrary programs in languages such as Java or Scala, but to export
programs written and verified in a functional style with stateful features to a
language such as Scala. We thus hope to reduce the proof burden, while still
obtaining relatively efficient target code.

Related work – verification of BDDs: Binary Decision Diagrams (BDDs) [7] are
a compact format for representing Boolean formulas, making extensive use of
sharing of subtrees and thus achieving a canonical representation of formulas. A
verified BDD package might become useful for the formal verification of decision
procedures [9,26,27]. In this spirit, a recent SAT solver verification effort [22]
comes to the conclusion that mutable references would lead to huge performance
improvements.

Even without such an application in mind, BDDs have become a favorite case
study for the verification of pointer programs. As mentioned above, all the ap-
proaches we are aware of use a low-level representation of BDDs as linked pointer
structures. [20] introduces the idea of representing the state space in monadic
style, but ensuring the termination of the functions poses a problem because
termination and well-formedness of the state space are closely intertwined.

For a verification framework embedding a Hoare logic for imperative pro-
grams in the Isabelle proof assistant, the paper [25] describes the verification of
BDD algorithms written in a C-like language. As in our case, it is possible to
take semantic properties of BDDs into account, but the proof of correctness has
a considerable complexity.

By a tricky encoding of lookup tables by injective pairing functions, the PVS
formalization in [30] can avoid the use of the notion of “state” altogether. On the
downside, the encoding creates huge integers even for a small number of BDD
nodes, so that the approach might not scale to larger examples.

The most comprehensive verification [29] (apart from ours) describes a veri-
fication in the Coq proof assistant, including some optimizations and a garbage
collector. The state space is explicitly represented and manipulated by a func-
tional program, and also the OCaml code extracted from Coq is functional.
This seems to account for the lower performance (slower execution and faster
exhaustion of memory) as compared to genuine imperative code.

2 Memory and Object Models

We first present a shallow embedding of an OO management of references in
Isabelle. As a basis we use the Imperative HOL theory belonging to the Isabelle
library. This theory defines a state-exception monad with syntax facilities like
do-notation. Details can be found in [8].

Towards the Verification of Efficient BDD Algorithms
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2.1 Imperative HOL

Imperative HOL first defines a polymorphic heap (of type heap) on which a
state-exception monad (of type ′a Heap) is defined. The monadic constructors
return and raise allow to encapsulate a value or an exception in a monad and
the monadic combinator bind (written m D n) allows to combine operations on
monads.

Then a reference type ′a ref is defined and several primitives are provided
to manipulate directly the heap through references:

– Ref .present r : Tests allocation of reference r.
– Ref .get h r : Obtains the value of reference r in a heap h
– Ref .set h r a: Replaces the value referenced by r in heap h by v
– Ref .alloc a: Returns a newly allocated reference to a value a value
– Ref .noteq r r ′ (r =!= r ′): Tests equality between references r and r ′ (pos-

sibly with distinct types)

These are intended for use in logical statements and proofs and no code
equations (used for extraction to programming languages like Caml or Scala)
are available for them.

To access the state in programs, one has to use the state-exception monad
for which similar primitives using the monad’s state are defined:

– Ref .ref a: Returns a newly allocated reference set to the value a
– Ref .lookup r (!r): Obtains the value of reference r
– Ref .update r a (r := a): Replaces the value of reference r by a

Imperative HOL finally provides the do-notation allowing to write monadic
expressions as usual imperative statements. The do-notation is enclosed in do{...}.
Monadic expression composition is done with do{ v ← m; m ′ v } translated to
m D m ′. The binding part v ← can be omitted in which case do{m; m ′} is syn-
tactically transformed to m D (λ-. m ′) leading to the discarding of the returned
value of the first monadic expression.

2.2 Accessors

Then Imperative HOL provides a means to manipulate references in a heap with
the help of an imperative language in Isabelle/HOL. However, the direct manip-
ulation of references prevents an efficient code generation in an OO language. In
order to abstract from references and to get closer to an OO development, we
have to see a reference to a record as a handle to an object, without being able
to retrieve the record itself. To do this, we define accessors (of type ′a B ′b) as
a means to describe an abstract attribute in an object.

We use them as arguments of the primitives RAcc.get, set and map applied
to references and heap, and their monadic counterparts lookup (r ·ac), update
(r ·ac .= v) and rmap operating on ′a Heap.
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For example, with the definition of accessors $fst and $snd for the first and
second components of pairs, the term do{ a ← p·$fst ; p·$snd .= a } defines a
monadic operation replacing the second component of the pair referenced by p
by its first component. On the logical level, the term RAcc.set $snd p (RAcc.get
h $fst p) h would describe the result of this operation on the heap h.

2.3 Objects and Classes

Additionally, we use two constructions provided by Isabelle/HOL to get closer
to OO developments. The first one allows to define a hierarchy of data, while
the second allows to define methods hierarchically associated to the data of the
first one.

Data Hierarchical definition of data (with sub-typing) is provided by extensible
records (record). A record runit containing only one field named nothing of
type unit – as records cannot be empty – is used as a top of a record hierarchy,
in the same way as Object in Java or Any in Scala are the top of the class
hierarchy. However, in contrast to the implicit object sub-typing, the record
definition introduces an explicit type parameterized by its extension type as a
′a runit-scheme.

record runit = nothing :: unit

Then we define a type synonym ′a any that we will often use with a place-
holder (-) as - any, to let the type inference set it as general as possible.

type-synonym ′a any = ′a runit-scheme

Methods Locales (locale) were originally created to parameterize theories for
several interpretations but they also allow to parameterize a set of definitions by
constants (fixes) and assumptions (assumes). Then we can use them to define
functions in the context of a reference called this in the same way as for OO
languages. Outside of a locale, the functions defined in this locale will take an
additional argument being a reference to the record.

locale object = fixes this :: ′a::heap ref

Locales can also be used as an equivalent of interfaces or abstract classes.
They can be built upon each other with multiple inheritance (+) for which
assumptions (including types) can be strengthen (for). Finally they can be in-
stantiated by several implementations.

In this development, objects and classes are used at two levels:

– for the state of the BDD factory containing the two True and False leaves
and the association tables for maximal sharing and memoization. This state
and its reference is unique in the context of the algorithms and provided by
the locale object as a this constant parameter.
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– for the nodes containing a reference to a mutable extension runit and then
refCount of it which is used to store the reference counter for the garbage
collection.

Figures 1a and 1b present the hierarchies of records and locales used in
this development. We also take advantage of locales to specify the logical func-
tions used only in proofs (locale bddstate) and the abstract methods (locales
bddstate-mk and bddstate-mk-gc).

Fig. 1: Hierarchies of data and methods

(a) Data (records)

runit (any)

refCount leaves

leaves-memo

bddstate-hash

(b) Methods/Logic (locales)

object
(this of type runit)

leaves
(this of type leaves)

bddstate
(logical trees and invar)

bddstate-mk
(abstract method mk)

bddstate-mk-gc
(abstract method gc)

bddstate-mk-memo
(this of type leaves-memo)

implementation
with bddstate-hash

3 Binary Decision Diagrams

BDDs are used to represent and manipulate efficiently Boolean expressions. We
will use them as starting point of our algorithms, by defining a function con-
structing BDDs from their representation of type ( ′v , bool) expr in which ′v is
the type of variable names. The definition of expressions is rather standard:

types ′a binop = ′a ⇒ ′a ⇒ ′a

datatype ( ′v , ′a) expr =
Var ′v
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| Const ′a
| BExpr ′a binop (( ′v , ′a) expr) (( ′v , ′a) expr)

and their interpretation is done by interp-expr taking as extra argument the
variables instantiations represented as a function from variables to values:

primrec interp-expr :: ( ′v , ′a) expr ⇒ ( ′v ⇒ ′a) ⇒ ′a where
interp-expr (Var v) vs = vs v
| interp-expr (Const a) vs = a
| interp-expr (BExpr bop e1 e2 ) vs =

bop (interp-expr e1 vs) (interp-expr e2 vs)

We now define BDDs as binary trees in which references to an extensible
record will be added.

datatype ( ′a, ′b) tree =
Leaf ′a
| Node ′b (( ′a, ′b) tree) (( ′a, ′b) tree)

type-synonym
( ′a, ′b, ′c) rtree = ( ′a × ′c any ref , ′b × ′c any ref ) tree

To define their constructors, we need a value of type ′a Object .any which will
be used for initialization. Then we use a locale parameterized by a default-any
constant used in the definition of newLeaf (and newNode in the same way)

locale default-any =
fixes default-any :: ′c::heap any

begin

definition newLeaf :: bool ⇒ (bool , ′v ::heap, -) rtree Heap where
newLeaf b = do{

r ← ref default-any ;
return (Leaf (b, r))
}

end

In this way, as long as subtrees having identic references are the same, we
can represent sharing. To ensure this property giving meaning to references, we
use the predicate ref-unique ts:

definition ref-unique :: ( ′a, ′v , -) rtree set ⇒ bool where
ref-unique ts ≡
∀ t1 t2 . t1 ∈ ts −→ t2 ∈ ts −→ ref-equal t1 t2 ←→ struct-equal t1 t2

in which ref-equal means that two trees have the same reference attribute, and
struct-equal is structural equality neglecting references, thus corresponding to
the typical notion of equality of data in functional languages.

While the left-to-right implication of this equivalence is the required property
(two nodes having the same reference are the same), the other implication ensures
maximal sharing (same subtrees are shared, i. e. have the same reference).
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Let us illustrate the concept of subtree sharing by an example. A non-shared
BDD (thus, in fact, just a decision tree) representing the formula (x ∧ y) ∨ z is
given by the following tree (omitting references):

Node x

(Node z (Leaf false) (Leaf true)),

(Node y (Node z (Leaf false) (Leaf true))

(Leaf true))

There is a common subtree (Node z (Leaf false) (Leaf true)) which we
would like to share. We therefore adorn the tree nodes with references, using the
same reference for structurally equal trees, for example:

Node (x, 1)

(Node (z, 3) (Leaf (false, 4)) (Leaf (true, 5))),

(Node (y, 2) (Node (z, 3) (Leaf (false, 4)) (Leaf (true, 5))),

(Leaf (true, 5)))

The process of sharing is illustrated in Figure 2.

sharing

false, 4 true, 5 false, 4 true, 5 true, 5

z, 3

y, 2

x, 1

z, 3

false, 4 true, 5

z, 3

y, 2

x, 1

Fig. 2: Sharing nodes in a tree

Each node contains a variable index whose type is any type equipped with
a linear order (as indicated by Isabelle’s type class annotation) and each leaf
contains a value of any type instantiated later in the development (for interpre-
tations) to Booleans. To allow writing simple and generic algorithms (i. e. avoid
particular cases), leaves and nodes should be usable in the same way. For exam-
ple, we define a linear order on levels of trees by having level of leaves always
greater than levels of nodes and using variable indices to compare nodes.

BDDs can be interpreted by giving values to variables which is what the
interp function does:

fun interp :: ( ′a, ′v , -) rtree ⇒ ( ′v ⇒ bool) ⇒ ′a where
interp (Leaf (b,r)) vs = b
| interp (Node (v ,r) l h) vs = (if vs v then interp h vs else interp l vs)

With this definition, and without any other property, BDDs would be rather
hard to manipulate. On the one hand, same variable indices could appear several
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times on paths from root to leaves. On the other hand, variables would not be
in the same order, making comparison of BDDs harder. Moreover, a lot of space
would be wasted. To circumvent this problem, one often imposes a strict order
on variables, the resulting BDDs being called ordered (OBDDs):

fun tree-vars :: ( ′a, ′b, -) rtree ⇒ ′b set where
tree-vars (Node (v ,r) l h) = insert v (tree-vars l ∪ tree-vars h)
| tree-vars (Leaf b) = {}

fun ordered :: ( ′a, ′v ::ord , -) rtree ⇒ bool where
ordered (Leaf b) = True
| ordered (Node (i , r) l h) =

((∀ j ∈ (tree-vars l ∪ tree-vars h). i < j ) ∧ ordered l ∧ ordered h)

An additional important property is to avoid redundant tests, which occurs
when the two children of a node have the same interpretation. All the nodes
satisfying this property can be removed. In this case, the OBDD is said to be
reduced (ROBDD).

fun reduced :: ( ′a, ′v , -) rtree ⇒ bool where
reduced (Node vr l h) = ((interp l 6= interp h) ∧ reduced l ∧ reduced h)
| reduced (Leaf -) = True

This property uses a high-level definition (interp), but it can be deduced
(c. f. lemma below) from the three low-level properties ref-unique, ordered (al-
ready seen) and non-redundant :

fun non-redundant :: ( ′a, ′v , -) rtree ⇒ bool where
non-redundant(Node vr l h)=((¬ref-equal l h) ∧ non-redundant l ∧ non-redundant h)
|non-redundant(Leaf -) = True

We then merge these properties in two definitions robdd (high-level) and
robdd-refs (low-level):

definition robdd t == (ordered t ∧ reduced t)

definition robdd-refs t == (ordered t ∧ non-redundant t ∧ ref-unique (treeset t))

From these definitions, we can then show that ROBDDs are a canonical
representation of Boolean expressions, i. e. that two equivalent ROBDDs are
structurally equal at high (robdd) and low (robdd-refs) level:

robdd t1 =⇒ robdd t2 =⇒ interp t1 = interp t2 =⇒ struct-equal t1 t2

robdd-refs t1 =⇒
robdd-refs t2 =⇒ interp t1 = interp t2 =⇒ struct-equal t1 t2

Moreover we can show that the high-level property can be obtained from the
low-level one:

ordered t =⇒ ref-unique (treeset t) =⇒ non-redundant t =⇒ reduced t
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And then that robdd and robdd-refs are equal as soon as all the subtrees are
maximally shared:

ref-unique (treeset t) =⇒ robdd-refs t = robdd t

4 Constructing BDDs

The simplest BDDs are the leaves corresponding to the True and False values.
These ones have to be unique in order to permit sharing of nodes. We put them
in the BDD factory whose data is this record:

record ( ′v , ′c) leaves = runit +
leafTrue :: (bool , ′v , ′c) rtree
leafFalse :: (bool , ′v , ′c) rtree

and for which we define the accessors $leafTrue and $leafFalse.

We define the context of this state by constraining the type of the referenced
record. This context together with the leaves record would be equivalent to a
class definition class Leaves extends Object in Java.

locale leaves = object this
for this :: ( ′v ::heap, ′c::heap, ′a::heap) leaves-scheme ref

Then we extend it to add purely logical abstractions trees and invar that will
be instantiated during the implementation to provide the correctness arguments
we will rely on in the proofs.

locale bddstate = leaves this
for this :: ( ′v ::{linorder , heap}, ′c::heap, -) leaves-scheme ref +
fixes trees :: heap ⇒ (bool , ′v , ′c) rtree set
fixes invar :: heap ⇒ bool

assumes leafTrue:invar s =⇒ ∃ r . RAcc.get s $leafTrue this = Leaf (True, r)
assumes leafFalse:invar s =⇒ ∃ r . RAcc.get s $leafFalse this = Leaf (False, r)

begin

To be well-formed, the heap needs to follow the implementation invariant
and its trees need to be maximally shared, closed for the subtree relation and to
contain the leaves.

definition wf-heap :: heap ⇒ bool where
wf-heap s == (
invar s
∧ ref-unique (trees s)
∧ subtree-closed (trees s)
∧ ((RAcc.get s $leafTrue this) ∈ trees s)
∧ ((RAcc.get s $leafFalse this) ∈ trees s))

end
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Finally we add an abstract function mk and its specification especially en-
suring it constructs a ROBDD under some preconditions.

locale bddstate-mk = bddstate - trees
for trees :: heap ⇒ (bool , ′a::{linorder ,heap}, -) rtree set +
fixes mk :: ′a::{linorder ,heap} ⇒ (bool , ′a, -) rtree ⇒ (bool , ′a, -) rtree

⇒ (bool , ′a, -) rtree Heap

assumes mk-robdd-refs:
effect (mk i l h) s s ′ t =⇒ wf-heap s =⇒ LevNode i < Min (levelOf ‘ {l , h})

=⇒ {l ,h} ⊆ trees s =⇒ (∀ t ′ ∈ trees s. robdd-refs t ′) =⇒ robdd-refs t
assumes mk-interp:
effect (mk i l h) s s ′ t =⇒ wf-heap s =⇒ {l ,h} ⊆ trees s

=⇒ ∀ vs. interp t vs = (if vs i then interp h vs else interp l vs)

assumes mk-wf-heap:
effect (mk i l h) s s ′ t =⇒ wf-heap s =⇒ {l ,h} ⊆ trees s =⇒ wf-heap s ′

assumes mk-trees:
effect (mk i l h) s s ′ t =⇒ wf-heap s =⇒ {l ,h} ⊆ trees s

=⇒ trees s ′ = insert t (trees s)

In this context we define the app function which applies a binary boolean
operator to two BDDs.

function app :: (bool ⇒ bool ⇒ bool)
⇒ ((bool , ′a, -) rtree ∗ (bool , ′a, -) rtree)
⇒ (bool , ′a::{linorder ,heap}, -) rtree Heap where
app bop (n1 , n2 ) = do {

if tpair is-leaf (n1 , n2 )
then (constLeaf (bop (leaf-contents n1 ) (leaf-contents n2 )))
else (do {

let (lh1 , lh2 ) = select split-lh dup (n1 , n2 );
let (l1 , h1 ) = lh1 ;
let (l2 , h2 ) = lh2 ;
l ← app bop (l1 , l2 );
h ← app bop (h1 , h2 );
mk (varOfLev (min-level (n1 , n2 ))) l h

})}

This is the only function whose termination proof is not automatic, but still
very simple: it suffices to show that select decreases the size of a pair of trees
(defined as the sum of the sizes of the trees).

Finally, build is a simple recursive traversal:

primrec build :: ( ′a, bool) expr ⇒ (bool , ′a, -) rtree Heap where
build (Var i) = (do{ cf ← constLeaf False; ct ← constLeaf True; mk i cf ct})
| build (Const b) = (constLeaf b)
| build (BExpr bop e1 e2 ) = (do{

n1 ← build e1 ;
n2 ← build e2 ;
t ← app bop (n1 , n2 );
return t
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})

5 Optimizations: Memoization and Garbage Collection

The app and build functions have been presented in their simplest form and
without optimizations. We present in this section the two optimizations we have
made to them.

5.1 Memoization

During the BDD construction, several identical computations can appear. This
happens mostly within the recursive calls of the app function during which the
binary operation stays the same and identical pairs of BDDs can arise by sim-
plifications.

In order to avoid these redundant computations, the immediate solution is
to use a memoization table – recording the arguments and the result for each of
its calls and returning directly the result in case the arguments already have an
entry in the table.

We add this memoization table in the state by extending the record contain-
ing the leaves and defining the $appmemo accessor.

Then the only changes to the app function are the memoization table lookup
before the eventual calculation and the table update after:
function app-rec where

app-rec bop (n1 , n2 ) = do {
m ← this·$appmemo;
(case m-lookup (ref-of n1 , ref-of n2 ) m of

Some t ⇒ t
| None ⇒ do {

t ← ...;
memo-return (ref-of n1 , ref-of n2 ) t
})
}

definition app where
app bop tp = do {

RAcc.update $appmemo this m-empty ;
app-rec bop tp
}

By adding an invariant on the memoization table, the proof changes follow
the function ones. With a case distinction on the result of the table lookup for
the arguments, if there is an entry for them, the result follows the invariant, else
the original proof remains and the result following the invariant is stored in the
table.
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5.2 Garbage collection

Using an association table avoids duplication of nodes and allows to share them.
However, recording all created nodes since the start of the algorithm can lead to
a very huge memory usage. Indeed keeping a reference to a node in an association
table prevents the JVM garbage collector to collect nodes that could have been
discarded during BDD simplifications.

To prevent this waste of space, one solution is to use weak references [17].
Nevertheless, it would be impossible to formalize them as Isabelle’s code ex-
tractor has no influence on the JVM garbage collector. Thus we would have to
replace some references by weak references during the code generation and to
rely on the correctness of this selective transformation.

An other solution is to use a mechanism of garbage collection removing un-
used entries from the association table. While this solution duplicates the JVM
garbage collection, it allows its verification.

We chose to implement this garbage collection by a reference counting vari-
ant. The principle of reference counting is simply to store in the nodes the number
of references to them. Instead of counting references for all nodes, we only count
them for the BDD roots. This allows to keep the mk function independent from
the reference count. Then, we parametrized the development with a garbage
collection function gc whose specification ensured the preservation of reachable
nodes. We call it in the build function when the association table becomes too
large.

For this improvement, the proof additions were consequent. Indeed, several
mutations to the reference counter appears in the functions, causing inner modi-
fications in proofs. Moreover the invariants on trees had to be weakened to allow
the garbage collection.

6 Implementation

It is now time to implement the abstract function mk as well as the purely logical
functions invar and trees. We wrote two implementations for it and we present
the most efficient one using an hash-map provided by the Collection Framework
[21].

Following its specification, mk needs to ensure the maximal sharing of nodes.
To do this, we use a table associating the components of a node (its children
and variable value) to itself. Then by looking in this table, we know if a BDD
has already been created and it can be returned. We add this table in the state:

record ( ′v , ′c) bddstate-hash =
( ′v , ( ′c refCount-scheme ref × ′c refCount-scheme ref , (bool , ′v , ′c) rctree) hashmap,

′c) leaves-memo +
hash :: ( ′v × ′c refCount-scheme ref × ′c refCount-scheme ref , (bool , ′v , ′c) rctree)

hashmap

And then we define two auxiliary monadic function add and lookup to ab-
stract from the table accesses:
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definition add
:: ′v ⇒ (bool , ′v , -) rctree ⇒ (bool , ′v , -) rctree ⇒ (bool , ′v , -) rctree Heap where
add i l h = do{

x ← newNode i l h;
RAcc.rmap $hash (ahm-update (i , ref-of l , ref-of h) x ) this;
return x
}

definition lookup
:: ′v ⇒ (bool , ′v , -) rctree ⇒ (bool , ′v , -) rctree ⇒ (bool , ′v , -) rctree option Heap

where
lookup i l h = do{
hm ← this·$hash;
return (ahm-lookup (i , ref-of l , ref-of h) hm)
}

which are used in the definition of mk :

definition mk where
mk i l h = (if ref-equal l h then return l else do{

to ← lookup i l h;
(case to of None ⇒ add i l h | Some t ⇒ return t) })
The garbage collector gc is then also implemented using two auxiliary monadic

functions referencedSet – computing the set of nodes reachable from a node with
a non-null reference count – and hash-restrict – restricting the domain of the
hash table to the set given as argument:

definition gc :: unit Heap
where

gc = do {
hs ← referencedSet ;
hash-restrict hs
}

and to avoid too frequent calls to the garbage collector, it is triggered only
when the table size exceeds 10000:

definition gc-cond :: bool Heap
where

gc-cond = do{
hm ← this·$hash;
return (ahm-size hm > 10000 )
}

definition cond-gc :: unit Heap
where

cond-gc = do{ b ← gc-cond ; if b then gc else return () }
We can then use these functions satisfying the specifications of the locales

to interpret them and obtain instantiated app and build functions for which we
can generate code.
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7 Performance evaluation

Finally we evaluate the performance of our BDD construction development.
As a comparison point we developed a BDD package directly in Scala whose

code would be naively expected from the code generation from the Isabelle the-
ories. This allows to evaluate the efficiency of the default code generation of
Isabelle into Scala wrt our encoding of objects. We also compare these two im-
plementations with a third one being an highly optimized BDD library called
JavaBDD [18] providing a Java interface to several BDD libraries written in C
or Java.

For this evaluation we construct BDDs for two kinds of valid formulas. The
first one is the Urquhart’s formulae Un defined by x1 ⇔ (x2 ⇔ . . . (xn ⇔ (x1 ⇔
. . . (xn−1 ⇔ xn)))). The second one is a formulae Pn stating the pigeonhole
principle for n+ 1 pigeons in n holes i. e. given that n+ 1 pigeons are in n holes,
at least one hole contains two pigeons.
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Isabelle/Scala; Scala; JavaBDD (106); JavaBDD (5× 106)

For the generated code, the garbage collection is triggered when the table
size exceeds the fixed value 10000.

In the Scala version, we use the standard hash map of the Scala library
(scala.collection.mutable.HashMap) which has an adaptable size. Its garbage
collection is triggered when the table size exceeds a threshold value. The table
size causing the garbage collection is initially set to 1000 and if the table size
after garbage collection exceeds this threshold, it is increased by one half.

On the other side, JavaBDD needs an initial table size increased after garbage
collections by an initially fixed value. In the benchmarks, we set it to 106 and
5×106. We can see that increasing the initial table size for the JavaBDD version
leads to better performances for large expressions but then more space is needed
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even for smaller ones. Then the difficulty to choose the right size is reported to
the library user.

While the generated code is slower than the others, it is still able to construct
BDDs for large expressions thanks to the garbage collection.

We suspect several causes of inefficiency and space usage compared to the
Scala version:

– Monad operations are converted into method calls. The presence of monadic
operators at each line could explain some performance penalties.

– During the code generation, a “Ref” class is introduced to allow reference
manipulations in Scala. This is unnecessary for objects as long as we don’t use
references on primitive types or access to the value referenced only through
accessors.

– Records extensions are translated to class encapsulations leading to several
indirections at the time of attribute accesses.

Improving on these points is current work and we think that these optimiza-
tions in the code generation could improve the general performances, to the point
that the generated code would be comparable to the hand-written code.

8 Conclusions

This paper has presented a verified development of a BDD package in the Isabelle
proof assistant, with fully operational code generated for the programming lan-
guage Scala. The development time for the formalization itself (around 6 person
months) is difficult to estimate exactly, because it went hand in hand with the
development of the methodology. In the light of the performance of the code ob-
tained, the result is encouraging, and we expect to explore the approach further
for the development of verified decision procedures.

As mentioned in the outset, bit-level optimizations could be introduced, at
the price of adding one or several refinement layers, with corresponding simula-
tion proofs. Even though feasible, this is not our current focus, since we aim at
a method for producing reasonably efficient verified code with a very moderate
effort.

Consequently, our method is not a panacea. As far as the class and object
model is concerned: The type system has intentionally been kept simple in the
sense that classes are essentially based on record structures and inductive data
types as found in ML-style polymorphism. Such a choice is incompatible with
some OO features such as late method binding, which appears to be acceptable
in the context of high-integrity software. As mentioned in Section 7, we are aware
of some inefficiencies that arise from nesting of objects during code extraction to
Scala, and which have as deeper cause a mismatch between pointer-manipulating
languages (such as C and C++, as also incorporated in the Imperative HOL
framework) and pure OO languages, such as Java and Scala. We will address
this issue in our future work.
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Also the limitation of representable structures to “trees with sharing” appears
to be a severe limitation at first glance, but in combination with cute functional
data structures [24], it is possible to represent quite general pointer meshes (see
for example the verification of the Schorr-Waite garbage collector [16] using a
“zipper” data structure).
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4. Sascha Böhme, Micha l Moskal, Wolfram Schulte, and Burkhart Wolff. HOL-Boogie
— An Interactive Prover-Backend for the Verifying C Compiler. Journal of Auto-
mated Reasoning, 44(1–2):111–144, February 2010.

5. Achim D. Brucker and Burkhart Wolff. Extensible Universes for Object-Oriented
Data Models. In Jan Vitek, editor, Proceedings of the European Conference
of Object-Oriented Programming (ECOOP 2008), LNCS 5142, pages 438–462.
Springer-Verlag, Paphos, Cyprus, July 2008.

6. Achim D. Brucker and Burkhart Wolff. Semantics, Calculi, and Analysis for
Object-Oriented Specifications. Acta Informatica, 46(4):255–284, 2009.

7. Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, 1986.

8. Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkök, and John
Matthews. Imperative Functional Programming with Isabelle/HOL. In Ot-
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Abstract. Formal verification techniques for software product families
not only analyse individual programs, but must act on the artifacts and
components which are reused to obtain software products. As the num-
ber of products is exponential in the number of artifacts, it is essential
to perform verification in a modular fashion instead of verifying each
product separately: the goal is to reuse not merely software artifacts,
but also their verification proofs. When code reuse is based on standard
class-based inheritance in OO programming, Liskov’s principle is a well-
known device to achieve modular verification. Software families, however,
generally employ more flexible program modularization techniques than
inheritance. Delta-oriented programming is an approach to implement a
family of OO programs where code reuse is achieved via stepwise trans-
formation of a core program. In this paper, we define a Liskov principle
for delta-oriented programming and show that it achieves modular veri-
fication of software families developed in that paradigm.

1 Introduction

Diversity is prevalent in modern software systems in order to meet different cus-
tomer requirements and application contexts [29]. Formal modeling and verifica-
tion of software product families have attracted considerable interest recently [32,
5, 12, 8]. The challenge is to devise validation and verification methods that work
at the level of families, not merely at the level of a single product. Given the com-
binatorial explosion in the number of possible products even for small software
families, efficient verification techniques for families are essential. For verification
techniques to scale, they have to be modular in the artifacts that are reused to
build the different variants of the software family.

In the area of object-oriented programming, Liskov’s principle of behavioral
subtyping [24] is an important means and guideline to achieve modular verifi-
cation. It is also an important theoretical tool to investigate theories of specifi-
cation and refinement. However, in the majority of approaches to family-based
software development the principles of reuse are not founded on class-based in-
heritance. Instead, more flexible program modularization techniques, such as
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aspect-oriented programming [19], feature-oriented programming [4], or delta-
oriented programming [26] (which can be considered as an extension of feature-
oriented programming [28]) are applied. For this family of languages, there exist
a few insular approaches to incremental verification [8, 32]. However, there is,
to the best of our knowledge, no notion corresponding to Liskov’s principle for
inheritance. As a consequence, there is no approach that would allow modular
functional verification for software families.

In this paper, we analyse delta-oriented programming (DOP) of software
families [26]. In DOP, a software family is developed from a designated core
program and a set of delta modules that alter the core program to realize other
program variants. In Sect. 2, we provide sufficient background on DOP to make
the paper self-contained. Functional program properties are specified based on
design-by-contract [25] by providing class invariants and method contracts. The
core program is specified like any standard program, while the deltas can add or
remove method contracts and class invariants to reflect the changes in the code
carried out by a delta. As it is detailed in Sect. 3, by applying the deltas and
their specifications to a core program and its specification, a program variant
(called product) and its corresponding specification is generated.

To support modular reasoning for software families implemented by DOP, we
develop a Liskov principle for delta modules in Sect. 4. This principle restricts the
changes that a delta module may make to the specification of the core program.
Based on this principle, in Sect. 5 we devise a modular proof principle that relies
on the approximation of called methods by their first introduced variant. If the
Liskov principle for DOP holds, we show that it suffices to analyze the core
program and each delta in isolation to establish the correctness of all products.
In Sect. 6, we discuss the consequences of DOP for reasoning about invariants.
Furthermore, in Sect. 7, we show a proof transformation to construct proofs for
program variants from the proofs carried out during the modular analysis. In
Sect. 8, we review related work. We conclude and discuss future work in Sect. 9.

2 Delta-Oriented Programming

The basis of this paper is the modeling language ABS (Abstract Behavioral Spec-
ification Language) [9, 13] where program variability is represented by DOP. ABS
is a class-based, concurrent OO language without class inheritance. Interfaces
which are implemented by classes can be extended to provide a taxonomy similar
to class inheritance. We consider sequential ABS programs, because there is no
standard notion of contract or Liskov principle for concurrent programs.

2.1 Preliminaries

A family of ABS programs is represented by an ABS core program C and a
partially ordered set of deltas D, together called delta model. Deltas can add, re-
move, and modify classes from the core program. Modification of a class changes
the internal class structure by adding and removing fields and methods and by
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changing method implementations. A method implementation can be completely
replaced or wrapped using the original call. The keyword original denotes a call
to the most recent version of a method, analogous to the “super” call in class-
based inheritance, however, in contrast to the latter, original calls are statically
resolved when building a concrete product. Accordingly, an occurrence of orig-
inal requires to know exactly which delta has been used most recently in order
to arrive at the current partial product. Therefore, we will restrict the usage of
original to only those cases where the target of original can be uniquely deter-
mined. To avoid technical complications that are orthogonal to the problem of
modular product family analysis treated here, we exclude recursive calls.

A partial order between deltas resolves conflicts if two deltas alter the same
entity of an ABS program. This ensures that for a given set of deltas a unique
ABS program variant is always generated. Without loss of generality, we assume
that the partial order of the deltas is expressed as a total order on a partition [27]
denoted as [δ11 · · · δ1n1

] < · · · < [δh1 · · · δhnh
]. We assume that all deltas in

one element
[
δj1 · · · δjnj

]
of the partition are compatible and that the partitions

are pairwise disjoint. A set of deltas is called compatible if no class added or
removed in one delta is added, removed or modified in another delta contained
in the same set, and for every class modified in more than one delta, the fields and
methods added, modified or removed are distinct. Thus, the order of application
of the deltas in the same partition element does not matter. The parts of the
partition, however, must be applied in the specified order to ensure that a unique
product is generated for a selected subset of deltas. We call h the height of the
delta model and max{n1, . . . , nh} its width. The number of possible products in
a delta model is bounded by (2w)h (the number of subsets that can be selected).

On an abstract level, variability is usually represented by features, that is,
user-visible product characteristics. A feature model [18] defines the set of valid
feature combinations, i.e., the products of the software family. To connect fea-
ture models and program variability specified by the delta model, a product
line specification is provided where an application condition over the features
is attached to each delta. These conditions can be Boolean constraints over the
features and specify for which feature configurations a delta can be applied.

A program for a particular feature configuration is generated by selecting the
subset of deltas with a valid application condition and applying them to the core
program in a linear order that is compatible with the partial order of the delta
model. The generation of a program variant from a core program C and a delta
model D is written as Cδ1 · · · δp where for all 1 ≤ i ≤ p, it holds that δi = δkl and
δi+1 = δk′l′ such that δi 6= δi+1 and k ≤ k′. We know that the number of applied
deltas is bounded by p ≤ h ∗w. We use the following obvious notation to access
classes C, fields f, and methods m within (partial) products: Cδ1 · · · δn.C.m.f, etc.

It is possible that a sequence of delta applications Cδ1 · · · δn is not a product,
for example, when an accessed method or field was not declared before. Since
we want to reason only about well-defined products, this causes technical com-
plications. One way to avoid them is to stipulate that all sequences of deltas
lead to type-safe products which can be enforced by adding suitably composed
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intermediate deltas. As this would bloat delta models, we employ a more natural
restriction sufficient for our purposes: assume P = Cδ1 · · · δn is any product and
Pδn+1 · · · δn+k is a product with a minimal number of deltas obtained from P
(that is, the same product cannot be produced with less deltas); then any method
is introduced or modified at most once in δn+1, . . . , δn+k.3 We call a delta model
with this property regular. In addition, we assume that without loss of generality
each delta occurring in a regular delta model is used in at least one product.

2.2 Running Example

Our main example is a simple product family of bank accounts depicted in Fig. 1.
The core program contains a class Account implementing an interface IAccount.
The class Account contains a field balance for storing the balance of the account
and a method deposit to update the balance. The product family contains two
deltas. Delta DFee modifies Account by introducing a transaction fee modeled by
a parameter that is instantiated when a concrete program variant is generated.
Delta DOverdraft adds a limit to the account restricting the possible overdraft.

The feature model for this product family contains the mandatory feature
Basic implemented by the Account class. Furthermore, the product family has
the optional feature Fee with a fee parameter and the optional Overdraft fea-
ture. The product line declaration at the bottom of Fig. 1 provides the con-
nection between features and deltas in the when clauses. These state that the
delta DFee realizes the feature Fee and that delta DOverdraft implements the
feature Overdraft. The after clause provides the application ordering between
the deltas which is generally described by an ordered partition (see above). The
product family of bank accounts gives rise to four program variants: one with
only the Basic features, one with the Basic and Overdraft feature, one with
the Basic and Fee features and one with all three features where each prod-
uct containing the feature Fee varies in the concrete value of the fee which is
instantiated with a concrete value when a particular product is generated.

3 Specifying Deltas

To be able reason about behavioral properties of program variants, a property
specification technique for core programs and deltas has to be provided that
allows generating the program variants together with their specification.

3.1 Design By Contract

We use a specification discipline for both core programs and deltas that is derived
from design by contract [25] and closely modelled after the JML approach [22].

3 Removing and re-introducing a method corresponds to a modification.
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module Account;

interface IAccount { Unit deposit(Int x); }

class Account implements IAccount {

Int balance = 0 ;

Unit deposit(Int x) { balance = balance + x; }

}

delta DFee(Int fee) {

modifies class Account {

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); }

}

}

delta DOverdraft() {

modifies class Account{

adds Int limit;

modifies Unit deposit (Int x) { if (balance + x > limit) original(x); }

}

}

productline AccountPL {

features Basic, Overdraft, Fee;

delta DFee (Fee.amount) when Fee;

delta DOverdraft after DFee when Overdraft;

}

Fig. 1. A Bank Account Product Family in ABS [9, 13]

Definition 1. A program location is an expression that refers to an updatable
heap location, such as variables, formal parameters, field access expressions, or
array access expressions. We work with first-order signatures that include all
locations of the program of interest. A contract for a method m consists of:

1. a first-order formula r called precondition or requires clause;
2. a first-order formula e called postcondition or ensures clause;
3. a set of program locations a, called assignable clause, that occur in m and

whose value can potentially be changed during execution.

We extend our notation for accessing class members to cover the constituents
of contracts: C.m.r is the requires clause of method m in class C, etc.

Let m(p) be a call of method m with formal parameters p. A total correctness
program formula in dynamic logic [6, Chapter 3] is of the form 〈m(p)〉Φ and
means that whenever m is called then it terminates and in the final state Φ holds
where Φ is either again a program formula or a first-order formula. One part of
the semantics of a method contract is expressed as a total correctness formula
of the form r→ 〈m(p)〉e. (Partial correctness does not add anything essential to
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our discussion, so we omit it for brevity.) The second part of contract semantics
is correctness of the assignable clause. One must ensure that m can change the
value of no other program location than of those listed in a. It is possible to
encode this property with the help of program formulas [17]. This encoding is of
no further interest in this paper, so we do not give details, but we assume there
is a program formula A(a, m) that states correctness of the assignable clause. The
following monotonicity condition can be assumed:

a′ ⊆ a ∧ A(a, m)→ A(a′, m) (1)

Definition 2. A method m of class C satisfies its contract if the following holds:

C.m.r→ 〈m(p)〉C.m.e ∧ A(C.m.a, C.m) (2)

In addition to contracts, we allow first-order formulas i to be attached as in-
variants to classes. We permit to write invariants directly in front of the element
they relate to (e.g., a field declaration). However, as we consider all specifica-
tions to be globally visible in this paper, these simply are part of the invariant
of a class. Hence, we assume that each class C has a unique invariant C.i. As
usual, the semantics of invariants requires to establish two properties: (i) after
initialization of a class its invariant holds and it does not invalidate the invariant
of any other class, and (ii) if an invariant holds just before the execution of a
method, then it holds again immediately after termination of that method. As
a consequence of global visibility of invariants, the invariants of all classes must
be maintained by all methods. In the absence of modularity constructs, this is
the usual situation in specification of object-oriented programs.

The presence of contracts makes formal verification of complex programs
feasible, because each method can be verified separately against its contract and
called methods can be approximated by their contracts. The assignable clause of
a method limits the program locations a method call can have side effects on.4

In Sect. 7, we show how contracts are used in proofs.
Fig. 2 shows the specification of the core program of the Bank Account prod-

uct family. The method deposit is specified with a method contract whose pre-
condition in the @requires clause denotes that the balance should be positive.
The postcondition in the @ensures clause denotes that the balance after the
method call is at most the balance before the method call (accessed by the JML
\old keyword) plus the value of the input parameter. As there is no explicitly
specified invariant, the class invariant of Account is simply true.

3.2 Specification Deltas

We want to be able to denote in a structured manner those parts of contracts
and invariants that must be modified in order to reflect the changes that are

4 We are well aware that this basic technique is insufficient to achieve modular veri-
fication. Advanced techniques for modular verification, e.g. [3], would obfuscate the
fundamental questions considered in this paper and can be superimposed later.
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class Account implements IAccount {

Int balance = 0;

@requires x > 0;

@ensures balance <= \old(balance) + x;

Unit deposit(Int x) { balance = balance + x }

}

Fig. 2. Specification of Core Bank Account

embodied in a given delta. The specification approach of [8] allows (i) to add
and remove invariants as well as (ii) to add and remove whole contracts in deltas.
This is too coarse for our purposes, so we make the following refinement:

– in deltas, the addition, removal, and modification of contracts can be speci-
fied separately for requires clauses, ensures clauses, and assignable clauses;

– we permit the usage of the keyword original in clauses of contracts with the
obvious semantics provided that the contract to which original refers can be
uniquely determined;

– since the invariant of a (partial) product is always global and the implicit
conjunction of all invariants introduced in the core and in the constituent
deltas, modifying invariants and the usage of original in invariants makes no
sense. Hence, invariants can only be explicitly added or removed in deltas.

A missing specification clause is equivalent to, for example, “@requires origi-
nal” (or to “@requires true” in the case of the first occurrence of a method).
Fig. 3 shows the modification to the specification caused by the delta DFee. The
contract of method deposit is changed by replacing the postcondition. The pre-
condition remains unchanged. Additionally, an invariant for the field fee is added
to the class Account which states that the value of fee should be non-negative.

delta DFee(Int fee) {

modifies class Account {

adds @invariant fee >= 0;

modifies @ensures balance <= \old(balance) + max(x-fee,0) ;

modifies Unit deposit(Int x) { if (x>=fee) original(x-fee); }

}

}

Fig. 3. Delta DFee with its Specification Delta
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4 Liskov’s Principle

Liskov’s principle of behavioral subtyping [24] is an important means to achieve
modularity for behavioral specification and verification. In this section, we recall
Liskov’s principle for standard class-based inheritance and transfer it to DOP.

4.1 Standard Object-Oriented Design with Code Inheritance

In standard object-oriented programming with code inheritance Liskov’s [24]
principle states the following:

1. The invariant of a subclass must imply the invariant of its superclasses.
2. The precondition of a method overridden in a subclass must be implied

by the precondition of the superclass method and the postcondition of a
method overridden in a subclass must imply the postcondition of the super-
class method.

3. When assignable clauses are present, the assignable locations in a subclass
must be a subset of the assignable locations in the superclass.

We distill the essence of the last two points into a relation on contracts:

Definition 3. For two methods m, m′ let m.r, m.e, m.a, and m′.r′, m′.e′, m′.a′ be
different contracts (m = m′ is possible). We say that the first contract is more
general than the second (or the second is more specific than the first) whenever
the following holds:

(m.r→ m′.r′) ∧ (m′.e′ → m.e) ∧ (m′.a′ ⊆ m.a) (3)

The following lemma is immediate by the definition of contract satisfaction
(Def. 2), propositional reasoning, monotonicity of postconditions in total cor-
rectness formulas, and monotonicity of assignable clauses (1). It will be tacitly
used in the following to establish satisfaction of method contracts.

Lemma 1. If a method m′ satisfies its contract then its satisfies as well any
contract that is more general.

Consequently, if a specification follows Liskov’s principle, then behavioral
subtyping is guaranteed provided that all methods satisfy their contract and
maintain the invariants. This means that an object can be replaced by any
object with a subtype without changing the behavior of the program.

4.2 Delta-Oriented Specification

We propagate delta-oriented programming (DOP) [26, 27] as the fundamental
technique for code reuse, in contrast to inheritance. As a prerequisite for modular
verification in this context, it is necessary to understand how Liskov’s principle
can be ported to a DOP setting and what it means exactly.
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To develop a Liskov principle for DOP, we consider the code and specification
elements that can be changed by deltas: adding and removing methods together
with their contracts is uncritical, since our assumption on type-safety guarantees
that such a method has never been called before, respectively, will not be called
afterwards. It is sufficient to prove the contract of newly added methods, but
that of existing methods cannot be affected. If a newly added method should be
integrated into an existing program, modifications of existing methods have to
be specified in other applied deltas. This leaves modification of existing methods
and contracts as well as the removal and addition of invariants to look at.

To preserve the behavior of a method that is modified by a delta, it is suffi-
cient to follow the same principle as in behavioral subtyping, i.e, to make con-
tracts more specific (Def. 3). Specifically, this is the case, whenever the modified
contract of m has a requires clause of the form C.m.r.original ∨ r′, an ensures
clause of the form C.m.e.original ∧ e′, and for the assignable clause a of the
modified contract, a ⊆ C.m.a.original holds.

The tricky issue is that references to original and, therefore, to method calls
and contracts are only resolved when a concrete product is being built. In Sect. 5,
we show that under certain restrictions one can verify a delta model without
having to look at all its exponentially many products.

Regarding removal and addition of invariants, certainly, we must exclude
the possibility to remove invariants (although in principle possible in deltas),
because this might invalidate the contracts of arbitary methods added either
in the core or in any delta. This would require to reprove all contracts in all
exponentially many products. A straightforward counterpart of the first item in
Liskov’s principle stated at the beginning of Sect. 4.1 would require adding only
invariants that are implied by previously existing ones. We discuss essentially
this situation in Sect. 6.1 below. This approach is rather restrictive, but adding
new invariants and reproving them in a compositional manner is non-trivial and
discussed in Sect. 6.2.

5 Compositional Verification of Delta Models

The main advantage of having a Liskov-like principle for the specification of
deltas is that we can follow a compositional verification approach. This means
that we can ensure with only a polynomial number of proofs the behavioral cor-
rectness of an exponential number of products. This obviously is a key property
in ensuring feasibility for product family verification, because even very small
product families have an infeasible number of products.

In this section, we focus on the verification of method contracts and cover
the verification of invariants in Sect. 6. We need to ensure that all methods in
any product satisfy their contract. We do this in two steps:

Verification of the Core. This is standard and means simply to prove that
all methods m in a core program C satisfy their contract (Def. 2).

Verification of the Deltas. For each method m added or modified in a delta δ,
we must establish its contract. We allow the usage of the keyword original
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in contracts only in the syntactically restricted form mentioned in Sect. 4.2.
For each method m, we must show the proof obligation

δ.m.r→ 〈m(p)〉δ.m.e ∧ A(δ.m.a, δ.m) (4)

Additionally, we need to ensure that the contract of each δ.m is more specific
than the contracts provided and verified for m in all previous deltas used for any
product. As the actual set of applied deltas cannot be known before product
generation, to get a compositional verification method avoiding the generation
of exponentially many products, we have to assume “the worst”.

For the verification of (4), let us first analyse the methods called inside δ.m:
if a method n is called5 in δ.m and does not occur in δ itself, then we use the
method contract associated with the first introduction of n in the given delta
model (i.e., in a δij with minimal index i). As subsequent contracts of n can only
get more specific according to our Liskov principle, this ensures that the call is
valid for all possible versions of n. Likewise, we use the “largest” assignable set
of locations. If n occurs in δ, we simply use the contract of δ.n.

Definition 4. If all methods occurring in a delta δ satisfy their contract, where
the contracts of called methods have been selected as outlined above, we say that
the δ is verified.

Next, we ensure that the contract of δ.m is more specific than all previous
contracts of the same method. As each method may occur at most once in a
part of the partition D by compatibility of the deltas in the part, it is sufficient
to compare the contract of δ.m with the contract of the most recent (as defined
below) occurrence of m from δ.m, say δ′.m. (If δ.m was the first occurrence in D,
then there is nothing to do.) It suffices to show that the contract of δ′.m is more
general than the contract of δ.m.

Definition 5. Assume that a method m occurs at least twice in a delta model
with core C and partition D = ([δ11 · · · δ1n1 ] , . . . , [δh1 · · · δhnh

]), and one of the
occurrences is in δjk. For convenience, we rename the core C into δ00. Then an
occurrence of m in δil is called most recent from δjk.m if there is no occurrence
of m in any δi′r with i < i′ < j.

Taken together, Defs. 4 and 5 provide a static (i.e., at the level of the product
family) approximation of the deltas used in any possible concrete product.

A straightforward induction over the height of a delta model lifts the property
that a method contract for a method m is more specific than the contract of the
most recent occurrence from m to arbitrary previous occurrences of the method
m. This will be needed later in the proof of Thm. 1.

Lemma 2. Let C and D be a delta model as in Def. 5. Assume that for the core
C and for any δ occurring in D the following holds: the contract of any method
m in δ is more specific than the contract of the most recent occurrence from δ.m.

5 In case, the call is done via the keyword original this simply means n = m where m is
not the one in δ.
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Then for any two method contracts of a method m occurring in any δik and
δjk′ such that i ≤ j we have that the contract of m in δik is more general than
its contract in δjk′ .

We formalize the considerations above in the following theorem:

Theorem 1. Given a regular delta model consisting of a core C and a partition
of deltas D = ([δ11 · · · δ1n1

] , . . . , [δh1 · · · δhnh
]). Assume the following holds:

1. C satisfies its contract, i.e., equation (2) holds for all its methods.
2. For all δ occurring in D:

(a) δ is verified.
(b) The contract of each method m added or modified in δ either is the first

occurrence of m in the delta model or it must be more specific than the
contract of the most recent method in D from δ.m.

Then every product obtained from the given delta model satisfies its specification,
i.e., each of its methods satisfies its contract.

Example. In the example of the bank account product family, the contract of
method deposit that is modified by the delta DFee in Fig. 3 satisfies condi-
tion (2b). The contract of method deposit in delta DFee is more specific than
the contract of method deposit in the class Account given in Fig. 2. Delta
DOverdraft does not change any specification and fulfills condition (2b) triv-
ially. During the verification of DFee.deposit the contract of Account.deposit
needs to be used. One can apply Thm. 1 to the bank account example and infer
that all four products satisfy their respective method contracts.

The significance of Thm. 1 lies in the fact that the number of proof tasks is
only polynomial in h, w, and the number M of different methods occurring in
a delta model: in the core and in each of at most h ∗ w deltas we need at most
three proofs for each modified method which is in O(h ∗ w ∗M). This is a clear
advantage over providing a separate proof for each product of which there are
exponentially many, resulting in O(2(h∗w) ∗M) many proofs.

Proof (of Thm. 1). The proof is by induction on the length p of delta sequences
where we consider only those sequences that result in a product. The induction
hypothesis says that each delta sequence of length p results in a product that
satisfies its specification.

The induction base for p = 0 amounts to show the claim for the core C of
the delta model which is taken care of by the first assumption.

Now assume that we have a product P = Cδ1 · · · δp that satisfies its specifi-
cation and P ′ = Pδp+1 · · · δp+k is any product with a minimal number of deltas
obtained from it. We show that

1. any method m occurring in P ′, but not in P , satisfies its contract;
2. that the contracts of all other methods called in P ′ still hold.
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Regarding the first item, by regularity of the delta model we can assume that
there is exactly one δ in δp+1, . . . , δp+k where m is introduced or modified. By
assumption (2a), from equation (4) we know that all methods in δ satisfy their
contract where the method n called in m can be approximated by the “first”,
i.e., most general existing contract. In P ′, these calls to n are replaced by some
implementation introduced or modified by some delta.

The actual contract of n was either introduced in δ itself or in a different
δp+1, . . . , δp+k or somewhere in P . In the first case, since δ is verified, n was
proven against its actual contract. If n came from one of the “new” deltas,
by assumption (2b) the contract of n is more specific than the contract of the
most recent occurrence in the delta model. By Lemma 2, the contract of that
occurrence is more specific than the first occurrence of n in the delta model which
was used for approximating the contract of n during verification of m. This means
that the previous proof supplied by the induction hypothesis still applies.

Finally, assume the contract of n was introduced in P . By Lemma 2, we
know that this contract must be either identical to or more specific than the
first occurrence of n in the delta model. Since the latter contract was used in
verification of m the result holds.

For proving the second item above, assume m is any method that is defined
and verified in a δ ∈ P . The case which we need to check is that m calls a method
n whose specification was overridden in δp+1, . . . , δp+k. From Lemma 2 we know
that the contract of the later occurrence is more specific than the contract of
m used in P . Therefore, the new contract is still applicable. Together with the
assumption that all δp+1, . . . , δp+k are verified, this closes the proof. ut

6 Verification of Invariants

As mentioned above, we assume that all invariants are global: each method
must satisfy all invariants. Therefore, one can assume that there is exactly one
invariant for each product. In more fine-grained approaches, one can limit the
visibility of invariants by making them private and attaching them to specific
class features or restrict their accessibility with type systems, however, this is
an orthogonal issue to the problem at hand.

Invariants can be viewed as a special case of method contracts where the re-
quires and ensures clause are identical. But this is exactly what makes it difficult
to fit invariants into the above framework where contracts become more specific
after the application of deltas causing requires and ensures clauses to diverge.
Specifically, for the reason stated in Sect. 4.2 we exclude removal of invariants.

6.1 Core Invariants

Our first take on invariants is a direct rendering of the first item in Liskov’s
principle. As explained in Sect. 4.2, this means that only invariants are added
that are implied by existing ones. This amounts to permit the introduction of
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invariants only in the core. All subsequent deltas use the same invariant. Proof
obligations of the kind (2) and (4) are extended with the core invariant C.i:

(m.r ∧ C.i)→ 〈m(p)〉m.e ∧ C.i→ 〈m(p)〉C.i (5)

We continue to use the specification and verification discipline of Sect. 5, but
employ proof obligations of the form (5). The number of proofs stays the same,
even though some may be harder to establish. The proof of Thm. 1 is done such
that at the first occurrence of a method declaration its contract and the invariant
is established. Hence, the invariant is available in subsequent verification steps
of the deltas.

Even though it may seem rather restrictive to use only core invariants, there
are a number of important advantages:

1. The number and complexity of proof tasks stays manageable.
2. Thm. 1 providing a compositional verification approach stays valid.
3. If an invariant i′ in one delta was added, then this invariant must be shown to

hold even for the methods not changed in that delta. This means that either
i′ has a signature disjoint from the core or it would have been possible to add
and show i′ already in the core. In the second case, the core invariant was
chosen too weak. We discuss the first possibility in more detail in Sect. 6.2.

6.2 Family Invariants

As soon as invariants can change during delta application, it is no longer possible
to reason precisely over product invariants on the level of the delta model. The
reason is that invariants behave non-monotonically: if equation (5) holds for i

it may not hold anymore for an i′ that is logically weaker or stronger than i.
It might seem harmless to make existing invariants stronger during delta

application, that is, a δ in a delta model may introduce an invariant δ.i which
is conjoined to the existing invariant. This, however, requires to prove that all
methods still satisfy the strengthened invariant. The problem is that at the
level of the delta model we do not know which concrete deltas are going to
be used to build a product. The best we can do is to approximate the required
invariant for each delta δ by collecting the invariants of all previous deltas. A safe
approximation is to establish the invariant

∧
δ′≤δ δ

′.i for each existing method
(not only for the methods mentioned in the delta) as part of the verification
of each δ in assumption (2a) of Thm. 1. This is more expensive than the core
invariant approach outlined in Sect. 6.1, but there is still only a polynomial
number of proofs in terms of the number of deltas and method calls.

The main drawback of this approach is not just the increased number of
proofs, but that the invariant that can be shown on the family level might be
much stronger than necessary for a specific product.

7 Proof Transformation

Our proof framework is based on a standard sequent calculus for first-order
logic. Sequents are of the form Γ,Φ =⇒ Ψ where without loss of generality all
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side formulas occur in Γ . Such a sequent is valid if for all models and program
states the formula

∧
γ∈Γ γ∧Φ→ Ψ holds. We assume that there are sequent rules

that can reduce a program formula of the form 〈q〉Φ appearing on the right-hand
side of a sequent to a finite set of pure first-order verification conditions (VCs)
provided that q contains no method calls (we deal with method calls in the rule
given below). There are several calculi that contain such rule sets, for example,
[6, Chapter 3]. Finiteness of the VCs is achieved by a loop invariant rule that
approximates the behaviour of a loop with a suitable single invariant formula
that holds for any execution of the loop body. In general, loop invariants cannot
be found automatically and must be supplied by the user. For this reason, it is
desirable to be able to reuse as much as possible of an existing verification proof
when its targeted program or specification changes.

Assume we proved that each method of a core product satisfies its contract
and that each delta has been verified. By soundness of our proof system, Thm. 1
ensures that each obtainable product satisfies its contract as well provided that
assumption (2b) holds. By completeness of our proof system there must be a
formal proof of this fact. Thm. 1 provides a semantic argument that such a proof
must exist. In this section, we provide a justification for Thm. 1 that is based
on proof transformation. Based on this, Thm. 1 can be proved syntactically.

This “syntactic version” of the proof of Thm. 1 must ensure that proofs can
be transformed such that methods calls are replacable with calls to methods
having a more specific contract. To this end, we need a concrete proof rule for
applying method contracts. For simplicity, we ignore the parameters and the
return value of method calls. Instead of m(p), we simply write m. The following
rule, based on the verification approach of [6], approximates a method call with
the method’s contract and makes it possible to verify each method separately.

methodContract
Γ =⇒ m.r Um.aΓ =⇒ Um.a(m.e→ 〈ω〉Φ)

Γ =⇒ 〈m;ω〉Φ
(6)

The expression Um.a is an explicit substitution that sets all locations occuring in
the assignable clause m.a to unknown locations modeled by fresh Skolem symbols.
In the following, assume that the contract of m′ is more specific than the contract
of m, i.e., (3) holds (this is justified by assumption (2a) of Thm. 1). Then the
validity of the following rule is easy to prove:

weakenSubst
Um.aΓ =⇒ Um.aΦ
Um′.a′Γ =⇒ Um′.a′Φ

(7)

Now assume an application of (6) occurs in a formal proof and we want to
replace the call to method m by a call to m′ which has a more specific contract.
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We reduce a call to method m′ to one by m as follows:

premiss (6)

Γ=⇒m.r
(3)

Γ, m.r=⇒m′.r′

Γ=⇒m′.r′

(3)

m′.e′=⇒m.e

Um.am′.e′=⇒Um.am.e

premiss (6)

Um.aΓ=⇒Um.a(m.e→〈ω〉Φ)

Um.aΓ=⇒Um.a(m′.e′→〈ω〉Φ)

Um′.a′Γ=⇒Um′.a′ (m′.e′→〈ω〉Φ)

Γ=⇒〈m′;ω〉Φ

(8)

After applying the method contract rule (6) to the replaced call with m′, we apply
a cut to the left premiss which leaves us with the left premiss of the original rule
application (7) and one conjunct of (3). To the right premiss, we apply first the
weakening rule (7) which is again justified by (3). Then, we weaken the premiss
of the implication on the right, replacing Um.am′.e′ with Um.am.e. The weakening
is justified by first weakening again Um.a to the empty substitution with (7) and
then again (3) of which all parts have now been used. We are left with the right
premiss of the original rule application (7).

A proof transformation such as the one just sketched opens up the possibility
of systematic proof reuse in situations where we cannot reason any longer on
the family level, because constraints such as Def. 4 or (2b) in Thm. 1 are too
restrictive. One idea is to make use of the syntactic structure in the specification
deltas. Assume, for example, that m′.r′ = original ∧ θ = m.r ∧ θ for some θ
which violates (3). In this case, the proof (8) cannot be completed any longer.
Nevertheless, a large part can be salvaged, only the second premiss from left is
replaced with Γ, m.r =⇒ θ for which a new proof must be found. This approach
will be developed in a follow-up paper.

8 Related Work

Behavioral subtyping is often criticized as too restrictive for practical purposes
[30]. For this reason, a number of modifications have been suggested, such as
incremental reasoning [31] or lazy behavioral subtyping [15]. None of these are
directly applicable to DOP.

Product line analysis can be classified in three main categories [32]: first,
product-based analysis considers each product variant separately. Product-based
analyses can use any standard analysis technique for single products, but are in
general infeasible for product lines due to the exponential number of products.
Second, family-based analysis checks the complete code base of the product line
in a single run to obtain a result about all possible variants. Family-based prod-
uct line analyses are currently used for type checking [1, 11] and model check-
ing [10, 2, 21] of product lines. They rely on a monolithic model of the product
line which hardly scales to large and complex product lines. Third, feature-based
analysis considers the building blocks of the different product variants (the deltas
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in DOP) in isolation to derive results on all variants. Feature-based analyses are
used for compositional type checking [27] and compositional model checking of
product lines [23]. The compositional verification approach presented here can be
classified as feature-based, since the core and every delta are verified in isolation.

For deductive verification of behavioral product properties, a product-based
analysis approach is proposed in [8]. Assuming one product variant has been
fully verified, from the structure of a delta to generate another program variant,
it is analyzed which proof obligations remain valid in the new product variant
and need not be reestablished. While this approach does not limit the variability
between two product variants, it requires to consider each of exponentially many
products. Since there is no systematic link between two variants, like the Liskov-
like principle employed in this paper, it is difficult to optimize proof reuse.

In [32], a combination between a feature-based and a product-based veri-
fication approach for behavioral properties is proposed where for each feature
module a partial proof script for Coq is generated. These proof scripts are com-
posed and checked for single products. In [5], feature-based proof techniques
for type system soundness of language extensions are proposed where proofs for
single language features are incrementally constructed. In [12] Coq proofs for
the soundness of a small compiler are composed feature-wise by modeling the
concept of variation points. Composition scripts have to be built by hand and
it is not clear whether the technique is applicable to functional verification of
general programs and properties. Our approach relies on a compositional proof
principle and is truly modular for behavioral program properties.

Besides delta-oriented programming, other program modularization tech-
niques have been applied to compositionally implement software variability, for
instance, feature modules [4], aspects [19], or traits [16, 7]. Apart from some ini-
tial work regarding modular deductive verification for aspects [20] and traits [14],
no compositional verification approach based on an adaptation of a Liskov prin-
ciple exists which is comparable to the approach presented in this paper.

9 Discussion and Future Work

This is a theoretical and conceptual paper which constitutes the first systematic
incremental specification and verification framework for diverse systems imple-
mented in DOP. DOP is amenable to formal analysis, because its granularity is
at the method-level which coincides with the best-understood contract-based ap-
proaches (JML, Spec#). Another reason is that the result of a delta application
is a standard program which has an undisputed correctness semantics.

The main contribution of this paper is to provide a Liskov principle for DOP
which gives rise to an efficient compositional verification approach for software
families. Like in Liskov’s principle for class inheritance, we also employ a number
of restrictions to make it work: (i) delta application leads to type-safe products
(Sect. 2.1), (ii) the contracts of subsequent deltas most become more specific
(Sect. 4.2, item (2b) of Thm. 1), (iii) invariants cannot be removed, but only
added (Sect. 4.2, Sect. 6.2), (iv) methods called in deltas use the contract of the

R. Hähnle, I. Schaefer

205 Technical Report, KIT, 2011-26



first implementation of that method (Def. 4). Restriction (i) is highly desirable
for DOP independently of verification [27]; (ii)–(iii) originate from Liskov’s prin-
ciple for OO programs: future work will consist in devicing mitigating strategies
similar as in the OO world [15]. Finally, (iv) is specific to our approach.

In Sect. 7 we sketch first ideas on how to deal with restrictions (ii) and (iv)
by giving a proof-theoretic justification of Thm. 1 that constitutes a syntax-
driven method to systematically factor out reusable parts of proofs. This is
the theoretical basis for being able to combine feature-based and product-based
analysis which appears as the only practical path to pursue.
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Hunting Bugs Inside Web Applications?
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Abstract. In recent years, focus of business world has been moved to-
wards the Internet. Web applications provide a generous interface non-
stop thus offering to malicious users a wide spectrum of possible attacks.
Consequently, the security of web applications has become a crucial issue.
The state-of-the-art tools for a bug discovery in languages used for a
web application development, such as PHP, suffer a relatively high false-
positive rate and low coverage of real errors; this is caused mainly by
an unprecise modeling of dynamic features of such languages and path-
insensivity of the tools. In this paper, we will demonstrate weak points
of the tools and describe our novel approach to these issues. It combines
path-sensitive static analysis, concrete and symbolic execution, literal
analysis, taint analysis and type analysis to find vulnerabilities in PHP
applications. We will show how our technique handles some of the situ-
ations where other tools fail and illustrate it with examples.

1 Introduction

Recently, as business world has moved its focus towards the Internet, a number
of applications have been moved on-line, and this trend is still continuing. Ac-
cording to the CENSUS [17], the online retail sales in the US in 2010 reached
over 160 billion US dollars. Safety and security of the web applications involved
in such transactions is therefore the top priority.

A typical web application is available and operational 24/7, thus not putting
any time pressure on hackers and malicious users trying to exploit security holes
inside them; a quite generous interface these applications provide further widens
the hackers’ field. Amongst the 25 most common programming errors, those
specific to web applications form a significant part of this group [5]; the examples
include improper neutralization of SQL commands, cross-site request forgery,
and missing authorization.

The most common programming language used at the server side is PHP [12].
Although it is currently losing a bit of market share, there is a huge number of
applications written in this language that deserve attention and effort towards
their security [16]. While the current, the fifth version of PHP, was released al-
ready some time ago, it was the fourth version from more than ten years ago

? This work was partially supported by Charles University Foundation grant 431011
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that introduced objects into the language, which facilitated the development of
larger projects. Despite that, however, PHP features many special attributes
that make it different from common programming languages, especially as far
as dynamism is concerned. The examples are inclusion of a file specified by a
runtime-computed filename and the eval construct allowing runtime construc-
tion of code that is executed afterwards.This makes it hard or sometimes even
impossible to apply the same techniques and tools for finding bugs or for cor-
rectness verification as in the case of “non-web” programming languages.

1.1 Problem statement and goals

Security issues related to web applications have a significant impact on the trust-
worthiness and reliability of on-line transactions and not only in business; con-
sider, e.g., leakage of classified information from a “secured” database. A lot of
attention has been paid to the development of methods and tools that would
help debugging these applications or establishing their correctness in some sense,
since the methods for “non-web” languages cannot be easily applied. The current
state-of-the-art tools, however, still suffer from low error coverage, a relatively
high false-positive rate, and often also from a weak support of language con-
structs, such as classes, dynamic includes, and the eval statement [8, 18].

In this paper, we propose a method for the identification of bugs inside web
applications caused by data flow of unsanitized inputs from the user to sinks
(SQL queries, URL constructions, output in general, etc.) inside web applica-
tions written in PHP. We describe our method and demonstrate benefits of our
approach over those present in related tools and we illustrate our method with
an example.

In Sect. 2, we describe the most problematic errors inside web applications
written in PHP. In Sect. 3, we discuss the properties of the tools in this area
and present the results of running one of them on an example. Sect. 4 proposes
our approach to analysis of PHP source code, and demonstrates our approach
on examples. Sect. 5 summarizes the paper and proposes directions for a future
work.

2 Errors inside web applications

A huge number of security holes inside web applications can be grouped under
one category which allows data to propagate from a user input (e.g. form fields on
a web page) into database queries, URLs, JavaScript code, etc. (sinks) without
checking if they are malicious [13]. These can be prevented by filtering user input,
escaping the output, and by keeping track of the input data [13].

Filtering input is a process of preventing invalid data from entering the ap-
plication. Blacklist filtering excludes malicious data, while whitelist filtering ex-
cludes all data except for that explicitly listed; thus it is distinctively safer than
blacklist filtering due to the possibility of a missing item in the list. Escaping
or encoding special characters that the application outputs prevents injection
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of malicious code or data. Keeping track of the input data involves identify-
ing the data that the input can influence, identifying the influence points, and
determining the extent of the influence.

2.1 Improper flow of data

Taint analysis can be used to find the data paths from sources to sinks in an
application. Taint analysis marks data representing sources as tainted and then
propagates the taint markings. Data is tainted if it can be influenced by a user
and it is not sanitized.

Sources are program points through which data enters a program. An at-
tacker can provide malicious data as a user input encoded in URL and HTTP
headers, data stored in cookies, and elements of the $ SERVER array. It is also
appropriate to track data obtained from a filesystem, session data store, and
output of database queries. Although in theory this data should be safe, in prac-
tice there are security exploits giving an attacker a control over the data. It is
clear that some sources represent a larger security threat than others and it is
necessary not only to “taint” data but also to distinguish between different taint
sources.

Sinks represent the program points (commands) where an inappropriate in-
put can cause a security threat. Examples of the sinks include commands for
sending data to a browser, sending data to a database, executing data, names
of dynamically included files, opening files, and executing arbitrary system com-
mands.

The process of sanitization is specific for each kind of sources and sinks.
Moreover, the extent of sanitization depends on the level of required protection
and also on the application logic. A basic level of protection can be achieved by
escaping an output. Escaping data that can be manipulated by an attacker using
a built-in function htmlentities prior to sending them to a browser prevents
cross site scripting (XSS) attacks while SQL injection attacks can be prevented
by escaping data before sending them to a database—e.g., by using a built-in
function mysql real escape string in case of MySQL database.

Escaping an output does not prevent sensitive information leakage, or insert-
ing invalid data into a database, though. Consider an application that allows a
user to choose from multiple topics, stores topic name in URL, and then displays
messages related to the selected topic. Consider that some topics are available
only for registered users. If the application does not filter the topics for non-
registered users, even a non-registered user can manipulate the input and see
messages available only for registered users. This vulnerability can be prevented
by appropriate filtering of user input. Filtering the input should be employed
whenever input data reaches a database query, dynamic include, operations that
executes the input, or open a file. The user input going from a source to a sink is
considered as sanitized with respect to whitelist filtering if data in a source have
a finite number of possible values. It is considered as sanitized with respect to
blacklist filtering if there are some restrictions over possible values in the source.
Note that the range of possible values in the source and restrictions over possible
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values depend on the specification of a particular application and should be in-
spected by a developer or a security auditor. Also note that symbolic execution
is necessary to determine this information.

Filtering itself does not assure the absolute security of the application. Con-
sider an application that tracks a user name via a URL (or a hidden form field,
or a cookie), reads an e-mail address from a form and then associates the e-mail
with the user name in the database. The fact that the user name is tracked in
the URL means that it is a part of the input, the attacker can manipulate it and
change the e-mail of another user. Note that escaping or filtering the user name
does not prevent this vulnerability. This kind of attacks is called semantic URL
attacks, spoofed form submissions, and spoofed HTTP requests. An indicator of
vulnerabilities that can lead to such attacks is updating information that is iden-
tified by data that can be manipulated by the user. In these cases, the developer
should thoroughly check whether it is not a security issue.

A common fix to the vulnerabilities mentioned above is to use a session
mechanism (via URL or cookie). However, even this protection can be broken
by Cross-Site Request Forgeries (CSRF) attacks, session fixation, or session hi-
jacking. These vulnerabilities are indicated by the use of data from sessions in
critical commands. The fix of the example is to (1) regenerate session identifier
when user logs in and to (2) generate a random token prior to requesting data
from a user, store the token on a server, embed it to the URL or the form and
then check whether the request contains the token.

3 State of the art

Huang et al. [9] developed an intraprocedural static analysis for PHP applica-
tions in WebSSARI tool. Xie [21] discusses the limitations of their approach,
in particular that it is inter-procedural and it does not model dynamic features
such as dynamic arrays, objects, dynamic variables, and dynamic includes. To
identify vulnerabilities, the approach performs a taint analysis. Their approach
does not allow fo a custom sanitization. Data are considered to be sanitized if
they are processed with a specified sanitization function.

The approach of Xie et al. [21] uses inter-procedural analysis to find SQL in-
jection vulnerabilities in PHP applications. They model automatic conversion of
particular scalar types, uninitialized variables, simple tables, and include state-
ments. However, they leave important parts of PHP unmodeled. In particular,
they do not model references, object oriented features of PHP, and they ignore
recursive function calls. To model sanitization process, the approach performs
taint analysis. Sanitization can occur via calls to specified sanitization functions,
casting to safe types, and a regular expression match. That means the approach
keeps a database of sanitizing regular expressions.

Wasserman et al. [19, 20] use grammar-based string analysis following Mi-
namide [11] to find a set of possible string values of a given variable at a given
program point and gains this information to detect SQL injections. However, the
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employed analysis has an incomplete support for references and does not track
type conversions.

Pixy [10] performs taint analysis of PHP programs and it provides informa-
tion about the flow of tainted data using dependence graphs [3]. It uses literal
analysis to resolve include statements and perform alias analysis. However, it
does not model aliases between variables and members of an array. Next, Pixy
lacks type inference, does not model PHP’s variable-variables construct as well
as variable-indices and provides only a very limited support of object oriented
features. Moreover, similarly to WebSSARI it performs only simple taint analysis
and does not allow for custom sanitization routines.

Balzarotti et al. [3] extended Pixy to perform the analysis of the sanitization
process and thus are able to deal with a custom sanitization. They combine static
and dynamic analysis techniques to verify PHP programs. They perform string
analysis through language-based replacement and represent values of variables
in concrete program points using finite state automata. They also track what
parts of strings are tainted. Static analysis that they employ is based on Pixy
and thus it has the same limitations. Moreover, the database of attack strings
may not be complete. Consequently, it can miss vulnerabilities and cause false
alarms.

Yu et al. [22] developed an automata-based approach for verification of string
operations in PHP programs and incorporate the widening operator to tackle the
problem of handling variables updated in loops. Similarly as [3], they extended
Pixy to perform the analysis of the sanitization process; however, they do not
employ the dynamic phase.

Biggar et al. [4] perform context sensitive, flow sensitive, interprocedural
static analysis of PHP in order to gain information usable for code optimizatons
in their PHP compiler. They combine alias analysis, type inference and literal
analysis, model arrays, PHP’s variable-variables construct, objects, references,
scalar operations, casts, and weak type conversions. However, their analysis is
closely tailored with their intent—to gain information usable for code optimiza-
tions. They gather information that must hold and track information that may
hold only in a very limited way. In most cases, they approximate information
that may hold as unknown. This is not appropriate when the intent is to explore
all possible behavior of the code.

The approach of Artzi et al. [1] generates test inputs automatically, monitors
web applications for crashes, and validates that the output conforms to the
HTML specification. The approach utilizes symbolic execution to capture logical
constraints on inputs, based on these constraints, it creates new inputs that
would increase the code coverage. By running an application on concrete inputs
and using PHP runtime, they avoid the problem of modeling dynamic statements
of PHP, undefined semantics of PHP, and their approach is naturally path-
sensitive.

To our knowledge, a path-sensitive approach to a static analysis for PHP
has not been yet published. A completely path-sensitive analysis is expensive.
However, there has been a lot of research done in the context of other languages,
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especially C language to tackle this problem. ESP [6] involves light-weight path-
sensitive analysis that selectively joins or separates the contributions accord-
ing to the different paths based on a heuristics that conditional tests resulting
in different property-related behavior should be tracked separately, while other
branches should be merged. In the context of taint analysis, property-related be-
havior would be given by taint statuses of variables. Unfortunately, this heuristic
sometimes fails. Dhurjati et al. [7] tackle this problem by iteratively adjusting
the merge criterion with new path predicates that are selected using several
heuristics. Balakrishnan et al. [2] improve path-insensitive analysis to obtain
the effects of path-sensitive analyses by a detection of semantically unfeasible
paths using path-insensitive abstract interpreter and performing a sequence of
backward and forward runs. Next, they use a technique of syntactic language re-
finement to exclude semantically unfeasible paths from a program during static
analysis. Snelting et al. [14] use program slicing and constraint solving to con-
struct and analyze path conditions—conditions that are defined on program’s
input variables and must hold for information flow between two program points.
Their approach is not complete, the solution of the conditions that they con-
struct can be false witness. That is, it may not lead to intended information flow.
Taghdiri et al. [15] tackle this problem by employing counterexample-guided ab-
straction refinement (CEGAR). They recognize false witness by executing them
and monitoring their executions, and eliminating them by automatically refining
path conditions in an iterative way.

3.1 Demonstrating existing tool on examples

In this section, we show the limits and weak points of the Pixy tool [10] on a
few PHP code fragments. We decided to demonstrate just the Pixy tool, since
its analysis engine represents, to the best of our knowledge, the best analysis
engine available for finding vulnerabilities in a PHP code. The Stranger [22]
tool employs more sophisticated techniques such as a string analysis and thus
provides more information for vulnerabilities detection; however it is built on
the same analysis engine and shares the same limitations.

Consider an example in Fig. 1. Due to the fact that Pixy does not model
array aliasing correctly, a possible XSS attack is reported at line 6. Another
issue connected with arrays is that it does not handle variable indices. A different
source of false-positives is path-insensitivity; the $name variable is sanitized by
the routine htmlspecialchars in all cases. However, Pixy reports a possible
XSS attacks at lines 16 and 17. The last type of a code fragment that causes a
false positive alarm that we present here starts at line 19. There, a file named
“included.php” is included (note that the body of the while cycle is not executed
at all, since the string $filename does not contain the “..” substring). As
Pixy omits modeling of the strings at this point, it is not able to evaluate the
$filename value, ignores the include statement and reports an error at line 26
regardless of the content of the included file; this can cause a false positive, as
well as a false negative alarm.
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1 $users[1] = ’fred’;
2 $users[2] = $ GET[’from user’];
3
4 $t users = & $users;
5 // Pixy reports the XSS vulnerability
6 echo $t users[1];
7
8 if ($tainted) {
9 $name = $ GET[’name’];

10 $index = 2;
11 } else {
12 $name = ’bob’;
13 $index = 1;
14 }
15 // Pixy reports the XSS vulnerability here
16 echo $tainted ? htmlspecialchars($name) : $name;
17 echo $tainted ? htmlspecialchars($users[$index]) : $users[$index];
18
19 $ext = ”.php”;

20 $filename = ’included’ . $ext;
21 while (strpos($filename, ’..’)) {
22 $filename = preg replace(’..’, ’.’, $filename);
23 }
24 include($filename);
25 // Pixy reports the XSS vulnerability
26 echo $users[2];
27
28 // Pixy misses the XSS vulnerability here
29 printFirstIndex(’tainted’, $users[1], $users[2]);
30 function printFirstIndex($varName, $untainted, $tainted) {
31 echo $$varName;
32 }
33
34 $user ids = 2;
35 // because $user ids is scalar, the following line does nothing
36 $user ids[2] = $ GET[’user id’];
37 // Pixy reports the XSS vulnerability here
38 echo $user ids[2];

Fig. 1. Dynamic features of PHP causing false alarms and missed vulnerabilities in
Pixy tool.

Besides false positives, Pixy also reports several cases in the false-negative
manner. The first PHP construct that is not correctly handled by Pixy is a
variable-variables construct, represented by the $$varName at line 31. Another
type of false negative stems from insufficient modeling of the type system. The
fragment starting at line 34 demonstrates this issue.

The last limitation of Pixy we mention here is that Pixy does not model
attributes of objects. So, according to the use of the objects, both false negative
and false positive alarms can arise.

At the end of Sect. 4, we demonstrate how these situations are handled when
following the approach proposed in this paper.

4 Our approach

In Sect. 2 we claim that most of security errors inside web applications can
be prevented by sanitizing data paths from sources of untrusted data to criti-
cal commands—sinks. Our approach is to provide the developer with sufficient
information so that she/he can assure a correct sanitization. In our case, this
means employing an analysis that computes data flow information using depen-
dence graphs [3], identifies sources of sensitive data, sinks, and at each program
point tracks:

– the taint and the sanitization status for each variable at this program point,
– the set of possible values of each variable at this program point,
– the set of conditions defined on the program’s variables that must hold at

this program point, and
– the set of possible types of each variable at this program point.

In this section, we describe how we gain this information, how we use it to
detect vulnerabilities, and demonstrate it on examples.
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4.1 Outline

The main challenge of the analysis is the combination of an arbitrary user input
and the dynamism of PHP. To address this problem, we propose the analysis
that consists of the following steps:

1. Construction of the control-flow graph (CFG).
2. Static analysis of constructed CFG.
3. Detection of vulnerabilities.
4. A path-sensitive validation of vulnerabilities.

Our analysis is a combination of ideas from previous work. We face the prob-
lem of construction of CFG in presence of dynamic statements such as dynamic
includes, eval statements, and polymorphic calls the same way as Pixy [10] does.
That is, we first resolve only such dynamic statements that are directly given by
literals and leave the remaining statements unresolved. Then, we gain informa-
tion about possible values of variables, types, and aliases using static analysis
of this CFG. We use this information to construct more precise CFG that is
analyzed again. We repeat this process as long as new dynamic statements are
resolved.

We extended modeling of PHP’s data structures introduced in Biggar [4] by
introducing certainity information to every edge of the points-to graph. Cer-
tainity tracks the fact whether the given information at given program point
holds regardless of the path from the entry point of the application to this pro-
gram point, and in that case the information is marked as certain, or only if the
executing goes with given path, and in that case it is marked uncertain.

Our static analysis stems from the analysis introduced in Biggar [4]. We
adapted it to track certainity information and taint information. We adapted
literal analysis introduced in Biggar [4] to propagate also symbolic values through
built-in operations.

4.2 Modeling of PHP data structures

Correct modeling PHP data structures constitutes the basis of the analysis. We
use a points-to graph similar to the one introduced in [4] to model variables, array
indices, and object fields. The points-to graph contains three types of nodes. A
storage node represents a symbol-table, an array, or an object. An index node
represents a variable, an array index, or an object field. Each index node is
a child of a single storage node. Next, a value node represents a scalar value
and it is a child of a single index node. The points-to graph contains directed
edges from a storage node to each index node that belongs to the storage node
and directed edges from each index node to the value or the storage nodes
representing possible values of the index node. Finally, in the case of aliases,
there is a reference edge between two storage or two index nodes.

Note, that if we modeled aliasing by multiple edges pointing to the same
value, then each assignment via an uncertain reference would have to be a weak
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update. Using reference edges allows the node being defined to perform a strong
update and perform weak updates on its uncertain aliases. A strong update
means that an assignment completely overwrites a reference relation or a pre-
vious value of a given variable; weak update means that the old values of the
variable have to be preserved. It occurs if the information about the target of
the assignment is uncertain. That is, the assignment has more possible targets.

There is one storage node for each array or object, one storage node for each
class holding static fields of the class, one storage node for each called function
local symbol table, and one additional storage node for the global symbol table.

Uncertainty is captured in this model as follows: each edge has the certainty
information—it represents either certain or uncertain information. Next, each
storage node contains an unknown field representing index nodes that have stat-
ically unknown indices, e.g., $a[$dyn] or $$dyn where the value of the variable
$dyn is statically unknown. The analysis propagates the uncertainty information
through assignments and performs strong updates when possible.

The same way as in [4], the value of an uninitialized node takes its value from
the unknown field of the appropriate storage node. If the node does not exist,
the uninitialized value is set to null.

4.3 Static analysis

Our static analysis stems from context sensitive, control-flow sensitive inter-
procedural, path-insensitive static analysis introduced in Biggar [4]. The same
way as in Biggar [4], for each program variable and each program point, we track
information about its aliases, literal values, types. Additionally, we track taint
and sanitization status, the set of conditions over variables that must hold in
this program point, and the certainty of this information. At joint points, the
combining operation for both literal values of variables and types is union; if
some information is not present in all branches, it is uncertain.

The same way as Biggar [4] our analysis performs symbolic execution of a
PHP program. Information about possible values of literals is tracked by propa-
gating literal values through built-in operations For each operation, we use two
versions of instructions—explicit and symbolic. If all inputs of an operation are
concrete, an explicit version of the operation is used, if some input of the opera-
tion is symbolic, the symbolic version of the operation is used. By using concrete
operations, we reduce the imprecision caused by modeling of such operations.
We face a problem of undefined semantics of PHP in the same way as in [4]
and [1] by using the reference PHP implementation instead of reimplementing
the concrete versions of instructions. As to modeling of the symbolic versions of
instructions, we model arithmetic operations as well as operations with strings.
For modeling string operations, we use automata-based approach presented in
[22]. It makes it possible to handle string concatenation, string replacement,
and string restriction. We use string restriction to restrict the value of a string
variable based on the branch condition.

Information about the taint status is propagated through built-in operations
in the following way. We use different taint markings for different sources of data.
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Contrary to other approaches, we do not remove taint status after processing
data with any operation. This has two reasons: (1) A correct escaping operation
is identified not only by the source of data but also by the sink—the critical
command in which data is used. (2) We use the taint information to detect
data that can be manipulated by the user. Then, we use this information to
detect additional vulnerabilites to those caused by improper escaping. Instead of
removing the taint status, we track also the sanitization status. Thus, for each
sanitization routine and for each taint marking, we track whether data with
the taint marking are sanitized using the sanitization routine. We propagate
taint and sanitization statuses built-in operations as follows: the taint status is
propagated through an operation if there exists an input of the operation that
is tainted, sanitization status is propagated if all inputs of an operation that are
tainted are sanitized.

4.4 Identifying vulnerabilities

After CFG is constructed and static analysis is completed, we use CFG and
alias information to construct the static single assignment form (SSA) of the
program. Then, we infer the set of conditions that must hold at each program
point using conditional statements (e.g., if and while statements). So, at the
start of a positive branch corresponding to a given conditional statement, the
condition corresponding to this statement is added. And at the start of a negative
branch, negation of this condition is added. At the joint point corresponding to
the conditional statement, the condition is removed.

Now, we have all the data necessary to identify potential vulnerabilities in
the analyzed application. We divide the vulnerabilities into several categories
and introduce filters to display security warnings of selected categories only.

To identify vulnerabilities, we have to find all critical commands that input
suspicious data. That is, tainted data—those which can be influenced by the
user of the web application and null values, which can arise due to the bugs
in filtering. Next, we analyze the taint and sanitization statuses of this data
and identify those that are not properly escaped. For each taint marking and
critical command there is a list of escaping operations. The list is stored in the
configuration of the program and can be configured by a developper.

We handle custom sanitization routines in the following way. First, by em-
ploying literal analysis we are able to prove the absence of given attack patterns
in the same way as in [22]. Then, we track sanitization status also for string re-
placement operations. These operations are potential sanitizers. When the anal-
ysis detects a vulnerability, it supplies a list of such potential sanitizers to the
developer. An inspection of potential sanitizers can help a developer to reveal
false alarms.

Next, we mark all data that are used in critical commands and are tainted or
contain null values as potentially not filtered. We mark the critical commands
that update data identified (e.g., the where clause in SQL queries) by tainted
data with the highest importance and the critical commands that use tainted
data in other way with a lower importance. The developer can then analyze a
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filtering status of such data by inspecting their possible values. We also make it
possible to inspect the restrictions on data by showing the conditions that must
hold at a given program point. In this way, the developer can discover errors in
the blacklist filtering.

Next category of potential vulnerabilites consists of those that can make the
CSRF attacks possible. We identify the critical commands that update data and
use data related to the current session and are not guarded by any condition
comparing the token in the request with some data stored at the server, e.g.,
using a session mechanism.

Finally, for vulnerabilities that are caused by the flow of data from a source
to a sink through some data path, we construct dependence graphs using the
technique of slicing. We reduce this graph so that it contains only those parts that
are relevant for the checked vulnerability. Dependence graphs can be manually
inspected by the developer and used to identify vulnerable influence points in
the data flow and thus to reveal the cause of the detected vulnerability.

4.5 Path-sensitivity

The analysis described in the previous section is path-insensitive. This is one
of the reasons why the vulnerabilities reported by the analysis may not be real
(false positives). Consequently, all paths leading to a given vulnerability can be
unfeasible. To deal with this problem, we use certainty information gained during
the analysis to identify vulnerabilities that do not depend on path-sensitivity.
We report these vulnarebilities immediately together with the reduced depen-
dency graph to the user. Next, for each vulnerability that is uncertain we try
to prove the unfeasibility of paths leading to the vulnerability and report only
the vulnerabilities corresponding to paths that were not proven to be unfeasible,
again, together with the reduced dependency graphs.

To prove the unfeasibility of paths leading to a vulnerability, we identify
program points that contribute to the uncertainty of the vulnerability. These
program points correspond to (1) join points of branching statements where
some branches do not lead to the vulnerability or causes of the vulnerability is
different and to (2) access to data that cannot be certainly identified and that
can lead to the vulnerability. An example of the case (1) is at line 14 of Figure 1.
The question whether the variable $name is tainted remains uncertain and it
depends on the condition $tainted = true. An example of the case (2) is in the
line 17 of Figure 1. Again, the question whether the variable $users[$index] is
tainted remains uncertain and it depends on the same condition.

We collect conditions that must hold in order for these program points lead
to a vulnerability and conditions that must hold to reach the critical command
corresponding to the vulnerability. Then we use a SMT solver to prove the con-
junction of these conditions. If the SMT solver finds a contradiction in these
conditions, the vulnerability is unfeasible. If the SMT solver proves the condi-
tions, the vulnerability can be still unfeasible, because of dependencies between
variables in the conditions. Using the information from the dependence graph,
the information about the solution of the conditions, and symbolic execution,
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we try to find these dependencies and add the conditions corresponding to these
dependencies.

Note, that we do not model all operations precisely, hence the approach
cannot be complete. Therefore, false positives can still appear even after the
path-sensitive analysis.

4.6 Demonstration of our approach—Evaluation

We demonstrate our approach on two examples. First, we show that our ap-
proach is capable of handling the code fragments in Fig. 1 correctly. These code
fragments contain dynamic statements. Then, we show how our approach can
detect more complex vulnerabilities present in the code in Fig. 2.

Handling dynamic features. Using the code fragments in Fig. 1 we show,
how our approach models PHP data structures, references, operations, and how
it resolves dynamic statements. We also show how it is capable of proving the
unfeasibility of a vulnerability detected by the path-insensitive step of the anal-
ysis.

In Fig. 1, the statement at line 1 creates an index node representing the
variable $users and makes it a child of the storage node that represents the
global symbol table. Because it is the first use of this variable, the presence of
the square brackets means that the variable is of the array type. Hence, the
statement creates a storage node representing the array and a directed edge
from the index node representing the variable $users to this storage node. The
statement also creates an index node representing the index 1 in the array,
an edge from the node representing the array to the value node, a value node
representing the literal ′fred′ and an edge between the index node and the value
node. The statement at line 2 creates another index node representing the index
2 and a value node, appropriate edges and associates a taint status with the
value node. Next, the statement at line 4 creates an index node representing the
variable t users, makes it a child of the storage node that represents the global
symbol table and then creates a reference edge between this node and the index
node representing the variable $users. This reference is then used at line 6 to
find out the appropriate storage node. The index node representing the index 1
in this storage node is not tainted, thus no vulnerability is reported—contrary
to Pixy that reports a false alarm.

In the same way as Pixy, path-insensitive phase of our approach detects a
potential vulnerability at lines 16 and 17. However, the information about the
taint status is uncertain in both cases. The condition that must hold to make the
variable name tainted is tainted = true, the condition that must hold to reach
the appropriate critical command is tainted = false. The conjunction of these
conditions is unfeasible, thus no vulnerability is reported. Potential vulnerability
at line 17 is filtered out in a similar way.

All inputs to the operation of concatenation at line 20 are concrete. Hence
the analysis can use the concrete version of the instruction which results in a
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concrete, precise value. Similarly, the analysis uses the concrete version in the
case of the operation strpos at line 21. Consequently, the value of the variable
$filename is known at line 24, the dynamic include can be resolved. Then, more
precise CFG is constructed and the static analysis step is performed with this
refined CFG. Note that because we model the important operations symbolically,
our analysis is able to handle even more complex cases where inputs of operations
are not concrete.

The analysis correctly handles a variable-variables construct at line 31. The
literal analysis determines that the value of variable $varName is ′tainted′; the
index node corresponding to this value is then searched in the storage node cor-
responding to the local symbol table of the function and then also in the storage
node corresponding to the global symbol table. Here, the node corresponding to
the variable $tainted is found in the former one and a vulnerability is reported.

The analysis performs type inference, hence, it is known that the variable
$user ids is scalar at line 36, and does not perform the assignment. Clearly, this
statement is likely a bug, so the analysis reports a warning in such cases.

Discovering more complex vulnerabilities. Now, we demonstrate how our
approach handles the code in Fig. 2 and how it helps to find vulnerabilities
within it. The presented code can be a part of an application that provides
an interface for viewing messages of selected topics. Every user has associated
one topic that she/he is not allowed to view and has to pay if she/he wants to
change this topic. The user can also update her/his email address and under
certain circumstances, tracked in the session, insert a message. We will describe
all steps of the analysis:

(1) Construction of CFG and static analysis

First, the analysis constructs CFG of the analyzed program. Here, it encoun-
ters a problem at line 16. The method to be called depends on the type of the
object and it is not known yet. Hence, this call is ignored and since it is the last
statement of the “main” part, the construction of CFG is complete. Constructed
CFG contains the nodes corresponding to the switch statement and the calls to
constructors.

Next, the static analysis phase is performed on constructed CFG. This anal-
ysis determines a set of possible types of the object $action at line 16 and thus
the set of possible methods that could be called at this line. Using this informa-
tion, the analysis constructs new CFG. The CFG will contain new branch for
each possible type of the object $action. The first node in each branch will be
a call to the method exec action. In each branch the type of the object $action
is fixed and so the analysis is capable to determine the method to be called
(similarly to VMT). The method exec action contains a dynamic include at
line 22. From the first pass of the static analysis phase, a set of possible values
of the variable $ GET [′action′] is known. The set equals to {′view message′,
′update topic′, ′update email′, ′insert message′, ∗}. Note that ∗ represents an
arbitrary value. Moreover, because there is no additional node in the new CFG
that manipulates this variable, this information would not be refined by per-
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forming the static analysis phase on new CFG. Clearly, the precise value of the
variable $ GET [′action′] is tied with the type of the object that calls the method
exec action in the switch statement; however this information is lost at the joint
point of the switch statement. There are several options how to proceed: (1) The
analysis can employ a path-sensitive step and try to prove unfeasibility of the
values in the set. Alternatively, (2) it can resolve the include statement for all
values in the set. Finally, (3) it can keep the include unresolved and report a
warning to the developer. In the former two cases, the value ∗ corresponds to
a vulnerability. It is uncertain, thus it will be validated in the path-sensitive
step. Note that if files corresponding to infeasible values would be included and
if there would be any vulnerabilites in the included files, the analysis would em-
ploy the path-sensitive phase for these vulnerabilities and prove unfeasibility of
these values on demand. Also note that such an indirect relation between the
type of the object and the value of a global variable not only complicates the
analysis but also readability of the code and should be avoided in the first place.
We will investigate all these strategies and possibly make the strategy selection
configurable. Then, the version of the method do action corresponding to the
type of the object action is processed. Note, that the exact type of the object
$action is known. Now, there is no dynamic statement present and hence the
construction of CFG is straightforward.

(2) Identifying vulnerabilities

Based on the information gained from the static analysis step, the analysis
detects vulnerabilities and divides them into several categories. The first category
of vulnerabilities is formed by unescaped data in critical commands. The analysis
detects that the variable $topic used in the critical command mysql query has
the taint status from the $ GET array and has not sanitization status necessary
for this command—mysql real escape string. This information is certain, thus
this vulnerability is reported to the user together with reduced dependence graph
showing the propagation of the taint status. Next, the variable $message used in
the critical command echo has the same taint status and again has not sanitiza-
tion status necessary for this command—htmlentities in this case. However, the
taint status is uncertain, thus this vulnerability is passed to the path-sensitive
phase of the analysis.

The second category of vulnerabilities is formed by those that are present due
to improper (custom) sanitization routines. We detect that the tainted variable
$new email used in the critical command mysql query at line 66 is not sanitized
with any standard sanitizing function. However, it has the sanitization status
preg replace. Moreover, the analysis models this function and the intersection
of the symbolical value of the variable with the attack patterns is empty. Because
the list of the attack patterns is not complete, this does not imply that data are
properly sanitized. However, the importance of this potential vulnerability is
relatively low, hence, only a warning pointing to the preg replace function is
reported.

Another category is formed by the vulnerabilities that are caused by an unfil-
tered input of critical commands that update data. The variable $ GET [′user′]
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in the critical command mysql query at line 54 is not filtered, thus a vulner-
ability is reported. Note that updating data of an arbitrary user is suspicious,
however, it could be intended. Next, a vulnerability is reported due to a usage of
the variable $ban topic in the same command. At first sight, this variable seems
to be properly filtered, however, there is the null value present in the set of
its possible values. The absence of the default branch in the switch statement
starting at line 46 causes the variable $ban topic to be uninitialized and thus
produces the null value that is then inserted into the database. Note that this
enables a user to view messages of an arbitrary topic—see the command that
selects messages from the database at line 34. Note that this vulnerability is
uncertain and it is thus passed to the path sensitive phase.

The next category of potential vulnerabilities is the use of unfiltered data in
other (not data-updating) critical commands. The variable $topic in the critical
command that selects data from the database at line 34 is not filtered and
thus reported. Note that in this case, the filtering is done via the condition
message.topic ! = users.ban topic in the database query; this report is therefore
a false alarm. Next, the variable $user in the same command is not filtered.
This is a real vulnerability, because it enables an attacker to view messages as
a different user. Note that the variable $importance in the same command is
filtered, and not reported. All these vulnerabilities are certain, and, therefore,
immediately reported. Finally, the variable $message used in the echo command
at line 89 is also detected not to be filtered. However, in this case the information
is uncertain and thus passed to the path-sensitive phase.

The last category consists of vulnerabilities that make CSRF attacks possible.
A CSRF vulnerability can arise when a critical command that updates some data
uses data tainted with a session status and this command is not guarded by any
condition comparing the token in the request with the token stored at the server.
This is the case of the command mysql query at line 65, thus a vulnerability is
reported.

(3) Path-sensitive validation of vulnerabilities

Uncertain vulnerability corresponds to use of unescaped and unfiltered data
in the critical command at line 89. At this program point, the condition
$insert = false holds. We conjoin this condition with conditions gained us-
ing program points that contribute to the uncertainty of the vulnerability. The
only such program point is the joint point of the switch statement starting at
line 80. To expose the vulnerability, the variable $message must be tainted. It
gains an uncertain taint status at this program point. Therefore, it is tainted
only if the control flow goes with the first or second branch. This corresponds
to the condition ($message = 1 ∨ $message = 2). The conjunction of these two
conditions is passed to the SMT solver. Since it is satisfiable, the unfeasibility
of the vulnerability is not detected. However, there is a dependency between the
variable $user status and the variable $insert captured using the if statement
starting at line 76. This dependency corresponds to the condition:

(($user status = 1 ∨ user status = 2)⇒ $insert = true)∧
(($user status 6= 1 ∧ user status 6= 2)⇒ $insert = false)
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This condition is conjoined with the previous (conjoined) condition and again
passed to the SMT solver. Now the SMT solver proves the unfeasibility1 of the
vulnerability.

The next vulnerability which is uncertain is the vulnerability corresponding
to the presence of the null value in the set of values of the variable $ban topic
at the line 54. The critical command is not guarded by any condition. The
variable keeps the value null, if the condition ($ GET [′ban topic′] 6=′ world′ ∧
$ GET [′ban topic′] 6=′ science′) holds. This condition is satisfiable and there
are no data dependencies between any variables in the condition and thus the
vulnerability is feasible and it is passed to the user together with the solution of
the condition.

1 <?php
2 switch ($ GET[’action’]) {
3 case ’view message’:
4 $action = new ViewMessageAction();
5 break;
6 case ’update topic’:
7 $action = new UpdateBannedTopicAction();
8 break;
9 case ’update email’:

10 $action = new UpdateEmailAction();
11 break;
12 case ’insert message’:
13 $action = new InsertMessageAction();
14 break;
15 }
16 $action−>exec action();
17
18 abstract class Action {
19 abstract protected function do action();
20 public function exec action() {
21 include $ GET[’action’] . ”.inc”;
22 $this−>do action();
23 }
24 }
25
26 class ViewMessageAction extends Action {
27 protected function do action() {
28 $topic = $ GET[’topic’];
29 $user = $ GET[’user’];
30 $importance = $ GET[’importance’];
31 if ($importance < MIN IMPORTANCE || $importance >=

MAX IMPORTANCE) {
32 exit();
33 }
34 $result = mysql query( ”SELECT ∗ FROM messages, users
35 WHERE messages.topic = ’” . $topic . ”’ AND
36 messages.topic != users.ban topic AND
37 messages.importance <= ’” . $importance . ”’ AND
38 users.name = ’” . mysql real escape string($user) . ”’” );
39 // a code that displays messages follows
40 }
41 }
42
43 class UpdateBannedTopicAction extends Action {
44 protected function do action() {
45 if (payment successfull()) {
46 switch($ GET[’ban topic’]) {
47 case ’world’:
48 case ’science’:

49 $ban topic = $ GET[’ban topic’];
50 break;
51 }
52 $result = mysql query( ”UPDATE users SET
53 ban topic = ’” . $ban topic . ”’
54 WHERE user = ’” . mysql real escape string($ GET

[’user’]) . ”’” );
55 }
56 }
57 }
58
59 class UpdateEmailAction extends Action {
60 protected function do action() {
61 session start();
62 $user = $ SESSION[’user’];
63 $new email = $ GET[’email’];
64 $new emaill = preg replace(”/[ˆA−Za−z0−9.\−@]/”,””,

$new email);
65 $result = mysql query( ”UPDATE users SET
66 email = ’” .$new emaill . ”’
67 WHERE user = ’” . $user . ”’” );
68 }
69 }
70
71 class InsertMessageAction extends Action {
72 protected function do action() {
73 session start();
74 $user status = $ SESSION[’user status’];
75 if ($user status == 1 || $user status == 2) {
76 $insert = true;
77 } else {
78 $insert = false;
79 }
80 switch ($user status) {
81 case 1:
82 $message = $ GET[’message’];
83 case 2:
84 $message = substr(0, 15, $ GET[’message’]);
85 case 3:
86 $message = ”You cannot insert messages.”;
87 }
88 if ($insert == false) {
89 echo $message;
90 exit();
91 }
92 // a code that inserts the message follows
93 }
94 }
95 ?>

Fig. 2. Code fragment that contains several vulnerabilities.

1 user status has to be 1 or 2 AND insert has to be false which contradicts the first
part of the last formula.
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5 Conclusion and future work

While symbolic execution, literal analysis, taint analysis, and type analysis for
PHP applications have been already developed, as far as we know, this is the
first approach of combining them into a single analysis. The combination of these
features is powerful and open doors for a precise analysis of dynamic languages
such as PHP. The novel contribution of our approach is its path-sensitivity. Even
though false alarms caused by path-insensitivity of existing tools were reported,
to our best knowledge, no approach that addresses this issue has been published.
Last but not least, our approach detects most of the vulnerabilities that can be
present in web applications by checking whether a user input is properly filtered,
output of the application is escaped, and keeping track of the input data. This
is done by employing advanced taint analysis, analyzing possible literal values
of variables in critical commands, and using dependence graphs to keep track of
data.

We believe that the analysis is scalable, expensive path-sensitive step of the
analysis is performed only when it is necessary, e.g. to confirm vulnerabilities
that can be false alarms. This is possible because the path-insensitive step of
the analysis tracks whether the collected information is precise or can be refined
by the path-sensitive step. Moreover, the path-sensitive step can be completely
disabled or performed on demand, e.g., to confirm vulnerabilities of particular
category. Our approach is not complete. False positives can still appear even after
the path-sensitive step. However, precise analysis combined with path-sensitive
step and employed vulnerability detection promises both a lower false-positive
rate and higher error coverage than related approaches.

Once a prototype implementation is completed, we will evaluate its scalability
on real web applications. Future work will also investigate and evaluate existing
techniques to analyze and refine path-conditions and possibly adapt them to be
usable in the context of PHP applications.
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Juggrnaut - An Abstract JVM

Jonathan Heinen and Christina Jansen

Software Modeling and Verification Group
RWTH Aachen University, Germany
http://moves.rwth-aachen.de/

Abstract. We introduce a new kind of hypergraphs and hyperedge re-
placement grammars, where nodes are associated with types. We use
them to adapt the abstraction framework Juggrnaut presented by us in
[8, 9] – for the verification of Java Bytecode programs. The framework is
extended to handle additional concepts needed for the analysis of Java
Bytecode like null pointers and method stacks as well as local and static
variables. We define the abstract transition rules for a reasonable subset
of opcodes and show how to compute the abstract state space. Finally
we complete the paper with some experimental results.

1 Introduction

With growing size and complexity of software – especially of security relevant
software – automatic verification techniques become more and more essential.
Nowadays object-oriented languages are common in many software projects.
They introduce new challenges to software verification like sharing and destruc-
tive updates as the possibility to allocate new objects during runtime resulting
in an infinite state space.

In [8, 9] we presented an abstraction framework to handle pointer programs
that is based on the natural representation of heaps by directed labelled graphs
where heap cells (or objects) are represented by nodes, pointers between objects
by edges. Abstraction is achieved by replacing parts of well-known structures
by a single hyperedges (as depicted in Fig. 1 for a tree with linked leafs). Thus
abstract heaps are represented by hypergraphs while known heap structures (the
data structures) are defined by hyperedge replacement grammars.
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Fig. 1. Representation of abstracted heap parts by non-terminal hyperedges.

Up to now we presented a theoretical view on the Juggrnaut-framework. While
concentrating on pointer properties like destructive updates, sharing and the
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dynamic allocation of heap cells we did not consider object-oriented aspects
like member variables (fields), object methods, polymorphism and other type
depending instructions (e.g. instanceof). Furthermore (recursive) method calls
and local variables, potentially yielding an unbounded number of variables, were
not considered so far. In this paper we extend the framework to handle a signif-
icant subset of Java Bytecode including the aspects listed above. In Section 2.1
we provide the theoretical foundations, introducing a new model of hypergraphs
with typed nodes to model typed objects in common object-oriented languages
(e.g. Java, C++, Objective C, . . . ). The newly introduced hypergraphs enforces
the adaption of hyperedge replacement grammars and of the requirements for-
mulated in [9]. In Section 3.1 we extend the Juggrnaut-framework towards an
abstract Java Virtual Machine (JVM). We consider the impact of Java Byte-
code specific concepts like static and dynamic method calls as well as static and
local variables. In this context we also define some of the transition rules of the
abstract JVM. In the extended version of this paper [7] proofs omitted due to
space restrictions can be found.

2 Basic Concepts

Given a set S, S? is the set of all finite sequences (strings) over S including the
empty sequence ε. For s ∈ S?, the length of s is denoted by |s|, the set of all
elements of s is written as [s], and by s[i] we refer to the i-th element of s. Given
a tuple t = (A,B,C, . . . ) we write At, Bt etc. for the components if their names
are clear from the context. Function f�S is the restriction of f to S. Function
f : A → B is lifted to sets f : 2A → 2B and to sequences f : A? → B? by
point-wise application. We denote the identity function on a set S by idS .

2.1 Hypergraphs and Heaps

In [9] heap structures are represents by hypergraphs. Hypergraphs contain edges
connecting arbitrary many nodes. They are labelled from a ranked alphabet Σ
with terminal and nonterminal labels. A ranking function rk : Σ → N maps each
label l to a rank, defining the number of nodes an l-labelled edge connects.

Example 1. Consider the right graph of Fig. 1. Nodes (depicted as circles)
represent objects on the heap. Edges are labeled from an alphabet Σ. Terminal
edges (labelled by terminals) connecting two nodes represent pointers, whereas
nonterminal edges (depicted as shaded boxes) represent abstracted heap parts.
In Fig. 1 an L-labelled hyperedge connects three nodes, i.e. rk(L) = 3. The order
on attached nodes is depicted by numbers labelling connection lines (that we call
tentacles) between edges and nodes. For terminal edges the direction induces the
order.

Definition 1 (Tentacle). A tuple (a, i), a ∈ Σ, i ∈ [1, rk(a)] is a tentacle.
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While objects in common object-oriented languages are of a well-defined type
this is not reflected in this representation. We extend the graph model to (labelled
and typed) hypergraphs over a typed alphabet assigning a type to each node.

Definition 2 (Typed Alphabets). A typed alphabet is a tuple (L, (T,�), types)
with L a set of labels, type poset (T,�) and typing function. types : L→ T ?.

Note that the ranking function is now implicitly given by rk(f) = |types(f)|.
types(X)[i] defines for tentacle (X, i) the type of nodes it connects.

Definition 3 (Hypergraph). A (labelled and typed) hypergraph (HG) over a
typed alphabet Σ is a tuple H = (V,E, lab, type, att , ext), with V a set of nodes, E
a set of edges. lab : E → LΣ en edge and type : V → Π a node labelling function.
The attachment function att : E → V ∗ maps each hyperedge to a node sequence
and ext ∈ V ? is a (possibly empty) sequence of pairwise distinct external nodes.
For e ∈ E we require that types(lab(e)) � type(att(e)), i.e. any tentacle is
connected to a node of its corresponding type or a subtype.

The set of all hypergraphs over Σ is denoted by HGΣ.

A[1] A B B

[2]

X A

X

n
n

p
p 1

2

3

12

3

Fig. 2. A labelled and typed hypergraph.

Example 2. Fig. 2 depictes a labelled and typed hypergraph over the alphabet
Σ = ({n, p,X}, ({A,B}, B � A), [n 7→ AA, p 7→ BA,X 7→ BAA]). Nodes are
annotated with their type. The order on the (grey) external nodes is given by
numbers in square brackets next to them. Edges are connected corresponding to
types, e.g. tentacles (X, 3) and (X, 1) of the right X-edge are mapped to the same
node. They are correctly connected as B � types(X)[1] and B � types(X)[3].

We use hypergraphs to model heaps where terminal edges represent pointers and
nonterminal edges represent embedded heap structures of a well defined shape.
Though the hypergraph depicted in Fig. 2 is correct according to the definition
of a hypergraph it does not represent a reasonable heap. Consider e.g. the two
(X, 1)-tentacles connected to the same node. The X-edges should represent a
well-defined structure maybe inducing outgoing pointers at tentacle (X, 1). This
however would violate the common concept of pointers where it is impossible to
have multiple outgoing pointers with the same label (e.g. the second node from
left, that has two outgoing n-pointers). Every pointer on the heap has to be
represented either concrete as a terminal edge or abstracted within a hyperedge.
In order to formalise the requirements we introduce the notion of entrance(O)-
and reduction(N)-tentacles. Nodes can be left by O-tentacles, i.e. they represent
outgoing pointers while N-tentacles represent incoming ones only. Given set A
we use: AN = A×{N}, AO = A×{O} and AON = AN∪AO, aN (aO) for elements
of AN(AO). Functions as relations over A are defined over ANO implicitly.

Juggrnaut - An Abstract JVM
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Definition 4 (Heap Alphabet). Heap alphabet ΣN = (F ∪N, (T,�), types)
is a tuple with a set of field labels F, a set of nonterminals N and T a set of types.
Typing function types : F∪N → TON

?, restricted for fields: types�F : F→ TOTN.

For Java programs the heap alphabet is given by the class-definitions. T cor-
responds to the classes with subtype relation �, while F are the field names.
Function types maps fields to their defining class (as O-tentacle) and to the
class they points to (as N-tentacle), i.e. given the class definition class A{ B f;}
types(f) = AOBN. For t ∈ T we define fields(t) = {f ∈ F | types(f)[1] � tO}.

class Node{
Inner parent ;

}
class Inner extends Node{

Node l e f t , r i g h t ;
}
class Leaf extends Node{

Leaf next ;
}

(a) Class definition

Object

Node

Leaf Inner

(b) Type poset

Fig. 3. Class definition and resulting poset.

Example 3. Given the Java-class definitions from Fig. 3(a) we get the set of types
T = {Object,Node, Inner,Leaf} and as terminal edge labels the field-names
F = {Node.parent, Inner.left, Inner.right, Leaf.next}. The poset (T,�) de-
fined by the subtype relation is given in Fig. 3(b). The type sequence for parent
is types(Node.parent) = NodeOInnerN, for left and right types(Inner.left) =
types(Inner.right) = InnerONodeN and types(Leaf.next) = LeafOLeafN. And
the resulting function fields as fields(Node) = {Node.parent}, fields(Inner) =
{Inner.left, Inner.right,Node.parent}, fields(Leaf) = {Leaf.next,Node.parent}.
By OH(v) = {e ∈ EH | (∃i ∈ N : types(lab(e))[i] ∈ TO ∧ att(e)[i] = v} we define
the set of edges connected to the node v ∈ VH through an entrance tentacle.

Definition 5 (Heap Configuration). A heap configuration (HC) over a heap
alphabet ΣN is a tuple H = (V,E, lab, type, att , ext), where V is a set of nodes,
E a set of edges. lab : E → F∪N is the edge and type : V → T the node labelling
function. att : E → V ∗ maps each hyperedge to a sequence of attached nodes and
ext ∈ V ?NO is a (possibly empty) sequence of pairwise distinct external vertices.

For terminal edge e ∈ E, lab(e) ∈ F we require that types(lab(e)) � type(att(e))
while for e ∈ E, lab(e) ∈ N we require that types(lab(e)) �N type(att(e)), where
tN �N t′N iff t � t′ and tO �N t′O iff t = t′.

For vN ∈ ext we require O(v) = ∅, while for v ∈ V : vN /∈ ext we require:

lab(O(v)) = fields(type(v)) ∧ x, y ∈ O(v)⇒ lab(x) 6= lab(y) (1)
∨ lab(O(v)) ⊆ N ∧ | O(v) |= 1 (2)

The set of all heap configurations over ΣN is denoted by HCΣN
.
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While terminal O-tentacles represent single outgoing pointers, nonterminal O-
tentacles represent all outgoing pointers of a node. Therefore nodes are either
connected to all terminal O-tentacle define by the type (1) or a single nonterminal
O-tentacle (2).

External nodes are considered to be outside the graph and their outgoing
pointers a either all outside the graph and the external node is annotated as
reduction-node (N) or are all inside the graph and the external-node is therefore
an entrance node (O) as we can enter the graph from this external node.

Example 4. In Fig. 4(a) a HC for the heap alphabet from Ex. 3 extended by the
nonterminal L with types(L) = INIOLOLN is given. Here I is the short form for
Inner, L for Leaf. Nonterminal edges labelled by L represent trees with linked
leaves. The external nodes are: the root node (2) of a subtree, the parent of the
root (1), left most leaf (3) and the n-reference(4) of the rightmost leaf of the tree.
The labels for external nodes are extended by an index to mark them as O- or
N-nodes. As external node 1 is a N-node it has no outgoing edges, while external
node 2 has abstracted outgoing edges represented by the O-tentacle (L, 2).
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Fig. 4. An abstract heap configuration.

We use Σ to denote a heap alphabet ΣN without nonterminals, i.e. N = ∅. If a
HC does not contain nonterminal edges, i.e. is defined over a heap alphabet Σ
we call it concrete (H ∈ HCΣ), otherwise abstract (H ∈ HCΣN

).

2.2 Data Structure Grammars

Hyperedge replacement grammars can be used to describe heap structures. These
grammars are defined as a set of rules each consisting of a nonterminal on the
left hand side and a hypergraph on the right hand side.

Definition 6 (Hyperedge Replacement Grammar (HRG)). A hyperedge
replacement grammar (HRG) over a typed alphabet ΣN is a set of production
rules p = X → H, with X ∈ N and H ∈ HGΣN

, where types(X) � type(extH).

We denote the set of all hyperedge replacement grammars over ΣN by HRGΣN
.
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Derivation steps of a HRG are defined by hyperedge replacement. A hyperedge
e is replaced by a hypergraph by mapping external nodes of the latter with
attached notes of e. The replacement is possible iff amount and types of nodes
connected by e and of the external nodes in the replacement graph correspond
to each other. This aspect is covered in the following adaption of the definition
from [9] for labelled and typed hypergraphs.

Definition 7 (Hyperedge Replacement). Given hypergraphs H, I ∈ HGΣN

and an edge e ∈ EH , with type(extI) � type(attG(e)) the replacement of edge e
in G by I is defined as K = H[I/e] = (VK , EK , labK , typeK , attK , extK):

VK = VH ] (VI \ extI) EK = (EH \ {e}) ] EI
typeK = typeH�VK ] typeG labK = labH�EK ] labI
extK = extH
attK = attH ] attI ◦ (idVI

�VK ∪ {extI(i) 7→ attH(e)(i) | i ∈ [1, |extI |]})

Lemma 1. Given labelled and typed hypergraphs H, I ∈ HGΣ and e ∈ EH
with types(labH(e)) � typeI(extI). The result of replacing e by H is again a
hypergraph: K = H[I/e] ∈ HGΣ. (Proof in [7])

Example 5. Reconsider the HC H from Fig. 4(a) containing exactly one non-
terminal edge e in H labelled with L. The rank of L is equal to the number of
external nodes of the concrete HC I in Fig. 4(b), thus we can replace e by I
and get K = H[I/e], depicted in Fig. 4(c). Note that the result is again a HC
K ∈ HCΣ , because types(L) �N labI(extI) as stated in the following theorem.

Theorem 1 (Edge Replacement in HCs). Given H, I ∈ HCΣN
and e ∈ EH

with types(labH(e)) �N labI(extI) it holds that H[I/e] ∈ HCΣN
(Proof in [7])

Definition 8 (Data Structure Grammar). A Data Structure Grammar (DSG)
over an abstract heap alphabet ΣN is a set of production rules p = X → R, with
X ∈ N and R ∈ HCΣN

, where types(X) �N labR(extR).

We denote the set of all data structure grammars over ΣN by DSGΣN
.

Given grammar G ∈ DSGΣN
and graph H ∈ HCΣN

we write H ⇒G H ′ if there
exists a production rule X → R ∈ G and an edge e ∈ EH with labH(e) = X
and H ′ = H[R/e]. We write ⇒∗G for the transitive closure of ⇒G. We say H ′ is
derivable from H over G iff H ⇒∗G H ′.

Corollary 1. Given a data structure grammar G ∈ DSGΣN
and H ∈ HCΣN

any derivable graph is a HC: H ⇒∗G H ′ ∈ HCΣN
.

Example 6. Fig. 5 depicts a DSG for trees with linked leaves and parent pointers.
The DSG consists of four rules for nonterminal L with types(L) = INIOLOLN,
introduced in Ex. 4. Every right hand side is a HC with type(ext) = types(L).

The rules define the data structure recursively. The smallest tree represented
by L is a tree where the child nodes of the root node are the two leaves. Bigger
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Fig. 5. DSG for trees with linked leafs.

trees are defined recursively as trees where either one (second and third rule) or
both (fourth rule) children of the root node are trees, with proper linked leaves.

As our grammar definition does not include a start symbol we define languages
in dependence of a start configuration.

Definition 9 (Language). For G ∈ DSGΣN
we define the language LG(H)

induced by a start graph H ∈ HCΣ over G as the set of derivable concrete HCs:
LG(H) = {H ′ ∈ HCΣ | H ⇒∗G H ′}.
It follows from Corollary 1 that using an abstract HC as start graph and a data
structure grammar we can only derive graphs from HCΣ , i.e. concrete HCs. It
remains to show, that the given restrictions do not restrict the expressiveness,
i.e. that the languages representable by DSGs are exactly the HC languages
(⊆ HCΣ) representable by HRGs.

Theorem 2. Given a HRG G over ΣN . Then a grammar G′ over Σ′N can be
constructed such that for any hypergraph S over ΣN with LG(S) ⊆ HCΣ there
exists a heap configuration S′ with LG′(S

′) = LG(S). (Proof in [7])

For nonterminal X we use X• to denote the X-handle, i.e a hypergraph consist-
ing of a single nonterminal edge labelled with X and one node for each tentacle:

VX• = {vi | i ∈ [1, |types(X)|]} EX• = {e}
typeX• = {vi 7→ types(X)[i] | i ∈ [1, |types(X)|]} labX• = {e 7→ X}
attX• = {e 7→ v1, v2, . . . v|types(X)|} extX• = ∅

Definition 10 (Local Greibach Normal Form [9]). A grammar G ∈ DSGΣN

is in Local Greibach Normal Form (LGNF) if for every O-tentacle (X, i) there
exists G(X,i) ⊆ G with:

LG(X,i)
(X•) = LG(X•) and ∀X ⇒ R ∈ G(X,i) : OR(extR(i)) ⊆ F

Lemma 2. Any DSG can be transformed into an equivalent DSG in LGNF [9].

3 An Abstract Java Virtual Machine

Java programs are compiled to Java Bytecode programs that are executed by
a Java Virtual Machine (JVM). In this section we will define an abstract JVM
based on HCs as defined in the previous chapter.
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3.1 Java Bytecode and the JVM

Based on the formal definition of Java Bytecode and the JVM from [17], we
differentiate between the static environment and the dynamic state of a JVM.

Static Environment of a JVM [17]. A JVM executes programs with respect
to a static environment cEnv : Class ∪ Interface → ClassFile. For each class of a
Java program (top-level, inner or anonymous) a separate class file is compiled.

Definition 11 (Java Class File). In a Java Bytecode program a class file
is a tuple cf = (name, isInterface,modifiers, super, implements,fields,methods),
where name ∈ Class ∪ Interface is the unique identifier of the class or interface,
if it defines an interface or a class is determined by isInterface, modifiers ∈
P(Modifier) are the modifiers (static, private, public, . . . ), super ∈ Class is the
super class and implements ∈ P(Interface) are the implemented interfaces, fields
is a mapping fields : Field→ P(Modifier)× Type, with Type = Class ∪ Interface ∪
{boolean} defining the fields of the class, their modifiers and types and the map-
ping methods : MSig → MDec defines the methods of the class, where MSig is
the set of method signatures MSig = Meth× Type? with Meth the set of method
identifier and MDec the set of method declarations as defined below.

ClassFile denotes the set of all class files of a given Java Bytecode program.

The sets Class and Interface contain the identifiers of the classes/interfaces, dis-
tinguished by isInterface: Class = {namecf | cf ∈ ClassFile ∧ ¬isInterfacecf } and
Interface = {namecf | cf ∈ ClassFile ∧ isInterfacecf }. We define the sets of avail-
able fields Class/Field = {namecf .field | cf ∈ ClassFile ∧ field ∈ Fieldcf } uniquely
identified by the combination of class and field name, and the set of methods
Class/MSig = {namecf .mSig | cf ∈ ClassFile ∧mSig ∈ MSigcf }, uniquely defined
by class name and method signature.

Definition 12 (Method Declaration). A method declaration is a tuple md =
(modifiers, returnType, code, excs,maxReg,maxOpd), with modifiers ∈ P(Modifier)
and returnType ∈ Type ∪ {void}, code ∈ Instruction? is a sequence of instruction
(Instruction is defined in 3.3), excs a set of exceptions (not considered in this pa-
per) and maxOpd is the maximum size of the operand stack, while maxReg is the
highest register used by the method. Registers hold the values of local variables.

The set of all method declarations of a given Java program is denoted by MDec.

method(c,mSig) returns c′.mSig ∈ Class/MSig where c′ is the class where the
corresponding method is declared, i.e. returns the method of the given signature
inherited from c. method is given implicitly by ClassFile.

State of a JVM. Heap and method stack determine the state of a JVM.

The heap formally is a function heap : Ref → Heap. Heap = Class×Class/Field→
Val [17], is a set of objects defined by the type and evaluation of references.
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The method stack consists of frames stack : Frame∗ with ( pc, reg, opd,method ) ∈
Frame, where method ∈ Class/MSig the corresponding method, pc ∈ N the pro-
gram counter defining the current position in the method, reg ∈ N→ Val defines
the values of the registers that are used by the JVM to store the local variable
information and opd ∈ Val? is the operand used to store intermediate results of
calculations. The top frame of the stack defines the state of the active method.

3.2 Modelling JVM States by Heap Configurations

Our aim is to model (abstract) states of the JVM by HCs. Starting with a very
basic model, only representing the heap and restricting the programs to classes
and member variables only we will step by step extend the representation.

The Basic Model. We consider programs in the most basic case where each
class file defines a class and all fields are member variables, i.e. Interface = ∅.
There are no static fields yet. States represent HCs over the heap alphabet Σ
with T = Class, F = Class/Field and types(c.f) = cOtN, where t = fieldType(c.f).

Interfaces and null. Java differentiates between classes and interfaces. Inter-
faces cannot be instantiated, i.e. there are no objects of an interface type and
null can be referenced but does not reflect a proper type.

We extend the heap alphabet ΣN to T = Class ∪ Interface ∪ {⊥}, where ⊥
represents null. For all t ∈ T we let ⊥ � t, i.e. ⊥ is the least element. Other
elements of T are ordered as described above – including the interfaces.

T

T T

T
T

⊥

[1N]

l r

l

r

r

l

1

2
3

Fig. 6. A Tree

We model null as an external N-node, i.e. a node that
can be referenced but is not part of the heap. We consider
HCs (V,E, lab, type, att , nullN) over ΣN , where ⊥ ∈ TΣN

and {v ∈ V | type(v) = ⊥} = {null}, i.e. the null reference
is unique. This is important for comparisons. As ⊥ is the
least element any pointer can point to null.

Example 7. Fig. 6 represents a binary tree. Every node is of
type Tree: class Tree{Tree left , Tree right ;} denoted by T .
Leafs are Tree objects pointing to null. There are only two
different types: Tree and ⊥ with ⊥ � Tree. The external
node (ext = nullN) is of type ⊥ to realise pointers to null.

Static Variables. Beside member variables (fields) there are also static vari-
ables. These variables are not linked to an object and are accessible from any con-
text. We make them accessible through an external node static of (a new) type
static ∈ T. For any static field f ∈ Class/Field we define types(c.f) = staticOtN
(t = fieldType(c.f)), i.e. type static has one outgoing pointer for each static
variable. We extend the sequence of external nodes by a node static and get
(V,E, lab, type, att , nullNstaticO). We require static to be the sole static-node,
i.e. {v ∈ V | type(v) = static} = {static}. static is an O-node to the heap.
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Literals and Boolean Values. Literals (constants) are a special case of static
variables, whose values are implicitly used within a Java program. As we do not
consider general data values the only possible literals are the boolean values false
and true, in Java Bytecode represented as integer value zero and one.

To model boolean values we add two nodes of the (newly introduced) type
int ∈ T representing integer value zero and one, accessible through static by
edges labeled int(0) and int(1), i.e. types(int(0 )) = types(int(1 )) = staticOintN.

Complete Heap Representation. Given a Java Bytecode program as a set of
class files ClassFile, we use HCs over the alphabet Σ with T = Class∪ Interface∪
{static, int,⊥}, F = Class/Field ∪ {int(0 ), int(1 )} and

types = {c.f 7→ cOtN | c.f ∈ Class/Fieldo ∧ fieldType(c.f) = t}
∪ {c.f 7→ staticOtN | c.f ∈ Class/Fields ∧ fieldType(c.f) = t}
∪ {int(0 ) 7→ staticOintN, int(1 ) 7→ staticOintN}

We use a HC of the form H = (V,E, lab, type, att , staticOnullN), where none
of the nodes is of an interface type {v ∈ V | type(v) ∈ Interface} = ∅, node null

is the only node of type ⊥ {v ∈ V | type(v) = ⊥} = {null} and node static the
only one of type static ⊥ {v ∈ V | type(v) = static} = {static}. The only two
int-nodes {v ∈ V | type(v) = int} = {vint(0), vint(1)} are successors of the node
static: ∃e0, e1 ∈ O(static) : lab(ei) = int(i) ∧ att(ei)[2] = vint(i).

Method Stack. So far we only considered the heap component. Now we will
model the method stack and its components within the same HC by representing
each stack frame as a node of a special method type. This allows us to abstract
the stack and handle recursive functions without bounded method stack size. It is
preferable to model both parts in one homogeneous representation as abstracting
heap and stack independently would imply loosing the relation between the two.

We model each frame by one node. For each method c.m ∈ Class/MSig we
define a proper type c.m, reflecting the method component of the frame. Each
method type is a subtype of a general method type method ∈ T (see Fig. 7(b)).
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op op
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op
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value
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(a) Method notes represent frames

>

int Object

. . .
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op static
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(b) Extended type order

Fig. 7. Method nodes represent frames of the method stack.
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For the program counter we add one int-node for each value, i.e. we add the
nodes {vint(i) | i ∈ [0,max({|code(c.m)| | c.m ∈ Class/MSig})]} and fields int(i)
as pointers from static to int. Further we add the field ++ with types(++ =
intOintN) representing the successor relation between int-nodes. The program
counter is modelled as a pointer method .pc ∈ F to the corresponding int-node,
i.e. types(method .pc) = methodOintN. For the operand stack we add an op-type
for stack elements with next and value successors, types(op.next) = opOopN and
types(op.value) = opO>N, where > ∈ T with int and Object as subtypes (see
Fig. 7(b)), i.e. op.value can reference int- and Object-nodes. We add a pointer
to each method-node op ∈ F to the operand stack (types(op) = methodOopN).

As registers offer random access we model each register i by a proper pointer
ri. The amount of registers depends on the method, therefore we define the ri-
pointer for each specification of the method-type. Given c.m ∈ Class/MSig we
define for each i ∈ [1,maxRegc.m ]: types(ri) = c.mO>N (see Fig. 7(a)).

We model the method stack itself by an additional field called by ∈ F with
types(called by) = methodOmethodN referencing the predecessor of the node
within the stack (where the least element in the stack points to null). The
method at the top of the stack is the active method. The corresponding node
contains the information that can be modified currently. Thus the top method
node can access the heap and is modelled as an external O-node. We get HCs of
the following form: (V,E, lab, type, att , methodOstaticOnullN).

Example 8. In Fig. 7 a typical recursive traversal algorithm is given in Java (a)
and the corresponding Java Bytecode (b) (details on Bytecode in Section 3.3). In
Fig. 7(c) a state of the program from (b) is depicted. In this state a new method
trav(Tree t) is called, the program counter is still zero. The trav method was
called various times, three methods are concrete, furthers are abstracted in the
nonterminal edge X. Each method call was a trav(t.left) call as each program
counter points to i(4). Note that in X method and tree nodes are abstracted.

Abstract JVM States So far we considered HCs over the concrete alphabet
Σ, thus concrete HCs. To represent an abstract state we extend the alphabet by
a set of nonterminals N as defined before (see Example. 3), where we restrict
types over N to types : N → (ClassON ∪ Class/MSigON ∪ InterfaceN ∪ {⊥N,>N})?,
i.e. only class- and method-nodes can be connected to O-tentacles. From this
restriction it follows that type(v) ∈ Interface ∪ {>,⊥} ⇒ vN ∈ [ext ].

Given H ∈ HCΣN
we call a node v ∈ VH concrete if its successors are concrete

(O(v) ⊆ T), abstract otherwise (O(v) ⊆ N). Concrete and abstract parts coexist
on a HC. A HC without abstract nodes is called concrete, otherwise abstract.

Concretisation. Concretisations are defined through the application of grammar
rules, i.e. given H,H ′ ∈ HCΣN

H ′ is a concretisation of H iff H ⇒ H ′. L(H) is
the set of all concrete HCs represented by the (abstract) HC H. Given a DSG
in LGNF we can systematically concretise an abstract node v by replacing the
connected O-tentacle by the corresponding rules from the grammar. Correspond-
ingly we define for H ∈ HCΣN

and abstract node v ∈ V :
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public class Tree{
Tree l e f t ;
Tree r i g h t ;
stat ic void t rav ( Tree t ){

i f ( t != null ){
t rav ( t . l e f t ) ;
t rav ( t . r i g h t ) ;

}
}

}

(a) Java Class Definition

0 Load ( Tree , 0)
1 Cond( i f N u l l , 8)
2 Load ( Tree , 0)
3 GetFie ld ( Tree , Tree . l e f t )
4 InvokeSta t i c (void , Tree . t rav ( Tree ) )
5 Load ( Tree , 0)
6 GetFie ld ( Tree , Tree . r i g h t )
7 InvokeSta t i c (void , Tree . t rav ( Tree ) )
8 Return (void )

(b) Java Bytecode: trav(Tree t)
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(c) State of the abstract JVM

Fig. 8. Recursive Tree Traversal.

concG(H, v) = {H[e/R] | OH(v) = {e} ∧ att [i](e) = v ∧ (lab(e)→ R) ∈ G(lab(e),i)}
and if v is a concrete node then concG(H, v) = H, thus conc has no effect. Note
that for any H ∈ HCΣN

and G ∈ DSGΣN
: LG(H) = LG(concG(H, v))

We call a method m : HCΣN
→ HCΣN

a concrete modifier for H ∈ HCΣN
iff

LG(m(H)) = m(LG(H)), i.e. the modification m is safe and most precise under
the abstraction. As long as a modifier uses the information of concrete nodes and
their incident edges only and preserves abstracted parts it is a concrete modifier.

Abstraction. Abstraction is defined through backward application of grammar
rules, i.e. given H,H ′ ∈ HCΣN

H is an abstraction of H ′ iff H ′ ⇒ H. In practice
abstraction is realised by the search of embeddings of rule graphs and followed
by embedding replacement with the corresponding nonterminals.

Definition 13 (Embedding). Given I,H ∈ HCΣN
an embedding of I in H

consists of two mappings emb : (VI → VH , EI → EH) with following properties:

emb(v) 6= emb(v′) ∀v 6= v′ ∈ VI \ {v ∈ VI | vN ∈ extI}
emb(e) 6= emb(e′) ∀e 6= e′ ∈ EI
labI(e) = labH(emb(e)) ∀e ∈ EI
typeI(v) � typeH(emb(v)) ∀v ∈ {v ∈ VI | vN ∈ extI}
typeI(v) = typeH(emb(v)) ∀v ∈ VI \ [extI ]
emb(attI(e)) = attH(emb(e)) ∀e ∈ EH
e /∈ emb(EI) ⇒ [attI(e)] ∩ emb(VI) = ∅ ∀e ∈ EH
Given I,H ∈ HCΣN

. Emb(I,H) denotes the set of all embeddings of I in H.
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Given G ∈ DSGΣN
, I,H ∈ HCΣN

, emb ∈ Emb(I,H) and X ∈ N the replace-
ment of I in H is replace(I,H, emb, X) = K, with:

VK = VH \ emb(VI \ [extI ]) EK = (EH \ emb(EI)) ] {e}
labK = labH�EK ∪ {e 7→ N} typeK = typeH�VK
attK = attH�EK ∪ {e 7→ emb(extI)} extK = extH

abstrG(H) = {replace(R,H, emb, X) | X → R ∈ G, emb ∈ Emb(R,H)} are the
HCs we get via one abstraction step (H ′ ∈ abstrG(H) iff H ′ ⇒G H), abstr?G(H)
is the transitive closure (H ′ ∈ abstr?G(H) iff H ′ ⇒?

G H). fullAbstrG(H) are the
fully abstracted HCs, i.e. {H ′ ∈ abstr?G(H) | ∀X → R ∈ G : Emb(R,H ′) = ∅}.
Note that the set fullAbstrG(H) in general is not a singleton but finite. We call
G backward confluent iff fullAbstrG(H) is a singleton for any H ∈ HCΣN

.

Garbage Collection Javas garbage collector removes objects that are no longer
reachable. We model its behaviour by the following method garbage collection:

Definition 14 (Garbage Collection). Any node not reachable from an ex-
ternal node is considered to be garbage. Given H ∈ HCΣN

, n1, n2 ∈ VH , n2 is
reachable from n1 (n1  n2) iff ∃e ∈ O(n1), n′ ∈ att(e) : n′ = n2 ∨ n′  n2.
gc(H) = (V ′, E′, lab�E′, type�V ′, type�E′, ext) denotes the result of garbage col-
lection on H ∈ HCΣN

with V ′ = {v ∈ VH | ∃v′ ∈ [extH ] v} and E′ = O(V ′).

Any example considered so far was garbage free. Note that gc is not a concrete
modifier, i.e. LG(gc(H)) = gc(LG(H)) does not hold in general as gc uses con-
nectivity information of nonterminal edges. However LG(gc(H)) ⊆ gc(LG(H)).

3.3 Execution of Java Bytecode

The following abstract instructions [17] cover the whole instructions set:

Prim(PrimOp) Dupx() Pop()

Load(Type, RegNo) Store(Type, RegNo) Goto(LineNumber)

Cond(PrimOp, LineNumber)

GetStatic(Type, Class/Field) PutStatic(Type, Class/Field) InvokeStatic(Type, Class/MSig)

Return(Type)

New(Class) Return(Type) InstanceOf(Type)

GetField(Type, Class/Field) PutField(Type, Class/Field) Checkcast(Type)

InvokeSpecial(Type, Class/MSig) InvokeVirtual(Type, Class/MSig)

Athrow Jsr(LineNumber) Ret(RegNo)

We defined and implemented the transition rules for the above abstract instruc-
tions up to the grey ones (used for exception handling). The Type information
in the instructions can be used to check for type safeness but are ignored by the
JVM. Focusing on heap structures we do not consider data values. This results
in a notable cutback of primary operations. The following are supported:
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if acmpeq if acmpne if icmpeq if icmpne

iconst 0 iconst 1 iand ior

The primary if -operations, used by the Cond instruction, are realised by compar-
ing the corresponding nodes referred by the stack, iconst 0 and iconst 1 pushes
the corresponding int-nodes on the stack. iand and ior can be defined explicitly
for the four possible inputs. Note that the set {0, 1} is closed under both oper-
ations. We present a selection of instructions and their transition rules. Most of
the instructions are realised as concrete modifiers expecting external nodes and
the actual operand stack to be concrete. We use a slightly modified, restricted
version of fullAbstr that excludes the external nodes from the abstractable parts.

Graph Transformations We define some basic actions, shared by several Byte-
code instruction (as push, pop, etc.) to use them later for the transition rules.

new(H, t) = (H ′, vnew ) adds a new node to a HC. Given H ∈ HCΣN
and t ∈ T

we get H ′ = (VH ] {vnew}, EH , labH , typeH ∪ {vnew 7→ t}, attH , extH)

suc (H, v, f) returns for H ∈ HCΣN
, v ∈ VH and f ∈ F the f -successor of v

suc(H, v, f) = v′, i.e. {v′} = attH({e ∈ OH(v) | labH(e) = f})[2].

setSuc (H, v, f, v’) alters for H ∈ HCΣN
, v, v′ ∈ VH and f ∈ F the edge rep-

resenting the f -pointer of v: setSuc(H, v, f, v′) = (VH , EH , labH , typeh, atth[e 7→
v v′], exth), where e is the single element of {e ∈ OH(v) | lab(e) = f} = {e}.

pushOp(H, v) pushes a reference to v ∈ VH onto the operand stack by adding a
node of type op (Hnew , vop) = new(H, op) and connecting the next-edge to the
operand stack vtop = suc(H, extH [1], op) and the value-edge to node v: H ′ =
setSuc(setSuc(Hnew , vop, value, v), vop, next, vtop). The reference to the operand
stack is updated for the top method: pushOp(H, v) = setSuc(H ′, ext′H [1], op, vop).

popOp(H) = (H ′, v) pops the top-element vtop = suc(H, extH [1], op) by altering
the op-edge to the next operand H ′ = setSuc(H, ext′H [1], op, suc(H, vtop, op)).
The value of the removed stack element v = suc(H, vtop, value) is returned.

peekOp(H, i) = sucn(H, extH [1], op) , returns for H ∈ HCΣN
, n ∈ N the nth

element of the operand stack, where sucn is defined recursively as sucn(H, v, f) =
sucn−1(H, suc(H, v, f), f) for n > 0 and suc0(H, v, f) = H.

incPc(H) increments the program counter vpc = suc(H, extH [1], pc), by altering
it to the successor node incPc(H) = setSuc(H, extH [1], pc, suc(H, vpc ,++)).

inst(H) returns the current instruction. Referring to the static environment
cEnv of the program, the instruction is determined by the type and pc-successor
of the top method node. inst(H) = c[pc], where c = code(typeH(extH [1])) and
pc = intValue(suc(H, methodH , pc)).
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Transition Rules We define the following transition rules:

Load(RegNo). The Load instruction reads a reference from the Register RegNo
and pushes it to the operand stack. We determine the node corresponding to the
value of the register and push it to the stack.

inst(H) = Load(t, i)

H → incPc(pushOp(H, suc(H, methodH , ri)))

Dupx() Duplicates the topmost element of the operand stack.

inst(H) = Dupx() popOp(H) = (H ′, v)

H → incPc( pushOp(( pushOp(H ′, v)), v)))

GetStatic(Class/Field) Reads a static variable and pushes the result to the operand
stack.

inst(H) = GetStatic(c.f)

H → incPc( pushOp(H, suc(H, extH [2], c.f))

PutField(Class/Field) writes a value to a field of an objects. As the node that
represents the object could be abstract we concretise it before we set the field.
The update could be destructive and could yield garbage. Therefore we perform
a garbage collection on the result and afterwards try to abstract. Note that this
instruction is not deterministic.

inst(H) = PutField(f) popOp(H) = (H ′, v′) popOp(H ′) = (H ′′, v′′)

H → fullAbstr(gc( incPc( setSuc(K, v′′, f, v)))),K ∈ conc(H ′′, v′′)

InvokeVirtual(Class/MSig) is the call of an object method. We add a new method
node and set the registers to the parameters given in msig = Name(p), with
p ∈ Type?. This instruction uses information from the static environment cEnv
of the program.

inst(H) = InvokeVirtual(c.msig) popOp(H) = (H ′, v)

H → call(H ′,methodcEnv (type(v), c.msig)))

where call(H, c.m(p)) = setSuc(K, op, peekOp(H, |p|+ 1)) with:

VK = VH ] {vm}
EK = EH ] {ecalledBy , eop , epc} ] {eri | i ∈ [1,maxRegc.m(p)]}
labK = labH ] {ex 7→ x | ex ∈ EK \ EH}
typeK = typeH ∪ {vm 7→ c.m(p)}
attK = attK

∪ {ecalledBy 7→ extH [1], eop 7→ extH [3], epc 7→ suc(H, extH [2], int(0))}
∪ {eri 7→ peekOp(i) | i ∈ [1, |p|]}
∪ {eri 7→ extH [3] | i ∈ [|p|+ 1,maxRegc.m(p)]}

extK = vmO extH [2] extH [3]
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4 Experimental Results

We implemented the above concepts in a prototype tool that for a program in
Java Bytecode, a hyperedge replacement grammar and a start heap generates
the abstracted state space. The following table gives some experimental results:

Method Rules States Parsing Generation

ReverseList (singly linked) 3 113 0:010 s 0:006 s
TraverseTree (recursive) 49 574 0:472 s 0:264 s
Lindstrom (no marking) 14 4,297 0:245 s 0:198 s
Lindstrom (single marking) 14 224,113 0:245 s 2:360 s
Lindstrom (extended marking) 14 937,510 0:245 s 9:074 s

TraverseTree is the Java program from Fig. 8. The Lindstrom Traversal Al-
gorithm [11] traverses a tree with constant additional memory by altering the
pointers of the elements. The algorithm (Fig 9) was analysed by us before [8].

The column rules gives the size of the provided grammar, states the size of the
corresponding state space, parsing the time for parsing the Bytecode, grammar
and start heap and generation the time needed to generate the abstracted state
space. The examples where calculated on a 2 GHz Intel Core i7 Laptop.

stat ic void t rav ( Tree root ){
i f ( root == null ) return ;
Tree sen = new Tree ( ) ;
Tree prev = sen ;
Tree cur = root ;
while ( cur != sen ){

Tree next = cur . l e f t ;
cur . l e f t = cur . r i g h t ;
cur . r i g h t = prev ;
prev = cur ;
cur = next ;
i f ( cur == null ){

cur = prev ;
prev = null ;

} } }
Fig. 9. Lindstrom Traversal

In none of the given examples null pointer
dereferencing occurs. We can check shape
properties of states – so far manually. To de-
scribe complex properties we use LTL with
pointer equations, e.g. x.l = y and flag
terminal as atomic propositions. For Lind-
strom we proofed termination, completeness
(each node is visited) and correctness (at the
end the input tree is not altered)[8].

We need quantification over objects as
in [14] to verify these properties. We realise
quantification by adding markings, i.e. static
variables not visible to the program. Mark-
ings are determined by exhaustive object ex-
ploration where objects are concretised and
abstracted as needed. For Lindstrom we get 41 different abstract markings, in
each one object is marked as x. We can proof that for any of these the LTL
formulas FG(cur 6= x) and ¬(cur 6= xU terminal) hold. The former stats that
variable cur only finally often points to the marked object and as this could
be any object (and null) the calculation has to terminate somewhen. The latter
stats that somewhen before terminating cur points to the marked node, thus the
algorithm is complete. For correctness we also mark the left and right successor
of x by xl and xr and check that the successors are the same at the end of the
traversal: x = root→ G(x = root)∧G(terminal → (xl = x.l∧xr = x.r)). Mark-
ings increase the state space (see row single and extended marking). The above
only works for quantification over objects in the start heap. The termination
check is only correct if no objects are generated at runtime.
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5 Related Work

The basic idea of using hyperedge replacement grammars for abstraction of heap
structures was supposed in [8, 9]. However it was not suitable for the analysis
of Java Bytecode as typed objects were not reflected. Various other techniques
for the analysis and verification of heap manipulating programs where supposed.
The most famous are shape analysis via three-valued logic [16] and separation
logic [15]. The latter is an extension of Hoare logic and uses recursive predicates
to describe the shape of heap parts. There is a one to one corespondents be-
tween recursive predicates and nonterminals of our representation, as stated by
[5]. Separation logic is classically used in Hoare Triple style verification where de-
cidability of entailment is essential. Entailment not decidable in general has to be
proven decidable for any recursive predicate. There are decidable logics for list,
and trees [1, 2]. In [13] separation logic is extended for Bytecode by adding type
information. There are several separation logic tools as SpaceInvador [18](linear
data structures) or Smallfoot [2] ((doubly) linked lists and trees). The advantage
of tools based on deductive methods is scaleability [18] while restricted to a small
set of predefined data structures. Using state space exploration we do not need
to decide entailment and thus support arbitrary user defined data structures.

Shape analysis via three-valued logic is another abstraction technique [15].
Nodes are summarised by properties expressed as predicates in a three-valued
logic. Predicates are typically shape properties like reachability, cycle member-
ship, etc. Most of these are implicitly given by our representation and should be
extractable [4]. Not relaying on these properties they are implicitly considered
during state space exploration. While reflecting predicates nevertheless nodes
with different predicates are summarise if they form a neighbourhood of a well
defined structure resulting in additional structural information. Unfortunately
structures expressible by HRG and separation logic are restricted to those with
bounded tree-width [6], e.g. the set of all graphs is not expressible as a HRGs.

In [12] TVLA [10] is used to verify the Lindstrom Algorithm. The given proof
depends on 24 predicates encoding deep knowledge of the algorithm, resulting in
a less automatic proof than the one provided in section 4 where only structural
properties are provided. To reduce the number of predicates and to keep the
example manageable the input-code is modified in [12] such that the heap is
always a tree. This is not necessary in our approach as it is robust against local
violations of the data structure. Our abstraction results in slightly larger state
space but also in shorter runtime (TVLA: 183,564 states in over 36 minutes [3]).

6 Conclusion

We introduced labeled and typed hypergraphs and corresponding HRGs, where
nodes are associated with a type from a type hierarchy. We showed how they can
be used to model abstracted JVM states and how to compute an abstract state
space for a Java Bytecode program. Experimental results attest that the ap-
proach has a practical value. For the future we will consider automatic inference
of DSGs during state space generation, and extended verification techniques.
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A Verified Implementation of Priority Monitors
in Java
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Abstract. Java monitors as implemented in the java.util.concurrent.
locks package provide no-priority nonblocking monitors. That is, threads
signalled after blocking on a condition queue do not proceed immedi-
ately, but they have to wait until both the signalling thread and also
other threads that might have requested the lock release it. This can be
a source of errors (if threads that get in the middle leave the monitor in
a state incompatible with the signalled thread re-entry) or inefficiency (if
repeated evaluation of preconditions is used to ensure safe re-entry). A
concise implementation of priority nonblocking monitors in Java is pre-
sented. Curiously, our monitors are implemented on top of the standard
no-priority implementation. In order to verify the correctness of our so-
lution, a formal transition model (that includes a formalisation of Java
locks and conditions) has been defined and checked using Uppaal. We
consider this a first step towards a full correctness proof using deductive
methods.
Keywords: Monitors, Java, model checking, priority, nonblocking.

1 Introduction

A model-driven approach to the development of concurrent software [6] advo-
cates the use of high-level, language independent entities that can be subject to
formal analysis (e.g., to early detect risks due to concurrency in reactive, critical
systems) and that are later translated into a concrete programming language by
means of safe transformations.

This, rather than the unrestricted use of the concurrency mechanisms in
the target language, aims at improving portability (always a must in embedded
systems) and preventing hazards due to the use of error-prone or poorly doc-
umented primitives. We have used this approach for teaching concurrency for
more than fifteen years at our university, first using Ada95 [3], and now Java,
which is certainly lacking in many aspects when compared to the former.

Indeed, the early mechanisms for thread synchronization provided by Java
were so limited that one of the pioneers of concurrent programming, Brinch

∗
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Spanish Ministry of Science and Innovation, PROMETIDOS (P2009/TIC-1465)
from the Madrid Regional Government and COST Action IC0701 on Formal Verifi-
cation of Object Oriented Software.
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CADT Counter
ACTION Inc: C Type[io]
ACTION Dec: C Type[io]

SEMANTICS
TYPE: C Type = Z
INVARIANT: ∀ c ∈ C Type.c ≥ 0
INITIAL(c): c = 0

CPRE: True
Inc(c)
POST: cout = cin + 1

CPRE: c > 0
Dec(c)
POST: cout = cin − 1

class Counter {
final Lock mutex =

new ReentrantLock(true);
final Condition strictlyPos =

mutex.newCondition();

private int c = 0;

public void inc() {
mutex.lock();

c++;

// signal some pending dec

strictlyPos.signal();

mutex.unlock();

}

public void dec() {
mutex.lock();

// check the CPRE now

if (c == 0) {
try {strictlyPos.await();}
catch(Exception e) {}

}
// if we are here, that means

// that c > 0
c−−;
// it CAN be proved that

// no more signals are needed

mutex.unlock();

}
}

Fig. 1. A minimal example showing the risks of Java’s no-priority locks and conditions.

Hansen, wrote a famous essay [5] alerting on the risks of their usage. As a
response to these adverse reactions, more powerful concurrency mechanisms were
introduced in later versions of Java, although without being explicitly presented
as realizations of the classical ones.

In this work we will focus on the locks & conditions library (java.util.
concurrent.locks), that can be seen as an attempt to implement monitors
(actually, Brinch Hansen’s contribution) in Java. Figure 1 shows an (apparently
correct) implementation of a shared resource, specified in a formal notation,
using the aforementioned library.

On the left side of the figure, a shared counter is specified as a kind of
abstract data type with implicit mutually exclusive access and an interface that
specifies the only operations (Inc and Dec) that can be used to modify its state.
Moreover, these actions are pure and transactional. In this case, we also state
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the invariant that the counter cannot be negative at any time, and specify the
conditional synchronization (CPRE, concurrency precondition) for Dec, that
ensures the invariant after the execution of any of the two actions.

To the right, we see an implementation of the resource specification as a Java
class using locks and conditions. Class Counter encapsulates an integer variable
c to represent the state of the counter. Also, a lock object mutex is used to
ensure execution of the actions in mutual exclusion. Finally, a condition object
strictlyPos is used to implement the conditional synchronization of threads
invoking dec(), i.e., to put them to sleep when the action is invoked with the
counter set to 0.

The code has been written following the principle that only 0 or 1 await()
calls are executed during an action, and that the same is true for signal(). This
coding guideline really pays off when applied to concurrency problems of greater
significance. Basically, it reduces the context switching points inside the code
for an action to (at most) one (the execution of await()), dividing it into two
sequential fragments, which facilitates formal reasoning.

It is the responsibility of the signalling thread (in this case, any thread exe-
cuting Inc) to ensure that the signalled thread wakes up in a safe state. In this
case, there is nothing to check, as strictlyPos.signal() is placed right after
incrementing the counter and thus, if the signalled thread resumes execution
right after the signalling one executes mutex.unlock() it is safe to decrement the
counter. That justifies the comment above the line containing “c−−;”.

Unfortunately, this code is unsafe. Why? The reason is that Java’s imple-
mentation is an example of no-priority signalling [2]. That means that threads
signalled after blocking on a condition queue do not proceed immediately, but
they have to wait until both the signalling thread and also other threads that
might have requested the lock release it. In other words, when the decrementer
thread resumes execution it could be the case that other decrementer thread
was already queued on mutex and set the counter to 0 right before. Moreover,
given that the execution of the inc() and dec() methods takes very little time,
the probability that this scenario happens is relatively low, what makes this the
kind of error that can go unnoticed for thousands of runs.

The official documentation for the Condition class leaves considerable room
for the operational interpretation of the await() and signal() methods in future
implementations and, in fact, the no-priority behaviour is not really implied
by the natural language specification of the API. There is, however, a generic
recommendation to enclose the calls to await() inside invariant-checking loops,
motivated by the possibility of spurious wakeups. Although the use of such
loops can be seen as a defensive coding technique that can avoid hazards in
general, we think that forcing the application programmer to use them can be
quite unsatisfactory in many situations as testing the concurrency precondition
repeatedly can increase contention of certain concurrent algorithms intolerably.

The use of the 0-1 coding scheme allows for low-contention, deterministic
implementations of shared resources. Moreover, other works like the aforemen-
tioned paper by Buhr et al. [2], which contains an exhaustive classification and
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comparison of existing and theoretical flavours of monitors, argue that, priority
implementations are, in general, less error-prone. With this in mind, we decided
to reuse as much from the existing reference implementation of condition objects
and turn them into a concise, priority implementation of monitors. Our proposal
is described in the following section.

2 Implementing Priority Monitors on Java’s no-Priority
Monitors

Figures 2 and 3 show a stripped-down version of the source code for Monitor.java,
our implementation of priority monitors. Due to space limitations, comments and
exception managers have been omitted. A full version, including comments and a
couple of extra operations can be found at http://babel.ls.fi.upm.es/software/cclib.

In addition to the Monitor class, Monitor.java defines the Cond class. Both
classes are intended to be a replacement for the original Lock and Condition
classes. Figure 3 contains the code for class Cond, and the rest of Monitor.java is
shown in Figure 2. However, this separation is a mere convenience for displaying
the code: the implementation of class Cond requires access to the state variables
in class Monitor.

The functionality provided by the class is similar to that of locks and con-
ditions. Method enter() provides exclusive access to the monitor, like method
lock() in class Lock. If one thread got exclusive access to a monitor object m,
susbsequent calls to m.enter() from other threads will force these to wait in m’s
queue. The monitor is released by invoking m.leave() (analogous to unlock()).
If there are threads waiting at m’s entry queue, executing m.leave() will give
control to the first thread in the queue.

Condition queues associated with m are created by invoking m.newCond()
rather than calling the constructor of class Cond. This is similar to the behaviour
of newCondition() in class Lock. Instances c, c′. . . of class Cond associated with
a given monitor object m are managed like condition variables. A thread that
invokes c.await() after m.enter() is blocked unconditionally and put to wait in
a queue associated with c. Also, executing c.await() releases m, so that other
threads can get exclusive access to m by executing m.enter(). As in the case of
leave(), if there are threads waiting at m’s entry queue, executing m.await()
will give control to the first thread in queue.

A thread that executes c.signal() after getting exclusive access to m will
continue executing (signal-and-continue policy) but it is guaranteed that if there
is a thread waiting on c, it will be awakened before any process waiting on
m’s entry queue. This is where the behavior differs from that of signals in the
standard locks and conditions package, where signalled threads are requeued at
the tail of the lock’s entry queue.

The implementation is done on top of the existing implementation of locks
and conditions, without reimplementing their functionality say, by using low-
level concurrency mechanisms such as semaphores, nor accessing the Java run-
time in order to “magically move” threads from one queue to another.
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2 package es.upm.babel.cclib;
3 import java.util.concurrent.locks.Lock;
4 import java.util.concurrent.locks.ReentrantLock;
5 import java.util.concurrent.locks.Condition;
6
7 public class Monitor {
8 private Lock mutex = new ReentrantLock();
9 private Condition purgatory = mutex.newCondition();

10 private int inPurgatory = 0;
11 private int pendingSignals = 0;
12
13 public Monitor() {
14 }
15
16 public void enter() {
17 mutex.lock();

18 if (pendingSignals > 0 | | inPurgatory > 0) {
19 inPurgatory++;

20 try { purgatory.await(); }
21 catch (InterruptedException e) { }
22 inPurgatory−−;
23 }
24 }
25
26 public void leave() {
27 if (pendingSignals == 0 && inPurgatory > 0) {
28 purgatory.signal();

29 }
30 mutex.unlock();

31 }
32
33 public Cond newCond() {
34 return new Cond();
35 }

inner class Cond goes here.

66 }

Fig. 2. Java source for priority monitors (class Monitor).
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38 public class Cond {
39 private Condition condition;
40 private int waiting;
41 private Cond() {
42 condition = mutex.newCondition();

43 waiting = 0;

44 }
45
46 public void await() {
47 waiting++;

48 if (pendingSignals == 0 && inPurgatory > 0 ) {
49 purgatory.signal();

50 }
51 try { condition.await(); }
52 catch (InterruptedException e) { }
53 pendingSignals−−;
54 }
55
56 public void signal() {
57 if (waiting > 0) {
58 pendingSignals++;

59 waiting−−;
60 condition.signal();

61 }
62 }
63 }

Fig. 3. Java source for priority condition variables (class Cond).

The technique used to simulate the effect of moving signalled threads from
the head of the condition queue to the head (rather than the tail) of the monitor’s
entry queue is to flush the contents of this until the signalled thread becomes
the first in queue. This is achieved by letting some threads get in the monitor,
but only to make them await in a special condition queue devised for that pur-
pose, and which we call “the purgatory”. Of course, these threads will have to
be eventually awakened and allowed to get access to the monitor in the right
sequence. As they have been moved to a condition variable, signalling them will
bring them back to the lock’s entry queue, so a little care is needed to ensure
that the whole thing progresses appropriately. A couple of global counters are
responsible for this.

Variable inPurgatory counts the number of threads that have been sent to
the purgatory condition queue and have not been given access to the monitor
yet – even if they have already been signalled. Variable pendingSignals counts
how many threads that have been signalled (in regular condition variables, not
purgatory) are yet waiting for re-entry.
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Method enter() starts executing lock() on the monitor’s internal lock object,
called mutex (line 16). However, if pendingSignals is nonnull, that means that this
thread should give way to some signalled thread that was waiting for monitor
re-entry later in the queue associated with mutex, and thus has to execute a
purgatory.await(), updating counter inPurgatory before and after (lines 17–
22). The same is done if other threads have been sent to the purgatory earlier
and have re-entered yet (inPurgatory > 0).

The implementation of method leave() is quite symmetric. It ends by in-
voking mutex.unlock() (line 29), but before, a chance to re-gain access to the
monitor must be given to threads moved to the purgatory (line 27), only if there
are no signalled threads pending monitor re-entry (line 26).

Method newCond is implemented just by invoking the standard constructor of
class Cond (line 33). Association to a given monitor object is just implicit in the
visibility of the monitor’s state variables that the Cond object has. A Cond object
is basically a pair of a Condition object associated with mutex and a counter
waiting that keeps track of the number of threads waiting on it (lines 38–43).

The core of method await() is the corresponding call on its condition object
(line 50) but, before, counter waiting is incremented (line 46) and the right to
execute inside the monitor is given to threads in the purgatory only if there
are no pending signals (lines 47–49). Finally, if the thread that has invoked
await() reaches line 52, that means that the whole signalling procedure has been
successful including monitor re-entry, so pendingSignals must be decremented
accordingly.

Finally, method signal() checks whether the queue size is nonzero (line 56)
and if so increments pendingSignals (line 57), as monitor re-entry for the sig-
nalled thread will be incomplete, decrements waiting (line 58) and executes
signal() on the condition object (line 59). Executing signal() on an empty
queue has no effect.

Although the implementation of the Monitor and Cond classes is quite con-
cise, the interplay between the different threads and synchronization barriers,
governed by the different counters is, admittedly, complex and hard to follow.
After testing the class on a number of applications specifically devised to force
errors related to incoming threads getting in the way of signalled ones, we still
felt that a more convincing proof of the correctness of our implementation was
necessary.

3 A Formal Model of Java Locks and Conditions

As a first step towards a formal argumentation of the correctness of our imple-
mentation of priority monitors, we decided to define a transition model for the
underlying implementation of locks and condition variables.

The model has been defined as a network of (parametric) automata in Up-
paal [1]: one automaton for modelling the concurrency mechanism, i.e., the lock
object and its associated conditions, and one automaton per thread that makes
use of it. While we give a complete formalization of the concurrency mechanism,
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unrelated thread code is abstracted away by just showing the interaction with
the lock and the conditions.

Each thread has its own thread identifier, pid , and so do condition variables
(cid). All interaction between the different automata takes place via communi-
cation channels:

– lock[pid] is the channel the thread pid uses when it needs to lock the lock.
– await[cid][pid] is the channel the thread pid uses when it needs to wait in

condition cid .
– signal[cid][pid] is the channel a thread uses to signal condition cid .
– lock granted[pid] is the channel the concurrency mechanism uses to grant

a lock to the thread pid .

Let’s start with the abstract model for the threads, since, in our view, it is
the most didactic way to present the whole model.

3.1 Modelling the Threads

Each thread has its own thread identifier, pid , and the model of a thread is the
automaton (actually an Uppaal template parametrised by thread identifiers)
shown in Figure 4.

AwaitingIn

EnteringOut

cid : cid_t
signal[cid]!

lock_granted[pid]?

cid : cid_t
await[cid][pid]!

unlock[pid]!

lock_granted[pid]?

lock[pid]!

Fig. 4. State model for a Java thread invoking operations on locks.

The automaton has four locations that represent the state of a thread with
respect to a lock:

– Out is the location that represents that the thread neither has got the lock
nor is waiting in a condition. It is an abstract representation of any program
point of any arbitrary thread outside of the monitor.
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– In is the location that represents that the thread has the lock and it is
not blocked neither trying to lock nor waiting in a condition. It is another
abstract representation, this time, of any program point of any arbitrary
thread in the monitor.

– Entering is the location that represents that the thread is blocked while
waiting for the lock to be granted to it. From the monitor perspective, it is
trying to enter the monitor.

– Awaiting is the location that represents that the thread is blocked in a con-
dition. From the monitor perspective, it is waiting for a signal that allows it
to re-enter the monitor.

Edges are extremely simple. The idea behind this simplicity is trying to con-
taminate the thread models as little as possible. They do not involve access to
variables, neither global nor local so adapting the model to any particular thread
is immediate. Let us see the intended meaning of the actions at the edges:

– Out–Entering with action lock[pid]!, a send-action that indicates that the
thread needs the lock. As we will see, the co-action (lock[pid]?) is continu-
ously enabled in the model of the mechanism.

– Entering–In with action lock granted[pid]?, a receive-action that indicates
the thread is allowed to get the lock. The co-action will occur when the
mechanism decides that the thread pid has the top priority to lock the mon-
itor.

– In–Awaiting with action await[cid][pid]!, a send-action that indicates that
the thread wants to wait in the condition variable cid .1

– Awaiting–In with action lock granted[pid]?, a receive-action that indicates
the thread is allowed to re-take the lock (re-enter the monitor).

– In–Out with action unlock[pid]!, a send-action that indicates that the thread
wants to release the lock (leave the monitor).

– In–In with action signal[cid]!, a send-action that indicates that the thread
wants to signal a thread on the condition variable cid .

3.2 Modelling Java Locks and Conditions

The model of a lock object and its associated condition variables is shown in
Figure 5. The main task of the automaton is to keep track of threads by lis-
tening for their actions (on channels locks, awaits and signals) and responding
appropriately (on channel lock granted).

To keep track of the threads, the automaton defines several local variables:

– A thread identifier, locking pid, to represent which is the locking thread, if
any.

– A bounded queue of thread identifiers, waiting, that represent the queue for
getting access to the monitor.

1 In Uppaal, expressions such as cid : cid t non-deterministically bind the identifier
cid to a value in the range cid t. It can be understood as an edge replicator.
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Locked

Unlocked

cid : cid_t
signal[cid]?
requeue(awaiting[cid],waiting)

cid : cid_t, pid : pid_t
await[cid][pid]?

push(awaiting[cid],pid)

pid : pid_t
unlock[pid]?

pid : pid_t
lock[pid]?
push(waiting,pid)

pid : pid_t
lock[pid]?
push(waiting,pid)

pid : pid_t
size(waiting) > 0 & first(waiting) == pid
lock_granted[pid]!
locking_pid = pop(waiting)

Fig. 5. State model for a Java lock.

– A bounded queue per condition cid of thread identifiers, awaiting[cid], that
represent the condition variable queues.

The automaton has two locations, Locked and Unlocked, that represent that the
lock is locked by a thread or unlocked, respectively.

Most logic is encoded in the edges. To explain this logic we will explore the
actions that fire them. We have to take into account that edges are indexed by
thread identifiers (pid) and condition variable identifiers (cid).

– Edges with the receive-action lock[pid]? do not change locations, are always
enabled and their assignments just push the thread identifier index pid in
the access queue waiting.

– The edge Locked–Unlocked with the receive-action await[cid][pid]? is always
enabled and the assignment just pushes the thread identifier index pid in the
condition variable queue awaiting[cid].

– The edge Locked–Locked with the receive-action signal[cid][pid]? is always
enabled and the assignment just moves the first thread identifier index pid
from the condition queue awaiting[cid] to the access queue waiting.

– The edge Unlocked–Locked with index pid is just enabled when the access
queue waiting is not empty and its first thread identifier is pid . The send-
action of this edge is lock granted[pid]!, granting the access to the thread
with identifier pid .

– The edge Locked–Unlocked with the receive-action unlock[pid]! is just en-
abled when the identifier of the asking thread coincides with the identifier
in the variable locking pid and has no assignment.
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locked

unlocked

cid : cid_t
signal[cid]?
remember_signal(awaiting[cid]),
requeue(awaiting[cid],waiting)

cid : cid_t, pid : pid_t
await[cid][pid]?

push(awaiting[cid],pid),
just_entered = false,
reset_signal()

pid : pid_t
unlock[pid]?
just_entered = false,
reset_signal()

pid : pid_t
lock[pid]?
push(waiting,pid)

pid : pid_t
lock[pid]?
push(waiting,pid), 
just_entered = false

pid : pid_t
size(waiting) > 0 & first(waiting) == pid
lock_granted[pid]!
locking_pid = pop(waiting),
just_entered = true

Fig. 6. An instrumented version of the Lock automaton.

The full code for the declarations and auxiliary method definitions in this model
can be found under http://babel.ls.fi.upm.es/software/cclib.

3.3 Instrumenting the Model

The natural step after defining this model is to check some properties on it. For
us, the most relevant property (correctness aside) is whether signalled threads
resume their execution inside the monitor immediately after the signalling thread
leaves or not. We will call this the characteristic property. As a sanity check, we
woud like to check that this property does not hold for the model just presented.

However, stating this property in the query language supported by Uppaal is
not possible. Basically, the query language is a subset of CTL that only allows
temporal modalities as the topmost symbol of formulae, but a query representing
the characteristic property for our model would require to nest modal operators.

A workaround for this limitation consists in instrumenting the model so that
part of its recent history is somehow remembered. This way, we can encode certain
temporal properties as state predicates, thus reducing the number of temporal
operators required to express the characteristic property.

Again, we avoid contaminating the thread model and Figure 6 shows the
resulting lock automaton. Basically, the system has new global variables to store:

– whether the nth thread that got access to the lock did execute an effective
signal on some condition, and

– the identifier for the thread that received the signal (if any).
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The first is done thanks to a new variable just signalled, and the second with
variable thread just awakened. Both of them are set by operation remember signal
while operation reset signal resets just signalled once the thread leaving the
monitor coincides with thread just awakened. Also, the automata for threads are
slightly constrained so that at most one signal is allowed per lock.

With these changes, the characteristic property is violated iff the (n + 1)th
thread in gaining access to the lock is different from the thread signalled by
the nth thread. In order to avoid having generation counters in the model, we
have added yet another boolean variable just entered to represent that the last
transition to take place in the lock automaton is precisely the one that follows
a lock granted message. Violation of the characteristic property can then be
encoded in the Uppaal query

E3 (just entered ∧ just signalled ∧ locking pid 6= thread just awakened) .

That is, whether there is some path (E path quantifier) that may lead (3 modal-
ity) to a state in which the aforementioned proposition holds. The tool finds an
example for 3 threads almost immediately, as expected.

4 Verifying our Implementation

A transition model for our priority monitors takes the previous one as starting
point. This is quite natural, as our implementation is based on existing locks
and conditions. Figure 7 shows the automaton that describes the transitions
of the lock (mutex) and condition objects used in the implementation of class
Monitor. This is basically the automaton of the previous section (Fig. 5). The
only difference is that the special condition purgatory is distinguished from the
rest, resulting in the extra edge from locked to itself (upper right corner) and
from locked to unlocked. This explicit naming is just necessary for the thread
model to refer to the purgatory when necessary.

The model that describes the locations visited by the client threads is shown
in Figure 8. The idea is similar to the model for threads in the previous section,
but here we have tried to constrain the model a little in order to enforce the in-
tended usage of the Monitor class. That is, threads are assumed to gain exclusive
access to the mutex lock first, then they execute 0 or 1 await() calls, then 0 or 1
signal() calls, and finally they give up the monitor by executing leave().

To make the graph easier to follow, most of the locations have been named
according to fragments of the source code in Monitor.java. For example, ex-
ecution of method enter() spans the subgraph from location out to in0, that
includes the possibility of a short excursion to the purgatory. Global counters
pendingSignals and inPurgatory are faithfully managed in the transitions.

Execution of await() is considered in the locations from in0 to in1. The possi-
bility of not invoking await() is in the following modelled the skip transition that
links in0 to in1 directly. Methods signal() and leave() are modelled analogously.
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locked

unlocked

pid : pid_t
await_purgatory[pid]?

push(awaiting_purgatory,pid)

signal_purgatory?
requeue(awaiting_purgatory,waiting)

cid : cid_t
signal[cid]?
requeue(awaiting[cid],waiting)

cid : cid_t, pid : pid_t
await[cid][pid]?

push(awaiting[cid],pid)

pid : pid_t

locking_pid == pid
unlock[pid]?

pid : pid_t
lock[pid]?
push(waiting,pid)

pid : pid_t
lock[pid]?
push(waiting,pid)

pid : pid_t
size(waiting) > 0 & first(waiting) == pid
lock_granted[pid]!
locking_pid = pop(waiting)

Fig. 7. State model for locks and conditions used in the Monitor class implementation.

no. of threads ⇓ 1 2 3 4 ⇐ no. of conditions

1 0.01 0.03 0.53 61.0
2 0.02 0.08 138.03
3 0,02 0.36 501.58
4 0.02 1.44
5 0.02 4.64

Table 1. Times spent in checking the characteristic property of the monitor transition
model, for different numbers of threads and condition variables (in seconds).

4.1 Experimental Results

The state model for priority monitors has been instrumented following the ideas
in Sec. 3.3. Table 1 shows execution times for checking the characteristic property
in the model, given different numbers of client threads and condition queues.2

5 Conclusion

We have presented an implementation of nonblocking (signal-and-continue) pri-
ority monitors in Java, implemented on top of the existing nonblocking, no-
priority implementation in the standard locks & conditions package. Moreover,

2 Figures obtained on Intel Core2 Duo CPU U9600 1.60GHz, RAM 4Gb, running the
Academic version of Uppaal 4.0.11 on a Ubuntu box with kernel Linux 2.6.32-34-
generic-pae.
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leave0

leave1

in2

signal0

in1

await2

await1

await0

in0

purgatory_in_enter

enter1

enter0

out

pendingSignals == 0
&& inPurgatory > 0
signal_purgatory!

pendingSignals > 0
|| inPurgatory == 0

unlock[pid]!

waitingCond[theCond] > 0
signal[theCond]!
waitingCond[theCond]--,
pendingSignals++

waitingCond[theCond] == 0

cid : cid_t
theCond = cid

lock_granted[pid]?
pendingSignals--

await[theCond][pid]!

pendingSignals == 0
&& inPurgatory > 0
signal_purgatory!

pendingSignals > 0
|| inPurgatory == 0

cid : cid_t
theCond = cid,
waitingCond[theCond]++

pendingSignals == 0 
&& inPurgatory == 0

lock_granted[pid]?
inPurgatory--

pendingSignals > 0 || inPurgatory > 0
await_purgatory[pid]!
inPurgatory++

lock_granted[pid]?

lock[pid]!

Fig. 8. State model for a thread using the Monitor class operations.
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we have provided a state model for our solution (extending a model of the ex-
isting Java mechanism) that gives formal evidence that the priority mechanism
is actually implemented by our algorithm.

Our Monitor class encourages the use of certain coding styles that cannot be
used with the standard Java implementation (i.e., the 0-1 await/signal coding
idiom) and that result in a cleaner, safer code, and we are actually using it in
the classroom as a replacement of standard locks and conditions.

Also, we think that the techniques used to implement the priority signalling
can be interesting per se and, possibly, be adapted to other programming lan-
guages in case a slightly different behaviour for some concurrency mechanism is
needed.

To our knowledge, there are just two other publicly available implementations
of priority monitors in Java. The first one, by Chiao, Wu and Yuan [4], is really a
language extension devised to overcome the limitations of synchronized methods
and per-object waitsets – the paper is from 1999 and locks and conditions had
not been added to Java yet. The implementation is based on a preprocessor
which translates extended Java programs into standard Java code that invokes
the methods of some EMonitor class in the right sequence. In a more recent work,
T.S. Norvell [7] already considers the limitations of Java monitors in the light of
the provided locks and conditions library. However, his approach is different from
ours, reimplementing the monitor functionality on top of lower level concurrency
mechanisms (semaphores) and using explicit queues of threads. The fact that
our code is conciser and based on higher-level methods has facilitated the use of
model-checking as a validation tool, while his implementation is not verified.3

The model-checking approach was chosen to provide a quick feedback on our
solution in spite that we were aware of the double parametricity (no. of threads
and no. of condition queues) of the problem and, to be honest, the experience
has been harder than expected.

On one hand, there is one intrinsic issue with the use of model-checking ver-
sus, say, traditional program verification. The need of human intervention to
abstract away the code and convert it into a transition system (often referred
to as “cooking”) always leaves a feeling that there might be some detail lost
in translation, even if the model tries to mimic the code as much as possible.
Besides, in this case, the limitations in the query language added an additional
instrumentation stage to the process. Also, the experiments show an exponen-
tial state explosion that happens much earlier than expected, although we are
working to improve the figures.

For the sake of conciseness, some details of the reference implementation of
Java locks have been ommitted in our model, namely the possibility of spurious
locks and reentrant locking. Regarding the first, it is fairly reasonable to assume
the implementation of class ReentrantLock free of spurious wakeups as, in the
most liberal interpretation of the API specification, spurious wakeups would
make any attempt at formal reasoning useless. Regarding the second, it can

3 To be fair, Norvell’s implementation is longer also because he extends the function-
ality of Java monitors in other ways.
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be seen as a benefit of the model-driven approach: we do not consider features
outside the intended idioms.

Our intention is to work on a proof of the characteristic property of our
algorithm using deductive verification as early as possible in order to compare
the benefits and problems of both approaches.

Acknowledgments. We are very grateful to the anonymous reviewers for their
comments on an earlier version of this paper.
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Abstract. Observational determinism has been proposed in the liter-
ature as a way to ensure confidentiality for multi-threaded programs.
Intuitively, a program is observationally deterministic if the behavior
of the public variables is deterministic, i.e., independent of the private
variables and the scheduling policy. Several formal definitions of observa-
tional determinism exist, but all of them have shortcomings; for example
they accept insecure programs or they reject too many innocuous pro-
grams. Besides, the role of schedulers was ignored in all the proposed
definitions. A program that is secure under one kind of scheduler might
not be secure when executed with a different scheduler. The existing def-
initions do not ensure that an accepted program behaves securely under
the scheduler that is used to deploy the program.
Therefore, this paper proposes a new formalization of scheduler-specific
observational determinism. It accepts programs that are secure when
executed under a specific scheduler. Moreover, it is less restrictive on
harmless programs under a particular scheduling policy. We discuss the
properties of our definition and argue why it better approximates the
intuitive understanding of observational determinism.
In addition, we discuss how compliance with our definition can be veri-
fied, using model checking. We use the idea of self-composition and we
rephrase the observational determinism property for a single program
C as a temporal logic formula over the program C executed in parallel
with an independent copy of itself. Thus two states reachable during the
execution of C are combined into a reachable program state of the self-
composed program. This allows to compare two program executions in a
single temporal logic formula. The actual characterization is done in two
steps. First we discuss how stuttering equivalence can be characterized as
a temporal logic formula. Observational determinism is then expressed
in terms of the stuttering equivalence characterization. This results in a
conjunction of an LTL and a CTL formula, that are amenable to model
checking.

1 Introduction

The success of applications, such as e.g. Internet banking and mobile code, de-
pends for a large part on the kind of confidentiality guarantees that can be given

Technical Report, KIT, 2011-26 260



to clients. Using formal means to establish confidentiality properties of such ap-
plications is a promising approach. Of course, there are many challenges related
to this. Many systems for which confidentiality is important are implemented in
a multi-threaded fashion. Thus, the outcome of such programs depends on the
scheduling policy. Moreover, because of the interactions between threads and
the exchange of intermediate results, also intermediate states can be observed.
Therefore, to guarantee confidentiality for multi-threaded programs, one should
consider the whole execution traces, i.e., the sequences of states that occur during
program execution.

In the literature, different definitions of confidentiality are proposed for multi-
threaded programs. This paper follows the approach advocated by Roscoe [11]
that the behavior that can be observed by an attacker should be deterministic.
To capture this formally, the notion of observational determinism has been in-
troduced. Intuitively, observational determinism expresses that a multi-threaded
program is secure when its publicly observable traces are independent of its con-
fidential data, and independent of the scheduling policy [16]. Several formal def-
initions are proposed [16, 7, 14], but none of these capture exactly this intuitive
definition.

The first formal definition of observational determinism was proposed by
Zdancewic and Myers [16]. It states that a program is observationally determin-
istic iff given any two initial stores s1 and s2 that are indistinguishable w.r.t. the
low variables1, any two low location traces are equivalent upto stuttering and
prefixing, where a low location trace is the projection of a trace into a single low
variable location. Zdancewic and Myers consider the trace of each low variable
separately. Zdancewic and Myers also argue that prefixing is sufficiently strong
equivalence relation, as this only causes external termination leaks of one bit of
information [16].

In 2006, Huisman, Worah and Sunesen showed that allowing prefixing of low
location traces can reveal more secret information — instead of just one bit of
information — even for sequential programs. They strengthened the definition
of observational determinism by requiring that low location traces must be stut-
tering equivalent [7]. In 2008, Terauchi showed that an attacker can observe the
relative order of two updates of the low variables in traces, and derive secret in-
formation from this [14]. Therefore, he proposed another variant of observational
determinism, requiring that all low store traces — which are the projection of
traces into a store containing only all low variables — should be stuttering and
prefixing equivalent, thus not considering the variables independently.

However, Terauchi’s definition is also not satisfactory. This is for several
reasons: first of all, the definition still allows an accepted program to reveal
secret information, and second, it rejects too many innocuous programs because
it requires the complete low store to evolve in a deterministic way.

1 For simplicity, we consider a simple two-point security lattice, where the data is di-
vided into two disjoint subsets H and L, containing the variables with high (private)
and low (public) security level, respectively.
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In addition, the fact that a program is secure under a particular scheduler
does not imply that it is secure under another scheduler. All definitions of ob-
servational determinism proposed so far implicitly assume a non-deterministic
scheduler, and might accept programs that are not secure when executed with a
different scheduler. Therefore, in this paper, we propose a definition of scheduler-
specific observational determinism that overcomes these shortcomings. This def-
inition accepts only secure programs and rejects fewer secure programs under a
particular scheduling policy. It essentially combines the previous definitions: it
requires that for any low variable, the low location traces from initial stores s1
and s2 are stuttering equivalent. However, it also requires that for any low store
trace starting in s1, there exists a stuttering equivalent low store trace start-
ing in s2. Thus, any difference in the relative order of updates is coincidental,
and no information can be deduced from it. This existential condition strongly
depends on the scheduler used when the program is actually deployed, because
traces model possible runs of a program under that scheduling policy. In addi-
tion, we also discuss the properties of our formalization. Based on the properties,
we argue that our definition better approximates the intuitive understanding of
observational determinism, which unfortunately cannot be formalized directly.

Of course, we also need a way to verify adherence to our new definition. A
common way to do this for information flow properties is to use a type system.
However, such a type-based approach is insensitive to control flow, and rejects
many secure programs. Therefore, recently, self-composition has been advocated
as a way to transform the verification of information-flow properties into a stan-
dard program verification problem [3, 1]. We exploit this idea in a similar way
as in our earlier work [7, 5] and translate the verification problem into a model
checking problem over a model that executes the program to be verified twice,
in parallel with itself. We show that our definition can be characterized by a
conjunction of an LTL [8] and a CTL [8] formula. For both logics, good model
checkers exist that we can use to verify the information flow property. The char-
acterization is done in two steps: first we characterize stuttering equivalence, and
prove correctness of this characterization, and second we use this to characterize
our definition of observational determinism.

The rest of this paper is organized as follows. After the preliminaries in
Section 2, Section 3 formally discusses the existing definitions of observational
determinism and illustrates their shortcomings on several examples. Section 4
gives our new formal definition of scheduler-specific observational determinism,
and discusses its properties. The two following sections discuss verification of
this new definition. Finally, Section 7 draws conclusions, and discusses related
and future work.

2 Preliminaries

This section presents the formal background for this paper. It describes syntax
and semantics of a simple programming language, and formally defines equiva-
lence upto stuttering and prefixing.
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2.1 Programs and Traces

We present a simple while-language, extended with parallel composition ||, i.e.,
C||C ′ where C and C ′ are two threads which can contain other parallel composi-
tions. A thread is a unit of commands that can be scheduled by an scheduler. The
program syntax is not used in subsequent definitions, but we need it to formulate
our examples. Programs are defined as follows, where v denotes a variable, E a
side-effect free expression involving numbers, variables and binary operators, b
a Boolean expression, and ε the empty (terminated) program.

C ::= skip | v := E | C;C | while (b) do C |
if (b) then C else C | C||C | ε

Parallel programs communicate via shared variables in a global store. For sim-
plicity, we assume that assignments and lookups are atomic, thus data races
(where two variable accesses can occur simultaneously) cannot happen, and we
can assume an interleaving semantics (cf. [4]). We also do not consider proce-
dure calls, local memory or locks. These could be added to the language but this
would not essentially change the technical results.

Let Conf , Com, and Store denote the sets of configurations, programs, and
stores, respectively. A configuration c = 〈C, s〉 ∈ Conf consists of a program
C ∈ Com and a store s ∈ Store, where C denotes the program that remains to
be executed and s denotes the current program store. A store is the current state
of the program memory, which is a map from program variables to values. Let L
be a set of low variables. Given a store s, we use s |L to denote the restriction of
the store where only the variables in L are defined. We say stores s1 and s2 are
low-equivalent, denoted s1 =L s2, iff s1 |L = s2 |L , i.e., the values of all variables
in L in s1 and s2 are the same.

The small step operational semantics of our program language is standard.
Individual transitions of the operational semantics are assumed to be atomic.
As an example, we have the following rules for parallel composition (with their
usual counterparts for C2):

〈C1, s1〉 → 〈ε, s′1〉
〈C1 || C2, s1〉 → 〈C2, s

′
1〉
〈C1, s1〉 → 〈C′

1, s
′
1〉 C′

1 6= ε

〈C1 || C2, s1〉 → 〈C′
1 || C2, s

′
1〉

We also have a special transition step for terminated programs, i.e., 〈ε, s〉 →
〈ε, s〉, ensuring that all traces are infinite. Thus, we assume that the attacker
cannot detect termination.

A multi-threaded program executes threads from the set of live threads, i.e.,
the set of not-yet terminated threads. During the execution, a scheduling pol-
icy repeatedly decides which threads can be picked to proceed next with the
computation. Different scheduling policies differ in how they make this decision,
e.g., a nondeterministic scheduler chooses threads randomly and hence all possi-
ble interleavings of threads are potentially enabled; and a round-robin scheduler
assigns equal time slices to each thread in circular order. Given scheduling pol-
icy δ, and configuration 〈C, s〉, an infinite list of configurations T = c0c1c2...
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(T : N0 → Conf ) is a trace of the execution of C from s under the control of δ,
denoted 〈C, s〉 ⇓δ T , iff c0 = 〈C, s〉 and ∀i ∈ N0. ci → ci+1 under δ. We simply
write 〈C, s〉 ⇓ T when the scheduler is nondeterministic.

Let Ti, for i ∈ N, denote the ith element in the trace, i.e., Ti = ci. We use
T�i to denote the prefix of T upto the index i, i.e., T�i = T0T1 . . . , Ti. When
appropriate, T�i can be considered as an infinite trace stuttering in Ti forever.
Further, we use T |L to denote the projection of a trace to a store containing
only the variables in L. Formally: T |L = map( |L ◦ store)(T ), where map is
the standard higher-order function that applies ( |L ◦ store) to all elements in
T . When L is a singleton set {l}, we simply write T |l . Finally, in the examples
below, when writing an infinite trace that stutters forever from state Ti onwards,
we just write this as a finite trace T = [T0, T1, . . . , Ti−1, Ti].

2.2 Stuttering and Prefixing Equivalences

The key ingredient in the different definitions of observational determinism is
the equivalence of traces upto stuttering or upto stuttering and prefixing. The
definition of stuttering equivalence is based on [10, 7]. It uses an auxiliary notion
of stuttering equivalence upto indexes i and j.

Definition 1 (Stuttering equivalence). Traces T and T ′ are stuttering equiv-
alent upto i and j, written T ∼i,j T ′, iff we can partition T�i and T ′�j into
n blocks such that elements in the pth block of T�i are equal to each other and
also equal to elements in the pth block of T ′�j (for all p ≤ n). Corresponding
blocks may have different lengths.

Formally, T ∼i,j T ′ iff there are sequences 0 = k0 < k1 < k2 < . . . < kn =
i + 1 and 0 = g0 < g1 < g2 < . . . < gn = j + 1 such that for each 0 ≤ p < n
holds: Tkp = Tkp+1 = · · · = Tkp+1−1 = T ′gp = T ′gp+1 = · · · = T ′gp+1−1.

T and T ′ are stuttering equivalent, denoted T ∼ T ′, iff ∀i. ∃j. T ∼i,j T ′ ∧
∀j. ∃i. T ∼i,j T ′.

Stuttering equivalence defines an equivalence relation, i.e., it is reflexive,
symmetric and transitive.

Equivalence upto stuttering and prefixing is defined as one trace being stut-
tering equivalent to a prefix of the other trace.

Definition 2 (Prefixing and stuttering equivalence). Traces T and T ′ are
prefixing and stuttering equivalent, written T ∼p T ′, iff ∃i.T ∼ T ′�i∨T�i ∼ T ′.

3 Observational Determinism in the Literature

This section presents the existing definitions of observational determinism for-
mally, and discusses their shortcomings. The next section presents our improved
definition.
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3.1 Existing Definitions of Observational Determinism

Given any two initial low equivalent stores, s1 =L s2, a program C is observa-
tionally deterministic, according to

– Zdancewic and Myers [16]: iff any two low location traces are equivalent
upto stuttering and prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈
L. T |l ∼p T ′ |l .

– Huisman et al. [7]: iff any two low location traces are equivalent upto stut-
tering, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ ∀l ∈ L. T |l ∼ T ′ |l .

– Terauchi [14]: iff any two low store traces are equivalent upto stuttering and
prefixing, i.e., ∀T, T ′. 〈C, s1〉 ⇓ T ∧ 〈C, s2〉 ⇓ T ′ ⇒ T |L ∼p T ′ |L .

Notice that the existing definitions all have implicitly assumed a nondetermin-
istic scheduler, without mentioning this explicitly.

Zdancewic and Myers, followed by Terauchi, allow equivalence upto prefixing.
This has as an advantage that it removes the obligation to consider program ter-
mination. The definition of Huisman et al. is stronger than the one of Zdancewic
and Myers, as it only allows stuttering equivalence. Both definitions of Zdancewic
and Myers, and Huisman et al. only specify equivalence of traces on each sin-
gle low location separately, they do not consider the relative order of variable
updates in traces, while Terauchi does. In particular, Terauchi’s definition is
stronger than Zdancewic and Myers’ definition as it requires equivalence upto
stuttering and prefixing on low store traces instead of on low location traces.

3.2 Shortcomings of These Definitions

Unfortunately, all these definitions have shortcomings. Huisman et al. showed
that allowing prefixing of low location traces, as in the definition of Zdancewic
and Myers, can reveal secret information, see [7]. Further, as observed by Ter-
auchi, attackers can derive secret information from the relative order of updates,
see [14]. It is not sufficient to require that only the low location traces are de-
terministic for a program to be secure. Therefore, Terauchi required that all low
store traces should be stuttering and prefixing equivalent. However, allowing
prefixing of full low store traces still can reveal secret information. Besides, the
requirement that traces have to agree on updates to all the low locations as a
whole, as in Terauchi’s definition, is overly restrictive. In addition, all these def-
initions accept programs that behave insecurely under some specific schedulers.
These shortcomings are illustrated below by several examples. In all examples,
we assume an observational model is where attackers can access the full code
of the program, observe the traces of public data, and limit the set of possible
program traces by choosing a scheduler.

How prefixing equivalences can reveal information Consider the following
program. Suppose h ∈ H and l1, l2 ∈ L, h is a Boolean.

Example 1.

l1 := 0; l2 := 0;
{if (l1 == 1) then (l2 := h) else skip}

∣∣∣∣ l1 := 1
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For notational convenience, let C1 and C2 denote the left and right operands of
the parallel composition operator in all examples. A low store trace is denoted
by a sequence of low stores, containing the values of the low variables in order,
i.e., (l1, l2). If we execute this program from several low equivalent stores for
different values of h, we obtain the following low store traces.

Case h = 0 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 0)] execute C2 first

Case h = 1 : T |L =

{
[(0, 0), (1, 0)] execute C1 first
[(0, 0), (1, 0), (1, 1)] execute C2 first

According to Zdancewic and Myers, and Terauchi, this program is observation-
ally deterministic. However, when h = 1, we can terminate in a state where
l2 = 1. It means that when the value of l2 changes, an attacker can conclude
that surely h = 1; partial information still can be leaked because of prefixing.

How too strong conditions reject too many programs The restrictiveness
of Terauchi’s definition arises from the fact that no variation in the relative order
of updates is allowed at all. This rejects many harmless programs, such as for
example,

Example 2.
l1 := 0; l2 := 0; {l1 := 3 || l2 := 4}

If C1 is executed first, we get the following traces, T |L = [(0, 0), (3, 0), (3, 4)]; oth-
erwise, T |L = [(0, 0), (0, 4), (3, 4)]. This program is rejected by Terauchi, because
not all low store traces are equivalent upto stuttering and prefixing.

How scheduling policies can be exploited by attackers In all examples
given so far, a nondeterministic scheduler is assumed. However, in practice, the
scheduler may vary from execution to execution. The security of a program
depends strongly on the scheduler’s behavior. Under a specific scheduling policy,
some traces cannot occur. Due to the fact that an attacker knows the full code of
the program, when he chooses an appropriate scheduler, secret information can
be revealed from the limited set of possible traces. This sort of attack is often
called a refinement attack [13, 2], because the choice of scheduling policy refines
the set of possible program traces. Consider the following example,

Example 3.

l := 0;
{
{{if (h > 0) then sleep(n)}; l := 1}

∣∣∣∣ l := 0
}

where sleep(n) abbreviates n consecutive skip commands. Under a nondeter-
ministic scheduler, the initial value of h cannot be derived; this program is ac-
cepted by the definitions of Zdancewic and Myers, and Terauchi.

However, suppose we execute this program using a round-robin scheduling
policy, i.e., the scheduler picks a thread and then proceeds to run that thread
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for m steps, before giving control to the next thread. If m < n we obtain store
traces of the following shapes.

Case h ≤ 0 : T |L =

{
[(0), (1), (0)] execute C1 first
[(0), (0), (1)] execute C2 first

Case h > 0 : T |L =

{
[(0), (0), . . . , (0), (1)] execute C1 first
[(0), (0), . . . , (0), (1)] execute C2 first

With this scheduling policy, this program is still accepted by Zdancewic and
Myers, and Terauchi. However, when h ≤ 0, we can terminate in a state where
l = 0. Thus, the final value of l may reveal whether h is positive or not.

Example 4.

l1 := 0; l2 := 0;

{if (h > 0) then l1 := 1 else l2 := 1}
∣∣∣∣{l1 := 1; l2 := 1}

∣∣∣∣{l2 := 1; l1 := 1}

This program is secure under a nondeterministic scheduler, and it is accepted
by the definitions of Zdancewic and Myers, and Huisman et al. However, when
an attacker chooses a scheduler which always executes the leftmost thread first,
he gets only two different kinds of traces, corresponding to the values of h: when
h > 0, T |L = [(0, 0), (1, 0), (1, 1), . . .]; otherwise, T |L = [(0, 0), (0, 1), (1, 1), . . .].

In this case, this program is still accepted by the definitions of Zdancewic and
Myers, and Huisman et al. but this program is not secure anymore. Attackers
can learn information about h by observing whether l1 is updated before l2.
Notice that the problem of relative order of updates was shown in [14].

To conclude, the examples above show that all the existing definitions of
observational determinism allow programs to reveal private data because they
allow equivalence upto prefixing, as in the definitions of Zdancewic and Myers,
and Terauchi, or do not consider the relative order of updates, as in the defi-
nitions of Zdancewic and Myers, and Huisman et al. The definition of Terauchi
is also overly restrictive, rejecting many secure programs. Moreover, all these
definitions are not scheduler-specific. They accept programs behaving insecurely
under a specific scheduling policy. This is our motivation to propose a new def-
inition of scheduler-specific observational determinism. This definition on one
hand only accepts secure programs, and on the other hand is less restrictive on
innocuous programs w.r.t. a particular scheduler.

4 Scheduler-Specific Observational Determinism

To overcome the problems discussed above, we say that a program is observa-
tionally deterministic under a particular scheduler if any two low location traces
are stuttering equivalent and for any low store trace produced from one initial
store, there exists a low store trace produced from the other initial low equiv-
alent store such that these two traces are stuttering equivalent. Our definition
does not allow information to be leaked because of prefixing equivalence. Notice
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that Zdancewic and Myers, and Terauchi allow prefixing equivalence because
it removes the obligation to prove program termination in their proposed type
systems.

Scheduler-specific observational determinism is defined formally as follows.

Definition 3 (δ-specific observational determinism).
Given a scheduling policy δ, a program C is δ-specific observationally de-

terministic w.r.t. L iff for all initial low equivalent stores s1, s2, s1 =L s2, the
following conditions (1) and (2) are satisfied.

- ∀T, T ′. 〈C, s1〉 ⇓δ T ∧ 〈C, s2〉 ⇓δ T ′ ⇒ ∀l ∈ L. T |l ∼ T ′ |l . (1)

- ∀T. 〈C, s1〉 ⇓δ T.∃T ′. 〈C, s2〉 ⇓δ T ′ ∧ T |L ∼ T ′ |L . (2)

We require that the low locations individually behave deterministically be-
cause in the literature it has been shown how nondeterminism of a low variable
can be exploited to make other programs reveal confidential information. Even
the simple program “l := 0 || l := 1” can be used to violate confidentiality of
another program. If public variables are shared between programs, there exists
a channel between them [15]. Suppose that the public variable l is shared, i.e.,
this data is used by another apparently secure program, and access to this data
is conditioned on confidential information, then this assignment is more likely
to happen last. Therefore, there is a timing channel between two programs and
it can be used to derive information about the confidential data, see [16, 15].
Therefore, to be considered secure, a program must enforce an ordering on the
accesses to a single low location, i.e., the sequence of operations performed at a
single low location is deterministic [16].

However, notice that the program “l1 := 3 || l2 := 4” in Example 2 is con-
sidered secure because it writes to two different locations.

Besides, this definition also releases the requirement that all low store traces
have to agree on the relative order of updates. Our definition differs from the
previous definitions of observational determinism in one important aspect: the
existential condition. This condition depends strongly on the scheduling policy
used to deploy the program because traces model possible runs of a program
and refinements of the set of traces, when the scheduling policy changes, cannot
guarantee this condition.

Notice that the execution of a program under a nondeterministic scheduler
means that we consider all possible interleavings of threads. Given any schedul-
ing policy δ, the set of possible program traces under δ is a subset of the set of
possible program traces under a nondeterministic scheduler. If we quantify Defi-
nition 3 over all possible schedulers, it requires that each low store trace produced
from one initial store under a nondeterministic scheduler must be matched with
every low store trace produced from the other initial store. It means that for any
two initial low equivalent stores, if any two low store traces obtained from the
execution of a program under a nondeterministic scheduler are stuttering equiv-
alent, this program is secure under any scheduling policy δ. Thus, this gives a
truly scheduler-independent definition of observational determinism.
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4.1 Properties of Scheduler-Specific Observational Determinism

To illustrate that Definition 3 captures the intended meaning of observational
determinism best, we discuss different properties of the definition.

Property 1 (Deterministic low location traces). If a program is accepted by Def-
inition 3, no secret information can be derived from the publicly observable
location traces. It is required that the low locations individually evolve deter-
ministically, and thus, the values of private variables may not affect the values
of low variables.

Property 2 (Deterministic relative order of updates). If a program is accepted
by Definition 3, no information can be derived from the relative order of updates
because there is always a matching low store trace.

Notice that the insecure programs in Examples 1 and 3 are rejected by our def-
inition under a nondeterministic scheduling policy. The program in Example 4
is secure under a nondeterministic scheduler and it is accepted by our definition
instantiated accordingly. However, it is insecure under the scheduler that always
chooses the leftmost thread to execute first; and hence, it is rejected if we in-
stantiate the definition with this scheduler. Thus, given a scheduling policy δ, if
a program is accepted by our definition, instantiated for this scheduler, we can
conclude that the program is secure under δ.

Property 3 (Less restrictive on harmless programs). Compared with Terauchi’s
definition, Definition 3 is more permissive: it allows some freedom in the order
of individual updates, as long as a matching execution exists.

For example, Example 2 and 4, which are secure, are accepted by our definition
instantiated with a nondeterministic scheduler, but rejected by Terauchi.

After having presented an improved definition of observational determinism,
the next sections discuss how to verify it formally.

5 A Temporal Logic Characterization of Stuttering
Equivalence

5.1 Self-Composition to Verify Information Flow Properties

A common approach to check information flow properties is to use a type system.
However, the type-based approach is not suitable to verify Definition 3. First,
type systems for multi-threaded programs often aim to prevent secret informa-
tion from affecting the thread timing behavior of a program, e.g., secret informa-
tion can be derived from observing the internal timing of actions [16]. For to this
reason, the type systems proposed to enforce confidentiality for multi-threaded
programs are often very restrictive. This restrictiveness makes the application
programming become impractical and many intuitively secure programs are re-
jected by type systems. Besides, it also seems difficult to enforce stuttering equiv-
alence via type-based methods without being overly restrictive [14]. In addition,
type systems are not suitable to verify existential properties, as the one in our
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definition. This can be understood as follows. If the program C is well-typed,
then for any two configurations c1 = 〈C, s1〉 and c2 = 〈C, s2〉 such that s1 =L s2,
there exists a configuration, e.g., c′, that simulates both [16]. This means that for
any two traces T and T ′ starting in c1 and c2 respectively, the low-deterministic
properties of T and T ′ can be simulated by the same trace starting in c′. In other
words, if C is well-typed, two sets of traces starting in c1 and c2 have the same
low-security behavior. Therefore, our definition, which contains an existential
quantification, cannot be verified via type-based methods.

Instead, we use self-composition. This is a recently developed technique [3, 1]
that transforms the verification of information flow properties into a verification
problem. Self-composition means that we compose a program C with its copy,
denoted C ′, i.e., we execute C and C ′ in parallel, and consider C || C ′ as a single
program. Notice that C ′ is program C, but with all variables renamed to make
them distinguishable from the variables in C [1]. In this model, the original two
programs still can be distinguished, and then we express the information flow
property as a property over the executions of the self-composed program.

Concretely, in this paper we characterize observational determinism with a
temporal logic formula. The essence of observational determinism is stuttering
equivalence of execution traces. Therefore, we first investigate the characteris-
tics of stuttering equivalence and discuss which extra information is needed to
characterize this in temporal logic. Based on the idea of self-composition and
the extra information, we define a model over which we want the temporal logic
formula to hold. After that, a temporal logic formula that characterizes stutter-
ing equivalence is defined. This formula can be instantiated in different ways,
depending on the equivalence relation that is used in the stuttering equivalence.
Observational determinism is expressed in terms of the stuttering equivalence
characterization. This results in a conjunction of an LTL and a CTL formula
(for the syntax and semantics definitions of LTL and CTL, see [8]). Both for-
mulas are evaluated over a single execution of the self-composed program. We
show that the logic formulas are equivalent to the original definitions, thus the
characterization as a model checking problem is sound and complete.

5.2 Characteristics of Stuttering Equivalence

We let symbols a,b, c, etc. represent states in traces. Given T ∼ T ′ as follows,

index: 0 1 2 3 4 5 . . .
T = a b c d d d . . .

nr of state changes in T : 0 1 2 3 3 3

T ′ = a a b b c d . . .
nr of state changes in T ′: 0 0 1 1 2 3

The top row indicates the indexes of states. The row below each trace indicates
the total numbers of state changes, counted from the first state, that happened in
the trace. Based on this example, we can make some general observations about
stuttering equivalence that form the basis for our temporal logic characterization.
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– Any state change that occurs first in trace T at index i, i.e., Ti, will also
occur later in trace T ′ at some index j ≥ i.

– For any index r between such a first and second occurrence of a state change,
i.e., i ≤ r < j, at state T ′r, the total number of state changes is strictly smaller
than the total number of state changes at Tr.

– Similarly for any change that occurs first in trace T ′.

Notice that these properties are sound and complete to characterize stuttering
equivalence, see Appendix A.2 of [6].

5.3 Extra Information

To characterize stuttering equivalence in temporal logic, we have to come up with
a temporal logic formula over a combined trace. As a convention, we use T 1 and
T 2 to denote the two component traces. Thus, the ith state of the combined trace
contains both T 1

i and T 2
i . The essence of stuttering equivalence is that any state

change occurring in one trace also has to occur in the other trace. Therefore, we
have to extend the state with extra information that allows to determine for a
particular state (1) whether the current state is different from the previous one,
(2) whether a change occurs first or second, and (3) how many state changes
have already happened.

How to characterize state change? To determine whether a state change
occurred, we need to know the previous state. Therefore, we define a memorizing
transition relation, remembering the previous state of each transition.

Definition 4 (Memorizing transition relation). Let →⊆ (State×State) be
a transition relation. The memorizing transition relation→m⊆ (State×State)×
(State × State) is defined as: (c1, c

′
1)→m (c2, c

′
2) ⇔ c1 → c2 ∧ c′2 = c1.

Thus, (c1, c
′
1) makes a memorizing transition to (c2, c

′
2) if (1) c1 makes a transi-

tion to c2 in the original system, and (2) c′2 remembers the old state c1. We use
accessor functions current and old to access the components of the memorized
state, such that current(c1, c

′
1) = c1 ∧ old(c1, c

′
1) = c′1.

A state change can now be observed by comparing old and current compo-
nents of a single state.

How to characterize the order of state changes? To determine whether
a state change occurs for the first time or has already occurred in the other
trace, we use a queue of states, denoted q . Its contents represents the difference
between the two traces. We have the following operations and queries on a queue:
add , adds an element to the end of the queue, remove, removes the first element
of the queue, and first , returns the first element of the queue. In addition, we
use an extra state component lead , that indicates which component trace added
the last state in q , i.e., lead = m (m = 1, 2) if the last element in q was added
from Tm. Initially, the queue is empty (denoted ε), and lead is 0.

The rules to add/remove a state to/from the queue are the following. When-
ever a state change occurs for the first time in Tm, the current state is added to
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the queue and lead becomes m. When this state change occurs later in the other
trace, the element will be removed from the queue. When a state change in one
trace does not match with the change in the other trace, both q and lead become
undefined, denoted ⊥, indicating a blocked queue. If q = ⊥ (and lead = ⊥), the
component traces are not stuttering equivalent, and therefore we do not have to
check the remainders of the traces. Therefore, operations add and remove are
not defined when q and lead are ⊥.

Formally, these rules for adding and removing are defined as follows. Initially,
q is ε and lead is 0. Whenever q 6= ⊥ and Tmi 6= Tmi−1 (m = 1, 2),

– if lead = 3−m and Tmi = first(q), then remove(q). If q = ε, set lead = 0.

– if lead = m or lead = 0, then execute add(q , Tmi ) and set lead = m.

– otherwise, set q = ⊥ and lead = ⊥.

How to characterize the number of state changes? To determine the
number of state changes that have happened, we extend the state with counters
nr ch1 and nr ch2. Initially, both nr ch1 and nr ch2 are 0, and whenever a state
change occurs, i.e., Tmi 6= Tmi−1 (m = 1, 2), then nr chm increases by one. Thus,
the number of state changes at T 1

i and T 2
i can be determined via the values of

nr ch1 and nr ch2, respectively.

5.4 Program Model

Next we define a model over which a temporal logic formula should hold. Given
program C and two initial stores s, s′, we take the parallel composition of C and
its copy, denoted C ′, and consider C || C ′ as a single program. In this model,
the store of C || C ′ can be considered as the product of the two separate stores
s and s′, ensuring that the variables from the two program copies are disjoint,
and thus that updates are done locally, i.e., not affecting the store of the other
program copy.

First, we define the elements of the program model.

States: A state of a composed trace is of the form (〈C1 || C2, (s1, s2)〉, 〈C3 ||
C4, (s3, s4)〉, χ), where 〈C3 || C4, (s3, s4)〉 remembers the old configuration (via
the memorizing transition relation of Definition 4), and χ is extra information, as
discussed above, of the form (nr ch1,nr ch2, q , lead). We define accessor func-
tions conf1, conf2, and extra to extract (〈C1, s1〉, 〈C3, s3〉), (〈C2, s2〉, 〈C4, s4〉),
and χ, respectively.

Thus, in our model, the original two program copies still can be distinguished
and the updates of program copies are done locally. Therefore, if T is a trace
of the composed model, then we can decompose it into two individual traces by
functions Π1 and Π2, respectively, defined as Πm = map(confm). Thus, given a
state Ti = (〈C1 || C2, (s1, s2)〉, 〈C3 || C4, (s3, s4)〉, χ) of the composed trace, then
(Π1(T ))i = (〈C1, s1〉, 〈C3, s3〉) and (Π2(T ))i = (〈C2, s2〉, 〈C4, s4〉). The current
configuration of program copy m can be extracted by function Γm, defined as
Γm = map(current) ◦ Πm. Thus, (Γ1(T ))i = 〈C1, s1〉 and (Γ2(T ))i = 〈C2, s2〉.
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Finally, extra(Ti)(x) denotes the value of the extra information x at Ti, for
x ∈ {nr ch1,nr ch2, q , lead}.
Transition Relation: Let → be the translation relation induced by the op-
erational semantics of programs, and →m the memorizing transition relation
derived from → (cf. Definition 4). The transition relation of the program model
→χ is defined using →m, and a relation → ⊆ χ × Conf × χ that describes

how the extra information evolves, following the rules below (with a similar rule
for when C1 terminates, i.e., 〈C1, s1〉 → 〈ε, s1〉, and the symmetric counterparts
for C2).

(〈C1 || C2, (s1, s2)〉, c2)→m (〈C′
1 || C2, (s

′
1, s2)〉, c4) χ

〈C′
1,s

′
1〉→ χ′

(〈C1 || C2, (s1, s2)〉, c2, χ)→χ (〈C′
1 || C2, (s

′
1, s2)〉, c4, χ′)

where c4 = 〈C1 || C2, (s1, s2)〉 and χ
c→ χ′ is defined as follows (notice that this

relation is parametric on the concrete equality relation used).

lead = 2 c = first(q) nr ch1′ = nr ch1 + 1 q ′ = remove(q) lead ′ = 1

(nr ch1,nr ch2, q , lead)
c→ (nr ch1′,nr ch2′, q ′, lead ′)

lead ∈ {0, 1} lead ′ = 1 nr ch1′ = nr ch1 + 1 q ′ = add(q , c)

(nr ch1,nr ch2, q , lead)
c→ (nr ch1′,nr ch2′, q ′, lead ′)

lead 6∈ {0, 1} c 6= first(q) nr ch1′ = nr ch1 + 1 q ′ = ⊥ lead ′ = ⊥
(nr ch1,nr ch2, q , lead)

c→ (nr ch1′,nr ch2′, q ′, lead ′)

Notice that above we studied stuttering equivalence in a generic way, where
two traces could make a state change simultaneously. However, in the self-
composed program model, the operational semantics of parallel composition
ensures that in every step, either C1 or C2, but not both, make a transition.
Therefore, for any trace T , state changes do not happen simultaneously in both
Π1(T ) and Π2(T ). This also means that it can never happen that in one step,
both add and remove are applied simultaneously on the queue.

Atomic Propositions: Next we define the atomic propositions of our program
model, together with their valuation. Notice that their valuation is parametric on
the concrete equality relation used. Below, when characterizing observational de-
terminism, we instantiate this in different ways, to define stuttering equivalence
on a low location trace, and on a low store trace, respectively.

For m = 1, 2,

– fst chm denotes that a state change occurs for the first time in the program
copy m.

– snd chm denotes that a state change occurs in the program copy m, while
the program copy 3−m has already made this change.

– nr chm < nr ch3−m denotes that the number of state changes made by the
program copy m is less than the total number of state changes made by the
program copy 3−m.

The valuation function λ for these atomic propositions is defined as follows. Let
c denote a state of the composed trace.
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fst chm ∈ λ(c)⇔ current(confm(c)) 6= old(confm(c)) and

extra(c)(lead) = m or extra(c)(lead) = 0.

snd chm ∈ λ(c)⇔ current(confm(c)) 6= old(confm(c)) and

extra(c)(lead) = 3−m and

current(confm(c)) = first(extra(c)(q)).

nr chm < nr ch3−m ∈ λ(c)⇔ extra(c)(nr chm) < extra(c)(nr ch3−m).

Program Model: Using the definitions of state, transition relation and atomic
propositions above, we can now define a program model, encoding the behav-
ior of a self-composed program under a scheduler δ. The characterizations are
expressed over this model.

Definition 5 (Program model). Given a scheduler δ, let C be a program, and
s1 and s2 be stores. The program modelMδ

C,s,s′ is defined as (Σ, →χ , AP, λ, I)
where
– Σ denotes the set of all configurations, obtained by executing from the initial

configuration under δ, including the extra information, as defined above;
– AP is the set of atomic propositions defined above, and λ is their valuation;
– I = {〈C || C ′, (s, s′)〉} is the initial configuration of the composed trace.

5.5 Characterization of Stuttering Equivalence

Based on the observations and program model above, we characterize stuttering
equivalence by an LTL formula φ.

φ = G
( ∧

m∈{1,2}
fst chm ⇒ nr ch3−m < nr chm U snd ch3−m

)
.

Intuitively, this formula expresses the characteristics of stuttering equiva-
lence: any state change occurring in one component trace will occur later in
the other component trace; and in between these changes the number of state
changes at the intermediate states in the latter is strictly smaller than in the
first.

We prove formally that φ characterizes stuttering equivalence.

Theorem 1. Let T be a composed trace that can be decomposed into T 1 and T 2

with T 1
0 = T 2

0 , then T 1 ∼ T 2 ⇔ T |= φ.

Proof. See Appendix A.2 of [6].

6 Temporal Logic Characterization of Scheduler-Specific
Observational Determinism

Based on the results from the previous section, a temporal logic formula char-
acterizing scheduler-specific observational determinism can be established. The
formula consists of two parts: one that expresses stuttering equivalence of low
location traces, and one that expresses stuttering equivalence of low store traces.
Both are instantiations of the formula characterizing stuttering equivalence de-
fined above.
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6.1 Definitions of Atomic Propositions

We define atomic propositions that are used to instantiate the characterization
of stuttering equivalence in different ways, so that we can characterize stuttering
equivalence over low location traces, and over low store traces. For each l ∈ L,
fst chml , snd chml , and nr chl

m < nr ch3−m
l relate to each low variable, and

fst chmL , snd chmL , and nr chL
m < nr ch3−m

L relate to the set of low variables
L, where m = 1 or 2.

The formal definitions are defined as in the previous section, where equality
is instantiated as =l (for l ∈ L) and =L, respectively.

6.2 Characterization of Scheduler-Specific Observational
Determinism

Now we can give a temporal logic formula characterizing the properties of traces
of a program that is observationally deterministic under a scheduler δ. A program
C is observationally deterministic under δ iff for any two low equivalent stores
s1 and s2, the following formula holds on the traces of Mδ

C,s1,s2
.

(∧

l∈L
φl

)
∧ φL, where

φl = G
( ∧

m∈{1,2}
fst chml ⇒ nr chl

3−m < nr chml U snd ch3−m
l

)

φL = AG
( ∧

m∈{1,2}
fst chmL ⇒ E(nr chL

3−m < nr chmL U snd ch3−m
L )

)

Notice that φl is an LTL and φL a CTL formula.
Thus, if the program has n low variables, we have n + 1 verification tasks,

where n tasks relate to low location traces and one task relates to low store
traces. For each task, we instantiate the extra information χ and the equality
relation differently.

Theorem 2. Given program C and initial stores s1 and s2 such that s1 =L s2,
C is observationally deterministic under δ iff

Mδ
C,s1,s2 |=

(∧

l∈L
φl

)
∧ φL.

Proof. See Appendix A.3 of [6].

7 Conclusion

This paper presents a new formal definition of observational determinism that
approximates the intuitive definition of observational determinism well. If a pro-
gram is accepted under a specific scheduler, no secret information can be derived
from the publicly observable location traces and the relative order of updates.
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Compliance with our definition can be verified via a characterization as a
temporal logic formula. The characterization is developed in two steps: first
we characterize stuttering equivalence, which is the basis of the definition of
scheduler-specific observational determinism, and then we characterize our defi-
nition itself. The characterization is an important step towards model checking
observational determinism properties.

Related Work: The idea of observational determinism originates from the no-
tion of noninterference, which only considers input and output of programs. We
refer to [13, 7] for a more detailed description of noninterference, its verification,
and a discussion why it is not appropriate for multi-threaded programs.

Roscoe [11] was the first to state the importance of determinism to ensure
secure information flow of multi-threaded programs. The work of Zdancewic and
Myers, Huisman et al., and Terauchi [16, 7, 14] has been mentioned above. They
all propose different formal definitions of observational determinism, with a cor-
responding verification method. Zdancewic and Myers propose a type system
that requires that the type checked program must be confluent in order to be
verified [14]. Terauchi also proposes a type system to verify observational deter-
minism, but this one does not enforce confluence. Huisman et al. characterize
observational determinism in CTL*, using a special non-standard synchronous
composition operator, and also in the polyadic modal µ-calculus (a variation of
the modal µ-calculus) [7]. The idea of using self-composition was first proposed
by Barthe et al. and Darvas et al. [1, 3]. The way self-composition is worked
out here, with a temporal logic characterization also bears resemblance with
temporal logic characterizations of strong bisimulation [9].

Finally, Russo and Sabelfeld take a different approach to ensure security of
a multi-threaded program. They propose to restrict the allowed interactions be-
tween threads and scheduler [12]. This allows them to present a compositional
security type system which guarantees confidentiality for a wide class of sched-
ulers. However, the proposed security specification is similar to noninterference,
just considering input and output of a program.

Future Work: As future work, we will encode the characterization in one (or
more) model checkers. An important challenge is to model the queue, as this can
have a strong effect on the state space that has to be examined. An additional
challenge is to make the program model parametric, so that properties can be
expressed for varying initial values. This step will be necessary to scale to large
applications.

Notice that observational determinism is a possibilistic secure information
flow property: it only considers the nondeterminism that is possible in an exe-
cution, but it does not consider the probability that an execution will happen.
In a separate line of work, we will also study how probability can be used to
guarantee secure information flow.

Acknowledgment: The authors would like to thank Jaco van de Pol for his
useful comments and the anonymous reviewers for useful feedback of an earlier
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Abstract. Recently, a method for detecting and quantifying informa-
tion flow in programs using model checking has been proposed by Backes,
Köpf and Rybalchenko [1]. We recast this method in terms of program
logics and a deductive verification calculus. Our goal is to create a de-
ductive quantitative analysis of information flow in object-oriented pro-
grams, and we use the KeY theorem prover for Java Dynamic Logic as
our implementation platform. This is work in progress.

1 Introduction

Recently, there has been a surge in research on quantitative information flow
analysis. The research is motivated by the observation that it is not feasible to
completely prevent information leaks (i.e., the flow of confidential information to
public ports) in realistic programs. Instead, practical security analysis demands
a measure of leaked information in order to decide what leaks are tolerable.

A remarkable paper in this field is [1]. There, the authors present a two-
stage approach to precise measurement of information flow. The first stage uses
an off-the-shelf model checker to compute a summary of information flow in the
program being analyzed. This summary takes the form of an equivalence relation
describing which confidential inputs are indistinguishable by public program
outputs in a given attack scenario. The second stage transforms this relation
into a variety of information-theoretical metrics.

In this paper, we investigate what happens when in the first stage of quanti-
tative analysis, model checking is replaced by deductive verification based on a
program logic. In particular, we are using the KeY [5] verification system for Java
and its symbolic execution calculus for first-order Java Dynamic Logic (which
we introduce in Section 3). The advantages we expect from using a deductive
system like KeY are:

– ability to check object-oriented programs and a high coverage of OO pro-
gramming language features

– ability to detect and quantify information leaks via termination (Section 7.2)
– ability to analyze programs with a high number of code paths or unbounded

loops (Section 7.1)

? This work was supported by the German National Science Foundation (DFG) under
the priority programme 1496 “Reliably Secure Software Systems – RS3.”
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2 Related Work

There is a large body of work on demonstrating absence of information leaks in
programs, which we cannot survey here.

In the field of precise quantitative information flow analysis, the most relevant
related work for us is [1] and [8]. We have already discussed the former in the
introduction. The latter work is concerned with checking quantitative leakage
bounds via bounded model checking.

A theoretical account of the hardness of precisely quantifying information
flow in programs is given in [13].

Another inspiration for our work is [6], showing different approaches to for-
malize and prove both program security (absence of leaks) and insecurity (pres-
ence of leaks) in Java DL and the KeY prover.

The self-composition technique was first presented in a workshop version
of [6] and received further theoretical treatment and its name in [3]; it was also
studied from the point of view of verification in [10].

3 Java Dynamic Logic

Java Dynamic Logic (Java DL) is the instance of first-order Dynamic Logic used
in the KeY system. In this section, we explain the basics of Java DL. For an
exhaustive account we refer to [5].

Syntax. The signature of Java DL includes predicate and function symbols as
well as two kinds of variables: program variables (written in typewriter font: v)
and logical variables (written in math font: v). Program variables appear in
programs as well as in assertions about them, and their value may differ from
state to state. Logical variables are used for quantification; they may not appear
in programs, and their value does not depend on a state. For succinctness, we
will denote several related variables or terms as v̄, v̄, t̄, etc. and assume that all
operations happen component-wise.

The set of formulas of Java DL is defined as common in first-order Dynamic
Logic. That is, they are built using the connectives ∧,∨,→,¬ and the quan-
tifiers ∀,∃ (first-order part). Furthermore, for every Java program p and every
formula φ, 〈p〉φ (the “diamond” modality) and [p]φ (the “box” modality, which
is a shorthand for ¬〈p〉¬φ) are (modal) formulas.

Java DL has a third, unique to it, modality: the update. An update has the
form {v̄ := t̄} resp. {v1 := t1‖ . . . ‖vn := tn} and describes a state transition
where the program variables in v̄ are assigned the values of the terms in t̄ in
parallel. Updates serve several purposes. They help formalize symbolic execu-
tion, make for efficient aliasing treatment and allow relating program and logical
variables (and thus quantification over program inputs).

V. Klebanov

279 Technical Report, KIT, 2011-26



Semantics. The semantics of Java DL is based on the notion of a (program)
state, i.e., a first-order structure assigning (among other things) values to pro-
gram variables. We presume an appropriate signature and refer to the set of all
possible states that are based on it as S.

The transition relation ρp ⊆ S×S gives meaning to a program p as a relation
between its initial and final states. The definition of the programming language
fixes ρp for every syntactically valid program p. In this paper, we only consider
deterministic programs, so all relations ρp are actually partial functions: for every
initial state, there is at most one final state.

Furthermore, for any given state s ∈ S:

– Terms and formulas without modalities have the meaning as usual in first-
order logic.

– The diamond formula 〈p〉φ is true in s, if the program p started in s termi-
nates and the formula φ is true in the state ρp(s) reached upon termination.

– The meaning of a box formula is the same, but termination is not required:
[p]φ is true in s, if either p does not terminate when started in s, or 〈p〉φ
is true in s. The formula ψ → [p]φ has the same intuitive meaning as the
triple {ψ}p{φ} in Hoare Logic.

– The meaning of a formula with an update {v̄ := t̄}φ in the state s is the
same as the meaning of φ in the state s′ that is identical to s except as
follows: s′ assigns the variables v̄ the values that the terms t̄ have in s.

A formula is logically valid if it is true in every state.1

Calculus. To prove validity of formulas of Java DL, KeY implements a sequent
calculus. A sequent is of the form Γ =⇒ ∆, where the antecedent Γ and the
succedent ∆ are sets of formulas. The meaning of a sequent is that of the formula∧
φ∈Γ φ → ∨

ψ∈∆ ψ. We call the latter formula the meaning formula of the
sequent and will refer to it as M(Γ =⇒ ∆).

A rule schema is of the form

L1 L2 · · · Lk

C
(k ≥ 0)

where L1, . . . , Lk and C are schematic sequents, i.e., sequents containing schema
variables. As common in sequent calculus, the direction of entailment in the
rules is from premisses (sequents above the bar) to the conclusion (sequent be-
low), while reasoning in practice happens the other way round: by matching the
conclusion to the goal.

A proof tree is a finite tree, where each node is annotated with a sequent,
and each inner node is additionally annotated with one of the calculus rules
relating the node’s sequent to the sequents of its descendants. A leaf node may
or may not be annotated with a rule. If it is, then the rule must be a closing
rule (i.e., have no premisses). If it is not, then we call such leaf node an open

1 Thus, there is implicit universal quantification over program variables.
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hideLeft
Γ, =⇒ ∆

Γ, φ =⇒ ∆

assignment
Γ =⇒ {loc := val}〈π ω〉φ,∆
Γ =⇒ 〈π loc = val; ω〉φ,∆

ifElseSplit

Γ, v = TRUE =⇒ 〈π p ω〉φ,∆
Γ, v = FALSE =⇒ 〈π q ω〉φ,∆

Γ =⇒ 〈π if (v) p else q ω〉φ,∆

invariant

Γ =⇒ UI, ∆
I, v =⇒ [p]I
I, ¬v =⇒ φ

Γ =⇒ U [while (v) { p }]φ, ∆

The following is a small illustration of KeY calculus rules. The rules have been sim-
plified. Many more (and more complicated) rules are necessary to deal with a real-life
language like Java.
φ is a formula of Java DL. The prefix π stands for a sequence of opening braces {,
labels, try{, etc. The postfix ω denotes the “rest” of the program. v is a local variable.
U is a sequence of updates. I is the user-provided loop invariant.

Fig. 1. An illustration of the KeY calculus rules

goal. If all leafs of a proof tree for the sequent Γ =⇒ ∆ are closed, then the
formula M(Γ =⇒ ∆) is valid.

The KeY calculus contains rules for symbolic execution of Java programs,
update simplification, induction, first-order and theory reasoning. A few (sim-
plified) examples of the rules are given in Figure 1, but we will not discuss them
in detail here. The automated proof search strategy of KeY applies rules to re-
duce a proof obligation containing programs to purely first-order goals (and then
prove these). This process is completely automatic, if for each program loop, ei-
ther a (reasonably small) bound is known (and the loop can be unrolled), or a
loop invariant is available.

4 Basics of Information Flow

We extend the standard Java DL for reasoning about information flow as follows:

– The signature marks each program variable either as high (confidential) or
as low (publicly observable/changeable).2

2 This definition forces us to mark local variables as high, but this restriction has no
practical consequence.
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– According to the above distinction, we define projection functions ·hi and ·lo .
Each state s ∈ S is a pair of its high component shi and its low compo-
nent slo , and S = Shi × Slo .

The attacker. Our attacker model is as follows. Assume a run of a program p,
with an initial state s = (shi , slo), and the final state s′ = ρp(s) = (s′hi , s

′
lo). The

attacker knows p, slo , and s′lo (but not shi , s
′
hi , or any intermediate states). The

goal of the attacker is to learn something about shi .
The amount of information leaked by the program (and thus the success of

the attacker) depends on the number of program runs that the attacker can
study. Each such run is called in terminology of [1] an experiment, and it is
uniquely characterized by the low component slo of the initial state. We assume
that the attacker can freely choose slo .

Our whole analysis is parameterized by a set of experiments E. This pa-
rameter is chosen by the security analyst. Different E describe different attack
scenarios. A singleton set E corresponds to a single guess (a password checker,
for instance, is relatively secure in this scenario), while E = Slo models an
exhaustive attack (against which a password checker is helpless).

Describing information leaks. The canonical way to describe information
leakage of a program is by grouping confidential inputs that lead to the same
public output in a given attack scenario. As far as we know, this relation has no
name in literature; we like to call it the cover-up relation.

Definition 1 (Cover-up relation). For a given program p and a set of exper-
iments E, the cover-up relation ≈Ep ⊆ Shi × Shi is

≈Ep = {(s1hi , s2hi) | for all e ∈ E :
(
ρp((s1hi , e))

)
lo

=
(
ρp((s2hi , e))

)
lo
} .

Intuitively, ≈Ep is an “equivalence relation on the set of possible secret inputs.
Two inputs are in the same equivalence class whenever the program produces the
same result on both inputs. By observing the output of the program, the attacker
can then only deduce the secret input up to its [. . . ] equivalence class.” [1]

More precisely, for a given p and E, ≈Ep is an equivalence relation on high
state components. Taking any two states

– with their high components in the same ≈Ep -equivalence class
– and their low components identical and in E

as initial states for running p will lead to the same observable (i.e., low) final
state. We will consider the case that programs may not terminate in Section 7.2.

Secure programs have a coarse cover-up relation, while insecure a fine one. If
the cover-up relation is identity (very fine), then all equivalence classes are sin-
gleton sets, and each low final state corresponds uniquely to a high initial state:
the attacker has perfect knowledge. Conversely, the coarsest cover-up relation
≈Ep = Shi × Shi with only one equivalence class means that the attacker learns
nothing about the high inputs observing the low outputs.
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5 Detecting Information Flow with KeY

We use KeY to compute (a logical description of) ≈Ep . We use self-compo-
sition, i.e., employ two copies of the program p(h̄, l̄) with renamed variables:
p1 := p(h̄1, l̄1) and p2 := p(h̄2, l̄2). Our goal is to determine a program-free
formula Φ(h̄1, h̄2) such that

s1hi ≈Ep s2hi iff Φ(h̄1, h̄2) is true in a state (s1hi ⊕ s2hi , slo) ,

where slo is some low state component and s1hi ⊕s2hi is a high state component
where the values of h̄1 are the same as the values of h̄ in s1hi and the values
of h̄2 are the same as the values of h̄ in s2hi .

Computing ≈Ep . To determine Φ(h̄1, h̄2), we use the automated proof search
of KeY to construct a proof tree for the sequent

=⇒ ∃x̄.
(
E(x̄) ∧ {l̄1 := x̄ || l̄2 := x̄}〈p1〉〈p2〉¬l̄1 = l̄2

)
. (1)

The formula in the succedent is the negated definition of ≈Ep . Thus, open proof

goals3 correspond to models of ≈Ep . The predicate E(x) describes the set of
experiments E.

Formally, we assume a proof tree with Sequent (1) at the root (we’ll call
it =⇒ ¬A in the following) and the open goals L1, . . . , Ln as leafs. Given the
soundness of the calculus, we know that the meaning of the root is implied by the
conjunction of the leaf meanings: M(=⇒ ¬A)←M(L1)∧. . .∧M(Ln). If all loops
are bounded and unrolled and all method calls are inlined (essentially as in [1]),
then we can assume equivalence between the root sequent and the conjunction
of open goals [9]. We will deal with unbounded loops and other potential sources
of weakening in Section 7.1. Under this equivalence, the models of A (which
defines ≈Ep ) are exactly those of Φ(h̄1, h̄2) := ¬M(L1) ∨ . . . ∨ ¬M(Ln).

Example 1. We illustrate the computation of ≈Ep with the popular password
checker example, implemented as follows:

if (candidate==pass) { res=true;} else { res=false; }

Low variables are candidate (the entered password) and res (the result of the
check). The only high variable is pass (the correct password). Instantiating (1)
gives us the sequent

=⇒ ∃x.
(
E(x) ∧ {candidate1 := x || candidate2 := x}
¬〈if (candidate1==pass1) res1=true; else res1=false;〉
〈if (candidate2==pass2) res2=true; else res2=false;〉

res1 = res2

)

3 The sequent is indeed not provable, since we can choose the same initial state for
both programs (i.e., h̄1 = h̄2), which will lead to l̄1 = l̄2 in the final state.
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which we will try to prove with KeY for different attack scenarios E(x).
Choosing the predicate E(x) as x = 5, we model a single attempt by the

attacker to guess if the password is five. After the KeY proof search is exhausted,
we are left with two open goals:

pass1 = 5, pass2 = 5 =⇒ and =⇒ pass1 = 5, pass2 = 5 .

The logical description Φ(pass1, pass2) of ≈Ep is thus:

(pass1 = 5 ∧ pass2 = 5) ∨ (pass1 6= 5 ∧ pass2 6= 5) .

We will give a systematic way to compute the equivalence classes of this relation
in Section 6.1, but it is clear that there are two of them in this case: one very
small class {J5K}4 and one very large class {JiK | i ∈ Z \ {5}}. Intuitively, the
program is quite secure in this attack scenario.

Setting E(x) to x = 5 ∨ x = 7, we model a two-guess attack. The result is
three equivalence classes: two very small ones {J5K} and {J7K} and one still very
large class {JiK | i ∈ Z \ {5, 7}}. In this scenario, the program is just slightly less
secure than in the previous one.

Setting E(x) to true, we model an exhaustive attack. The result is one open
goal pass1 = pass2 =⇒, which makes ≈Ep the identity relationship with many
singleton classes. The program is completely insecure in this attack scenario.

6 Quantifying Information Flow

Stage two of the quantitative information flow analysis is concerned with com-
puting the individual equivalence classes of the cover-up relation ≈Ep and summa-
rizing their number and/or size in a single quantitative measure. The technique
that we use for this is—modulo some implementation details—that of [1].

6.1 Computing the Equivalence Classes of ≈E
p

In Section 5, we have obtained Φ(h̄1, h̄2) as a logical description of the cover-
up relation ≈Ep . It is now our goal to obtain logical descriptions of individual

equivalence classes of ≈Ep . To reach this goal, we compute a representative system

{Jr̄iK | Shi = ·∪i
[
Jr̄iK

]
}

where Jr̄iK is the high state component, in which the high variables h̄ have the
same value as the terms r̄i, and

[
Jr̄iK

]
is its equivalence class. Then, Φ(h̄, r̄i) is

the logical description of the ith equivalence class of ≈Ep .
The representative system is computed by the following iterative algorithm,

where we are repeatedly asking for a representative term that is not equivalent
to any of the previously computed representatives:

4 With J5K we denote the high state component where pass has the value 5.
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1 input Φ(h̄1, h̄2)
2 Φ(x̄, ȳ) := Φ(h̄1, h̄2)
3 Repr := ∅
4 while (Φ(x̄, ȳ) is satisfiable) do
5 r̄ := value of x̄ in a satisfying assignment of Φ(x̄, ȳ)
6 Repr := Repr ∪ {r̄}
7 Φ(x̄, ȳ) := Φ(x̄, ȳ) ∧ ¬Φ(x̄, r̄)
8 od
9 output Repr

In this algorithm, we delegate both the satisfiability check in line 4 and the
generation of a satisfying assignment in line 5 to the SMT solver Z3 [7]. This
arrangement works as long as the formula Φ(x̄, ȳ) falls into a logical fragment
that is decidable and for which an SMT solver can generate models. Indeed, for a
large class of programs, Φ(x̄, ȳ) is a quantifier-free formula over linear arithmetic.
For non-integer data types (such as strings), we plan to investigate mappings
into the integer domain. On the implementation side, we profit from the KeY
system’s interface to SMT solvers.

6.2 Quantifying Information Flow

Having computed the equivalence classes of ≈Ep in the previous step, it is time to
determine their size. This can be achieved by an implementation of Barvinok’s
algorithm [4] for counting the integer points in polytopes. While [1] uses the
LattE framework for this purpose, we have chosen the Barvinok tool [12, 11],
which is easier to handle technically.

The Barvinok tool takes the formula Φ(h̄, r̄i) (in the syntax largely compatible
with that of KeY) and returns the number of integer assignments for h̄ satisfying
the formula, which is the size of the r̄i-equivalence class. It is, of course, necessary
to add range restrictions for variables. The tool also works with parametric
polytopes, although it is not yet clear whether this capability allows analyzing
a larger class of programs.

Given the number and sizes of equivalence classes, “it is possible to compute
different security measures, such as the average uncertainty about the secret in
bits (Shannon entropy), the average number of guesses that are needed to iden-
tify secrets (conditional and minimal guessing entropy), and the maximal rate
at which information can be transmitted using the program as a communica-
tion channel (channel capacity).” [1] For the moment, we do not include these
calculations here, but refer to the intuitive argument of Example 1.

7 Extensions

7.1 Treating Unbounded Loops and the Role of Weakening

In this section we investigate how invariants can be used to deal with loops where
unrolling is either impossible (due to the unknown loop bound) or infeasible (due
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to the high number of iterations and/or code paths through the loop body).
The main question is how the use of the invariant rule affects the soundness of
computing the cover-up relation.

The computation is sound if all rules applied in the proof attempt are “re-
versible”, i.e., their conclusion C is equivalent to the conjunction of the pre-
misses C1∧ . . .∧Cn (cf. Section 5). This is not necessarily the case with so-called
weakening rules, to which the invariant rule belongs. The premisses of a weaken-
ing rule are strictly stronger than its conclusion: C ← C1 ∧ . . .∧Cn. Weakening
rules are sound for proving validity (and thus functional verification), but not
for computing the cover-up relation. Using weakening in the computation may
produce a relation that is too coarse and thus deem the program more secure
than it actually is. We now discuss the sources of weakening in proofs and how
to remedy this situation.

There are three potential sources of weakening: the explicit weakening rules
(e.g., hideLeft in Figure 1), the invariant rule (invariant in Figure 1) and the
method contract rule (also known as the modular method call rule, not shown).
While the explicit weakenings can be eliminated from a proof without detriment,
the invariant rule is necessary for completeness in the presence of unbounded
loops and the contract rule for practical scalability. The latter two rules be-
come reversible, if one uses strongest specifications (invariants or contracts). A
strongest specification implies any other specification that is still satisfied by the
loop or method. It fully captures the behavior of the corresponding code.

Finding strongest specifications is at least as hard as finding specifications in
general, but certainly more annoying in practice. In functional verification, one
typically wants specifications that are merely strong enough to show the desired
postcondition. Everything else just makes the proof harder. On the other hand,
while being demanding, the use of specifications allows analyzing security of
strictly more programs than previous approaches based on model checking.

We propose the following algorithm for checking if unsoundness was intro-
duced through the use of specifications:

1. Compute Φ(h̄1, h̄2) as described in Section 5. We assume (without loss of
generality) exactly one use of an invariant or contract rule with the specifi-
cation I.

2. Compute the representative system {Jr̄iK} as described in Section 6.1. Each
of the equivalence classes of ≈Ep can be described syntactically with the
formula Φ(h̄, r̄i).

3. Check, whether Φ(h̄1, h̄2) is unsoundly coarse by attempting to prove non-
interference within each equivalence class: for each equivalence class i, prove

=⇒ ∀x̄.
(
E(x̄) ∧ Φ(h̄1, r̄i) ∧ Φ(h̄2, r̄i)→ {l̄1 := x̄ || l̄2 := x̄}〈p1〉〈p2〉l̄1 = l̄2

)

(2)
using the specification I. Since I is known, the proof either succeeds automat-
ically or fails. A successful proof demonstrates directly that the computed
characterization of the equivalence class i is sufficiently fine to comply with
the definition of ≈Ep . If the proof fails, then I must be strengthened (by the
user) and the process repeated from Step 1.
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4. Check that no equivalence classes have been missed. Prove:

=⇒ Φ(h̄, r̄1) ∨ . . . ∨ Φ(h̄, r̄n) . (3)

If the proof succeeds, then the computed characterization of ≈Ep is sound. If
it fails, then I must be strengthened (by the user) and the process repeated
from Step 1.

7.2 Treating Leaks by Termination

A leak via termination occurs when an attacker learns something about the secret
inputs by observing that a program run terminates. Observing termination, of
course, only leaks information if there is a possibility of non-terminating program
runs. Due to the finite execution requirement of model checking, the analysis
of [1] is limited to terminating programs (where such leaks do not occur). In
contrast, we can extend the proof obligation (1) to measure information leaking
via termination (as done for proving insecurity in [6]):

=⇒ ∃x̄.
(
E(x̄) ∧ {l̄1 := x̄ || l̄2 := x̄}

(

(〈p1〉〈p2〉¬l̄1 = l̄2)
∨

(〈p1〉true ∧ [p2]false)
))

(4)

This way, we take into account that the attacker can gain knowledge not only
from the varying low output (¬l̄1 = l̄2), but also from the fact that one program
run terminates (〈p1〉true holds) while another doesn’t ([p2]false holds).

8 Conclusion and Current/Future Work

So far, we have carried out just a few initial experiments, combining KeY and
the other tools manually. We are currently automating this process and are
looking forward to more experiments and evaluating the technique in more detail.
We plan to extend the analysis to non-integer inputs/outputs by investigating
mappings into the integer domain.

We would like to investigate the role of specifications in more detail. It
would also be interesting to extend the analysis to nondeterministic (e.g., multi-
threaded) programs.

Regarding the generality of our encoding, we assume that the analysis could
be implemented in any program logic that can express self-composition and
has a calculus that computes first-order verification conditions. In view of the
recent results on program products [2], we speculate that the self-composition
requirement can also be dropped.
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1. Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery and
quantification of information leaks. In Proceedings, 30th IEEE Symposium on
Security and Privacy (S&P 2009), pages 141–153. IEEE Computer Society, 2009.

V. Klebanov

287 Technical Report, KIT, 2011-26



2. Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification using
product programs. In Michael Butler and Wolfram Schulte, editors, Proceedings,
17th International Symposium on Formal Methods (FM), volume 6664 of LNCS,
pages 200–214. Springer, 2011.

3. Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by
self-composition. In 17th IEEE Computer Security Foundations Workshop, CSFW-
17, Pacific Grove, CA, USA, pages 100–114. IEEE Computer Society, 2004.

4. Alexander I. Barvinok. A polynomial time algorithm for counting integral points in
polyhedra when the dimension is fixed. Math. Oper. Res., 19:769–779, November
1994.

5. Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach, volume 4334 of LNCS. Springer,
2007.
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Abstract. Actor languages become increasingly popular for modeling and
programming concurrent and distributed system. Although several founda-
tional proof systems are available for actor systems, we claim that there is
a need for higher-level specification and verification techniques. To clarify
and substantiate this position, we introduce a simple actor language together
with a non-trivial example and show how language-based specification tech-
niques, generalizing ideas from object-oriented specifications, can provide
more structure and modularity. We explain the semantics of the specifica-
tion constructs based on strong causality relations of incoming and outgoing
messages and illustrate their use. Furthermore, we discuss how verification
techniques can be constructed for such specifications. The paper finishes with
a discussion of related and future work.

1 Introduction

For analysis, checking, and verification, many modern programming languages are
complemented by specification languages that allow the formulation of program-
specific properties (e.g., Java and JML [22], C# and Spec# [5], Ada and Anna
[25]). Whereas these specification languages mainly focus on sequential program-
ming, researchers more and more investigate multi-threading and other concur-
rency aspects of such programming languages. On the other hand, there is a trend
to develop modeling and programming languages directly based on concurrency
primitives, e.g., based on actors or processes (e.g. [3, 18, 31, 7, 20, 19]). A strong
argument for these approaches is that their concurrency constructs usually come
with a well-understood theory and often foundational reasoning technique. How-
ever, the development of specification and high-level reasoning techniques for these
languages is less advanced than for the classical programming languages.

In this paper, we focus on actor languages in which a system or component
is described as a dynamically varying set of actors. An actor can create other ac-
tors and communicate with other actors via asynchronous messages. When used for

? This work is partially supported by the EU project FP7-231620 HATS: Highly Adaptable
and Trustworthy Software using Formal Models and the RS3 project MoVeSPAcI: Modular
Verification of Security Properties in Actor Implementations.
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modeling purposes, actor languages need specification languages to state and verify
properties of the modeled systems. We claim that the specification techniques and
corresponding verification methods to develop such specification languages are not
sufficiently understood. Formulated positively, we aim to convey that the develop-
ment of specification techniques for actor languages is an interesting and fruitful
research area.

More precisely, the position of this paper is that the following questions still wait
for satisfying solutions:

1. What are the central specification constructs for actors?
2. How do we achieve scaling from single actors to actor systems?
3. How can we build higher-level reasoning techniques based on such actor speci-

fications?

In the following, we explain these questions in turn by comparing them to the spec-
ification techniques for classical programming languages. In addition, we shortly
introduce the approaches to these questions that we will further elaborate in the
rest of the paper to clarify the stated position.

The central specification construct for programming languages centers around
procedures/methods and is based on pre- and postconditions (see, e.g., [28]). A
pre-/post-specification nicely abstracts from the execution sequence of a procedure
by talking only about its initial and final states. In object-oriented (OO) languages,
pre-/post-specifications of methods are complemented by object invariants (see,
e.g., [24]). What are the corresponding central abstractions to specify actors living
in a concurrent environment? Our approach is to specify the reaction to incom-
ing messages.1 As a new concept, we will propose to use so-called strong causality
relations between incoming messages and the resulting outgoing messages as a gen-
eralization of pre-/post-specifications.

In sequential settings, procedures hierarchically structure the complete system
runs. One call might lead to subcalls. The behavior of the main call can be derived
from the behaviors of the subcalls. Similar to OO settings, the scaling in actor pro-
grams is less clear. Specification techniques for OO programs often use ownership
concepts for scaling from single objects to object structures (see, e.g., [32, 5]). Our
approach is similar in that we will propose to specify the behavior of components
consisting of groups of actors. In particular, we aim to specify such components with
the same technique as actors.

There are foundational theories how to reason about actor systems (see, e.g., [1,
14, 2]). These theories directly build on the traces generated by the actor systems.
This is very flexible and powerful. However, for practical purposes, it can get quite
complex and elaborate. Are there higher-level, easier to handle verification methods
for reasoning based on a specification technique, maybe even at the expense of
losing relative completeness? In this paper, we will only discuss the topic in relation
to the presented specification techniques.

1 How this approach can be extended to spontaneous actions will be discussed below.
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interface Client { void receive( Value ); }

interface Server { void serve( Client, CompTask ); }

interface Worker {
void do( CompTask, Int );
void propagateResult( Value, Client );

}

actor class AServer implements Server {
void serve( Client c, CompTask t ) {

Int numberSubtasks = taskSize(t); // numberSubtasks >= 1
Worker w = new AWorker();
w.do( t, numberSubtasks );
w.propagateResult( null, c );

}
}

Fig. 1. Interfaces and the actor class AServer

Paper outline. To clarify and substantiate the sketched position, we discuss the ques-
tions mentioned above in a concrete setting. Sect. 2 describes a simple actor lan-
guage that we call AJ and a non-trivial example written in AJ. In Sect. 3, we present
and discuss a candidate for a specification technique and apply it to the running ex-
ample. In Sect. 4, we discuss verification aspects. Sect. 5 contains summarizing
discussions, further comparisons to related work, and our aims in future work.

2 Actor Language and Actor Systems

To have a sufficiently clear background for the following discussion on specification
and verification, we informally introduce the core actor language AJ together with
a client-server example. The server takes a computation task, splits it up into a
number of subtasks that are concurrently executed, collects and merges the results,
and sends the final result back to the client (this is a simplified version of the ring
example treated in a case study by Arts and Dam [4]).

Actors share many properties with objects. In particular, they are declared using
classes (we use the keyword actor class), can be dynamically created, implement
interfaces, have an actor-local state expressed in terms of instance variables, and are
addressed via a typed reference. Thus, for these aspects, we can use a syntax similar
to OO programming languages. For example, Fig. 1 shows the interfaces Client,
Server, and Worker together with an implementation of the Server-interface.

Reacting to messages. The central difference of actors and objects is the treatment of
messages and methods. In AJ, a message consists of a name and typed parameters,
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but must not have a return type/value2, and the semantics of message sending is
different. A statement of the form r.m(p1,p2) is executed by sending the message m

with actual parameters p1 and p2 to the receiver actor r. Such a send-operation is
non-blocking; execution directly continues with the next statement. Thus, in gen-
eral, a message send leads to concurrent behavior. For each of its messages, an actor
has a body that describes how it reacts to a message. For example, an actor of class
AServer (see Fig. 1) reacts on a message serve as follows: It determines the num-
ber of subtasks into which task t should be split, creates a worker actor, and sends
first a do- and then a propagateResult message to the worker. For AJ, we make the
following simplifying assumptions (we discuss the assumptions in Sect. 5):

A1 Messages sent from one sender to the same receiver are transmitted in order.
A2 Actors are single-threaded, i.e., they work on at most one message body at a

time.
A3 Message bodies are executed without interruption.
A4 The execution of message bodies must terminate. This is an obligation of the

programmer. (If an actor should be non-terminating, it can send itself a message
at the end of the message body.)

Receiving and selecting messages. It remains to explain what happens on a message
receive. We assume that actors are input enabled (cf. [27, p. 257]) and have an infi-
nite input queue. Messages are selected from the queue essentially in a FIFO manner.
However if they have a guard that evaluates to false, their selection is postponed.
Thus, an actor has control over the execution of incoming messages. Message selec-
tion is fair for messages with true guards. In Fig. 2, the actor class AWorker uses a
guard to select a propagateResult-message only if a result is available.

Further constructs. In addition to the actor-related aspects, we assume some basic
language constructs usually present in functional programming languages. In the
example, we use the types CompTask and Value and the functions:

compute : CompTask −→ Value
taskSize : CompTask −→ Int
firstTask : CompTask × Int −→ CompTask
restTask : CompTask × Int −→ CompTask
merge : Value × Value −→ Value

where compute(t) computes the result of t; taskSize(t) yields a number of subtask
in which t could be reasonably partitioned; firstTask(t,n), for n≥ 1, chops off the
last n− 1-th part of t, restTask(t,n) returns the chopped part; and merge merges
results. We assume in particular:

taskSize(t) ≥ 1
n> 1→ compute(t) = merge(compute(firstTask(t,n)),compute(restTask(t,n)))
compute(t) = compute(firstTask(t,n))
merge(v,null) = v
merge(v,merge(w,x)) = merge(merge(v,w),x)

2 I.e., return types are always void.
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actor class AWorker implements Worker {
Value myResult = null;
Worker nextWorker = null;

void do( CompTask t, Int n ) {
if( n > 1 ) {

nextWorker = new AWorker();
nextWorker.do( restTask(t,n), n-1 );

} else {
nextWorker = null;

}
myResult = compute( firstTask(t,n) );

}

void propagateResult( Value v, Client c )
guard myResult != null

{
if( nextWorker == null ) {

c.receive( merge(myResult,v) );
} else {

nextWorker.propagateResult( merge(myResult,v), c );
}

}
}

Fig. 2. Actor class AWorker

Actor systems are started by creating actors on computers and start their activi-
ties or connect them to activities in the environment, for example to user interfaces.

We designed AJ in such a way that it supports the core features of actor pro-
gramming and is easy to understand for the object community in order to simplify
the bridge to the OO specification community. A comparison of AJ in the context of
related work is contained in Sect. 5.

3 Specifications of Functional Properties

Even if described by a simple language such as AJ, actor systems can become very
complex with almost unmanageable behavior. Of course, in theory we can capture
this behavior in form of trace sets and formalize properties as predicates on these
sets. However, for practical purposes, we would like to have a more modular and
more structured approach. Modularity would allow us for example to prove proper-
ties about our server actors of Sect. 2 without knowing all possible contexts in which
the servers are used. The hierarchical structuring should help us to develop speci-
fications for typical programs. Our position is that improvements w.r.t. modularity
and hierarchical techniques are necessary to master actor systems.
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To clarify and substantiate the above claim, we describe how such improvements
could look like. We focus on the basic ideas and make several simplifying assump-
tions. Furthermore, we try to reuse OO specification technology where appropriate.
Our central goal is

a specification technique that works for single actors and scales to groups and
components consisting of many actors.

The reason for looking at groups of actors is that the user of an actor is rarely
interested in how the actor does its work. For example, a client using our server
is not interested how the server splits the work and assigns it to several workers
and how these do their work concurrently; the client is only interested in getting
the correct result. In the following, we only talk about actor groups and not actor
components3, but we believe that the main aspects of what we develop also hold
for components built from actors. Before we turn back to groups, we consider the
specification of single actors.

3.1 Specifying Single Actors

Our basic specification construct is designed to express the behavior of an actor in
reaction to a method selection. The construct has the following form:

input_message =⇒ set of actor_creation;
REGEXP(output_messages)

assume boolean_expression
assert boolean_expression

We call the specification construct a reaction rule, because it can be read as defining
a transition in reaction to an input: When the actor receives the input_message,
i.e., queued, and the assume clause evaluates to true, it can make the following
transition. The actor creates the specified set of actors, sends the output messages as
described by the regular expression over the output_messages, and guarantees that
the assert clause holds in the poststate. Note that assumption A4 guarantees that
a poststate exists. Using regular expressions to describe the sent output messages
is just a convenience. In this paper we will only use finite sequences of output
messages and assume, in particular, that the Kleene-star cannot be used.

The expression in the assume clause can refer to parameters of the input mes-
sage and the instance variables of the actor. The default for missing assume clauses
is true. The expression in the assert clause can refer to parameters of the input mes-
sage and to the instance variables of the actor in the pre- and poststate. The value of
an instance variable v in the prestate is denoted by old(v). The default for missing
assert clauses asserts that all instance variables v are unchanged, i.e., v == old(v).

Before we discuss the construct further, let us consider specifications for our
server and worker as examples.
The behavior of an actor AServer given in Fig. 1 is represented in the specification
given in Fig. 3. On selection of a serve message, a server creates a new actor of

3 mainly to stay out of a component discussion
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actor spec AServer {
this.serve( c, t ) ==> w <- new AWorker;

w.do( t, taskSize(t) );
w.propagateResult( null, c )

assumes c != null
}

Fig. 3. AServer actor specification

type AWorker, names it w and sends two messages to the newly created worker.
This selection assumes that both message parameters are non-null. The workers are
more interesting. It uses the instance variables of the actor class in the specification
(according to JML terminology, they are spec-public; cf. [23]).

actor spec AWorker {
Value myResult = null;
Worker nextWorker = null;

this.do( t, n ) ==> empty
assumes n == 1
asserts myResult == compute(t) && nextWorker == null

this.do( t, n ) ==> w <- new AWorker;
w.do( restTask(t,n), n-1 )

assumes n > 1
asserts myResult == compute( firstTask(t, n) ) && nextWorker == w

this.propagateResult( v, c ) ==> c.receive( merge(myResult,v) )
assumes myResult != null && nextWorker == null

this.propagateResult( v, c ) ==>
nextWorker.propagateResult( merge(myResult,v), c )

assumes myResult != null && nextWorker != null
}

Fig. 4. AWorker actor specification

The figure above states he behavior of the AWorker actor in Fig. 2. On selection
of a do message with actual parameter n > 1, a worker creates another worker
and asks it to do the remaining (n− 1) parts of the computation task. The worker
itself computes the first part and updates its state accordingly. On selection of a do

message with actual parameter n == 1, a worker computes the given task; it does
not have any effect on the environment.
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If the return from a procedure/method execution is considered as sending an
outgoing message back to the original caller, our specification construct can be un-
derstood as a generalization of pre-/post-specifications. The central differences are
that the number of outgoing messages can also be zero or several and that actor
creation has to be explicitly specified as it affects the environment.

Semantical aspects. We assume that the semantics of actor programs is defined as
sets of traces where a trace is a possibly infinite sequence alternating between con-
figurations and events. A configuration captures the set of actors and their states.
There are three types of events: output events for message sending, input events
for message selection, and creation events for actor creation. The distinction be-
tween output and input events is necessary, because a message that never satisfies
its guard is never selected. Events have an identity4 in the sense that no events in a
trace are equal.

The semantics of specifications is based on the semantics of actor systems. A
reaction rule is interpreted as a mechanism expressing a causality relation between
an input event ei and a set E = {ec1

, . . . ecm
, eo1

, . . . , eon
} of creation and output events

where causality means that

whenever we see an event ei , eventually all events of E will appear in the
subsequent trace

In this weak form of causality, it might happen that for two input events ei and
e′i the caused event sets E and E′ have common events, i.e., that an output or cre-
ation event is “caused” by two different input events. In practice, this would lead
to the undesirable situation that sending five times the same request to a server
might result in only one response. Furthermore, this weak form is in contrast to our
goal to generalize pre-/post-specification, as the actor specifications above guaran-
tee that the number of calls always corresponds to the number of returns5. Most
importantly, actor implementations never generate traces where an event is caused
by two different input events. That is why we argue for a strong causality semantics
in which

every event e either has a unique event that caused e or is an external event

where output events are caused by the corresponding input event and external
events are coming from outside the considered system (e.g., for starting up systems
or for interacting with an unknown environment).

Discussion. From a view point of actor implementations, strong causality seems
to be a natural basis for specifications. That is why it was a bit surprising to us
to notice that strong causality cannot be expressed in classical temporal logic. To
be more precise, when we project down the traces to the communicating actors
(e.g., between a server and a client), the trace prefixes are non-regular. Specifying

4 for example, the number of their position in the trace
5 Recall that we assume termination
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the strong causality needs counting facilities (see [21] for a temporal logic with
counting).

The above specifications for AServer and AWorker slightly abstract from the be-
havior of the actor implementations and simplify the reasoning about these actors.
However, from a client point of view, they are not of much interest. A client is not
interested in how the server does its work, but wants to know that the server even-
tually returns the correct result for every request. That is, the client is interested
in the behavior of the group of actors consisting of the server and the dynamically
created workers. This is the topic of the next subsection.

3.2 Specifying Actor Groups

As illustrated above, there are typical scenarios in which a user of an actor is not
interested in the work directly performed by the actor itself, but wants to have
guarantees about the behavior that the actor achieves together with its helper ac-
tors. This is one reason to develop specifications for actor groups. Another reason is
that group specification are important to formulate induction invariants for proofs
about actor groups of varying sizes (in our example, the number of workers varies
depending on the input). In summary, our position is that

specifications for actor groups are needed both as contracts for more complex
actor groups and as important construct for reasoning.

We illustrate both aspects. We like to stress that the aspects are closely related
as specifications of single actors and actor groups are needed to prove specifications
of larger actor groups in a hierarchical manner.

group spec AServer {
this.serve(c,t) ==> c.receive( compute(t) )
assumes c != null

}

Fig. 5. AServer group specification

A central goal in the design of specifications of actor groups is that they are
similar to specifications of single actors. For example, the specification of the group
owned by an AServer-actor in Fig. 5 almost looks like an actor specification. It ex-
presses exactly what a client wants to know. To achieve our design goal, we make
two simplifying assumptions in this paper:

G1 Every actor a owns a group. The members of a’s group are just the actors directly
or indirectly created by a.

G2 Every group only exposes the reference of the owner to the group environment.
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group spec AWorker {
boolean working = false;
CompTask myTask = emptyTask;

this.do( t, n ) ==> empty
assumes n >= 1
asserts myTask == t && working == true

this.propagateResult( v, c ) ==> c.receive( merge(compute(mytask), v) )
assumes working

}

Fig. 6. AWorker group specification

The used notions of grouping are similar to simple ownership disciplines in OO
programming (e.g., [33]). Because of assumption G1, we do not have to introduce
constructs in AJ to define groups. Groups are defined implicitly. To be more realis-
tic, one could distinguish at creation sites whether the new actor should be created
in the local group or in the environment (ABS uses such a technique [19]). How-
ever, for illustrating our position, our primitive grouping mechanism is sufficient.
Assumption G2 is a restriction on the actor programs we are allowed to write, and
it cannot be checked automatically. In general, an actor group can expose references
of several actors of the group to the environment. For example, the receive-message
could pass a reference of a worker to the client. To eliminate G2, one would need
to generalize the specification construct for actor groups.

Whereas the specification of an AServer-group illustrates a typical client-server
contract, the specification of an AWorker-group in Fig. 6 describes the behavior of
an AWorker-actor w together with the workers created by w. To express this be-
havior, the specification uses the variables working and myTask. The boolean flag
working is a model variable that abstracts the instance variable myResult. It is true
iff myResult != null. We use the model variable here to hide the implementation
details of the worker. Variable myTask is a ghost variable storing the task worked
on by the actor group. It is needed to formulate the reaction rule for message
propagateResult. Model and ghost variables are well-investigated techniques in OO
specification (see, e.g., [8]).

Semantical aspects. Group specifications look syntactically similar to single actor
specifications. The semantics is also similar except that group internal events are
hidden. That is why the specification of the do message does not list any caused
events. More precisely, a reaction rule has to specify all output events with a receiver
outside the group that are directly or indirectly caused by an input event. The reac-
tion rule for message propagateResult is an example of an indirectly caused event,
because the propagation might iterate through a number of other workers before
the result is received by the client.
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4 Modular Verification

In this section, we discuss how the developed specification techniques can be used
for verification. The aim is to illustrate how a higher-level verification technique that
does not work on the semantics or trace level can be conceived. To achieve this, we
will leave many details undiscussed and do not claim that we present a formal
proof. We describe how group specifications can be verified from other group and
actor specifications. Thus, we have a modular, hierarchical verification technique
in which we can use the verified specifications of actors and subgroups to prove
enclosing groups. We look into the two essential cases:

– Verifying a group by composing the specifications of the subgroups and actors.
– Verifying a group by induction over its parameter values.

In this paper, we do not discuss the task of verifying that actor implementations
satisfy their specifications. This is the classical problem that can be handled by
adapted Hoare-style or dynamic logics.

To aid the presentation, the verification sketches will be accompanied with proof
outlines. A proof outline has the form of a sequence whose elements are separated
by the symbol ==>*. Each element consists of a list with state assertions, actor cre-
ations and output messages. State assertions are expressed as a predicate enclosed
in curly brackets, representing the value of each variable of the actors and the mes-
sage parameters. Messages have the same format as in the specifications. The sym-
bol ==>* should be read as a combination of the transitive, reflexive closure of ==>
and logical implication.

Compositional verification of group specification. In our server example, we have
two groups that we need to verify: the AServer-group and the AWorker-group. Here,
we verify the specification of the AServer-group (Fig. 5) to show compositional
verification using the specifications of the AWorker-group (Fig. 6) and the AServer-
actor (Fig. 3).

The property that we have to prove is that whenever an instance of the AServer-
group receives a serve(c,t) request to compute the task t, the server sends back
to the non-null client c the corresponding computation result. The proof outline
for the AServer group is given in Fig. 7. The first step of the outline is directly
obtained from the specification of message serve in Fig. 3. Using the group spec-
ification of the created worker and the property of taskSize (cf. Sect. 2) gives us
the state expression. The next two steps are obtained by unfolding the do- and
propagateResult-specifications of Fig. 6. Finally, we use a property of merge.

Inductive verification of group specification. Inductive verification of group specifica-
tions is in general more complex. In simple cases, the group specification is sufficient
as an induction invariant. However, in more complex cases, structural invariants
are needed in addition. For example, the proof of the worker group specification of
Fig. 6 needs an invariant that links the construction of the actor structure with the
result propagation.
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{ c!= null }
this.serve(c,t)

==>*
w <- new AWorker
w.do( t, taskSize(t) );
w.propagateResult( null, c )

==>*
{ w.working==false && w.myTask==emptyTask && n==taskSize(t) && n>=1 }
w.do( t, n );
w.propagateResult( null, c )

==>*
{ w.myTask == t && w.working == true }
w.propagateResult( null, c )

==>*
{ w.myTask == t && w.working == true }
c.receive( merge(compute(w.myTask),null) )

==>*
c.receive( compute(t) )

Fig. 7. Proof outline for the server verification

To discuss inductive proofs, we consider the actor group in Fig. 8 computing
the factorial of a natural number. The basic proof outline of the induction step is as
follows:

{ n>0 }
this.fac(n,c)

==>*
{ n>0 && argument==n && myCaller==c }
f <- new AFactorial
f.fac(n-1,this)

==>*
{ n>0 && argument==n && myCaller==c }
this.return(factorial(n-1))

==>*
{ n>0 && argument==n && myCaller==c }
c.return(factorial(n-1)*n)

==>*
c.return(factorial(n))

In the first step, we use the property of the actor specification. Then, we use the
group specification and finally the actor specification again. Of course, this form
of reasoning has to be complemented with mechanisms controlling undesired out-
side interaction either by always working with new actor instances or by blocking
incoming messages as long as critical computations are going on in a group.
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interface Caller { void return( Int ); }
interface Factorial extends Caller { void fac( Int n, Caller c ); }

actor class AFactorial implements Factorial { ... }

actor spec AFactorial {
Int argument;
Caller myCaller = null;

this.fac( n, c ) ==> c.return(1)
assumes n == 0

this.fac( n, c ) ==> f <- new AFactorial
f.fac( n-1, this )

assumes n > 0
asserts argument == n && myCaller == c

this.return(res) ==> myCaller.return( res*argument )
assumes myCaller != null

}

group spec AFactorial {
this.fac( n, c ) ==> c.return(factorial(n))
assumes n >= 0

}

Fig. 8. An actor group computing the factorial function

5 Discussion of Related and Future Work

Actors provide a popular model for distributed and concurrent systems. Although
researchers have worked for over twenty years on actor languages and verification,
there are still interesting and open questions. In particular, we claim that the spec-
ification and verification techniques for non-local actor properties in dynamically
evolving actor systems are not sufficiently developed. Technically, we proposed

– to use specifications that are based on strong causality and not on classical
temporal logic and

– to support reasoning over hierarchical actor groups or components.

Next, we broaden the discussion of related work and mention plans for future work.

5.1 Related Work

Actor languages. Many actor languages are available (to name only some: ABS
[19], AmbientTalk [11], CoBoxes [36], Creol [20], E [29], Erlang [3]) and the
family is still growing. Furthermore, there existed a variety of actor libraries for
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programming languages. AJ can be seen as a simplified version of Creol [20] and
ABS [19], without futures and return values and without the cooperative scheduling
mechanism. However, many of the features can be expressed using additional state
and self-messages, i.e., messages that are sent from an actor to itself. As with Creol
or CoBoxes, it can be proved that the type system guarantees that type correct AJ
actors know the messages that are sent to them.

Specification. Whereas in the OO community there is a large corpus of work about
specification languages and techniques (see [17]), this is not true in the actor com-
munity. In [16], a technique for specifying and dynamically checking the interac-
tion behavior of single actors is described. The technique uses attribute grammars
for specifying the possible protocols an actor can engage in.

History-based specification techniques as described in, e.g., [9, 14] enable one
to specify safety properties based on trace prefixes in a modular way. As strong
causality property is a liveness property, these techniques cannot specify it without
any extensions. An approximation of the intended AServer-group behavior (Fig. 5)
is as follows.

ok([]) = true
ok(h; m) = true, WHERE m != c.resp(_)
ok(h; c.resp(res(t))) = okcnt(h; c.resp(res(t)), c.resp(res(t)), 0) && ok(h)

okcnt([], _, n) = (n >= 0)
okcnt(h; m, c.resp(res(t)), n) = okcnt(h, c.resp(res(t)), n)
WHERE m != c.resp(res(t)) && m != this.req(t, c)

okcnt(h; this.req(t, c), c.resp(res(t)), n) = okcnt(h, c.resp(res(t)), n+1)
okcnt(h; c.resp(res(t)), c.resp(res(t)), n) = okcnt(h, c.resp(res(t)), n-1)

The execution invariant predicate ok keeps track of the number of requests and
responses with the same parameters, assuming one cannot distinguish them (i.e.,
the events lack identities).

To represent liveness properties, an extension in form of ready set is presented
in [9]. This set represents the set of events an actor (group) is ready to accept next.
More investigation is needed to compare strong causality with ready set.

The notion of strong causality also appears in form of session types [37] and
has been applied to a similar client/server context as described above [15, 13]. For
example, using the syntax from MOOSE ([12]) the interaction of the AServer-group
using a session type as given below.

session ClientRequest = begin.!CompTask.?Value.end

A client request is represented as the emittance of a task and receiving a value.
Communication between a client and a server is done over a channel, and channels
can be passed around creating the possibility of higher-order session. Because an
interaction between actors is represented within a session, the client reference does
not need to be sent. However, the types are an overapproximation of the intended
behavior. In the example above, there is no information that the session indeed
occurs exclusively between a client and a server (because channels can be passed
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around), and whether the resulting value should have any correspondence to the
task until the ClientRequest type is coupled to the implementation. Our aim is to
provide a precise specification of how a system and its components should interact.
Furthermore, strong causality can be used to specify the link between events that
do not occur within one session.

Somewhat further than session types lies π-calculus [30], which provides hier-
archical means to specify concurrent systems, a necessity stated in our position. An
adaptation to the actor setting will require an introduction of identities.

Other works dealing with specification of system level functional properties cov-
ering data and control aspects include the following. Broy [6] proposes a stream-
based approach; in the architecture description language (ADL) field, we have, for
example, SOFA [35] and Rapide [26]; and the specification of open distributed sys-
tem in Erlang by Dam, Fredlund and Gurov [10]. As stated in [10], the literature
mostly covers aspects of static systems, with fixed amount of component instances
interacting within the execution of a system, lacking the instance creation aspects.

Verification. Dovland, Johnsen and Owe [14] and Ahrendt and Dylla [2] developed
a Hoare logic and a dynamic logic, respectively, for Creol [20]. Formulation of a
property of a simple program already requires a large formula, making it hard to
be applied directly to specify system-wide property. Closely related is the work of
Dam, Fredlund, and Gurov on verification of dynamically created Erlang processes
[10]. They used a logic based on the first-order µ-calculus, but did not consider
additional specification techniques.

5.2 Future Work

This paper introduced AJ as a core language acting as the base for specification and
verification. The core language needs to include just the essential features that affect
the specification and verification techniques. It would be interesting to analyze how
other features like cooperative multi-tasking or futures as in ABS [19] could be
expressed in AJ. On the other hand, we plan to extend our approach to directly
support the modeling language ABS that has all these features in the language.

As hierarchical system is a necessary part of verifying dynamic actor systems,
the specification language needs to deal with actor groups/components. The cases
we have dealt with so far use a single actor as the entry point to a component. In
general, a component may contain more than one actor which readily interact with
its user. It is harder to compose the causality relations of actors of such a component
for verification purposes.

Handling the strong causality specification construct requires an expressive logic,
such as a higher-order logic. To strengthen our verification approach, we have em-
bedded some parts of our formalization in Isabelle/HOL [34]. We are continuing
this work to obtain full coverage of our specification and verification technique.
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Abstract. We propose a formal approach for the definition of domain-
specific modelling languages (dsmls). The approach uses basic Model-
Driven Engineering artifacts for defining a dsml’s syntax (using meta-
models) and its operational semantics (using model transformations). We
give formal meanings to these artifacts by mapping them to the K se-
mantic framework. The mapping is implemented in the Rascal metapro-
gramming language. Since the resulting K definitions are executable, one
obtains an execution engine for dsmls and gains acces to K’s formal anal-
ysis tools. We illustrate the approach on xspem, a language for describing
the execution of tasks constrained by time, precedence, and resources.

1 Introduction

Domain-Specific Modelling Languages (dsmls) are languages dedicated to mod-
elling in specific application areas. Recently, the design of dsmls has become
widely accessible to engineers trained in the basics of Model-Driven Engineering
(mde): one designs a metamodel for the language’s abstract syntax; then, the
language’s operational semantics is expressed using model transformations over
the metamodel. The democratisation of dsml design catalysed by mde is likely
to give birth to numerous languages, and one can also reasonably expect that
there shall be numerous errors in those languages. Indeed, getting a language
right (especially its operational semantics) is hard, regardless of whether the
language is defined in the modern mde framework or in more traditional ones.

Formal methods can help detect or avoid errors in dsml definitions. However,
the history of formal methods offers many examples of valorous methods that
could not be transferred outside a circle of specialised users, because software
engineers do not have the time or the background required for learning them.
The lesson learned from these failures is that, in order to be accepted by software
engineers, formal approaches have to operate with notions familiar to them.

We propose here such an approach, which formalises the basic mde ingredi-
ents used in dsml definitions. From the point of vue a user, the approach is a
black box (Figure 1): users can define their dsmls using familiar mde ingredients
(metamodels for syntax, ocl [1] constraints for static semantics, model trans-
formations for operational semantics). These inputs are parsed and processed by
a Rascal [2] program (that we wrote) and are mapped to K [3] code, together
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Rascal

Here Be Rascal and K
dsml’s informal definition in model-driven engineering

dsml’s static & operational semantics (formal & executable)

K

Fig. 1. Our approach, from the point of vue of a user defining a dsml.

with additional K code (that we also wrote). In this way, users benefit from K’s
execution engine and formal analysis tools for free - without having to write code
unfamiliar to them or unrelated to their task - which allows them to experiment
with and to perform formal analyses on their languages in a transparent way.

We illustrate the approach on xspem [4], a dsml based on the omg stan-
dard [5] for describing the execution of activities constrained by time, resources,
and precedence relations. We show how users can automatically: check model-to-
metamodel conformance (including ocl constraints); execute a dsml’s seman-
tics; and model check for reachability properties over the dsml’s executions.

Contributions Our main contributions is providing a formal semantics to the
mde notions employed in dsml definitions, using the K semantical framework:

– metamodels, together with well-formedness ocl constraints, and models;
– model transformations for operational semantics. We have designed for this

a language called kmrl (K-based Model-Rewrite Language) by building on
basic mde notions. kmrl is composed of model-rewrite rules, where each
rule consists of a model pattern similar to mde-models, an optional condition
written in ocl, and an optional piece of imperative code also based on ocl.
kmrl should therefore look and feel familiar to our target users: software
engineers familiar with such basic mde notions as model and ocl constraints.

Note that in our approach, the user does not define the semantics of her/his
dsml directly in K. We do not advocate this, since K is unlikely to be accepted
by software engineers, and we have stated that the main motivation for this
work is to gain their acceptance (and, ultimately, to further the cause of formal
methods in practice). We supply instead automated means for that.

Organisation Section 2 provides preliminaries: it describes the K semantical
framework and the Rascal metaprogramming language, and illustrates the mde-
based definition of the xspem dsml. In Section 3 we present our approach and
illustrate it on xspem. Section 4 concludes and presents related and future work.
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2 Preliminaries

2.1 The K Framework and the Rascal Metaprogramming Language

K [3] is a framework mainly intended for defining and analysing semantics of
programming languages3. The main features of K include:

– executability : the definitions are directly executable in order to be experi-
mented with and analysed;

– unique definition: there is only one definition for a language, and several
analysis tools that are sound with respect to this definition;

– program logic: the framework serve as a program logic with which the pro-
grams can be verified and analysed (see, e.g., [6]).

A K definition has three main ingredients: a configuration, which is a struc-
ture of nested cells abstracting the state structure of the machine on which the
programs are executed; computations, which are sequences of tasks derived from
the annotated syntax; and K rules, which describe the computation steps using
minimal information (only what is needed for matching and rewriting). These
concepts will be illustrated in Section 3, where we show how the dsml definitions
can be formalized in K. Then, the K execution engine can be used for executing
the definition, and its model checker, for checking reachability properties.

Rascal [2] is a recent metaprogramming language for source code analysis and
transformation. We use it to implement the mapping of the mde concepts used
in dsml definitions (metamodels, ocl, models, model transformations) to K.

2.2 Defining a DSML using MDE: xSPEM

We illustrate our approach on a dsml called xspem [4], which is an executable
version of the spem language standard [5]. The language describes the execution
of activities constrained by time, resources, and precedence relations.

We first describe the syntax and static semantics of (a simplified version of)
xspem by showing its metamodel as well as a sample model. Then we describe
the language’s operational semantics using a mixture of graphical and textual
notations. These notations will become formal when we represent them in K.

In the metamodel of Figure 2 (top), activity is the class of entities being
executed. The tmin and tmax attributes of the activity class denote the minimum
and maximum expected duration of activities. The aS attribute takes its values
in the activityState enumeration: notStarted, inProgress, or finished ; and the tS
attribute takes its values in the timeState eumeration: undefined, tooEarly, ok, or
tooLate. An activity may also have resources, which are reserved by the activity
(and become unavailable to others) while the activity is running. In addition
to the availability of resources (resource class) the execution of activities is also
governed by explicit ordering constraints (workSequence class). Each activity
also has exactly one workSequence instance, as indicated by the ocl invariant
associated to the metamodel. The workSequence class has references to four
possibly empty sets of activities, namely, the activities that must be
3 e.g., a definition of C is available at http://code.google.com/p/c-semantics/.
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<<enumeration>>

activity

Process

workSequence

startedToFinish

finishedToFinish

startedToStart

finishedToStart

resource

<<enumeration>>

activityState

activities

a:activity b:activity

workSequences

finishedToStart

activities

resources

r:resource

p:process

w:workSequencew2:workSequence

workSequences

activities

workSequences

resources

timeState

tmin:int
tmax:int

tS:timeState

time:Int

aS:activityState

available:bool

inProgress
finished

notStarted

tmax=7
tmin=5

aS=notStarted
tS=undefined
time=0

tmax=8
tmin=3

aS=notStarted
tS=undefined
time=0

time=0

available=true

inv: activity.allInstances→ forAll(x : activity|x.workSequences.size() = 1)

undefined
tooEarly
ok
tooLate

Fig. 2. (top): A simplified metamodel for xspem, together with an ocl constraint
(bottom) one xspem model that conforms to the xspem metamodel.

– started for the current activity to start (startedToStart reference);
– finished for the current activity to start (finishedToStart reference);
– started for the current activity to finish (startedToFinish reference);
– finished for the current activity to finish (finishedToFinish reference).

Time is measured by a clock, encoded by the time attribute of the process class.
Activities inherit from processes (inheritance is denoted in class diagram by an
open arrrow). Hence, activities also have the time and activities features.

In the model depicted at the bottom Figure 2, the activities a and b are
linked by a workSequence via the reference finishedToStart, meaning that b is
allowed to start only when a is finished; and a has the (available) resource r.

We now give the operational semantics of xspem using a semi-formal notation
mixing graphical and textual rules. The notation is isomorphic to the (textual)
kmrl language that we shall formalise in Section 3.5. The first rule is shown in
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X:process

time = (T⇒T+1)

Fig. 3. Time-passing rule.

activities Z:workSequenceX:process Y:activity workSequences

time=T

time = ( ⇒ T)

⇒inProgress)

when Z .finishedToStart → forAll(u : Activity|u.aS = finished)∧

then for(r ← Y .resources){r .available ← false}

Z .startedToStart → forAll(v : Activity|v .aS = inProgress)∧
Y .resources → forAll(r : Resource|r .available = true)

aS= (notStarted

Fig. 4. Starting an activity.

Figure 3. It expresses the fact that processes “make time pass”: the time attribute
is increased by one. This is expressed by a local rewrite rule (a concept inspired
from K): time = (T ⇒ T + 1 ), within a process X. Here, X and T are variables
(of type process, respectively, integer) to be matched with correspondingly typed
constants in a model; when this happens, the model is rewritten, just like in usual
rewrite systems. For example, the execution of this rule on the model shown at
the bottom of Figure 2 would produce the same model except that p.time = 1.

The next rule (Figure 4) expresses the starting of an activity. When an ac-
tivity Y is started, the value of its aS attribute is rewritten from notStarted to
inProgress, and the activity Y memorises in its time attribute the value of the
homonymous attribute of the process, say X, which owns the activity. This is
expressed by the local rewrite rule time = ( ⇒ T ), which says that the time
attribute of X is rewritten, from whatever value it had, to T ; where “whatever”
is denoted by an underscore, and T equals the value of X .time. Moreover, the ac-
tivity Y may only be started if the (optional) when condition holds; and, finally,
some additional imperative code, in the (optional) then clause, is executed.

Here, the when clause says that the activities that have to be started (resp.
finished) for the current activity Y to start are indeed in the expected states,
and that all the resources of Y are available. The additional code in the then
clause is here an imperative for loop, which is in charge of assigning all the ac-
tivity’s resources available attributes to false. In general, the additional code can
include assignments, loops, and conditionals, and can declare local variables for
storing intermediate values. The practical utility of the imperative code can be
illustrated on the current example: when an activity is started, it needs to make
all its resources un-available to other activities; but this cannot be expressed in a
graphical rewrite pattern, because an activity may have any number of resources;
whereas a graphical pattern “draws” a fixed number of model elements.

The semantics of xspem includes one other rule in addition to the two ones
shown above. The third rule is in charge of finishing activities. It is shown in
Figure 5. The main difference with the rule for starting an activity lies in the
more complex imperative code, which is here used for updating the tS attribute
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Z:workSequenceX:process Y:activity workSequencesactivities

for(r ← Y .resources){r .available ← true}

time = T’

⇒finished)

when Z .finishedToFinish → forAll(u : Activity|u.aS = finished)∧
Z .startedToFinish → forAll(v : Activity|v .aS = inProgress)

aS= (inProgresstime=T

then var x ; x ← T − T ′;
if (x < Y .tmin) Y .tS ← tooEarly

else if (x < Y .tmax) Y .tS ← ok
else Y .tS ← tooLate

endif
endif ;

Fig. 5. Finishing an activity.

KMRL semantics

KMRL rules

Rascal

K

DSML operational semantics

Metamodel

DSML static semantics

OCL constraints Model

(conformance checking) (execution, verification, ...)

DSML

OCL semantics

Fig. 6. Dataflow diagram of our framework.

of the activity Y being terminated, to tooEarly, ok, or tooLate, depending on
whether its execution time is in [0,tmin), [tmin,tmax ) or [tmax ,∞), respectively.
This is achieved using two nested if-then-else-endif conditionals. In order to
avoid recomputing the execution time T −T ′, we store it in the local variable x.

Hence, we have a flexible and expressive declarative/imperative language
for describing operational semantics of dsmls. In order to make it formal and
executable we map it (together with languages for expressing metamodels and
models for dsmls) to the K framework, which we now briefly introduce.

3 A K-Based Formal Framework for DSMLs

3.1 A General Overview

In this section we show how mde concepts used in defining dsmls can be mapped
to K. The mapping is implemented in the Rascal metaprogramming language [2].

A dataflow diagram of our approach is shown in Figure 6. It consists of:
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metamodel xSPEM{

enumeration activityState{notStarted; inProgress; finished}

enumeration timeState{undef; tooEarly; ok; tooLate}

class process{

attribute time : int;

attribute tS : timeState;

reference activities : activity;

}

class activity extends {process}{

attribute tmin : int;

attribute tmax : int;

attribute aS : activityState;

reference workSequences : workSequence [1-1];

reference resources : resource;

}

class workSequence{

reference startedToStart : activity;

reference startedToFinish : activity;

reference finishedToStart : activity;

reference finishedToFinish : activity;

}

class resource{

attribute available : bool;

}

}

Fig. 7. Textual representation of the xspem metamodel from Figure 2 (top).

– a Rascal program, which takes as input the ingredients of a dsml defini-
tion (metamodel, ocl constraints, models, kmrl rules) in a certain textual
format, and produces intermediate representations suitable for K;

– a K program, which takes the output produced by Rascal, together with
K additional code defining the semantics of ocl and kmrl, and generates
executable static semantics and operational semantics for the dsml.

Note that from the point of view of dsml designers, the outmost box is a black
box: they do not need to know what is inside, but only need to provide the mde
artefacts for the definition of their dsml in a textual format; then, the static
and operational semantics of the dsml is automatically generated for them.

We now describe the framework in detail by “scanning” the diagram in Fig-
ure 6 from left to right, and illustrate it on the xspem language from Section 2.2.

3.2 Metamodels and OCL constraints

We show in Figure 7 the textual syntax for the xspem metamodel from Figure 2.
In order to generate input for K, the metamodel in textual syntax is processed
by a Rascal program. This includes parsing and some syntactical transforma-
tions, such as the replacement of multiplicity constraints and bidirectionality
constraints by equivalent ocl invariants. For example, the [1-1] multiplicity of

A K-Based Formal Framework for Domain-Specific Modelling Languages

Technical Report, KIT, 2011-26 312



the workSequences reference is replaced by the equivalent ocl invariant

allInstances(activity)→forAll(x:activity|x.workSequences.size() = 1).

The metamodel is thus stripped of its multiplicity and bidirectionality con-
straints and the result is translated to a set of K function declarations together
with rules to evaluate them. The functions encode all the (stripped) metamodel’s
information: for each enumeration, its set of values, and for each class, its chil-
dren classes, its attributes with their types, and its references with their types.
They are used for checking the syntactical correctness of models with respect to
the given metamodel. This is discussed in more detail in Section 3.3.

Well-formedness OCL constraints In addition to the implicit constraints
induced by multiplicities and bidirectionality of references, a metamodel may
include other ocl constraints, which enforce well-formedness requirements that
models conforming to the metamodel must satisfy. For example, we shall require
that in any well-formed xspem model there is exactly one “proper” process:

(allInstances(process) \ allInstances(activity)).size() = 1.

3.3 Models

In dsml terminology, models can be seen as “dsml programs”, by analogy with
the programs of usual programming languages. In this section we show the syn-
tax of models required as input by our Rascal module in charge of processing
models, and the representation of the models as K configurations generated by
the module in question. In the next section we outline of the K semantics for
ocl, and show how model-to-metamodel conformance checking is done in K.

We also use textual language for the model description. The essential infor-
mation about a model consists of the name of the metamodel it must conform
to and a collection of objects (class instances). Each object is described by its
name, the class it belongs to, and the values of its attributes and references.

In Figure 8 we give the equivalent textual syntax for a fragment of the xspem
model example given in Figure 2. Using this input together with the information
obtained from a metamodel and ocl constraints, a Rascal module generates a
K configuration described as follows.

K Configuration for DSMLs K configurations are structures consisting of
nested cells. The generic K configuration for dsmls is graphically represented in
Figure 9. The configuration includes: a cell 〈 〉model for models (described later in
this section); a cell 〈 〉oclConstraint containing ocl constraints to be checked on the
model; a cell 〈 〉k containing computation tasks to be performed on the model
(conformance checking, model execution, model checking, . . . ); and a cell 〈 〉result
for storing the results of the computation tasks. Initially, the cells are empty (as
denoted by periods and dashes within them, depending on their type). They
are filled by Rascal modules: the 〈 〉model cell is filled by the module in charge
of models, and cell 〈 〉oclConstraint cell is filled by the module in charge of ocl
constraints of the metamodel to which the model is supposed to conform.

V. Rusu, D. Lucanu

313 Technical Report, KIT, 2011-26



onexSPEM = new xSPEM {

p = new process {

time = 0;

activities = {a b};

}

a = new activity {

tmin = 5; tmax = 7;

aS = notStarted; tS = undef;

resources = {r}; time = 0;

linkToPredecessor = {w2}; activities = {};

}

b = new activity {... // similar to activity a

}

r = new resource {

available = true;

}

w1 = new workSequence {

startedToStart = {}; startedToFinish = {};

finishedToStart = {a}; finishedToFinish = {};

}

w2 = new workSequence { ... // similar to workSequence w1

}

}

Fig. 8. Textual representation of the model from Figure 2.

The structure of the cell 〈 〉model is similar to that of the textual language
we use for model description. It consists of a set of 〈 〉instance cells, each of which
contains the instance’s name, its class, and its attribute/reference values.

3.4 K Semantics of OCL

We have defined in K a substantial fragment of ocl based on the standard [1].
Due to limited space, a complete description will be given in a separate paper.

The elementary types in our definition of ocl are integer, string, and Boolean
with the usual elementary operations on them. We also allows for collection
types, built using navigation through attributes/references, iterators (select,
collect), quantifiers (forAll, exists), as well as the usual set operations. The
allInstances() query returns all the instances of a given class. This provides us
with a rich language for constraints, which we may enrich in the future.

Here is, for instance, the K rule giving semantics to the query allInstances():

〈 allInstances(Cls)

val(collectAllInstanceNames(Cls , children(Cls) , M))

···〉k

〈M〉model
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−−
oclConstraints

·
k

·
result

−−
instName

−−
ofClass

−−
attributes

instance *

model

T

Fig. 9. K Configuration for dsmls

The rule says that, in order to compute all the instances of a given class Cls in
a model M, a helper function collectAllInstanceNames() must be called, with
three parameters: the class Cls, its children children(Cls), and the model M.

The fraction line denotes a local rewrite, here, at the the head of the com-
putation cell 〈 〉k. The numerator is what is usually written in the left-hand
side of rewrite rules, and the denominator is the equivalent of the right-hand
side. A K rule may have several local rewrites in various configuration cells,
and it can use other cells just for providing context of the rewrite. For ex-
ample, in the above rule, the cell 〈 〉model provides the model M. The operator
children() is a part of the K description of the metamodel, and the function
collectAllInstanceNames() traverses the 〈 〉instance cells of M and collects their
names. The semantics of the later function is given by a set of similar K rules.
Finally, the val operator wraps the result in order for K to interpret it as a fully
eveluated ocl value (in our case, a collection of instance names).

As another axample, we give the K semantical rules for the forAll operation
in order to illustrate some interesting features of K. Syntactically, the operation
is written Col->forAll(Id | Exp), and its meaning is that it is true if and
only if the third argument Exp evaluates to true on each element (denoted by
the second argument Id) of the first argument Col. Its K semantical rules are

〈val( · )->forAll(Var | Exp)

true

···〉k (1)

〈 val(Hd, Tl)->forAll(Var | Exp)

if Exp(Hd/Var) then val(Tl)->forAll(Var|Exp) else false

···〉k (2)

The first rule describes the base case, when the first argument is an empty
collection. The second rule describes the inductive step: when the first argument
is a nonempty collection of the form val(Hd, Tl), the result depends on the
value of the expression Exp on the element Hd. This value is computed by applying
the K visitor pattern [3] to perform substitution of Var by Hd in Exp. If the
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value is true, then the overall result is that of the forAll operation, recursively
evaluated on the smaller collection val(Tl); otherwise, the overall result is false.

This relatively simple definition is possible due to a powerful mechanism of
K, which automatically generates rewrite rules in order to evaluate arguments
of operators declared to be “strict”. The actual K grammar for forAll is

Exp ::= Exp ->forAll( Id | Exp ) [strict (1)]

This means that the forAll operator is “strict” in its first argument; that is,
this argument will be evaluated before the forAll expression is evaluated.

In order to do this, K automatically generates “heating rewrites” of the form

E1 ->forAll( V | E2 ) −−→ E1 y � ->forAll( V | E2 )

by which the first computation task becomes the evaluation of the first argument
E1; this can generate further computation tasks using the same mechanism,
depending on the structure of E1 (as it is the case with the if-then-else

expression in Rule 2). When E1 is evaluated, “cooling rewrites” of the form:

val( L )y � ->forAll( V | E2 ) −−→ val( L )->forAll( V | E2 )

fill the “hole” left by E1. Then, eventually, one of the rules (1–2) finishes the
evaluation of the forAll operator.

Conformance Checking A model is well-formed if and only if it conforms to its
metamodel, i.e., it is syntactically correct and satisfies the ocl constraints of the
metamodel. Specifically, for a dsml, the class diagram of its metamodel defines
its syntax, and the ocl constraints define its static semantics. The procedure
for verifying that a model is well-formed is referred to as conformance checking.

In the rest of this section we briefly describe conformance checking in K.
Syntactical correctness is checked using the K functions specifying the meta-
model. The ocl constraints are checked by first “loading” the content of the cell
〈 〉oclConstr into the computation cell 〈 〉k. This is triggered by the following rule:

〈checkConformance
e

〉k 〈e〉oclConstr

Then, the execution of the ocl semantics generates a computation of the form:

〈〈e〉k 〈e〉oclConstr 〈·〉mem 〈·〉result 〈M〉model . . . 〉T ∗−−−→
〈〈·〉k 〈e〉oclConstr 〈·〉mem 〈v〉result 〈M〉model . . . 〉T

in which the result v of the ocl constraints e is placed in the 〈 〉result cell.
Finally, a model M satisfies the ocl constraints e if and only if

〈〈checkConformance〉k 〈e〉oclConstr 〈·〉result 〈M〉model . . . 〉T ∗−−−→
〈〈·〉k 〈e〉oclConstr 〈·〉mem 〈true〉result 〈M〉model . . . 〉T

This provides us with a formal, executable definition for conformance checking.
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rule start

forAll P Y Z timeVal

pattern {

process P = {

time = timeVal;

activities = {Y _};

}

activity Y = {

aS = (notStarted => inProgress);

time = (0 => timeVal);

linkToPredecessor = {Z};

}

}

when {

Z.startedToStart->forAll(act| act.aS == inProgress);

Z.finishedToStart->forAll(act| act.aS == finished);

Y.resources->forAll(r| r.available == true)

}

then {

var r;

for (r <-Y.resources){(r.available) <- false} ;

print("start"); print(Y)

}

Fig. 10. Textual version of the start from Figure 4.

3.5 Operational Semantics

The last ingredient in the definition of a dsml is the definition of its operational
semantics. We propose for this the language kmrl (K Model-Rewrite Language),
a mixed declarative/imperative language for model rewriting. A glimpse of kmrl
has already been shown in Section 2.2, where we informally gave the semantics
of xspem using (graphical) model-rewrite rules. To formalise the semantics of
dsmls, we need first to formalise the kmrl language itself. We provide it with a
textual syntax, checked by a Rascal-generated parser, and with a formal seman-
tics as a set of K rules. Those rules include the rules for the semantics of ocl
since ocl is a sublanguage of kmrl.

We now illustrate the overall process with the rule start shown in Figure 4.
The textual version of the rule is given in Figure 10. It is composed of four parts:

– global variable declaration (forAll keyword). Here, the notion of global
variable4 should be understood as variable in the rewrite-systems terminol-
ogy: variables match terms, and are replaced by those terms when rewriting
is performed; e.g., on our example, the variable Y matches one element of
acivities’s value (which is a collection). The scope of global variables is
the whole rule; they can occur everywhere in the rule.

4 We shall call global variables just “variables” when no confusion with local variables,
to be introduced later, can occur. We shall do the same for local variables.
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– rewrite pattern (pattern keyword). Patterns are very much like models,
discussed in the previous section. The main difference is that rewrite pat-
terns need not be completely specified models; informally speaking, they may
match any model that is a “superset” of the pattern. Also, unlike models,
rewrite patterns may refer to variables (those declared in the global variable
declarations) in addition to constants; and their attributes and references
can be local rewrite rules5. For example, the time attribute of the activity
Y is rewritten from 0 to timeVal, where the latter is a variable, which was
chosen to be the value of the time attribute of the process P of our pattern.
This means that when the rule is applied, the time attribute of the activity
Y gets assigned the value of the time attribute of the process P. Note also
the value of the activities reference of P: the meaning of {Y } is a set
containing at least the value Y and possibly more. This is in contrast to, e.g.,
the set {Z}, which means the set containing exactly the value(s) as given.

– ocl condition (when keyword). This is a condition in the sense of condi-
tional rewrite systems: a rule is applied only when its condition holds af-
ter its (global) variables (here, Y and Z) are substituted with the matched
(sub)terms.

– imperative code (then keyword). This is essentially a program composed of
assignments, loops, and conditionals. The program starts with the declara-
tion of a list of local variables, distinct from the global variables, which play
the roles of usual variables in imperative programs: essentially, they serve
for storage of intermediate computed results and as iterators of loops. In
our example, the variable r serves as an iterator for the for loop. Regard-
ing assignments, their left-hand side are ocl navigation expressions, i.e.,
expressions of the form Variable.reference1 . · · · .referencen , where Variable
can be a global or a (previously evaluated) local variable (the latter case
appears within the for loop of our example). Their right-hand sides can be
arbitrary ocl expressions, including local variables. Finally, note the print

statements: their arguments are arbitrary ocl expressions, and they are used
to print output - useful for executing, debugging, or verifying kmrl code.

Parsing and processing KMRL with Rascal. The kmrl input defining the
operational semantics of a dsml, together with the corresponding metamodel for
the dsml’s syntax, is processed by a Rascal program in three main steps.

The first step is to compute the types of the (global) variables and constants
occurring in the rule: in our example, Rascal infers from the metamodel that
timeVal is an integer, and that inProgress is an activityState. The second
step is a form of “context transformation”, also inspired from K but considerably
simpler: since the rewriting pattern and its components are typically incomplete,
we complete them with adequately typed variables; for example, the incomplete
set {Y, } is completed to {Y, rest}, where rest is a fresh variables that can
match any number of set elements. And, finally, the third processing step consists
in separating the rule’s rewriting pattern into a left-hand and a right-hand side,

5 This idea is borrowed from K. The advantage is that produces simple/compact rules.
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which has indeed the effect of turning the pattern into a proper rewrite rule.
(Essentially, the right-hand side of a rewrite pattern is a copy of the pattern in
which the left-hand sides of the local rewrite rules occurring in it are kept; and
symetrically so for the right-hand sides. Those parts of the patttern that are not
local rewrite rules appear in both sides, and serve as a rewriting context.)

Let r be a kmrl rule. We denote by lhs(r) and rhs(r) its left-hand and
right-hand sides computed by Rascal (as described above), by C(r) its condition,
and by imp(r) its imperative part. These are translated by Rascal to a K format
which we do not present here since it is not essential for understanding. What
is important is the the overall translation of the rule r, denoted by K(r):

〈 run

when(C(r))yupdate(rhs(r))yapply(imp(r))yrun

···〉k 〈lhs(r)〉model

This means that whenever the keyword run (which is by convention the instruc-
tion for model execution) is at the top of the 〈 〉k cell, and the 〈 〉model cell
matches lhs(r), the run keyword is rewritten into a sequence that evaluates the
condition C(r), and, if the condition holds, then it updates the 〈 〉model cell by
replacing its contents with rhs(r), it applies the imperative program imp(r) to
the result, and, finally, it recursively invokes model execution by reinserting run

in the 〈 〉k cell.
This effect is obtained by the K semantics of kmrl we now briefly describe.

K semantics of KMRL First, we give the rules for the when clause of K(r).

〈when(true)
·

···〉k 〈when(false)y K yrun

run

···〉k

That is, the when clause disappears (i.e., rewrites to ·) when its argument eval-
uates to true, and it discards the computational tasks corresponding to the
current matched rule otherwise. This simplicity is due to the fact that the when

operation is strict: its argument (an ocl expression) is a Boolean when the when
clause itself is evaluated. The evaluation of the argument consisted in applying
the K rules for the semantics of ocl.

Then comes the rule for the update instruction. It simply consists in removing
the update keyword from the top of the 〈 〉k cell, and by replacing the content
of the 〈 〉model cell by the argument of the (just removed) update instruction:

〈update(M)
·

···〉k 〈
M

〉model

Finally, there are rules for applying the imperative part imp(r) of K(r). We
do not give these rules due to lack of space, but note that, except for assignment
(which is quite specific to our present model-based framework) they are standard
semantical rules for imperative programs constructs (loops and conditionals).
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rule observer

pattern {

process P;

}

when {

P.activities->forAll(a | a.aS == finished and a.tS = ok)

}

then {

print("reached")

}

Fig. 11. Observer rule for model checking.

3.6 Execution and Model Checking

The operational semantics that we provide for dsml’s semantics is executable,
hence, it can directly be used for execution, and, with some user input, for
model checking of reachability properties. Execution is here the nondeterministic
execution of the (K semantics of) kmrl rules using the K execution engine.

We now illustrate model checking on xspem, whose metamodel and oper-
ational semantics rules were shown in Section 2.2. We consider the folllowing
reachability problem: is it possible, from the model shown at the bottom of Fig-
ure 2, to reach a model where all activities of the model’s proper process6 are fin-
ished within their expected time limits? A model where all activities of a process
P are finished within their expected time limits is characterised by the following
ocl expression: P.activities→ forAll(a | a.aS = finished ∧ a.tS = ok). To
search for such states, we add the kmrl rule in Figure 11 to the set of rules of
the semantics of xspem. The rule is not part of the semantics of xspem, but acts
like an observer, which runs together with the operational semantics rules, and,
when it observes that the expected ocl query holds, it prints (by convention)
the string “reached” - actually, it adds this string at the end of the 〈 〉result cell.

The problem of finding states satisfying ocl Boolean queries has thus been re-
duced to searching for K configurations denoting models, reachable from a given
initial model-configuration, such that the 〈 〉result cell contains a sequence ending
with the string “reached”. We have automated this process using a script7, that
takes the compiled K semantics of our dsml enriched with the observer rule,
launches it in the Maude rewriting engine to search for the shortest solution,
and returns the solution, filtered for better readability. Recall that a compiled K
definition is a Maude rewrite specification. Hence, all what users need to write
is their observer rule in kmrl: the rest of the process is fully automatic.

6 Remember that we have imposed an ocl constraint stating that there is exactly one
proper process - i.e., a process which is not an activity - in each xspem model.

7 The script can be tested on-line using the Web interface from the address
https://fmse.info.uaic.ro/tools/.
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Here is, for example, the result of model checking for the property defined
by the above observer, as produced by our script (whe have taken advantage of
the fact that rules print what they do: starting, clock ticking, and finishing):

["start"] [a : activity]
["tick"] [1] ["tick"] [2] ["tick"] [3] ["tick"] [4] ["tick"] [5]
["finishOk"] [a : activity]
["start"] [b : activity]
["tick"] [6] ["tick"] [7] ["tick"] [8]
["finishOk"] [b : activity]

One thing that can be noticed is that the expected property is indeed satis-
fied: both activities are finished in time (cf. the ["finishOk"] output printed by
their “finishing” rules). Another thing that can be noticed is that b started only
when a finished, satisfying the requirement illustrated in the xspem model in
Figure 2 by the finishedToStart reference linking b to a via w1. If we replace
this link by a e.g., finishedToStart, the shortest solution is a different one, in
which the two activitie’s starting and finishing events occur in a different order.

Model-checking reachability properties can straightforwardly be generalised
to checking the feasability of scenario executions, which consists in checking
whether certain partially specified sequences of actions are executable by a dsml.

We are currently working on a language for scenario definition, its mapping
to kmrl rules, and on the scenario-feasability verification technique in K.

4 Conclusion, Related, and Future Work

We have proposed a formal approach for the definition and analysis of dsmls.
The approach uses the K semantical framework, which has shown its efficiency at
defining semantics of general progamming languages, and applies it to the mde
ingredients used in defining dsmls: metamodels for syntax, ocl for static se-
mantics, models for “programs”, and a combined declarative/imperative model-
transformation language for operational semantics of dsmls, which we call kmrl.

The approach was illustrated on xspem, a dsml based on an omg standard.
Metamodels, ocl, and models are standard mde concepts, which can be

assumed to be familiar to software engineers trained in the basics of mde. We
have designed kmrl to re-use as much as possibly mde basics: ocl occurs in both
conditions and imperative parts, and the declarative part of kmrl generalises
the representation of mde-models. Our hope is therefore that kmrl will be easy
to learn by engineers familiar with the basics of mde, which will enable them to
formally define their dsmls and to perform formal verifications on them.

We have much benefitted in this work from K’s modularity. Each syntactical
construct of ocl is defined semantically in terms of a few K rules, and adding
new constructions does not alter the semantics of the existing ones. Once ocl
was defined, it could be reused as such to define the semantics of conditions of
kmrl rules, and, with a few more K rules, we defined the imperative part of
kmrl. We have also much benefitted from the flexibility of the general Rascal
context-free grammars for parsing, and also from Rascal’s powerful primitives
for navigating in and transforming abstract syntax trees on the fly.
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Comparison with Related Work kermeta [7] is a metamodelling language,
which allows users to define the syntax of dsmls using metamodels, and their
operational semantics by means of imperative commands of the language (assign-
ments, loops, . . . ). Compared to kermeta, kmrl also has declarative features
(model-rewrite rules), it is formally defined, and allows for formal verification.

The atl language [8] is a mixed declarative/imperative model transformation
language. A formal definition of atl in Maude [9] has been given in [10]. We took
inspiration from atl in this work. Compared to atl, the declarative features of
kmrl are more developped: in atl one can only match over one model element,
whereas in kmrl we allow for matching over arbitrary model patterns. On the
other hand, atl’s imperative features are more developped than kmrl’s: in atl
rules can call each other, and can invoke methods of class diagrams. Another
difference is that atl can perform general model transformations (i.e., between
different metamodels), whereas kmrl is currently limited to one metamodel.

Several other approaches [11–13] use the Maude algebraic and rewriting-
based formal specification language [9]. In these approaches, model transfor-
mations (in particular, dsml operational semantics) can only be specified in a
declarative manner, by mapping them to Maude equations/rewrite rules. Com-
pared to these approaches, ours also includes imperative features, which are
lower-level but allow for better control. The same comparison can be drawn
with declarative model transformations based on graph rewriting [14, 15].

Finally, the so-called translational approach [16] consists in endowing in a
dsml with a formal semantics by translating it to a target language that does
have a formally defined semantics. For example, xspem has been defined by
translation to timed Petri nets [16]. Our approach differs in that we define not
individual dsmls, but a dsml definition framework (here, the mde-based one).
Our approach is thus more general than the translational one, and is more likely
to be accepted by nonexperts since it does not require from them specialised
knowledge of a target language (for writing a translation from dsml to it). On
the other hand, due to its generality, our approach is likely to be less efficient
for execution/verification than specialised, “hard-coded” translational ones.

Future Work One can envisage a way to combine the benefits of the trans-
lational approach (efficiency) and of ours (generality). It would consist in first
having the dsml specialists formally define their language as we propose; then,
the definition can serve as reference for translation to specialised languages for,
e.g., more efficient execution and verification. If the target language has a for-
mally defined operational semantics, the translation between the formally defined
dsml and the target language can even formally be proved correct if needed.

Regarding formal verification, we are now working on scenario verification,
which constitutes a high-level validation technique, compatible with the high-
level nature of our dsml definition framework. The framework itself is currently
implemented as a loosely coupled set of tools, which requires some knowledge
to operate with. We are working on an implementation under Eclipse that will
present users a friendly interface for their dsml definitions and analyses.
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ity into object-oriented meta-languages. In MoDELS, volume 3713 of Lecture Notes
in Computer Science, pages 264–278. Springer, 2005.

8. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model
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Verification of Information Flow Properties of
Java Programs without Approximations

Christoph Scheben and Peter H. Schmitt?

Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract. In this paper we propose a methodology for the specification
and verification of information flow properties for sequential Java pro-
grams. This proposal also covers declassification. We define an extension
of the Java Modeling Language (JML) that significantly goes beyond
previous approaches. The JML specification clauses are translated into
proof obligations in Dynamic Logic. An experimental implementation
within the KeY-system shows the feasibility of the approach.

1 Introduction

This paper is concerned with the specification and verification of information flow
properties. A typical example of an information flow property is confidentiality:
An attacker observing the public outputs of a computing system cannot gain
information on secret data. The frequently quoted survey paper [18] gives a concise
introduction into this area, now commonly called language-based information-flow
security, and reviews a number of approaches that have been persued in the
field. We will be concerned here, more precisely, with an approach to information
flow security using program logic. In this approach information flow properties
are recast as formulas in a general, as opposed to problem specific, language
e.g., in the language of Hoare Logic or of a weakest precondition calculus as
pioneered in the papers [5] and [1]. It is an appealing feature of this methodology
that the formalization is in most cases a straight forward transcription of the
informal definition. Another advantage is the possibility to use existing program
verification systems and theorem provers to support verification of the specified
properties. There are various options on how theorem proving support can be
organized. The papers [15,4,20] investigate the use of abstraction while [8] is
devoted to the integration of security types systems into program verification.
Both lines of attack lead to approximate results. In this paper we follow the lines
of [5] and avoid approximative methods.

The novel contributions of the present work are twofold. In the original
proposal [5] to use theorem proving in the analysis of secure information flow the

? This work was supported by the German National Science Foundation (DFG) under
the project “Program-level Specification and Deductive Verification of Security
Properties” within the priority programme 1496 “Reliably Secure Software Systems -
RS3”.
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proof of concept was demonstrated for a simple theoretical programming language.
All consideration in this paper refer to real world sequential Java programs.
As a second contribution we extend the Java Modeling Language (JML), see
[12], by new constructs that allow to specify information flow properties. The
formulation of such properties at the level of the internal program logic is a
necessary intermediate stage given the current state of research. In the end
one would want a way to specify them that is accessible to the programmer or
domain expert without a background in logic. In particular, there should be
no mentioning of concepts like self-composition at this level of abstraction. For
functional properties the behavioral interface specification language JML has
been successfully used for this purpose. In our approach, JML method contracts
are extended with three new clauses: respects, parameter dependencies and
declassify. The first clause specifies sets of locations R. The informal semantics
of such a specification is, that for every R ∈ R the locations not in R do not
interfere with locations belonging to R. This means that an attacker which can
observe one of those sets of locations won’t be able to deduce more information
through the execution of the method than he already knew. The second clause is
used to specify in which cases the parameters and the return value are observable.
Finally, the declassify-clause is used to specify permitted additional information
flow to some location set by the specification of a term. If the method is executed,
an observer of the specified location set may learn the value of the term before
the execution. The extension of JML integrates seamlessly with functional JML
specifications. This is important since a real precise calculation of information
flow dependencies can only be achieved with knowledge on the functional behavior
of a program or method. This also works the other way around: knowledge on
information flow dependencies does improve functional verification. The annotated
Java programs are translated to JavaDL proof-obligations which express non-
interference by self-composition. This translation does not over-approximate
dependencies between variables. The proof-obligations are then verified with the
help of the KeY-System. In combination with a functional specification, which is
assumed to exist for the functional verification anyway, the KeY-system was able
to verify the formulas in our examples automatically. We expect the approach to
work automatically at least in any case in which the KeY-system can proof the
functional specification automatically. However, at the time of writing we don’t
have a bigger case-study which can substantiate this claim. The approach has
been implemented in an experimental version of the KeY-System.

Outline. As a starting point, a simple definition of non-interference and its
formalisation in Java Dynamic Logic will be considered in the next section. The
formalisation will be illustrated on a password checker example which will be
used and extended throughout the paper. Section 3 gives a short introduction
to JML and JML* and continues with the definition of an extension of JML*
suitable for the specification of information flow properties. Section 4 extends the
formalisation of the simple form of non-interference to a form which is suitable
for the verification of Java programs and describes the translation of the JML*
extensions into JavaDL. Finally the approach is discussed in a conclusion in
Section 5.
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2 Information Flow and Java Dynamic Logic

The most prominent information flow property is non-interference. In the simple
case non-interference is defined for a program P and a partition of the program
variables of P in low security variables low and high security variables high. The
low-variables are publicly readable variables whereas the high-variables contain
secret data which should be protected. Intuitively non-interference expresses that
there should be no data-flow from high-variables into low ones. Instead of talking
about low and high variables it is quite common to talk about low and high
memory or heap locations. This is more realistic since the memory / heap is the
place where the data is actually stored. Informally, non-interference can be stated
as follows: A program P satisfies non-interference for a partition of the heap
locations accessed by P in low-security-locations low and high-security-locations
high iff running two instances of P on heaps which agree on the low-locations
low result in heaps which also agree on low. This statement is formalised in
Section 2.2 in Definition 1. Executing a program twice in this form is called self-
composition [3,5]. Non-interference can be formalised naturally in Java Dynamic
Logic, an extension of typed first-order logic, as it will be shown in Section 2.2.
As a preparatory step, the next section will give a short introduction to Java
Dynamic Logic.

2.1 Basics on Java Dynamic Logic

Dynamic Logic is an extension of typed first-order logic tailored towards rea-
soning about computer programs, see [9] for an early publication and [10] for
a modern account. Typical formulas, that go beyond first-order logic, are of
the form 〈π〉F or [π]F where F is again a Dynamic Logic formula and π is
a program. In theoretical investigations the programs π are taken from some
abstract programming language. In the instantiation of Dynamic Logic that we
are concerned with, JavaDL, π can be an arbitrary, executable, sequential Java
program. The semantics of Dynamic Logic is based on the notion of a program
state, i.e., an assignment of values to all program variables, global and local. The
formula 〈π〉F is true in state s, if the program π started in s terminates and
formula F is true in the terminating state. This corresponds to total correctness
assertions in Hoare logic that the reader might be more familiar with. Dually
[π]F is true in state s, if either π does not terminate when started in s or 〈π〉F
is true in s. This corresponds to partial correctness assertions in Hoare logic.
The first-order logic part of JavaDL contains types Heap and Field and thus
allows quantifications ∀ Heap h and ∀ Field f . Furthermore there is an implicit
program variable heap of type Heap that evaluates in any state to the current
heap of the Java program. The values of fields, arrays and information on created
objects are stored and accessed by suitable functions as formalized in the theory
of abstract arrays, see [16, pages 69 – 70] and [22]. The details of this model
play no role in the current paper. The preceeding explanations were included for
the reader who might wonder how the values of program variables completely
describe the computation state of a Java program. JavaDL uses an additional
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modal operator {v := t} called an update, where v is a program variable and
t a JavaDL expression. A formula {v := t}F is true in state s if F is true in
the state s′ with s′(w) = s(w) for variables w 6= v and s′(v) equals the value of
expression t in state s. Updates serve more than one purpose in JavaDL. They
are ultimately necessary for an axiomatization of forward symbolic execution.
For the reader of this paper it suffices to think of updates as an interface between
logical and program variables. While program variables may occur in formulas,
logical variables are not allowed in programs. But logical variables may occur in
the expression t in an update {v := t}. With this knowledge on JavaDL, it should
be possible to follow the presentation of the formalisation of non-interference in
JavaDL in the next section.

2.2 Formalising Simple Non-Interference in JavaDL

The informal definition of non-interference from above can be formalised as
follows. Running two instances of P in parallel can be achieved by conjunction of
two single runs of P : [P ]post1 ∧ [P ]post2. Furthermore, P needs to be executed
on two arbitrary heaps which agree on the low-locations. Executing P on two
arbitrary heaps can be expressed as follows:

∀ Heap h1
in, h

2
in ({heap := h1

in}[P ]post1 ∧ {heap := h2
in}[P ]post2)

Here, the implicit heap variable heap is updated to the arbitrary heaps h1in and
h2in, respectively, before P is executed. The requirement that h1in and h2in have
to agree on the low-locations will be postponed for the moment. The value of
heap after the execution of P can be accessed only in the scope of the modality
[P ]. Thus, in order to compare the heaps after the execution of P , the values of
heap have to be “saved” in logical variables and compared afterwards. This can
be achieved by the introduction of two more heap variables, h1out and h2out, as
follows:

∀ Heap h1
in, h

2
in, h

1
out, h

2
out (

{heap := h1
in}[P ]h1

out = heap ∧ {heap := h2
in}[P ]h2

out = heap

→ (comparison of h1
out and h2

out) )

Finally, the condition that the heaps after the execution of P have to agree
on the low-locations if the heaps before the execution of P agreed on those
locations has to be added. Since in JavaDL a location set is represented as a
tuple (o, f) ∈ java.lang.Object × Field, where o is an object and f is a field,
non-interference can be defined formally as follows:

Definition 1 (Simple Non-Interference). A program P satisfies non-inter-
ference for a partition of the heap locations accessed by P in low-security-locations
low and high-security-locations high iff

∀ Heap h1
in, h

2
in, h

1
out, h

2
out (

{heap := h1
in}[P ]h1

out = heap ∧ {heap := h2
in}[P ]h2

out = heap

→ ∀ java.lang .Object o ∀ Field f (

(o, f) ∈ low ∧ {heap := h1
in}o.f = {heap := h2

in}o.f
→ {heap := h1

out}o.f = {heap := h2
out}o.f ) )

(1)
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In principle, Formula (1) is a reformulation of [5, Formula (7)]. However,
there are slight differences: our formulation talks about heaps instead of program
variables and more essentially the renaming of the heap (the program variables in
[5]) is done with the help of an update as part of the formula. Thus, there is no
need for a potentially error-prone external renaming. In this formulation we also
execute P in parallel instead of sequentially. However, the only impact of this fact
at this point is that the formulation looks nicer because we treat both executions
equivalently. Finally it should be mentioned that the given formalisation is still
quite abstract and can’t be used directly as proof obligation for the KeY System.
Some details on general assumptions like invariants and the wellformedness of
the heaps etc. are abstracted away. Furthermore, it does not cover important
features of a practicable non-interference specification language for Java, as it
can be seen in Section 4. Before we introduce a new program-level specification
language for non-interference in Section 3, we want to illustrate the formalisation
of simple non-interference with an example.

2.3 Example

The frequently used password checker example will be used to illustrate the
formalisation. The example will be extended throughout the paper. The considered
implementation (Figure 1) consists of a class PasswordFile with two private
arrays, names and passwords, which store the user-names and their corresponding
passwords at the same index. Obviously, the length of those two arrays has to
coincide. This is formulated with the help of an JML-invariant in line 3. For
the moment the reader may assume that such an invariant holds in any state
of the program. More details on JML will be given in Section 3. Furthermore,
the class contains a method check which takes a user-name and a password. It
checks whether there exists an index i at which the array names contains the user-
name and at which the array passwords contains the password. If such an index
exists, the method returns true, otherwise false. The implementation covers a full
functional JML-specification consisting of a method contract and a loop-invariant.
Those specifications are not relevant at the moment, but will be discussed in
Section 3. Still, a formal specification of low and high variables is missing, since
the current version of JML does not allow for such specifications. Let’s assume
the arrays names and passwords and their contents are considered as high
variables whereas the parameters user and password as well as the not explicitly
named return-variable are considered as low variables. This is reasonable since
user-names and passwords normally should be kept secret whereas the caller
knows the user-name and password he passed as well as the returned value.
Even though the parameters and the return variable are no heap-locations, in a
modular context they have to be treated similar to heap locations as discussed
in Section 3.2. The method check translates in connection with these informal
low- and high-specifications to the JavaDL formula of Figure 2. The formula
is assembled as follows: the first part contains some general assumptions, which
have been abstracted away in Formula (1) and are not central here either. The
following two parts contain the symbolic execution and comparison as introduced
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1 class PasswordFi le {
2 private int [ ] names , passwords;

3 //@ i n v a r i a n t names . l e n g t h == passwords . l e n g t h ;
4 /∗@ normal behav ior

5 @ ensures \ r e s u l t == high variables

6 @ (\ e x i s t s i n t i ; 0<=i && i<names . l e n g t h ;
7 @ names [ i ]==user && passwords [ i ]==password ) ;
8 @ a c c e s s i b l e names , names [ ∗ ] , passwords , passwords [ ∗ ] ;
9 @ m o d i f i e s \ noth ing ; @∗/

10 public boolean check ( int user , int password) {
11 /∗@ l o o p i n v a r i a n t 0 <= i && i <= names . l e n g t h &&
12 @ ( \ f o r a l l i n t j ; 0 <= j && j < i ;
13 @ ! ( names [ j ]==user
14 @ && passwords [ j ]==password ) ) ;
15 @ a s s i g n a b l e \ noth ing ;
16 @ d e c r e a s e s names . l e n g t h − i ; @∗/
17 for ( int i = 0 ; i < names . l ength ; i++) {
18 i f ( names [ i ] == user && passwords [ i ] == password ) {
19 return true ; low variables
20 }
21 }
22 return fa l se ;
23 }
24 }

Fig. 1. Example of a password checker in Java with a full functional JML-specification
and an informal annotation for low- and high-variables.

in Section 2.2. Still, there is a slide difference: as mentioned before, the parameters
and the return value of the method have to be considered similar to heap locations.
Therefore they also occur in the comparison. In this particular example only
the return values have to be compared, because the heap does not contain low
variables and the values of the parameters are not observable after the return
of the method. Next, it will be shown how Java programs can be annotated
systematically with non-interference specifications.

3 Program-Level Specifications

The last section showed how, in principle, non-interference can be formalised
in JavaDL and how proof obligations can be generated manually out of Java
programs with an informal annotation of low and high locations. This section will
discuss how Java programs can be annotated with non-interference specifications
which seamlessly integrate with functional specifications in JML* and which
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1 ∀ Heap h in 1 , h in 2 , h out 1 , h out 2 // independend heaps
2 ∀ PasswordFi le s e l f // cons idered c l a s s
3 ∀ int user1 , password1 , user2 , password2 // method arguments
4 ∀ boolean r e su l t 1 , r e s u l t 2 // re turn v a l u e s
5 // General Assumtions + Class I n v a r i a n t s
6 wellFormed ( h i n 1 ) ∧ wellFormed ( h i n 2 ) ∧ . . .
7 // Independent Symbolic Execut ions
8 ∧ {heap := h i n 1 }\ [{ . . .
9 boolean r = s e l f . check ( user1 , password1 ) @PasswordFile ;

10 . . .}\ ] ( h out 1 = heap ∧ r e s u l t 1 = r )
11 ∧ {heap := h i n 2 }\ [{ . . .
12 boolean r = s e l f . check ( user2 , password2 ) @PasswordFile ;
13 . . .}\ ] ( h out 2 = heap ∧ r e s u l t 2 = r )
14 // Comparision o f the low v a r i a b l e s
15 ∧ user1 = user2 ∧ password1 = password2
16 → r e s u l t 1 = r e s u l t 2

Fig. 2. Formalisation of non-interference in JavaDL for the example of Figure 1. The
three dots “. . .” mark passages where some less important JavaDL details have been
abstracted away.

are suitable for automatic translation into JavaDL. The specification entities
are in particular suitable for the (implicit) specification of security lattices
and intentional information leakage. Before the new specification entities are
introduced in Section 3.2, the next section will present some basics on JML and
its dialect JML*. Section 3.3 illustrates the entities on the example of Figure 1
thereafter.

3.1 JML and JML*

The Java Modeling Language (JML) is a popular specification language for
the behavior of Java code [12]. It can be used as a design by contract (DBC)
style specification language. Java expressions enriched with other specification
constructs like quantifiers are used to write predicates which in turn are used
in assertions, such as pre- and postconditions and invariants. [22] introduced a
dialect of JML, called JML*, which is suitable for modular specifications. Our
approach will be based on this dialect. In the following, the specification entities
which are most important in the context of this work will be explained shortly
by the example of Figure 1. These entities are method contracts, invariants and
model fields.

The method contract of Figure 1 starts with the key-word normal_behavior.
This means that the method won’t throw an exception if the precondition of the
method is fulfilled. Pre-conditions are specified via the key-word requires. If
the key-word is missing—as it is the case in our example—the pre-condition is
implicitly defined as true. Thus, the specification guaranties that no exception will
be thrown. Post-conditions are specified via the key-word ensures. In Figure 1,
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lines 6 to 8 specify the post-condition of the method check, which says that
the result of the method is true iff there exists an index i at which the array
names contains the passed user-name and at which the array passwords contains
the passed password. Furthermore, the key-word modifies defines a set of heap
locations whose values may be changed at most by the execution of the method.
In our case, no locations may be changed. Similarly, the key-word accessible

defines a set of heap locations whose values may be read at most by the execution
of the method. Here, the specification of check expresses that at most the heap
locations of the fields names and passwords as well as the entries of the two
arrays are read. Line 3 shows an invariant specification. It says that the length of
the arrays names and passwords coincide. In this work it can be assumed that
invariants hold in every state of the program execution. The real semantics is
more complicated, but it is not essential to understand the semantics in detail
in order to follow the presentation of this work. Finally, model fields have to be
considered. The following example shows a model field definition:

1 /∗@ model \ l o c s e t pwdFileManager ;
2 @ a c c e s s i b l e pwdFileManager : f o o t p r i n t ;
3 @ r e p r e s e n t s pwdFileManager =
4 @ names , names [ ∗ ] , passwords , passwords [ ∗ ] ;
5 @∗/

The first line declares the model field itself. Lines three and four define the
set of locations, to which the model field evaluates to. In the context of this
work we consider only model fields of type \locset. Model fields can be defined
either via an =-symbol followed by an expression of type \locset (similar to the
specification of modifies- and accessible-clauses) or a \such_that followed
by a Boolean expression. In the latter case the model field evaluates to some
location set which fulfills the Boolean expression. Finally, the second line states
that the evaluation of the model field—which can be thought of as a pure function
here—depends only on the footprint of the object. The footprint of an object
contains all locations which might be accessed by the object. All locations not
belonging to the footprint of the object can’t be read or changed by the object.

Next, the new JML* specification entities are introduced.

3.2 Extending JML* for Non-Interference Specifications

Given the simple form of non-interference from Section 2, one of the first questions
one may ask is: how can low and high variables be defined in JML*? We won’t
answer this question directly because it turns out that for practicable information
flow analysis a classification into low and high variables normally is too coarse.
Most existing analysis tools use lattices of security levels instead (see for instance
[13]). In a security lattice information may flow only from lower levels to higher
ones. The power set of heap locations P(locheap) forms in combination with the
set union and intersection in some sense the most general security lattice [11,5]:
any other type lattice is subsumed by it. Therefore it is reasonable and quite
common to restrict oneself to (sublattices of) P(locheap). Given a security lattice,
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a security policy is defined as a mapping of the set of heap locations to the set of
security levels of the lattice.

Our approach defines security policies in a decentralised way. The intuition is
that every user of a system has one or more views on the system. A view is a
particular set of heap locations which can be observed by the user. A system is
safe, if no view R can be used (by a user) to deduce more information about a
system state through the execution of a method than the information already
visible to R. In order to define a security policy for a method m, m is annotated
with a set of views R. R implies the following security policy. Information may
flow from a heap location y to another heap location x iff y is contained in every
view in which x is also present. This means that information may flow from y to
x iff for all location sets R ∈ R the condition x ∈ R⇒ y ∈ R holds. Every heap
location x can be assigned a security level dep(x) as follows: dep(x) is the set
of all heap locations on which x is allowed to depend on. Formally the security
level for x is defined as dep(x) := {y | ∀R ∈ R : x ∈ R ⇒ y ∈ R}. The set of
security levels for all heap locations forms in combination with the set-union and
intersection the implicit security lattice: information may flow from a location y
to a location x if the dependencies dep(y) of y are a subset of the dependencies
dep(x) of x. The mapping dep is therefore the security policy defined by R.

In our extension of JML* a security policy is specified implicitly with the
help of the respects-clause as a set of location sets:

1 /∗@ r e s p e c t s \ s e t u n i o n ( names , names [ ∗ ] ) ,
2 @ \ s e t u n i o n ( passwords , passwords [ ∗ ] ) ;
3 @∗/
4 boolean check ( int user , int password ) { . . .

The respects-clause is a usual clause in a method contract. It takes a list of
expressions of type \locset as parameter. A contract may contain multiple
respects-clauses. In the latter case the clauses are treated as one big respects-
clause consisting of the concatenation of all listed location sets. As sketched
before, the clause states that in case the precondition of the contract is valid,
for each of the listed location sets R the values of the locations of R after the
execution of the method depend only on the values of the locations of R before
the execution. It is notable that in JML* location sets are specified with the
help of \locset-expressions. Such an expression is evaluated to a location set in
some heap. Thus a \locset-expression might evaluate to different heap locations
and hence implicitly define different security levels in different heaps. This is
intentional. Consider a linked list: if the whole list is considered to be visible to
some view R and a new element is added to the list, then also the new element
of the list should be visible to R. But this implies that the location set belonging
to R needs to change. Formally, views can be defined as follows:

Definition 2 (View). A view R is an JML*-expression of type \locset.

In the context of JavaDL, a view is defined similarly as a term of type LocSet.
Sets of views can, but don’t have to be specified explicitly: an alternative to list a
set of views R explicitly in a respects-clause is to use an underspecified model
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field in order to represent R. In this way the specification and verification effort
can be reduced in many cases to the specification and verification of one single
model field:

1 /∗@ model \ l o c s e t anyUser ;
2 @ a c c e s s i b l e anyUser :
3 @ f o o t p r i n t ;
4 @ r e p r e s e n t s anyUser
5 @ \ s u c h t h a t \ s u b s e t (

6 @ anyUser , f o o t p r i n t ) ;
7 @∗/
8

9 //@ r e s p e c t s anyUser ;
10 boolean check ( . . . ) { . . .

The above example illustrates such an underspecification. The model field anyUser

can represent any location set which can be referred to by the object. Since all
locations which are not accessed by the object can’t interfere with the object,
the specification ultimately says that the method fulfills non-interference for any
security level and therefore that no information flows on the heap.

Till now it has been specified which information is allowed to flow between
heap locations. Beside those specifications, for methods it has to be specified on
which locations a value passed through its parameters may depend on at most.
This can be seen with the help of the following simple example:

1 public int low ;
2 private int high ;
3 //@ r e s p e c t s low ;

4 int m( int param ) {
5 low = param ; return param ;
6 }

Imagine low and high are low- and high-locations, respectively, and the method
m is called with high as parameter. Then the high-value will be assigned to low

and therefore the call would be unsafe. On the other hand, if m is called with
low as parameter everything is fine. For a similar reason one has to specify a
guaranty on which locations the return value of the method can depend on at
most. In JML* allowed parameter dependencies are specified with the help of
the parameter dependencies-clause:

1 //@ parameter dependencies \ a l l L o c s , \ a l l L o c s : \ noth ing ;
2 boolean check ( int user , int password ) { . . .

The clause assigns to every parameter as well as to the return value a view. The
views for the parameters are listed in the order the parameters are declared,
separated by a comma. The view for the return value follows the location set
for the last parameter, separated by a colon. A method contract may contain
several parameter dependencies-clauses. In this case non-interference holds for
every clause. The parameter dependencies-clauses of the example states that
the values passed by user and password may depend on any heap location
and that the return value is guaranteed to depend on no heap location. The
specification of the dependencies of the return value is very strict in this example:
it permits only that the method returns a constant. Section 3.3 will show a more
interesting specification. From some point of view, the parameter dependencies-
clause specifies the views which “are allowed to call the method”, whereas the
respects-clause specifies which views can’t deduce information from such a call.
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The parameter dependencies-clause can be considered also from another point
of view: it can be seen as a specification which defines for each set R in the
respects-clause whether the parameters and the return-value are considered as
low or high with respect to R: if the location set specified for a parameter par is
a subset of R, then par is considered as low, else as high.

The respects-clause in combination with the parameter dependencies-
clause are sufficient to specify non-interference for methods in JML*. However,
as it is well known (see for instance [13]), non-interference on its own is too
restrictive in order to check a lot of useful Java programs for unintentional
information leaks. This includes the program of Example 1. KeY won’t be able to
show the universal validity of the formula of Figure 2 because the method check

indeed leaks some information about the secret arrays names and passwords:
the information whether the passed user-name and password are contained in
names and passwords or not. In order to distinguish intentional information
leaks from unintentional ones, intentional leaks have to be specified clearly. Those
specifications are called declassifications [19]. In our case, declassifications are
declared as part of the method contract and therefore are clearly separated
form the implementation. The following example illustrates the usage of the
declassify-clause.

1 /∗@ d e c l a s s i f y
2 @ ( \ e x i s t s i n t i ; 0 <= i && i < names . l e n g t h ;
3 @ names [ i ] == user && passwords [ i ] == password )
4 @ \ from pwdFileManager \ to checkUser \ i f t r u e ;
5 @∗/
6 boolean check ( int user , int password ) { . . .

The clause specifies the information to be declassified in form of a term. The value
to which this term evaluates to in the prestate of the execution of the method is
the information which is allowed to leak. The leakage is restricted to the locations
specified in the \to-part of the clause. Furthermore, the evaluation of the term
may depend at most on the locations specified in the \from-part. Finally, the
declassification takes place only in case the formula in the \if-part is valid. The
\from-, \to- and \if-parts are optional. Since the information can be leaked only
in the body of the method, our declassification entity defines where, exactly what
information may be leaked by whom and to whom. It fulfills furthermore the
sanity check from [19] by the preservation of semantic consistency, conservativity,
monotonicity of release of information and non-occlusion.

The next section illustrates the JML* extensions on the password checker
example of Figure 1.

3.3 Example

Figure 3 gives a complete example of the specification of the check method from
Figure 1. The specification of Figure 1 is extended in two parts. The first part,
lines 1 to 7, declares two underspecified model fields, anyUser and checkUser,
as in Section 3.2. They can stand for any view accessible by an object of type
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1 /∗@ model \ l o c s e t checkUser , anyUser ;
2 @ a c c e s s i b l e anyUser : f o o t p r i n t ;
3 @ r e p r e s e n t s anyUser \ s u c h t h a t \ s u b s e t ( anyUser , f o o t p r i n t ) ;
4 @
5 @ normal behav ior
6 @ ensures \ r e s u l t ==
7 @ ( \ e x i s t s i n t i ; 0 <= i && i < names . l e n g t h ;
8 @ names [ i ]==user && passwords [ i ]==password ) ;
9 @ a c c e s s i b l e names , names [ ∗ ] , passwords , passwords [ ∗ ] ;

10 @ m o d i f i e s \ noth ing ;
11 @ r e s p e c t s anyUser ;
12 @ parameter dependencies checkUser , checkUser : checkUser ;
13 @ d e c l a s s i f y ( \ e x i s t s i n t i ; 0 <= i && i < names . l e n g t h ;
14 @ names [ i ]==user && passwords [ i ]==password
15 @ ) \ to checkUser ; @∗/
16 public boolean check ( int user , int password ) { . . .

Fig. 3. Complete non-interference specification for the method check from Figure 1
with a seamless integration to the functional specifications.

PasswordFile. The second part, lines 9 to 20, extends the method contract
of the method check by a non-interference specification. The respects-clause
states in combination with the parameter dependencies-clause that in case
the method is called with view checkUser (that is, the parameters depend at
most on checkUser) then the view anyUser can’t learn anything through the
execution of check. Since anyUser and checkUser can stand for any view, the
considered part of the specification states that no matter with which view the
method is called, no view can learn anything by the execution of the method.
The parameter dependencies-clause states furthermore that the return value
of the method may depend on checkUser, which means that the return value
may depend on the parameters. Finally, the declassify-clause states that the
information whether the passed user-name and password are contained in names

and passwords or not may be learned by checkUser. Overall, the specification
says that no matter with which view check is called, no information is leaked to
any view except the necessary leakage to the return value. In the next section it
will be shown how the introduced information flow extensions of JML* can be
translated to JavaDL and checked by the KeY-System. Section 5 will discuss the
overall approach in comparison with other information flow verification systems
thereafter.

4 Translating JML* Non-Interference Specifications to
JavaDL

Before the translation of the introduced JML* information flow entities can be
considered, the translation and usage of views has to be discussed. As defined in
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Section 3.2, views are JML*-expressions of type \locset. Those expressions are
translated canonically to JavaDL terms of type LocSet. Terms of type LocSet
are evaluated to a set of heap locations in a given heap. Heap locations in turn
are tuples (o, f) ∈ java.lang.Object × Field, where o is an object and f is a
field. As mentioned in Section 3.2, it has to be shown for every view R ∈ R
specified in the respects-clause that the locations of R do not interfere with
locations not in R by the execution of a program P . Since R might evaluate
after the execution of P to another set of locations than before the execution,
the definition of non-interference has to be adopted. Informally, a program P
satisfies non-interference for a view R iff running two instances of P on heaps
which agree on the evaluation Lpre of R and on the values of the elements of
Lpre result in heaps which also agree on the evaluation Lpost of R and on the
values of the elements of Lpost. The condition, that R has to evaluate to same
set of locations in the pre-heaps and post-heaps of the two executions is based on
the assumption that an observer of a set of locations is able to determine which
locations he is observing. Formally, this form of non-interference can be defined
by a generalisation of Formula 1 as follows:

Definition 3 (Non-interference for Views). A program P satisfies non-inter-
ference for a set of views R iff

∀ Heap h1
in, h

2
in, h

1
out, h

2
out (

{heap := h1
in}[P ]h1

out = heap ∧ {heap := h2
in}[P ]h2

out = heap

→
^

R∈R
(h1

in ∼R h2
in → h1

out ∼R h2
out) )

(2)

where the relation h1 ∼R h2 is defined as

{heap := h1}R = {heap := h2}R ∧ ∀ java.lang .Object o ∀ Field f (

(o, f) ∈ {heap := h1}R→ {heap := h1}o.f = {heap := h2}o.f )
(3)

It is notable that with the help of this formalisation a whole set of views can be
checked with the help of only two symbolic executions.

As next step, the call of the program P in the formalisation will be replaced
by a call to a method m of class C with parameters p1, . . . , pn of type T1, . . . , Tn
and a return value of type Tr. In order to reflect the parameter dependencies
from the parameter dependencies-clause, a set Rpar of parameter dependency
lists Rpar ∈ Rpar is introduced, where each Rpar contains for each parameter pi
a view specification Rpari . This leads to the following update of Formula 2 which
is explained below:

∀ Heap h1
in, h

2
in, h

1
out, h

2
out

∀ C self ∀ T1 p11 . . . ∀ Tn p1n ∀ Tr r1 ∀ T1 p21 . . . ∀ Tn p2n ∀ Tr r2 (

self 6= null

∧ {heap := h1
in}[Tr result = self.m(p11, . . . , p

1
n)](h1

out = heap ∧ r1 = result)

∧ {heap := h2
in}[Tr result = self.m(p21, . . . , p

2
n)](h2

out = heap ∧ r2 = result)

→
^

(R,Rpar)∈R×Rpar

(h1
in ∼in

R,Rpar h2
in → h1

out ∼out
R,Rpar h2

out) )

(4)
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A method is always called on an object. Therefore, Formula (4) quantifies over
all objects self of type C, on which m can be called. Since m can’t be called
on null, it is assumed that self is not null. Furthermore, since the result of m
can be observed from outside the method, the return-values have to be stored in
logical variables r1 and r2 such that their values can be compared in the relations
∼inR,Rpar and ∼outR,Rpar similar to heap locations. Finally, the relations ∼inR,Rpar and

∼outR,Rpar between the heaps have to be distinguished as follows. As discussed in
Section 3.2, the i-th parameter is considered as a low-location if its dependency
set Rpari is a subset of R. If p1i and p2i label the two potentially different values
of the i-th parameter in the two symbolic executions, this condition can be
expressed by the following formula:^

i∈{1..n}
({heap := h1

in}(Rpar
i ⊆ R)→ p1i = p2i ) (5)

Thus,∼inR,Rpar is defined as the conjunction of the formulas (3) and (5). Formula (5)

needs not to be part of ∼outR,Rpar since the values of the parameters can’t be

observed after the return of a method any more. On the other hand, ∼outR,Rpar has
to contain a similar condition for the return value:

{heap := h1
in}(Rpar

result ⊆ R)→ r1 = r2 (6)

Hence, ∼outR,Rpar is defined as the conjunction of the formulas (3) and (6).
As final step, declassifications have to be formalised. During the formalisation

of the respects-clause and parameter dependencies-clause, an input-relation
∼inR,Rpar and an output-relation ∼outR,Rpar have been introduced through the back-

door as abbreviations. That ∼inR,Rpar is a relation between heaps becomes impor-
tant now: declassifications can be used to define arbitrary input-relations between
heaps. Such an input-relation describes which heaps can be distinguished by an
observer of a view through the execution of m. [19] discusses the meaning of
this view on declassification in detail. The value of a declassified term Dterm

evaluated in the pre-state of the execution of m may be learned by a view R,
if the declassification (Dif , Dto, Dfrom, Dterm) ∈ D fulfills the following condi-
tions: (1) The condition of the \if-part Dif is fulfilled in the pre-state of the
execution. (2) The \to-part Dto is a subset of R. (3) The declassified term Dterm

depends only on the locations in the \from-part Dfrom. These conditions can be
formalised for a set of declassifications D as follows:

^
D∈D

0BBBB@
{heap := h1

in}Dif ∧ {heap := h2
in}Dif

∧ {heap := h1
in}(Dto ⊆ R)

∧ Dterm = {heap := anon(heap,Dfrom, anonHeap}Dterm

→ {heap := h1
in}Dterm = {heap := h2

in}Dterm

1CCCCA (7)

Altogether, ∼inR,Rpar consists of the conjunction of the formulas (3), (5) and (7)

whereas ∼outR,Rpar is the conjunction of the formulas (3) and (6). The equivalence
relation between the input-heaps is defined by the equations following the the
implication in the formulas (3), (5) and (7).

Figure 4 shows the result of the translation of the JML* specification from
Figure 3 to JavaDL. The formula is mainly an instantiation of the formulas (3),
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1 ∀ Heap h in 1 , h in 2 , h out 1 , h out 2 // independend heaps
2 ∀ PasswordFi le s e l f // cons idered c l a s s
3 ∀ int user1 , password1 , user2 , password2 // method arguments
4 ∀ boolean r e su l t 1 , r e s u l t 2 // re turn v a l u e s
5 // General Assumtions + Class I n v a r i a n t s
6 s e l f 6= null ∧ wellFormed ( h i n 1 ) ∧ . . .
7 // Symbolic Execut ion
8 ∧ {heap := h i n 1 } \ [{ . . .
9 boolean r = s e l f . check ( user 1 , password 1 ) @PasswordFile ;

10 . . . }\ ] ( r e s u l t 1 = r ∧ h out 1 = heap )
11 ∧ {heap := h i n 2 }\ [{ . . .
12 boolean r = s e l f . check ( user 2 , password 2 ) @PasswordFile ;
13 . . . }\ ] ( r e s u l t 2 = r ∧ h out 2 = heap )
14 // Input−Rela t ion
15 ∧ equalsAtLocs ( h in 1 , h in 2 , s e l f . anyUser )
16 ∧ ( {heap := h i n 1 }( s e l f . checkUser ⊆ s e l f . anyUser )
17 → user1 = user2 )
18 ∧ ( {heap := h i n 1 }( s e l f . checkUser ⊆ s e l f . anyUser )
19 → password1 = password2 )
20 ∧ ( {heap := h i n 1 }( s e l f . checkUser ⊆ s e l f . anyUser )
21 → ( {heap := h i n 1 } ∃ int i 0 ;
22 ( 0 ≤ i 0 ∧ i 0 < s e l f . names . l ength ∧ . . .
23 ∧ s e l f . names [ i 0 ] = user1
24 ∧ s e l f . passwords [ i 0 ] = password1 )
25 ↔ {heap := h i n 2 } ∃ int i 1 ;
26 ( 0 ≤ i 1 ∧ i 1 < s e l f . names . l ength ∧ . . .
27 ∧ s e l f . names [ i 1 ] = user1
28 ∧ s e l f . passwords [ i 1 ] = password1 ) ) )
29 // Output−Rela t ion
30 → ( equalsAtLocs ( h out 1 , h out 2 , s e l f . anyUser )
31 ∧ ( {heap := h i n 1 }( s e l f . checkUser ⊆ s e l f . anyUser )
32 → r e s u l t 1 = r e s u l t 2 ) )

Fig. 4. Translation of the JML* non-interference specification from Figure 3 to JavaDL.
The three dots “. . .” mark passages where some less important JavaDL details have
been abstracted away.

(4), (5), (6) and (7). Condition (3) is hidden in the predicate equalsAtLocs. The
next section discusses the presented approach as well as future work.

5 Conclusion

Discussion. On a first glance, the approaches [21,7,6] seem to be the closest to
our approach. The former two, [21] and [7], try to specify non-interference in JML
by encoding sufficient conditions for non-interference into pre- and post-conditions.
This is less expressive than our approach since the encoded conditions are only
sufficient. Furthermore, they do not give hints how to encode declassifications,
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which is an important feature for the specification of real world programs. [6]
on the other hand introduces new JML-keywords which directly define relations
between the program variables of two self-composed executions. In particular
two key-words to distinguish the variables of the two runs are defined. The
approach does not use security policies or a security lattice. Like in JIF, our
JML*-extension concentrates more on the actors of the system by the implicit
definition of security policies with the help of sets of views.

The JIF system [13] is another important approach on the specification and
verification of information flow properties of Java programs. The core idea of
JIF is to annotate variables with security policies and derive a security type
system from those annotations. Given the security type system, Java programs
are analysed with the help of type checking for undesirable information flow. This
approach is very efficient and has been applied to several case studies. However,
in order to be efficient, security type systems use in some cases quite rough over-
approximations of the dependencies between variables. Our approach is much
less efficient but has the advantage that no approximations are involved. Another
advantage of our approach is that our JML*-extension integrates functional and
information flow specifications which makes it easier to use synergy effects of the
two specifications. Furthermore, though we like the ideas of the decentralised label
model (DLM) which is used in JIF for the labeling of variables, this approach
is unfortunately not modular: if a new principal is introduced to a program,
variables in the whole program might have to be annotated. Inspired by the DLM,
we also define the overall security policy in a decentralised way. However, we do it
other way around: instead of annotating variables with labels we annotate views
(which are our counterpart of the labels used in JIF) with heap locations. In this
way it is possible to write modular specifications. Finally, the declassification-
construct in JIF which is used for delimited information release [17] can only
be used within the implementation of a method. This transgresses against the
rule of clear separation of specification and implementation. In contrast, our
declassifications are part of the method-contract and therefore clearly separated
from the implementation.

The theoretical paper [2] proposes a scheme for the specification of expressive
declassification policies. The authors suggest to use program verification tech-
niques similar to ours to show that a program complies to those declassification
policies. These techniques are combined with security type systems which are
used to show the compliance of the program to the baseline security policy.
Though we hadn’t been aware of those ideas during the development of our
JML*-extension, our declassification construct complies to the scheme proposed
in [2]. Still, we define the additional \from part which has no counterpart in
[2]. Additionally, our approach is based on sequential Java (so on a real object
oriented programming language) whereas [2] defines its own non object oriented
programming language—though some ideas are provided how the combination
of program verification and security type systems could be extended to object
oriented languages.
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[14] formalises information flow properties in a higher-order logic and uses
Coq for the verification of those properties. This approach seems to be extremely
expressive, but comes with the price of more and more complex interactions with
the proof system. Further approaches use abstraction and ghost code for explicit
tracking of dependencies [15,4,20]. Even though those approaches are more precise
than security type systems, they still over-approximate the dependencies between
variables / heap locations. Furthermore, they haven’t tackled the problem of
declassification yet.

Overall, one point which sets our approach apart form all existing ones is
that our specification approach can be used to write fully modular specifications.
Those specifications fit into the approach of dynamic frames [22] and therefore
comply to the principle of information hiding as it is used in object oriented
programming languages.

Future Work. Though it is possible to write fully modular specifications
with the JML*-extension, we can’t claim the same for our verification technique
yet. It still needs to be investigated in detail how a contract of a method m1 can
be used during the verification of a method m2 which calls m1. However, we have
very promising ideas how this can be achieved. Additionally, it might be useful to
define views as a set of terms instead of a set of locations. This would allow an even
finer grained analysis, where attackers are modeled similar to the PER model [19].
The implementation of this extension should be straightforward. Finally, it should
be possible to do a quantitative analysis on the non-interference specifications.
Such an analysis would provide a guaranty how much information will be leaked
by the method at most. The quantitative analysis could be preformed on the
relations between heaps defined by the non-interference specification.
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Abstract. Rely-guarantee reasoning specifications typically consider all
components of a concurrent system. For the important case where com-
ponents operate on a shared data object, we derive a local instance of
rely-guarantee reasoning, which permits specifications to examine a sin-
gle pair of representative components only. Based on this instance, we
define local proof obligations for linearizability and lock-freedom, which
we then apply to a non-blocking concurrent stack with explicit memory
reuse. Both the derivation of this local instance and its application are
mechanized in the KIV interactive theorem prover.

Keywords: Verification, Temporal Logic, Rely-Guarantee, ABA-problem,
Linearizability, Lock-Freedom

1 Introduction

The rely-guarantee method [1] deals with the challenges that arise when reason-
ing about concurrent systems with shared resources. It provides a compositional
treatment of interference between system components, i.e., to analyze properties
of the overall system, each component can be examined separately based on its
specification of expected environment behavior.

Rely-guarantee reasoning proves to be a valuable technique to verify non-
blocking (here lock-free) implementations of concurrent data structures, such
as stacks, queues or sets. Such algorithms play an important role in multi-core
systems and are also contained in concurrency packages of modern, high-level
object-oriented programming languages (e.g., java.util.concurrent). They try to
better utilize the capacity of multi-cores by avoiding locking and thus increasing
the potential of operations to execute in parallel. Their main correctness prop-
erty linearizability [2] ensures that each interleaved execution of concrete data
structure operations corresponds to an abstract, sequential execution that pre-
serves the (real-time) order of non-interleaved concrete calls. Their main progress
property lock-freedom [3] guarantees that in each interleaved execution, always
eventually one of the running operations terminates. Lock-free implementations
avoid deadlocks, livelocks, convoying and priority inversion. Thus, they are also
heavily used in real-time systems (e.g., for real-time garbage collection).
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The verification framework is based on interval temporal logic [4] and sym-
bolic execution [5] and is implemented in the interactive theorem prover KIV [6].
It permits to verify the soundness of a typical form of rely-guarantee reasoning,
as well as to (mechanically) derive more specific instances of it and to prove de-
composition theorems for system-wide correctness or progress properties, such
as linearizability or lock-freedom. This paper describes such an instance and
illustrates its use.

Our earlier embedding of rely-guarantee reasoning in interval temporal logic
described in [7] follows the global approach of [1]: specifications consider the
overall program state, consisting of the local states of all components and the
shared state. Here we reduce this former embedding to allow for specifying prop-
erties of concurrent systems – that are unbound in their number of components
– in terms of two representative components. This valuable reduction leads to
both simpler specifications and proofs, e.g., in the frequent case of verifying
concurrent data structures where all processes have similar behaviors. We define
local proof obligations for linearizability and lock-freedom based on this instance
and show its application by verifying the major safety and liveness aspects of
a lock-free stack that recycles memory from a shared pool of reusable memory
locations.

To the best of our knowledge, this is the first mechanized derivation of a local
instance of rely-guarantee reasoning. The instance permits local proofs of both
linearizability and lock-freedom. Furthermore, we describe the first mechanized
verification of the main aspects of a well-known lock-free stack [8] with explicit
memory reuse. Although different versions of the stack have been verified before,
these have mainly focused on linearizability and all except one informal proof
[9] implicitly assume garbage collection, which significantly simplifies the proofs.
A complete presentation of the verification of the theory and its application to
several lock-free data structures, is available online [10].

The rest of this paper is structured as follows: Section 2 introduces the stack
case study. Section 3 gives a short introduction to the temporal logic framework.
In Section 4 we briefly describe the embedding of global rely-guarantee reasoning
and derive its local instance and local proof obligations for linearizability and
lock-freedom. Section 5 shows the application of this instance to the case study.
Section 6 presents related work and a comparison. Finally, Section 7 concludes
with a short summary and an overview of our current and future work.

2 The Lock-Free Stack

Lock-free algorithms typically apply atomic synchronization primitives such as
CAS (Compare-And-Swap) instead of locks.

CAS(Old ,New ;SV, Succ) {
if* SV = Old then {SV := New , Succ := true} else Succ := false}

CAS compares a shared value SV with an older local copy of it Old (called
snapshot). If these values are equal SV is updated to a new value New and true
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Fig. 1. Data-stack that reuses memory locations from a shared pool (Free).

is returned; otherwise false is returned. Throughout this work we use formal
KIV specifications to describe programs. In the specification of CAS, the semi-
colon separates input from in-output parameters; the comma indicates parallel
assignments and in if* evaluating the if-condition requires no extra step.

Explicit Memory Reuse Lock-free data structures are often used in pro-
gramming environments without implicit garbage collection (GC). There, mem-
ory locations that are removed from the data structure should be reclaimed in
some way to avoid memory leaks. However, removed locations can not be simply
deallocated (e.g., using a free library call in C/C++), since they are typically
still used by concurrent processes. To solve the problem an explicit garbage col-
lection scheme is added to the main algorithm. This paper considers introducing
a shared pool of reusable locations as originally proposed by Treiber [8]. (A more
advanced solution are hazard pointers [11], see Section 6.) Treiber notes that the
possible concurrent reuse of a location can lead to data structure corruption at
runtime, when a location is concurrently reinserted in the data structure with a
modified content and these intermediate modifications are not detected by CAS.
This is a well-known and fundamental problem of CAS-based algorithms, called
the ABA-problem. Treiber’s solution attaches a modification counter to ABA-
prone shared resources so that CAS detects their possible concurrent access.

This work considers a lock-free data-stack that recycles memory from a
shared pool of reusable locations (Free), as shown in Figure 1. The stack stores
arbitrary data values vi in a singly linked list of cells (pairs of values and loca-
tions having .val and .nxt selector functions) which resides in the application’s
memory heap H1. A shared variable Top marks the top cell of the stack; it is a
pair of a reference (location) and a (natural number) modification counter with
selector functions .ref and .cnt respectively. A process p which executes a push
tries to reuse locations from Free and allocates new ones only if Free is empty
(GetNewp). Whenever p pops a location r from the stack, it subsequently adds
r to Free (Freep). To detect the concurrent reuse of a location, the modification
counter Top.cnt is always incremented atomically with the insertion of a new
cell in the stack (Top.cnt++).

1 H is a partial function from references r : ref (with null ∈ ref ) to cells with standard
operations, e.g., r ∈ H tests if r is allocated, H [r ] is lookup and H + r is allocation.
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U1
U2
U3
U4
U5
U6
U7

Push(In;UNew ,USucc,Top,Free ,H ) {
GetNew (In;UNew ,USucc,Free ,H );
let UTop = ? in {
while ¬ USucc do {
UTop := Top;
H [UNew ].nxt := UTop.ref;
CAS(UTop, (UNew × UTop.cnt + 1);Top,USucc)}}}

GetNew (In;UNew ,USucc,Free ,H ) {
choose r with (r 6= null ∧ (if* Free = ∅ then r /∈ H else r ∈ Free)) in {

Free := Free \ {r}, H := H + r ,
H [r ].val := In, UNew := r , USucc := false}}

O1
O2

O3
O4
O5

O6
O7
O8
O9
O10
O11

Pop(;OTop,OSucc,Top,Free ,H ,Out) {
let Lo = empty,ONxt = ? in {
while ¬ OSucc do {
OTop := Top;
if OTop.ref = null then {
OSucc := true;

} else {
ONxt := H [OTop.ref].nxt;
CAS(OTop, (ONxt ×OTop.cnt);Top,OSucc)}}

if OTop.ref 6= null then {
Lo := H [OTop.ref].val′;
Free := Free ∪ {OTop.ref},OSucc := false}

Out := Lo, OSucc := false}}

Fig. 2. Implementation of push and pop.

The Implementation Figure 2 shows the implementation of the stack which
is taken from [9] and attributed to [8]. Variables UNew , USucc, OTop and OSucc
are local variables of “pUsh” resp. “pOp”. They are defined as in-output param-
eters (instead of using let ) to allow us to reason about them. Whenever a
process executes a push, it first allocates and initializes a new cell UNew in one
step (GetNew). Then it repeatedly tries to CAS the shared top pointer to this
new cell. (A “?” denotes an arbitrary value.) A pop process reads the shared top
in line O3 (if the snapshot’s pointer is null, the special value empty is returned)
and locally stores its next reference which becomes the target of the subsequent
CAS. If it succeeds, the top cell is removed from the stack and then added to
the shared reference set Free (freed). Variable OSucc (initially false) is used in
the verification to characterize removed locations, i.e., locations that have been
removed from the stack but not yet freed.

Without a modification counter, an ABA-problem could occur as follows:
suppose that a pop-process p takes a snapshot of the top pointer when the stack
consists of exactly one cell at location A and the free-list is empty. Process p is
delayed after setting its local next reference ONxt to null in line O6 for another
process. This other process removes A from the stack without yet freeing it.
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Subsequently, a further process q executes a successful push, thereby allocating
a new location B. Then A is freed and q executes a successful push of A. If now p
is rescheduled, its CAS operation in line O7 would erroneously succeed, violating
the semantics of pop by deleting the entire stack.

Note that the (double-word) CAS in line O7 atomically compares both a
location and a counter. It fails if the snapshot location OTop.ref has been con-
currently removed from the stack and not reinserted, since it is then not equal
to Top.ref. CAS also fails if OTop.ref is concurrently reinserted in the stack,
since the snapshot’s modification counter OTop.cnt then does not coincide with
Top.cnt (OTop.cnt < Top.cnt). Thus, the ABA-problem is avoided. (In Section
5 we intuitively formalize and verify this non-trivial synchronization scheme.)

3 The Verification Framework

This section gives a brief overview of the underlying verification framework.
We refer the interested reader to [12, 13] for further details on the syntax and
semantics of the logic.

Interval Temporal Logic ITL [4] in KIV is based on algebras, to de-
fine the semantics of the signature, 2 and intervals (executions), which are fi-
nite or infinite sequences of states. A state maps variables to values. Different
from standard ITL, the logic explicitly includes the behavior of a program’s
environment in each step (similar to reactive sequences in [14]): in an interval
I = [I(0), I ′(0), I(1), I ′(1), . . .] the first transition from state I(0) to the primed
state I ′(0) is a program transition, whereas the next transition from state I ′(0)
to I(1) is a transition of a program’s environment. In this manner program and
environment transitions alternate. A variable V is evaluated over I(0), whereas
its primed resp. double primed version V ′ resp. V ′′ is evaluated over I ′(0) and
I(1) respectively. (For an empty interval [I(0)], both are evaluated over I(0).)
E.g., formula V 6= V ′ denotes that variable V is changed in the first program
transition, whereas V ′ = V ′′ states that V is not changed in the first environment
transition. The last state of an interval is characterized by formula last.

The logic provides standard temporal operators to describe interval proper-
ties: the (weak) next operator • ϕ holds in an interval I iff I is either empty,
or ϕ holds in I’s postfix interval [I(1), . . . ]. ϕuntilψ holds in I iff ψ holds
in some [I(n), . . . ] and ϕ holds in [I(m), . . . ] for each m < n. Further stan-
dard operators are introduced as abbreviations, e.g., 3 ϕ ≡ trueuntilϕ, or
2 ϕ ≡ ¬ 3 ¬ ϕ. In our embedding of rely-guarantee reasoning, temporal for-
mulas of the form R(V ′, V ′′)

+−→ G(V, V ′) are of particular interest (cf. Sec-
tion 4). Predicates G and R specify guarantee resp. rely conditions and the

sustains operator
+−→ ensures that G is maintained by a program transition

if previous environment transitions have preserved R, as shown below. Thus,
R(V ′, V ′′)

+−→ G(V, V ′) ≡ ¬ (R(V ′, V ′′)until¬ G(V, V ′)), as shown below.
Note that G must always hold for the first program transition.

2 We use higher-order signatures and algebras, see [13]. An example of a higher-order
variable is the local state function LSf from Section 4.2.
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[I(0) ⊆G
I ′(0) ⊆R

I(1) . . . I ′(n− 1) ⊆R
I(n)⇒ ⊆G

I ′(n) . . .]

The formal programming language in KIV provides the common sequential
constructs. Moreover, it provides a construct for weak-fair interleaving (‖) and
one for non-fair interleaving (‖nf). Programs α and formulas can be mixed, since
they both evaluate to true or false in an interval. In particular, α evaluates to
true in I iff I is an execution of α with arbitrary environment steps.

The verification framework is based on the sequent calculus. A sequent is an
assertion of the form Γ ⊢ ∆ (where Γ and ∆ are lists of formulas), which states
that the conjunction of all formulas in antecedent Γ implies the disjunction
of all formulas in succedent ∆. Sequents are implicitly universally closed. A
sequent (proof obligation) about concurrent programs α typically has the form
α,E, F ⊢ ϕ where α executes in an environment constrained by temporal formula
E, predicate logic formula F describes the current state and ϕ is the property
of interest. As a simple example, consider the following sequent.

(M := M + 1; β), M = 1 ⊢ M ′ = M ′′ +−→ M ′ > M (1)

The executed program is (M :=M+1; β) where β is a program and environment
behavior is unrestricted (E = true omitted). The current state maps counter M
to 1 and it has to be shown that the program always increases M if previous
environment transitions have not changed it (M ′ =M ′′ +−→M ′ > M).

Symbolic Execution Sequents that contain temporal assertions are verified
by symbolically stepping forward to the next states of an interval, calculating
strongest postconditions for each program transition, which are then possibly
weakened according to assumptions for the following environment transition.
Restricting environment transitions to never change any program variables yields
the sequential setting. Thus, the calculus is rather similar to classic symbolic
execution of sequential programs [5], but in a concurrent setting.

A step is executed in two implicit phases which concern programs as well as
formulas. In the first phase, information about the first program and environment
transition is separated from information about the rest of an interval by applying
unwinding rules. A program is unwound by calculating the effect of its first
statement;

+−→ is unwound according to the following rule:

R
+−→ G ↔ G ∧ (R → • (R

+−→ G))

Applying this rule to the succedent of (1) yieldsM ′ > M ∧ (M ′ =M ′′ → • (M ′ =
M ′′ +−→M ′ > M)). That is, we must prove that M is increased in the first pro-
gram transition (M ′ > M) as a first subgoal. If the following environment tran-
sition leaves M unchanged (M ′ =M ′′), then the sustains formula must further

hold in the rest of the interval (• (M ′ = M ′′ +−→ M ′ > M)). The second phase
of a symbolic execution step “moves” to the rest of an interval by eliminating
leading next operators. This leads to the following further subgoal when proving
(1):

β, M = 2 ⊢ M ′ = M ′′ +−→ M ′ > M
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Induction Well-founded induction is used to deal with loops. For infinite
intervals, a term for well-founded induction can be derived from a known liveness
property 3 ϕ as the number N of steps until ϕ holds.

3 ϕ ↔ ∃ N. (N = N ′′ + 1) until ϕ

The fresh variable N is decremented in each step until ϕ becomes true. (Note
that N = N ′′ + 1 is equivalent to N ′′ = N − 1 ∧ N > 0.)

The proof of a sustains formula on an infinite interval I can be carried out
by induction over the length of an arbitrary finite I-prefix.

R
+−→ G ↔ ∀ B. (3 B) → ((R ∧ ¬ B)

+−→ G)

The fresh boolean B characterizes the length of the prefix, which ends as soon
as B becomes true for the first time. Again, the number of steps until B holds
is used for well-founded induction.

4 Deriving Local Rely-Guarantee Conditions for
Linearizability and Lock-Freedom

Rely-guarantee reasoning basically defines proof obligations for individual com-
ponents of a concurrent system instead of reasoning about their interleaved exe-
cution. This section briefly describes our concurrent system model and outlines
our embedding of global rely-guarantee reasoning (cf. [7]). Then it derives its
local instance – which is simpler to use when verifying concrete systems with
similar components – in detail and briefly defines local proof obligations for
linearizability and lock-freedom.

4.1 The Concurrent System Model and Global Rely-Guarantee
Reasoning

The Concurrent System Model As shown in Figure 3, our generic concurrent
system Spawn recursively spawns n+1 components (n : N) to execute in parallel.
Operation Seq defines the possible sequential behaviors of each component p : N.
Either p instantly terminates or it executes finitely or infinitely often – as denoted
by the star operator * – a generic interface procedure COP or skip which models
steps that are unrelated to COP. 3 The unspecified procedure COP models
arbitrary operations that p can execute on the overall concurrent system state
CS : cstate. Functions Inf : N → input and Outf : N → output are used to
insert or return values Inf (p) and Outf (p) respectively.

Global Rely-Guarantee Reasoning To avoid tedious reasoning about
interleaved executions of Spawn, we have embedded rely-guarantee reasoning in

3 The auxiliary function Actf : N → bool distinguishes whether a component executes
COP (i.e., is active) or not, since the logic does not use program counters. This is
mainly relevant for the decomposition proof of lock-freedom.

Local Rely-Guarantee Conditions for Linearizability and Lock-Freedom
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Spawn(n;Actf , Inf ,CS ,Outf ) {
if* n = 0 then

Seq(0;Actf , Inf ,CS ,Outf )
else

Seq(n;Actf , Inf ,CS ,Outf )f
Spawn(n− 1;Actf , Inf ,CS ,Outf )}

Seq(p;Actf , Inf ,CS ,Outf ) {
{ {Actf (p) := true;

COP(p, Inf (p);CS ,Outf (p));
Actf (p) := false}

∨ skip}*}

Fig. 3. The concurrent system model.

the logical framework. In this embedding specifications use the overall concurrent
system state CS and thus we call it “global”. The basic idea is to abstract away
from environment behavior using rely conditions Rext ⊆ N× cstate× cstate for
each component p and to guarantee a certain behavior towards p’s environment
according to guarantee conditions Gext ⊆ N× cstate× cstate. Our central rely-
guarantee proof obligation for an individual component p then claims that in p’s
execution of COP(p, . . . ), each program transition satisfies Gext(p, . . . ) if the
preceding environment transitions have preserved Rext(p, . . . ).

COP(p, Inf (p);CS ,Outf (p)) ⊢ Rext (p,CS
′,CS ′′)

+−→ Gext (p,CS ,CS
′) (2)

We introduce further subpredicates to structure Gext and Rext into three
categories: step invariant guarantee and rely conditions G,R ⊆ N × cstate ×
cstate, state invariant conditions Inv ⊆ cstate and local idle state conditions
Idle ⊆ N×cstate which hold before and after each finite execution of COP. The
full version of (2) which takes into account these structural predicates simply is:

COP(p, Inf (p);CS ,Outf (p)), Inv(CS), Idle(p,CS) ⊢ Rext
+−→ Gext

where Gext :↔ G(p, CS,CS′) ∧ (Inv(CS) → Inv(CS ′))
∧ (last → Idle(p,CS)) ∧ ∀ q 6= p. Idle(q, CS) ↔ Idle(q, CS′)

and Rext :↔ R(p,CS′, CS′′) ∧ (Inv(CS ′) → Inv(CS ′′))
∧ (Idle(p,CS′) ↔ Idle(p, CS′′))

(3)

Program steps in COP(p, . . . ) executions maintain G(p, . . . ), Inv and establish
Idle(p, . . . ) in their last state (and do not change the idle state assumptions of
other components q), as long as environment transitions maintain R(p, . . . ), Inv
and Idle(p, . . . ) respectively. This embedding makes two improvements over our
previous embedding [7]. First, the invariant is now decoupled from R and G
to avoid unnecessarily strong rely resp. guarantee conditions. Second, we have
introduced predicate Idle to express local, idle state conditions.

Proving that these predicates hold indeed in every execution of Spawn can
be decomposed to basically showing (3) for an arbitrary component, according
to the following theorem (cf. [7, 10] for technical details).

Theorem 1 (Global Rely-Guarantee Reasoning).
If (3) holds for an arbitrary overall system state CS and some transitive R, reflexive
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G with G(p,CS ,CS ′) → R(q,CS ,CS ′), ∀ q 6= p, and predicates Inv , Idle, then:

Spawn, 2 RSpawn, InitSpawn ⊢ 2 ((∃ p. G(p, . . . )) ∧ ϕInv ∧ ϕIdle)

Spawn starts in an initial state satisfying InitSpawn, which must imply Inv and
Idle for all components (these are initially inactive). The system’s environment
behavior is restricted by rely RSpawn, which is the identity relation over the in-
output parameters of Spawn. Then each system step of a component p always
satisfies G(p, . . . ), invariant Inv holds in each state according to ϕInv and any
component is idle before and after it executes COP, according to ϕIdle .

4.2 Deriving Process-Local Rely-Guarantee Reasoning

Theorem 1 can be applied in scenarios where each component exhibits a different
behavior (e.g., the producer-channel-consumer described in [12] where n = 2 and
COP(0, . . . ) is the producer, COP(1, . . . ) the channel and COP(2, . . . ) the con-
sumer) since specifications account for the whole system state CS , including all
local states. However, this expressiveness is often not required when components
have similar behaviors, in particular when all components execute the operations
of a concurrent data type. As an example, consider the global specification of
the following simple invariant of the stack from Section 2 where components are
concurrent processes that execute push or pop: pointers to new cells – which are
not yet inserted in the stack – are disjoint during concurrent push operations.

∀ p 6= q. ¬ USuccf (p) ∧ ¬ USuccf (q) → UNewf (p) 6= UNewf (q)

Global specifications require variable functions (e.g., UNewf : N → ref for vari-
able UNew in push) and quantification over all identifiers p, q. Thus they are
less succinct and harder to read. Moreover, proofs that use such specifications
are harder to automate, since finding right quantifier instantiations often fails.

However, the frequent case of concurrent data type implementations permits
local specifications that consider say two representative components p resp. q
with local states LS : lstate resp. LSQ : lstate. The encoding of the aforemen-
tioned invariant then simply is:

¬ USucc ∧ ¬ USuccq → UNew 6= UNewq (4)

From Global to Local Rely-Guarantee Specifications The reduction
to local specifications is based on splitting CS into its local and shared parts
LSf ×S where LSf : N → lstate maps each component to its local state and S :
sstate is the shared state. Each component p now executes the same procedure
LCOP(Inf (p);LSf (p), S ,Outf (p)). In the stack case study, LCOP is the non-
deterministic choice between one of the operations that each process can execute.

LCOP(In;LS ,S ,Out) {Push(In;LS ,S) ∨ Pop(; LS ,S ,Out)}

The shared state S of the stack consists of the shared variables Top, Free, H
for the top-of-stack pointer, the free-set and the application’s heap, whereas the
local state LS is the tuple of the local variables UNew , USucc, OTop and OSucc.
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Furthermore, our local rely-guarantee embedding introduces a new invariant
predicate LDisj to encode disjointness properties, such as (4), between the two
local states. 4 The local counterpart of (3) now is:

LCOP(In;LS ,S ,Out), LIID(LS ,LSQ , S), LIdle(LS) ⊢ LRext
+−→ LGext

where LGext :↔ LG(LS ,LSQ , S ,LS ′,S ′) ∧ (last → LIdle(LS))
∧ (LIID(LS ,LSQ ,S) → LIID(LS ′,LSQ ′,S ′))

and LRext :↔ LS ′ = LS ′′ ∧ LR(LS ′,S ′,S ′′)
∧ (LIID(LS ′,LSQ ′,S ′) → LIID(LS ′′,LSQ ′′,S ′′))

and LIID(LS ,LSQ , S) :↔ LInv(LS ,S) ∧ LInv(LSQ ,S) ∧ LDisj (LS ,LSQ)

(5)

Similar to (3), LCOP-steps must maintain the local guarantee conditions LG
and the local state invariants LIID , plus, they must establish the local idle state
LIdle, as long as environment transitions do not modify LS and they maintain
the local rely LR and LIID respectively. A more detailed description of the local
structural predicates is given in the following; their instantiation in the stack
case study is shown in detail in Section 5.

The Local Structural Predicates The first three parameters of LG ⊆
lstate× lstate×sstate× lstate×sstate denote the local states of the two compo-
nents and the shared state before a program transition; the last two parameters
stand for the executing component’s local state and the shared state after this
transition. Predicate LIdle ⊆ lstate encodes local, idle state conditions that hold
between finite executions of LCOP. In the case study for example, idle states
satisfy the following local restrictions: LIdle(LS ) :↔ USucc ∧ ¬ OSucc.

The first parameter of LR ⊆ lstate× sstate× sstate corresponds to a com-
ponent’s local state before an environment transition. The second resp. third
parameter is the shared state before resp. after this transition. In the case study,
LR ensures for instance that the content of a new cell in push is not changed by
the environment if this cell is not yet inserted in the stack.

¬ USucc′ → H ′′[UNew ′] = H ′[UNew ′] (6)

Together we can prove the following local decomposition theorem for Spawn
where CS is replaced by LSf × S and COP by LCOP respectively:

Theorem 2 (Local Rely-Guarantee Reasoning). If (5) holds for two arbi-
trary disjoint local states LS ,LSQ, the shared state S and some transitive rely
LR, reflexive predicate LG with LG(LS ,LSQ , S ,LS ′, S ′) → LR(LSQ , S , S ′),
symmetric predicate LDisj and predicates LInv, LIdle, then:

Spawn,2 RSpawn, InitSpawn ⊢ 2 ((∃ p. ϕLG(p)) ∧ ϕLI ∧ ϕLIdle)

where ϕLG(p) states that the system step of a component p does not modify the
local states of other components q and it satisfies LG,

ϕLG(p) :↔ ∀ q 6= p. LSf (q) = LSf ′(q) ∧ LG(LSf (p),LSf (q),S ,LSf ′(p),S ′)

4 These are part of Inv in the global rely-guarantee theory.
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the invariant conditions hold for all components at all times,

ϕLI :↔ ∀ p 6= q. LInv(LSf (p),S) ∧ LInv(LSf ′(p),S ′)
∧ LDisj (LSf (p),LSf (q)) ∧ LDisj (LSf ′(p),LSf ′(q))

and each p is idle before and after LCOP:

ϕLIdle :↔ ∀ p. ¬ Actf (p) → LIdle(LSf (p))

Proof. By instantiating CS with LSf × S , COP with LCOP, predicates Inv ,
Idle, G and R with predicates Inv ♮, Idle♮, G♮ and R♮ as given below and verifying
that the preconditions of Theorem 1 follow from those of Theorem 2.

Inv ♮(LSf ,S) :↔ ∀ p 6= q. LInv(LSf (p),S) ∧ LDisj (LSf (p),LSf (q))
Idle♮(p,LSf ,S) :↔ LIdle(LSf (p)); G♮(p,LSf ,S ,LSf

′, S ′) :↔ ϕLG(p)
R♮(p,LSf

′,S ′,LSf ′′,S ′′) :↔ LSf ′(p) = LSf ′′(p) ∧ LR(LSf ′(p),S ′,S ′′)

4.3 Local Proof Obligations for Linearizability and Lock-Freedom

Linearizability [2] and lock-freedom [3] are major correctness resp. progress prop-
erties of concurrent systems. In this section we define local proof obligations for
LCOP which imply linearizability and lock-freedom of Spawn. They are based
on invariant properties LISR with one local state LS that each component may
always assume during its execution of LCOP(In;LS , S ,Out), according to The-
orem 2.

LISR :↔ LInv(LS ,S) ∧ LInv(LS ′,S ′) ∧ LS ′ = LS ′′ ∧ LR(LS ′, S ′,S ′′)

Every component can assume LInv at all times according to ϕLI . Since ϕLG(p)
implies that each component p does not modify other local states and satisfies its
guarantee, each component can in return also assume that its local state is never
concurrently changed and that its rely holds at all times (recall LG → LR).

Linearizability Based on these assumptions established by rely-guarantee
reasoning, we prove linearizability by locating the linearization point (i.e., the
step where a call appears to take effect) of each operation in LCOP. 5 Con-
ceptually, the linearization point is determined in a refinement proof using an
abstraction function Abs ⊆ sstate× astate (a partial function on shared states
that satisfy LInv , which returns a corresponding abstract state). In the stack
example, Abs maps the stack in memory to a finite algebraic list St of its data
values.

Abs(Top.ref,H , [ ]) :↔ Top.ref = null
Abs(Top.ref,H , v + St) :↔ Top.ref 6= null ∧ Top.ref ∈ H

∧ H [Top.ref].val = v ∧ Abs(H [Top.ref].nxt,H , St)

5 Our current approach suffices when a linearization point is within the code of the
executing component, even when its location depends on future behavior. This is
possible, since analyzing future states of an interval is possible in ITL (cf. [7] for a
detailed description of such an example.)
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APush(In;St) {
skip∗;
St := push(In,St);
skip∗}

APop(;St ,Out) {
let Lo = empty in {
skip∗;
if* St 6= [ ] then {
Lo := top(St),St := pop(St)};

skip∗;Out := Lo}}

Fig. 4. Abstract stack operations.

To prove linearizability, one has to show that each concrete operation from
LCOP non-atomically refines a corresponding abstract operation, which is de-
fined in a further generic procedure AOP. In the case study, AOP is the non-
deterministic choice between an abstract APush or APop, which are shown in
Figure 4. They use atomic operations push resp. pop to add resp. remove an
element from St at concrete linearization points and additional skip steps at
non-linearization points.

Refinement (i.e., interval inclusion) between LCOP and AOP is simply ex-
pressed as LCOP ⊢ AOP in the logical framework. Hence, the local refinement
proof obligation for linearizability is:

LCOP(In;LS ,S ,Out), 2 (LISR ∧ Abs(S ,AS) ∧ Abs(S ′,AS ′)), LIdle(LS) ⊢
AOP(In;AS ,Out)

(7)

Lock-Freedom A concurrent system is lock-free if some of its running opera-
tions always terminates in a finite number of steps, even if individual components
are arbitrarily delayed or fail. In our concurrent system model (Fig. 3), this is
modeled by requiring that some active operation (expressed using activity func-
tion Actf ) always eventually becomes inactive. This is true, even if the scheduling
is non-fair ‖nf (to model failure), as discussed in [15], p. 393 and following. (Also
see [10] for full proofs.) However, individual components of a lock-free system
might starve. In the stack example, single push and pop operations can be forced
to always retry their loop if another process modifies the shared top pointer. Yet,
if such an interference always occurs, it is an interfering process which terminates
its current execution and without interference, the current process eventually ter-
minates. We formalize this intuitive argument using an additional reflexive and
transitive relation U ⊆ sstate × sstate (“unchanged”) which describes inter-
ference freedom. Note that U represents an unbounded amount of interference
which a process might “suffer” from or perform. For the stack, we determine the
“unchanged” relation as identity of the shared variable Top.

U (S0, S1) :↔ Top0 = Top1

To prove lock-freedom (based on rely-guarantee conditions LISR), two local
termination proofs for each operation in LCOP are sufficient: termination with-
out interference from the environment (2 U (S ′, S ′′) → 3 last) and termination
after violation of U by the program (¬ U (S , S ′) → 3 last):

LCOP(In;LS ,S ,Out), 2 LISR, LIdle(LS) ⊢
2 ((2 U (S ′,S ′′)) ∨ ¬ U (S ,S ′) → 3 last)

(8)
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5 Local Verification of the Stack

This section describes the application of the local decomposition theory to verify
memory-safety, ABA-prevention, linearizability and lock-freedom of a concurrent
stack application Spawn(n; . . . ) where all n+ 1 processes execute the push and
pop operations from Figure 2. The specifications and proofs consider at most two
representative processes. The explicit reuse of memory locations makes the ver-
ification notably more challenging than proving the stack under the assumption
of GC, which implicitly avoids the reuse of a memory location that is referenced
in some operation.

5.1 Instantiating the Local Predicates

LInv Predicate LInv encodes several state invariant properties of the stack
LInv :↔ ϕst ∧ ϕn ∧ ϕfree ∧ ϕt. According to ϕst, the implementation represents
some finite list, i.e., Abs(Top.ref,H , St) always holds for some St .

ϕst :↔ ∃ St . Abs(Top.ref,H ,St)

To maintain this property new cells that are to be pushed on the stack must be
allocated and disjoint from the stack according to ϕn. (A standard reachability
predicate reach(Top.ref, r ,H ) checks whether a location r is in the stack.)

ϕn :↔ ¬ USucc → UNew 6= null ∧ UNew ∈ H ∧ ¬ reach(Top.ref,UNew ,H )

Invariant ϕfree ensures major safety aspects of the memory reclamation scheme:
freed locations r ∈ Free are allocated and disjoint from the stack, since otherwise
the reuse of r would cause an access error or corrupt the stack; r is also disjoint
from new cells and from removed locations (i.e., removed from the stack but not
yet freed OSucc ∧ OTop.ref 6= null) and thus the memory pool is duplicate-free.

ϕfree :↔ ∀ r ∈ Free . r 6= null ∧ r ∈ H ∧ ¬ reach(Top.ref, r ,H )
∧ (¬ USucc → r 6= UNew )
∧ (OSucc ∧ OTop.ref 6= null → r 6= OTop.ref)

We must also know that locations OTop.ref 6= null are allocated and that re-
moved locations are disjoint from the stack (ϕt).

ϕt :↔ (OTop.ref 6= null → OTop.ref ∈ H )
∧ (OSucc ∧ OTop.ref 6= null → ¬ reach(Top.ref,OTop.ref,H ))

LDisj Three disjointness properties between local pointers of the two pro-
cesses are used. To ensure symmetry we define LDisj (LS ,LSQ) :↔ disj (LS ,LSQ)
∧ disj (LSQ ,LS ) where disj (LS ,LSQ) :↔ (4) ∧ δrm ∧ δtn. Property δrm states
that concurrently removed locations are disjoint, whereas δtn ensures that re-
moved locations are disjoint from concurrent new cells.

δrm :↔ OSucc ∧ OTop.ref 6= null ∧ OSuccq ∧ OTopq .ref 6= null
→ OTop.ref 6= OTopq .ref

δtn :↔ OSucc ∧ OTop.ref 6= null ∧ ¬ USuccq → OTop.ref 6= UNewq
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LR We define several rely conditions LR :↔ ρst ∧ ρnst ∧ ρge ∧ ρrm ∧ (6)
to intuitively formalize the non-trivial synchronization mechanism that avoids
the ABA-problem. In particular, rely conditions ρst and ρnst make sure that
during a pop, the ABA-prone location OTop.ref either stays in the stack and its
contents are unchanged or if it is concurrently removed, then OTop.ref is not
reinserted in the stack or the modification counter is increased.

ρst :↔ ¬ OSucc′ ∧ OTop′.ref 6= null ∧ Top′ = OTop′

→ Top′′ = Top′ ∧ H ′′[OTop′.ref] = H ′[OTop′.ref]
∨ ¬ reach(Top′′.ref,OTop′.ref,H ′′) ∨ Top′′.cnt > Top′.cnt

ρnst :↔ ¬ OSucc′ ∧ OTop′.ref 6= null ∧ ¬ reach(Top′.ref,OTop′.ref,H ′)
→ ¬ reach(Top′′.ref,OTop′.ref,H ′′) ∨ Top′′.cnt > Top′.cnt

The remaining simple relies ensure that the modification counter never decreases
(ρge) and that the content of removed locations is unchanged (ρrm).

ρge :↔ Top′.cnt ≤ Top′′.cnt
ρrm :↔ OSucc′ ∧ OTop′.ref 6= null → H ′[OTop′.ref] = H ′′[OTop′.ref]

LG The reclamation scheme avoids memory leaks, i.e., all heap locations r
are either in the stack or in the free-set or owned by a process at all times in each
execution of Spawn, where every process owns its new and removed locations.

owns(r ,LS): ↔
(¬ USucc ∧ UNew = r) ∨ (OSucc ∧ OTop.ref 6= null ∧ OTop.ref = r)

We decompose the absence of memory leaks to a local guarantee noleaks , which
ensures that process steps do not create leaks.

noleaks(LS ,S ,LS ′,S ′) :↔
∀ r . r /∈ H ∨ reach(Top, r ,H ) ∨ r ∈ Free ∨ owns(r ,LS)

→ r /∈ H ′ ∨ reach(Top′, r ,H ′) ∨ r ∈ Free ′ ∨ owns(r ,LS ′)

Predicate LG is then defined to maintain noleaks and the rely conditions of the
other process LG(LS ,LSQ , . . . ) :↔ noleaks(. . . ) ∧ LR(LSQ , . . . ).

5.2 The Main Proofs

The main effort of the case study is to prove (5) –sustainment of the verification
conditions LG, LInv and LDisj for the steps of each operation if the environment
has previously maintained LR. We proceed by case analysis over operation Op ∈
{Push,Pop}. The proof resembles a Hoare-style proof of a sequential program.
In particular, before executing a loop we generalize the current state assumptions
to a Hoare-style invariant (and use

+−→ induction when the loop is reiterated).
Each program statement in Op is consecutively, symbolically executed according
to Section 3. Only some major arguments are outlined.

Sustainment of the Verification Conditions Op ≡ Push: The allocation
step (GetNew ) resets the content of a new cell. However, if the free-set is empty,
this step does not affect allocated locations and otherwise invariant ϕfree ensures
that no rely conditions of the other process are violated.
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Op ≡ Pop: After taking the snapshot in line O3 in case of a non-null top-of-
stack pointer, the proof proceeds by case distinction: according to rely condition
ρst there are three possible cases in the next state. First, when the shared top-
of-stack pointer has not been concurrently modified, the content of the snapshot
location is unchanged and the current iteration can still succeed correctly. In the
second resp. third case, the snapshot location OTop.ref is either not in the stack
anymore or it has been reinserted and thus the modification counter has been
increased. In both latter cases rely conditions ρnst and ρge ensure that the loop
must be reiterated. Hence the CAS can not erroneously succeed and cause an
ABA-problem.

Linearizability The proof of linearizability (proof obligation (7)) distin-
guishes between the two possible concrete operations. In case of a push oper-
ation, the linearization point is the successful CAS. Rely (6) ensures that the
initial value of the new cell and its next reference are immutable. Hence, the
successful CAS corresponds to an abstract push of the invoked value. The pop
operation has one linearization point in line O3 if the stack is empty, or else in
line O7 if the CAS succeeds. Relies ρst and ρrm ensure that the successful CAS
corresponds to an abstract pop and that the correct value is returned.

Lock-Freedom According to (8), the proof of lock-freedom requires ter-
mination proofs for each data structure operation if environment behavior is
restricted according to U and if a step violates U . The termination proofs for
push and pop mainly automatically step through the code until an operation ter-
minates or they apply induction whenever a loop is retried. The required term
for induction is extracted from the always formula in the succedent of (8).

Verification Effort in KIV The soundness proofs for the improved global
decomposition theory took about four man-weeks. In particular, the decompo-
sition proof of lock-freedom is tedious as it must consider many possible inter-
leavings. The derivation of the local instance took about two man-weeks. The
main challenge was to find the right local proof obligations and the instantiation
of the global predicates (see proof of Theorem 2). Using the local instead of
the global theory to verify the stack under GC reduced the size of the verifica-
tion conditions by around one third. The verification of the stack with explicit
memory reuse took around two man-weeks and was about twice as complex as
verifying the stack under GC. The main new challenge was to find the right heap
invariants that ensure memory-safety (ϕfree, noleaks) and the rely conditions for
ABA-prevention (ρst, ρnst).

6 Related Work and Comparison

Compositional Verification Most approaches to compositional reasoning jus-
tify the rules they use on a semantic level (e.g., [14], [16]). A mechanized sound-
ness and completeness proof for global rely-guarantee rules for interleaved pro-
grams with shared variables has been given by Nieto et al [17]. The verification
is based on Isabelle’s higher-order logic, and therefore in essence had to explic-
itly formalize intervals (using a small-step semantics for programs). Since our
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proof is based on a strong temporal logic (instead of just HOL), where intervals
are already part of the semantics, proving the soundness of rely-guarantee rules
using ITL is much simpler in our setting.6

Local Rely-Guarantee Proof Obligations There are two approaches [18,
19] which combine rely-guarantee and separation logic for heap-modular reason-
ing. Our work borrows this idea to achieve process-local reasoning and comple-
ments their work by also considering liveness (lock-freedom). Separation logic’s
operator ∗ and the framing rule permits to “hide” heap disjointness invariants,
which we encode explicitly. Fu et al. [20] define a temporal logic of the past to
manually verify ABA-prevention for a lock-free stack with hazard pointers [11].
The local rely-guarantee instance presented here mechanizes such proofs, and
allows to additionally mechanize linearizability and lock-freedom proofs of this
challenging algorithm. This is demonstrated in [21] which briefly sketches the
main ideas of the local rely-guarantee theory layed out in this paper, and then
mainly focusses on the generic verification of lock-free algorithms with hazard
pointers. In contrast, this work gives a detailed presentation of our process-local
rely-guarantee reasoning approach and outlines its application using another
well-known lock-free memory reclamation scheme.

In general, techniques that exploit the symmetry of identical system com-
ponents have also been developed in model checking (cf. [22] for an overview).
However, proving linearizability using (symmetric) model checking often fails (cf.
[23] and [24] for recent work on model checking linearizability). Model checking
is good at finding bugs in lock-free algorithms by showing counter examples.
However, since it checks short executions of a few processes only, it does not
give full proofs.

Verification of Linearizability Mechanized verification approaches for lin-
earizability can be roughly classified into three categories: automated approaches
based on shape analysis and separation logic, and interactive approaches. Au-
tomated approaches can verify the stack example assuming garbage collection,
see [25] and [26], and the latter is able to solve many interesting examples au-
tomatically, including some cases where linearization points lie outside of the
code of the executing thread. Our proof obligations for linearizability have to
be generalized to handle some of these examples. However, verification under
GC is much simpler than verification using modification counters (which is still
simpler than with hazard pointers).

The work most closely related to ours is Doherty, Groves et al. [27], which ver-
ifies linearizability of a lock-free queue with modification counters in PVS. The
approach is related to ours in also using refinement to prove linearizability. It is
global however, and has to encode the algorithms as a concurrent IO-Automaton.
Lock-freedom is not discussed. Later on, Groves et al. [9] gave a manual verifica-
tion approach for the stack with modification counters, based on trace reduction
and incremental refinement. Our impression is that mechanizing their arguments

6 We have justified some of the more difficult rules of ITL using an embedding of
the semantics into HOL. Proofs over this theory are rather complex too. Like many
others, the embedding of ITL into HOL is not usable to verify case studies.
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about commuting steps would be hard. Nevertheless our verification benefited
from knowing many of their informal arguments.

Verification of Lock-Freedom Gotsman et al. [28] developed a new logic
for proving liveness properties of non-blocking algorithms based on rely-guarantee
reasoning and separation logic. Their approach can automatically discharge man-
ually derived proof obligations for lock-freedom, using a combination of tools.
In contrast, we mechanically verify both decomposition theorems for safety and
liveness properties of concurrent programs and local proof obligations in one
logical framework and tool.

7 Conclusion

We have described a mechanically derived local rely-guarantee instance. Such
local instances are useful to avoid reasoning about the overall system state
when verifying concurrent algorithms where components have similar behav-
iors, e.g., lock-free data type implementations. Moreover, we have defined local
proof obligations for linearizability and lock-freedom based on this instance and
have shown its application to verify the major safety and liveness aspects of a
lock-free stack with explicit memory reuse.

In current work, we have successfully applied the approach described here to
locally verify linearizability and lock-freedom of the Michael-Scott queue with
hazard pointers [11] and of a refined version of the stack, where the abstract free-
set is replaced by a further lock-free stack. These proofs are online too [10]. Our
recent work also shows that a local verification of Michael’s lock-free set algo-
rithm [29] is possible too. Moreover, we currently generalize the decomposition of
linearizability to treat more complex linearization points, adapting results from
[30]. These improved techniques are applied to further challenging concurrent
algorithms.
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12. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification
of concurrent systems using symbolic execution. AI Communications 23((2,3))
(2010) 285–307

13. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Proc. of TIME, to appear. IEEE, CPS (2011)

14. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel,
M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Number 54 in Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press (2001)
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