
Science of Computer Programming 43 (2002) 161–192
www.elsevier.com/locate/scico

Reasoning about real-time repetitions:
terminating and nonterminating

Ian Hayes
School of Computer Science and Electrical Engineering, The University of Queensland,

Brisbane 4072, Australia

Abstract

It is common for a real-time system to contain a nonterminating process monitoring an input
and controlling an output. Hence, a real-time program development method needs to support
nonterminating repetitions. In this paper we develop a general proof rule for reasoning about
possibly nonterminating repetitions. The rule makes use of a Floyd–Hoare-style loop invariant
that is maintained by each iteration of the repetition, a Jones-style relation between the pre- and
post-states on each iteration, and a deadline specifying an upper bound on the starting time of
each iteration. The general rule is proved correct with respect to a predicative semantics.

In the case of a terminating repetition the rule reduces to the standard rule extended to handle
real time. Other special cases include repetitions whose bodies are guaranteed to terminate,
nonterminating repetitions with the constant true as a guard, and repetitions whose termination
is guaranteed by the inclusion of a 1xed deadline. c© 2002 Elsevier Science B.V. All rights
reserved.

1. Introduction

Our overall goal is to provide a method for the formal development of real-time
programs. One problem with real-time programs is that the timing characteristics of
a program are not known until it is compiled for a particular machine, whereas we
would prefer a machine-independent program development method. The approach we
have taken is to extend a real-time programming language with a deadline command
[1] that allows timing constraints to be incorporated into a real-time program. The
deadline command has a simple semantics: it takes no time to execute and guarantees
to complete by a given time. For example, the following code reads the value of the

E-mail address: ianh@csee.uq.edu.au (I. Hayes).

0167-6423/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -6423(02)00024 -2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/14998738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

162 I. Hayes / Science of Computer Programming 43 (2002) 161–192

input d1 into the local variable x, calculates f(x), assigns it to y, and writes y to
the output d2. The special variable � stands for the current time. The starting time
of the commands is captured in the auxiliary variable m, and the 1nal command is
a deadline of m + U ; this ensures that the commands complete within U seconds of
them beginning.

m := �; -- � is the current time variable
x : read (d1);
y := f(x);
d2 := y;
deadline m+ U

(1)

In isolation a deadline command cannot be implemented, but if it can be shown that all
execution paths leading to a deadline command reach it before its deadline, then it can
be removed. We consider such checking to be part of an extended compilation phase
for the program, rather than part of the program development phase. Unfortunately,
there is the possibility that the compiled code may not meet all the deadlines. In this
case the program is not suitable and either we need to redevelop (parts of) the program,
or alternatively 1nd a faster machine or a compiler that generates better code.

The deadline command allows machine-independent real-time programs to be ex-
pressed. It also allows one to separate out timing constraints to leave components that
are purely calculations [4]; these components can then be developed as in the non-real-
time calculus. To date we have developed a sequential real-time re1nement calculus
[9,11] that can be viewed as an extension [4] of the standard sequential re1nement
calculus [19]. In this paper we generalise our earlier work on rules for nonterminating
repetitions [6] so that it makes use of a relational approach similar to that of Jones [18].
We provide a single general rule for introducing possibly nonterminating repetitions.
The rule subsumes all our earlier rules, and the relational approach also considerably
simpli1es the use of the rule in practice. We give a predicative semantics [7] for the
real-time language in the style of Hehner [13,12] and Hoare and He [15]. Within this
framework we give a simpler relational-style semantics for repetitions, and prove the
general rule correct with respect to this semantics.

1.1. Related work

Hooman and Van Roosmalen [17] have developed a platform-independent approach
to real-time software development similar to ours. Their approach makes use of timing
annotations that are associated with commands. The annotations allow the capture in
auxiliary timing variables of the time of occurrence of signi1cant events that occur
with the associated command, and the expression of timing deadlines on the command
relative to such timing variables. They give an example similar to (1) using their
notation:

in(d1; x)[m?];
y := f(x);
out(d2; y)[¡ m+ U]

I. Hayes / Science of Computer Programming 43 (2002) 161–192 163

The constructs in square brackets are timing annotations [17, Section 2]. On the input
the annotation ‘m?’ indicates that the time at which the input occurs should be assigned
to timing variable m, and on the output the annotation ‘¡m + U ’ requires the output
to take eFect before m + U , i.e., within U time units of the input time. Hooman and
Van Roosmalen keep timing annotations separate from the rest of the program. They
give Hoare-like rules for reasoning about programs in their notation, but there is no
semantics against which to justify the rules. The rules given in this paper are more
general than those given by Hooman and Van Roosmalen. In addition the use of idle-
invariant properties simpli1es the application of the rules in practice, and the semantics
given in this paper could be used to justify their Hoare axioms.

Section 2 outlines the real-time re1nement calculus. Section 3 de1nes a possibly
nonterminating repetition construct. Section 4 develops re1nement laws for introducing
possibly nonterminating repetitions. Section 5 gives examples of the application of the
laws, and Section 6 discusses timing constraint analysis for this example. Section 7
gives a proof of the general law.

2. Real-time re�nement calculus

We model time by nonnegative real numbers:

Time =̂ {r : real∞ | 0 6 r ¡∞};
where real∞ is the set of real numbers including in1nities, and operators on the reals
are extended to allow in1nite arguments. The real-time re1nement calculus makes use
of a special real-valued variable, �, for the current time. To allow for nonterminating
programs, we allow � to take on the value in1nity.

Time∞ =̂Time ∪ {∞}:
In real-time programs we distinguish four kinds of variables:

• inputs, which are under the control of the environment of the program;
• outputs, which are under the control of the program;
• local variables, which are under the control of the program, but unlike outputs are

not externally visible; and
• auxiliary variables, which are similar to local variables, but are only used for rea-

soning about the program and do not appear in the machine code generated by a
compiler; assignments to auxiliary variables take no time.

Inputs and outputs are modelled as total functions from Time to the declared type of
the variable. Note that it is not meaningful to talk about the value of a variable at time
in1nity. Only the (special) current time variable, �, may take on the value in1nity.
Within the semantics of a command, local and auxiliary variables are modelled by
their before and after values. We sometimes need to refer to the set of all variables
in scope. We call this �. It is partitioned into �:in; �:out; �:local and �:aux. We
use the term state to refer to the combination of the local and auxiliary variables, the

164 I. Hayes / Science of Computer Programming 43 (2002) 161–192

abbreviation �:v to stand for the state variables, and decorations of �:v, such as �:v0,
to stand for decorated state variables.

The semantics of the real-time language follows an approach similar to that of Utting
and Fidge [20]. In this paper we represent the semantics of a command by a predicate
in a form similar to that of Hehner [13,12] and Hoare and He [15]. The predicate
relates the start time of a command, �0, and the initial values of the local and auxiliary
variables to its 1nish time, � (which may be in1nity) and the 1nal values of the local
and auxiliary variables, as well as constraining the traces of the outputs over time. All
our commands insist that time does not go backwards: �06�.

The meaning function, M, takes the variables in scope �, and a command C, and
returns the corresponding predicate M�(C). As for Hehner, re1nement of commands
is de1ned as reverse entailment:

C �� D =̂M� (C) WM� (D) ;

where the reverse entailment holds for all possible values of the variables, including
�0 and �. When the environment � is clear from the context, it is omitted.

2.1. Real-time speci3cation command

We de1ne a possibly nonterminating real-time speci3cation command with syntax,
∞x : [P;Q], where x is a vector of variables called the frame, P is the assumption
made by the speci1cation, and Q is its e4ect. The syntax is similar to that of Morgan
[19] except that there is an ‘∞’ symbol at the beginning to indicate that the command
might not terminate.
P is assumed to hold at the start time of the command. P is a single-state predicate,

that is, it contains no references to �0 or zero-subscripted state (i.e., local and auxiliary)
variables. P may contain references to the input and output variable traces. The eFect Q
is a relation that constrains the output traces and relates the start time �0 as well as
the initial (zero-subscripted) state variables, and the 1nish time � as well as the 1nal
state variables.

The frame, x, of a speci1cation command lists those outputs and state variables that
may be modi1ed by the command. All other outputs in scope, i.e., in �:out but not x,
are de1ned to be stable for the duration of the command. The predicate stable(z; S)
states that the variable z has the same value over all the times in the set S:

stable(z; S) =̂ S �= {} ⇒ (∃y • z(S) = {y});
where z(S) is the image of the set S through the function z. We allow the 1rst
argument of stable to be a vector of variables, in which case all variables in the vector
are stable. The notation [-s : : : t -] stands for the closed interval of times from s to t, and
(-s : : : t -) stands for the open interval. We also allow half-open, half-closed intervals.
The notation �:out\x stands for the set of output variables (�:out) minus the set of
variables in x.

Any state variables which are not in the frame of a speci1cation command are
unchanged. We introduce the predicate eq(out; t0; t; z0; z) to capture the fact that the

I. Hayes / Science of Computer Programming 43 (2002) 161–192 165

outputs out are stable from t0 until t and that the pre-state, z0, equals the post-state, z.
In the case of the states, if the 1nal time t is in1nity, then the state variables do not
have any counterpart in reality. Hence, the equality between z0 and z is not required
if t is in1nity.

eq(out; t0; t; z0; z) =̂ stable(out; [- t0 : : : t -]) ∧ (t �=∞⇒ z0 = z):

De�nition 1 (Real-time speci3cation). Given variables, �, a frame, x, contained in
�:out ∪ �:local ∪ �:aux, a single-state predicate, P, and a relation, Q, the mean-
ing of a possibly nonterminating real-time speci3cation command is de1ned by the
following. (Recall that �:v stands for the state variables.)

M�(∞ x: [P; Q]) =̂ �0 6 �∧
(�0¡∞∧ P[�0 ;�:v0

�;�:v]⇒ Q ∧ eq(�:out\x; �0; �; �:v0\x0; �:v\x)):

As abbreviations, if the assumption, P, is omitted, then it is taken to be true, and if
the frame is empty the ‘:’ is omitted. Note that if assumption P does not hold initially
the command still guarantees that time does not go backwards.

Because the time variable may take on the value in1nity, the above speci1cation
command allows nontermination. If the command does not terminate then the 1nal
value of the state has no counterpart in reality. Hence it does not make sense to write
speci1cations that require for example the 1nal value of a local variable z to be zero
and the command to not terminate: z= 0 ∧ �=∞. There is no program code that can
implement such a speci1cation, so it is of little use. The following property states the
condition under which the meaning of a command is independent of the 1nal values
of the state variables if the command does not terminate.

De�nition 2 (Nontermination state independent). For a command, C, that is well-
formed in an environment, �; C is nontermination state independent provided, �=∞
V (M� (C)⇔(∃�:v •M� (C))).

All the primitive real-time commands de1ned in Section 2.2 satisfy this property, and
compound commands preserve it. Hence, the only commands that may not satisfy it are
speci1cation commands, because the eFect relation Q may constrain the 1nal state at
time in1nity. We require all speci1cations to satisfy this healthiness property as well.

All of the executable commands (Section 2.2) in our language only constrain the
values of the outputs over the time interval over which they execute. Typically, the
eFect of a speci1cation command only constrains the values of outputs over the execu-
tion interval of the command: (-�0 : : : � -]. However, we do not put any such restriction
in the de1nition of a speci1cation command because, although the eFect may constrain
the value of outputs before �0 or after �, the assumption of the speci1cation may be
strong enough to allow the eFect to be replaced by one that only constrains the out-
puts over the execution interval of the command. Such ‘replacement’ steps are part of
the re1nement process. For example, if the eFect constrains the value of the outputs
before �0, then in order for the speci1cation to be implementable, the assumption should

166 I. Hayes / Science of Computer Programming 43 (2002) 161–192

have at least as strong a constraint on the outputs before �0, in which case the eFect
can be replaced by one that does not constrain the outputs before �0. It is also pos-
sible for the eFect to constrain the value of the outputs after �. For example, for a
central heater controller, the eFect of a speci1cation may require the temperature to be
above some lower limit mintemp for some time interval after �. This is implementable
provided the assumption of the speci1cation implies that the rate of change of the
temperature over time is limited. The speci1cation can be implemented by ensuring
the temperature is above mintemp by a large enough margin to ensure the temperature
remains over mintemp over the required interval assuming the maximum rate of fall
of the temperature.

2.2. Real-time commands

Other real-time commands can be de1ned in terms of equivalent speci1cation com-
mands. We de1ne: a terminating (no ‘∞’ pre1x) speci1cation command, x : [P;Q];
the null command, skip, that does nothing and takes no time; a command, idle, that
does nothing but may take time; a multiple assignment; an assignment for auxiliary
variables that takes no time; a command, read, to sample a value from an external
input; a command, gettime, to determine the current time; and the deadline command.
External outputs may be modi1ed using assignments.

De�nition 3 (Real-time commands). Given a vector of noninput variables, x; a single-
state predicate P; a relation Q; a vector of idle-stable expressions, E, of the same length
as x and assignment compatible with x; a vector of auxiliary variables, y; a vector of
expressions, F , of the same length as y and assignment compatible with y; a noninput
variable, z; an input i that is assignment compatible with z; a noninput variable t of type
time; and a time-valued expression D; the real-time commands are de1ned as follows.

x: [P; Q] =̂∞ x:
[
P; Q ∧ � ¡∞]

skip =̂ [�0 = �]
idle =̂ [�0 6 �]
x := E =̂ x: [x@ � = E[�:v0

�:v] @ �0]
y := F =̂y: [y = F[�:v0

�:v] @ �0 ∧ � = �0]
z : read (i) =̂ z: [z@ � ∈ i([-�0 : : : � -])]
t : gettime =̂ t: [�0 6 t@ �6 �]
deadlineD =̂ [�0 = �6 D@ �]

In the de1nition of skip and idle we make use of a terminating speci1cation (no ‘∞’)
with an empty frame and a default assumption of true. Note that � is implicitly in the
frame of such a speci1cation, and hence in the case of idle it may take time. Below
we use the same mechanism to represent guards, which may take time to evaluate.

We allow expressions used in assignments and guards to refer to the value of an out-
put. Such references are to the current value of the output. Hence for an expression, E,
we use the notation E@ s to stand for E with all free occurrences of � replaced by s,
and all occurrences of any input or output, y, replaced by y(s). The expressions used

I. Hayes / Science of Computer Programming 43 (2002) 161–192 167

in assignments and guards are assumed to be idle-stable, that is, their value does not
change over time provided all outputs are stable and the state does not change. In prac-
tice, this usually means that an idle-stable expression cannot refer to the special time
variable, �, or to the value of external inputs. In the de1nition, the ‘@’ operator does not
aFect state variables, and hence the same state variables appear in E@ �0 and E@ �.

De�nition 4 (Idle-stable). Given variables, �, an expression E is idle-stable provided,
�06�¡∞∧ stable(�:out; [-�0 : : : � -])VE@ �0 = E@ �:

The deadline command is novel. It takes no time and guarantees to complete by
the given deadline. It is not possible to implement a deadline command by generating
code. Instead, we need to check that the code generated for a program that contains a
deadline command will always reach the deadline command by its deadline [3].

The (demonic) nondeterministic choice between two commands may behave as either
of the two commands.

De�nition 5 (Choice). Given commands C1 and C2, the nondeterministic choice
between C1 and C2, written C1 []C2, is de1ned by

M� (C1 []C2) =̂M� (C1) ∨M� (C2) :

A command is re1ned by a choice between two commands if and only if it is re1ned
by each of the commands, and a choice is re1ned by either of its alternatives.

Law 6 (Choice). For any commands C, C1 and C2,

(C � C1 []C2) ≡ (C � C1) ∧ (C � C2);
C1 []C2 � C1 and C1 []C2 � C2:

Nondeterministic choice may be generalised to a choice over a set of commands.

De�nition 7 (General choice). Given a nonempty set of commands SC, the generalised
nondeterministic choice over the set of commands, written [] SC, is de1ned by

M� ([] SC) =̂ (∃C : SC •M� (C)):

A command is re1ned by a generalised choice over a set of commands SC if and only
if it is re1ned by every command in SC, and a general choice is re1ned by each of
its alternatives.

Law 8 (General choice). Given a command C, and a nonempty set of commands SC,

(C � [] SC) ≡ (∀C′ : SC • C � C′)
(∀C : SC • [] SC � C):

Because we allow nonterminating commands, we need to be careful with our de1nition
of sequential composition. If the 1rst command of the sequential composition does not

168 I. Hayes / Science of Computer Programming 43 (2002) 161–192

terminate, then we want the eFect of the sequential composition on the values of the
outputs over time to be the same as the eFect of the 1rst command. This is achieved
by ensuring that for any command in our language, if it is ‘executed’ at �0 =∞, it has
no eFect. For the speci1cation command this is achieved by the assumption �0¡∞ in
De1nition 1 (real-time speci1cation).

Law 9 (Nontermination preserved). Given an environment �, and a well-formed com-
mand C, the following holds: �0 =∞V (M� (C) ⇔ � =∞):

The de1nition of sequential composition combines the eFects of the two commands
via a hidden intermediate state. First, we introduce a forward relational composition
operator, ‘ 9

◦ ’.

De�nition 10 (Relational composition). Given variables � and two relations R1 and
R2 the (forward) relational composition of R1 and R2 is de1ned as follows

R1 9
◦R2 =̂∃�′ :Time∞; �:v′ :Tv • R1[�

′ ;�:v′

�;�:v] ∧ R2[�
′ ;�:v′

�0 ;�;v0
];

where Tv is the type of the state variables �:v.

De�nition 11 (Sequential composition). Given variables �, and real-time commands
C1 and C2, their sequential composition is de1ned as the relational composition of
their meaning predicates.

M� (C1;C2) =̂M� (C1) 9
◦
M� (C2) :

The following law is a generalisation of the standard law for re1ning a speci1cation
to a sequential composition of speci1cations. For the termination case both commands
must terminate. The 1rst establishes the intermediate single-state predicate I as well
as the relation R1 between the start and 1nish states of the 1rst command. The second
command assumes I initially and establishes the single-state predicate S as well as
the relation R2 between its initial and 1nal states. Hence, the sequential composition
establishes S as well as the relational composition of R1 and R2 between its initial and
1nal states.

For the nontermination case either the 1rst command does not terminate and es-
tablishes Q1, or the 1rst command terminates establishing I and R1 and the second
command does not terminate and establishes Q2. The overall eFect is thus either Q1

or the composition of R1 and Q2.

Law 12 (Sequential composition with relation). Given single-state predicates P, I and
S, and relations R1, R2, Q1 and Q2,

∞ x: [P; (� ¡∞∧ S ∧ (R1 9
◦R2)) ∨ (� =∞∧ (Q1 ∨ (R1 9

◦Q2)))]
� ∞ x: [P; (� ¡∞∧ I ∧ R1) ∨ (� =∞∧ Q1)];
∞ x: [I ; (� ¡∞∧ S ∧ R2) ∨ (� =∞∧ Q2)]:

I. Hayes / Science of Computer Programming 43 (2002) 161–192 169

Taking Q1 and Q2 as false reduces the rule back to the standard law of Jones [18]
for terminating commands.

3. De�nition of a real-time repetition command

A real-time repetition is similar to a conventional repetition, except that we take
into account timing properties. To give the reader an idea of the diFerences between
a real-time repetition and a standard repetition, we give the characteristic recurrences
of both. A standard repetition,

SDO =̂ doB→C od;

satis1es the recurrence

SDO = if B→C; SDO []¬ B→ skip � :

In the standard calculus, this can be rewritten in the following form:

SDO = ([B]; C; SDO [] [¬ B]);

where ‘;’ has higher priority than ‘ [] ’; guarded commands of the form ‘B→ S’ are
rewritten in the equivalent form of a guard followed by the command ([B]; S); the
if-� is replaced by a demonic choice ([]) because the guards are complementary; and
([¬ B]; skip) is replaced by its equivalent, [¬ B].

For the real-time repetition,

DO =̂ doB→C od;

there must exist a strictly positive time d, such that the following recurrence holds:

DO = |[aux u : Time • u := �; [B@ �]; C; [u + d6 �]]|; DO [] [¬ B@ �]:

The auxiliary variable u captures the start time of a single iteration. The guard [B@ �]
allows the 1rst alternative to be executed if the guard evaluates to true. Note that in
the real-time case the guard evaluation may take time but must terminate. The delay
until (absolute) time u + d at the end of an iteration ensures that each iteration takes
a minimum time, d. This rules out Zeno-like behaviour in which, for example, each
iteration takes half the time of the previous iteration. The value of d can be arbitrarily
small (e.g., 1 attosecond), but it must be greater than zero. A repetition of the form
do true→ : : : od typically has the minimum overhead; its implementation may take no
time to evaluate the guard, but there will be a minimum time overhead for the branch
back to the start of the repetition.

The boolean expression B is assumed to be idle-stable. That is, its value does not
change with just the passage of time if the variables under the control of the program
are stable. In practice, this means B cannot refer to the current time variable, �, or
to external inputs (which may change over time). We assume the guard evaluation

170 I. Hayes / Science of Computer Programming 43 (2002) 161–192

terminates, but we place no explicit upper bound on the time taken for guard evaluation,
because guard expressions may be arbitrarily complex. For a particular application there
may be a time bound on guard evaluation, but this is catered for by using explicit
deadline commands within the body of the repetition. There is no need for a separate
upper bound on the guard evaluation time in the de1nition of the repetition.

After completing the command, C, in the body of the repetition, it repeats the guard
evaluation. The delay until u + d at the end of the iteration ensures the minimum
execution time for each iteration; if the rest of the iteration has already taken at least
d time units then the delay need take no time. Because there is no explicit upper limit
on the termination time of the delay, it also allows for the time taken for the repetition
to branch back to the guard evaluation.

The exit alternative of the repetition, [¬ B@ �], allows for the time taken to evaluate
the guard (to false) and exit the repetition, including the case if the guard of the
repetition is false initially. We place no explicit time bounds on this command in
the de1nition, but for a particular application the code following the repetition may
include deadline commands, which explicitly introduce a time constraint. There is no
lower time bound on the exit alternative because the repetition do false→ : : : od can
be implemented by skip, which takes no time.

In order to de1ne the behaviour of a repetition, we introduce an abbreviation to
stand for the eFect of one iteration of the repetition.

ITER =̂ |[aux u : Time • u := �; [B@ �]; C; [u + d6 �]]|:
The repetition may either complete a 1nite number of iterations or iterate forever. In
the 1nite case the last iteration either terminates and establishes ¬ B@ � or it does
not terminate because C does not terminate. We introduce the notation C∗ to stand for
any 1nite number of repetitions of a command C. It is de1ned as the nondeterministic
choice over the natural numbers of each 1nite number of iterations (including zero)
of C.

De�nition 13 (Finite iterations). For a command C,

C∗ =̂ [] {i :N • Ci};
where C 0 =̂ skip; and for n : N, Cn+1 =̂Cn;C:

The 1nite number of iterations case for a repetition can then be de1ned as

ITER∗; [¬ B@ �]:

This takes care of both the case in which the last iteration terminates, in which case
it establishes ¬ B@ �, and the case in which the last iteration does not terminate,
in which case by Law 9 (nontermination preserved) ¬ B@ � has no eFect. If the
repetition guard is initially false, then the only possibility is zero executions of ITER,
which corresponds to skip.

The other possibility is that the repetition executes an in1nite number of iterations.
We introduce the notation C∞ to stand for this. To de1ne C∞ we introduce an in1nite

I. Hayes / Science of Computer Programming 43 (2002) 161–192 171

sequence of times, t̃, and an in1nite sequence of states (local and auxiliary variables), ṽ.
Each adjacent pair of time and state in the sequences are related by C. The 1rst time
(̃t0) and state (̃v0) correspond to the overall initial time (�0) and state (�:v0). Because
an in1nite number of iterations of a command that takes no time has no counterpart in
reality, we require that each execution of the iterated command takes some minimum
time d. This also avoids unrealistic Zeno-like behaviour.

De�nition 14 (In3nite iterations). For a command C, such that for some strictly pos-
itive time d any execution of C guarantees to take at least d time units, i.e., �0¡ ∞∧
M� (C) V �0 + d6�,

M� (C∞) =̂ � =∞∧ (�0 ¡∞⇒
(∃̃t : N→ Time; ṽ : N→ Tv • t̃0 = �0 ∧ ṽ0 = �:v0 ∧ (∀i : N •M� (Ci+1))));

where �:v is the vector of state variables in the environment and Tv is the corresponding
type of �:v, and

Ci+1 =̂C
[
t̃i ; t̃i+1 ; ṽi ; ṽi+1
�0 ; �; �:v0 ; �:v

]
:

Note that none of the times in the sequence t̃ may be in1nity (as constrained by the
type of the sequence) because in order to have an in1nite number of iterations each
iteration must terminate. Also note that C∞ does not de1ne any 1nal value of the state
�:v, because there is no such 1nal state. We are now in a position to de1ne a real-time
repetition.

De�nition 15 (Repetition). Given variables �, a boolean-valued, idle-stable expression
B, a command C, and fresh names d and u,

M� (doB→C od) =̂

[] {d :Time | 0 ¡ d • (ITER∗; [¬ B@ �] [] ITER∞)};

where ITER =̂ |[aux u : Time; u:= �; [B@ �]; C; [u + d6�]]|:

Note that there is just one choice made for d, and that value is used for all iterations
of the repetition. That rules out, for example, successive iterations of a repetition
choosing progressively smaller values of d, and hence it rules out Zeno-like behaviour.
A particular implementation of a repetition will determine a suitable value of d. Our
implementation-independent approach allows any value.

4. General repetition introduction law

In this section we develop laws that make use of loop invariant approach of Floyd [2]
and Hoare [14] and the relational approach of Jones [18] for real-time, possibly

172 I. Hayes / Science of Computer Programming 43 (2002) 161–192

nonterminating repetitions. A loop invariant is assumed to hold initially and must be
maintained by every iteration of a repetition. If the repetition terminates, the invariant
holds in the 1nal state and in addition the guard is false.

If we assume that an invariant, I , holds immediately before a repetition starts, we
would like to assume that both its guard B and I hold at the start of the execution of
the command, C, within the body of the repetition. However, there is a period of time
corresponding to the guard evaluation between the two points in the program. Because
B is assumed to be idle-stable, it will still hold at the start of the execution of C. For
the invariant, I , we need the condition that, if I holds before evaluation of the guard,
it will still hold after the evaluation. This is equivalent to I being invariant over the
execution of an idle command, and we refer to this property as I being idle-invariant.
All outputs are stable for the duration of an idle command, and the state variables do
not change.

De�nition 16 (Idle-invariant). Given variables �, a single-state predicate P is
idle-invariant provided

�0 6 � ¡∞∧ stable(�:out; [-�0 : : : � -]) ∧ P[�0
�] V P:

The conditions idle-stable and idle-invariant diFer in that for the former the value
does not change over the execution of an idle command, whereas for the latter, if the
value holds before, then it holds after. The latter diFers from the former in that for
idle-invariance, if the predicate is false beforehand, then it may become true during
the execution of the idle.

If the command, C, in the body maintains the invariant, then on termination of
C, I holds, and because I is idle-invariant, it will still hold after the delay at the
end of the repetition body, and hence at the start of the next iteration, as required.
The assumption that I is idle-invariant places restrictions on how I can refer to the
current time variable, �, because � increases on execution of an idle command, and
on how I refers to external inputs, because these may change over the execution of
an idle command. For example, predicates of the form D6�, where D is an idle-
stable expression, are idle-invariant, but predicates of the form �6D are not because
the passage of time may cause � to exceed D. If I can be expressed in a form that
does not refer to the current time, �, and all references to external inputs are explicitly
indexed with expressions that are idle-stable, then I is idle-invariant. In practice, the
link between the current time, �, and the invariant, I , is made through a time-valued
program variable that approximates �.

The standard laws on which ours are based are those of Jones [18] which, in addition
to an invariant, make use of a relation between initial and 1nal states. If a relation R
holds between the initial and 1nal states of the body of the repetition on each iteration,
then if the repetition terminates the transitive closure of the relation, R∗, holds between
the initial and 1nal states of the whole repetition. We de1ne transitive closure and
iteration of relations. A relation iterated zero times corresponds to the identity relation
on the current time and state.

I. Hayes / Science of Computer Programming 43 (2002) 161–192 173

De�nition 17 (Transitive closure). Given a relation R, its transitive closure, R∗, is
de1ned as follows.

R∗ =̂ (∃i : N • Ri);
where R0 =̂ �0 = � ∧ �:v0 = �:v; and for a natural number i, Ri+1 =̂Ri 9

◦R:

An alternative way to view the transitive closure of a relation R is that there is a
sequence of intermediate times and states with adjacent pairs of times and states related
by R.

R∗ ≡ (∃i : N; t̃ : N→ Time; ṽ : N→ Tv • t̃0 = �0 ∧ ṽ0 = �:v0 ∧
t̃i = � ∧ ṽi = �:v ∧ (∀j : N • j ¡ i ⇒ Rj+1));

where Rj+1 =̂R[̃tj; t̃j+1; ṽj ; ṽj+1=�0; �; �:v0; �:v].
As with the invariant we need to be careful about the time intervals corresponding

to the guard evaluation and the minimum delay (branch back). Hence, we require
that the relations used are impervious to these idle periods. We use the terms pre-
idle-invariant and post-idle-invariant to refer to relations that are impervious to pre
and post, respectively, idle periods. If the only references to �0 and � are as indices
of outputs, the relation is both pre- and post-idle-invariant. We introduce the relation
IDLE, which corresponds to the meaning of the idle command.

IDLE =̂ �0 6 � ∧ (�0 ¡∞⇒ � ¡∞∧ eq(�:out; �0; �; �:v0; �:v)):

De�nition 18 (Pre-idle-invariant). A relation R is pre-idle-invariant provided,
�0¡∞V (IDLE 9

◦R⇒ R):

De�nition 19 (Post-idle-invariant). A predicate R is post-idle-invariant provided,
�¡∞V (R 9

◦ IDLE ⇒ R):

For a nonterminating repetition, there is no 1nal state, and hence no concept of the
loop invariant holding in the 1nal state. Instead, we use a strategy similar to that of
Hooman [16, p. 129]. There is a sequence of times corresponding to the starting times
of executions of the repetition body at which the invariant is true. If the body always
terminates, then the sequence is in1nite. In that case, for any time, �′, after the start time
of the repetition, there is always some later time, �, at which both the invariant, I , and
the guard, B, hold. In addition, the state at that time is related to the initial state of the
whole repetition by R∗. Because the loop invariant is idle-invariant, it cannot express
upper bounds on the current time, �. In order to express such bounds we introduce a
deadline command, deadlineD, at the beginning of the body of the repetition. Hence,
we can also deduce that �6D holds at the beginning of every iteration. Assuming
that the frame of the body of the repetition is x, the overall eFect that holds for a
nonterminating repetition with a terminating body is

I∞ =̂ (∀�′ : Time • (∃� : Time; �:v : Tv • �′ 6 � ∧ B@ �∧
�6 D@ � ∧ I ∧ R∗ ∧ eq(�:out\x; �0; �; � :v0\x; � :v\x))):

174 I. Hayes / Science of Computer Programming 43 (2002) 161–192

In the case in which there are an in1nite number of iterations of the repetition, there
are in1nite sequences of times and states such that R holds between adjacent pairs of
times and states. In addition, there is some minimum separation between adjacent pairs
of times. We introduce the notation R∞ to capture this relationship.

De�nition 20 (In3nite iteration). Given a relation R, its in3nite iteration, R∞, is
de1ned as follows.

R∞ =̂ (∃ d : Time; t̃ : N→ Time; ṽ : N→ Tv • 0 ¡ d∧
t̃0 = �0 ∧ ṽ0 = �:v0 ∧ (∀i : N • t̃i + d6 t̃i+1 ∧ Ri+1));

where Ri+1 =̂R [̃ti; t̃i+1; ṽi ; ṽi+1=�0; �; �:v0; �:v].

If R is a well-founded relation then R∞ is equivalent to false because, by their
very de1nition, well-founded relations rule out the possibility of an in1nite sequence
of successively related states. Note that R∞ does not refer to either the 1nal time � or
the 1nal state �:v. The relation R may constrain the value of outputs, typically over
the interval from �0 to �. For example, R may state that an output o is stable from �0

through until �, in which case R∞ guarantees that o is stable from �0 forever (until ∞).
Finally, we combine the above discussion into a single law. The body of the rep-

etition consists of a deadline command followed by a speci1cation. The speci1cation
can assume that the initial time is before the deadline and that both the guard and
the invariant hold initially. The body of the repetition either terminates, reestablishing
I and establishing R between its initial and 1nal states, or it fails to terminate but
establishes Q. This repetition re1nes a speci1cation that assumes that the invariant
holds initially and either,

• terminates in a state in which the guard is false, the invariant holds, and the relation
R∗ is established between the initial and 1nal states;

• fails to terminate because the body failed to terminate, and overall establishes (R∗
9
◦Q);

or
• fails to terminate because the body always terminates but the guard always remains

true, in which case the predicate I∞ and in1nite iteration of the relation, R∞, are
established.

Law 21 (Repetition). Given an idle-stable, boolean-valued expression, B; a single-
state, idle-invariant predicate, I ; an idle-stable, time-valued expression, D; a pre-
idle-invariant relation Q; and a pre- and post-idle invariant relation R; then

∞ x:
[
I ;

(� ¡∞∧¬ B@ � ∧ I ∧ R∗) ∨
(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
� doB→ deadlineD;

∞ x:
[
B@ � ∧ �6 D@ � ∧ I ; (� ¡∞∧ I ∧ R)∨

(� =∞∧ Q)

]
od:

I. Hayes / Science of Computer Programming 43 (2002) 161–192 175

Note that I may not refer to �0 or initial variables because I is used both in the
speci1cation, in which �0 is the start time of the whole repetition, and in the body
of the repetition, in which �0 is the start time of an iteration. In order to refer to the
start time of the whole repetition within I it is necessary to introduce a fresh auxiliary
variable to stand for the start time.

Taking Q as the predicate false gives the following special case.

Law 22 (Repetition–terminating body). Given an idle-stable boolean-valued expres-
sion, B; a single-state idle-invariant predicate, I ; a pre- and post-idle-invariant relation
R; and an idle-stable, time-valued expression, D; then

∞ x: [I ; (� ¡∞∧¬ B@ � ∧ I ∧ R∗) ∨ (� =∞∧ I∞ ∧ R∞)]
� doB→ deadlineD;

x: [B@ � ∧ �6 D@ � ∧ I ; I ∧ R]
od:

If R is a well-founded relation then R∞≡false, and hence the in1nite iteration alter-
native is ruled out. In addition, if D is in1nity, the deadline introduces no constraint
whatsoever (deadline∞ �� skip) and the law reduces to the following.

Law 23 (Terminating repetition). Given an idle-stable, boolean-valued expression, B;
a single-state, idle-invariant predicate, I ; and a pre- and post-idle-invariant, well-
founded relation R; then

x: [I ; ¬ B@ � ∧ I ∧ R∗] � doB→ x: [B@ � ∧ I ; I ∧ R] od:

This is the standard law for re1nement to a terminating repetition given in the relational
form [18].

A repetition with a constant true guard never terminates.

Law 24 (Repetition-true guard). Given a single-state, idle-invariant predicate, I ; an
idle-stable, time-valued expression, D; a pre-idle-invariant relation Q; and a pre- and
post-idle invariant relation R; then

∞ x:
[
I ; (� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
� do true→ deadlineD;

∞ x:
[
�6 D@ � ∧ I ; (� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q)

]
od:

A special case of this law is for an always terminating body. As with Law 22 this can
be handled by choosing Q to be false.

For a repetition with a terminating body (Q≡ false), if the deadline D is constant
for the duration of the entire repetition, then the repetition is guaranteed to terminate.
This follows because I∞ is false, due to the fact that �′ cannot be less than the 1xed
value D for all times �′.

176 I. Hayes / Science of Computer Programming 43 (2002) 161–192

Law 25 (Deadline as termination). Given an idle-stable boolean-valued expression, B;
a single-state, idle-invariant predicate, I ; a pre- and post-idle-invariant relation R;
and an idle-stable, time-valued expression, D, which does not include any references
to variables in the frame; then

x: [I ∧ D@ � ¡∞; ¬ B@ � ∧ I ∧ R∗]
� doB→ deadlineD; x: [B@ � ∧ �6 D@ � ∧ I ; I ∧ R] od:

This is a variant of a law presented elsewhere [10], but here it is just a special case
of the general law.

5. Example

Before giving a proof of the general law in Section 7, to illustrate our approach
we use the example of a conveyor belt that transports objects which are measured
for their size and then sorted into a corresponding bin. This example was used in an
earlier paper illustrating the use of auxiliary variables [5]. Here the relational law for
the repetition makes the proof of correctness considerably simpler. A light beam is
used to detect objects, and measure their size. The boolean input beam represents the
detection of the light beam: its value is false (no light) at time t if and only if there
is an object on the conveyor blocking the beam at time t. (We ignore failures of the
light beam, etc.) The boolean output lbin selects between a bin for large objects (if it
is true) and a bin for small objects (if it is false).

The objects on the conveyor belt have a minimum length and separation. This trans-
lates to there being a minimum time, MinW , for which beam is false while an object
passes the beam, and a minimum time, MinS, for which beam is true between objects.
Hence, beam can only change a 1nite number of times within any 1nite time interval.
For such 1nitely variable inputs we introduce some notational conventions. For i a nat-
ural number, the notation beam ↓ i stands for the time at which beam makes transition
number i from true to false, and beam ↑ i stands for the time at which beam makes its
transition number i from false to true. The assumption of 1nite variability means that
these times are well de1ned for every natural number provided beam makes an in1nite
number of transitions over all time. If there are only a 1nite number of transitions over
all time, then if i is greater than the total number of up transitions, we de1ne beam ↑ i
to be in1nity, and similarly for down transitions. If we assume that beam ↓ i¡beam ↑ i
(the other case is symmetric) then

beam((-0 : : : beam ↓ 0-)) = {true}
∀ i : N • (beam ↓ i¡∞⇒ beam((-beam ↓ i : : : beam ↑ i -)) = { false}) ∧

(beam ↑ i¡∞⇒ beam((-beam ↑ i : : : beam ↓ i + 1-)) = {true})

We assume that there is no object on the conveyor for an initial period of at least
MinS. As well as giving the types of the variables and constants, we also give their
units of measurement [8].

I. Hayes / Science of Computer Programming 43 (2002) 161–192 177

input beam : boolean; output lbin : boolean;
constMinS = 40 ms;MinW = 20 ms;MaxW = 40 ms;

A =̂MinS 6 beam ↓ 0 ∧ ∀i : N•
(beam ↓ i¡∞⇒ MinW 6 beam ↑ i − beam ↓ i 6 MaxW) ∧
(beam ↑ i¡∞⇒ MinS 6 beam ↓ (i + 1)− beam ↑ i)

The task of the program is to measure the size of the passing objects, and select the
bin into which they are to be placed. We assume that the conveyor moves with a
constant velocity of vel metres per second. (The assumption of constant velocity is
unrealistic, but simpli1es our example; a nonconstant velocity can be accommodated
within the current speci1cation by decreasing the value of mrgn below.) The size of an
object can only be measured approximately. Hence, the speci1cation allows a margin
of error, mrgn, in determining whether an object is large or small. If an object is of
size greater than or equal to limit + mrgn then it must go in the large bin. If its size
is less than or equal to limit − mrgn it must go in the small bin. Objects with sizes
between limit − mrgn and limit + mrgn can go in either bin. The predicate ObjSize
relates object j to the bins it is allowed to be placed in.

const vel = 1 m = s; limit = 30 mm;mrgn = 1 mm;
ObjSize(j; b) =̂ let sz = vel ∗ (beam ↑ j − beam ↓ j) •

(sz ¿ limit + mrgn⇒ b) ∧ (sz¡limit −mrgn⇒ ¬ b)

The output lbin controls the bin selector. In order for the object to be placed in the
correct bin, lbin should have the correct value from time bin select after the end of
object j, i.e., time beam ↑ j, through until bin stable after the end of the object is
detected. We introduce the predicate ObjBin to abbreviate this condition.

const bin select = 10 ms; bin stable = 30 ms;
ObjBin(j) =̂ (∃ b : boolean •ObjSize(j; b)∧

lbin((-beam ↑ j + bin select : : : beam ↑ j + bin stable -)) = {b})
The program is speci1ed using a nonterminating speci1cation command with a termi-
nation time, �, of in1nity.

∞ lbin:
[
A; � =∞∧ (∀i : N • beam ↓ i¡∞⇒ ObjBin(i))

]
(2)

Before going through the details of the re1nement of the above speci1cation, we give
the 1nal machine-independent program in Fig. 1. It makes use of a procedure Await that
waits for the beam to attain the value of its 1rst parameter and returns an approximation
to the time at which this occurs. The program makes use of the auxiliary variable j
which counts the objects as they pass. The local variables st and et capture the start
and 1nish times of object j (approximately), and the variable size is used to calculate
the (approximate) size of the object from the time it took to pass and its velocity. If
the calculated size is greater than or equal to limit then lbin is set to true, otherwise
it is set to false. It is assumed that the program starts when the current time, �, is at
least MinS seconds before the 1rst object passes through the beam.

178 I. Hayes / Science of Computer Programming 43 (2002) 161–192

|[aux j : natural ;
A :: {�6 beam ↓ 0−MinS};

j := 0 ;
do true→
|[var st; et : natural ms; size : naturalmm;
B :: st ← Await(false; beam ↓ j); -- start at beam ↓ j
C :: et ← Await(true; beam ↑ j); -- end at beam ↑ j

size := (et − st) ∗ vel;
lbin := (limit6size);

D :: deadline beam ↑ j + bin select ;
delay until et + bin stable;
j := j + 1

]|
od

]|

Fig. 1. Main program.

In addition to the expected standard code there are deadline commands, a number of
uses of the auxiliary variable, j, and auxiliary parameters; these are highlighted within
boxes. These are used to ensure that the operation of the program takes place in a timely
fashion. No code needs to be generated for any of the highlighted constructs. Their
purpose is to facilitate reasoning and to allow the speci1cation of timing constraints
via deadline commands.

The task of procedure Await is to wait until beam takes on the value of its 1rst
argument, val, and return in result pt (an approximation to) the time at which the
value of beam changes to val. To allow simpler speci1cation of the procedure, an
auxiliary parameter is used: event gives the (future) time of the awaited change. The
value of beam from the time of the call up until event (an interval that may be empty)
is the complement of val, and once it changes to val it remains equal to val for a
time of at least err. If the value of beam never changes, then Await never returns.
Otherwise it returns the result, pt, which is an approximation to event.

const err = mrgn=vel; {err 6 MinS ∧ err 6 MinW};

procedure pt : time← Await(val : boolean; aux event : Time∞) =

∞ pt:

beam((-� : : : event -)) ⊆ {¬ val}∧
beam((-event : : : event + err -)) = {val};

event0 = � =∞∨
(event¡∞∧ � ¡∞∧
event 6 pt ∧
pt 6 event + err)

The implementation of Await in Fig. 2 repeatedly tests the value of beam until it
changes to equal val. Hence, when a value equal to val is read from beam, the time
must be after event. The read must be completed before event+ err in order to ensure
that the procedure is not detecting some later change of beam to val. Hence, the
deadline after the read. If the value read is equal to val the repetition terminates and
one can deduce that event is less than or equal to the current time, �. The deadline

I. Hayes / Science of Computer Programming 43 (2002) 161–192 179

|[varp : boolean;
aux before : Time∞ ;

before := event ;
p := ¬ val;
dop �= val→
{(p = val⇒ event6�) ∧ (p �= val⇒ before6event)};
deadline event + err ;

E :: before := � ;
p : read (beam);

F :: deadline event + err ;
od;
{event6�};
pt : gettime;

G :: deadline event + err
]|

Fig. 2. Body of procedure Await.

after the gettime ensures that the value of pt is a close enough approximation to
event. If the repetition never terminates then for any time, �′, there is a later time, �,
at which �6event+ err: As there is no upper bound on �′ and �′6�6event+ err, this
implies event must be in1nity. The deadline at the start of the body of the repetition
is introduced as a consequence of the form of the law for introducing a repetition,
although in this case it is subsumed by the tighter deadline labelled F . Note that the
latter deadline is not subsumed by the deadline at G. If both deadlines within the body
of the repetition were removed then it is possible for the read to always occur while
beam is not equal to val, and hence for the repetition to never terminate. However, if
the repetition never terminates, the deadline at G is never reached and does not have
to be considered.

5.1. Re3nement of the main program

To re1ne the speci1cation (2) of the main program to the code in Fig. 1 we make
use of Law 24 (repetition-true guard). The desired eFect of (2) is

� =∞∧ (∀ i : N • beam ↓ i ¡∞⇒ ObjBin(i)): (3)

If beam ↓ j=∞ for some j, then beam ↓ k =∞ for all values of k greater than or
equal to j. Hence we can split eFect (3) into the case in which there is a never ending
stream of objects on the conveyor, and the case in which there is only a 1nite number
of objects.

� =∞∧
((∀i : N • beam ↓ i ¡∞∧ObjBin(i)) ∨
(∃m : N • (∀i : N • i¡m⇒ beam ↓ i¡∞∧ObjBin(i)) ∧ beam ↓ m =∞)):

(4)

180 I. Hayes / Science of Computer Programming 43 (2002) 161–192

We need to devise relations R and Q such that the 1rst alternative corresponds to R∞

and the second to R∗
9
◦Q. The obvious choice is to have iteration i of the repetition

establish ObjBin(i) provided beam ↓ i¡∞. To accomplish this we introduce an auxil-
iary variable j, that counts iterations. A suitable pre- and post-idle-invariant relation R
is de1ned as follows:

R =̂ beam ↓ j0¡∞∧ObjBin(j0) ∧ j = j0 + 1:

If there is only a 1nite number of objects in total, beam ↓ j=∞ for some j, and
no further processing takes place once that is reached. Hence, we take Q to be the
following pre-idle-invariant relation. (Q is written in terms of j0 rather than j because
in this case � is in1nity and there is no 1nal state.)

Q =̂ beam ↓ j0 =∞:
Using De1nition 20 (in1nite iteration) we instantiate R∞ with the sequence of values
of the auxiliary variable j represented by the vector j̃, i.e., j̃0 is the initial value of j
and j̃i is the value of j after iteration i.

(∃d : Time; t̃ : N→ Time; j̃ : N→ N • 0 ¡ d ∧ t̃0 = �0 ∧ j̃0 = j0 ∧
(∀i : N • t̃i + d6 t̃i+1 ∧ beam ↓ j̃i ¡∞∧ObjBin(̃ji) ∧ j̃i+1 = j̃i + 1)):

Assuming j has been initialised to zero, i.e., j0 = j̃0 = 0, then because j̃i+1 = j̃i + 1 for
all i, we can deduce j̃i = i for all i. Hence, ignoring the timing information, the above
implies the following, which is the 1rst alternative of our expanded requirement (4).

(∀i : N • beam ↓ i ¡∞∧ObjBin(i))):

For the 1nite iterations case R∗
9
◦Q is the following, if we assume j is initially zero.

Here we make use of the sequence version of transitive closure.

∃m : N; t̃ : N→ Time; j̃ : N→ N • t̃0 = �0 ∧ j̃0 = 0 ∧
(∀i : N • i ¡ m⇒ beam ↓ j̃i ¡∞ ∧ObjBin(̃ji) ∧ j̃i+1 = j̃i + 1) ∧
beam ↓ m =∞

V ignoring timing information; j̃i = i
∃m : N • (∀i : N • i ¡ m⇒ beam ↓ i ¡∞∧ObjBin(i))∧

beam ↓ m =∞
This is the second alternative of the expanded requirement (4). Applying Law 24
(repetition-true guard) with the deadline D in1nity (i.e., the deadline can be ignored),
I the predicate true, and R and Q as de1ned above gives the following repetition:

(2)
� do true→
∞ j; lbin:

[
(� ¡∞∧ beam ↓ j0¡∞∧ObjBin(j0) ∧ j = j0 + 1) ∨
(� =∞∧ beam ↓ j0 =∞)

]
od

(5)

To re1ne the body of the repetition we introduce three local variables, st, et and size
to store the start and 1nish times of the next object on the conveyor and the size of

I. Hayes / Science of Computer Programming 43 (2002) 161–192 181

the object, respectively, and re1ne the body to the code given in Fig. 1. The details of
these steps are similar to standard re1nement steps and do not make use of repetitions;
hence they are omitted here.

5.2. Re3nement of procedure Await

The re1nement of procedure Await introduces a local variable p and auxiliary vari-
able before as shown in Fig. 2. For the repetition we make use of an invariant that
relates the most recent sample of the value of beam to the time of occurrence of event:

I =̂ (p = val⇒ event 6 �) ∧ (p �= val⇒ before6 event) ∧
beam((-� : : : event -)) ⊆ {¬ val}∧
beam((-event : : : event + err -)) = {val}

Note that I is idle-invariant. If we factor out the initialisation of p and before to
establish the invariant, and the setting of pt after the repetition (as shown in Fig. 2),
the speci1cation of the repetition is as follows.

∞ p; before:
[
I ; (� ¡∞∧ event 6 �) ∨ (� =∞∧ event0 =∞)

]
: (6)

We use Law 22 (repetition–terminating body) with a guard of p �= val, invariant I
above, relation R just true, and a deadline of event + err.

(6)
� dop �= val→

deadline event + err;
p; before: [p �= val ∧ �6 event + err ∧ I ; I]

od

This is a valid re1nement provided

(� ¡∞∧ p = val ∧ I) ∨ (� =∞∧ I∞)
V (� ¡∞∧ event 6 �) ∨ (� =∞∧ event0 =∞)

The terminating case follows from the de1nition of I . For the nonterminating case I∞
implies the following predicate.

(∀�′ : Time • (∃� : Time;p : boolean; before : Time∞; event : Time∞•
�′ 6 � ∧ p �= val ∧ �6 event + err ∧ I ∧ event = event0))

V (∀�′ : Time • �′ 6 event0 + err)
V event0 =∞

The re1nement of the body of this repetition is standard and does not make use of
any further repetitions so we omit the details here.

6. Timing constraint analysis

In order for compiled machine code to implement the machine-independent program
it must guarantee to meet all the deadlines. The auxiliary variables and parameters

182 I. Hayes / Science of Computer Programming 43 (2002) 161–192

E :: before := �;
p : read (beam);

F :: deadline event + err;
[p �= val];
{(p = val⇒ event6�) ∧ (p �= val⇒ before6event)};
deadline event + err;

E :: before := �;
p : read (beam);

F :: deadline event + err

Fig. 3. Repetition path in Await.

introduced above aid this analysis. There are three deadlines within the procedure
Await (Fig. 2). The deadline at the start of the repetition is subsumed by the more
stringent requirement of the deadline at (F). The deadline (F) within the repetition is
reached initially from the entry to the procedure, and subsequently on each iteration.
We defer analysis of the entry path to the analysis of the main program, because
the context of the main program is necessary for the analysis. For an iteration we
consider the path (shown in Fig. 3) that starts at the assignment to before (E), reads
the value of beam into p, passes through the deadline (F), restarts the body of the
repetition because p is not equal to val, performs the assignment to before (E), reads
the value of beam, and reaches the deadline (F). The guard evaluation is represented
by [p �= val], which indicates that in order for the path to be followed, p must not be
equal to val at that point in the path. The initial time assigned to before, i.e., the time
at which the path begins execution, must be before time event because the value of p
was not equal to val, and the 1nal deadline on the path is event + err. Hence, if the
path is guaranteed to execute in less than time err, it will always meet its deadline.
If this path is guaranteed to reach its deadline then any path with this as a suOx is
also guaranteed to meet the 1nal deadline. A similar analysis can be performed for the
same path as in Fig. 3 but extended to exit the repetition because p= val, and read
the current time into pt, before reaching the 1nal deadline (G). The constraint on this
path is also err.

The analysis of the main program has to take into account deadlines within the
procedure calls. There is a path (shown in Fig. 4) that starts at (A) in Fig. 1. The
path initialises j to 0, enters the repetition, allocates the local variables st, et and size,
makes the 1rst call to Await (B), and within Await allocates and assigns the local and
auxiliary variables corresponding to the formal value parameters, allocates the local
variable p, extends the auxiliary variables with before, initialises these, and follows
the path into the repetition, ending at the deadline (F) of event+err. The last deadline
is labelled B:F to indicate that it is the deadline labelled F within the call to Await
labelled B. The initial assertion guarantees the start time of the path is less than or
equal to beam ↓ 0−MinS. For this call to Await, event is beam ↓ 0 and hence the 1nal
deadline is beam ↓ 0 + err. Therefore, a suitable constraint on the path is

beam ↓ 0 + err − (beam ↓ 0−MinS) = MinS + err = 41 ms :

I. Hayes / Science of Computer Programming 43 (2002) 161–192 183

A :: {�6 beam ↓ 0−MinS};
j := 0;
[true];
alloc var st; et : naturalms; size : naturalmm;

B :: st ← Await(false; beam ↓ j);
alloc var val : boolean;
alloc aux event : Time∞;
val; event := false; beam ↓ j;
alloc varp : boolean;
alloc aux before : Time∞;
before := event;
p := ¬ val;
[p �= val];
{(p = val⇒ event6�) ∧ (p �= val⇒ before6event)};
deadline event + err;

B:E :: before := �;
p : read (beam);

B:F :: deadline event + err;

Fig. 4. Initial path in main program.

If this path is guaranteed to execute in a time of less than 41 ms then the deadline is
guaranteed to be reached.

The remaining timing paths are analysed in a similar manner. We briePy summarise
them. Another path starts as for this one, continues on to exit the repetition on the 1rst
evaluation of its guard, and ends at deadline B:G. The timing constraint for this path
is the same as the one above, for the same reasons. The path starting with the 1nal
deadline in the 1rst call to Await (B:G) and ending at the deadline in the second call
to Await (C:F) has a start time before beam ↓ j+ err and a deadline of beam ↑ j+ err.
Therefore a constraint that guarantees that the 1nal deadline will be met is

(beam ↑ j + err)− (beam ↓ j + err) = beam ↑ j − beam ↓ j;
which from our assumptions is greater than MinW . Hence if the code on the path
executes in less than time 20 ms, the deadline will be met.

The next deadline we consider is the one occurring in the repetition within the
main program. It has a deadline of beam ↑ j + bin select. The path begins at the 1nal
deadline (C:G). within the second call to Await, which has a deadline of event + err,
where event for the second call is beam ↑ j. The path exits the call, calculates size,
and sets lbin, before reaching the deadline (D). A suitable constraint on this path that
guarantees the 1nal deadline will be met is

(beam ↑ j + bin select)− (beam ↑ j + err) = bin select − err = 9 ms :

The 1nal path we consider begins at the deadline (D) within the main loop, delays until
et + bin stable, increments j, deallocates the local variables st, et, and size, iterates
back to the start of the repetition, allocates the local variables st, et, and size, enters the
1rst call to Await (B), and progresses down to the deadline (B:F) within the repetition.
The 1nal deadline is event + err and for this case event is beam ↓ j. However, along

184 I. Hayes / Science of Computer Programming 43 (2002) 161–192

the path j has been incremented, and hence in terms of the initial value of j for the
path the deadline is beam ↓ (j + 1) + err. Therefore, a suitable constraint is

(beam ↓ (j + 1) + err)− (beam ↑ j + bin select)
= (beam ↓ (j + 1)− beam ↑ j) + err − bin select:

From our initial assumptions beam ↓ (j+1)−beam ↑ j is greater than or equal to MinS,
and hence we can use the constant constraint

MinS + err − bin select = 31 ms :

In the above analyses we have assumed that the constants MinS, vel, etc., have been
supplied with the speci1cation. However, an alternative approach allows them to be
treated symbolically and some of them determined by a combination of the other
constants and the worst-case execution times for the paths in the program. For example,
the velocity of the conveyor belt, vel, determines MinS, MinW and err in terms of
the minimum separation distance between objects, minimum length of objects, and the
error margin, mrgn, respectively. Hence, an alternative approach is to vary the velocity
of the conveyor belt to ensure that all deadlines within the program are met.

7. Proof of general repetition law

In this section we give a proof of Law 21 (repetition). The other repetition laws
given earlier are simple corollaries of this law. As abbreviations we introduce S to
stand for the left side of the re1nement in Law 21 (repetition), i.e.,

S =̂∞ x:
[
I ;

(� ¡∞∧¬ B@ � ∧ I ∧ R∗) ∨
(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
and ITERL to stand for ITER with C instantiated to the body of the repetition in the
law:

ITERL =̂ |[aux u : Time • u := �; [B@ �]; deadlineD;

∞ x:
[
B@ � ∧ �6 D@ � ∧ I ; (� ¡∞∧ I ∧ R) ∨

(� =∞∧ Q)

]
;

[u + d6 �]
]|

From De1nition 15 (repetition) we need to show

S � [] {d : Time | 0 ¡ d • (ITER∗
L; [¬ B@ �] [] ITER∞

L)}
≡Law 8 (general choice)

(∀d : Time | 0 ¡ d • (S � (ITER∗
L; [¬ B@ �] [] ITER∞

L)))

≡Law 6 (choice)

(∀d : Time | 0 ¡ d • (S � ITER∗
L; [¬ B@ �]) ∧ (S � ITER∞

L))

I. Hayes / Science of Computer Programming 43 (2002) 161–192 185

We divide our proof into two major components showing, respectively, the two re1ne-
ments of S for all strictly positive times, d.

7.1. A 3nite number of iterations

We would like to show

S � ITER∗
L; [¬ B@ �]: (7)

Our 1rst step is to factor out the negation of the guard from the eFect of S so that
both sides of re1nement (7) end with the negation of the guard.

S
� Law 28 (separate post guard) in Appendix A
T ; [¬ B@ �];

where T =̂∞ x:
[
I ;

(� ¡∞∧ I ∧ R∗) ∨
(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
:

By monotonicity of re1nement, to show (7) it is suOcient to show the following.

T � ITER∗
L

≡ De1nition 13 (1nite iterations)

T � [] {i : N • ITERiL}
≡ Law 8 (general choice)

(∀i : N • T � ITERiL)

At this stage in order to simplify the proof we introduce an abstraction, IT , of ITERL
that is suOcient to show the above re1nement, where

IT =̂∞ x:

�0 + d6 � ∧(
I [�0 ;�:v0

�;�:v]⇒
(

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v] ∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

)) :
Lemma 26 (below) shows that IT � ITERL. Hence by monotonicity of re1nement, all
we need to prove is

(∀i : N • T � IT i);

which we show by induction. Case i= 0 reduces to showing T � skip. The equivalent
speci1cation command to skip has the eFect �0 = �. By Law 27 (strengthen eFect)
given in Appendix A, it is suOcient to show

�0¡∞∧ I [�0 ;�:v0
�;�:v] ∧ �0 = � ∧ eq(�:out; �0; �; �:v0; �:v) V

� ¡∞∧ I ∧ R∗

which follows because both the following hold.

�0¡∞∧ I [�0 ;�:v0
�;�:v] ∧ �0 = � ∧ eq(�:out; �0; �; �:v0; �:v) V I;

�0¡∞∧ �0 = � ∧ eq(�:out; �0; �; �:v0; �:v) V R0 V R∗:

186 I. Hayes / Science of Computer Programming 43 (2002) 161–192

For the inductive step we assume that T � IT n holds for n a natural number, and are
required to show T � IT n+1. We start from the right side.

IT n+1

�� De1nition 13 (1nite iterations)
IT n; IT

� inductive assumption
T ; IT

�� T ;∞ x:

�0 + d6 � ∧(
I [�0 ;�:v0

�;�:v]⇒
(

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v] ∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

))
� de1nition of T ; Law 27 (strengthen eFect)

∞ x:
[
I ;

(� ¡∞∧ I ∧ R∗)∨
(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
;

∞ x: [I ; (� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q)]
� Law 12 (sequential composition with relation)

∞ x:
[
I ;

(� ¡∞∧ I ∧ (R∗
9
◦R))∨

(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗
9
◦Q) ∨ (R∗

9
◦Q)))

]
� as (R∗

9
◦R) V R∗

T

Before proceeding to the in1nite iterations case we validate that IT is a valid abstraction
of ITERL.

Lemma 26. Given an idle-stable, boolean-valued expression, B; an idle-stable, time-
valued expression, D; a time-valued constant, d; an idle-invariant, single-state predi-
cate, I ; a pre-idle-invariant relation, Q; and a pre- and post-idle-invariant relation, R,

IT � ITERL

Proof. We begin from the de1nition of IT .

∞ x:

�0 + d6 � ∧(
I [�0 ;�:v0

�;�:v]⇒
(

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v]∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

))
� introduce auxiliary u to capture start time

|[aux u : Time • u := �;

∞ x:

u + d6 � ∧(
I [�0 ;�:v0

�;�:v]⇒
(

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v]∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

))
]|:

(8)

I. Hayes / Science of Computer Programming 43 (2002) 161–192 187

We separate the 1nal delay.

(8)
� Law 28 (separate post-guard)

∞ x:
[
I [�0 ;�:v0

�;�:v]⇒
(

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v]∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

)]
;

[u + d6 �]

(9)

Next we factor out the guard and the deadline.

(9)
� equivalent speci1cation

∞ x:
[
I ;

(B@ �0 ∧ �0 6 D@ �0)[�:v0
�:v]∧

((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))

]
� Law 29 (separate pre guard) in Appendix A

[B@ � ∧ �6 D@ �]; (10)
∞ x: [B@ � ∧ �6 D@ � ∧ I ; (� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q)] (11)

We separate out the deadline as a post-guard. Because the deadline appears after the
guard evaluation, it also implies that start time of the guard evaluation must be before
the deadline as required in the original speci1cation.

(10)
� Law 28 (separate post guard)

[B@ �]; [�6 D@ �]:
(12)

The upper bound on the start time of the repetition body (12) is implemented by
deadlineD. Combining the above re1nement steps proves the lemma.

7.2. An in3nite number of iterations

To complete the proof of Law 21 (repetition) we need to show S � ITER∞
L : Again

we can make use of Lemma 26 and monotonicity to reduce the task to showing
S � IT∞: Because we are dealing with the in1nite iteration case, we start by re1ning
S as follows.

∞ x:
[
I ;

(� ¡∞∧¬ B@ � ∧ I ∧ R∗) ∨
(� =∞∧ ((I∞ ∧ R∞) ∨ (R∗

9
◦Q)))

]
� Law 27 (strengthen eFect)

∞ x: [I ; � =∞∧ I∞ ∧ R∞]

Now we show that this re1nes to IT∞ using De1nition 14 (in1nite iterations). First,
we note that �0¡∞∧M� (IT) V �0 + d6�, where 0¡d, and hence the de1nition is

188 I. Hayes / Science of Computer Programming 43 (2002) 161–192

applicable.

M� (IT∞)
≡ De1nition 14 (in1nite iterations)
�0 6 � ∧ (�0¡∞⇒ � =∞ ∧

(∃̃t : N→ Time; ṽ : N→ Tv • t̃0 = �0 ∧ ṽ0 = �:v0 ∧
(∀i : N •M� (ITi+1))))

Let us concentrate on the universally quanti1ed term. We extend the abbreviation
ITi+1, given with De1nition 14 (in1nite iterations), to apply to predicates as well as
commands. For example, Ii = I [̃ti−1; t̃i ; ṽi−1; ṽi=�0; �; �:v0; � :v], which because �0 and
�:v0 do not appear in I reduces to I [̃ti; ṽi=�; �:v].

∀i : N •M� (ITi+1)
≡∀i : N • t̃i 6 t̃i+1 ∧ (̃ti¡∞⇒ t̃i + d6 t̃i+1 ∧(

Ii ⇒
(
Bi @ t̃i ∧ t̃i 6 Di @ t̃i ∧
((̃ti+1¡∞∧ Ii+1 ∧ Ri+1) ∨ (̃ti+1 =∞∧ Qi+1))

))
∧

eq(�:out \ x; t̃i ; t̃i+1; ṽi \ xi; ṽi+1 \ xi+1))

All the t̃i terms are 1nite (from their type), and hence their comparisons with in1nity
can be simpli1ed.

∀i : N • t̃i + d6 t̃i+1 ∧
(Ii ⇒ Bi @ t̃i ∧ t̃i 6 Di @ t̃i ∧ Ii+1 ∧ Ri+1) ∧
eq(�:out \ x; t̃i ; t̃i+1; ṽi \ xi; ṽi+1 \ xi+1)

For all i, Ii⇒ Ii+1. Hence provided I0 holds, Ii will hold for all i. However, from
the context I0 = I [̃t0; ṽ0=�; �:v] = I [�0; �:v0=�; �:v]. Therefore, the above implies the
following.

I [�0 ;�:v0
�;�:v]⇒

(
∀i : N • t̃i + d6 t̃i+1 ∧ Bi @ t̃i ∧ t̃i 6 Di @ t̃i ∧ Ii ∧

Ri+1 ∧ eq(�:out \ x; t̃i ; t̃i+1; ṽi \ xi; ṽi+1 \ xi+1)

)
Because Ri+1 holds for all i, we can deduce that R∞ holds overall, and that the
transitive closure of R holds between the initial state and all the intermediate states,
i.e., R∗ [̃ti; ṽi=�; �:v] holds for all i. Similarly, the stability of the outputs over all the
adjacent intervals implies that the outputs are stable from the initial time up to every
time t̃i, and the local and auxiliary variables that are not in the frame are at each step
equal to their initial values.

I [�0 ;�:v0
�;�:v]⇒

 ∀i : N •

 t̃i + d6 t̃i+1 ∧ Bi @ t̃i ∧ t̃i 6 Di @ t̃i ∧
Ii ∧ R∗[t̃i ;̃vi�;�:v]∧
eq(�:out \ x; �0; t̃i ; �:v0 \ x0; ṽi \ xi)

∧
R∞ ∧ eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x)

I. Hayes / Science of Computer Programming 43 (2002) 161–192 189

The above implies for each i that �0 + i∗d6̃ti, and hence because d is strictly positive,
for any time �′ there exists an index i such that �′6 t̃i.

I [�0 ;�:v0
�;�:v]⇒

∀�′ : Time • ∃i : N•(

�′ 6 t̃i ∧ Bi @ t̃i ∧ t̃i 6 Di @ t̃i ∧ Ii ∧ R∗[t̃i ;̃vi�;�:v]
∧ eq(�:out \ x; �0; t̃i ; �:v0 \ x0; ṽi \ xi)

)
∧

R∞ ∧ eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x)

The elements t̃i and ṽi provide witnesses for the existentially quanti1ed � and �:v in
the following.

I [�0 ;�:v0
�;�:v]⇒

∀�′ : Time • ∃� : Time; �:v : Tv•(

�′ 6 � ∧ B@ � ∧ �6 D@ � ∧ I ∧ R∗∧
eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x)

)
∧

R∞ ∧ eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x)

Placing this back in the original context and noting the de1nition of I∞, we can
complete the proof of the in1nite number of iterations case.

M� (IT∞)

V �0 6 � ∧
((

�0 ¡∞ ∧
I [�0 ;�:v0

�;�:v]

)
⇒
(
� =∞∧ I∞ ∧ R∞∧
eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x)

))
≡M�(∞ x: [I; � =∞∧ I∞ ∧ R∞]):

8. Conclusions

Nonterminating repetitions are commonly required in real-time control applications.
Hence, a real-time program development method needs to support their use. The pri-
mary advantage of the approach taken in this paper is that we develop code for a
machine-independent real-time programming language, and hence do not need to con-
sider the detailed execution times of language constructs as part of the development
process. This is achieved through the simple mechanism of adding a deadline command
to our programming language. The approach allows the real-time calculus to appear
to be a straightforward extension of the standard re1nement calculus [4]. Of course,
the compilation process now has the added burden of checking that the deadlines are
met [3].

As with the standard re1nement calculus, it is advantageous to devise re1nement
laws that make use of loop invariants and relations [18]. We have developed a general
re1nement law for introducing repetitions that encompasses all of our previous laws as
special cases. In addition, the use of the relations within the law allows the application
of the law to be considerably simpler, as illustrated in the development of the main
program repetition in the example in Section 5.

In order to reason about repetitions in a machine-independent manner, we require
that the loop invariant be idle-invariant, so that it holds over the executions of the guard

190 I. Hayes / Science of Computer Programming 43 (2002) 161–192

evaluation and branch back phases of repetition execution. This restricts the form of
the invariant and blurs the link between the invariant and the current time variable, �.
To reestablish the link between the invariant and the time at which the invariant is
true, a deadline command can be added to the start of the repetition body. In a similar
manner the relations used in the rule need to be pre- and post-idle-invariant in order
to cope with the time periods corresponding to guard evaluation and branch back.

The in1nite number of iterations case is the most interesting to deal with. If the
repetition body always terminates and establishes a relation R, then there is an in1nite
sequence of states with each adjacent pair in the sequence related by R. Hence for the
whole repetition one can deduce the overall eFect R∞. In addition, the loop invariant,
the guard and the deadline condition are true at an in1nite number of progressively
increasing times. That leads to our 1nal re1nement law for nonterminating repetitions.

We have presented a predicative semantics for our real-time language, and within
that framework given a simpler relational-style semantics for possibly nonterminating
repetitions than the semantics given in our earlier paper [6]. In the semantics of the
repetition we considered two cases: a 1nite number of iterations of the repetition (in-
cluding the case where the last iteration fails to terminate), and an in1nite number of
iterations. The relational-style semantics leads to a considerably simpler proof of the
re1nement law.

Acknowledgements

This research was funded by Australian Research Council (ARC) Large Grant
A49801500, A Uni3ed Formalism for Concurrent Real-time Software Development.
I would like to thank Colin Fidge, Karl Lermer, Mark Utting and the excellent (but
anonymous) referees for feedback on earlier drafts of this paper, and the members
of IFIP Working Group 2.3 on Programming Methodology for feedback on this topic,
especially Rick Hehner for his advice on how to simplify our approach, and CliF Jones
on his rules that make use of relations.

Appendix A. Additional laws

Law 27 (Strengthen eFect). Provided

�0 ¡∞∧ P[�0 ;�:v0
�;�:v] ∧ �0 6 � ∧ eq(�:out \ x; �0; �; �:v0 \ x0; �:v \ x) ∧ Q′VQ

then ∞ x: [P; Q] � ∞ x: [P; Q′].

The proof of this law follows directly from De1nition 1 (real-time speci1cation).

Law 28 (Separate post guard). Provided P and X are single-state predicates, I is a
single-state, idle-invariant predicate, R is a post-idle-invariant relation, and Q is a

I. Hayes / Science of Computer Programming 43 (2002) 161–192 191

relation,

∞ x: [P; (�¡∞∧ X ∧ I ∧ R) ∨ (� =∞∧ Q)]
� ∞ x: [P; (�¡∞∧ I ∧ R) ∨ (� =∞∧ Q)]; [X]:

Proof. Because R is post-idle-invariant composing it with the IDLE relation has no
eFect: �¡∞V (R 9

◦ IDLE) ⇒ R. Therefore, the left side of the law is re1ned by the
following:

∞ x:
[
P;

(�¡∞∧ X ∧ I ∧ (R 9
◦ IDLE)) ∨

(� =∞∧ (Q ∨ (R 9
◦ false)))

]
� Law 12 (sequential composition with relation)
∞ x: [P; (�¡∞∧ I ∧ R) ∨ (� =∞∧ Q)];
∞ x: [I ; (�¡∞∧ X ∧ I ∧ IDLE) ∨ (� =∞∧ false)]: (A.1)

The second component can be re1ned to a guard.

(A.1)
� contract frame; � ¡∞ implies it terminates

[I; X ∧ I ∧ IDLE]
� as I is idle-invariant; empty frame implies IDLE; weaken assumption

[X]:

Law 29 (Separate pre-guard). Provided P is a single-state, idle-invariant predicate,
I is a single-state predicate, Q and R are pre-idle-invariant relations, and X is a
single-state predicate such that

�0 ¡∞∧ IDLE ∧ X V X [�0 ;�:v0
�;�:v]

then

∞ x:
[
P; X [�0 ;�:v0

�;�:v] ∧ ((� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q))
]

� [X];∞ x: [P ∧ X ; (� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q)]:

Proof. The left side of the above is re1ned by the following because R and Q are
pre-idle-invariant.

∞ x:

P;
(
� ¡∞∧ I ∧

((
X [�0 ;�:v0

�;�:v] ∧ IDLE
)

9
◦R
))
∨(

� =∞∧
(
false ∨

((
X [�0 ;�:v0

�;�:v] ∧ IDLE
)

9
◦Q
)))

� Law 12 (sequential composition with relation)

∞ x:

P;
(
� ¡∞∧ P ∧ X ∧ X [�0 ;�:v0

�;�:v] ∧ IDLE
)
∨

(� =∞∧ false)

 ; (A.2)

∞ x:
[
P ∧ X ; (� ¡∞∧ I ∧ R) ∨ (� =∞∧ Q)

]
:

192 I. Hayes / Science of Computer Programming 43 (2002) 161–192

The 1rst component can be re1ned to a guard.

(A.2)
� contract frame; � ¡∞ implies it terminates; assumption about X

[P; P ∧ X ∧ IDLE]
� P idle-invariant; weaken assumption; empty frame implies IDLE

[X]:

References

[1] C.J. Fidge, I.J. Hayes, G. Watson, The deadline command, IEE Proceedings—Software 146 (2) (April
1999) 104–111.

[2] R.W. Floyd, Assigning meaning to programs, Math. Aspects of Comput. Sci. 19 (1967) 19–32.
[3] S. Grundon, I.J. Hayes, C.J. Fidge, Timing constraint analysis, in: C. McDonald (Ed.), Computer

Science ’98: Proc. 21st Australasian Computer Sci. Conf. (ACSC’98), Perth, 4–6 Feb., Springer, 1998,
pp. 575–586.

[4] I.J. Hayes, Separating timing and calculation in real-time re1nement, in: J. Grundy, M. Schwenke, T.
Vickers (Eds.), Int. Re1nement Workshop and Formal Methods Paci1c 1998, Springer, 1998, pp. 1–16.

[5] I.J. Hayes, Real-time program re1nement using auxiliary variables, in: M. Joseph (Ed.), Proc. Formal
Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, Vol. 1926,
Springer, 2000, pp. 170–184.

[6] I.J. Hayes, Reasoning about non-terminating loops using deadline commands, in: R. Backhouse, J.N.
Oliveira (Eds.), Proc. Mathematics of Program Construction, Lecture Notes in Computer Science, Vol.
1837, Springer, 2000, pp. 60–79.

[7] I.J. Hayes, A predicative semantics for real-time re1nement, Technical Report 01-15, Software
Veri1cation Research Centre, The University of Queensland, Brisbane 4072, Australia, May 2001.

[8] I.J. Hayes, B.P. Mahony, Using units of measurement in formal speci1cations, Formal Aspects of
Computing 7 (3) (1995) 329–347.

[9] I.J. Hayes, M. Utting, Coercing real-time re1nement: a transmitter, in: D.J. Duke, A.S. Evans (Eds.),
BCS-FACS Northern Formal Methods Workshop (NFMW’96), Springer, 1997.

[10] I.J. Hayes, M. Utting, Deadlines are termination, in: D. Gries, W.-P. de Roever (Eds.), IFIP TC2=WG2.2,
2.3 International Conference on Programming Concepts and Methods (PROCOMET’98), Chapman and
Hall, 1998, pp. 186–204.

[11] I.J. Hayes, M. Utting, A sequential real-time re1nement calculus, Acta Informatica 37 (6) (2001)
385–448.

[12] E.C.R. Hehner, Termination is timing, in: J.L.A. van de Snepscheut (Ed.), Mathematics of Program
Construction, Lecture Notes in Computer Science, Vol. 375, Springer, 1989, pp. 36–47.

[13] E.C.R. Hehner, A Practical Theory of Programming, Springer, 1993.
[14] C.A.R. Hoare, An axiomatic approach to computer programming, Comm. ACM 12 (1969) 576–580,

583.
[15] C.A.R. Hoare, He Jifeng, Unifying Theories of Programming, Prentice-Hall, 1998.
[16] J. Hooman, Assertional speci1cation and veri1cation, in: M. Joseph (Ed.), Real-time Systems:

Speci1cation, Veri1cation and Analysis, Prentice-Hall, 1996, pp. 97–146 (chapter 5).
[17] J. Hooman, O. van Roosmalen, Formal design of real-time systems in a platform-independent way,

Parallel and Distributed Computing Practices 1 (2) (1998) 15–30.
[18] C.B. Jones, Program speci1cation and veri1cation in VDM, Technical Report UMCS-86-10-5,

Department of Computer Science, University of Manchester, 1986.
[19] C.C. Morgan, Programming from Speci1cations, Prentice-Hall, 2nd Edition, 1994.
[20] M. Utting, C.J. Fidge, A real-time re1nement calculus that changes only time, in: He Jifeng (Ed.), Proc.

7th BCS=FACS Re1nement Workshop, Electronic Workshops in Computing, Springer, July 1996.

	Reasoning about real-time repetitions:terminating and nonterminating
	Introduction
	Related work

	Real-time refinement calculus
	Real-time specification command
	Real-time commands

	Definition of a real-time repetition command
	General repetition introduction law
	Example
	Refinement of the main program
	Refinement of procedure Await

	Timing constraint analysis
	Proof of general repetition law
	A finite number of iterations
	An infinite number of iterations

	Conclusions
	Acknowledgements
	Appendix A.
	References

