
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

November 1991

Specification and Analysis of Resource-Bound Real-Time Systems Specification and Analysis of Resource-Bound Real-Time Systems

Richard Gerber
University of Maryland

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard Gerber and Insup Lee, "Specification and Analysis of Resource-Bound Real-Time Systems", .
November 1991.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-91-96.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/360
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/360
mailto:repository@pobox.upenn.edu

Specification and Analysis of Resource-Bound Real-Time Systems Specification and Analysis of Resource-Bound Real-Time Systems

Abstract Abstract
We describe a layered approach to the specification and verification of real-time systems. Application
processes are specified in the CSR application language, which includes high-level language constructs
such as timeouts, deadlines, periodic processes, interrupts and exception-handling. Then, a configuration
schema is used to map the processes to system resources, and to specify the physical communication
links between them. To analyze and execute the entire system, we automatically translate the result of the
mapping into the CCSR process algebra. CCSR characterizes CSR's resource-based computation model
by a priority-sensitive, operational semantics, which yields a set of equivalence-preserving proof rules.
Using this proof system, we perform the algebradc verification of our original real-time system.

Keywords Keywords
real-time, specification, configuration, verification, proof systems, process algebras, programming
languages

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-91-96.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/360

https://repository.upenn.edu/cis_reports/360

Specification and Analysis of Resource-Bound
Real-Time Systems

MS-CIS-91-96
LOGIC & COMPUTATION 43

DISTRIBUTED SYSTEMS LAB 9

Richard Gerber
Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

November 1991

Specification and Analysis of Resource-Bound
Real-Time Systems*

Richard Gerber Insup Lee
Dept. of Computer Science Dept. of Computer and Info. Science

University of Maryland University of Pennsylvania
College Park, MD 20742 Philadelphia, PA 19104

rich@cs.umd.edu lee@cis.upenn.edu

Abstract. We describe a layered approach to the specification and verification

of real-time systems. Application processes a.re specified in the CSR application

language, which includes high-level language collstructs such as timeouts, dead-

lines, periodic processes, interrupts and exception-handling. Then, a configuration

schema is used to map the processes to system resources, and to specify the physi-

cal communication links between them. To analyze and execute the entire system,

we automatically translate the result of the mapping into the CCSR process alge-

bra. CCSR characterizes CSR's resource-based computation model by a priority-

sensitive, operational semantics, tvhich yields a set of equivalence-preserving proof

rules. Using this proof system, we perform the algebradc verification of our original

real-time system.

Keywords: Real-time, specification, configuration, verification, proof systems,
process algebras, progralnming languages.

Contents

1 Iiltroduction

2 The CSR Specification Language
2.1 T h e Application Language
2.2 A Sensor-Monitor System
2.3 T h e Configuration Language

3 Tl-re Calculus for Coininunicating Shared Resources
3.1 T h e Colnputation Model
3.2 The CCSR Language and its Semantics
3.3 An Axiolnatization of CCSR

*This research was supported in part by ONR N00014-89-5-1131 and NSF CCR-9014621.

4 T r a ~ l s l a t i o ~ l of CSR Processes I n to C C S R Terins
4.1 The Translation Approach
4.2 Translating the Configuration Schema
4.3 CCSR Translation of Sensor-Monitor Process Specification

5 Using the CCSR Proof Rules

6 Conclusion

1 Introduction

Once strictly the province of assembly-language programmers, real-time computing has
developed into an important area of research. This is a welcome sign, since the practice of
building real-time systems is still dominated by the use of arcane and ad hoc techniques.
As a step toward redressing this problem, there has recently been a spate of progress
in the development of real-time formal methods. Much of this work has fallen into the
traditional categories of untimed systems - for example, temporal logics (as in [14, I]),
assertional methods (as in [16, 7]) , net-based paradigms (as in 110, 31) and process algebras
(as in [15, 171).

In this paper we address the problem of shared resources in real-time systems. As
in [9], we model a real-time system not only by its functionality and timing constraints,
but also as a collection of one or more shared resources. Each resource is inherently
sequential in nature; that is, a resource only has the capacity to execute a solitary event
at any time. This constraint quite naturally leads to an interleaving notion of concurrency
at the resource level of the system, where we assume that a priority ordering is used to
arbitrate between simulta,neous resource requests. At the sys tem level, true parallelism
occurs when a group of resources are executed simulta,neously. In such an environment,
various factors can influence the real-time behavior of a system: the number of resources,
their timing characteristics, their ordering of priorities, the connectivity between them,
and the processes hosted on them.

To study the subtle interplay between t,hese factors, we have developed a two-tiered
framework called Communicating Shared Resources (or CSR). At the top layer is the
CSR specification language which is used to describe the functional aspects of a real-time
system as well as its resource requirements. The specification language consists of an
application language and a configuration language. The application language possesses
high-level constructs to specify comnlunication primitives, timeouts, delays, interrupts,
deadlines, periodic processes and exceptions. The configuration language is used to define
the structure of the complete system. A configuration schema. maps application processes
to system resources, specifies the topology of interconnection network, replicates system
components and declares priorities. The bottom layer is the Calculus for CSR (or CCSR),
which is a process algebra based on a computation model that captures the notions of
priority and resource. An automatic translator accepts the application and configuration
components of a CSR specification, and then translated them into a CCSR term. The
correctness of the CSR specificatioil is verified using the proof system of CCSR.

This paper is organized as follows: In Section 2.1, we present an overview of the CSR
Specification Language, with both its syntax and its informal semantics. We proceed to
show how a resource- constrained, real-time system can be assembled using a configuration

schema. Section 3 is devoted to the CCSR process algebra -its execution model, semantics
and the proof system that it yields. In Section 4 we show how a CSR specification and a
configuration schema, is translated into CCSR, and in Section 5 we show how the CCSR
proof rules can then be used to verify that the original CSR program is correct.

The CSR Specification Language

A major objective of the CSR paradigm is to facilitate the specification of real-time pro-
cesses, and then support a static evaluation of various design alternatives. To this end,
the CSR paradigm supports the separation of a real-time system's functional specification
from its configuration. The functional spcification, which is writ ten in the CSR application
language, describes the high-level timing characteristics of a system. The configuration
schema, written in the CSR Configuration Language, characterizes the interralationship
between these processes; i.e., their resource mappings, their communication links, etc.
This separation of concerns more easily lends itself to an evaluation of various system
designs. At the CSR application language level, one need only concern oneself with the
functionality of each process. The configuration language then gives us the ability to "as-
semble" the component programs in as intelligent a manner as possible. By experimenting
with different process mappings and communication channel connections, one can change
the topology of a system without rewriting the actual CSR application specification.

2.1 The Application Language

A CSR application program consists of a collection of processes, each of which contains
a declaration section and a CSR statement. The declaration section reserves the ports,
local execution events, and free timing parameters that the process will use, while the
statement specifies the process' basic control structure. CSR statements include send
and receive commands, sequential composition, timeouts, periodic loops, interrupts and
exception-handling.

Table 1 shows the syntax of the language; CSR keywords are in boldface, () indicates
non-terminal symbols, "id" represents an identifier, and "num" denotes a positive integer.
We also use I to indica.te alternatives and [] to indica.te optional syn ta ,~ .

Declarations. Declarations fall into two categories - event declarations and timing dec-
larations. An event declaration reserves identifiers associated either with communication
ports or local execution actions. These CSR events are generically called a t o m s as they
are used in "atomic" CSR statements: i npu t atoms are used in recv statements, o u t p u t
atoms are used in send statements, and local atoms are used in exec statements.

A timing declaration reserves one or more free time variables that may be used in a
CSR time-constrained statement such as wait , every and scope. When a time variable
appears in such a statement, it becomes the configuration schema's responsibility to bind
it to an integer constant. As is shown in Table 1, constants may also be used in these
statements.

(program) ::= (proc) (program) ((proc)
(proc) ::= process id (decls) (stmt)
(decls) ::= (decl) [(decls)]
(decl) ::= input (ids) I output (ids) I local (ids) I timevar (ids)
(ids) ::= id [, (ids)]

(stmt) ::= (atomic) (skip (wait (time) I idle (ndet((atomic),num,num)
I (stmt) : (stmt) I (loop-stat) I (every-stat)
1 (scope-stat) I (interleave-stat)

(atomic) ::= exec(id) I recv(id) I send(id)
(loop-stat) ::= loop do (stmt) od

(every-stat) ::= every (time) do (stmt) od
(scope-stat) ::= scope do (stmt) [(triggers)] od

(triggers) ::= interrupt (atomic) i (stmt) (triggers)
(timeout (time) -+ (stmt)

(interleave-stat) ::= interleave do (stmt) & (stmt) od
(time) ::= num (id

Table 1: The CSR Application Langua.ge

S ta tements . An atomic sta.tement - i.e., send, recv or exec - requires one time unit to
execute, at which time it terminates. And while it cannot be interrupted during execution,
it does have the capacity to idle indefinitely before execution. There are two reasons for
this. First, recv and send require synchronization with other processes. Second, all three
statements must also wait to be scheduled since many processes may be interleaved on
the same resource.

The wai t t statement specifies pure delay for t time units, after which it terminates.
(We mandate that t be greater than 0.) The skip statement terminates at the first time
unit; that is, sk ip is equivalent to wait 1. At the other extreme is the idle statement,
which endlessly idles and never terminates.

The sequential composition of S and T, "S;Tn , is standard: first S executes until termi-
nation, immediately after which T is initiated. For an atomic statement S, ndet(S,m,n)
executes S between m and n times, where 1 5 m < 72. If m is not equal to n, the
exact number of executions is resolved nondeterministically. For example, the statement
ndet(send(ch),3,5) means that send(ch) is executed between 3 and 5 times.

There are two kinds of repetitive constructs: loop and every. The loop statement
is used for simple, nonterminating loops. For example, loop d o S o d endlessly cycles,
executing the statement S. On the other hand, the every construct denotes a statement
with cyclic behavior of a positive periodicity. For example every 6 do S od has a period
of 6 time units; that is, every 6 time units S is reinitiated. There are three possible
outcomes of each iteration: (1) S may terminate exact ly at 6 time units, and then be
restarted; (2) S may terminate early, in which case the loop idles for the remainder of the
period, and then gets restarted; and (3) S may not terminate within the period, in which
case it is aborted, and then restarted.

The scope statenlent allows the specification of interrupts and a deadline associated
with a statement. A typical scope statement is as follows: scope d o S triggers od . The
body, S, of the scope statement executes, and if and wheli a triggering condition is raised
the execution flow is transferred to its associated exception handler. There are four kinds
of trigger guards: send, recv, exec and timeout. We use the following fragment to explain
the construct's behavior:

scope d o
S

in te r rup t recv(ch1) -+ S1
in te r rup t send(ch2) -+ S2
in te r rup t recv(ch1) -+ S3
in te r rup t exec(a) --+ S4
t imeout 100 t S5
o d

Upon the initiation of the scope, the statement S starts executing and the timeout counter
- initially set to 100 - starts decrementing upon entering the scope. During the execution
of S, the atomic expressions (or "interrupts") are enabled. S is executed until one of the
following occurs: (1) S terminates, in which case the timeout and interrupts are disabled,
and the entire statement terminates; (2) an interrupt is executed, in which case S is
aborted, the timeout and other interrupts are disabled, and the associated handler is
then executed; or (3) the timeout occurs, in which ca.se S is a,borted, the interrupts a,re
disabled, and the timeout exception handler S5 is initiated.

If there is contention between two interrupts at the same time, the selection is made
by the two action's synchronization constraints, by their priority, and as a last resort,
nondeterministically. Contention between an interrupt, and an atomic action in S is
similarly resolved.

We note that if no t imeout condition were present, S would not have to terminate
within 100 time units; similarly, if there were no interrupts, the only two possibilities
would be for S to terminate, or for a timeout exception to be raised.

The CSR paradigm provides two kinds of concurrency: one for processes executing on
different resources and another for processes executing on the saine resource. As we have
stated, it is the responsibility of the configuration schema to define the resource location
of each process, and t'hus, the characteristics of inter-process concurrency. However, we
additionally provide the facility for intra-process concurrency, which is defined by the
interleave statement. For example, the statement, interleave d o S & T od , interleaves
the actions of S and T, scheduling them according to their synchronization and priority
constraints. The entire statement terminates when both S and T have rea.ched terminating
states. We note that one can use the interleave statement to describe a hardware interrupt
handling, in which the interrupted statement is resumed after handling the interrupt.

The semantics of the interleave is such that pure idle time is never interleaved with
other actions; instead, it is "overlapped." Thus, the fragment

interleave d o wait 2 & recv(chl);recv(ch2) od

is equivalent to "recv(chl);recv(ch2)", as the two receives are overlapped with the idles.
Thus, skip functions as an identity in the interleave shtement.

process S
local sense, error
o u t p u t ch
t imevar t
every 6 d o

exec (sense);
scope d o idle
in te r rup t send(c11) --+ sk ip
t imeout t t exec(error) o d

o d

process M
local compute
i npu t ch
loop d o

recv(ch); exec(c,ompute); e x e ~ (~ o m p u t e)
o d

Figure 1 : Specification of a Sensor-Monitor System

2.2 A Sensor-Monitor System

Figure 1 displays the two process "S" and "M," where S specifies a sensor process and
M specifies the monitor process with which it communicates. We assume that our time
granularity is 1 millisecond.

The sensor has a 6 millisecond period, within which it (1) takes a sample reading
from the environment, and then (2) attempts to communicate the result to M along
channel ch. However, because the environment is subject to very rapid changes, the
communication must be made within t milliseconds; otherwise the data becomes worthless.
If the communication is successfully accomplished within t milliseconds, S sleeps for the
remainder of the period. Otherwise, it records an error.

As for the monitor, its control structure col~sists solely of an endless loop. During
every iteration, the process first waits for S to communicate its data. When the data is
received, statistics are computed for 2 milliseconds within a critical section, after which
M again waits for communication with S.

2.3 The Configuration Language

The CSR Application Language is designed for the functional description of real-time
processes. These individual CSR processes are without "concurrent context"; that is,
their relationship to the overall system is left unspecified. This relationship is defined in
a configuration schema written the CSR configuration language. A system configuration
contains the following information: (1) processes are mapped to the system resources; (2)
priorities are assigned to the various atoms declared in each process; (3) time variables
are bound to integer constants; (4) channels are created by making connections between

(sys) ::= (config) (sys) I (mainsys)

(config) ::= configurator id ([(formals)]) (declarations) end
(formals) ::= (formal) [; (formals) 1
(formal) ::= resource (ids) (priority (ids) I timeval (ids)

(mainsys) ::= main (declarations) end
(declarations) ::= (decl) [(declarations)]

(decl) ::= resource (ids)

I system id = id ([(actuals) I)
I process id (attrspec)
1 assign (anyids) on id
I close (ids)
(connect (fullids)

(actuals) ::= (value) [, (actuals)]
(value) ::= num (i d

(attrspec) ::= (attrtype) (attrlist) (attrspec)
(attrtype) ::= inport I outport (local 1 timevar

(attrlist) ::= id ((value)) [, (attrlist)]
(ids) ::= id [, (ids)]

(fullids) ::= fullid [, (fullids)]
(anyids) ::= anyid [, (anyids)]

Table 2: The CSR Configuration Language

the processes' ports; and (5) if we so desire, designated resources are closed, meaning that
no further processes will be allocated to them.

The configuration language is hierarchical in t11a.t a configured systenl inay be an
amalgamation of subsystems, which may themselves ha.ve subsystems. We also provide
for parameterized configurations, so that the parent systems may pass both resources and
priority assignments to their child subsystems.

Table 2 presents the complete grammar for the Configuration Language. We use
the same notational conventions as in the CSR grammar, with the following addition:
a "fullid" is an alphanumeric string interspersed with dots, such as "sys.prog.al", and
"anyid" represents either a fullid or an ordinary identifier.

A configuration schema consists of a main system (or the root), as well as a (possibly
empty) set of configurators for subsystems. Within each component is a set of declarations
that define the system characteristics.

We can illustrate the Configuration Language by using it to build a dual sensor-monitor
system, derived from the sensor and monitor processes in Figure 1. I11 our new scenario we
have two sensors, S1.S and S2.S' each of which with the functiona.lity of our original sensor
S. We now bind the S1 .S's time variable t to 2 milliseconds, and S2.S's time variable t to
4 milliseconds. Thus S2.S's sampled data ha.s grea.ter tempora.1 persistence than tha.t of
S1.S. We also have two monitors M1.M and M2.M, each of which with the functionality
of our original monitor M. We use the configuration shown in Figure 3 to "draw" the
system layout depicted in Figure 2.

Figure 2: Process to Resource Mapping

DEVICE-1 - - - - - - - - -
I I
I S1.S I
I I
L - - - - - - - - l

Before delving into the functionality of configurators and subsystems, we first consider
the basic system-building declarations: resource, process, assign, close and connect .
As we have stated, the resource is the defining aspect of our real-time model, in that a
single resource may only execute one atom at a time. Thus the number of resources in
a system may significantly alter its runtime behavior. Within a configuration, resources
are denoted by the resource declaration; e.g., in Figure 3 identifies the three resources,
Devicel, Device2 and Host.

Each process used in the system is identified using a process declaration, which has
the syntax that is quite similar to the header section in a CSR process. That is, it defines
the process name, the atoms used within the process and any free time variables that
must be bound.

The assign declaration is used to map processes onto resources. For example, in Figure
3, processes S1.S and S2.S are mapped to resources Devicel and Device2, respectively,
and processes M1.M and M2.M are mapped to resource Host.

In determining the timing behavior of processes on a particular resource, it is useful
to know whether the resource is going to host additional processes. The close declaration
defines that no more processes may be assigned to the named resources. The close
declaration in Figure 3 denotes that S1.S and S2.S are the sole occupants of Devicel and
Device2, respectively.

We use conilect to define connections between atoms; that is, they must execute
synchronously when their resources are combined in a, system. In Figure 3, the first
connect declaration specifies that the S1 .S and M1 .M processes share a point-to-point
link. When they execute in parallel, the atoms S1 .S.ch and M1.M.ch must always execute
simultaneously. We note that the meaning of the connect declaration is transitive. That
is, the following decla.rations imply that P.a, Q.b, R.c and S.d a.re all mutually connected:

DEVIC E-2 - - - - - - - - -
I I
I S2.S I
I I
L - - - - - - - - I

connect P.a, Q.b
connect R..c, S.d
connect P.a., S.d

Hierarchical, Pa ramete r ized Configurations. The Configuration Language sup-
ports hierarchical schemas, which can be constructed using the following features:

HOST - - - - - - - - - - - - - - - -
I I I I

I M1.M I I M2.M I
I

L - - - - - - - - I L - - - - - - - - l

conf igura tor MakeSense(ti11levar u)
process S

local sense(l), error(1)
o u t p o r t ch(0)
t imevar t (u)

e n d

conf igura tor MakeMon(priority chpri)
process M

local compute(3)
i n p o r t ch(chpri)

e n d

m a i n
resource Devicel, Device2, Host
s y s t e m S1 = MakeSense(2)
s y s t e m S2 = MakeSense(4)
s y s t e m M l = MakeMon(2)
s y s t e m M2 = Makeh/lon(l)
assign S1.S o n Devicel
assign S2.S o n Device2
assign Ml.M, M2.M on Host
close Devicel, Device2, Host
connect Sl.S.ch, MI .M.ch
connect S2.S.ch, M2.M.ch

e n d

Figure 3: Hierarchical Configuration of Sensor-Monitor System

The conf igura tor declaration, which is used to denote coilfiguration "generators";
that is, entities that must be "instantiated" to create a particular configuration.

The s y s t e m declaration, which "instantiates7' a, configura,tor, and thus creates a
new subsystem within its scope.

For example, Figure 3 includes a configurator MakeMon. By invoking the configurator
twice, the m a i n schema creates two "copies" of the system defined in Conf, and in this
way we derive the processes M1.M and M2.M. Moreover, M1.M.ch has a priority of 2,
and M2.Mon.ch has priority 1.

A configurator may itself make reference to other configurators, which results in a
subsystem that owns other subsystems within its scope. The only restriction we make
is that no forward references are allowed; this rules out any possibility of "recursive"
configurator invoca.tion. Those readers familiar with the ML programming language will

note that the relationship between configuration schemas and configurators is similar to
that between structures and functors [6].

3 The Calculus for Communicating Shared Resources

In this section we describe the CCSR language and its computation model, developing
such notions as resources, priority, synchronization and preemption. We proceed to show
that CCSR's semantics gives rise to a set of substitutive proof rules.

3.1 The Computation Model

The basic unit of computation is the event, which is used to model both local resource
execution as well as inter-resource synchronization. When executed by a resource, each
event consumes exactly one time unit. We let C represent the universal set of events.

Since a system potentially consists of many resources, multiple events may be observed
at any time throughout the course of its execution. We call such observances actions, and
they are represented by sets in P(C). In general, we let the letters a , b and c range over
the event set C, and the letters A, B and C range over the action set B(C).
Termination. The termination event, or "J", has the unique property that it is not
"owned" by any particular resource. Rather, if J E A for some action A, this means that
the system executing A is capable of terminating.
Resources and Actions. We consider individual resources to be inherently sequential in
nature. That is, at each time unit a resource is capable of executing at most a single event.
Actions that consist of multiple events must be formed by the synchronous execution of
multiple resources. We denote R to represent the set of resources available to a system,
and let i , j , and k range over R. For all i in R we denote C; as the collection of events
exclusively "owned" by resource i:

This type of alphabet partitioning is similar to that found in the I /O Automata model [12],
where it is used to define a notion of fairness. However, here it is used to help mandate
our resource-induced mutual exclusion condition. The domain of actions executable by
any CCSR term, "D'?, is defined as follows:

where "p(C)" denotes the set of finite subsets of C, and "IS[" denotes the cardinality of
a finite set "S". For a given a,ction A, we use the notattion p(A) to represent the resource
set that executes events in A: p(A) = { i E R I C; n A # 8). Note that since for all i,

J @ xi, P(A) = P(A - {dl) .
Priority. At any point in time many events may be competing for the ability to execute
on a single resource. We help arbitrate such competition through the use of a priority
ordering, T E C + AT. Using T, we define the preorder "I," that reflects the notion of
priority over the domain V. For all A, B E V, A S p B if and only if for all i in p(A)up(B),

A n C i = O v
(3a. A n Ci = { a) A ~ (a) = 0) V
(3a3b. A n C; = {a) A B n Cj = {b) A ~ (a) 5 ~ (b))

Based on this definition, we use the notation "A <, B" to represent that A has lower
priority than B; i.e., A <, B and B $, A.
Synchronization. In CCSR, the lowest form of communication is accomplished through
the silnultalleous execution of synchronizing events. The model treats such syllchronizing
events as being statically "bound" together by the various connections between system
resources. To capture this property we make use of what we call connection sets. A
connection set is a set of events that exhibits the "all or none" property of event synchro-
nization: At time t , if any of the events in a given connection set wish to execute, they
all must execute. More formally, a connection set is an equivalence cla,ss formed by the
equivalence relation "H" .

Definition 3.1 H C x C is an equivalence relation, where a @--a b denotes that a is
connected to b. We use the notation connections(a) to represent the equivalence class (or
connection set) of a.

We say that an action is synchronized with respect to a resource set I C_ R if s y n ~ (~) (A)
holds, where

sync(q(A) iff A = (UaEA connections(u)) n (UiEI(E; u { J)))

That is, if s y n ~ (~) (A) holds, A cannot make any additional connections with the resources
in I. Also, it is often convenient to be able to decompose an action A into two parts: that
which is fully synchronized (or resolved), and that which is not (or still unresolved). To
do this, we make use of the following two definitions:

Id le Events. For every i E R , there is an idle event r: in Ci such that ~ (7 :) = 0. The
way to interpret these events is as follows. A process may idle in two ways - it may either
release its processor during the idle time (represented by the execution of no event) or it
may hold its processor (represented by the execution of an idle event). We add that such
idle events are local with respect to their own resources; that is, they belong to their own
connection sets.

3.2 The CCSR Language and its Semantics

The syntax of CCSR resembles, in some respects, that of SCCS [13]. Let & represent the
domain of terms, and let E, F, G and H range over £. Additionally we assume an infinite
set of free term variables, FV , with X ranging over F V and .free(E) representing the set
of free variables in the term E . Let P represent the doma.in of closed terms, which we
call agents or alternatively, processes, and let P, Q, R and S range over P. The following
grammar defines the terms of CCSR:

E := NIL I A : E I E + E I EI[(jE I EA: (E ,E ,E) I [ElI I f i r (X . E) I X

The semantics of E is defined by a labeled transition syste~n (£, 4, D) , which is a relation
A

i C _ E x V x E. We denote each member (E ,A , F) of "+" as " E ----+ F". We call this

transition system unconstrained, in that no priority arbitration is made between actions.
We then use "+" to define a prioritized transition system { E , +,, D), which is sensitive to
preemption. This two-phased approach greatly simplifies the definition of "+,"; similar
tactics have been used by [2] in their treatment of CCS priority, and by [8] in their
semantics for maximum parallelism.

The Unconstrained Transition System, "+" . Table 3 presents the unconstrained
transition system, 'Lt". Throughout, we use the following notation. For a given set of
resources I R, we let C I represent the set UiEI Xi. Also, A * B = (A - { J}) u (B -
{ J)) U (A n B); that is, the termination event "$' is an element of A * B if and only if
it is in both A and B.
Inaction. The term N I L executes no action whatsoever, and thus it possesses no tran-
sition.
Action. The Action operator, "A : E", has the following behavior. At the first time
unit, the action A is executed, proceeded by the term E.
Choice. The Choice operator represents selection - either of the terms can be chosen
to execute, subject to the constraints of the environment. For exa,inple, the term (A :
E) + (B : F) may execute A and proceed to E, or it ma.y execute B and proceed to F.
Parallel. The Parallel operator defines the resources that can be used by the two terms,
a,nd also forces synchronization between them. Here, I, J 5 R are the resources allotted
to E and F, respectively. In the case where I n J # 8 , E and F may be able to share
certain resources. But as we have stated, such resource-sharing must be interleaved.

The first two conditions define the resources on which the terms El and E2 may exe-
cute, while the third condition stipula,tes that single resources ma.y not execute more than
one event at a time. The final condition defines our notion of inter-resource synchroniza-
tion; that is, Al and A2 may execute simultaneously if and only if they are connected in
the following sense: If some event a E Al is connected to an event b E C J , then b must
appear in A2, and vice versa.
Scope. The Scope construct E A: (F, G, H) binds the term E by a temporal scope (111,
and it incorporates both the features of timeouts and interrupts. We call t the time bound
and B the termination control, where t E N + U {a) (i.e., t is either a positive integer or
infinity), and B = { J) or B = 0.

The four rules for the Scope operator, correspond to the four actions that may be taken
while a term E is bound by a temporal scope: 1) continuing (ScopeC), 2) successfully
terminating (ScopeE), 3) timing out with an exception-handler (ScopeT) and 4) being
interrupted (ScopeI).
Close. The Close operator assigns terms to occupy exactly the resource set denoted by
the index I. First, the action A may not utilize more than the resources in I; otherwise
it is not admitted by the transition system. If the events in A utilize less than the set
I, the action is augmented with the "idle" events from each of the unused resources. For
example, assume E executes an action A, and that there is some i E I such that i 6 p(A).
In [ElI , this gap is filled by including T,$ in A. Here we use the notation 7; to represent
all of the 0-priority events from the resource set J: 7' = {T: I j E J).
Recursion. The term f ix(X.P) denotes recursion, allowing the specification of infinite
behaviors. As a,n example, consider the term tha.t indefinitely executes the action "A" :

A
f ix(X.(A : X)). By the Action rule, A : fix(X.(A : X)) 4 fix(X.(A : X)), so by the

A
Action : A : E --+ E

A A
E + E' F ----+ F'

ChoiceL : A ChoiceR : A
E + F ----, El E + F ----.t F'

Parallel :
A I A2

E, -----+ E;, E2 ----+ E; (P (A 1 = - I , ~ (' 4 2) C J l

-41 *A2
E I I I I J E ~ - Ei I I I J E ~ ~ (A I) n p(A2) = 0, ~ Y ~ c (I ~ J) (A I * A2)

A
E + E'

ScopeC : A

E A: (F , G, H) ---+ E' A:-, (E l F, G)
(t > 1, J e A)

A
E + E'

ScopeE : A+B J E A)
E A ; (F , G , H) & F

A
E + E'

ScopeT : A (t = 1, de A)
E A ~ (F , G , H) - G

A
H - H'

Scope1 : A (t L 1)
E a: (F . G , H) - H I

A
E 4 E'

Close : A U (T - ~ ~ ,) (P (A) G I)
[E] I ----+ [E'II

A
E [f i x (X . E) / X] ----t El

Recursioil : A

f i x (X .E) + E'

A
E ---+ E'

Con : A (X E)
X - E'

Table 3: Uncoils trained Transition System

A
Recursion rule, f i z (X . (A : X)) ---4 fix(X.(A : X)) .
Con. The Constant rule just mandates that if a name "X" is defined to represent the
term "En , then X can make the same transitions that E can.

Preemption and the Prioritized Transition System. The prioritized transition
system is based on the notion of preemption, which unifies CCSR's treatment of syn-
chronization, resource-sharing, and priority. Let "<", called the preemption order, be a
transitive, irreflexive, binary relation on actions. Then for two actions A and B, if A 4 B,
we can say that "A is preempted by B". This means that in all real-time contexts, if a
system can choose between executing either A or B, it will execute B.

Definition 3.2 For all A E V, B E V, A 5 B if and only if

The relation "5" defines a preorder over 27, and we say A < B if A 5 B and B $ A,
i.e., p(A) = p(B) A u n r e s (A) = u n r e s (B) A r e s (A) <, r e s (B) .

Now we are ready to define the transition system (E, +,, D) , grounded in our notion
of preemption.

Definition 3.3 The labeled transition system (£,+,,D) is a relation +,C £ x 2) x &
A

and is defined as follows: (E , A, El) E+, (or E -, E') if:

A
I . E ---+ E', and

A'
2. POI. all A' E V, E" E £ such that E ---+ E", A + A'.

Equivalence between processes is based on the concept of strong bisimulation, which
is defined in the usual sense (see [13]). We denote " N ~ " as the largest strong bisimula-
tion over the transition system (1, +, , 2)) , and we call it prioritized strong equivalence.
The following two theorems state characterize some fundamental properties of CCSR.
Theorem 3.1 states that LL-?r'i forms a congruence over the CCSR operators; that is,
whenever two terms are equivalent, all CCSR "contexts" will preserve their equivalence.
Theorem 3.2 states that fixpoints exist and are unique. For detailed proofs, refer to [4].

Theorem 3.1 Prioritized strong equivalence is a congruence with respect to the CCSR
operators. That is, for E, F, G E I , if E -, F and . free(G) = {X), then G [E / X] -,
G [F / X I e

Theorem 3.2 For any term E , f iz(X.E) is the unique solution to the recursive equation
X -, E .

Choice(1) E + N I L = E

Choice(2) E + E = E

Choice(3) E + F = F + E

Choice(4) (E + F) + G = E + (F + G)

Choice(5) (A : E) + (B : F) = B : F if A 4 B

Par(1) Erll J N I L = N I L

Par(2) EIIIJF = FJIIzE

Par(3) (E ~ ~ ~ J L ') (~ ~ ~) ~ ~ K G = E I I J (~ ~ ~) (F J ~ J ~ ~ G) if I r l J = 0, J n K = 0, I n K = 8

Par(4) E r l l ~ (F + G) = (E r l l ~ F) + (EIIIJG)

Par(5) (A : X)IIIJ(B : Y) =

(A * B) : (XIIJJY) if p(A) G I , p(A) n p(B) = 0,

{ N I L
p(B) G J , SY?ZC(ZUJ)(A * B)

otherwise

Scope(l) N I L A: (F, G, H) = H

Scope(2) (El + ~ z) A? (F, G, H) = (El a? (F, G, H)) + (Ez (F, G, H))

{
(A * B : F) + H i f J € A

Scope(3) (A : E) A: (F ,G , H) = (A : (E A:-~ (F ,G, H))) + H if J A and t > 1
(A : G) + H otherwise

Close(1) [N I L] r = N I L

Close(2) [E + F]I = [E]I t [F] I

Close(3) [A : El I =
(A u (q - qA))) : [Elz if p(A? C I { N I L otherwise

[ElJ i f I c J
N I L otherwise

Table 4: The Axiom System, A

3.3 An Axiomatization of CCSR

The axioms in the CCSR proof system, A, are enumerated in Table 4. In [4] we show that
A, (augmented with standard laws for substitution), is sound with respect to prioritized
equivalence; further, A is complete for finite fragments of CCSR. Using the Choice and
Pa.ralle1 la,ws in A, we can derive an analogue to the Expansion Law from CCS.

Theorem 3.3 (Expansion Law) Let I(and L be finite index se t s such that for all
k E K , 1 E L, Ak : Ek E I and Bl : FI E E . Then

4 Translation of CSR Processes Into CCSR Terms

Using CSR to specify a real-time system is certainly more natural and intuitive affair than
using the CCSR process algebra. However, CCSR provides a solid foundation to formally
analyze the properties of real-time systems; e.g., it enjoys a well-behaved operational
semantics, a rich equational structure and a congruence relation over terms. Our objective
in this section is to assign formal meaning to CSR processes by translating them into
CCSR terms.

In addition to the standard CCSR notation, we make prolific use of the following
derived terms:

I D L E gf 0 : I D L E

T E R M @ { J) : T E R M

S,(a) sf ({a, J} : T E R M) + (I : &,(a))

E b F %f E A: (F , NIL , NIL)

Tha,t is, the I D L E process sleeps indefinitely, while TERM is the process that indefinitely
signals termination. For some event a E C, the process LLS,(a)" is an "asynchronizer";
it may indefinitely idle before executing a (the exact time of execution depends on the
system's characteristics, such as the priority of a , it's synchronization requirements, etc.).
The term E b F (pronounced "E pipe F") executes E until it signals termination, at
which time control passes to F. Using the ScopeC and ScopeE rules from Table 3, we
can derive the two transition rules for " D":

4.1 The Translation Approach

Within this section we let S and T range over CSR statements, we let at range over
atoms, and act range over atomic actions (e.g., send(at) is an atomic action). Now
consider the following generic process definition, where pid is the process name, (decls) is
the declaration section and S is the process body:

process pid
(decls)
S

Throughout we assume that the atoms in the process are consistent, in that no single
atom is used for multiple functions (e.g., for both send and exec atomic actions). That
being the case, the function "Tevent" a,ccepts a CSR atomic action and produces an
uninterpreted CCSR event:

Thus all atomic actions are generically mapped to an event that identifies both the process
pid and the atom name, at. Next we define translation function, Tstat, which accepts
CSR statements within the process pid, and produces a CCSR term as its result.

Atomic S ta tements . Since all atomic statments have the capacity to idle until being
scheduled, the "6," suits our purposes here.

Tstat(send(at)) = S,(Tevent(send(at)))
Tstat (recv(at)) = S, (Tevent (recv(at)))
Tstat(exec(at)) = S,(Tevent(exec(at)))

In other words, the translated process may idle before both executing pid.at and signaling
termination. This is easily illustrated by the transition rules, which yield:

0
Tstat (recv(at)) Tstat(recv(at))

I ~ i d . a t , J)
Tstat(recv(at)) --+ T E R M

Skip a n d Wait . The CSR statement wait t "vamps" for its first t - 1 time units, and
then goes into a terminating state at its tth time unit (wait t is defined only for t 2 I).

TERM i f t = 1
Tstat(wait t) =

I D L E a",-, (NIL , TERM, NIL) otherwise

Recall that skip is simply syntactic sugar for wait 1.

Ndet . The CSR statement ndet(act, nt, n) nondeterlninistically executes the atomic
action act between m and n times, where 1 < 171 < 12. Exactly when each iteration will
execute is, of course, sensitive to the characteristics of the fully configured system. For
now we have to retain all possible times of execution, which is exactly the purpose of the
"6," operator.

Tst at (act) i f n = m = l
Tstat(act) + (Tstat(act) b Tstat(ndet(act, 1, iz - 1))) if m = 1 and it # 1
Tstat(act) b Tstat(ndet(act,m - l , n - 1)) otherwise

Sequential Composition. Our pipe operator was tailor-made to implement CSR's
sequential composition. The term Tstat(S; T) executes Tstat(S) until it signals termina-
tion; at the very next time unit, Tstat(T) is executed.

Scope. In tran~la~ting the scope statement, we require the use of an a,uxiliary translation
function, Tint, for and any interrupts specified within the scope.

n

Tint(interrupt actl -+ S1 . . . in terrupt act, -+ S,,) = {Tevent(acti)) : Tstat(Si)
i=l

There are four alternatives for scope, corresponding to each of the possible varieties of
triggers that bound the scope: (1) no triggers, (2) a timeout trigger, (3) interrupt triggers
and (4) both timeout and interrupt triggers.

Tstat(scope d o S od) = Tstat(S)

Tstat(scope d o S t imeout t t T od) =

Tstat(S) A:" (TERM, Tstat(T), NIL)
Tstat(scope d o S interrupts od) =

Tstat(S) A: (TERM, NIL, Tint(interrupts))

Tstat(scope d o S interrupts tiineout t -+ T od) =

Tstat(S) ~' ;0 (TERM, Tstat (T), Tint (interrupts))

Infinite Behaviors - Loop a n d Every. The CSR loop construct endlessly executes
its loop body; thus we can use our pipe combinator in conjunction with fixpoint:

Tstat(1oop do S od) = fix(X. (Tstat(S) b X))

Recall that the statement every t do S o d has a gua,ranteed period of t time units
(where we require that t 2 1). Again the CCSR scope operator is quite helpful in helping
us realize the semantics for every. First, in creating a scope body of Tstat(S) b IDLE,
we produce a term that executes Tstat(S), and subsequently idles indefinitely. Thus the
body performs all of the work of S, but never signals termination. This allows us to
use the timeout argument of the scope opera.tor to repeat the period, as in the following
translation:

Tstat(every t d o S od) = f i s (X . ((Tstat(S) t> IDLE) A: (NIL, X, NIL)))

Interleave. In presenting the formulation for the interleave we assume our process is
configured on some resource R.pid. That is, let events(S) be the set of events appear-
ing in the term Tstat(S). Then to translate interleave d o S & T od , we postulate
that p(events(Tstat(S)) U events(Tstat(T))) { R . p i d) . Thus, the translation of the
interleave statement is:

Tstat(inter1eave d o S & T od) = Tstat(S) { ~ . ~ i d } l l { ~ . p i d } Tstat(T)

From the definition of sync, we have that for any event a such that p({a)) = { R a p i d) ,
~ y n c ~ ~ ~ . ~ ; ~ ~ ~ ({ a)) holds, as does ~ync({~,;~})({a, \/I). And since S and T execute on the
same resource, we can derive the following rule for interleave:

A1 A 2
Tstat(S) - PI, Tstat(T) -----t P2

AI *A2 ([A1 * A21 5 1)
Tstat(inter1eave d o S & T od) - PI {~ .~ id}(I{~ .~ id) P2

4.2 Translating the Configuration Schema

The c,onfiguration schema is used for two purposes - to determine the characteristics of
the action domain, and to fix the final structure of the CCSR system. Each invocation
of the resource declaration builds up the resource doina.in, R. The process declaration
determines the event alphabet, C, as well as the priority function T . The assign declara-
tion generates the concurrent structure of the final CCSR term, and also determines the
resource mapping, p. When connect is used - as in "connect P.a,P.bn - it states that
"P.a - P.b".

4.3 CCSR Translation of Sensor-Monitor Process Specifica-

t ion

We revisit the sensor-monitor example, and apply our Tstat translation function to the
processes in Figure 1 and the configuration in Figure 3. The result is displayed in Table 5 ;
for readability, we have taken the liberty to rewrite fixpoint expressions using equivalent
Constant definitions. With the action domain's construction from Table 6, as well as the
system's syntax, we may now perform analysis using CCSR's t.ransition system and its
proof rules. Indeed, this is precisely what we shall do in Section 5 .

5 Using the CCSR Proof Rules

In this section we present a sketch of a correctness proof of the Sensor-Monitor System,
as portrayed in Tables 6 and 5 . Recall that our safety constraint is as follows: neither
Sensor process ever reaches a state in which its error event is enabled. We demonstrate
this by showing that there is some Systenz' such that System NT System', and further,

3

def
System = (R-Devicel {Deuice l} I l {~evice 'Z} R-Device2) { ~ e u i c e l , ~ e v i c e 2) ~ 1 { ~ o s ~ R-HOst

def R-Device1 = [S1.S](D,vicel}

def R-Device2 = [S2.S]{Deuicez)

R-Host [M1.M {Hos t } \ l {Host) M2 .M]{~os t }

~ 1 . s *f ((G,(SI.S.sense) D

(I D L E A: (N I L , ~ , (S ~ . S . ~ T T O ~) , { s ~ . s . c ~) : T E R M)) b

I D L E) 4 (N I L , S l .S , N I L)

S2.S gf ((Gm(S2.S.sense) D

(I D L E A",NIL, 6 , (~ 2 . ~ . e ~ r o r) , {S2.S.ch) : T E R M)) b

I D L E) A: (N I L , S2.S, N I L)

M1.M d" 6,(Ml.M.ch) b (&(Ml.M.compete) D (6,(Ml.A4.compnte) b M 1 . M))

M2.M kf 6,(M2.M.ch) b (6,(M2.M.compute) b (G,(M2.M.cornpute) b M 2 . M))

Table 5: CCSR Sensor-Monitor Process Specification

that neither S1.S.error nor S2.S.error appears in the syntax of System' . Specifically,

def
System' = [{S l .S . sense , S2.S.sense) : T]{Deu;,el,~e,;ce2,~,st~

T {S l . S . ch , M1.M.ch) : {M1.M.compute) : {M1.M.compute} :
{S2.S.ch1 M2.M.ch) : {M2.M.compute) :
{S l . S . s ense , S2.S.sense1 M 2 . ~ ~ . c o m p u t e } : T

To simplify the proof, we make use of the definitions in Table 7. We refer quite frequently
to these terms, and defining them here alleviates the need to repetitively copy them.

Recall that the " D" operator is derived directly from Scope, so there is no formal
need to provide separate rewrite rules for it. However, here we present some pertinent
equations as a lemma; once we have done so, we no longer have to appeal to its definition
in Section 4.

Lemma 5.1 For any CCSR terms E, F, G E E,

Pipe(1) N I L D E = N I L
Pipe(2) (E + F) D G = (E b G) + (F D G)

Resources: Devicel, Device2, Host E R

Resource Mapping:

p({Sl.S.sense, Sl.S.error, S1.S.ch)) = {Devicel)

p({S2.S.sense, S2.S.error, S2.S.ch)j = (Device2)

p({Ml.M.compute, M l .M , ch, M2.M.compute, h42.M.ch)) = {Hos t)

Connection Sets:

{Sl.S.ch, Ml .M.ch}, {S2.S.ch, M2.M.ch), {Sl.S.sense), {S2.S.seizse),

{Sl .S.error}, {S2.S.error), {A4l.A4.compute), {M2.Ad.compzite)

Priorities:

Devicel : r(S1.S.sense) = 1, ~ (S1 .S . e r ror) = 1, r(S1.S.ch) = 0

Device2 : n(S2.S.sense) = 1, r(S2.S.error) = 1, ~ (S 2 . S . c h) = 0

Host : r(M1.M.compute) = 3, r(M1.M.ch) = 2, r(M2.A4.compute) = 3, r(M2.M.ch) = 1

Table 6 : Resources, Resource Mapping, Connections and Priorities

5'1.5'' 9 (I D L E n", (N I L , b,(Sl.S.error), {Sl .S.ch) : T E R M) b

I D L E) A", (N I L , S l . S , N I L)
1' def S1.S = (b,(Sl.S.sense) b

(I D L E ~",~~L,d,(~l.~.error),{Sl.S.ch) : TERA4)) b

I D L E) A: (N I L , S l .S , N I L)
1 def S2.S = (I D L E A: (N I L , 6,(.92..S'.error), {S2.S.eh) : TERAl) b

I D L E) A",NIL,S~.S, N I L)

M1.M1 dcr b,(Ml.M.compute) b (b,(Ml.M.compute) b M1.M)

M2.M' dcr b,(M2.M.cornpute) b (6,(MZ.il.l.comyute) b M2.M)
def Sysl = ([S1-S']{~ewicel) { ~ e w i c e l } ~ ~ { ~ e w i c e 2) [S2-S1]{~euice2)) {~euicel,~euice2}11{~ost} R-Host

Table 7 : Proof Definitions

Proof: Pipe(1) follows directly from the definition of " b", Scope(1). Pipe(2) is just a
restatement of Scope(2), while Pipe(3) follows from Scope(3).

Proof Sketch. By using the definition of "S,," the laws in A and Lemma 5.1, we can

obtain that:

Now invoking Close(2) and two applications of Close(3), we arrive at:

We now have the first opportunity to exploit Choice(5); that is, to prune the proof tree.

Note that { T ~ , , ~ , , ~ } 4 {Sl.S.sense), and thus,

Similarly,

Now we turn our attention to the R-Host resource. We can use the definition of "S,",
Pipe(2)) Pipe(3) and finally Theorem 3.3 to derive that:

Next we apply Close(2) and Close(3) to derive a transformation of R-Host. Note that no
priority elimination may take place here, since the actions (1111. M.ch) , (M2. M.ch) and
{ T ~ ~ , ~) are mutually uncomparable under "4."

(6) &-Host = {Ml.M.ch} : [~ ~ ~ . ~ ' ~ H o ~ t ~ ~ ~ ~ H o ~ t ~ ~ ~ . ~ ~] ~ H o s t ~

+ {M2.M.ch) : [A4l-M{Host} 1 1 {Host) fiI.2-Mt]{Host}

+ { T & ~ ~ ~) : R-Host

We may now exploit Theorem 3.3 to arrive the following rewrite for the System term.

(7) System = {Sl.S.sense, S2.S.sense, rgoSt) : Sys'

Using the Scope, Pipe, Choice and Close laws we have that

(8) [sl-s ' l{~evicel}

= {Sl.S.ch} : [IDLE A: (NIL, 5'1.5') NIL)]{De,icel}

+ { T ~ ~ ~ ~ ~ ~ ~ } : [((IDLE (NIL, b,(Sl.S.error), {Sl.S.ch) : TERM))

D IDLE) A: (NIL, sl.s, NIL)]{Devicel)

And similarly,

(9) [S2.S']{~evice2}
= (S2.S.ch.) : [IDLE & (N I L , s2.s) A T I L)] { ~ ~ ~ ~ ~ ~ ~ }

+ {rgevice2} : [((IDLE A: (NIL,b,(SZ.S.error), {S2.S.ch,} : TERM))

b IDLE) & (N I L , S2.S, NIL)]{Deuice2)

Now we invoke Theorem 3.3 to derive a transformation for Sys', using our results so far.

(10) Sys' = {Sl.S.ch, T ~ , , ; , ~ ~ , M1.M.ch) :

(([IDLE At S1.S) NIL)I{~euicel} {Deuicel} 11 {Deuice2}

[((IDLE L$ (NIL, S,(S~.S.CT~OT), (S2.S.ch) : TERM))

IDLE) A: (NIL, S2-S, NIL)l{Devicet}) { ~ e u i c e l , ~ e u i c e 2 } Il{Horl}

[M1.M' { ~ o s t } II{Host} M2.M]{Host})
+ {rgeui ,,,, S2.S.ch, M2.M.ch) :

(([((IDLE A; (NIL,&,(Sl.S.error), {Sl.S.ch) : TERM))

b IDLE) (NIL) Sl.S, NIL)]{Deuicel}) {Deuicel) /I{Deuice2}

[IDLE s2.s) N1L)]{~evice2} {~euicel,~euice2}\\{~ost}

f M l-M{H~st} II{Host} A42.M']{~~st})
0 r0

f (~ D e v i c e l 7 Device27 'gost) :

(([((IDLE A",ML, d,(Sl.S.error), {Sl.S.ch) : TERM))

D IDLE) A: s l . s , NIL)]{~euice l}) {Deuicel} I/{Deuice2}

[((IDLE A: (NIL, 6,(,92.,S'.error), {S2.S.ch) : TERM))
0

b IDLE) (ATIL) S2.S, NXL)I{Deuice2)) { ~ e v i c e l , ~ e v i c e 2) (\ { ~ o s t }
Host

But we can reduce the term's complexity by using Choice(5), i.e., preemption.

(11) Sys ' = {Sl.S.ch, rgeviCe2) Ml.A4.ch} :

(([IDLE A\ Sl.S, NIL)l{~euicel) {Deuicel) II{Devire2}

[((IDLE A: (NIL, Sw(S2.S.error), (S2.S.ch) : TERM))

There is a leap to the next step, in which the term Sys' is "flattened out." However, the
procedure is similar to the previous one in the previous steps, and we omit the details for
the sake of brevity.

(12) Sys' = {Sl.S.ch, T ~ , , ~ , ~ ~ , A!ll.M.ch) : { ~ g ~ ~ ~ ~ ~ ~ , T & , ~ ~ ~ ~ , Ml.M.compute} :
0 T O {rDevicel, Device2, M1.M.conzpute) : { T ~ ~ ~ ~ ~ ~ ~ , S2.S.ch) M2.M.ch) :
0

{ ~ D ~ ~ i ~ ~ l ? rgeuice2) M2.M.com~ute)
{Sl.S.sense, S2.S.sen,se, M2.A4.comp?ste} : Sysl

Now, by Close(3) we have that

(13) System' = {SI.S.sense, S2.S.sense, T & ~ ~ ~) : [T] { ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~

and thus it remains to be shown that Sys' NT [T]{Deuicel,D~uice2,~0st}. But by six applica-

tions of Close(3), it follows that

Now since fixpoints are unique, it follows that Sys' N T [T]{Deuice1,~,uice2,~o,t), as they
solve the same recursive equation.

The importance of preemption elimination (law Choice(5)) cannot be underestimated
here. A simple way to illustrate this is to set ~ (S1 .S .ch) to 1, and thus to give S2.S.ch
the same priority as that of S1.S.ch. In this case, the initial choice between the actions

{Sl.S.ch, ~ g e u i c e 2 , Ml. M.ch) and { T ~ ~ ~ ~ ~ ~ ~ , S2.S.ch, h12. M.ch) becomes nondeterministic.
And if the branch corresponding to { ~ g , , ~ ~ ~ , , S2.S.ch, A42.M.ch) is taken, M2.M.compute
will execute for 2 time units, during which time the execution of M1.M.ch will be blocked.
But since the deadline for S1.S.ch will have expired, S1.S.error would have been executed.
In fact, we can prove that in this case, System NT System1', where

def System" = [{Sl.S.sense, S2.S.sense) : T'](DEuicel,~euice~,~ost)
I def T = ({Sl.S.ch, Ml.M.ch) : {Ml.M.conzpute) : {Ml.M.coinpute) :

{S2.S.ch, M2.M.ch) : (M2.M.compp~te) :
{Sl.S.sense, S2.S.sense, M2.M.conzpute) : TI)

$ ({Sl.S.ch, M1.M.ch) : {M2.M.compute) : {A42.M.compute, S1.S.error) :
0 : 0 : {Sl.S.sense, S2.S.sense, M2.M.compute) : TI)

That is, Sl .S may starve completely, and record an error during each period.

6 Conclusion

We have described a two-tiered approach to the specifica.tion and verification of real-time
systems. The CSR Specification Language is used to design the functionality of a real-time
program, and an accompanying configuration schema is then used to specify its structure.
To analyze the resulting system, we automatically translate it into a term in the CCSR
process algebra.

As we have shown, the CCSR semantics heavily rely on our notions of resource al-
locakion, synchronization a,nd priority. By considering t,he very subtle interp1a.y between
these factors, we have defined a notion of preemption that leads to a congruence relation
over the terms. In turn, this result yields a fully substitutive proof system, facilitating
the algebraic verification of our original real-time system.

The CSR Specification Language has continually matured since we introduced it in
[5] , and its expressivity has correspondingly increased. In previous versions, for example,
the scope construct was allowed only one trigger, which could be either a, timeout or an
interrupt. It is true that scopes could be nested, but nesting alone does not provide for
the same expressivity as multiple triggers. Consider, for example, the following fragments
TI and T2:

Certainly T1 and T2 do not have the same meaning. In T 1, if recv(ch1) is executed,
then the timeout is disabled; in T2 the timeout remains active even while the exception-
handler S1 is being executed. Since many real-time systems have multiple interrupts, it
seems that the new scope statement is a vast improvement.

Another improvement over the older versions of CSR is the decoupling of the lan-
guage and configuration issues. In those earlier versions, we did not provide a separate
configuration language; instead, we used two parallel operators: "&" denoted interleaving
concurrency, while true parallelism was represented by the ' '11" symbol. Also, connec-
tions were declared using global naming conventions; specifically, a unique event "chl?"
was forced to synchronize with its counterpart event "chl!". We found these approaches
clumsy for several reasons. First, the events "clzl?" and "chl!" had unique, system-wide
names, which prevented other processes from using different "instances" of them. Second,
it enforced one-to-one communication, which precluded broa,clca,sting and other, more so-
phisticated schemes. But of most importance, by distinguishing at the functional level
between the two types of parallelism, we found it difficult to minutely alter the specifica-
tion without rewriting it completely. For example, suppose we were to determine whether
the sensor-monitor system required a dedicated resource for each monitor module. This
could quite easily be accomplished within a new configuration schema, while the same
functional specification could be used.

Our long-term goal is to develop techniques and tools that can be used to build a real-
time system with predictably correct behavior. As a step toward meeting our goal, we
have implemented a translator from the CSR specification language to the CCSR process
algebra. We are currently investigating the implementation of the CCSR proof system, as
well as extending the CSR specification 1a.ngua.ge to support va,riables and probabilistic
timing behavior.

T1= scope d o
S

i n t e r rup t recv(ch1) -+ S1
t imeout 50 + S2
od

References

T2 = scope d o
scope d o

S
in te r rup t recv(ch1) -+ S1
od

t imeout 50 -+ S2
od

[I] R. Alur, C. Courcoubetis, and D. Dill. Model-Checking for Real-Time Systems. In
Proc. of IEEE Symposium on Logic in Computer Science, 1990.

(21 R. Cleaveland and M. Hennessy. Priorities in Process Algebras. Information and
Computation, 87:58-77, 1990.

[3] M.K. Franklin and A. Gabrielian. A Transformational Method for Verifying Safety
Properties in Real-Time Systems. In Proc. IEEE Real-Time Systems Symposiu~m,
pages 112-123, December 1989.

[4] R. Gerber. Con~municating Shared Resrouces: A Model for Distributed Real- Time
Systems. PhD thesis, Department of Computer and Information Science, University
of Pennsylvania, 1991.

[5] R. Gerber and I. Lee. Communicating Shared Resources: A Model for Distributed
Real-Time Systems. In Proc. 10th IEEE Real-Time Systems Syml~osium, 1989.

[6] R. Harper. Introduction to standard ML. Technical Report ECS-LFCS-86-14, De-
partment of Computer Science, University of Edinburgh, The King's Buildings-
Edinburgh EH9 3JZ-Scotland, 1986.

[7] J. Hooman. Specification and Compositional Verification of Real- Time Systems. PhD
thesis, Eindhoven University of Technology, 1991.

[8] C. Huizing, R. Gerth, and W.P. de Roever. Full Abstraction of a Denotational
Semantics for Real-time Concurrency. In Proc. 14th ACM Symposium on Principles
of Program7ning Languages, pages 223-237, 1987.

[9] M. Joseph and A. Goswami. What's 'Real' about Real-time Systems? In IEEE
Real- Time Systems Symposium, 1988.

[lo] J.E. Coolahan Jr. and N. Roussopoulos. Timing Requirements for Time-Driven
Systems Using Augmented Petri Nets. IEEE Trans. Software Eng., SE-9(5):603-
616, September 1983.

[ll] I. Lee a,nd V. Gehlot. Language Constructs for Distributed Real-Time Programming.
In Proc. IEEE Real-Time Systems Symposium, 1985.

[12] N. Lynch and M. Tuttle. An Introduction to Input/Output Automata. Technical Re-
port MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute
of Technology, 1988.

[13] R. Milner. Commu~tication and Coracurrency. Prentice-Hall, 1989.

[14] J.S. Ostroff and W.M. Wonham. Modelling, Specifying and Verifying Real-time
Embedded Computer Systems. In Proc. IEEE Real- Time Systems Symposium, pages
124-132, December 1987.

[15] G.M. Reed and A.W. Roscoe. Metric Spaces as Models for Real-Time Concurrency.
In Proceedings of Muth. Found. of Computer Science, LNCS 298, 1987.

[16] A.C. Shaw. Reasoning About Time in Higher-Level Language Software. IEEE Trans-
actions on Software Engineering, 15(7):875-889, 1989.

[17] W. Yi. Ccs + time = an interleaving model for real time systems. In ICALP, 1991.

	Specification and Analysis of Resource-Bound Real-Time Systems
	Recommended Citation

	Specification and Analysis of Resource-Bound Real-Time Systems
	Abstract
	Keywords
	Comments

	tmp.1186157912.pdf.VEsRn

